O'REILLY"

the missing manual’

The book that should have been in the box®

David Sawyer McFarland

O'REILLY"

CSS lets you create professional websites, but learning
its finer points can be tricky—even for seasoned web
developers. This fully updated edition provides the most
modern and effective tips, tricks, and tutorial-based
instruction on CSS available today. Learn how to use new
tools such as Flexbox and Sass to build web pages that
look great and run fast on any desktop or mobile device.
Ideal for casual and experienced designers alike.

The important stuff you need to know
Start with the basics. Write CSS-friendly HTML, including the
HTML5 tags recognized by today’s browsers.

Design for mobile devices. Create web pages that look great
when visitors use them on the go.

Make your pages work for you. Add animations that capture
the imagination, and forms that get the job done.

Take control of page layouts. Use professional design
techniques such as floats and positioning.

Make your layouts more flexible. Design websites with
Flexbox that adjust to different devices and screen sizes.

Work more efficiently. Write less CSS code and work with

smaller files, using Syntactically Awesome Style Sheets (Sass).

Web Design/CSS

US $39.99 CAN $45.99
ISBN: 978-1-491-91805-0

L T W+
781491918050 ||||||||||||I||| Eﬁ.-.li

David Sawyer McFarland
is a web developer,
teacher, and author.

He’s been building
websites since 1995,
when he designed

an online magazine

for communication
professionals. David has
taught web design at the
UC Berkeley Graduate
School of Journalism, the
Center for Electronic Art,
the Art Institute of
Portland, and Portland
State University. Currently,
he’s a Teaching Team
Leader at the online
education site, Treehouse
http;//teamtreehouse.com.

mli the

missing
WELTELR

missingmanuals.com
twitter: @missingmanuals
facebook.com/MissingManuals

CSS

the manual’

The book that should have been in the box®

David Sawyer McFarland

O'REILLY"

Beijing | Boston | Farnham | Sebastopol | Tokyo

CSS: The Missing Manual
by David Sawyer McFarland

Copyright © 2015 David Sawyer McFarland. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: (800) 998-
9938 or corporate@oreilly.com.

August 2006: First Edition.
August 2009: Second Edition.
December 2012: Third Edition.
August 2015: Fourth Edition.

Revision History for the Fourth Edition:
2015-08-05 First release
See http.//oreilly.com/catalog/errata.csp?isbn=0636920036357 for release details.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing
Manual logo, and “The book that should have been in the box” are trademarks of
O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly Media is aware of a trademark claim, the
designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher

assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained in it.

ISBN-13: 978-1-491-91805-0

M]

http://my.safaribooksonline.com
mailto:corporate@oreilly.com

Part One:

Contents

The MissingCredits iX
Introduction Xiii
What IS CSS 2 . L Xiii
What You Need to KNOW.o Xiv
HTML: The Barebones Structure ... i Xiv
DOCUMENT TYPES. oottt e e Xiv
How HTML Tags WorKot e XV
HTML5: More Tags to Choose From XVii
Software for CSS .. XVii
AboUt This BOOK. ... Xviii
The Very BasiCs. . ..ot e e XX
About the Online Resources.t i XXi
Safari® Books Onlineo XXii

CSS Basics

CHAPTER T

CHAPTER 2:

CHAPTER 3:

HTMLand CSS 3
HTML: Pastand Presento i i 3
Writing HTML for CSS ..o e 5
The Importance of the Doctype ...t 17
HOW CSS WOIKS .ot e 19
Creating Styles and StyleSheets. 21
Anatomy of a Style. 21
Understanding Style Sheets. i 24
Internal Style Sheets 25
External Style Sheets. 26
Tutorial: Creating Your First Styleso 27
Selectors: Identifying WhattoStyle 41
Type Selectors: Styling HTML Tags. ... oot e 42
Class Selectors: Pinpoint Control 43
ID Selectors: Specific Page Elements. oo, 46
Styling Groups Of Tags. . . oottt e 49
Styling Tags Within Tags.ottt e 50
Pseudo-Classes and Pseudo-Elements, 55

Attribute Selectors. 59

Child Selectors ... 61
SIDIINGS . o 67
The :itarget Selector. 68
The:not() Selector. 69
Tutorial: Selector Sampler.o 70
CHAPTER 4: Saving Time with Style Inheritance 85
What Is Inheritance? i 85
How Inheritance Streamlines Style Sheets 86
The Limits of Inheritance. o e 88
Tutorial: Inheritance o 90
CHAPTER 5: Managing Multiple Styles: The Cascade................... 97
How Styles Cascade. 98
Specificity: Which Style Wins. 102
Controllingthe Cascade ...t e 105
Tutorial: The Cascade in Action.oo i, m
Part Two: Applied CSS
CHAPTER6: Formatting Text..... 121
USING FONES ..o 121
Using Web FoNnts ... o 126
Discovering Google Web Fonts. ... 140
Adding Color to Text . ..ot 147
Changing FONt Size 151
Formatting Words and Letters i 156
Adding Text Shadow o 160
Formatting Entire Paragraphs i 162
StYliNG ListS . oo 168
Tutorial: Text Formattingin Action.............. 172
CHAPTER 7: Margins, Padding,andBorders 185
Understandingthe Box Model. 185
Controlling Space with Marginsand Padding......................... 187
Adding Borders. . ..o 194
Coloring the Backgroundo 198
Creating Rounded COrners.ttt e et 199
Adding Drop Shadows.ot 201
Determining Heightand Width 204
Wrapping Content with Floating Elements........................... 210
Tutorial: Margins, Backgrounds, and Borders. 216

v

CONTENTS

CHAPTER 8:

CHAPTER 9:

CHAPTER 10:

CHAPTER 11:

Part Three:

Adding GraphicstoWebPages.......................... 229

Discovering CSSandtheTag.t 229
Adding Background Images. . ..ot 231
Controlling Repetition 234
Positioning a Background Image. 236
Using Background Property Shorthand. 247
Using Multiple Background Images.t 249
Utilizing Gradient Backgrounds. ...t 252
Tutorial: Enhancing Images. 261
Tutorial: Creatinga Photo Gallery 266
Tutorial: Using Background Images ..., 270
Sprucing Up Your Site’s Navigation................... ... 279
Selecting Which Linksto Style. ... o 279
StYliNG LiNKS ..o 283
Building Navigation Bars.t 289
CSS-Style Preloading Rollovers. e 298
Styling Particular Types of Links oo 300
Tutorial: Styling LinKs. . ..o 302
Tutorial: Creating a NavigationBar.............. oo, 308
CSS Transforms, Transitions, and Animations............ 319
TraANS OIS . Lo 319
TranSItioONS .. o 330
ANIMatioNS. . oo 338
TULOrIAl . e 349
Formatting TablesandForms............................ 357
Using Tablesthe Right Way o 357
Styling Tables ..o 359
StYliNG FOrmMS o 366
Tutorial: Stylinga Table. 370
Tutorial: Stylinga Form oo 375

CSS Page Layout

CHAPTER 12:

CHAPTER 13:

IntroducingCSSLayout.................... 385
Types of Web Page Layouts.t 385
How CSS Layout WoOrks. . ..o e 387
Layout Strategieso 392
Building Float-Based Layouts. 397
Applying Floats to Your Layouts.ot 401
Overcoming Float Problems. ... 405
Tutorial: Multiple-Column Layouts ... 417

CONTENTS

CHAPTER 14:

Positioning ElementsonaWebPage 429

How Positioning Properties Work. ... 430
Powerful Positioning Strategies. 443
Tutorial: Positioning Page Elements. 448
CHAPTER 15: Responsive Web Design 457
Responsive Web Design Basics. ... 457
SettingUpaWeb Page for RWD. 459
Media QUENIES . ..ot 460
Flexible Grids. e 468
FlUId IMages .« oo 472
Responsive Web Design Tutorial.............c i, 476
CHAPTER16: UsingaCSSGridSystem................................. 493
How Grids Work ... 493
Structuring Your HTML for Grids. e 495
Using the Skeleton Grid System. i 497
Creating and Naming Columns e 501
Tutorial: Usinga Grid System 509
CHAPTER 17: Modern Web Layout with Flexbox 527
Introducing Flexbox. ... 527
Flex Container Properties. ... e 532
Flex Item Properties.t 541
Tutorial: Build a Flexbox Layout 556
Part Four: Advanced CSS
CHAPTER 18: Improving Your CSSHabits 569
Adding CommentsSt 569
Organizing Styles . ..ot 570
Eliminating Browser Style Interference L. 579
Using Descendant Selectors. ... 582
CHAPTER 19: More Powerful StylingwithSass 589
What 1S SaSS . . it 589
INStalliNg SaSS . .ot 591
SaSS BaSICS. ottt 595
Organizing Your Styles with Sass Partials. 600
Sass Variables 603
Nesting Selectors 607
Inheriting (or Extending) Properties........ i 612
MIXINS et e 618
Working with Media QuUeriest 626
Troubleshooting with CSS Source Maps ..., 631

Vi

CONTENTS

Part Five:

Appendixes

APPENDIX A:

APPENDIX B:

CSS Property Reference 637
CSS ValUBS . o e 637
TeXt Properties . ..o 642
LISt Properties. ..o 647
Padding, Borders, and Marginst 648
Backgrounds 654
Page Layout Properties. 657
Animation, Transform and Transition Properties...................... 663
Table Properties 668
Miscellaneous Properties 670
CSSReSOUrces o 673
RefEreNCeS . . o 673
CSS HEID. ot 674
CSS Tips, Tricks, and AdVice.t e 674
CSS NaVIgationo 675
CSS LayoUt. .o 676
ShOWCASE SIS . .ottt 676
Index. 677

CONTENTS

\21

The Missing Credits

ABOUT THE AUTHOR

David McFarland (author) is a web developer, teacher and author. He’s
y been building web sites since 1995, when he designed his first website:
an online magazine for communication professionals.

He’s taught web design at the UC Berkeley Graduate School of Jour-
nalism, the Center for Electronic Art, the Art Institute of Portland, and
Portland State University.

He’s currently a Teaching Team Leader at the online education site, Treehouse (http://
teamtreehouse.com).

ABOUT THE CREATIVE TEAM

Nan Barber (editor) is associate editor for the Missing Manuals series. She lives in
Massachusetts with her husband and various electronic devices. Email: nanbarber@
gmail.com.

Melanie Yarbrough (production editor and compositor) works and plays in Cam-
bridge, Massachusetts, where she bakes up whatever she can imagine and bikes
around the city. Email: myarbrough@oreilly.com.

Molly Ives Brower (proofreader) is a freelance editor and proofreader who has
loved the Internet since she got a BITNET address in 1990. These days, though, she
can be found online at http://www.mjibrower.com and on Twitter, where she goes
by @vintagereader. Email: molly@mjibrower.com.

Ron Strauss (indexer) specializes in the indexing of information technology publica-
tions of all kinds. Ron is also an accomplished classical violist and lives in Northern
California with his wife and fellow indexer, Annie, and his miniature pinscher, Kanga.
Email: rstrauss@mchsi.com.

Rich Koster (beta reader) bought his first Mac, a 17-inch MacBook Pro, in 2009, and
has never looked back toward the Dark Side (PCs). Rich served as the tech editor
of David Pogue’s iPhone: The Missing Manual, 3rd Edition. He’s a husband, a father,
and creator of the Disney Echo at http://DisneyEcho.emuck.com, which he has fun
tending daily with his MacBook Pro!

ACKNOWLEDGEMENTS

Many thanks to all those who helped with this book, including the many students
I’ve taught who always help me see complex concepts through beginner’s eyes.

THE MISSING CREDITS

http://teamtreehouse.com
http://teamtreehouse.com
http://www.mjibrower.com

Thanks to my technical editors, Daniel Quinn and Jennifer Davis, who saved me
from embarrassing mistakes. We all owe a big debt of gratitude to the many web
designers who have broken new ground by using CSS in creative ways and shared
their discoveries with the web design community.

Thanks to David Pogue, who got me started, many years ago on this long adventure.
Thanks to Nan Barber for refining my writing, fixing my mistakes, and keeping me
on track.

— David Sawyer McFarland

THE MISSING MANUAL SERIES

Missing Manuals are witty, superbly written guides to computer products that don’t
come with printed manuals (which is just about all of them). Each book features a
handcrafted index and cross-references to specific pages (not just chapters). Recent
and upcoming titles include:

o Access 2013: The Missing Manual by Matthew MacDonald

* Adobe Edge Animate: The Missing Manual by Chris Grover

* Buying a Home: The Missing Manual by Nancy Conner

* Creating a Website: The Missing Manual, Third Edition by Matthew MacDonald
o (CSS3: The Missing Manual, Third Edition by David Sawyer McFarland

* Dreamweaver CS6: The Missing Manual by David Sawyer McFarland

* Dreamweaver CC: The Missing Manual, Second Edition by David Sawyer Mc-
Farland and Chris Grover

* Excel 2013: The Missing Manual by Matthew MacDonald

* FileMaker Pro 13: The Missing Manual by Susan Prosser and Stuart Gripman
* Fire Phone: The Missing Manual by Preston Gralla

* Flash CS6: The Missing Manual by Chris Grover

* Galaxy Tab: The Missing Manual by Preston Gralla

* Galaxy S5: The Missing Manual by Preston Gralla

* Google+: The Missing Manual by Kevin Purdy

o HTML5: The Missing Manual, Second Edition by Matthew MacDonald
* [Movie: The Missing Manual by David Pogue and Aaron Miller

* [Pad: The Missing Manual, Seventh Edition by J.D. Biersdorfer

* [Phone: The Missing Manual, Eighth Edition by David Pogue

* [Phone App Development: The Missing Manual by Craig Hockenberry
* [Photo: The Missing Manual by David Pogue and Lesa Snider

THE MISSING CREDITS

iPod: The Missing Manual, Eleventh Edition by J.D. Biersdorfer and David Pogue
iWork: The Missing Manual by Jessica Thornsby and Josh Clark

JavaScript & jQuery: The Missing Manual, Third Edition by David Sawyer Mc-
Farland

Kindle Fire HD: The Missing Manual by Peter Meyers

Living Green: The Missing Manual by Nancy Conner

Microsoft Project 2013: The Missing Manual by Bonnie Biafore

Motorola Xoom: The Missing Manual by Preston Gralla

NOOK HD: The Missing Manual by Preston Gralla

Office 2011 for Macintosh: The Missing Manual by Chris Grover

Office 2013: The Missing Manual by Nancy Conner and Matthew MacDonald
OS X Mavericks: The Missing Manual by David Pogue

OS X Yosemite: The Missing Manual by David Pogue

Personal Investing: The Missing Manual by Bonnie Biafore

Photoshop CS6: The Missing Manual by Lesa Snider

Photoshop CC: The Missing Manual, Second Edition by Lesa Snider
Photoshop Elements 13: The Missing Manual by Barbara Brundage

PHP & MySQL: The Missing Manual, Second Edition by Brett McLaughlin
QuickBooks 2015: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Mavericks Edition by David Pogue
Windows 7: The Missing Manual by David Pogue

Windows 8: The Missing Manual by David Pogue

WordPress: The Missing Manual, Second Edition by Matthew MacDonald
Your Body: The Missing Manual by Matthew MacDonald

Your Brain: The Missing Manual by Matthew MacDonald

Your Money: The Missing Manual by J.D. Roth

For a full list of all Missing Manuals in print, go to www.missingmanuals.com/
library.html.

THE MISSING CREDITS

Xl

http://www.missingmanuals.com/library.html
http://www.missingmanuals.com/library.html

Introduction

and design of your web pages. With CSS, dressing up your site’s text with

eye-catching headlines, drop caps, and borders is just the beginning. You can
also arrange images with precision, create columns and banners, and highlight your
links with dynamic rollover effects. You can even make elements fade in or out of
view, move objects around the page, or make a button slowly change colors when
a visitor mouses over it.

C ascading Style Sheets—CSS for short—give you creative control over the layout

Anything that can do all that must be pretty complicated, right? Au contraire! The
whole idea behind CSS is to streamline the process of styling web pages. In the next
few pages, you’ll learn about the basics of CSS.

M What Is CSS?

CSS is a styling language. You use it to make HTML—the fundamental language of
all web pages—Ilook good. Well, hopefully, you’ll use CSS to make your web pages
look better than good. After you read this book, you’ll be able to make your web
pages beautiful, functional, and easy to use.

Think of HTML as the basic structure of your content, and CSS as a designer who
takes your plain HTML and spruces it up with a fancy font, a border with rounded
corners, or a bright red background.

But before you start learning about CSS, you need to understand HTML.

X1

WHAT YOU
NEED TO
KNOW

I What You Need to Know

This book assumes you’ve already got some knowledge of HTML. Perhaps you've
built a site or two (or at least a page or two) and have some familiarity with the sea
of tags—<html>, <p>, <h1>, <table>—that make up the Hypertext Markup Language.
CSS can’t do anything without HTML, so you need to know how to create a web
page by using basic HTML.

If you’ve used HTML in the past to create web pages, but feel like your knowledge
is a bit rusty, the next section provides a basic refresher.

TIP ¥ you're just getting your feet wet learning HTML, then check out these free online tutorials: HTML Dog

(www.htmldog.com/guides/htmlbeginner) and W3Schools (www.w3schools.com/htm). If you're a printed-page
fan, then you may want to pick up a copy of HIML5: The Missing Manual, Third Edition or Head First HTML and (SS,
Second Edition (both O'Reilly).

M HTML: The Barebones Structure

HTML (Hypertext Markup Language) uses simple commands called tags to define the
various parts of a web page. For example, this HTML code creates a simple web page:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Hey, I am the title of this web page</title>
</head>
<body>
<p>Hey, I am a paragraph on this web page.</p>
</body>
</html>

It may not be exciting, but this example has all the basic elements a web page needs.
You’ll notice something called a doctype declaration at the very beginning of the
code, followed by <html> (with the brackets), a head, a body, and some stuff—the
actual page contents—inside the body, ending in a final </html>.

M Document Types

All web pages begin with a doctype—a line of code that identifies what flavor of
HTML you used to write the page. Two doctypes have been used for years—HTML
4.01 and XHTML 1.0—and each of those doctypes has two styles: strict and transi-
tional. For example, the HTML 4.01 transitional doctype looks like the following (the
other doctypes for HTML 4.01 and XHTML 1.0 look similar):

Xiv

CSS: THE MISSING MANUAL

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www. HOW HTML
w3.0rg/TR/html4/loose.dtd"> TAGS WORK

NOTE For examples of all various doctypes, visit www.webstandards.org/learn/reference/templates.

If you look at the code for the sample HTML page in this section, you’ll see that it
uses a much more succinct doctype:

<!doctype html>

That’s the HTML5 doctype. HTML5 is easier to use and more streamlined than its
predecessors. This book uses the HTML5 doctype, which is supported by every
popular browser (even the old Internet Explorer 6). There’s no reason to use any
doctype other than the simple HTMLS5 doctype.

NOTE Just because the HTML doctype works in older browsers doesn’t mean that those browsers understand
all HTMLS tags or features. Internet Explorer 8 and earlier, for example, don’t recognize the new HTMLS tags. To
style tags with CSS for those versions of IE, you have to employ a little JavaScript. You'll learn how to get older
browsers up to speed in the box on page 12.

The most important thing about a doctype, however, is to always use one. Without
it, your pages will look different depending on your visitor’s browser, since browsers
display CSS differently if they don’t have a doctype for guidance.

Each doctype requires you to write your HTML in a certain way. For example, the
tag for a line break looks like this in HTML 4.01:

But in XHTML, it looks like this:

And there’s another advantage of HTML5: It accepts either one.

M How HTML Tags Work

In the simple HTML example on page XIV, as in the HTML code of any web page,
most commands appear in pairs that surround a block of text or other commands.
Sandwiched between brackets, these tags are instructions that tell a web browser
how to display the web page. Tags are the “markup” part of the Hypertext Markup
Language.

The starting (opening) tag of each pair tells the browser where the instruction begins,
and the ending tag tells it where the instruction ends. Ending or closing tags always
include a forward slash (/) after the first bracket symbol (<).

XV

HOW HTML On any web page, you’ll usually find at least these four elements:
TAGS WORK

* The first line of a web page is the DOCTYPE declaration, discussed in the
previous section.

* The <html> tag appears once at the beginning of a web page and again (with
an added forward slash) at the end: </html>. This tag tells a web browser that
the information contained in this document is written in HTML, as opposed to
some other language. All the contents of a page, including other tags, appear
between the opening and closing <html> tags.

If you were to think of a web page as a tree, the <html> tag would be its root.
Springing from the trunk are two branches that represent the two main parts
of any web page: the head and the body.

* The head of a web page contains the title of the page (“Izzie’s Mail-Order Pen-
cils”). It may also include other, invisible information, like a page description,
that browsers and search engines use. You surround the head section with
opening and closing <head> tags.

In addition, the head section can include information that browsers use to for-
mat the page’s HTML and to add interactivity. As you'll see, the <head> section
can contain CSS code (like the kind you’ll learn to write in this book) or a link
to another file containing CSS information.

* The body, as set apart by its surrounding <body> tags, contains all the content
that appears inside a browser window—headlines, text, pictures, and so on.

Within the <body> tag, you commonly find tags like these:

* You tell a web browser where a paragraph of text begins with a <p> (opening
paragraph tag), and where it ends with a </p> (closing paragraph tag).

+ The tag marks text as important. When you surround some text with
it and its partner tag, , you get boldface type. The HTML snippet
 Warning! tells a web browser to strongly emphasize the
word “Warning!”

* The <a» tag, or anchor tag, creates a hyperlink in a web page. When clicked, a
hyperlink—or link—can lead anywhere on the Web. You tell the browser where
the link points by putting a web address inside the <a> tags. For instance, you
can type Click here!.

The browser knows that when your visitor clicks the words “Click here!” it should
go to the Missing Manual website. The href part of the tag is called an attribute,
and the URL (the Uniform Resource Locator, or web address) is the value. In this
example, http://www.missingmanuals.com is the value of the href attribute.

XVI CSS: THE MISSING MANUAL

M HTMLS5: More Tags to Choose From

HTML5—the current version of HTML—has been around for years now. Sometimes
you’ll hear the name used to describe things other than HTML tags, like local storage
(a way to save data from a website to a visitor’'s computer), geolocation (a way to
check where a visitor is in the world), and drawing to the web page using WebGL.
Strictly speaking, those technologies aren’t part of HTML, but they’re new browser
features that came onto the scene along with HTMLS5.

In this book, the term HTML5 always refers to the HTML5 doctype as well as the
new tags introduced as part of the HTML5 standard. HTMLS isn’t radically different
from its predecessors—it was created to make sure the Web continues to work the
way it always has. Most of the basics of HTML are the same as they’ve always been;
HTMLS5 adds a few new elements meant to support the way web designers currently
build websites. For example, in HTMLS5, the <header> tag contains the content you
usually find at the top of a page, such as a logo and sitewide navigation links; the
new <nav> tag encloses the set of links used to navigate a site; and the <footer> tag
houses the stuff you usually put at the bottom of a page, like legal notices, email
contacts, and so on.

In addition, HTML5 adds new tags that let you insert video and audio into a page,
new form tags that add sophisticated elements like sliders and pop-up date pickers,
and built-in browser support for form validation (which ensures visitors correctly
fill out your forms). You’ll see HTML5 used throughout this book, especially in the
next chapter.

M Software for CSS

To create web pages made up of HTML and CSS, you need nothing more than a
basic text editor like Notepad (Windows) or TextEdit (Mac). But after typing a few
hundred lines of HTML and CSS, you may want to try a program better suited to
working with web pages. This section lists some common programs, some free and
some you have to buy.

NOTE There are literally hundreds of tools that can help you create web pages, so the following isn’t a
complete list. Think of it as a greatest-hits tour of the most popular programs that (SS fans are using today.

Free Programs

There are plenty of free programs out there for editing web pages and style sheets.
If you're still using Notepad or TextEdit, give one of these a try. Here’s a short list
to get you started:

« Brackets (Windows, Mac, Linux; http://brackets.io/). Spearheaded by Adobe,
this free, open-source text editor has many tools for working with HTML and
CSS. It’s written specifically for web designers and developers.

SOFTWARE
FOR CSS

XV

ABOUT THIS « Atom (Windows, Mac, Linux; https://atom.io/). Another free, open-source text
BOOK editor created by the people behind GitHub, the hugely popular code sharing and
collaboration site. Like Brackets, this new text editor is aimed at web developers.

 JEdit (Windows, Mac, Linux; http://jedit.org). This free, Java-based text editor
works on almost any computer and includes many features that you’d find in
commercial text editors, like syntax highlighting for CSS.

+ Notepad++ (Windows; http:/notepad-plus.sourceforge.net). A lot of people
swear by this fast text editor. It even has built-in features that make it ideal for
writing HTML and CSS, like syntax highlighting—color-coding tags and special
keywords to make it easier to identify the page’s HTML and CSS elements.

Commercial Software

Commercial website development programs range from inexpensive text editors to
complete website construction tools with all the bells and whistles:

» EditPlus (Windows; www.editplus.com) is an inexpensive ($35) text editor that
includes syntax highlighting, FTP, autocomplete, and other wrist-saving features.

» skEdit (Mac; www.skedit.com) is an inexpensive ($30) web page editor, com-
plete with FTP/SFTP, code hints, and other useful features.

« Coda2 (Mac; www.panic.com/coda) is a full-featured web development toolkit
($99). It includes a text editor, page preview, FTP/SFTP, and graphic CSS-
creating tools for creating CSS.

* Sublime Text (Mac, Windows, Linux; www.sublimetext.com) is a powerful
text editor ($70) beloved by many web coders. You'll find it frequently used in
web design companies.

+ Dreamweaver (Mac and Windows; www.adobe.com/products/dreamweaver)
is a visual web page editor (from $19.99 per month). It lets you see how your
page looks in a web browser. The program also includes a powerful text editor
and excellent CSS creation and management tools. Check out Dreamweaver
CC: The Missing Manual for the full skinny on how to use this powerful program.

NOTE The various types of software discussed in this section are general-purpose programs that let you
edit both HTML and (SS. With them, you need to learn only one program for your web development needs.

M About This Book

The World Wide Web is really easy to use. After all, grandfathers in Boise and first
graders in Tallahassee log onto the Web every day. Unfortunately, the rules that
govern how the Web works aren’t so easy to understand. The computer scientists
and other techie types who write the official documentation aren’t interested in ex-

XVIII CSS: THE MISSING MANUAL

plaining their concepts to the average Joe (or Joanne). Just check out www.w3.org/
TR/css3-transforms to get a taste of the technical mumbo-jumbo these geeks speak.

People just learning CSS often don’t know where to begin. And CSS’s finer points can
trip up even seasoned web pros. The purpose of this book is to serve as the manual
that should have come with CSS. In its pages, you'll find step-by-step instructions
for using CSS to create beautiful web pages.

CSS: The Missing Manual is designed to help readers at every technical level. To get
the most out of this book, you should know the basics of HTML and maybe even a
sampling of CSS. If you’ve never built a web page before, then check out the tuto-
rial that starts on page 27. The primary discussions in these chapters are written
for advanced beginners or intermediates. But if you’re new to building web pages,
special boxes labeled “Up to Speed” provide the introductory information you need
to understand the topic at hand. If you’re an advanced web jockey, on the other
hand, then keep your eye out for similar boxes called “Power Users’ Clinic.” They
offer more technical tips, tricks, and shortcuts for the experienced computer fan.

About the Outline

CSS: The Missing Manualis divided into five parts; the first four each contain several
chapters while the last part contains appendixes.

* Part One, CSS Basics, shows you how to create style sheets and provides an
overview of key CSS concepts like inheritance, selectors, and the cascade.
Along the way, you’ll learn the best HTML writing practices when working with
CSS. Tutorials reinforce the part’s main concepts and give you a good taste of
the power of CSS.

* Part Two, Applied CSS, takes you into the real world of web design. You’ll learn
the most important CSS properties and how to use them to format text, create
useful navigation tools, and enhance your page with graphics. You’ll learn how
to create simple animations with CSS. This section also provides advice on how
to make attractive tables and forms.

* Part Three, CSS Page Layout, helps you with one of the most confusing, but
most rewarding, aspects of CSS—controlling the layout of your web pages. You'll
learn how to create common designs (like two- and three-column layouts) and
how to add sidebars, and you’ll learn about floats and positioning—two com-
mon CSS techniques for controlling page layout. You’ll also learn how to craft
websites that adapt to look good on desktop, tablet, and mobile browsers, as
well as how to use flexbox, a powerful new way of laying out web pages.

* Part Four, Advanced CSS, delves into professional tips for improving your CSS,
It also provides an introduction to Sass—a powerful and efficient way of author-
ing your style sheets.

* Part Five, Appendixes, includes two sets of resources. The CSS Property Ref-
erence summarizes each CSS property in small, easy-to-digest chunks so you
can quickly learn about useful CSS properties you may not have seen before

ABOUT THIS
BOOK

XIX

http://www.w3.org/TR/css3-transforms
http://www.w3.org/TR/css3-transforms

THE VERY or brush up on what you already know. The second appendix covers tools and
BASICS resources for creating and using CSS.

M The Very Basics

To use this book, and indeed to use a computer, you need to know a few basics. You
should be familiar with these terms and concepts:

» Clicking. This book gives you three kinds of instructions that require you to use
your computer’s mouse or trackpad. To click means to point the arrow cursor at
something on the screen and then—without moving the cursor at all—to press
and release the clicker button on the mouse (or laptop trackpad). A right-click
is the same thing using the right mouse button. (On a Mac, press Control as you
click if you don’t have a right mouse button.)

To double-click means to click twice in rapid succession, again without moving
the cursor at all. And to drag means to move the cursor while pressing the button.

When you're told to Ctr/-click something on a PC or 88-click something on the
Mac, you click while pressing the Ctrl or 88 key.

* Menus. The menus are the words at the top of your screen or window: File,
Edit, and so on. Click one to make a list of commands appear, as though they’re
written on a window shade you’ve just pulled down. This book assumes that you
know how to open a program, surf the Web, and download files. You should
know how to use the Start menu (Windows) or the Dock or the Apple menu
(Mac), as well as the Control Panel (Windows) or System Preferences (Mac OS X).

* Keyboard shortcuts. Every time you take your hand off the keyboard to move
the mouse, you lose time and potentially disrupt your creative flow. That’s why
many experienced computer users use keystroke combinations instead of menu
commands wherever possible. When you see a shortcut like Ctrl+S (88-S) (which
saves changes to the current document), it’s telling you to hold down the Ctrl
or 88 key, and, while it’s down, type the letter S, and then release both keys.

About—These—Arrows

Throughout this book, and throughout the Missing Manual series, you'll find sentences
like this one: “Open the System—Library—Fonts folder.” That’s shorthand for a much
longer instruction that directs you to open three nested folders in sequence, like this:
“On your hard drive, you’ll find a folder called System. Open that. Inside the System
folder window is a folder called Library; double-click it to open it. Inside that folder
is yet another one called Fonts. Double-click to open it, too.”

Similarly, this kind of arrow shorthand helps to simplify the business of choosing
commands in menus, as shown in Figure I-1.

XX CSS: THE MISSING MANUAL

v Always Show Bookmarks Bar {+3iB |

® O ® Foreiy veda- T
€ 2 C [wwwore

(1 Treehouse | Home [~ Mail |

')

rce Reload This Page {+3#R

JavaScript Console 3dJ |

Search

® Chrome File Edit History Bookmarks Window People Help FIGURE P-1

In this book, arrow nota-
tions help simplify menu
|'My Gourses [treshouse docs Glrors INSETUCtiONS. For example,

Enter Presentation Mode {+3F View—s Developer—s View
Enter Full Screen ~3F 5 . t
Actual Size g ® ource Is amore compac
Zoom In s { way of saying, “From
Zoom Out 8- the View menu, choose
, Enceding [E—— . Developer; from the sub-
oS Developer [3 View Source U _ues menu that then appears,
Popular Topics: Programming = JavaSeript | iPhone Developer Tools X#l s, choose View Source.”

ABOUT THE
ONLINE
RESOURCES

B About the Online Resources

As the owner of a Missing Manual, you’ve got more than just a book to read. Online,
you’ll find example files so you can get some hands-on experience, as well as tips,
articles, and maybe even a video or two. You can also communicate with the Missing
Manual team and tell us what you love (or hate) about the book. Head over to www.
missingmanuals.com, or go directly to one of the following sections.

Living Examples
This book is designed to get your work onto the Web faster and more professionally.
It’s only natural, then, that half the value of this book lies on the Web.

As you read the book’s chapters, you’ll encounter a number of living examples—
step-by-step tutorials that you can build yourself, using raw materials (like graphics
and half-completed web pages) that you can download from https://github.com/
sawmac/css_mm_4e. You may not gain very much by simply reading these step-
by-step lessons while relaxing in your porch hammock. But if you work through
them at the computer, you’ll discover that these tutorials give you insight into the
way professional designers build web pages.

You'll also find, in this book’s lessons, the URLs of the finished pages, so that you
can compare your work with the final result. In other words, you won’t just see pic-
tures of how the web pages should look; you’ll find the actual, working web pages
on the Internet.

XXI1

https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

SAFARI® BOOKS
ONLINE

About MissingManuals.com

At www.missingmanuals.com, yoUu’ll find articles, tips, and updates to CSS: The
Missing Manual. In fact, we invite and encourage you to submit such corrections
and updates yourself. In an effort to keep the book as up-to-date and accurate as
possible, each time we print more copies of this book, we’ll make any confirmed
corrections you’ve suggested. We’ll also note such changes on the website, so that
you can mark important corrections into your own copy of the book, if you like. (Go
to www.missingmanuals.com/feedback, choose the book’s name from the pop-up
menu, and then click Go to see the changes.)

Also on our Feedback page, you can get expert answers to questions that come
to you while reading this book, write a book review, and find groups for folks who
share your interest in CSS.

We’d love to hear your suggestions for new books in the Missing Manual line. There’s
a place for that on missingmanuals.com, too. And while you’re online, you can also
register this book at www.oreilly.com (you can jump directly to the registration
page by going here: www.oreilly.com/register). Registering means we can send you
updates about this book, and you’ll be eligible for special offers like discounts on
future editions of CSS: The Missing Manual.

Errata

In an effort to keep this book as up-to-date and accurate as possible, each time we
print more copies, we’ll make any confirmed corrections you’ve suggested. We also
note such changes on the book’s website, so you can mark important corrections
into your own copy of the book, if you like. Go to www.tinyurl.com/css4e-mm to
report an error and view existing corrections.

M Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

XXT11

CSS: THE MISSING MANUAL

http://missingmanuals.com
http://www.tinyurl.com/css4e-mm

CSS Basics

CHAPTER T:
HTML and CSS

CHAPTER 2:
Creating Styles and Style Sheets

CHAPTER 3:
Selectors: Identifying What to Style

CHAPTER 4:
Saving Time with Style Inheritance

CHAPTER 5:
Managing Multiple Styles: The Cascade

HTML and CSS

meaningful structure, and while it may not be pretty by itself, the web wouldn’t
exist without it. So to get the most out of your CSS training, you need to know
how to write HTML to create a solid, well-built foundation. This chapter introduces
you to the basics of CSS and shows you how to write better, more CSS-friendly HTML.

CSS isn’t anything without HTML. HTML provides web pages with content and

The good news is that when you use CSS throughout your site, HTML actually be-
comes easier to write. You don’t need to try to turn HTML into the design maven it
was never intended to be. Instead, CSS offers most of the graphic design touches
you’ll likely ever want, and HTML pages written to work with CSS are easier to cre-
ate, since they require less code and less typing. They’ll also download faster—a
welcome bonus your site’s visitors will appreciate (see Figure 1-1).

M HTML: Past and Present

HTML provides the foundation for every page you encounter on the Web. When you
add CSS into the mix, HTML becomes simpler, because you don’t need to use HTML
tags (like the old tag) to control how a web page looks. That job is for CSS.
But before jumping into CSS, here’s a quick walk through HTMLs past (and present).

HTML Past: Whatever Looked Good

When a bunch of scientists created the Web to share technical documentation,
nobody called in the graphic designers. All the scientists needed HTML to do was
structure information for easy comprehension. For example, the <h1> tag indicates
an important headline, while the <h2> tag represents a lesser heading, usually a

CHAPTER

1

HTML: PAST subheading of the <h1> tag. Another favorite, the (ordered list) tag, creates a
AND PRESENT numbered list for things like “Top 10 reasons not to play with jellyfish.”

205 & FIGURE 1-1
!Il, ﬂ m ll 3 file:// fUsers /dave/Documents,00_websites/mm_css/htdocs/index.h © = ('SS d . b d i
* -driven web design
makes writing HTML
COSMOFARMER =
Your online guide to apartment farming ! pictured here look similar,
[Home S rocires oot Jauz _eojecs | PN but the top page is styled
N TR completely with (SS,
R R while the bottom page
et uses only HTML. The size
i of the HTML file for the
e, | top page is only 4k, while
Feature: loempumaoorste | B the HTML-only page s
i el nearly four times that
Bathtub Hydroponics indoor lawns:sod or seed? size at 14k, The HTML-only
orem ipsum site .
omg approach requires a lot
t?,:::: Eﬂﬁ dolor site more code to achieve
8 Saucy Succulents to Spice Up Your Bedroom amet. nearly the same visual
Lorem ipsurn dolor sit amet,Loremn ipsum dolor sit amet, sed “Dolor site amet))
diam nonummy nibh euismod tincidunt ut. Lorem ipsum dolor site L effects: 213 lines of HTML
READ THE STORY omel | code compared with 71

lines for the (SS version.

CDSI\/IDFARMEH

Your online guide to apartment farming

L \ Y

o: It's You Month
Lorem ipsum dolor site
amet.

Your Feedback:

Lorem ipsum dolor site
amet. w

Feature: This Month's Survey

Bathtub Hydl‘oponics Lorem ipsum dolor site
amet.

Indoor Lawns: sod or
seed?

Lorem ipsum dolor site
amet.

Dolor Sit Amet

Lorem ipsum dolor site
amet.

8 Saucy Succulents to Spice Up Your Bedroom
Lorem ipsum dolor sit amet,Lorem ipsum dolor sit amet, sed

READ THE STORY

I

-

But as soon as people other than scientists started using HTML, they wanted their
web pages to look good. So web designers started to use tags to control appear-
ance rather than structure information. For example, you can use the <blockquote>
tag (intended for material that’s quoted from another source) on any text that you
want to indent a little bit. You can use heading tags to make any text bigger and
bolder—regardless of whether it functions as a heading.

4 CSS: THE MISSING MANUAL

In an even more elaborate workaround, designers learned how to use the <table>
tag to create columns of text and accurately place pictures and text on a page.
Unfortunately, since that tag was intended to display spreadsheet-like data—re-
search results, train schedules, and so on—designers had to get creative by using
the <table> tag in unusual ways, sometimes nesting a table within a table within a
table to make their pages look good.

Meanwhile, browser makers introduced new tags and attributes for the specific
purpose of making a page look better. The tag, for example, let you specify
a font color, typeface, and one of seven different sizes. (If you’re keeping score at
home, that’s about 100 fewer sizes than you can get with, say, Microsoft Word.)

Finally, when designers couldn’t get exactly what they wanted, they often resorted
to using graphics. For example, they’d create a large graphic to capture the exact
font and layout for web page elements and then s/ice the Photoshop files into smaller
files and piece them back together inside tables to recreate the original design.

While all of the preceding techniques—using tags in creative ways, taking advantage
of design-specific tag attributes, and making extensive use of graphics—provide
design control over your pages, they also add a lot of additional HTML code. More
code makes your site more difficult to build and much slower for your visitors to
download.

HTML Present: Scaffolding for CSS

No matter what content your web page holds—the fishing season calendar, driving
directions to the nearest IKEA, or pictures from your kid’s birthday party—it’s the
page’s design that makes it look like either a professional enterprise or a part-timer’s
hobby. Good design enhances the message of your site, helps visitors find what
they’re looking for, and determines how the rest of the world sees your website.
That’s why web designers went through the contortions described in the previous
section to force HTML to look good. By taking on those design duties, CSS lets HTML
go back to doing what it does best—structuring content.

Using HTML to control the look of text and other web page elements is obsolete. Don’t
worry if HTMLUs <h1> tag is too big for your taste or bulleted lists aren’t spaced just
right. You can take care of that later using CSS. Instead, think of HTML as a method
of adding structure to the content you want up on the Web. Use HTML to organize
your content and CSS to make that content look great.

M Writing HTML for CSS

If you’re new to web design, you may need some helpful hints to guide your forays
into HTML (and to steer clear of well-intentioned, but out-of-date HTML techniques).
Or if you’ve been building web pages for a while, you may have picked up a few bad
habits that you're better off forgetting. The rest of this chapter introduces you to
some HTML-writing habits that will make your mom proud—and help you get the
most out of CSS.

WRITING HTML
FOR CSS

CHAPTER 1: HTML AND CSS

WRITING HTML
FOR CSS

Think Structure

HTML adds meaning to text by logically dividing it and identifying the role it plays on
the page: For example, the <h1> tag is the most important introduction to a page’s
content. Other headers let you divide the content into less important, but related
sections. Just like this book, a web page needs a logical structure. Each chapter
in this book has a title (think <h1>) and several sections (think <h2>), which in turn
contain smaller subsections. Imagine how much harder it would be to read these
pages if the words just ran together as one long paragraph.

NOTE For a tutorial on HTML, visit www.w3schools.com/html/html_intro.asp. For a quick list of all available
HTML tags, visit the detailed (but a bit technical) reference at the Mozilla Developer network: https://developer.
mozilla.org/en-US/docs/Web/HTML/Element.

HTML provides many other tags besides headers for marking up content to identify
itsrole. (After all, the Min HTML stands for markup.) Among the most popular are the
<p> tag for paragraphs of text and the tag for creating bulleted (non-numbered)
lists. Lesser-known tags can indicate very specific types of content, like <abbr> for
abbreviations and <code> for computer code.

When writing HTML for CSS, use a tag that comes as close as possible to match-
ing the role the content plays in the page, not the way it looks (see Figure 1-2). For
example, a bunch of links in a navigation bar isn’t really a headline, and it isn’'t a
regular paragraph of text. It’s most like a bulleted list of options, so the tagisa
good choice. If you’re saying, “But items in a bulleted list are stacked vertically one
on top of the other, and | want a horizontal navigation bar where each link sits next
to the previous link,” don’t worry. With CSS magic you can convert a vertical list of
links into a stylish horizontal navigation bar, as you’ll see in Chapter 9.

More HTML Tags to Keep in Mind

HTML's motley assortment of tags doesn’t cover the wide range of content you’ll
likely have on a web page. Sure, <code> is great for marking up computer program
code, but most folks would find a <recipe> tag handier. Too bad there isn’t one.
Fortunately, HTML provides several “structural” tags that let you better identify
and group content, and, in the process, provide “handles” that let you attach CSS
styles to different page elements. Two of those tags—<div> and —have been
around nearly since the beginning of HTML. HTML5 introduced a much wider range
of tags that let you group content that serves a particular function, like the <footer>
tag, which you can use to group supplementary information like a copyright notice,
contact information, or a list of resources.

CSS: THE MISSING MANUAL

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

WRITING HTML
FOR CSS

<font color="#FF3300" size="4" face="Georgia,
Times New Roman, Times, serif"s>

A Revolution in Indoor Agriculture

Lorem ipsum dolor sit amet...</p>

The Urban Agrarian Lifestyle

A Revolution in Indoor Agriculture

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure.

<h1>The Urban Agrarian Lifestyle</hl>
<h2>A Revolution in Indoor Agriculture</h2>
<p>Lorem ipsum dolor sit amet...</p>

<p> FIGURE 1-2

 0ld school, new school. Before (SS,
<font color="#0066FF" size="5" face="Verdana ’ designers had to resort to the tag
Arial, Helvetica, sans-serif"s>Urban Agrarian and other extra HTML to achieve certain
Lifestyle visual effects (top). You can achieve the

 same look (and often a better one) with a

lot less HTML code (bottom). In addition,
using SS for formatting frees you up

to write HTML that follows the logical
structure of the page’s content.

I UNDERSTANDING THE <DIV> AND TAGS

The <div> and tags have been around for much of the life of the Web. They’ve
traditionally been used to organize and group content that doesn’t quite lend itself
to other HTML tags. Think of them as like empty vessels that you fill with content. A
divis a block, meaning it has a line break before it and after it, while a span appears
inline, as part of a paragraph. Otherwise, divs and spans have no inherent visual
properties, so you can use CSS to make them look any way you want. The <div>
(for division) tag indicates any discrete block of content, much like a paragraph or
a headline. But more often it’s used to group any number of other elements, so
you can insert a headline, a bunch of paragraphs, and a bulleted list inside a single
<div> block. The <div> tag is a great way to subdivide a page into logical areas, like
a banner, footer, sidebar, and so on. Using CSS, you can later position each area to
create sophisticated page layouts (a topic that’s covered in Part Three).

CHAPTER 1: HTML AND CSS

WRITING HTML
FOR CSS

UP TO SPEED

Simple HTML Is Search Engine Friendly

Once you ignore how plain HTML looks and instead think of it
simply as the way to structure a document’s content, and (SS
as the tool for making that content look good, you'll discover
additional benefits to writing lean, mean HTML. For one thing,
you may hoost your search-engine ranking as determined by
sites like Google, Yahoo, and Bing. That’s because when search
engines crawl the Web, indexing the content on websites, they
go through all the HTML on each page to discover the actual
content. The old HTML way of using special tags (like)
and lots of tables to design a page gets inthe way of the search
engine’s job. Infact, some search engines stop reading a page’s
HTML after a certain number of characters. When you use HTML
just for design, the search engine may miss important content
on the page or even fail to rank it at all.

By contrast, simple, structured HTML is easy for a search
engine to read and index. Using an <h1> tag to indicate the

most important topic of the page (as opposed to just making
the text big and bold) is a smart strategy: Search engines
give greater weight to the contents inside that tag when they
index the page.

What’s more, (SS lets you control where content appears on the
page. For example, although you may want a fancy navigation
bar, a newsletter signup form, and a Contact Us button to ap-
pear at the top of your web page, you don’t have to place that
content at the top of your HTML file. You can place the page’s
most important content at the top of the HTML and let CSS con-
trol exactly where everything appears in the browser window.

To see Google’s suggestions for building search-friendly web-
sites, download their search engine start kit at hitps://static.
googleusercontent.com/media/www.google.com/en//web-
masters/docs/search-engine-optimization-starter-quide.pdf.

The tag is used for inline elements: words or phrases that appear inside a
larger paragraph or heading. Treat it just like other inline HTML tags, such as the
<a> tag (for adding a link to some text in a paragraph) or the tag (for
emphasizing a word in a paragraph). For example, you could use a tag to
indicate the name of a company, and then use CSS to highlight the name by using a
different font, color, and so on. Here’s an example of these tags in action, complete
with a sneak peek of a couple of attributes—id and class—frequently used to attach

styles to parts of a page.

<div id="footer">

<p>Copyright 2015, SuperCo.com</p>

<p>Call customer service at 555-555-5501 for more information.</p>

</div>

This brief introduction isn’t the last you’ll see of these tags. They’re used frequently
in CSS-heavy web pages, and in this book you’ll learn how to use them in combina-

tion with CSS to gain creative control over your web pages.

I ADDITIONAL TAGS IN HTML5

The <div> tag is rather generic—it’s simply a block-level element used to divide a
page into sections. One of the goals of HTML5 is to provide other, more semantic
tags for web designers to choose from. Making your HTML more semantic simply
means using tags that accurately describe the content they contain. As mentioned

8 CSS: THE MISSING MANUAL

https://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
https://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
https://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf

earlier in this section, you should use the <h1> (heading 1) tag when placing text that
describes the primary content of a page. Likewise, the <code> tag tells you clearly
what kind of information is placed inside—programming code.

HTMLS5 includes many different tags whose names reflect the type of content they
contain, and can be used in place of the <div> tag. The <article> tag, for example,
is used to mark off a section of a page that contains a complete, independent com-
position, like a blog post, an online magazine article, or simply the page’s main body
of text. Likewise, the <header> tag indicates a header or banner: the top part of a
page, usually containing a logo, sitewide navigation, page title and tagline, and so on.

To learn more about the new HTML tags, visit HTML5 Doctor (http://html5doctor.com) and www.
w3schools.com/html/html5_intro.asp or grab a copy of the HTML5 Pocket Reference (0Reilly).

Many HTMLS5 tags are intended to expand upon the generic <div> tag. Here are a
few other HTMLS5 tags frequently used to structure the content on a page:

* The <section> tag contains a grouping of related content, such as the chapter
of a book. For example, you could divide the content of a home page into three
sections: one for an introduction to the site, one for contact information, and
another for latest news.

* The <aside> tag holds content that is related to content around it. A sidebar
in a print magazine is an example of the type of content that would go into an
<aside>.

* The <footer> tag contains information you’d usually place in a page’s footer,
like a copyright notice, legal information, some site navigation links, and so on.
You’re not limited to just a single <footer> per page, though; you can put a
footer inside an <article>, for example, to hold related information like foot-
notes, references, or citations.

* The <nav> element is used to contain primary navigation links.

+ The <figure> tag is used for an illustrative image. You can place an tag
inside it, as well as another new HTML5 tag—the <figcaption> tag, which is
used to display a caption explaining the photo or illustration within the <figure>.

i Understanding which HTML5 tag to use—should your text be an <article> ora <section>?—can

be tricky. For a handy flowchart that makes sense of HTML5’s new sectioning elements, download the PDF from
the HTML5doctor.com at http://htmi5doctor.com/downloads/h5d-sectioning-flowchart.pdf.

There are other HTML5 elements, and many of them simply provide a more descrip-
tive alternative to the <div> tag. This book uses both the <div> tag and the new
HTML5 tags to help organize web-page content. The downside of HTML5 is that
Internet Explorer 8 and earlier don’t recognize the new tags without a little bit of
help (see the box on page 12).

WRITING HTML
FOR CSS

CHAPTER 1: HTML AND CSS

http://html5doctor.com
www.w3schools.com/html/html5_intro.asp
www.w3schools.com/html/html5_intro.asp

WRITING HTML
FOR CSS

In addition to letting you feel like you’re keeping up with the latest web design
trends, using HTML5 tags provides you with clues about a page’s content, and may
boost the site’s search engine ranking. For example, using the <article> tag to
hold the main story on a web page can highlight what’s inside that tag, and is more
descriptive (that is, semantic) than a plain old <div>. Even so, many web designers
still use <div> tags even in places where an HTML5 tag makes sense, so there’s no
harm in continuing to use the <div> tag and avoiding the HTML5 sectioning ele-
ments if you like.

In addition, even with the HTML5 tags, sometimes you still need use <div> tags
simply to group other HTML tags. You’d do this to provide a way to move that group
to another spot on a page, to give the group a consistent background color, or to
draw an outline and add a drop shadow.

Keep Your Layout in Mind

While you'll use the <h1> tag to identify the main topic of the page and the <p> tag
to add a paragraph of text, you’ll eventually want to organize a page’s content into
a pleasing layout. As you learn how to use CSS to lay out a page in Part Three, it
doesn’t hurt to keep your design in mind while you write the page’s HTML.

You can think of web page layout as the artful arrangement of boxes (see Figure 1-3
for an example). After all, a two-column design consisting of two vertical columns
of text is really just two rectangular boxes sitting side by side. A header consisting
of a logo, tagline, search box, and site navigation is really just a wide rectangular
box sitting across the top of the browser window. In other words, if you imagine the
groupings and layout of content on a page, you’d see boxes sitting on top of, next
to, and below one another.

10

CSS: THE MISSING MANUAL

WRITING HTML
FOR CSS

E cafesoylentgreen

About Us

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante.
Donec eu libero sit amet quam egestas semper.

Our History
Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et
sapien pharetra. erat wisi, i sed, vitae,

ornare sit amet, wisi.Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar
facilisis. Ut felis. Praesent dapibus, neque id cursus faucibus, tortor neque egestas
augue, eu vulputate magna eros eu erat. Aliquam erat volutpat. Nam dui mi, tincidunt
quis, accumsan porttitor, facilisis luctus, metus

Our Founders

Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien
ullamcorper pharetra. Vestibulum erat wisi,
condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt
condimentum, eros ipsum rutrum orci, sagittis
tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus,
neque id cursus faucibus, tortor neque egestas
augue, eu vulputate magna eros eu erat. Aliquam
erat volutpat. Nam dui mi, tincidunt quis, accumsan
porttitor, facilisis luctus, metus

Our Values

Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat
wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit
eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac
dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id
cursus faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat. Aliguam
erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor, facilisis luctus, metus

© MAKE A RESERVATION

0 B I T

700 SW 5th Ave. Portland, OR (866) 555-1000
Monday-Thursday: 7:00 am — 2:00 pm
Friday-Saturday: 8:00am — 11:00 pm

Upcoming Events

& March 3rd Iron Chef Night
Lorm ipsum dolor sat ipectum solorgno
inferiod

% March 7th Learn about high protein
plankton
Lorm ipsum dolor sat ipectum solorgno
inferiod

& March 12th Movie Night
Lorm ipsum dolor sat ipectum solorgno
inferiod

This Week's Specials

—

Lorm ipsum dolor sat ipectum solorgno inferiod

P

Lorm ipsum dolor sat ipectum solorgno inferiod

| Copyright 2022, The Soylent Corporation |

FIGURE 1-3

This basic two-column
layout includes a banner
(top), a column of main
content (middle, left), a
sidebar (middle, right),
and a footer (bottom).
These are the main
structural boxes making
up this page’s layout.

CHAPTER 1: HTML AND CSS

n

WRITING HTML
FOR CSS

WORKAROUND WORKSHOP

Getting IE8 to Understand HTML5

HTML5 gives you many HTML tags to play with, from tags
that clearly describe the kind of content they hold, like the
<nav> tag, to ones that provide added functionality, like the
<video> tag for embedding videos and the <audio> tag
for embedding sound and music.

Unfortunately, Internet Explorer 8 and earlier don’t recognize
these new tags, and won’t respond to any (SS you apply to
them. That’s right—if you’re using HTML5 and viewing web
pagesin IE8, this book is useless to you. Well...not exactly. There
is a way to kick those old versions of IE into gear, so they’ll
understand all the (SS that applies to HTML5 tags.

This tricky bit of code uses what’s called an “Internet Explorer
conditional comment” (IECC for short) to embed a bit of JavaScript
code that’s only visible to versions of Internet Explorer earlier
than IE9. In other words, only IE6, 7, and 8 respond to this code,
and all other browsers (including newer versions of IE) simply
ignore it. This code makes earlier versions of IE load a small
JavaScript program that forces the browser to recognize HTML5
tags and apply the CSS that applies to those tags.

This code only affects how the browser displays and prints
HTML5 tags; it doesn’t make the browser “understand” an
HTML5 tag that actually does something. For example, 1E8

and earlier don’t understand the <video> tagand can’t play
HTML5 video (even with the added JavaScript code).

If you're wondering whether you even need to worry about
Internet Explorer 8 anymore, check out the box on page 13.

Simply place the following code before the closing </head>
tag at the top of your HTML file:
<1--[if 1t IE 9]>
<script src="//html5shiv.googlecode.com/
svn/trunk/htmls.js"></script>
<![endif]-->

In your HTML, you create these boxes, or structural units, using the <div> tag, or
one of HTML5’s structural tags like <footer>, <header>, <article>, and <aside>.
Simply wrap the HTML tags that make up the banner area, for example, in one div,
a column’s worth of HTML in another, and so on. If you’re HTML5 savvy, you might
create the design pictured in Figure 1-3, with a <header> tag for the top banner, an
<article> tag for the main text, an <aside> or <section> tag for the sidebar, and
a <footer> tag for the page’s footer. In other words, if you plan to place a group of
HTML tags together somewhere on a page, then you’ll need to wrap those tagsin a
sectioning element like a <div>, <article>, <section>, or <aside>.

As you’ll learn in Part Three, CSS provides powerful layout tools. You can literally
place HTML anywhere in the browser window; recent developments like flexbox
(Chapter 15) give you lots of freedom in how you structure your HTML. Still, it’s
always a good idea to group related content into some kind of container element
like a <div> or an HTMLS5 structural tag.

12 CSS: THE MISSING MANUAL

FREQUENTLY ASKED QUESTION

WRITING HTML
FOR CSS

Should | Care About IE8?

I know Internet Explorer 6 used to be a big headache for web
designers. What versions of Internet Explorer should | be
designing for now?

If you're a web designer, you've probably got the latest ver-
sions of Internet Explorer, Firefox, Safari, Chrome, and Opera
on your computer. But you can’t depend on your audience to
update their web browsers; maybe they don’t know how, or
their computers are too old to use newer versions.

Fortunately, Internet Explorer 6 and 7 are pretty much gone
from the planet, although they still exist and are used in
pockets of China, India, and Venezuela (see www.modern.ie/
en-us/ie6countdown for more). You may also be able to find
them as part of a “history of computing” exhibit in a science
museum somewhere.

However, as of this writing, Internet Explorer 8 is still used
throughout the world. It’s certainly not the most popular

browser, but (depending on your source) it’s still used by
anywhere from around 2% to 19% of the world’s web users.
Two sites you can use to find browser usage are NetMarketShare
(www.netmarketshare.com/browser-market-share.aspx) and
the GlobalStats StatCounter (http://gs.statcounter.com).

However, even statistics that include the geographic region
of your site’s audience don’t truly reflect what visitors to your
site use. If you build a site aimed at tech-savvy web design-
ers, odds are that you haven’t had a visitor with IE 8 for quite
some time. However, if your site’s aimed at people in China,
you may need to deal with IE 8 (@and maybe even 6 and 7). The
best way to find out how much of your traffic comes via any
browser version is to look at your web server’s log files or sign
up for Google Analytics (www.google.com/analytics) so you
can track your visitors” browsers (among many other things).

Microsoft says it will discontinue support for Internet Explorer 8 by January 2016. At
that point, Windows fans will have more incentive to upgrade IE or switch to another
browser, like Chrome or Firefox. The biggest problem with IE8 is that it doesn’t un-
derstand HTML5 tags, which means you can’t directly format these tags with CSS.
If you’re really worried about supporting Internet Explorer 8, either skip the HTML5
tags described on page 8 for structuring your HTML and stick to <div> tags, or use
the quick JavaScript solution described in the box on page 12.

HTML to Forget

CSS lets you write simpler HTML for one big reason: There are many old HTML tags
that you should abandon (if you're still using them). The tag is the most
glaring example. Its sole purpose is to add a color, size and font to text. It doesn’t
do anything to make the page’s structure more understandable.

Here’s a list of tags and attributes you can easily replace with CSS:

» Ditch for controlling the display of text. CSS does a much better job
with text. (See Chapter 6 for text-formatting techniques.)

* Don’t use the and <i> tags to emphasize text. If you want text to really
be emphasized, use the tag, which browsers normally display as bold.
For a slightly less emphatic point, use the tag, which browsers display as
italic. You can use CSS to make any text on a page italicized, bolded, or both.

CHAPTER 1: HTML AND CSS 13

http://www.modern.ie/en-us/ie6countdown
http://www.modern.ie/en-us/ie6countdown

WRITING HTML
FOR CSS

While HTML 4 tried to phase the and <i> tags out, HTML5 has brought them
back. In HTML5 the tag is meant to merely make text bold without adding
any meaning to that text (that is, you just want the text to be bold looking but
you don’t want people to treat that text like you're shouting it). Likewise, the
<i> tagis used for italicizing text, but not emphasizing its meaning.

NOTE To italicize a publication’s title, the <cite> tag kills two birds with one stone. It puts the title in

italics and tags it as a cited work for search engines’ benefit. Of course, (SS lets you do anything you want with
the tag, so if you want to reference a publication and not italicize it, you can still use the <cite> tag.

» Skip the <table> tag for page layout. Use tables only to display information
like spreadsheets, schedules, and charts. As you’ll see in Part Three, you can do
all your layout with CSS for much less time and code than the table-tag tango.

* Don’t abuse the
 tag. If you grew up using the
 tag to insert a line
break without creating a new paragraph, then you’re in for a treat. (Browsers
automatically—and sometimes infuriatingly—insert a bit of space between
paragraphs, including between headers and <p> tags. In the past, designers
used elaborate workarounds to avoid paragraph spacing they didn’t want, like
replacing a single <p> tag with a bunch of line breaks and using a tag
to make the first line of the paragraph look like a headline.) Using CSS’s mar-
gin controls, you can easily set the amount of space you want to see between
paragraphs, headers, and other block-level elements.

NOTE In Chapter 5, you’ll learn about a technique called a “CSS Reset,” which eliminates the gaps browsers

normally insert between paragraphs and other tags (see page 109).

As a general rule, adding attributes to tags that set colors, borders, background
images, or alignment—including attributes that let you format a table’s colors, back-
grounds, and borders—is pure old-school HTML. So is using alignment properties to
position images and center text in paragraphs and table cells. Instead, look to CSS
to control text placement (page 164), borders (page 194), backgrounds (page 231),
and image alignment (page 229).

14

CSS: THE MISSING MANUAL

WRITING HTML
FOR CSS

UP TO SPEED

Validate Your Web Pages

HTML follows certain rules: For example, the <html> tag The easiest way to check—that is, validate—your pages is on
wraps around the other tags on a page, and the <title> the W3Cs website at http://validator.w3.org (see Figure 1-4).
tag needs to appear within the <head> tag. It’s easy to forget ~ The W3(, or World Wide Web Consortium, is the organization
these rules or simply make a typo. Incorrect (or invalid, as the responsible for determining the standards for many Web
pros would say) HTML causes problems like making your page technologies and languages, including HTML and CSS. If the
look different in different web browsers. More importantly, ~ W3C validator finds any errors in your page, it tells you what
even valid CSS may not work as expected with invalid HTML. they are.

Fortunately, there are tools for checking whether the HTMLIn 1o web Developer extension for Chrome, Firefox, and Opera
your web pages is correctly written. (http://chrispederick.com/work/web-developer) provides a
quick way to test a page in the W3C validator.

©.0® vy aan vacaic x | Lsenowiaz.. | FIGURE 1-4
& > C A [\ validatorw3.org/#validate_by_input D & = The W3C HTML validator
-] located at http://validator.
KT Varop valdation service 5019 et you uickly
make sure the HTML in a
Validate by URI Validate by File Upload Validate by Direct Input page is sound. You can
Validate by direct input point the validator to an
Enter the Markup to valdate: already existing page on
the Web, upload an HTML
file from your computer,
or just paste the HTML of
a web page into a form
’ box and then click the
» More Options Check button.

Check

This validator checks the markup validity of Web documents in HTML, XHTML, SMIL, MathML, etc. If you wish to validate specific
content such as RSS/Atom feeds or CSS stylesheets, MobileOK content, or to find broken links, there are other validators and tools
available. As an alternative you can also try our non-DTD-based validator.

A Try now the W3C Validator Suite™ premium service that checks your entire website and
%C "? S!lAtg-IDATOR evaluates its conformance with W3C open standards to quickly identify those portions of your

website that need your attention.

The W3C validators rely on community support for hosting and development.
Donate and help us build better tools for a better web.

5187

Home About.. News Docs Help & FAQ Feedback Contribute

This service runs the W3G Markup Validator, y1.3
" “ COPYRIGHT © 1994-2012 W30® (MIT, ERCIM, KEIO), ALL RIGHTS RESERVED. W3C LIABILITY, TRADEMARK, DOCUMENT USE
MJ P AND SOFTWARE LICENSING RULES APPLY. YOUR INTERACTIONS WITH THIS SITE ARE IN ACCORDANCE WITH OUR PUBLIC
opanSoure AND MEMBER PRIVACY STATEMENTS.

CHAPTER 1: HTML AND CSS 15

http://validator.w3.org
http://chrispederick.com/work/web-developer
http://validator.w3.org
http://validator.w3.org

WRI':TO'E‘ZQ';M'- Tips to Guide Your Way
It’s always good to have a map to get the lay of the land. If you're still not sure how
to use HTML to create well-structured web pages, then here are a few tips to get
you started:

* Use headings to indicate the relative importance of text. Again, think outline.
When two headings have equal importance in the topic of your page, use the
same level header on both. If one is less important or a subtopic of the other,
then use the next-level header. For example, follow an <h2> with an <h3> tag
(see Figure 1-5). In general, it’s good to use headings in order and try not to
skip heading numbers. For example, don’t follow an <h2> tag with an <h5> tag.

QW@ * FIGURE 1-5
Chia VEt Because every Chia Pet needs a Chia Vet. Use the headline tags (<h1>, <h2>, and so on) as you would if
« you were outlining a school report: Put them in order of impor-
o LESRLLSEN N e tance, beginning with an <h1> tag, which should shout “Listen

<h1> —+ BOARDING YOUR CHIA up! This is what this whole page is about.”

For peace of mind while you're away

Vestibulum ut nisl. Donec eu mi sed turpis feugiat feugiat. Integer turpis arcu,
pellentesque eget, cursus et, fermentum ut, sapien.

<h2> — Creature Comforts

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent aliquam, justo
convallis luctus rutrum.

<h3> —— A Home Away From Home

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent aliquam, justo
convallis luctus rutrum, erat nulla fermentum diam, at nonummy quam ante ac quam.
Maecenas urna purus, fermentum id, molestie in, commodo porttitor, felis. Nam blandit
quam ut lacus. Quisque ornare risus quis ligula. Phasellus tristique purus a augue
condimentum adipiscing. Aenean sagittis. Etiam leo pede, rhoncus venenatis, tristique
in, vulputate at, odio.

<h3> — AnHerban Oasis

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent aliquam, justo
convallis luctus rutrum, erat nulla fermentum diam, at nonummy quam ante ac quam.
Maecenas urna purus, fermentum id, molestie in, commodo porttitor, felis. Nam blandit
quam ut lacus. Quisque ornare risus quis ligula. Phasellus tristique purus a augue
condimentum adipiscing. Aenean sagittis. Etiam leo pede, rhoncus venenatis, tristique
in, vulputate at, odio.

+ Use the <p> tag for paragraphs of text.

* Use unordered lists (kul>) when you’ve got a list of several related items, such
as navigation links, headlines, or a set of tips like these.

* Use numbered lists () to indicate steps in a process or define the order of a
set of items. The tutorials in this book are a good example, as is a list of rankings
like “Top 10 websites popular with monks.”

» To create a glossary of terms and their definitions or descriptions, use the <d1>
(definition list) tag in conjunction with the <dt> (definition term) and <dd> (defi-
nition description) tags. (For an example of how to use this combo, visit http.//
htmldog.com/gquides/html/intermediate/definitionlists/.)

16 CSS: THE MISSING MANUAL

http://htmldog.com/guides/html/intermediate/definitionlists/
http://htmldog.com/guides/html/intermediate/definitionlists/

THE

IMPORTANCE
* |f you want to include a quotation like a snippet of text from another website, OF THE

a movie review, or just some wise saying of your grandfather’s, try the <block- DOCTYPE

quote> tag for long passages or the <g> tag to place a short quote within a
longer paragraph, like this:

<p>Mark Twain is said to have written <g>The coldest winter I ever spent
was a summer in San Francisco</q>. Unfortunately, he never actually wrote
that famous quote.</p>

* Take advantage of obscure tags like the <cite> tag for referencing a book title,
newspaper article, or website, and the <address> tag to identify and supply
contact information for the author of a page (great for a copyright notice).

* As explained in full on page 3, steer clear of any tag or attribute aimed solely
at changing the appearance of a text or image. CSS, as you’'ll see, can do it all.

* When there isn’t an HTML tag that fits the bill, but you want to identify an ele-
ment on a page or a bunch of elements on a page so you can apply a distinctive
look, use the <div> and tags (see page 7). You’ll get more advice on
how to use these in later chapters.

* Don’t overuse <div> tags. Some web designers think all they need are <div>
tags, ignoring tags that might be more appropriate. For example, to create a
navigation bar, you could add a <div> tag to a page and fill it with a bunch of
links. A better approach would be to use a bulleted list (<kul> tag), After all,
a navigation bar is really just a list of links. As discussed on page 8, HTML5
provides several new tags that can take the place of the <div> tag, like the
<article>, <section>, and <footer> tags. For a navigation bar, you could use
the HTML5 <nav> tag.

* Remember to close tags. The opening <p> tag needs its partner in crime (the
closing </p> tag), as do all other tags, except the few self-closers like
 and
.

» Validate your pages with the W3C validator (see Figure 1-4 and the box on page
15). Poorly written or typo-ridden HTML causes many weird browser errors.

M The Importance of the Doctype

HTML follows certain rules. You tell a web browser which version of HTML you’re
using (and which rules you’re following) by including what’s called a doctype dec-
laration at the beginning of a web page. This doctype declaration is the first line in
the HTML file, and defines what version of HTML you’re using (such as HTMLS5 or
HTML 4.01 Transitional).

If you mistype the doctype declaration or leave it out, you can throw most browsers
into an altered state called quirks mode. Quirks mode is browser manufacturers’ at-
tempt to make their software behave like browsers did circa 1999 (in the Netscape 4
and Internet Explorer 5 days). If a modern browser encounters a page that’s missing

CHAPTER 1: HTML AND CSS 17

THE

IMPORTANCE
OF THE
DOCTYPE

the correct doctype, then it thinks, “Gee, this page must have been written a long
time ago, in an HTML editor far, far away. I'll pretend I’'m a really old browser and
display the page just as one of those buggy old browsers would display it.” That’s
why, without a correct doctype, your lovingly CSS-styled web pages may not look
as they should, according to current standards. If you unwittingly view your web
page in quirks mode when checking it in a browser, you may end up trying to fix
display problems that are related to an incorrect doctype and not the incorrect use
of HTML or CSS.

For more (read: technical) information on quirks mode, visit www.quirksmode.org/css/quirksmode.
htmland https://developer.mozilla.org/en-US/docs/Quirks_Mode_and_Standards_Mode.

Fortunately, it’s easy to get the doctype right. All you need to know is what version of
HTML you’re using. Almost everyone is using HTML5 now, and the doctype is simply:

<!doctype html>

Put this at the top of your HTML file and you’re good to go. If you're still using older
versions of HTML or XHTML such as HTML 4.01 Transitional and XHTML 1.0 Transi-
tional, then the doctype is a lot more convoluted.

If you’re using HTML 4.01 Transitional, for example, type the following doctype
declaration at the very beginning of every page you create:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.
w3.0rg/TR/html4/loose.dtd">

The doctype declaration for XHTML 1.0 Transitional is similar. It’s also necessary
to add a little code to the opening <html> tag that’s used to identify the file’s XML
type—in this case, it’'s XHTML—like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

If this entire discussion is making your head ache and your eyes slowly shut, keep
your life simple by using the HTML5 doctype. It’s short, easy to remember, works
in all browsers, and what almost all new web pages use. You can use this doctype
even if you don’t touch any of the new HTML5 tags.

NOTE Most visual web page tools like Dreamweaver add a doctype declaration whenever you create a new
web page, and many HTML-savvy text editors have shortcuts for adding doctypes.

18

CSS: THE MISSING MANUAL

http://www.quirksmode.org/css/quirksmode.html
http://www.quirksmode.org/css/quirksmode.html
https://developer.mozilla.org/en-US/docs/Quirks_Mode_and_Standards_Mode

M How CSS Works

Now that you have a solid background on writing HTML for CSS, you’re ready for
what this book is all about. CSS is the styling language used to format HTML-based
web pages. While HTML provides the page’s structure, CSS works hand in hand with
the web browser to make HTML /ook good on screen.

For example, you might use HTML to turn a phrase into a top-level heading, indicat-
ing that it introduces the content on the rest of the page. You’d use CSS to format
that heading with, say, big and bold red type and position it 50 pixels from the left
edge of the window. In CSS, that text formatting is a sty/e—a rule describing the ap-
pearance of a particular portion of a web page. A style sheet is a set of these styles.

You can create styles to work with any HTML tag. For example, you can create styles
specifically to format the images on a page. For instance, a style can align an image
along the page’s right edge, surround the image with a colorful border, and place a
50-pixel margin between the image and the surrounding text.

The web browser applies the styles you create to text, images, headings, and other
page elements. For example, you can create a style that applies to a single para-
graph on your page to instantly change the text’s size, color, and font within that
paragraph. You can create styles that apply to specific HTML tags, so, for example,
a browser displays every first-level heading (<h1> tag) in your site in the same way,
no matter where those headings appear. You can even create styles that apply only
to specific tags that you’ve marked up in a special way in the HTML.

Creating styles is all about determining what you want to style (a single image, every
image, every other iteminalist, and so on) and how you want that selected element
or elements to look. In fact, determining what you want to style is such a big topic,
Chapters 3, 4, and 5 of this book are devoted to the subject. All of the different ways

you can make page elements look is an even bigger topic, and is covered in Part Two.

HOW CSS
WORKS

CHAPTER 1: HTML AND CSS

19

HOW CSS
WORKS

UP TO SPEED

The Different Flavors of CSS

Like operating systems and iPhone models, (SS spins off
new versions continuously (well, maybe not as frequently
as iPhones). (SS1, introduced in 1996, laid the groundwork
for Cascading Style Sheets. The basic structure of a style, the
selector concept (Chapter 3), and most of the (SS properties
in this book were all in that very first version.

(SS2 added new features, including the ability to target your
(SS to different printers, monitors, and other devices. (SS2
also added new selectors and the ability to precisely position
elements on a web page.

(5S2.1, which is the currently accepted standard and imple-
mented in all browsers, incorporates all of CSS1, adds several
new properties, and corrects a few problems with the (SS2
guidelines. It wasn’t a radical change from version 2, and
most web browsers have adapted to the new rules just fine,
thank you.

However, (SS3 has been around (and parts of it implemented
in most browsers) for several years now. Unlike previous ver-

sions of (SS, (SS3isn’t actually one single standard. As (SS has
grown in complexity, the W3(C has split CSS up into separate
modules—the Selectors module, the Values and Units module,
the Box Alignment module, and so on. Since each module can
develop independently of the others, there isn’t any single
standard called “CSS3.” Infact, level 3 of the Selectors module
is complete, and work on level 4 is underway.

In other words, what’s known as (SS3 is really just a loose
collection of different modules at various states of comple-
tion. Browser manufacturers have already incorporated many
parts of these modules, but other modules aren’t supported in
many browsers. In the future, there won’t be any (SS4; there
will just be new versions of the different modules, each at a
different level of work.

For these reasons, this book covers the core (SS2.1 (which has
simply been rolled over into the various modules of (SS3), as
well as the most exciting, popular, and widely supported new
(SS properties.

20

CSS: THE MISSING MANUAL

CHAPTER

2

Creating Styles and
Style Sheets

with a single CSS style. As you add multiple styles and style sheets, you can de-

velop fully formed websites that inspire designers and amaze visitors. Whether
you’re a CSS novice or a Style Sheet Samurai, you need to obey a few basic rules
about how to create styles and style sheets. In this chapter, you’ll start at square
one, learning the basics of creating and using styles and style sheets.

Even the most complex and beautiful websites, like the one in Figure 2-1, start

TIP Some people learn better by doing rather than reading. If you'd like to try your hand at creating styles
and style sheets first and then come back here to read up on what you just did, turn to page 27 for a hands-on
tutorial.

I Anatomy of a Style

A single style defining the look of one element on a page is a pretty basic beast.
It’s essentially just a rule that tells a web browser how to format something on a
web page—turn a headline blue, draw a red border around a photo, or create a
150-pixel-wide sidebar box to hold a list of links. If a style could talk, it would say
something like, “Hey Browser, make this look like that.” A style is, in fact, made up
of two parts: the web page element that the browser formats (the selector) and
the actual formatting instructions (the declaration block). For example, a selector
can be a headline, a paragraph of text, a photo, and so on. Declaration blocks can
turn that text blue, add a red border around a paragraph, position the photo in the
center of the page—the possibilities are endless.

21

ANATOMY OF A
STYLE

FIGURE 2-1
Alrptsin ‘D 1-866-3036061 Accountants Pricing Login ‘ Sign Up Free EVery Web p age, no mat'
ter how complex-looking,
is built using the basic
Find Out Why Forbes Magazine Calls building blocks of CSS.
FreshBooks “Incredibly User Friendly” The body for this Website
(www.freshbooks.com),
FreshBooks makes your accounting tasks easy, fast and secure. S fOl’ example, includes a
Start sending invoices, tracking time and capturing expenses in minutes. ! .
simple style:

Try FreshBooks FREE for 30 days.

% body {
[company Name Email Address &

font-family:
Let's Get Started "Franklin-Book",
Helvetica, Arial,
sans-serif;

color: #222;

NOTE Technical types often follow the lead of the W3C and call CSS styles rules. This book uses the terms
“style” and “rule” interchangeably.

Of course, CSS styles can’t communicate in nice clear English like the previous para-
graph. They have their own language. For example, to set a standard font color and
font size for all paragraphs on a web page, you’d write the following:

p { color: red; font-size: 1.5em; }

This style simply says, “Make the text in all paragraphs—marked with <p> tags—red
and 1.5 ems tall.” (An emis a unit of measurement that’s based on a browser’s normal
text size. More on that in Chapter 6.) As Figure 2-2 illustrates, even a simple style
like this example contains several components:

» Selector. As described earlier, the selector tells a web browser which element
or elements on a page to style—like a headline, paragraph, image, or link. In
Figure 2-2, the p selector refers to the <p> tag. This selector makes web brows-
ers format all <p> tags using the formatting directions in this style. With the
wide range of selectors that CSS offers and a little creativity, you’ll be able to
pinpoint any item on a page and format it just the way you want. (The next
chapter covers selectors in depth.)

22 CSS: THE MISSING MANUAL

http://www.freshbooks.com

» Declaration Block. The code following the selector includes all the formatting ANATOMY OF A
options you want to apply to the selector. The block begins with an opening STYLE
brace ({) and ends with a closing brace (}).

» Declaration. Between the opening and closing braces of a declaration block,
you add one or more declarations, or formatting instructions. Every declaration
has two parts: a property and a value. A colon separates the property name
and its value, and the whole declaration ends with a semicolon.

* Property. CSS offers a wide range of formatting options, called properties. A
property is a word—or a few hyphenated words—indicating a certain style effect.
Most properties have straightforward names like font-size, margin-top, and
text-align. For example, the background-color property sets—you guessed
it—a background color. You’ll learn about oodles of CSS properties throughout
this book. You must add a colon after the property name to separate it from
the value.

TIP Appendix A: (SS Property Reference (page 637) has a handy glossary of (SS properties.

* Value. Finally, you get to express your creative genius by assigning a value
to a CSS property—by making a background blue, red, purple, or chartreuse,
for example. As upcoming chapters explain, different CSS properties require
specific types of values—a color (like red, or #FF0000), a length (like 18px, 200%,
or 5em), @ URL (like images/background.qgif), or a specific keyword (like top,
center, or bottom).

Selector _ Declaration block _ FIGURE 2-2
| Declaration Declaration
|]

L»]

I | A style (or rule) is made of two main parts:
{ G:olor .red D Cfont Csize:l. 5em> }) a selector, which tells yveb browsers_ whqt to
} 4 | ! format, and a declaration block, which lists the

| | | | formatting instructions that the browsers use to
Property Value Property Vvalue style the selector.

You don’t need to write a style on a single line, as pictured in Figure 2-2. Many
styles have multiple formatting properties, so you can make them easier to read by
breaking them up into multiple lines. For example, you may want to put the selector
and opening brace on the first line, each declaration on its own line, and the closing
brace by itself on the last line, like so:

[

color: red;
font-size: 1.5em;

}

Web browsers ignore spaces and tabs, so feel free to add them to make your CSS
more readable. For example, it’s helpful to indent properties, with either a tab or a

CHAPTER 2: CREATING STYLES AND STYLE SHEETS 23

UNDERSTANDING
STYLE SHEETS

couple of spaces, to visibly separate the selector from the declarations, making it
easy to tell which is which. In addition, putting one space between the colon and the
property value is optional but adds to the readability of the style. In fact, you can
put as much white space between the two as you want. For example, color:red,
color: red, and color : red all work.

NOTE Don’t forget to end each property/value pair with a semicolon:
color: red;

Leaving off that semicolon can trip up browsers, breaking your style sheet and ruining the look of your web page.
Don’t worry, this mistake is very common—just make sure you use a CSS validator, as described in the box on page 15.

M Understanding Style Sheets

Of course, a single style won’t transform a web page into a work of art. It may make
your paragraphs red, but to infuse your websites with great design, you need many
different styles. A collection of CSS styles comprises a style sheet. A style sheet can
be one of two types—internal or external, depending on whether the style informa-
tion is located in the web page itself or in a separate file linked to the web page.

Internal or External—How to Choose

Most of the time, external style sheets are the way to go, since they make building
web pages easier and updating websites faster. An external style sheet collects all
your style information in a single file that you then link to a web page with just a
single line of code. You can attach the same external style sheet to every page in
your website, providing a unified design. It also makes a complete site makeover as
easy as editing a single text file.

On the receiving end, external style sheets help web pages load faster. When you
use an external style sheet, your web pages can contain only basic HTML—no byte-
hogging HTML tables or tags and no internal CSS style code. Furthermore,
when a web browser downloads an external style sheet, it stores the file on your
visitor’s computer (in a behind-the-scenes folder called a cache) for quick access.
When your visitor hops to other pages on the site that use the same external style
sheet, there’s no need for the browser to download the style sheet again. The browser
simply downloads the requested HTML file and pulls the external style sheet from
its cache—a significant savings in download time.

NOTE When you’re working on your website and previewing it in a browser, the cache can work against
you. See the box on the next page for a workaround.

24

CSS: THE MISSING MANUAL

WORKAROUND WORKSHOP

INTERNAL
STYLE SHEETS

Don’t Get Caught in the Cache

A browser’s cache is a great speed-boost for Web surfers.
Whenever the cache downloads and stores a frequently used
file—like an external CSS file or an image—it saves precious
moments traveling the highways of the Internet. Instead of
re-downloading the next time it needs the same file, the
browser can go straight to the new stuff—like a yet-to-be-
viewed page or graphic.

But what’s good for your visitors isn’t always good for you.
Because the web browser caches and recalls downloaded
external CSS files, you can often get tripped up as you work
on a site design. Say you’re working on a page that uses an
external style sheet, and you preview the page in a browser.
Something doesn’t look quite right, so you return to your web

editor and change the external CSS file. When you return to
the web browser and reload the page, the change you just
made doesn’t appear! You've just been caught by the cache.
When you reload a web page, browsers don’t always reload
the external style sheet, so you may not be seeing the latest
and greatest version of your styles.

To get around this snafu, you can force reload a page (which
also reloads all linked files) by pressing the Ctrl (88) key and
clicking the browser’s Reload button; Ctrl+F5 also works for
Chrome and Internet Explorer; Ctrl+Shift+R (88-Shift-R) is
Firefox’s keyboard shortcut; and Ctrl+R (88-R) works for both
Safari and Chrome for the Mac.

M Internal Style Sheets

An internal style sheet is a collection of styles that’s part of the web page’s code.
It always appears between opening and closing HTML <style> tags in the page’s

<head> portion. Here’s an example:

<style>

h1 {

color: #FF7643;
font-family: Arial;
}

p i

color: red;
font-size: 1.5em;
}
</style>
</head>
<body>

<!-- The rest of your page follows... -->

CHAPTER 2: CREATING STYLES AND STYLE SHEETS

25

EXTERNAL
STYLE SHEETS

You can place the <style> tag and its styles anywhere after the <title> tagin the page’s head,
but web designers usually place them right before the closing </head> tag, as shown here. However, if you
also use JavaScript, the style sheet should go before the JavaScript. Many JavaScript programs rely on CSS, so by
adding your CSS first, you can make sure the JavaScript program has all the information it needs to get its job
done.

The <style> tag is HTML, not CSS. But its job is to tell the web browser that the
information contained within the tags is CSS code and not HTML. Creating an inter-
nal style sheet is as simple as typing one or more styles between the <style> tags.

Internal style sheets are easy to add to a web page and provide an immediate visual
boost to your HTML. But they aren’t the most efficient method for designing an
entire website composed of many web pages. For one thing, you need to copy and
paste the internal style sheet into each page of your site—a time-consuming chore
that adds bandwidth-hogging code to each page.

But internal style sheets are even more of a hassle when you want to update the
look of a site. For example, say you want to change the <h1> tag, which you origi-
nally decided should appear as large, green, bold type. But now you want small,
blue type in the Courier typeface. Using internal style sheets, you’d need to edit
every page. Who has that kind of time? Fortunately, there’s a simple solution to this
dilemma—external style sheets.

NOTE It’s also possible to add styling information to an individual HTML tag without using a style sheet.
The tutorial on page 28 shows you how to perform that maneuver by using an in/ine style. You shouldn’t normally
use inline styles to design your web pages; however, many JavaScript programmers do use inline styles when
dynamically adding HTML content to a web page, so it’s good know how inline styles work and how to create
them.

I External Style Sheets

An external style sheet is nothing more than a text file containing all your CSS rules.
It never contains any HTML code—so don’t include the <style> tag in an external
style sheet file. In addition, always end the file name with the extension .css. You
can name the file whatever you like, but it pays to be descriptive. Use global.css,
site.css, or simply styles.css, for example, to indicate a style sheet used by every
page on the site, or use form.css to name a file containing styles used to make a
web form look good.

26

CSS: THE MISSING MANUAL

UP TO SPEED

TUTORIAL:

CREATING
YOUR FIRST
STYLES

Validate Your CSS

in your web pages using the W3C HTML validator (see the box it for validation.

Just as you should make sure you’ve correctly written the HTML ~ file, or copy and paste (SS code into a web form and submit

on page 15), you should also check your (SS code to make sure s sy to make a typo when writing (SS, and one small

it's kosher. The W“ provides an 0””"? tool for (SS check.ing mistake can throw all of your carefully planned designs out of
as well: http://jigsaw.w3.org/css-validator. It operates just — \yhack. When your (SS-infused web page doesn’t look as you

like the HTML validator: You can type the URL of a web page expect, asimple CSS error may be the cause. The W3C €SS vali-
(or even just the address to an external (SS file), upload a(SS gatoris a good first step when troubleshooting your designs.

TIP Qb you have a page with an internal style sheet but want to use an external style sheet, then just cut all

of the code between the <style> tags (without the tags themselves). Then create a new text file and paste the
(SSinto the file. Save the file with a .css extension—sty/es.css, for example—and link it to your page, as described
next.

Once you create an external style sheet, you must connect it to the web page you
wish to format. To do so, use the HTML <1ink> tag like this:

<link rel="stylesheet" href="css/styles.css">
The <1ink> tag has two required attributes:
+ rel="stylesheet" indicates the type of link—in this case, a link to a style sheet.

* href points to the location of the external CSS file on the site. The value of this
property is a URL and will vary depending on where you keep your CSS file. It
works the same as the src attribute you use when adding an image to a page
or the href attribute of a link pointing to another page.

TIP You can attach multiple style sheets to a web page by adding multiple <1ink> tags, each pointing to

a different style sheet file. This technique is one way to organize your (SS styles, as you can see in Chapter 18.

M Tutorial: Creating Your First Styles

The rest of this chapter takes you through the basic steps for adding inline styles,
writing CSS rules, and creating internal and external style sheets. As you work
through this book, you’ll work through various CSS designs, from simple design
elements to complete CSS-enabled web page layouts. To get started, download
the tutorial files from https://github.com/sawmac/css_mm_4e. Download the zip
archive containing the files. Each chapter’s files are in a separate folder, named 02
(for Chapter 2), 03 (for Chapter 3), and so on.

CHAPTER 2: CREATING STYLES AND STYLE SHEETS

27

http://jigsaw.w3.org/css-validator
https://github.com/sawmac/css_mm_4e

TUTORIAL:

CREATING
YOUR FIRST
STYLES

NOTE In addition to a folder for each chapter’s tutorial, you’ll find another folder with the completed
tutorial. For example, the 02 finished folder contains the completed files for this chapter’s tutorial. You can use
this finished example if you get stuck and want to compare what you’ve written with the finished product.

Next, launch your favorite web page-editing software, whether it’s a simple text
editor like Notepad or TextEdit or a more full-featured editor like Sublime Text,
Atom, or Dreamweaver.

Creating an Inline Style

When you type a CSSrule directly into a page’s HTML, you’re creating an inline style.
Inline styles offer none of the time- and bandwidth-saving benefits of external style
sheets, so the pros hardly ever use them. Still, in a pinch, if you absolutely must change
the styling on a single element on a single page, then you may want to resort to an
inline style. (For example, when creating HTML-formatted email messages, it’s best
to use inline styles. That’s the only way to get CSS to work in Gmail, for one thing.)
And if you do, you at least want the style to work properly. The important thing is
to carefully place the style within the tag you want to format. Here’s an example
that shows you exactly how to do it:

1. In your web page-editing program, open the file 02—index.html.

This simple-but-elegant HTMLS5 file contains a couple of different headings, a
few paragraphs, and a copyright notice inside an <address> tag. You'll start by
creating an inline style for the <h1> tag.

2. Click inside the opening <h1> tag and type style="color: #6A94CC;".
The tag should look like this:
<h1 style="color: #6A94CC;">

The style attribute is HTML, not CSS, so you use the equal sign after it and
enclose all of the CSS code inside quotes. Only the stuff inside the quotes is
CSS. In this case, you’'ve added a property named color—which affects the
color of text—and you’ve set that property to #6A94CC, a hexadecimal code for
defining a color that’s blue. (You’ll learn more about coloring text on page 147.)
The colon separates the property name from the property value that you want.
Next, you’ll check the results in a web browser.

3. Openthe index.hitml page in a web browser.

For example, start up your favorite web browser and choose File—0Open File
(or press Ctrl+O [38-0] and select the index.html file in the 02 tutorial folder
from your computer; or just drag the file from the desktop—or wherever you’ve
saved the tutorial files—into an open browser window). Many HTML editors
also include a “Preview in Browser” function, which, with a simple keyboard
shortcut or menu option, opens the page in a web browser. It’s worth checking
your program’s documentation to see if it includes this time-saving feature.

28

CSS: THE MISSING MANUAL

TUTORIAL:

CREATING
When you view the page in a browser, the headline is now blue. Inline styles YOUR FIRST

can include more than one CSS property. You'll add another property next. STYLES

4. Returnto your HTML editor, click after the semicolon following #6A94CC, and
then type font-size: 3em;.

The semicolon separates two different property settings. The <h1> tag should
look like this:

<h1 style="color: #6A94CC; font-size: 3em;">

5. Preview the page in a web browser. For example, click your browser win-
dow’s Reload button (but make sure you’ve saved the HTML file first).

The headline is now much larger. And you’ve had a taste of how labor-intensive
inline styles are. Making all the <h1> headings on a page look like this one could
take days of typing and add acres of code to your HTML files.

6. Return to your page editor and delete the entire style property, which re-
turns the heading tag back to its normal <h1>.

Next, you’ll create a style sheet within a web page. (You’ll find a finished version
of this part of the tutorial in the 02 finished folder in a file named inline-style.
html.)

Creating an Internal Style Sheet

A better approach thaninline styles is using a style sheet that contains multiple CSS
rules to control multiple elements of a page. In this section, you’'ll create a style that
affects all top-level headings in one fell swoop. This single rule automatically formats
every <h1> tag on the page.

1. With the file index.html open in your text editor, click directly after the
closing </title> tag. Then hit Enter and type <style>.

The HTML should now look like the following (the stuff you’ve added is in bold):

<title>CSS:The Missing Manual -- Chapter 2</title>
<style>
</head>

The opening <style> tag marks the beginning of the style sheet. It’s always a
good idea to close a tag right after you type the opening tag, since it’s so easy
to forget this step once you jump into writing your CSS. In this case, you’ll close
the <style> tag before adding any CSS.

2. Press Enter twice and type </style>.
Now, you’ll add a CSS selector that marks the beginning of your first style.
3. Click between the opening and closing <style> tags and type h1 {.

The h1 indicates the tag to which the web browser should apply the upcoming
style.

CHAPTER 2: CREATING STYLES AND STYLE SHEETS 29

TUTORIAL:

CREATING
YOUR FIRST The weird bracket thingy after the h1 is called an opening brace, and it marks

STYLES the beginning of the CSS properties for this style. In other words, it says, “The

fun stuff comes right after me.” As with closing tags, it’s a good idea to type
the closing brace of a style before actually adding any style properties.

4. Press Enter twice and type a single closing brace: }.

As the partner of the opening brace you typed in the last step, this brace’s job
is to tell the web browser, “This particular CSS rule ends here.” Now time for
the fun stuff.

5. Click in the empty line between the two braces. Hit the Tab key, and type
color: #6A94CC;.

You've typed the same style property as the inline version—color—and set it
to #6A94CC;. The final semicolon marks the end of the property declaration.

Technically, you don’t have to put the style property on its own line, but it’s a good idea. With
one property per line, it’s a lot easier to quickly scan a style sheet and see all the properties for each style. Also,
the tab is another helpful visual organizing technique (you can also insert a few spaces instead). The indentation
makes it easy to discern all of your rules at a glance, since the selectors (like h1 here) line up along the left edge,
with the properties spaced a bit out of the way.

6. Press Enter again and add two additional properties, like so:

font-size: 3em;
margin: 0;

Make sure you don’t leave off the semicolon at the end of each line; otherwise,
the CSS won'’t display correctly in a browser.

Each of these properties adds a different visual effect to the headline. The first
assigns a size and font to the text, while the second removes space from around
the headline. Part Two of this book covers all these properties in detail.

Congratulations—you’ve just created an internal style sheet. The code you've
added should look like the bolded text:

<title>CSS: The Missing Manual -- Chapter 2</title>
<style>

h1 {

color: #6A94CC;

font-size: 3em;

margin: 0;

}

</style>

</head>

30 CSS: THE MISSING MANUAL

TUTORIAL:

CREATING

7. Save the page and preview it in a web browser. YOUR FIRST
STYLES

You can preview the page by opening it in a web browser as described in step
3 on page 28, or, if the page is still open in a browser window, just click the
Reload button.

Next you’ll add another style.

Always remember to add the closing </style> tag at the end of an internal style sheet. When you
don’t, a web browser displays the (SS style code followed by a completely unformatted web page—or no web
page at all.

8. Back in your text-editing program, click after the closing brace of the h1
style you just created, press Enter, and then add the following rule:

p i
font-size: 1.25em;
color: #616161;
line-height: 150%;
margin-top: 10px;
margin-left: 60px;
}

This rule formats every paragraph on the page. Don’t worry too much right now
about what each of these CSS properties is doing; later chapters cover these
properties in depth. For now, just practice typing the code correctly and get a
feel for how to add CSS to a page.

9. Preview the page in a browser.

The page is starting to shape up and should look like Figure 2-3. You can see
what stylistic direction the page is headed in. You can see a completed version
of this tutorial by opening the 02 finished—internal-stylesheet.html file.

The process you’ve just worked through is CSS in a nutshell: Start with an HTML page,
add a style sheet, and create CSS rules to make the page look great. In the next part
of this tutorial, you’ll see how to work more efficiently, using external style sheets.

CHAPTER 2: CREATING STYLES AND STYLE SHEETS 31

TUTORIAL:

CREATING
YOUR FIRST
STYLES

CSS: The Missing Manual FIGURE 2-3

Sed ut perspiciatis unde omnis iste natus error sit i ium, totam rem aperiam, eaque ipsa quae ab illo inventore (SS easily formats text in
veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia . .
- . - creative ways, letting you
consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.
change fonts, text colors,

Lorem Ipsum Dolor Sat .
font sizes, and a lot more,
Sed ut perspiciatis unde omnis iste natus error sit i ium, totam rem aperiam, eaque ipsa quae ab illo inventore i)
Veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia as you'll see in Chapter 6.

consequuntur magni dolores cos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis
nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Sed ut perspiciatis unde omnis iste natus error sit i ium, totam rem aperiam, eaque ipsa quac ab illo inventore

veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis
nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Nisi Ut Aliquid

Sed ut perspiciatis unde omnis iste natus error sit i ium, totam rem aperiam, eaque ipsa quac ab illo inventore

veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis
nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Sed ut perspiciatis unde omnis iste natus error sit i ium, totam rem aperiam, eaque ipsa quac ab illo inventore

veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis
nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Copyright 2015, Voluspas Nulla

Creating an External Style Sheet

Since it groups all of your styles at the top of the page, an internal style sheet is a
lot easier to create and maintain than the inline style you created a few pages ago.
Also, an internal style sheet lets you format any number of instances of a tag on a
page, like every <p> tag, by typing one simple rule. But an external style sheet gets
even better—it can store all of the styles for an entire website. Editing one style in
the external style sheet updates the whole site. In this section, you’ll take the styles
you created in the previous section and put them in an external style sheet.

1. In your text-editing program, create a new file and save it as styles.cssin
the same folder as the web page you’ve been working on.

External style sheet files end with the extension .css. The file name styles.css
indicates that the styles contained in the file apply throughout the site. (But
you can use any file name you like, as long as it ends with the .css extension.)

Start by adding a new style to the style sheet.

32 CSS: THE MISSING MANUAL

TUTORIAL:

CREATING

2. Type the following rule into the styles.css file: YOUR FIRST
STYLES

html {

padding-top: 25px;

background-image: url(images/bg page.png);
}

This rule applies to the HTML tag—the tag that surrounds all other HTML tags
on the page. The padding-top property adds space between the top of the
tag and the content that goes inside it. In other words, what you just typed will
add 25 pixels of space between the top of the browser window and the page’s
content. The background-image adds a graphic file to the page’s background.
The CSS background-image property can display the graphic in many different
ways—in this case, the graphic will tile seamlessly from left to right and top to
bottom, covering the entire browser window. You can read more about back-
ground image properties on page 231.

3. Addasecondrule following after the rule you just typed to the styles.cssfile:

body {
width: 80%;
padding: 20px;
margin: O auto;
border-radius: 10px;
box-shadow: 10px 10px 10px rgba(0,0,0,.5);
background-color: #E1EDEB;
}

This rule applies to the <body> tag—the tag that holds all the content visible
in a web browser window. There are a lot of different things going on in this
style, and each of these properties is covered in-depth later in the book. But in
a nutshell, this style creates a box for the page’s content that’s 80 percent the
width of the browser window, has a little bit of space inside that moves text from
the edge of the box (that’s the padding property), and centers the box on the
page (that’s the margin property, and the particular trick of centering a page’s
content is discussed in the tutorial starting on page 81). Finally, the box gets a
light blue background color and a transparent black drop shadow.

Instead of recreating the work you did earlier, just copy the styles you created
in the previous section and paste them into this style sheet.

4. Open the index.html page that you’ve been working on and copy all of the
text inside the <style> tags. (Don’t copy the <style> tags themselves.)

Copy the style information the same way you’d copy any text. For example,
choose Edit—Copy or press Ctrl+C (88-C).

CHAPTER 2: CREATING STYLES AND STYLE SHEETS 33

TUTORIAL:

CREATING
YOUR FIRST 5. In the styles.css file, paste the style information by selecting Edit—Paste

STYLES or pressing Ctrl+V (88-V).

An external style sheet never contains any HTML—that’s why you didn’t copy
the <style> tags.

6. Save styles.css.
Now you just need to clean up your old file and link the new style sheet to it.

7. Returnto the index.htmlfile in your text editor and delete the <style> tags
and all the CSS rules you typed in earlier.

You no longer need these styles, since they’re in the external style sheet you're
about to attach. In this tutorial, you’ll take a dip into the exciting world of web
fonts. You'll learn all about web fonts starting on page 126, but the basic idea is
that you can use nearly any font you want in a web page—even a font that your
site’s visitors don’t have installed on their own computers—simply by providing
a link to that font file. There are many different ways to use web fonts, but in
this example, you’ll use Google’s web font service.

8. Inthe space where the styles used to be (between the closing </title> tag
and the closing </head> tag), type the following:

<link href="http://fonts.googleapis.com/css?family=Varela+Round'
rel="stylesheet'>

Again, don’t worry about the details yet. All you need to know for now is that
when a web browser encounters this link, it downloads a font named Varela
Round from a Google server, and your CSS styles can freely use it.

Next, you’ll link to the external style sheet you created earlier.
9. After the <1ink> tag you added in the previous step, type:
<link href="styles.css" rel="stylesheet">

The <1ink> tag specifies the location of the external style sheet. The rel attribute
simply lets the browser know that it’s linking to a style sheet.

NOTE In this example, the style sheet file is in the same folder as the web page, so using the file’s name
for the href value provides a simple “document-relative” path. If it were in a different folder from the page,
then the path would be a bit more complicated. In either case, you'd use a document- or root-relative path to
indicate where the file is. The routine is the same as when you create a link to a web page or set a path to an
image file when using the HTML tag. (For a brief primer on document- and root-relative links, visit www.
kirupa.com/html5/all_about_file_paths.htm.)

10. Save the file and preview it in a web browser.

You'll see the same text styles for the <h1> and <p> tags that you created in
the internal style sheet on page 29. In addition, there’s now a speckled, tan
background (the background image you applied on the <html> tag), as well as

34 CSS: THE MISSING MANUAL

NOTE

a light-colored, greenish-blue box. That box is the <body> tag, and its width is
80 percent that of the browser window. Try resizing the browser window and
notice that the box changes width as well. There’s also a drop shadow on the
box; you can see through the drop shadow to the speckled background. That’s
thanks to a special color type—rgba color—that includes a transparency setting
(you’ll read about it on page 149). Also notice that the corners of the box are
rounded, thanks to the border-radius property.

If the web page doesn’t have any formatting (for example, the top headline isn’t big, bold, and dusty

brown), then you’ve probably mistyped the code from step 6 or saved the sty/es.cssfile in a folder other than the
one where the index.htmlfile is. In this case, just move the sty/es.css into the same folder.

Now, you’ll use the web font you linked to in step 8.

11. In your text editor, return to the siyles.css file. For the hi style, add the

NOTE

following two lines:

font-family: 'Varela Round', 'Arial Black', serif;
font-weight: normal;

The finished style should look like this (additions in bold):

h1 {
font-family: 'Varela Round', 'Arial Black', serif;
font-weight: normal;
color: #6A94CC;
font-size: 3em;
margin: 0;

}

If you preview the page now, you’ll see the new font, Varela Round, for the
headline.

If you don’t see the new font—it should have rounded tips on the ends of all the letters as pictured

in Figure 2-4—then one of a couple of things could be wrong. If you're not connected to the Internet, you won’t
be able to download the font from Google; second, you may have mistyped either the <1ink> tag (see step 8
on the previous page), or the font-family declaration (line 2 above).

12.

13.

To demonstrate how useful it can be to keep your styles in their own external
file, you'll attach the style sheet to another web page.

Open the file 02—another_page.html.

This page contains some of the same HTML tags—h1, h2, p, and so on—as the
other web page you’ve been working on.

Click after the closing </title> tag and press Enter.

You'll now link to both the web font and the external style sheet.

TUTORIAL:

CREATING
YOUR FIRST
STYLES

CHAPTER 2: CREATING STYLES AND STYLE SHEETS

35

TUTORIAL:

CREATING

YOUR FIRST 14. Type the same <link> tags you did in steps 8 and 9.
STYLES

The web page code should look like this (the code you just typed appears in
bold):

<title>Another Page</title>

<link href="http://fonts.googleapis.com/css?family=Varela+Round"
rel="stylesheet'>

<link href="styles.css" rel="stylesheet">
</head>

15. Save the page and preview it in a web browser.

Ta-da! Just two lines of code added to the web page is enough to instantly
transform its appearance. To demonstrate how easy it is to update an external
style sheet, you’ll do so by editing one style and adding another.

16. Openthe styles.cssfile and add the CSS declaration font-family: "Palatino
Linotype", Baskerville, serif; at the beginning of the p style.

The code should look like this (the bold text is what you’ve just added):
p{

font-family: "Palatino Linotype", Baskerville, serif;
font-size: 1.25em;
color: #616161;
line-height: 150%;
margin-top: 10px;
margin-left: 60px;
}

In this case, you’re not using a web font, but relying on the site visitor to already
have one of the fonts listed on his machine (you’ll learn all about using fonts on
page 121). Next, create a new rule for the <h2> tag.

17. Click at the end of the p style’s closing }, press Enter, and add the follow-
ing rule:

h2 {
color: #B1967C;
font-family: 'Varela Round', 'Arial Black', serif;
font-weight: normal;
font-size: 2.2em;
border-bottom: 2px white solid;
background: url(images/head-icon.png) no-repeat 10px 10px;
padding: 0 0 2px 60px;
margin: 0;

}

Some of these CSS properties you’ve encountered already. Some are new—like
the border-bottom property for adding a line underneath the headline. And

36 CSS: THE MISSING MANUAL

18.

19.

20.

some—Ilike the background property—provide a shortcut for combining several
different properties—in this case, the background-image and background-
repeat—into a single property. Don’t worry about the specifics of these
properties; you’ll learn them all in great detail in upcoming chapters (Chapter
6 covers font properties; Chapter 8 covers backgrounds; Chapter 7 covers
padding and margins).

The styles you’ve created so far affect mainly tags—the h1, h2, and p—and they
affect every instance of those tags. In other words, the p style you created
formats every single paragraph on the page. If you want to target just one
paragraph, you need to use a different kind of style.

Click at the end of the h2 style’s closing }, press Enter, and add the follow-
ing rule:

Jintro {
color: #666666;
font-family: 'Varela Round', Helvetica, sans-serif;
font-size: 1.2em;
margin-left: o;
margin-bottom: 25px;

}

If you preview the index.html page in a web browser, you’ll see that this new
style has no effect...yet. This type of style uses a class selector, which formats
only the specific tags you apply the class to. In order for this new style to work,
you need to edit some HTML.

Save the file styles.css and switch to the index.hitml file in your text editor.
Locate the opening <p> tag following the <h1> tag and add class="intro"
so the opening tag looks like this:

<p class="intro">

You don’t have to add a period before the word intro as you did when you
created the style in step 18 (you’ll learn why in the next chapter). This little extra
HTML applies the style to the first paragraph (and only that one paragraph).

Repeat this step for the another_page.html! file—in other words, add
class="intro" to the first <p> tag on that page.

Save all the files and preview both the index.htmland another_page.html
files in a web browser.

Notice that the appearance of both pages changes, based on the simple edits
you made to the CSS file. Close your eyes and imagine your website has a
thousand pages. Aaaahhhhhhh, the power.

You’ve got one last change to make. If you look at the very bottom of the page
in your browser, you'll see the copyright notice. It’s a little small, and it isn’t lined
up with the paragraphs above. Also, it would look better if it shared the same
formatting as the other paragraphs.

TUTORIAL:

CREATING
YOUR FIRST
STYLES

CHAPTER 2: CREATING STYLES AND STYLE SHEETS

37

TUTORIAL:

CREATING
YOUR FIRST 21. Inyour text editor, return to the styles.css file. Locate the style that has the

STYLES p selector. Type a comma, a space, and address.

The style looks like this:

p, address {
font-family: "Palatino Linotype", Baskerville, serif;
font-size: 1.25em;
color: #616161;
line-height: 150%;
margin-top: 10px;
margin-left: 60px;
}

You haven’t changed any of the style’s properties—you’ve just changed the
selector. In fact, you’ve just created a group selector. A group selector is a very
efficient way to apply the same styling to a bunch of different page elements,
and you’ll learn more about them on page 49. In this case, the style applies to
two tags: the <p> tag and the <address> tag.

22. Close styles.css file and reload the index.html file in your web browser.

The finished page should now look like Figure 2-4. (You'll find a completed
version of this tutorial in the 02_finished folder.)

For added practice, spend a few minutes playing around with the styles.cssfile.
Try different values for the style sheet properties. For example, try a different
number for the width property of the body style, or try different numbers for
the font sizes.

38 CSS: THE MISSING MANUAL

TUTORIAL

CREATING
YOUR FIRST
STYLES

FIGURE 2-4

What Have We Here? Using an external style
sheet, you can update an

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam

rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt entire site’s worth of web
explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia pages by edmng a Single
consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui " ",
dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora (SS f”e' In addll‘lon, by
incidunt ut labore et dolore magnam aliquam quaerat voluptatem. moving all of the (SS code
@ Another Page... out qf an HIML document
and into a separate file,
Sed ut perspiciatis unde omnis iste natus error sit volup i ol i totam rem you cut down on the fl’e
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo size of your web pages,
enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos ’
50 they load faster.

qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam
aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

@ To Link a Style Sheet To...

Sed ut perspiciatis unde omnis iste natus error sit. ol laud totam rem

I
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo
enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos
qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam
aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

Copyright 2010, Volutpas Nilla

CHAPTER 2: CREATING STYLES AND STYLE SHEETS 39

CHAPTER

3

Selectors: Identifying
What to Style

if that’s news to you, go back and read the previous chapter.) The declaration

block carries the formatting properties—text color, font size, and so on—but
that’s just the pretty stuff. The ability to focus your styling on specific items lies in
those first few characters at the beginning of every rule—the selector. By telling CSS
what you want it to format (see Figure 3-1), the selector gives you full control of
your page’s appearance. If you’re into sweeping generalizations, then you can use a
selector that applies to many elements on a page at once. But if you’re a little more
detail oriented (OK, a /ot more), other selectors let you single out one specific item
or a collection of similar items. CSS selectors give you a lot of power; this chapter
shows you how to use them.

Every CSS style has two basic parts: a selector and a declaration block. (And

h1l | FIGURE 3-1
font-family: Arial, sans-serif; The first part of a style, the selector, indicates the element
color: #CCCCFF; or elements of a page to format. In this case, h1 stands for
} “every heading 1, or <h1>, tag on this page.”

If you'd rather get some hands-on experience before studying the ins and outs of (SS selectors, then
jump to the tutorial on page 70.

11

TYPE

SELECTORS:
STYLING HTML
TAGS

M Type Selectors: Styling HTML Tags

Selectors used to style particular HTML tags are called type or element selectors.
They are extremely efficient styling tools, since they apply to every occurrence of
that tag on a web page. With them, you can make sweeping design changes to a
page with very little effort. For example, when you want to format every paragraph
of text on a page, using the same font, color, and size, you merely create a style
using p (as in the <p> tag) as the selector. In essence, a type selector redefines how
a browser displays a particular tag.

Prior to CSS, in order to format text, you had to wrap that text in a tag. To
add the same look to every paragraph on a page, you often had to use the
tag multiple times. This process was a lot of work and required a lot of HTML, making
pages slower to download and more time-consuming to update. With type selec-
tors, you don’t actually have to do anything to the HTML—just create the CSS rule,
and let the browser do the rest.

Type selectors are easy to spot in a CSS rule, since they bear the exact same name
as the tag they style—p, h1, table, img, and so on. For example, in Figure 3-2, the
h2 selector (top) applies some font styling to all <h2> tags on a web page (bottom).

n2 { FIGURE 3-2
font-family:"Century Gothic", "Gill Sans", sans-serif; At tector affect
color:#000000; ype selector affects every

margin-bottom:0; insfance of the tag on the page.
} This page has three <h2> tags
(indicated by the black labels
606 JagSelectors 2 at the left edge of the browser
& 2} @ hw:j/cssocalichosn v | © (G : window). A single CSS style
with a selector of h2 controls

How to Move Sod Up 10 Stories Without (the presentation of every <h2>
The Apartment Manager Finding Out tag on the page.

-

Check the Elevator Before Beginning

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam,
quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie
consequat, vel illum dolore eu feugiat nulla faci

Wooden Crates Make Excellent Hiding Places

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam,
quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie
consequat, vel illum dolore eu feugiat nulla faci

Wet Sod is Heavy Sod

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod N

tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam,

quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie v
BT S T TS S PR

& oo - >

| -

42 CSS: THE MISSING MANUAL

NOTE As Figure 3-2 makes clear, type selectors don’t get the less than (<) and greater than (>) symbols that
surround HTML tags. So when you’re writing a rule for the <p> tag, for example, just type the tag’s name: p.

Type selectors have their downsides, however. What if you want some paragraphs to
look different from other paragraphs? A simple type selector won’t do, since it doesn’t
provide enough information for a web browser to identify the difference between
the <p> tags you want to highlight in purple, bold, and large type from the <p> tags
you want to leave with normal, black text. Fortunately, CSS provides several ways
to solve this problem—the most straightforward method is called a class selector.

M Class Selectors: Pinpoint Control

When you want to give one or more elements a look that’s different from related
tags on the page—for example, give one or two images on a page a red border while
leaving the majority of other images unstyled—you can use a class selector. If you're
familiar with styles in word-processing programs like Microsoft Word, then class
selectors will feel familiar. You create a class selector by giving it a name and then
applying it to just the HTML tags you wish to format. For example, you can create
a class style named .copyright and then apply it only to a paragraph containing
copyright information, without affecting any other paragraphs.

Class selectors also let you pinpoint an exact element, regardless of its tag. Say
you want to format a word or two inside a paragraph, for example. In this case,
you don’t want the entire <p> tag affected, just a single phrase inside it. You can
use a class selector to indicate just those words. You can even use a class selector
to apply the same formatting to multiple elements that have different HTML tags.
For example, you can give one paragraph and one second-level heading the same
styling—perhaps a color and a font you’ve selected to highlight special information,
as shown in Figure 3-3. Unlike type selectors, which limit you to the existing HTML
tags on the page, you can create as many class selectors as you like and put them
anywhere you want.

NOTE When you want to apply a class selector to just a few words contained inside another tag (like the
middle paragraph in Figure 3-3), you need a little help from the tag. See the box on page 47 for more
detail.

You’ve probably noticed the period that starts every class selector’s name—such as
.copyrightand .special. It’s one of a few rules to keep in mind when naming a class:

» All class selector names must begin with a period. That’s how web browsers
spot a class selector in the style sheet.

* CSS permits only letters, numbers, hyphens, and underscores in class names.

CLASS

SELECTORS:
PINPOINT
CONTROL

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

43

CLASS

SELECTORS:
PINPOINT
CONTROL

.special { FIGURE 3-3
color:#FF0000; . ;
font-family: "Monotype Corsiva"; (lass selectors let you ma{(e h/ghI‘y targeted design changes.
} For example, you can stylize one instance of an <h2> head-

ing (“Wet Sod is Heavy Sod”). The class selector . special

tells the browser to apply the style to just that single <h2>

De Edt Mew Go| Bookmarks' ook iHeD tag. Once you’ve created a class selector, you can use it on
GE-op - & O B[O hwsslocalichos/dasses.himi other tags, like the top paragraph on this page.

How to Move Sod Up 10 St
The Apartment Manager F

Check the Elevator Before Beglnn
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

ut laoreet dolore magna aliguam erat volutpat. Ut wisi enim g
tation ullamcorper suscipit bortis nisl ut .:ﬁqutp £X, ed COMMe
iriure dolor in Rendrerit in vulputate velit esse molestie consequat

Sfaci

Wooden Crates Make Excellent H
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed
tincidunt ut laorset dolore magna aliquam erat volutpat. Ut wis
ati ullamcorper suscipit lobortis nisl ut aliquip
autem vel eum irfure dolor in hendrerit in vulputate velit esse m
eu feugiat nulla faci

—m Wet Sod is Heavy Sod

Lorem ipsum dolor sit amet. consectetuer adipiscing elit. sed d
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wi

nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquif
Dhuis autem vel eum irfure dolor in hendrerit in vulputate velit es

= Done

class="special"

+ After the period, the name must always start with a /etter. For example,
.9lives isn’t a valid class name, but .crazy8 is. You can have classes named
.copy-right and .banner_image, but not .-bad or . _as_bad.

* Class hames are case-sensitive. For example, CSS treats .SIDEBAR and .side-
bar as two different classes.

Apart from the name, you create class styles exactly like tag styles. After the class
name, simply slap on a declaration block containing all the styling you desire:

.special {
color:#FF0000;
font-family: "Monotype Corsiva";

}

Because type selectors apply across the board to all tags on a web page, you merely
have to define them in your style sheet: The HTML tags that make them work are

44 CSS: THE MISSING MANUAL

already in place. The extra freedom you get with class styles, though, comes with
a little more work. Using class selectors is a two-step process. After you create a
class rule, you must then indicate where you want to apply that formatting. To do
s0, you add a class attribute to the HTML tag you wish to style.

Say you create a class . special that you'll use to highlight particular page elements.
To add this style to a paragraph, add a class attribute to the <p> tag, like so:

<p class="special">

NOTE In the HTML, as part of the class attribute, you don’t put a period before the class name. The period
is only required for the class selector name in a style sheet.

When a web browser encounters this tag, it knows to apply the formatting rules
contained in the .special style to the paragraph. You can also apply class format-
ting to only part of a paragraph or heading by adding a tag. For example, to
highlight just one word in a paragraph using the . special style, you could write this:

<p>Welcome to Café Soylent Green,
the restaurant with something a little different.</p>

Once you create a class style, you can apply it to just about any tag on the page. In
fact, you can apply the same class to different tags, so you can create a .special
style with a specific font and color and apply it to <h2>, <p>, and tags.

One Tag, Multiple Classes

Not only can you apply the same class to different tags, you can also apply multiple
classes to the same tag. While it may sound like a lot of extra work to create multiple
classes and add multiple class names to the same tag, it’'s a common approach.

Here’s an example of when you might apply multiple classes to the same tag: Imagine
that you’re designing an interface to manage a visitor’s shopping cart. The interface
requires a variety of buttons, each of which does something different. One button
may be used to delete a product from the shopping cart, another button to add an
item, and a third button to edit the quantity.

Being a good designer, you want the buttons to share some similarities, like rounded
corners and the same font, but also have their own unique looks: red for the delete
button, green for the add button, and so on. To achieve consistency and uniqueness,
you can create two classes. One class will apply to all of the buttons, and the other
classes will apply to certain types of buttons.

To start, you’d create a .btn (short for button) class:

.btn {
border-radius: 5px;
font-family: Arial, Helvetica, serif;
font-size: .8 em;

}

CLASS

SELECTORS:
PINPOINT
CONTROL

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

45

ID SELECTORS:
SPECIFIC PAGE
ELEMENTS

Then you could create additional classes for each type of button:

.delete {
background-color: red;
}
.add {
background-color: green;
}
.edit {
background-color: grey;

}

Then, by applying more than one class to a tag, you can combine styles and create
both a consistency across the buttons and a unique appearance for each type of
button:

<button class="btn add">Add</button>
<button class="btn delete">Delete</button>
<button class="btn edit">Edit</button>

Web browsers and HTML have no problem handling multiple classes applied to a
single element. In the HTML tag, just add the class attribute, and, for the value, add
each class name, separated by a space. The browser will combine the properties
from the various classes and apply the final, combined set of styles to the element.
So in the current example, all of the buttons will have rounded corners and use the
Arial font at .8 ems. But the Add button will be green, the Delete button red, and
the Edit button gray.

The benefit of this approach is that if you decide that buttons should no longer have
rounded corners, or they should use a different font, you only need to change the.
btn style to update the look of each of the buttons. Likewise, if you decide that the
Edit button should be yellow instead of gray, changing the .edit style will affect
only that one button, not any of the others.

M ID Selectors: Specific Page Elements

CSS reserves the ID selector for identifying a unique part of a page, like a banner,
navigation bar, or the main content area. Just as with a class selector, you create an
ID by giving it a name in CSS, and then you apply it by adding the ID to your page’s
HTML code. So what’s the difference? As explained in the box on page 48, ID selec-
tors have some specific uses in JavaScript-based or lengthy web pages. Otherwise,
compelling reasons to use IDs over classes are few.

NOTE There’s a growing trend in the web design community to abandon ID selectors in CSS. The reasoning
requires greater knowledge of CSS than you’ve learned so far. You won’t find IDs much in this book, and you’ll
learn why ID selectors are often not a good idea on page 48.

46

CSS: THE MISSING MANUAL

UP TO SPEED

ID SELECTORS:
SPECIFIC PAGE
ELEMENTS

Divs and Spans

Chapter Tintroduced you to <div> and , two generic
HTML tags that you can bend to your (SS wishes. When there’s
no HTML tag that exactly delineates where you want to put a
class or ID style you've created, use a <div> or to
fill in the gaps.

The <div> tag identifies a logical division of the page, like a
banner, navigation bar, sidebar, or footer. You can also use it
to surround any element that takes up a chunk of the page,
including headings, bulleted lists, or paragraphs. (Program-
mer types call these block-levelelements because they forma
complete “block” of content, with line breaks before and after
them.) The <div> tag works just like a paragraph tag: Type
the opening <div>, add some text, a photo, or some other
content inside it, and then end it with the closing </div>.

The <div> tag can contain several block-level elements,
making it a great way to group tags that are logically related,
such as the logo and navigation bar in a page’s banner or a
series of news stories that compose a sidebar. Once grouped
in this way, you can apply specific formatting to just the tags
inside the particular div or move the entire <div>-tagged
chunk of content into a particular area, such as the right side
of the browser window (CSS can help you control the visual
layout of your pages in this manner, as described in Part Three
of this book).

For example, say you added a photo and an accompanying
caption to a web page. You could wrap a <div> tag (with a
class applied to it) around the photo and the caption to group
both elements together:

<div class="photo">

<img src="holidays.jpg"

alt="Penguins getting frisky"/>

<p>Mom, dad and me on our yearly trip to
Antarctica.</p>

</div>

Depending on what you put in the declaration block, the
.photo class can add a decorative border, background color,
and so on to both photo and caption. Part Three of this hook
shows you even more powerful ways to use <div> tags—in-
cluding nested divs.

The latest version of HTML includes many block-level tags that
work like divs but are intended for more specific types of con-
tent. For example, you can use the <figure> tag to display
an image and a caption instead of using a <div>. However,
because [E8 doesn’t understand those HTML5 tags (see the box
on page 12), many designers still use divs when they wish to
group several HTML tags into a single unit.

In addition, the new HTML5 tags are intended to add “mean-
ing” to your HTML. For example, the <article> tagis used
to indicate a self-contained block of text, like an article in a
magazine. Not all markup is meaningful, however, so you’ll
often still use divs simply to group together elements for
stylistic reasons.

A tag, on the other hand, lets you apply a class or ID
style to just part of a tag. You can place tags around
individual words and phrases (often called inline elements)
within paragraphs to format them independently. Here, a
class called . companyName styles the inline elements
“CosmoFarmer.com,” “Disney,” and “ESPN”:

<p>Welcome to
CosmoFarmer.com, the parent
company of such well-known corporations
as Disney
 and
ESPN...well, not really.</p>

Although web designers don’t use ID selectors as much as they once did, it’s good
to know what they are and how they work. Should you decide to use an ID selector,
creating one is easy. Just as a period indicates the name of a class selector, a pound
or hash symbol (#) identifies an ID style. Otherwise, follow the exact same naming

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

47

ID SELECTORS:
SPECIFIC PAGE rules used for classes (page 43). This example provides a background color and a

ELEMENTS width and height for the element:

#banner {
background: #CC0000;
height: 300px;
width: 720px;

}

Applying IDs in HTML is similar to applying classes but uses a different attribute
named, logically enough, id. For example, to apply the style above to a <div> tag,
you’d write this HTML:

<div id="banner">

Likewise, to indicate that the last paragraph of a page is that page’s one and only
copyright notice, you can create an ID style named #copyright and add it to that
paragraph’s tag:

<p id="copyright">

NOTE As with class styles, you use the # symbol only when naming the style in the style sheet. You leave
the # off when using the ID’s name as part of an HTML tag: <div id="banner">.

POWER USERS’ CLINIC

Proper IDs

ID attributes in HTML have a few powers that class attributes selector to create links to the letters of the alphabet.
lack. These benefits actually have nothing to do with (SS, so When your visitors click “R,” they jump immediately to
you may never need an ID. But if you’re curious: all the “R” words on the page. You don’t actually need to
« One easy way for JavaScript programmers to locate and create any (SS for this—it works purely with HTML. First,
manipulate parts of a page is by applying an ID to a page qdd an ID attribute tg the spot on the page you wish to
element, and then using JavaScript to reference that ID. link to: For example, in a glossary you can add an <h2>
For example, programmers often apply an ID to a form tag with a letter from the alphabet followed by the
element like a text box for collecting a visitor’s name. The glossary listings—perhaps in a definition list or a series
D lets JavaScript access that form element and work its of paragraphs. Just add an appropriate ID to each of those
magic—like making sure the field isn’t empty when the <h2> tags: <h2 id="R">R</h2>.To create the link
visitor clicks Submit. in HTML, add the # symbol and the ID name to the end of
) - . the URL, followed by the ID name—index. htm1#R. This

+ IDs also let you link to a specific part of a page, making) .))

.) link points directly to an element with the ID of #R on the
long web pages quicker to navigate. If you have an)))
alphabetic glossary of terms, then you can use an ID page index.html. (When used this way, the ID behaves just

’ like anamed anchor—R—inHTML.)

48 CSS: THE MISSING MANUAL

STYLING

GROUPS OF

I Styling Groups of Tags TAGS

Sometimes you need a quick way to apply the same formatting to several different
elements. For example, maybe you’d like all the headers on a page to share the same
color and font. Creating a separate style for each header—h1, h2, h3, h4, and so on—is
way too much work, and if you later want to change the color of all of the headers,
then you have six different styles to update. A better approach is to use a group
selector. Group selectors let you apply a style to multiple selectors at the same time.

Constructing Group Selectors

To work with selectors as a group, simply create a list of selectors separated by
commas. So to style all the heading tags with the same color, you can create the
following rule:

h1, h2, h3, h4, h5, h6 { color: #F1CD33; }

This example consists of only type selectors, but you can use any valid selector
(or combination of selector types) in a group selector. For example, here’s a group
selector that applies the same font color to the <h1> tag, the <p> tag, any tag styled
with the .copyright class, and the tag with the #banner ID:

hi, p, .copyright, #banner { color: #F1CD33; }

TIP If you want a bunch of page elements to share some but not all of the same formatting properties, then
you can create a group selector with the shared formatting options and also create individual rules with unique
formatting for each individual element. In other words, two (or more) different styles can format the same tag.
The ability to use multiple styles to format a single element is a powerful (SS feature. See Chapter 5 for details.

The Universal Selector (Asterisk)

Think of a group selector as shorthand for applying the same style properties to
several different page elements. CSS also gives you a sort of Gber group selector—
the universal selector. An asterisk (*) is universal selector shorthand for selecting
every single tag.

For example, say you want all the tags on your page to appear in bold type. Your
group selector might look something like the following:

a, p, img, h1, h2, h3, h4, h5 ...yadda yadda... { font-weight: bold; }

The asterisk, however, is a much shorter way to tell CSS to select a// HTML tags on
the page:

* { font-weight: bold; }

You can even use the universal selector as part of a descendant selector, so you
can apply a style to all the tags that descend from a particular page element. For
example, .banner * selects every tag inside the page element to which you’ve ap-
plied the banner class. (You’ll read about descendant selectors next.)

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 49

STYLING TAGS
WITHIN TAGS

Since the universal selector doesn’t specify any particular type of tag, it’s hard to
predict its effect on an entire website’s worth of pages all composed of a variety of
different HTML tags. To format many different page elements, web page gurus rely
on inheritance—a CSS trait discussed in depth in the next chapter.

However, some web designers use the universal selector as a way to remove all space
around block-level elements. As you’ll read on page 187, you can add space around
an element using the CSSmargin property, and add space between the border of an
element and the content inside using the padding property. Browsers automatically
add varying amounts of space for different tags, so one way to start with a clean
slate and remove all space around tags is with this style:

A
padding: 0;
margin: 0;
}

M Styling Tags Within Tags

Choosing whether to style your page with type selectors or class selectors is a
tradeoff. Type selectors are fast and easy, but they make every occurrence of a tag
look the same, which is fine—if you want every <h2> on your page to look exactly
like all the rest. Class and ID selectors give you the flexibility to style individual page
elements independently, but creating class or ID styles also requires you to add the
appropriate class or ID to the HTML tags you wish to style. Not only does this add
more work for you, but it also adds code to your HTML file. What you need is a way
to combine the ease of type selectors with the precision of classes and IDs. CSS has
just the thing—descendant selectors.

You use descendant selectors to format a whole bunch of tags in a similar manner
(just like type selectors), but only when they’re in a particular part of a web page. It’s
like saying, “Hey you <a> tags in the navigation bar, listen up. I've got some format-
ting for you. All you other <a> tags, just move along; there’s nothing to see here.”

Descendant selectors let you format a tag based on its relationship to other tags. To
understand how it works, you need to delve a little bit more deeply into HTML. On
the bright side, the concepts underlying descendant selectors help you understand
several other selector types, too, as discussed later in this chapter.

NOTE Descendant selectors can be confusing at first, but they’re among the most important techniques for
efficiently and accurately applying CSS. Take the time to master them.

The HTML Family Tree

The HTML that forms any web page is akin to a family tree, where the HTML tags
represent various family members. The first HTML tag you use on a page—the <html>

50

CSS: THE MISSING MANUAL

tag—is like the grandpappy of all other tags. The <html> tag surrounds the <head>
tag and the <body> tag, which makes <html> the ancestor of both. Similarly, a tag
inside of another tag is a descendant. The <title> tag in the following example is
the <head> tag’s descendant:

<html>
<head>
<title>A Simple Document</title>
</head>
<body>
<h1>Header</h1>
<p>A paragraph of importanttext.</p>
</body>
</html>

You can turn the above HTML code into a diagram, like the one in Figure 3-4, showing
the relationships between the page’s tags. First there’s the <html> tag; it’s divided
into two sections represented by the <head> and <body> tags. Those two tags contain
other tags that in turn may contain other tags. By seeing which tags appear inside
which other tags, you can diagram any web page.

STYLING TAGS
WITHIN TAGS

FIGURE 3-4

other—forms a kind of family tree.

HTML consists of nested tags—tags within tags within even more tags.
The relationship between these tags—how they’re nested within each

Tree diagrams help you figure out how CSS sees the relationship of one element
on a page to another. Many of the selectors in this chapter, including descendant
selectors, rely on these relationships. The most important relationships are:

* Ancestor. As explained at the beginning of this chapter, an HTML tag that wraps
around another tag is its ancestor. In Figure 3-4, the <html> tag is an ancestor
of all other tags, while the <body> tag is an ancestor for all of the tags inside of
it—the <h1>, <p>, and tags.

» Descendant. A tag inside one or more tags is a descendant. In Figure 3-4, the
<body> tag is a descendant of the <html> tag, while the <p> tag is a descendant
of both the <body> and <html> tags.

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

51

STYLING TAGS
WITHIN TAGS

* Parent. A parent tag is the closest ancestor of another tag. In Figure 3-4, a
parent is the first tag directly connected to and above another tag. Thus, the
<html> tag is the parent of the <head> and <body> tags, but of no other tags.
And in this diagram, the <p> tag is the parent of the tag.

» Child. A tag that’s directly enclosed by another tag is a child. In Figure 3-4,
both the <h1> and <p> tags are children of the <body> tag, but the
tag isn’t. Since the tag is directly wrapped inside the <p> tag, it’s a
child of the <p> tag.

» Sibling. Tags that are children of the same tag are called siblings, just like
brothers and sisters. In an HTML diagram, sibling tags are next to each other
and connected to the same parent. In Figure 3-4, the <head> and <body> tags
are siblings, as are the <h1> and <p> tags.

Thankfully, that’s where CSS draws the line with this family metaphor, so you don’t
have to worry about aunts, uncles, or cousins. (Though rumor has it CSS10 will
include in-laws.)

Building Descendant Selectors

Descendant selectors let you take advantage of the HTML family tree by formatting
tags differently when they appear inside certain other tags or styles. For example,
say you have an <h1> tag on your web page, and you want to emphasize a word
within that heading with the tag. The trouble is, most browsers display both
heading tags and the tag in bold, so anyone viewing the page can’t see
any difference between the emphasized word and the other words in the headline.
Creating a type selector to change the tag’s color and make it stand out
from the headline isn’t much of a solution: You end up changing the color of every
 tag on the page, like it or not. A descendant selector lets you do what
you really want—change the color of the tag only when it appears inside
of an <h1> tag.

The solution to the <h1> and dilemma looks like this:
hi strong { color: red; }

Here any tag inside an hl is red, but other instances of the tag
on the page aren’t affected. You could achieve the same result by creating a class
style—. strongHeader, for example—but you’'d then have to edit the HTML by add-
ing class="strongHeader" to the tag inside the header. The descendant
selector approach adds no HTML and no more work beyond creating the style!

Descendant selectors style elements that are nested inside other elements, following
the exact same pattern of ancestors and descendants as the tags in the HTML family
tree. You create a descendant selector by tacking together selectors according to
the part of the family tree you want to format, with the most senior ancestor on the
left and the actual tag you’re targeting on the far right. For example, in Figure 3-5,
notice the three links (the <a> tag) inside the bulleted list items and another link

52

CSS: THE MISSING MANUAL

STYLING TAGS
WITHIN TAGS

inside the paragraph. To format the bulleted links differently than the other links on
the page, you can create the following descendant selector:

1i a { font-family: Arial; }

666 Basic Web Page FIGURE 3-5

& it @10« This simple tree diagram (right)
represents the structure of the
web page pictured to the left.
Every tag on a web page is a
descendant of the <html> tag,
since <htm1> wraps around
them all. A tag can descend
from multiple tags. For example,

CosmoFarmer 2.0

Welcome to your online source for apartmegt s

and tricks. Learn about the latest technique head
fruit, flowers and herbs in your urban encla
cover a wide range of topics sure to appeal to
every high-rise dweller. Previous articles ingh(l
10 Stories Without The Apartment ManagCr Fir
Irrigation Problems To Your Downgaia ey |

?ﬁﬁ'}f& glig :;lislc ever on Cosmo Rk RN the first <a> tag listed in this
) diagram is a descendant of the
Monthly Columns , <p>, <body>, and

o Ask the Experts <html> tags.
» The Cosmo Quiz
« DIY Projects

[Done

This rule says, “Format all links (a) that appear inside a list item (1i) by using the
Arial font.” A descendant selector can contain more than just two elements. The fol-
lowing are all valid selectors for the <a> tags inside of the bulleted lists in Figure 3-5:

ul 11 a

body 1i a

html 1i a

html body ul 1i a

These four selectors—all of which do the same thing—demonstrate that you don’t
have to describe the entire lineage of the tag you want to format. For instance, in
the second example, body 1i a, the ul isn’t needed. This selector works as long
as there’s an <a> tag that’s a descendant (somewhere up the line) of an <1i> tag
(which is also a descendant of the <body> tag). This selector can just as easily ap-
ply to an <a> that’s inside an tag, that’s inside a tag, that’s inside an
<1i> tag, and so on.

In general, you should use the shortest descendant selector that gets the job done.
Because all tags are inside the <html> and <body> tags, there’s no reason to include
them in a descendant selector.

NOTE The number of selectors you include in a descendant selector affects how the style interacts with
other, conflicting styles. This system is called specificity and you’ll read all about it in Chapter 5.

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 53

STYLING TAGS
WITHIN TAGS

You’re not limited to just type selectors, either. You can build complex descendant
selectors combining different types of selectors. For example, suppose you want
your links to appear in yellow only when they’re inside an introductory element
(which you’ve designated with a class style named intro). The following selector
does the trick:

.intro a { color: yellow; }

Quick translation: Apply this style to every link (@) that’s a descendant of another
tag that has the intro class applied to it.

Creating Modules

Descendant selectors are often used to format a module of code—that s, a collection
of HTML that serves a particular function on a page. For example, say you had a <div>
on the page, used for listing the latest company news. You might have HTML like this:

<div>
<h2>0ur company is great!</h2>
<p>More information about why our company is so great</p>
<h2>Another news item</h2>
<p>Information about the other news item...</p>
<h2>...and so on...</h2>
<p>... and so on... </p>

</div>

If you simply slap a class on that opening <div> tag—<div class="news">—then
you can create descendant selectors that format the HTML tags within the news
section differently. For example,

.news h2 { color: red; }
.news p { color: blue; }

Now the <h2> tags within the news section will be red, and the paragraphs will be
blue. It’s even possible (and common) to create descendant selectors with multiple
class names. For example, say you’re building a page that provides a directory of
addresses for members of an organization. You might wrap each contact in its own
div, and further refine the elements inside that div with a class like this:

<div class="contact">
<p class="name">John Smith</p>
<p class="phone">555-555-1234</p>
<p class="address">1234 Elem St</p>
</div>

Then you could create several descendant selectors to style just those contact ele-
ments like this:

.contact .name { font-weight: bold; }
.contact .phone { color: blue;}
.contact .address { color: red; }

54

CSS: THE MISSING MANUAL

NOTE i a style sheet, you may sometimes see something like this:
p.intro

This may look like a descendant selector—since there is both an HTML tag and a class—but it’s not. There’s no
space between the pand the . intro, which means that the intro class must be applied specifically toa <p>
tag (<p class="intro">)for this style to work. If you add a space, you get a different effect:

p .intro { color: yellow; }

This seemingly slight variation selects any tag styled with the . intro class, which is itself a descendant of
a <p> tag. In other words, it doesn’t select a paragraph, it selects another tag inside a paragraph. In general,
to keep your class styles as flexible as possible, it is better to leave off the HTML tag (in other words use just
.introinstead of p.intro).

M Pseudo-Classes and Pseudo-Elements

Sometimes you need to select parts of a web page that don’t have tags per se, but
are nonetheless easy to identify, like the first line of a paragraph or a link as you
move your mouse over it. CSS gives you a handful of selectors for these doohick-
eys—pseudo-classes and pseudo-elements.

Styles for Links

Four pseudo-classes let you format links in four different states based on how a
visitor has interacted with that link. They identify when a link is in one of the fol-
lowing four states:

* a:link selects any link that your guest hasn’t visited yet, while the mouse isn’t
hovering over or clicking it. This style is your regular, unused web link.

* a:visited is a link that your visitor has clicked before, according to the web
browser’s history. You can style this type of link differently than a regular link
to tell your visitor, “Hey, you’ve been there already!” (See the box on page 280
for the limitations surrounding this selector.)

* a:hover lets you change the look of a link as your visitor passes the mouse over
it. The rollover effects you can create aren’t just for fun—they can provide useful
visual feedback for buttons on a navigation bar.

You can also use the :hover pseudo-class on elements other than links. For
example, you can use it to highlight text in a <p> or <div> when your guests
mouse over it. In that case, instead of using a:hover (which is for links) to add
a hover effect, you can create a style named p:hover to create a specific ef-
fect when someone mouses over any paragraph. If you just want to style tags
with a specific class of highlight applied to them, then create a style named
.highlight:hover.

PSEUDO-

CLASSES AND
PSEUDO-
ELEMENTS

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

55

PSEUDO-

CLASSES AND
PSEUDO-
ELEMENTS

* a:active lets you determine how a link looks as your visitor clicks. In other
words, it covers the brief nanosecond when someone’s pressing the mouse
button, before releasing it.

Chapter 9 shows you how to design links by using these selectors to help your visi-
tors click their way around your site.

NOTE You can live a long, productive life without reading about the selectors in the next few sections. The
selectors you’ve learned so far—tag, class, ID, descendant, group, and so on—let you build absolutely beautiful,
functional, and easily maintained websites. If you’re ready for the fun stuff—designing web pages—then skip to
the tutorial on page 70. You can always finish reading this discussion some cold, rainy night by the fire.

Styling Paragraph Parts

The typographic features that make books and magazines look cool, elegant, and
polished didn’t exist in the early web era. (After all, when did scientists ever worry
about looking cool?) CSS provides two pseudo-elements—:first-letter and
:first-line—that give your web pages the design finesse that print has enjoyed
for centuries.

The : first-letter pseudo-element lets you create a drop cap—an initial letter that
jumps out from the rest of the paragraph with bigger or bolder font formatting, as
at the beginning of a book chapter.

Styling the :first-1ine of a paragraph in a different color keeps your reader’s eye
moving and makes text appear appealing and fresh. (If you’re intrigued, Chapter 6 is
all about formatting text, and page 166 covers these two pseudo-elements in depth.)

NOTE The latest version of (SS changes the syntax for pseudo-elements. In (SS 2.1, pseudo-elements begin
with a single colon, like this:

:first-letter

(SS3 adds an additional colon to differentiate pseudo-classes like : hover from pseudo-elements. So : first-
letter and :first-line are now ::first-letter and ::first-1ine. Fortunately, to maintain
support with older sites, browsers will continue to support the single colon version of pseudo-elements. That’s a
good thing, since Internet Explorer 8 doesn’t understand the double-colon syntax, so stick with the single colon
for now, since all other browsers still use that as well.

More Pseudo-Classes and Pseudo-Elements

The CSS guidelines define several powerful pseudo-class and pseudo-element
selectors besides the ones covered so far. Support for these selectors in all but the
oldest browsers is very good.

M :FOCUS
The :focus pseudo-class works much like the :hover pseudo-class. While :hover
applies when a visitor mouses over a link, :focus applies when the visitor does

56

CSS: THE MISSING MANUAL

something to indicate her attention to a web page element—usually by clicking or
tabbing into it. In programmery lingo, when a visitor clicks in a text box on a web
form, she puts the focus on that text box. That click is a web designer’s only clue as
to where the visitor is focusing her attention.

The :focus selector is mostly useful for giving your visitor feedback, like changing
the background color of a text box to indicate where she’s about to type. (Single-line
text fields, password fields, and multi-line <textarea> boxes are common targets
for the :focus selector.) This style, for example, adds a light yellow color to any text
box a visitor clicks or tabs into:

input:focus { background-color: #FFFFCC; }

The :focus selector applies only while the element is in focus. When a visitor tabs
into another text field or clicks anywhere else on the page, she takes the focus—and
the CSS properties—away from the text box.

One good resource for seeing which browsers support which (SS selector is http://caniuse.com/.

I :BEFORE

The :before pseudo-element does something no other selector can: It lets you add
content preceding a given element. For example, say you wanted to put “HOT TIP!”
before certain paragraphs to make them stand out, like the boxes in this book that
say “UP TO SPEED” and “POWER USERS’ CLINIC.” Instead of typing that text in your
page’s HTML, you can let the :before selector do it for you. This approach not only
saves on code, but also if you decide to change the message from “HOT TIP!” to,
say, “Things to know,” then you can change every page on your site with one quick
change to your style sheet. (The downside is that this special message is invisible
to browsers that don’t understand CSS or don’t understand the :before selector.)

First, create a class (.tip, say) and apply it to the paragraphs that you want to
precede with the message, like so: <p class="tip">. Then, add your message text
to the style sheet:

.tip:before {content: "HOT TIP!" }

Whenever a browser encounters the tip class it dutifully inserts the text “HOT TIP!”
just before the tag with that class.

The technical term for text you add with this selector is generated content, since
web browsers create (generate) it on the fly. In the page’s HTML source code, this
material doesn’t exist. Whether you realize it or not, browsers generate their own
content all the time, like the bullets in bulleted lists and numbers in ordered lists. If
you want, you can even use the :before selector to define how a browser displays
its bullets and numbers for lists.

Internet Explorer 8 and up as well as all other major browsers support the :before
selector (@and the :after selector coming up next).

PSEUDO-

CLASSES AND
PSEUDO-
ELEMENTS

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

57

PSEUDO-

CLASSES AND
PSEUDO-
ELEMENTS

M :AFTER

Exactly like the :before selector, the :after pseudo-element adds generated con-
tent—but after the element, not before. You can use this selector, for example, to
add closing quotation marks (") after quoted material.

WUEE Both :beforeand :afterare pseudo-elements like : first-1ineand : first-letter.As
mentioned in the note on page 56, the latest version of (SS adds double colons to pseudo-elements, so : before,
and :afterarewrittenas : :beforeand : :after. Fortunately, browsers support the older notation, so you
can continue to use :before and :after, which have the added benefit of working in Internet Explorer 8.

M ::SELECTION

This CSS3 selector refers to items that a visitor has selected on a page. For example,
when a visitor clicks and drags over text, the browser highlights that text, and the
visitor can then copy the text. Normally, browsers add a blue background behind
the text. Internet Explorer changes the text color to white. However, you can control
the background color and text color by defining this selector. For example, if you
wanted to make selected text white with a violet background you could add this
style to a page’s style sheet:

::selection {
color: #FFFFFF;
background-color: #993366;
}

The only properties you can set with this selector are color and background-
color, so you can’t go wild and change the font size, fonts, margins, or other visual
changes that would surely drive your site visitors crazy. (Thanks for protecting us
from ourselves, CSS!)

NOTE There’s no single-colon version of the selection pseudo-element, so you must use the double colon.

In other words, : :selection works, but :selection won'’t.

This selector doesn’t work in Internet Explorer 8, Firefox, or iOS Safari, but it does
work in all other current browsers. You can, however, add support for Firefox by
adding what’s called a vendor prefix to the selector, like this:

::-moz-selection {
color: #FFFFFF;
background-color: #993366;
}

To get this to work in Firefox and the other browsers, you need to have both styles
in your style sheet—just place one after the other. (You’ll learn more details about
vendor prefixes are and why you need them in the box on page 321.)

If you really want to go crazy, you can specify a different background color just
for text selected inside a particular element. For example, to make only text inside

58

CSS: THE MISSING MANUAL

paragraphs red with a pink background, just add the p element selector before
::selection, like this:

p::selection {
color: red;
background-color: pink;

TIP Learning how to write selectors can sometimes feel like learning hieroglyphics. To translate a selector
into straightforward language, visit the Selectoracle at http://gallery.theopalgroup.com/selectoracle. This great
resource lets you type in a selector, and then it spits out a clear description of which page elements on a page
the style affects.

I Attribute Selectors

CSS provides a way to format a tag based on any HTML attributes it has. For example,
say you want to place borders around the images on your page—but only around
the important photos. You don’t want to include your logo, buttons, and other little
doodads that also have an tag. Fortunately, you realize that you’ve given all
the photos descriptions using the title attribute, which means you can use an at-
tribute selector to identify just the important images.

With attribute selectors, you can single out tags that have a particular property. For
example, here’s how to select all tags with a title attribute:

img[title]

The first part of the selector is the name of the tag (img) while the attribute’s name
goes in brackets: [title].

CSS doesn’t limit attribute selectors to tag names: You can combine them with
classes, too. For example, .photo[title] selects every element with the .photo
class style and an HTML title attribute.

To get more specific, you can select elements that not only share a particular at-
tribute, but also have an exact value set for that attribute. For example, when you
want to highlight links that point to a particular URL, create an eye-catching attribute
selector, like so:

a[href="http://www.cafesoylentgreen.com"]{
color: green;
font-weight: bold;

}

Adding a value to an attribute selector is very useful when working with forms. Many
form elements have the same tag, even if they look and act differently. The checkbox,
text box, submit button, and other form fields all share the <input> tag. The type

ATTRIBUTE
SELECTORS

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

59

ATTRIBUTE
SELECTORS

attribute’s value is what gives the field its form and function. For example, <input
type="text"> creates atext box, and <input type="checkbox"> creates a checkbox.

To select just text boxes in a form, for example, use this selector:
input[type="text"]

The attribute selector is very versatile. It lets you not only find tags that have a specific
value for an attribute (for example, find all form fields with a type of checkbox) but
even select elements with an attribute value that begins with, ends with, or contains
a specific value. While this might sound like overkill, it’s actually quite handy.

For example, suppose you want to create a specific style to highlight external links
(links that point outside of your own website) to indicate, “Hey, you’ll leave this site
if you click this.” Assuming you don’t use absolute links to link to any pages in your
own site, you can assume that any external link begins with http://—the first part
of any absolute link.

If that’s the case, the selector would look like this:
a[hrefr="http://"]

The "= translates to “begins with,” so you can use this selector to format any link
that begins with http:// You can use it to style a link that points to http:/www.
google.com as well as a link to http://www.sawmac.com. In other words, it selects
any external link.

NOTE This selector won’t work for any secure connections over SSL—that is, any links that begin with

https://. To create a style that affects those as well, you could create a group selector (page 49) like this:

alhrefr="http://"], a[href*="https://"]

Similarly, there are times when you want to select an element with an attribute that
ends in a specific value. Again, links are handy for this task. Say you want to add
a little document icon next to any links that point to a PDF file. Since PDF docu-
ments end in .pdf, you know a link pointing to one of those files will end in .pdf—for
example, .So to select just those types of
links, you’d create a selector like this:

alhref$=".pdf"]
The full style might look something like this:

a[href$=".pdf"] {
background: url(doc_icon.png) no-repeat;
padding-left: 15px;

};

60

CSS: THE MISSING MANUAL

http://www.google.com
http://www.google.com
http://www.sawmac.com

Don’t worry too much about the particular properties in this style—you’ll learn about
padding on page 187 and background images on page 231. Just pay attention to that
cool selector: $= translates to “ends with.” You can use this selector to format links
that point to Word docs ([a href$=".doc"]), movies (a [href$=".mp4"]), and soon.

Finally, you can even select elements with attributes that contain another value. For
example, say you like to highlight photos of your employees throughout the site. You
might want all of those photos to have a common style, like a thick green border
and a gray background. One way to do this is to create a class style—. headshot, for
example—and manually add a class attribute to the appropriate tags. However,
if you name the photos consistently, then there’s a faster method.

For example, say you name each of those images with the word headshot in them—
for example, mcfarland_headshot.png, mccord_headshot.jpog, headshot_albert.
Jpg, and so on. Each of these files has the word headshot somewhere in the file, so
the src attribute of the tag used to insert each image also contains the word
headshot. You can create a selector for just those images like this:

img[src*="headshot"]

This translates to “select all images whose src attribute has the word headshot
somewhere init.” It’s a simple, elegant way to format just those images.

M Child Selectors

Similar to the descendant selectors described earlier in this chapter, CSS lets you
format the children of another tag with a child selector. The child selector uses an
additional symbol—an angle bracket (>) to indicate the relationship between the
two elements. For example, the selector body > h1 selects any <h1> tag that’s a
child of the <body> tag.

Unlike a descendant selector, which applies to all descendants of a tag (children,
grandchildren, and so on), the child selector lets you specify which child of which
parent you mean. For example, in Figure 3-6, there are two <h2> tags. Using a plain
old descendant selector—body h2—selects both <h2> tags. Even though both <h2>
tags are inside of the <body> tag, only the second one is a child of the <body> tag. The
first <h2> is directly inside of a <div> tag, so its parent is the <div>. Since the two <h2>
tags have different parents, you can use a child selector to get at them individually.
To select only the first <h2> tag, your child selector looks like this: body > h2. If you
want the second <h2> tag, then you must use this child selector instead: div > h2.

CHILD
SELECTORS

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

61

CHILD

SELECTORS

) Children - Mozilla Firefox CE FIGURE 3-6

E'f Ed't,‘ o f‘mm T ue'p‘ The diagram (right) shows the
@ P FORLwro«@ relationship between HTML tags

(left).

Heading 1

A <div> in the page

This paragraph contains a bold Tink.

Another heading 2
(but not inside the <div>)

« This list item contains a sub-Tist
o Sub-item 1
o Sub-item 2
o Sub-item 3

e Item 2 of the main list

e Item 3 of the main list

[E=| Done

CSS also includes some very specific pseudo-classes for selecting child elements.
They let you fine-tune your selectors for many different arrangements of HTML.

M :FIRST-CHILD

Going back to the HTML family tree analogy for a moment, recall what a child tag is:
any tag directly enclosed by another tag. (For example, in Figure 3-6, <h1>, <div>,
<h2>,and are all children of the <body> tag.) The : first-child pseudo-element
lets you select and format just the first of however many children an element may
have.

In Figure 3-6, if you want to select the first <h1> tag on the page, create a selector
like this:

hi:first-child

This selector applies to any <h1> tag that is a first child. In Figure 3-6, the results are
obvious: There’s only one <h1> tag, and it’s the first tag on the page. Therefore, it’s a
child of the <body> element. However, : first-child can be confusing. For example,
if you change the <h2> tag inside the <div> pictured in Figure 3-6 to an <h1> tag,
then h1:first-child would select both the <h1> directly inside the <body> tag and
the <h1> inside the div (since that <h1> is the first-child of the div).

62 CSS: THE MISSING MANUAL

CHILD
SELECTORS

M :LAST-CHILD

Thisis like : first-child discussed earlier, but just with the last child of an element.
For example, to style the last itemin a list, you use the 1i:last-child selector (see
Figure 3-7).

Child Selectors FIGURE 3-7
(58’s wide range of child

li:first-child li:last-child li:nth-child(odd) li:nth-child(even) selectors gives you a vari-
::z one ety of ways to select child
o o elements. These selectors
four four _ are great when you want

four four | o ,
five five five to highlight the first, last,
six Fx] six O or an alternating number

li:nth-child(2)

li:nth-child(5)

li:znth-child(3n)

one

of items in a list.

one

e o
three three [three | three

four four four [four]
five five five five

six six |six | IE'
liznth-child(3n+1) li:znth-child(4n+2) li:znth-child(n+3) liznth-child(-n+3)
one one one

two |tW0 | wo two

three three three three

five five five five
six six six six

M :ONLY-CHILD

There’s also a selector for an element that’s the only child of another element. For
example, say you have this style in your style sheet:

p:only-child {
color: red;

}

This style sets the text color to red, but only if there’s a single paragraph inside the
element. For example, if you have a <div> tag with three paragraphs inside it, then
this style wouldn’t apply—because there are three children inside that div. However,
if you deleted two of the paragraphs, leaving just one paragraph in the div, that
paragraph would then be red.

To make things more confusing, however, this style only works when the specific
tag is the only child inside another tag. In other words, it’s not enough that the tag
is the only one of its kind. If there’s another tag that’s a sibling to the specified tag,

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 63

CHILD
SELECTORS

this selector won’t work. If you added a tag inside <div> along with the <p>,
then the paragraph is no longer an only child. That tag is also a child, so the
p:only-child would no longer apply!

I :NTH-CHILD

This complex selector is very useful. With it, you can easily style every other row in
a table, every third list item, or any combination of alternating child elements (see
Figure 3-7). This selector requires a value to determine which children to select. The
easiest option is a keyword—either odd or even—which lets you select alternating
odd or even child elements. For example, if you want to provide one background
color for each even row in a table and another color in the background of each odd-
numbered row, you can write two styles like this:

tr:nth-child(odd) { background-color: #D9FOFF; }
tr:nth-child(even) { background-color: #FFFFFF; }

Now that’s a really simple way to color alternating table rows (see Figure 3-8). But
:nth-child() has even more power up its sleeve.

You can pinpoint a specific child by supplying a number. For example, if you want
to style the fifth itemin a list, you’d provide the number 5 to the :nth-child selec-
tor, like this:

li:nth-child(s)

That style selects only a single child. If you want to select, say, every third itemin a
list, use the number (3, in this case) followed by the letter n, like this:

li:nth-child(3n)

Then n indicates a multiplier, so 3n is every third child beginning with the third child
(see Figure 3-7).

But what if you want to select every third child element in a series, starting with
the second child element? For example, suppose you want to highlight every third
table cell ktd> tag) inside a row, starting with the second table cell (see Figure 3-8).
Here’s a style to achieve that:

td:nth-child(3n+2) { background-color:#900; }

The number before the n represents a multiple: 3n means every third element, 4n
means every fourth element, and so on. The plus sign followed by a number (+2 in
this example) indicates which element to start at, so +2 means start at the second
child element, while +5 means start at the fifth child element. So :nth-child(5n+4)
selects every fifth child element starting at the fourth child element.

You can even use a negative n value, which will cycle through the child elements
backwards. For example the last list in Figure 3-7 uses the following selector:

li:nth-child(-n+3)

64

CSS: THE MISSING MANUAL

which translates to “start at the third list item, then select every list item before it.”
As you can see, the nth-child selector is confusing, but powerful enough to let you
select an endless variety of child elements.

CHILD
SELECTORS

Alternating Table Rows FIGURE 3-8
Table-striping the easy
= = = way: with child selectors.
I I [You can even stripe
= = = alternating columns by
]] I targeting every other
= = = <td> tag within a row,
]] | or, as in this case, every
third column beginning
with the second one. Now
that’s precision!
Child Type Selectors

CSSincludes a selector that works much like the child selectors in the previous sec-
tion but applies to children with a specific type of HTML tag. For example, say you
want to format the first paragraph inside a sidebar in a particular way, but on some
pages, that sidebar starts with an <h2> tag, and on other pages, it starts with a <p>
tag. You can’t use :first-child to select that paragraph, since in some cases it’s
the second child (following the <h2>). However, it’s always the first paragraph (<p>
tag) in that sidebar, even if other tags come before it, so you can select it with a
type selector called :first-of-type.

:last-child, : first-of-type,and :nth-child() are supportedinall modern browsers
including Internet Explorer 9 and above. Alas, these don’t work in IE8.

M :FIRST-OF-TYPE

This selector works just like : first-child, but applies to a child that has a particular
tag. For example, say you have a sidebar element with the class sidebar. To style
the first paragraph in that sidebar, use this selector:

.sidebar p:first-of-type
Notice the p in p: first-of-type. It indicates the tag you're going to format.
M :LAST-OF-TYPE
This selector works like :1ast-child, but applies to the last instance of a particular
type of tag. For example, if you want to format the last paragraph in the sidebar div

in a particular way, but you’re not sure whether there are other tags coming after
the paragraph (like a bulleted list, headline, or image). Here’s the style:

.sidebar p:last-of-type

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

65

CHILD Remember, these type selectors also have to be children of a particular tag. So p: first-of-type

SELECTORS means “the first child that is a paragraph tag.”

M :NTH-OF-TYPE

Works like :nth-child(), but it applies to alternating children that have a specific
tag. You may find this selector handy if you have something like a big paragraph of
text that’s peppered with photos. The tag is an inline tag, so you can have a
<p> tag with a bunch of <image> tags inside it. And say you want to alternately float
the images left and right, as shown in Figure 3-9. You can do so with these two styles:

img:nth-of-type(odd) { float: left; }
img:nth-of-type(even) { float: right; }

FIGURE 3-9
Type SeIeCtorS With the :nth-of-type()
selector, you can easily select
every other image inside a tag,

y Ullamco laboris nisi sed do eiusmod tempor incididunt excepteur sint
¢ occaecat. In reprehenderit in voluptate velit esse cillum dolore ut iternating bet left and
§ labore et dolore magna Ullamco laboris nisi mollit anim id est afternating hetween feft an
laborum. Cupidatat non proident, excepteur sint occaecat qui officia right alignment.
deserunt. Velit esse cillum dolore ut aliquip ex ea commodo
% consequat. Eu fugiat nulla pariatur.In reprehenderit in voluptate. In
reprehenderit in voluptate lorem ipsum dolor sit amet, caliqua. Sunt in
culpa quis nostrud exercitation mollit anim id est laborum.Sed do
eiusmod tempor incididunt lorem ipsum dolor sit amet, excepteur sint
occaecat. Ut aliquip ex ea commodo consequat. Ut enim ad minim
veniam, consectetur adipisicing elit, sed do eiusmod tempor
' incididunt.Cupidatat non proident. Velit esse
£ cillum dolore sed do eiusmod tempor incididunt ut
enim ad minim veniam. Consectetur adipisicing
§ clit, ullamco laboris nisi in reprehenderit in voluptate. Duis aute irure
@ dolor quis nostrud exercitation eu fugiat nulla pariatur. Sed do
g ciusmod tempor incididunt consectetur adipisicing elit, ut labore et
dolore magna aliqua.In reprehenderit in voluptate
ut aliquip ex ea commodo consequat. Sunt in culpa sed do eiusmod
tempor incididunt duis aute irure dolor. Ut enim ad minim veniam,
lorem ipsum dolor sit amet, ullamco laboris nisi. Sed do eiusmod
tempor incididunt eu fugiat nulla pariatur.Quis nostrud exercitation
consectetur adipisicing elit, in reprehenderit in voluptate. upidatat non
proident. Ut enim ad minim veniam, consectetur adipisicing elit, sunt
in culpa.

As you can see, you use the same keywords (odd or even) and formula (here, 2n+1)
for :nth-of-type() as you do for :nth-child().

In fact, you can use :nth-of-type() to select alternating table rows as well:
tr:nth-of-type(odd) { background-color: #D9FOFF; }

tr:nth-of-type(even) { background-color: #FFFFFF; }

66

CSS: THE MISSING MANUAL

In the case of CSS selectors, there’s always more than one way to skin an HTML

tag—there are usually five or more!

FREQUENTLY ASKED QUESTION

SIBLINGS

Making Lists Look Great

When would | ever use a child selector? Just from reading this
chapter, | already know enough selectors to get at just about
any page element, so why learn another?

There’s one design challenge where child selectors can’t be
beat—and it comes up in more websites than you think. Any
time you have an unordered list with one or more unordered
lists nested inside (as in Figure 3-6), you can use child selec-
tors to visually organize these categories and subcategories
of information. You can format the first level of list items one
way, and the second level of list items another way. Content
presented in this manner looks neat, professional, and readable
(and your visitors will love you for it).

First, create a class style for the outermost nested level in
your list and call it, say, .mainList. For this top level, you
might use a sans-serif font, a little larger than your other text,
perhaps in bold or a different color. Subsequent categories can
be smaller, in a serif font like Times for easiest reading. When

you have a lot of text, styling each subcategory level a bit
differently helps visually orient your visitors in the material.

Apply the .mainList class style to the first tag: <ul
class="mainList">. Then use a child selector (ul.
mainList > 11)to select just the first set of list items,
and add your desired text styling for the first subcategory. This
styling applies to the <11> tags that are children of the
tag withthe .mainList styleappliedtoit. Then, tostyle the
child <1i> tags of any subsequent nested tags, use this
selector,ul.mainlist > 1i > ul > 1i.(Adescendant
selector like ul 11, by contrast, selects the list items of all
unordered lists on the page—nested ones and all.)

You'll need to keep a concept you'll learn in the next chapter—
inheritance—in mind. Basically, certain CSS properties applied
to one tag are inherited by tags inside them. So even if you use
a child selector to target the children of one tag, properties may
pass on to other tags inside that child. The :not () selector,
discussed on page 69, is one way to avoid this.

M Siblings

Parent-child relationships aren’t the only ones in the HTML family tree. Sometimes
you need to select atag based not on its parent tag but on its surrounding siblings—
the tags that share a common parent. A tag that appears immediately after another
tagin HTML is called an adjacent sibling. In Figure 3-6, the <div> tag is the adjacent
sibling of the <h1> tag, the <p> tag is the adjacent sibling of the <h2> tag, and so on.

Using an adjacent sibling selector, you can, for example, give the first paragraph
after each heading different formatting from the paragraphs that follow. Suppose
you want to remove the margin that appears above that <p> tag so that it sits right
below the heading without any gap. Or perhaps you want to give the paragraph a
distinct color and font size, like a little introductory statement.

The adjacent sibling selector uses a plus sign (+) to join one element to the next. So
to select every paragraph following each <h2> tag, use this selector: h2 + p (spaces
are optional, so h2+p works as well). The last element in the selector (p, in this case)
is what gets the formatting, but only when it’s directly after its brother <h2>.

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 67

THE :TARGET
SELECTOR

There’s another sibling selector called the general sibling combinatory selector (say
that three times fast). It’s simply a ~ (tilde) and it means “select all siblings of this
type.” For example, while h2 + p selects a single <p> tag that immediately follows
an <h2> tag, h2 ~ p selects all <p> tags that are siblings (that is, on the same level)
of the h2. To be honest, you may never find a good use for this selector, but CSS is
nothing if not thorough.

M The :target Selector

The :target() selector is fun. It can let you create some really interesting effects,
like applying a style to a page element after another element is clicked. That’s the
kind of interactivity usually reserved for JavaScript. The :target() selector relies
on a particular use of ID attributes, as described in the box on page 48; you use IDs
to link to a particular spot on a page.

For example, say you have a web page called index.html. On that page, you have a
div with the ID of signupForm. If you have a link on this page (or another page) that
points to index.html#signupForm, then the web browser jumps to that div. If that
div is at the bottom of a very long web page, then the browser scrolls the page until
that div is in view. These are sometimes called in page links, and they’re often used
on glossary-style web pages where visitors can click a letter and jump to the spot
on the page where the glossary words beginning with that letter appear.

But you don’t have to use this feature to jump to another spot on the page. Whenever
a URL in the browser’s location bar includes a # followed by an ID, the element with
that ID becomes the target, so you can apply a specific style to an element only
when the ID for that element is in the URL.

Here’s an example of HTML showing how the :target selector works. Imagine this
code appears near the top of a web page:

<button>
Sign up for our newsletter
</button>
<form id="signupForm">
<label for="email">What's your email address?</label>
<input type="email" id="email">
<input class="btn" type="submit" value="Sign up">
</form>

When a visitor clicks the link—the <a> tag—the form is targeted. In other words, you
can apply one style to the form in its regular state and another style when a visitor
clicks that link. For example, you could start off by hiding the form (you’ll learn more
about CSS visibility properties on page 439) using this rule:

#signupForm {
display: none;

}

68

CSS: THE MISSING MANUAL

This rule hides the form, so when the page loads, the visitor can’t see it. But when
the visitor clicks the “Sign up for our newsletter” button and the form is targeted,
you can show it like this:

#signupForm:target {
display: block;
}

In other words, if the URL in the browser’s location bar is just the filename—index.
html, for example—then the browser applies the first style and hides the form. But
if the location looks like this—index.html#signupForm—then the target style applies
and the form is made visible. Cool stuff.

For a really cool use of the :target selector, check out this all-CSS gallery: http://benschwarz.
github.io/gallery-css/.

M The :not() Selector

The :not() selector, also called the negation pseudo-class, lets you select something
that’s not something else. For example, say you apply a class to a paragraph—<p
class="classy">—and create a CSS class selector to format it, like this:

.classy { color: red; }

But what if you want to select all paragraphs except the classy paragraphs? That’s
where the :not() selector comes in. You put a CSS selector inside the parentheses
to indicate what you don’t want to select. For example:

p:not(.classy) { color: blue; }
This style makes the text color blue for all paragraphs that don’t have the classy class.

The :not() selector can come in handy when you're using the attribute selectors
discussed on page 59. For example, you saw on page 59 that you can use an attribute
selector to pick all links that point outside your website, like this:

a[href*="http://"]

As you’ve probably noticed, that selector doesn’t specifically select all links that
point outside your site; it simply selects all links that use absolute URLs—that is,
URLs beginning with http:// For many sites, that’s the same thing. Many sites use
document- or root-relative links to point to other pages within the site, and absolute
URLs to link to other sites. However, in some cases, you may use absolute URLs to
point to pages within your site.

For example, many content management systems (WordPress, for example) use
absolute URLSs to point to blog posts within the site. In this case, if you want to style
links that point outside your site, you need to refine the basic attribute selector by
also employing the :not() selector. For example, say your site’s domain name is

THE :NOTQ)
SELECTOR

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

69

http://benschwarz.github.io/gallery-css/
http://benschwarz.github.io/gallery-css/

TUTORIAL:
SELECTOR
SAMPLER

mysite.com. To select links that point outside your site, you’ll want to select all abso-
lute links that don’t point to the domain mysite.com. Here’s how you would do that:

alhrefr="http://"]:not([href ="http://mysite.com"])

Translated into English, this selector says “Select all links whose href attribute begins
with http:// but not ones that begin with http:/mysite.com.” As you'll recall from
page 60, in an attribute selector, "= means “begins with.” A shorter way to write
the same thing would be this:

alhrefr="http://"]:not([href*="mysite.com"])

In an attribute selector, *= means “contains,” so this line would exclude any absolute
URL that contains mysite.com. This would include http:/www.mysite.com as well
as http://mysite.com.

There are some limitations to the :not() selector:

* You can only use simple selectors with the :not() selector. In other words you
canuse element selectors (like html or p), the universal selector (* [see page 49]),
classes (. footer, for example), IDs (#tbanner, for example), or pseudo-classes
(:hover, :checked, : first-child, and so on). So the following are all valid:

.footnote:not(div)
img:not(.portrait)
div:not(#banner)
li:not(:first-child)

+ Youcan't use descendant selectors (like div p a, pseudo-elements (like : : first-
line), group selectors, or combinators (like the adjacent sibling selector h2 + p).

* You can’t string multiple :not() selectors together. For example, the following
is invalid:

alhrefr="http://"]:not([href*="google.com"]) :not([href="yahoo.com])

In other words, you can only use :not() once with a selector.

M Tutorial: Selector Sampler

In the rest of this chapter, you’ll create a variety of selector types and see how each
affects a web page. This tutorial starts with the basic selector types and then moves
on to more advanced styles.

To get started, you need to download the tutorial files located on this book’s com-
panion website at https://github.com/sawmac/css_mm_4e. Click the tutorial link
and download the files. All of the files are enclosed in a zip archive, so you’ll need to
unzip them first. The files for this tutorial are contained inside the folder named 03.

70

CSS: THE MISSING MANUAL

https://github.com/sawmac/css_mm_4e

TUTORIAL:
SELECTOR
SAMPLER

INDIGNANTLY ASKED QUESTION

Keeping It Internal

Hey, what’s up with the internal style sheet in this tutorial? Furthermore, you can preview your results without constantly
Chapter 2 recommends using external style sheets fora bunch — refreshing your browser’s cache; flip back to the box on page
of reasons. 25 for more on that quirkiness.

Think you're pretty smart, eh? Yes, external style sheetsusually ~ So, yes, you should use external style sheets for your sites. And
make for faster, more efficient websites, for all the reasons if you were going to use the styles you created in this tutorial
mentioned in Chapter 2. However, internal style sheets make on more than just the single tutorial HTML file, you would. But
your life easier when you’re designing asingle page atatime, just to keep things fast and simple as you learn (SS, you’ll use
as in this tutorial. You get to work in just one web page file asingle HTML file and an internal style sheet for this exercise.

instead of flipping back and forth between the external style gyt that was an excellent question! Keep up the good work.
sheet file and the web page.

1. In your favorite text editor, open 03—selector_basics.html.

This page is made of very basic HTML tags (see Figure 3-10). But you’ll liven
things up in this tutorial. First, you’ll link to a Google font—the same one you
used back on page 36.

2. In the empty line below the closing </title> tag, type:

<link href="http://fonts.googleapis.com/css?family=Varela+Round'
rel="stylesheet'>

As described on page 36, this tag links to an external style sheet that Google
hosts on its web servers. It downloads the Varela Round font and so you can
use it on the page. (You'll learn more about using web fonts like this one from
Google on page 140.) Next, you’ll add the internal style sheet.

3. Afterthe <link>tag you added in the last step, hit Return and type <style>.
Press Enter twice and then type </style>.

These are the opening and closing style tags—it’s a good idea to type both tags
at the same time, so you don’t accidentally forget to add the closing </style>
tag. Together, these two tags tell a web browser that the information between
them is Cascading Style Sheet instructions. The HTML should now look like this
(the stuff you added is in bold):

<title>Selector Basics</title>

<link href="http://fonts.googleapis.com/css?family=Varela+Round'
rel="stylesheet'>

<style>

</style>

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 71

TUTORIAL:
SELECTOR Type selectors—like the one you’re about to create—are the most basic kind of

SAMPLER

selector. If you completed the tutorial in the last chapter, you’ve already created
a few. Here, you’ll add a background color to the page.

e0e 0 file://fUsers/davemcfariand/Documents/02_writing/00 (% th S] F FIGURE 3-10

CSS: The Missing Manual Plain HTML looks cold and
. monotonous in a web

The Amazing World of CSS o

browser. But with a little

Sed ut perspiciatis unde omnis iste natus error sit v ium doloremque laud totam rem aperiam, eaque ipsa quac (SS, you can turn drab

ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur ’ .

aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. (shown here) into fab

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quac (F gure 3‘”) in 31 eas y

ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur ste DS,

aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui
dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi
ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae
consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

NOTE: Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur?

‘Who Knew CSS Had Such Power?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quac
ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui
dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numguam eius modi tempora incidunt ut labore et dolore
‘magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi
ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae
consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

NOTE: Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur?

Not Me!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quac
ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui
dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore
magnam aliquam quaerat veluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi
ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae
consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Me Neither!

Sed ut perspiciatis unde omnis iste natus error sit ve ium doloremque i totam rem aperiam, eaque ipsa quae
ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui
dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numguam eius modi tempora incidunt ut labore et dolore
magnam aliquam quaerat veoluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi
ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae
consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

4. Click between the opening and closing style tags you just added and type
body {, hit Enter twice, and type the closing }.

It’s a good idea to always add the closing brace immediately after typing the
opening brace, just so you don’t forget. To create a tag selector, simply use the
name of the HTML tag you wish to format. This style applies to the <body> tag.
Now you can set the background color and the margin of space around the page.

72

CSS: THE MISSING MANUAL

TUTORIAL:
5. Click between <body> style’s opening and closing braces ({ }) and add the SELECTOR

following three CSS properties to supply the style’s formatting—color, size, SAMPLER

font, and left indent (as set by the padding):

body {
background-color: rgh(50,122,167);
padding: 0 20px 20px 20px;
margin: 0;

}

Press Enter to place each CSS property on its own line. It’s also a good idea to
visually organize your CSS code by indenting each property with the Tab key
(some designers use two spaces instead of a tab—it’s up to you).

The properties here change the background color of the page: rgb() is one
way to specify a color’s red, green, and blue values. In this case, the color is a
dark blue. This background makes the black text hard to read, so you need to
change the color of the paragraph tags.

NOTE These property names and their values may look unfamiliar. For now, just type them as is so you can
get a taste of padding and margins work. You’ll learn much more about these properties in Chapter 6.

6. Add another style below the body style you just created:

p o
color: rgba(255,255,255,.6);
font-size: 1em;
font-family: "Varela Round", Arial, Helvetica, sans-serif;

}

With four CSS properties, this style supplies formatting for all paragraphs (all
<p> tags)—color, size, and font. This time, the color is determined by an rgba()
color value. With an extra “a” after the usual “rgb,” this versatile value lets you
create a color that’s partially transparent. In this case, you’ve set the paragraph’s
text to white (which is 255,255,255 in rgb), but only 60 percent opaque (that’s
the .6 part). A bit of the blue background color shows through, so the paragraph
text appears light blue.

Time for a look-see.
7. Open the page in a web browser to preview your work.

Unless you tinker with the preference settings, most browsers display black text
in a standard serif font like Times. If your CSS style works properly, then you
should see seven paragraphs using the Varela Round font in a light blue color.

Creating a Group Selector

Sometimes you’ll want several different elements on a page to share the same look.
For instance, you may want all your headings to have the same font and color for a

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 73

TUTORIAL:
SELECTOR consistent style. Instead of creating separate styles and duplicating the same prop-

SAMPLER erty settings for each tag—<h1>, <h2>, and so on—you can group the tags together

into a single selector.

1. Return to your text editor and the selector_basics.html file.
Let’s add a new style below the <p> tag style you just created.

2. Click at the end of the closing brace of the p tag selector, press Enter to start
a new line, and the following code:

h1, h2, h3 {

}

As explained earlier in this chapter, a group selector is simply a list of selectors
separated by commas. This rule applies the same formatting, which you’ll add
next, to all <h1>, <h2>, and <h3> tags on the page.

3. Click in the empty line between the opening { and closing } and add five
CSS properties:

color: rgb(255,255,255);

font-family: Arial, "Palatino Linotype", Times, serif;
border-bottom: 2px solid rgb(87,185,178);

padding-top: 10px;

padding-bottom: 5px;

There’s a lot going on here, but basically you're setting the color and font type
for the headlines, adding a border line below the headlines for visual interest,
and controlling the top and bottom spacing by using the padding property. The
padding property adds space from the edges of an element without affecting
a background or border—you’re adding a bit of space above the headline, and
inserting a bit of space between the bottom of that text and the border line
below it.

4. Save the file, and preview it in a web browser.

The <h1> heading near the top of the page and the <h2> and <h3> headings
lower on the page all have the same font and font color as well as a greenish-
blue border below them (see Figure 3-11). The <h1> tag looks a bit small, but
you can easily bump up its size.

5. Go back to your text editor and the selector_basics.html file. Add another
style below the group selector style you just created:

hi {
font-size: 2em;

}

This style increases the size of the font. An em is the default browser font-size,
so 2em is twice the normal text size. Notice, as well, that it’s possible to have

74 CSS: THE MISSING MANUAL

TUTORIAL:
more than one style apply to an element at the same time—the h1, h2, h3rule SELECTOR

and the h1 rule in this case. Both the group selector and this new type selector SAMPLER

apply to hi1 tags on this page. This process is the cascade in Cascading Style
Sheets. You'll learn all about how styles interact in Chapter 5.

[NoN] in} file:///Users/davemcfarland/Documents/02_writing/00 () s} [} [+] ’T FIGURE 3-11
A simple type selector
. can completely transform
The Amazing World of CSS
the appearance of every
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doleremque laudantium, totam instance of a tag, making
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. quick work of styling all

Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. the paragraphs of text on
. o , : , a page. And in this case, a
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doleremque laudantium, totam

rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. group selector does even

Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni more by formatting every
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor inst. f three diff ¢
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore Instance or three aitieren
magnam aliqguam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam headline [ags!
corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure

reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum

fugiat quo voluptas nulla pariatur?

NOTE: Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriesam, nisi ut
aliquid ex ea commodi consequatur?

Who Knew CSS Had Such Power?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore
magnam aliqguam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

NOTE: Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut
aliquid ex ea commodi consequatur?

Not Me!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doleremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed guia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui delorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore
magnam aliqguam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

Creating and Applying an ID Selector

ID selectors are used to style a single tag. You create the style and add an ID attribute
to atag onthe page, and then the properties from that style are applied to that single
tag. You'll frequently use IDs to identify form elements, to create in-page links in a
page (see the box on page 48), and to use JavaScript to control elements on a page.

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 75

TUTORIAL:
SELECTOR Although many web designers now shy away from ID selectors (you’ll learn exactly

SAMPLER why on page 108), it’s still good to know how to use them.

In this exercise, you’ll create a style that controls the look of the text that appears
at the very top of the page: “CSS: The Missing Manual.” This text is considered the
page’s logo, and you’ll create a special ID style to format it.

1. Return to your text editor and the selector_basics.html file.
You'll add a new style below the h1 class style you created before.

2. Click after the previous style’s closing bracket (}), hit Enter to create a new
line, and then type #logo {.

ID selectors always begin with the pound symbol (#). The style’s name indicates
that you’ll apply this to a page element that’s considered the site’s logo.

3. Hit Enter again, and then type:

font-family: Baskerville, Palatino, sans-serif;
font-size: 2em;

color: rgba(255,255,255,.8);

font-style: italic;

text-align: center;

margin-bottom: 30px;

background-color: rgh(191,91,116);
border-radius: 0 0 10px 10px;

padding: 10px;

It looks like a long list of properties, but all it does it set some font properties,
background color, and spacing for the logo text.

4. Finish the style by typing the closing brace. The whole thing should look
like this:

#logo {
font-family: Baskerville, Palatino, sans-serif;
font-size: 2em;
color: rgba(255,255,255,.8);
font-style: italic;
text-align: center;
margin-bottom: 30px;
background-color: rgb(191,91,116);
border-radius: 0 0 10px 10px;
padding: 10px;

}

If you save the file and preview it in a web browser, you won’t see any difference.
That’s because this style doesn’t do anything until you apply it. So you’ll add an
ID attribute to the page’s HTML, indicating where you want the ID style to apply.

76 CSS: THE MISSING MANUAL

TUTORIAL:
5. Findthe <div>tag near the opening <body> tag—it has the text “CSS: The Miss- SELECTOR

ing Manual” in it. Add id="1ogo" to the opening div so the HTML looks like this: Sl =

<div id="logo">
CSS: The Missing Manual
</div>

The <div> tag now reflects the formatting defined in the #logo style. As with
all things CSS, there are many ways to arrive at the same destination: You could
instead use a class style and apply it to the <div> tag. But in this case you're
using an ID selector, since the point of this style—identifying the logo on the
page—is in keeping with the general notion of ID selectors.

o

Save the page, and preview it in a browser.

Now the “CSS: The Missing Manual” text is centered, light-colored, and inside
a small box at the top of the page (Figure 3-12).

eo0e m file:///Users/davemcfarland/Documents/02_writing/0" (% th g O |T FIGURE 3-12
CSS: The Missing Manual ID selectors are one way to style
unique elements, like the logo bar
at the top of this page.

The Amazing World of CSS

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium deloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemeo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempera incidunt ut labore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

NOTE: Ut enim ad minima veniam, guis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut
aliquid ex ea commodi consequatur?

Who Knew CSS Had Such Power?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemeo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempera incidunt ut labore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

NOTE: Ut enim ad minima veniam, guis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut
aliquid ex ea commodi consequatur?

Not Mel

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium deloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemeo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore
magnam aliguam guaerat voluptatem. Ut enim ad minima veniam. guis nostrum exearcitationer ullam

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 77

TUTORIAL:
SELECTOR
SAMPLER

Creating and Applying a Class Selector

Type selectors are quick and efficient, but they’re a bit indiscriminate in how they
style a page. What if you want to style a single <p> tag differently than all the other
<p> tags on a page? A class selector is the answer.

1.

Return to your text editor and the selector_basics.html file.

Add a new style below the ID selector style you just created.

. Click at the end of the closing brace of the #1ogo selector, press Enter, and

then type

.note {

}

This style’s name, .note, indicates its purpose: to highlight paragraphs that
contain extra bits of information for your site’s visitors. Once you create a class
style, you can apply it wherever these notes appear—like the third paragraph
in this page.

. Click in the empty line between the opening { and closing } and add the

following list of properties to the style:

color: black;

border: 2px solid white;
background-color: rgh(69,189,102);
margin-top: 25px;

margin-bottom: 35px;

padding: 20px;

Notice that you’re not using the rgb() color values to color the font and border.
CSS has several different ways to specify a color, including keywords like white,
black, or orange. You'll learn about those on page 147.

If you preview the page now, you see no changes. Like ID selectors, class
selectors don’t have any effect on a web page until you apply the style in the
HTML code.

. Inthe page’s HTML, there are two <p> tags that begin with the word “Note”

inside tags.

To apply a class style to a tag, simply add a class attribute, followed by the class
selector’s name—in this case, the note style you just created.

. Click just after the p in the first <p> tag, and then type a space followed by

class="note". The HTML should now look like this (what you just typed is
in bold):

<p class="note">NOTE:

78

CSS: THE MISSING MANUAL

Be sure not to type class=".note". In CSS, the period is necessary to indicate
a class style name; in HTML, it’s verboten. Repeat this step for the second para-

graph (it’s just above the <h3> tag with the text “Not Me!”).

TUTORIAL:
SELECTOR
SAMPLER

<h2 class="note">

There’s no reason you can’t add this class to other tags as well, not just the <p> tag. If you happen
to want to apply this formatting to an <h2> tag, for example, then your HTML would look like this:

6. Save and preview the web page in a browser.

The note paragraph is nicely highlighted on the page (see Figure 3-13).

=
B
L]

[NoN] m file://fUsers/davemcfariand/Documents/02_writing/00

CSS: The Missing Manual

The Amazing World of CSS

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doleremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia veluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doleremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia veluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius medi tempora incidunt ut labore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commaodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

Who Knew CSS Had Such Power?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium deleremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore
magnam aliqguam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commaodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

Not Me!

'+

FIGURE 3-13

You can make detailed
formatting changes

with class selectors. A
class style gives selected
paragraphs different
formatting from all other
paragraphs on the page.
The distinctive note box
pictured here uses a class
style to stand out from
the crowd.

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

79

TUTORIAL:
SELECTOR
SAMPLER

NOTE If your page doesn’t look like Figure 3-13, then you may have mistyped the name of a property or
its value. Double-check your code with the steps above. Also, make sure to end each declaration (property:
value combination) with a semicolon and conclude the style with a closing brace at the very end. When your
style is not working correctly, missing semicolons and closing braces are frequent culprits.

Creating a Descendant Selector

On the selectors _basics.html page, you applied the note class to two paragraphs.
Each of those paragraphs begins with the word “Note:” in bold—actually the word
is wrapped inside the HTML tag, which all browsers display as bolded text.
But what if you want to format those bolded words in bright orange? You could
create a tag style for the tag, but that would affect all tags on
the page, and you only want to change the strong tag inside those note boxes. One
solution would be to create a class style—.noteText, for example—and apply it to
each of the tags inside the note boxes. But that’s a lot of work, and you
might forget to apply the class if you have a lot of pages with those notes.

A better method is to create a descendant selector (page 50), which targets only the
tag whenit’s inside one of these note boxes. Fortunately, that’s easy to do.

1. Return to your text editor and the selector_basics.html file. Create a new
empty line for the descendant selector style.

If you just completed the previous steps, click after the closing brace of the
.note style, and then hit Enter.

2. Type .note strong {.

The last tag in the selector—strong—is the element you ultimately want to
format. In this case, the style formats the tag only when it’s inside
another tag with the class note applied to it. It has no effect on tags
inside other paragraphs, lists, or heading tags, for example.

3. Hit Enter, type color: #FC6512;, and then hit Enter again to create another
blank line. Finish the style by typing the closing brace character.

The finished style should look like this:

.note strong {
color: #FC6512;
}

4. Save the page and preview it in a web browser.
The word “Note:” should appear in orange in each of the note boxes on the page.

Descendant selectors are among the most powerful CSS tools. Professional web
designers use them extensively to target particular tags without littering the HTML
with CSS classes. You'll learn a lot more about descendant selectors as they’re used
throughout this book.

80

CSS: THE MISSING MANUAL

TUTORIAL:
SELECTOR
SAMPLER

Finishing Touches

The text on this page expands to fill the browser window. To see this in effect,
preview the page and resize your browser window. You'll see the lines of text get
wider as you stretch the window. If you have a large monitor, you’ll see that the
text becomes pretty hard to read past a certain width: The lines of text are too long
to read comfortably. Fortunately, you can set a width for the page’s content, so it
doesn’t get too wide to read.

1. Return to your text editor and the selector_basics.html file. Create a new
empty line for a new style.

If you just completed the previous steps, click after the closing brace of the
.note strong descendant selector style, and then hit Enter.

2. Add another style:

article {
max-width: 760px;

}

This is another type selector. It applies to the HTML5 <article> tag, which
is used to define the content that makes up an article like a blog post, or the
content on this page.

The max-width property sets the maximum width for the tag, meaning that the
article tag will never get wider than 760 pixels. Save the file and preview it in
a browser. If you widen the browser window, you’ll notice that past 760 pixels,
the window gets wider and the blue background of the page appears, but the
text no longer expands.

On the other hand, if you make the browser window smaller than 760 pixels,
the text lines do get shorter. That’s the power of the max-width property, which
sets a maximum width, but no minimum. This property is extremely useful when
you’re designing sites that need to work on a variety of screen sizes—desktop
computers, laptops, tablets, and smart phones. It’s an important part of respon-
sive design, which you’ll learn about in Chapter 17.

Now that you’ve limited how far the text can expand, it would be nice to keep
the content centered on the screen instead of sticking to the left edge as the
browser window expands.

3. Add one more property to the article style so it looks like this (addition
in bold):

article {
max-width: 760px;
margin: 0 auto;

}

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE 81

TUTORIAL:
SELECTOR The margin property sets the space between an element and other elements

SAMPLER around it. You’ll read more about margins on page 187, but here this line sets

the left and right margins to auto, which tells the web browser to automatically
figure out how much space to add to the left and right sides of the article tag.
Once the browser window gets past 760 pixels, the article element gets no
wider, so the browser basically adds empty space to both the left and right of
the tag, in essence centering it in the middle of the browser window.

For fun, you’ll add one more advanced style—an adjacent sibling selector dis-
cussed on page 67—to format the paragraph immediately following the first
headline on the page. (You can achieve the same effect by creating a class style
and applying it to that paragraph, but the adjacent sibling selector requires no
changes to your HTML.)

4. Add one last style:

hi+p {

color: rgh(255,255,255);
font-size: 1.2em;
line-height: 140%;

}

This style will apply to any paragraph that immediately follows an <h1> tag—in
other words, the first paragraph after the top headline on the page. It won'’t
apply to the second or any subsequent paragraphs. This selector provides an
easy way to create a unique look for an introductory paragraph to set it off
visually and highlight the beginning of an article.

The style changes the font color and size. The line-height property (which
you’ll read about on page 163) controls the space between lines in a paragraph
(also known as leading).

If you preview the page now, you’ll see that the top paragraph is white and its
textis larger, and there’s more space between each line of text (see Figure 3-14).
If you actually deleted this paragraph in the HTML, you’d see that the remaining
paragraph would suddenly be white with larger text, since it would be the new
adjacent sibling of the <h1> tag.

And there you have it: a quick tour through various selector types. You’'ll get familiar
with all of these selectors (and more) as you go through the tutorials later in the
book, but by now, you should be getting the hang of the different types and why
you’d use one over the other.

NOTE You can see a completed version of the page you’ve just created in the 03 finished folder.

82 CSS: THE MISSING MANUAL

TUTORIAL:
SELECTOR
SAMPLER

flex///Users/davemcfariand/Documents/02_writing/00_css_mm4e/CSS_MM_4€ ¢ h a

CSS: The Missing Manual

The Amazing World of CSS

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore
veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam
voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur
magni dolores eos qui ratione voluptatem sequi nesciunt.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium,
totam rem aperiam, eaque ipsa quae b illo inven

sunt explicabo. Nemo enim ipsam volupf a\ s sit aspernatur aut odit aut fug

quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro
quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non
numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat volup!

enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nis
aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate vel
esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

NOTE:

Who Knew CSS Had Such Power?

Sed ut perspiciatis unde on natus error n joloremque laudantium,
totam rem aperiam, eaque ipsa qui a e dicta
suntexphmbw Nemo enim ipsam volupt voluptas sit aspernatur aut odit aut fugit, sed
quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque por

quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non
numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat volup

enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut
aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit quuneamhp(ateveh'
esse quam nihil molestiae cor el illum qui dolorem eum fugiat quo voluptas nulla

oremque laudantium,
totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta
sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed
quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.

quisquam est, qui dolorem ipsum quia dolor sit am etur, adipisci

FIGURE 3-14

The page has really come
together. The set width
and the typographic
details have really
improved the look of the
boring HTML page you
started with.

CHAPTER 3: SELECTORS: IDENTIFYING WHAT TO STYLE

83

CHAPTER

4

Saving Time with
Style Inheritance

ness, and so on. Sometimes we inherit traits from more distant ancestors, like

grandparents or great-grandparents. As you saw in the previous chapter, the
metaphor of family relations is part of the structure of HTML as well. And just like
humans, HTML tags can inherit CSS properties from their ancestors.

C hildren inherit traits from their parents—eye color, height, male-pattern bald-

B What Is Inheritance?

Inheritance is the process by which some CSS properties applied to one tag are
passed on to nested tags. For example, a <p> tag is always nested inside of the
<body> tag, so properties applied to the <body> tag get inherited by the <p> tag. Say
you created a type selector style (page 41) for the <body> tag that sets the color
property to a dark red. Tags that are descendants of the <body> tag—that is, the ones
inside the <body> tag—will inherit that color property. That means that any text in
those tags—<h1>, <h2>, <p>, or whatever—will appear in that same dark red color.

Inheritance works through multiple generations as well. If a tag like the or
 tag appears inside of a <p> tag, then the and the tags also
inherit properties from any style applied to the <body> tag.

As discussed in Chapter 3, any tag inside of another tag is a descendant of that tag. So a <p> tag
inside the <body> tag is a descendant of the <body>, while the <body> tag is an ancestor of the <p> tag.
Descendants (think kids and grandchildren) inherit properties from ancestors (think parents and grandparents).

85

HOW

INHERITANCE
STREAMLINES
STYLE SHEETS

Although this may sound confusing, inheritance is a really big timesaver. Imagine if
no properties were passed onto nested tags and you had a paragraph that contained
other tags like a tag, an tag to emphasize text and an <a> tag to add
a link. If you created a style that made the paragraph text white and 32 pixels tall,
using the Varela Round font, it would be weird if all the text inside the ,
and <a> tags reverted to its regular, “browser boring” style (see Figure 4-1). You'd
then have to create another style to format the tag to match the appearance
of the <p> tag. What a drag.

Inheritance doesn’t just apply to tag styles. It works with any type of style, so when
you apply a class style (see page 43) to a tag, any tags inside that tag inherit prop-
erties from the styled tag. The same holds true for ID styles, descendant selectors,
and the other types of styles discussed in Chapter 3.

M How Inheritance Streamlines Style Sheets

You can use inheritance to your advantage to streamline your style sheets. Say you
want all the text on a page to use the same font. Instead of creating styles for each
tag, simply create a tag style for the <body> tag. (Or create a class style and apply it
to the <body> tag.) In the style, specify the font you wish to use, and all of the tags
on the page inherit the font:

body {
font-family: Arial, Helvetica, sans-serif;

}

You can also use inheritance to apply style properties to a section of a page. For
example, like many web designers, you may use the <div> tag (page 47) to define
an area of a page like a banner, sidebar, or footer; or if you’re using HTMLS5 elements,
you might use one of the sectioning elements like <header>, <aside>, <footer>, or
<article>. By applying a style to that outer tag, you can specify particular CSS
properties for all of the tags inside just that section of the page. If you want all the
text in a sidebar to be the same color, you’'d create a style setting the color property,
and then apply it to the <div>, <header>, <article>, or other sectioning element.
Any <p>, <h1>, or other tags inside inherit the same font color.

86

CSS: THE MISSING MANUAL

HOW

INHERITANCE
STREAMLINES
STYLE SHEETS

=

file:///Users/davemcfarland/Docume

20 |

Some bolded textliste natus error sit

usantium doloremque
Iaudantlum, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et

@ vitae dicta

ipsam voluptatergudia voluptas sit
aspernatur aut odit aut fugit, sed quia
consequuntur magm dolores eos qui

file:///Users/davemcfariand/Docume i} a © +

ste natus error sit voluptatem
accuszntium doloremque laudantium,

totam rem aperiam, eaque ipsa quae
ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt
emo enim ipsam

explicabg
voluptatem quia voluptas sit
aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos qui

ratione voluptatem sequi
nesciunC ™

FIGURE 4-1

Inheritance lets tags copy
properties from the tags that
surround them.

Top: The paragraph tag is
set with a specific font fam-
ily, size, and color. The tags
inside each paragraph—the
, <a>, and
tags circled—inherit those
properties so they look like
the rest of the paragraph.

Bottom: If inheritance didn’t
exist, the same page would
look like this figure. Notice
how the , ,
and <a> tags inside the
paragraph (circled) retain the
font-family, size, and color
defined by the browser. To
make them look like the rest
of the paragraph, you'd have
to create additional styles—a
big waste of time.

CHAPTER 4: SAVING TIME WITH STYLE INHERITANCE

87

THE LIMITS OF
INHERITANCE

M The Limits of Inheritance

Inheritance isn’t all-powerful. Many CSS properties don’t pass down to descendant
tags at all. For example, the border property (which lets you draw a box around an
element) isn’t inherited, and with good reason. If it were, then every tag inside an
element with the border property would also have a border around it. For example, if
you added a border to the <body> tag, then every bulleted list would also have a box
around it, and each bulleted item in the list would also have a border (Figure 4-2).

NOTE There’s a list of (SS properties in Appendix A, including details on which ones get inherited.

Here are examples of times when inheritance doesn’t strictly apply:

* Asageneralrule, properties that affect the placement of elements on the page
or the margins, background colors, and borders of elements aren’t inherited.

* Web browsers use their own inherent styles to format various tags: Headings
are big and bold, links are blue, and so on. When you define a font size for the
text on a page and apply it to the <body> tag, headings still appear larger than
paragraphs, and <h1> tags are still larger than <h2> tags. It’s the same when
you apply a font color to the <body>; the links on the page still appear in good
old-fashioned web-browser blue.

NOTE It’s usually a good idea to eliminate these built-in browser styles—it’ll make designing sites that
work consistently among different browsers easier. In Chapter 5, on page 109, you’ll learn how to do that.

* When styles conflict, the more specific style wins out. In other words, when
you’ve specifically applied CSS properties to an element—like specifying the
font size for an unordered list—and those properties conflict with any inherited
properties—like a font-size set for the <body> tag—the browser uses the font
size applied to the tag.

NOTE These types of conflicts between styles are very common, and the rules for how a browser deals with
them are called the cascade. You'll learn about that in Chapter 5.

88

CSS: THE MISSING MANUAL

THE LIMITS OF
INHERITANCE

[XN] [am| file:///Users/davemefariand/Documents/o?] [[4] F FIGURE 4-2

Fortunately, not all
properties are inherited.

Some bolded text iste natus error sit th borfd;f,apv"ecztf the
. oay or this page (the
voluptatem accusantium doloremque thick red outline around
laudantium, totam rem aperiam, eaque ipsa the content) in the image
. at top isn’t inherited by
quae ab illo inventore veritatis et quasi the tags inside the body.
architecto beatae vitae dicta sunt explicabo. IPihey were, you'd end p
X) i with an unattractive mess
Nemo enim IpPsSam voluptatem quia of boxes within boxes
voluptas sit aspernatur aut odit aut fugit, sed [IEEEs
quia consequuntur magni dolores eos qui
ratione voluptatem sequi

nesciunt.Emphasized text

[XeN] M file:///Users/davemciariand/Documents/02 (5 il] [+] F

Some bolded text iste natus error sit
voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et
quasi architecto beatae vitae dicta sunt
explicabo. Nemo enim ipsam

voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur
magni dolores eos qui ratione
voluptatem sequi nesciunt. Emphasized
text

CHAPTER 4: SAVING TIME WITH STYLE INHERITANCE 89

TUTORIAL:
INHERITANCE

M Tutorial: Inheritance

In this three-part tutorial, you’ll see how inheritance works. First, you’ll create a
simple tag selector and watch it pass its characteristics on to nested tags. Then, you'll
create a class style that uses inheritance to alter the formatting of an entire page.
Finally, you’ll see where CSS makes some welcome exceptions to the inheritance rule.

To get started, you need to download the tutorial files located at https://github.com/
sawmac/css_mm_4e. Click the tutorial link and download the files. All of the files
are enclosed in a zip archive, so you’ll need to unzip them first. (Detailed instructions
for unzipping the files are on the website.) The files for this tutorial are contained
in the folder named 04.

A Basic Example: One Level of Inheritance

To see how inheritance works, start by adding a single tag style and see how it af-
fects the tags nested inside. The next two parts of this tutorial will build upon your
work here, so save the file when you’re done.

1. Open the file inheritance.htmlin your favorite text editor.

This file already has an internal style sheet, with one type selector giving the
<body> tag a background color.

NOTE In general, it’s better to use external style sheets for a website, for reasons discussed in Chapter 2
(page 26). But for a simple tutorial like this, it’s easier to just work with one file.

2. Add another style after the <body> style in the style sheet:
p i

color: rgh(92,122,142);

}

As you’ve seen in the previous tutorials, the color property sets the color of
text. Your style sheet is complete.

3. Openthe pagein a web browser to preview your work.

The color of the page’s four paragraphs has changed from black to a slate blue
color (see Figure 4-3).

But notice how this <p> tag style affects other tags: Tags inside of the <p> tag also
change color. For example, the text inside the and tags inside each
paragraph also changes from black to slate blue while maintaining its italic and bold
formatting. This kind of behavior makes a lot of sense. After all, when you set the
color of text in a paragraph, you expect all the text in the paragraph—regardless of
any other tags inside that paragraph—to be the same color.

Without inheritance, creating style sheets would be very labor intensive. If the
and tags didn’t inherit the color property from the <p> tag selector, then

90

CSS: THE MISSING MANUAL

https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

you’d have to create additional styles—perhaps descendant selectors like p em and
p strong—to correctly format the text.

However, you'll notice that the link at the end of the first paragraph doesn’t change
color—it retains its link-blue color. As you’ll learn on page 109, browsers have their
own styles for certain elements, so inheritance doesn’t apply. You’'ll learn more about
this behavior in Chapter 5.

Using Inheritance to Restyle an Entire Page

Inheritance works with class styles as well—any tag with any kind of style applied
to it passes CSS properties to its descendants. With that in mind, you can use in-
heritance to make quick, sweeping changes to an entire page.

1. Return to your text editor and the inheritance.html file.
You’ll add a new style below the <p> tag style you created.

2. Click at the end of the closing brace of the p selector. Press Enter to create
anew line, and then type .content {. Hit Enter twice, and type the closing
brace: }.

You’re about to create a new class style that you'll apply to the <body> tag,
which surrounds the other tags on this page.

3. Click between the two braces, and then add the following list of properties
to the style:

font-family: "Helvetica Neue", Arial, Helvetica, sans-serif;
font-size: 18px;

color: rgb(194,91,116);

max-width: 900px;

margin: 0 auto;

The whole thing should look like this:

.content {
font-family: “Helvetica Neue”, Arial, Helvetica, sans-serif;
font-size: 18px;
color: rgh(194,91,116);
max-width: 900px;
margin: 0 auto;

}

This completed class style sets a font, font size, and color. It also sets a width
and centers the style on the page (you saw this trick in the previous tutorial on
page 81 for creating a fixed, centered area for a page’s content).

TUTORIAL:
INHERITANCE

CHAPTER 4: SAVING TIME WITH STYLE INHERITANCE

91

TUTORIAL:
INHERITANCE

[NoN] Em] file:///Users/davemcfariand/Documents/C () 1] [l (4] |T FIGURE 4-3
Inheritance in action!
Th Q m azin Tags inside of a styled
¢ g WOl‘ld Of CSS tag—the bold, italicized

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam text—display the same

rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt color applied to the <p>
explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspe=zatur aut odit aut Migiy<gd quia eos qui tag surrounding them.
ratione voluptatem sequi nesciunt. Learn more about CSS at (he W3C CSS Home Page. But what’s that? The link
o adipisci velit at the end of the first
¢ autem vel eum fure re paragraph is still blue

e utlautem vel eum i (circled). You'll learn why

Who Knew CSS Had Such Power? in the next chapter.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo
enim ipsam voluptatem Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantivm
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto
beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit,
sed quia eos qui ratione voluptatem sequi nesciunt. Quis autem vel eum iure reprehenderit qui in ea voluptate
velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Not Me!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia eos qui ratione
voluptatem sequi nesciunt. odi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut
enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex
ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil
molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Me Neither!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam
rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia eos qui ratione
voluptatem sequi nesciunt.

4. Find the opening <body> tag (just below the closing </head> tag), and then
type class="content".

The tag should now look like this: <body class="content">. It applies the class
to the <body> tag. Thanks to inheritance, all tags inside of the <body> tag (which
are also all the tags visible inside a browser window) inherit this style’s proper-
ties and therefore use the same font.

5. Save and preview the web page in a browser.

As you can see in Figure 4-4, your class style has created a seamless, consistent
appearance throughout all text in the body of the page. Both headings and
paragraphs inside the <body> tag have taken on the new font styling.

92 CSS: THE MISSING MANUAL

The page as a whole looks great, but now look more closely: The color change af-
fected only the headings and the bulleted list on the page, and even though the style
specified an exact font size, the headline text is a different size than the paragraphs.
How did CSS know that you didn’t want your headings to be the same 18-pixel size
as the body text? And why didn’t the nested <p> tags inherit your new color styling
from the <body> tag?

NOTE Why use a class—content—instead of a tag style—body—to redefine the look of the page? Well,
in this case, a tag style would work fine. But applying a class to the <body> tag is a great way to customize the
look of different pages on your site. For example, if all pages on your site share the same external style sheet, a
body tag style would apply to the <body> tag of every page on your site. By creating different classes (or IDs)
you can create a different style for the <body> tag for different sections of the site or different types of pages.

You’re seeing the “cascading” aspect of Cascading Style Sheets in action. In this
example, your <p> tags have two color styles in conflict—the <p> tag style you cre-
ated in step 2 on page 90 and the class style you created here. When styles collide,
the browser has to pick one. As discussed on page 80, the browser uses the more
specific styling—the color you assigned explicitly to the <p> tag. You'll learn much
more about the rules of the cascade in Chapter 5.

TUTORIAL:
INHERITANCE

aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo
enim ipsam voluptatem Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto
beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit,
sed quia eos qui ratione voluptatem sequi nesciunt. Quis autem vel eum iure reprehenderit qui in ea voluptate
velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Not Me!

Sed ut perspiciatis unde omnis iste natus error sit i i totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo
‘enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia eos qui ratione voluptatem sequi
nesciunt. odi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima

'veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
cconsequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae
‘consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Me Neither!

Sed ut perspiciatis unde omnis iste natus error sit totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo
‘enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia eos qui ratione voluptatem sequi
nesciunt.

ece [n] flex//MUsers/davemcariand/Documents/02_writing/00_css_ mmée/CSS_MM_4E T ¢, 6 6 m FIGURE 4-4
The Amazing World of CSS Astyle applied to the
Sed ut perspiciatis unde omnis iste natus error sit i totam rem < bOdy > tag paSSeS ItS
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. properties onto all the
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia eos qui ratione .

Voluptatem sequi nesciunt. Learn more about CSS at the W3C CSS Home Page. tags you see in the web
+ adipiscivelt browser, making it easy
* autem vel eum iure re
« utlautem vel eu | to apply global format-

Who Knew CSS Had Such Power? ting effects to a page.

Sed ut perspiciatis unde omnis iste natus error sit { { totam rem

CHAPTER 4: SAVING TIME WITH STYLE INHERITANCE

93

TUTORIAL: Inheritance Inaction
INHERITANCE

Inheritance doesn’t always apply, and that isn’t necessarily a bad thing. For some
properties, inheritance would have a negative effect on a page’s appearance. You'll
see another example of inheritance in action in the final section of this tutorial.
Margins, padding, and borders (among other properties) don’t get inherited by
descendant tags—and you wouldn’t want them to, as you’ll see in this example.

1. Return to your text editor and the inheritance.html file.
You'll expand on the p tag style you just created.

2. Locate the p style, click at the end of the color property (color:
rgb(50,122,167);), and then press Enter (Return) to create a new line.

You’ll indent the paragraphs on the page by adding a left margin.
3. Add two properties to the style so it looks like this:

p{

color: rgb(50,122,167);

padding-left: 20px;

border-left: solid 25px rgba(255,255,255,.5);
}

These changes add a border to the left side of every paragraph, and move
the text so that it doesn’t touch the border: The padding property indents the
paragraph text 20 pixels from the border.

4. Save the file and preview it in a web browser.

Notice that all of the <p> tags have a thick light border on the left. However, the
tags inside the <p> tag (for example, the tag) don’t have any additional
indentation or border (see Figure 4-5). This behavior makes sense: It would look
weird if there were an additional thick border and 20px of space to the left of
each and each tag inside of a paragraph!

To see what would happen if those properties were inherited, edit the p selec-
tor so that it looks like this: p, p *, which makes it into a group selector (page
49). The first part is just the p selector you already created. The second part—p
*—means “select all tags inside of a <p> tag and apply this style to them.” (The
*, or universal selector, is described on page 49.)

94 CSS: THE MISSING MANUAL

TUTORIAL:
INHERITANCE

e <> D flex/Users/davemetariand/Documents/02_Writing/00_css_mmae/CSS_MM_4E T (il €= ! FIGURE 4-5

While most properties
are inherited (like color),
there are plenty—like
margins, padding, and
borders—that don’t pass
on to nested tags. The
(SS Property Reference
in Appendix A indicates
which properties are and
are not inherited.

A2 You can find a completed version of the page you created in this tutorial in the 04_finished folder.

CHAPTER 4: SAVING TIME WITH STYLE INHERITANCE 95

CHAPTER

5

Managing Multiple
Styles: The Cascade

why a particular element on a page looks the way it does. CSS’s inheritance

feature, as discussed in Chapter 4, creates the possibility that any tag on a
page is potentially affected by any of the tags that wrap around it. For example, the
<body> tag can pass properties on to a paragraph, and a paragraph may pass its
own formatting instructions on to a link within the paragraph. In other words, that
link can inherit CSS properties from both the <body> and the <p> tag—essentially
creating a kind of Frankenstyle that combines parts of two different CSS rules.

Q S you create increasingly complex style sheets, you’ll sometimes wonder

Then there are times when styles collide—the same CSS property is defined in mul-
tiple rules, all applying to a particular element on the page (for example, a <p> tag
style in an external style sheet and another <p> tag style in an internal style sheet).
When that happens, you can see some pretty weird stuff, like text that appears bright
blue, even though you specifically applied a class style with the text color set to
red. Fortunately, there’s actually a system at work: a basic CSS mechanism known
as the cascade, which governs how styles interact and which styles get precedence
when there’s a conflict.

NOTE This chapter deals with issues that arise when you build complex style sheets that rely on inheritance
and more sophisticated types of selectors like descendant selectors (page 50). The rules are all pretty logical, but
they’re about as fun to master as the tax code. If that’s got your spirits sagging, consider skipping the details
and doing the tutorial on page 111 to get a taste of what the cascade is and why it matters. Or jump right to the
next chapter, which explores fun and visually exciting ways to format text. You can always return to this chapter
later, after you're comfortable with the basics of CSS.

97

HOW STYLES
CASCADE

M How Styles Cascade

The cascadeis a set of rules for determining which style properties get applied to an
element. It specifies how a web browser should handle multiple styles that apply to
the same tag and what to do when CSS properties conflict. Style conflicts happenin
two cases: through inheritance, when the same property is inherited from multiple
ancestors; and when one or more styles apply to the same element (maybe you’ve
applied a class style to a paragraph and also created a <p> tag style, so both styles
apply to that paragraph).

Inherited Styles Accumulate

As you read in the last chapter, CSS inheritance ensures that related elements—like
all the words inside a paragraph, even those inside a link or another tag—share
similar formatting. It spares you from creating specific styles for each tag on a page.
But since one tag can inherit properties from any ancestor tag—a link, for example,
inheriting the same font as its parent <p> tag—determining why a particular tag is
formatted one way can be a bit tricky. Imagine a font family applied to the <body>
tag, a font size applied to a <p> tag, and a font color applied to an <a> tag. Any <a>
tag inside of a paragraph would inherit the font from the body and the size from
the paragraph. In other words, the inherited styles combine to form a hybrid style.

The page shown in Figure 5-1 has three styles: one for the <body>, one for the <p>
tag, and one for the tag. The CSS looks like this:

body { font-family: Verdana, Arial, Helvetica, sans-serif; }
p { color: #F30; }
strong { font-size: 24px; }

00 Inheritance and the Cascade FIGURE 5-1

EE] @ 14 file:// /Users dave/Documents/00_we = (Q- Google Thanks to inheritance, it’s possible for
N erance s e oo [711 s ot e gpeance

of one tag. Here the tag has
- a specific color, font family, and font size,
Headll‘lg 1 even though only a single property is
applied directly to that tag. The other two
P _— formatting options were inherited from
This is t!‘e tag strong the tag’s ancestors: the <body> and the
emphasued text within a paragraph of text. Lorem <p> tags.
ipsum dolor sat. Lorem ipsum dolor sat. Lorem ipsum dolor sat.
Lorem ipsum dolor sat. Lorem ipsum dolor sat. Lorem ipsum
dolor sat. Lorem ipsum dolor sat. Lorem ipsum dolor sat.
Lorem ipsum dolor sat. Lorem ipsum dolor sat. Lorem ipsum
dolor sat.

98 CSS: THE MISSING MANUAL

The tag is nested inside a paragraph, which is inside the <body> tag. That
 tag inherits from both of its ancestors, so it inherits the font-family
property from the body and the color property from its parent paragraph. In ad-
dition, the tag has a bit of CSS applied directly to it—a 24px font size. The
final appearance of the tag is a combination of all three styles. In other words, the
 tag appears exactly as if you'd created a style like this:

strong {
font-family: Verdana, Arial, Helvetica, sans-serif;
color: #F30;
font-size: 24px;

}

Nearest Ancestor Wins

In the previous example, various inherited and applied tags smoothly combined to
create an overall formatting package. But what happens when inherited CSS prop-
erties conflict? Think about a page where you've set the font color for the <body>
tag to red and the paragraph tag to green. Now imagine that within one paragraph,
there’s a tag. The tag inherits from both the <body> and <p> tag
styles, sois the text inside the tag red or green? Ladies and gentlemen, we
have a winner: the green from the paragraph style. That’s because the web browser
obeys the style that’s closest to the tag in question.

In this example, any properties inherited from the <body> tag are rather generic. They
apply to all tags. A style applied to a <p> tag, on the other hand, is more narrowly
defined. Its properties apply only to <p> tags and the tags inside them.

In a nutshell, if a tag doesn’t have a specific style applied to it, then, in the case of
any conflicts from inherited properties, the nearest ancestor wins (see Figure 5-2,
number 1).

Here’s one more example, just to make sure the concept sinks in. If a CSS style
defining the color of text were applied to a <table> tag, and another style defining
a different text color were applied to a <td> tag inside that table, then tags inside
that table cell (<td>)—such as a paragraph, headline, or unordered list—would use
the color from the <td> style, since it’s the closest ancestor.

The Directly Applied Style Wins

Taking the “nearest ancestor” rule to its logical conclusion, there’s one style that
always becomes king of the CSS family tree—any style applied directly to a given tag.
Suppose a font color is set for the body, paragraph, and strong tags. The paragraph
style is more specific than the body style, but the style applied to the tag
is more specific than either one. It formats the tags and only the
tags, overriding any conflicting properties inherited from the other tags (see Figure
5-2, number 2). In other words, properties from a style specifically applied to a tag
beat out any inherited properties.

HOW STYLES
CASCADE

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE

99

HOW STYLES This rule explains why some inherited properties don’t appear to inherit. A link
CASCADE inside a paragraph whose text is red still appears browser-link blue. That’s because
browsers have their own predefined style for the <a> tag, so an inherited text color

won’t apply.

®00 The Cascade FIGURE 5-2
) file:// /Users /dave/Documents/00_webs = Q- Google Here’s how web browsers figure out which proper-
ties to display when inherited properties conflict:
The tag in the first paragraph (1) inherits
the font family and color from both the <body>
b tag and the paragraph. But since the body and
Headlng 1 paragraph have different fonts and colors applied
to them, the tag uses the font and color
This is the tag--emphasized text within a specified for its closest ancestor—the <p> tag.
paragraph of text. Lorem Ipsurm dolor sat. When a style applies directly to a tag—the font

family and color are specified for the
This is the tag--strong emphasized text tag (2)—browsers ignore conflicting inherited
Within a paragraph of text. Lorem ipsum dolor sat. properties.

¢ An unordered list
e Inheriting the font-family
e and color from the body

NOTE You can learn how to overcome preset styles for the <a> tag and change link colors to your heart’s
content. See page 279.

One Tag, Many Styles

Inheritance is one way that a tag can be affected by multiple styles. But it’s also pos-
sible to have multiple styles apply directly to a given tag. For example, say you have
an external style sheet with a <p> tag style and attach it to a page that has an internal
style sheet that alsoincludes a <p> tag style. And just to make things really interesting,
one of the <p> tags on the page has a class style applied to it. So for that one tag, three
different styles directly format it. Which style—or styles—should the browser obey?

The answer: It depends. Based on the types of styles and the order in which they’re
created, a browser may apply one or more of them at once. Here are a few situations
in which multiple styles can apply to the same tag:

» The tag has both a tag selector and a class style applied to it. For example,
a tag style for the <h2> tag, a class style named . leadHeadline and this HTML:

<h2 class="leadHeadline">Your Future Revealed!</h2>

Both styles apply to this <h2> tag.

100 CSS: THE MISSING MANUAL

NOTE Hold onto your hat if you’re worried about what happens when these multiple styles conflict; details
to follow.

* The same style name appears more thanoncein the style sheet. For example,
you might have two styles—a group selector (page 49), like .leadHeadline,
.secondaryHeadline, .newsHeadline and a class style .leadHeadline—in the
same style sheet. Both of these rules define how any element with a class of
leadHeadline looks.

* A tag has both a class and an ID style applied to it. Maybe it’s an ID named
#banner, a class named .news, and this HTML: <div id="banner" class="news">.
Properties from both the banner and news styles apply to this <div> tag.

* There’s more than one style sheet containing the same style name attached
to a page. The same-named styles can arrive in an external style sheet and
an internal style sheet. Or the same style can appear in multiple external style
sheets that are all linked to the same page.

* There are complex selectors targeting the same tag. This situation is com-
mon when you use descendant selectors (page 50). For example, say you have
a <div> tag in a page (like this: <div id="mainContent">), and inside the div
is a paragraph with a class applied to it: <p class="byline">. The following
selectors apply to this paragraph:

#mainContent p
#mainContent .byline
p.byline

.byline

If more than one style applies to a particular element, then a web browser combines
the properties of all those styles, as long as they don’t conflict. An example will make
this concept clearer. Imagine you have a paragraph that lists the name of the web
page’s author, including a link to his email address. The HTML might look like this:

<p class="byline">Written by Jean Graine
de Pomme</p>

Meanwhile, the page’s style sheet has three styles that format the link:

a { color: #6378df; }
p a { font-weight: bold; }
.byline a { text-decoration: none; }

The first style turns all <a> tags powder blue; the second style makes all <a> tags
that appear inside a <p> tag bold; and the third style removes the underline from
any links that appear inside an element with the byline class applied to it.

All three styles apply to that very popular <a> tag, but since none of the proper-
ties are the same, there are no conflicts between the rules. The situation is similar
to the inheritance example (page 98): The styles combine to make one Uberstyle

HOW STYLES
CASCADE

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE

101

SPECIFICITY:
WHICH STYLE
WINS

containing all three properties, so this particular link appears powder blue, bold,
and underline-free.

NOTE Your head will really start to ache when you realize that this particular link’s formatting can also be

affected by inherited properties. For example, it would inherit any font family that’s applied to the paragraph. A
few tools can help sort out what’s going on in the cascade. (See the box on page 104.)

M Specificity: Which Style Wins

The previous example is pretty straightforward. But what if the three link styles
above each had a different font specified for the font-family property? Which of
the three fonts would a web browser pay attention to?

As you know if you’ve been reading carefully so far, the cascade provides a set of
rules that helps a web browser sort out any property conflicts; namely, properties
from the most specific style win. But as with the styles listed above, sometimes it’s
not clear which style is most specific. Thankfully, CSS provides a formula for deter-
mining a style’s specificity that’s based on a value assigned to the style’s selector—a
tag selector, class selector, ID selector, and so on. Here’s how the system works:

* A tag selector is worth 1 point.
* A class selector is worth 10 points.
* An ID selector is worth 100 points.

* Aninline style (page 28) is worth 1,000 points.

NOTE The math involved in calculating specificity is actually a bit more complicated than described here.

But this formula works in all but the weirdest cases. To read how web browsers actually calculate specificity, visit
www.w3.0rg/TR/css3-selectors/#specificity.

The bigger the number, the greater the specificity. So say you create the following
three styles:

+ Atag style for the tag (specificity = 1)
+ Aclass style named .highlight (specificity = 10)
+ An ID style named #logo (specificity = 100)

Then, say your web page has this HTML: <img id="logo" class="highlight"
src="logo.gif" />.If you define the same property—such as the border property—in
all three styles, then the value from the ID style (#logo) always wins out.

NOTE A pseudo-element (like : : first-1ine for example) is treated like a tag selector and is worth 1

point. A pseudo-class (: 1ink, for example) is treated like a class and is worth 10 points. (See page 55 for the
deal on these pseudo-things.)

102

CSS: THE MISSING MANUAL

SPECIFICITY:
WHICH STYLE
WINS

Since descendant selectors are composed of several selectors—#content p, or h2
strong, for example—the math gets a bit more complicated. The specificity of a
descendant selector is the total value of all of the selectors listed (see Figure 5-3).

selector id class tag total FIGURE 5-3
p 0 0 1 1 When more than one style applies to
.byline 0 7 0 10 a tag, a web browser must determine
p.byline 0]] 11 which style shoulq “win ogt" in

case style properties conflict. In CSS,
#banner ! 0 0 100 a style’s importance is known as
#banner p ! 0 ! 101 specificity and is determined by the
#banner .byline 1 1 0 110 type of selectors used when creating
alink 0 7 7 17 the style. Each type of selector has a
pfirstine 0 0 > > different value, and wﬁen multiple

selector types appear in one style—
h2 strong 0 0 2 2 for example, the descendant selector
#wrapper #content .byline a:hover 2 2 1 221 #banner p—the values of all the

selectors used are added up.

NOTE Inherited properties don’t have any specificity. So even if a tag inherits properties from a style with
a large specificity—like #banner—those properties will always be overridden by a style that directly applies to
the tag.

The Tiebreaker: Last Style Wins

It’s possible for two styles with conflicting properties to have the same specificity.
(“Oh brother, when will it end?” Soon, comrade, soon. The tutorial is coming up.) A
specificity tie can occur when you have the same selector defined in two locations.
You may have a <p> tag selector defined in an internal style sheet and an external
style sheet. Or two different styles may simply have equal specificity values. In case
of a tie, the style appearing last in the style sheet wins.

Here’s a tricky example using the following HTML:

<p class="byline">Written by <a class="email" href="mailto:jean@cosmofarmer.
com">Jean Graine de Pomme</p>

In the style sheet for the page containing the above paragraph and link, you have
two styles:

p .email { color: blue; }
.byline a { color: red; }

Both styles have a specificity of 11 (10 for a class name and 1 for a tag selector) and
both apply to the <a> tag. The two styles are tied. Which color does the browser
use to color the link in the above paragraph? Answer: Red, since it’s the second (and
last) style in the sheet.

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE 103

SPECIFICITY:
WHICH STYLE
WINS

FREQUENTLY ASKED QUESTION

Get a Little Help

My head hurts from all of this. Isn’t there some tool | canuse to - On the right side of the panel, you’ll see the styles applied
help me figure out how the cascade is affecting my web page? to the element. There’s usually a “computed” style—the sum

Trying to figure out all the ins and outs of inherited properties total of all the (SS properties applied to the element through
and conflicting styles confuses many folks. Furthermore, doing inheritance and the cascade, or the element’s “Frankenstyle.”
the math to figure out a style’s specificity isn’t your average Below that you’ll find the style rules that apply to the element,
web designer’s idea of fun, especially when there are large listed in order of most specific (at the top) to least specific (at

style sheets with lots of descendant selectors. the bottom).

All current web browsers have built-in help in the form of an I the listing of styles, you'll probably see some properties
inspector. The fastest way to inspect an element on a page ~ Crossed out—this indicates that the property either doesn’t
and all the CSS that affects itis to right-click (Control-clickona aPPIY to the element, or that it’s been overridden by a

Mac) the element (the headline, link, paragraph, orimage),and ~ more specific style. For a couple of short tutorials on using
choose Inspect Element from the contextual menu. A panel will ~ Chrome’s Developer’s Tools for analyzing CSS, visit fttps.//

open (usually beneath the web page) showing the page’s HTML, developer.chrome.com/devtools/docs/elements-styles and
with your selected element’s HTML highlighted. (To get thisto 1£t0://webdesign.tutsplus.com/tutorials/workflow-tutorials/
work in Safari, you first need to turn on the Show Developer ~ faster-htmicss-workflow-with-chrome-developer-tools/.

Menu option in the Preferences window—Advanced.)

Now suppose the two styles swap position: the style sheet now looks like this:

.byline a { color: red; }
p .email { color: blue; }

In this case, the link would be blue. Since p .email appears after .byline ainthe
style sheet, its properties win out.

What happens if you’ve got conflicting rules in an external and an internal style
sheet? In that case, the placement of your style sheets (within your HTML file) be-
comes very important. If you first add an internal style sheet by using the <style>
tag (page 25) and then attach an external style sheet farther down in the HTML by
using the <1link> tag (page 26), then the style from the external style sheet wins.
(In effect, it’s the same principle at work that you just finished reading about: The
style appearing last wins.) The bottom line: Be consistent in how you place external
style sheets. It’s best to list any external style sheets first, and only use an internal
style sheet when you absolutely need one or more styles to apply to a single page.

104 CSS: THE MISSING MANUAL

https://developer.chrome.com/devtools/docs/elements-styles
https://developer.chrome.com/devtools/docs/elements-styles
http://webdesign.tutsplus.com/tutorials/workflow-tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/
http://webdesign.tutsplus.com/tutorials/workflow-tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/

TROUBLESHOOTING MOMENT

CONTROLLING
THE CASCADE

Overruling Specificity

(SS provides a way of overruling specificity entirely. You can
use this trick when you absolutely, positively want to make
sure that a particular property can’t be overridden by a more
specificstyle. Simply insert ! important after any property
to shield it from specificity-based overrides.

For example, consider the two following styles:

Note that ! important works onanindividual property, not
anentire style, so youneed toadd ! important to the end of
each property you wish to make invincible. Finally, when two
stylesboth have ! important applied to the same property,
the more specific style’s | important rule wins.

Be careful using ! important. Becauseiit’s so powerful, if you

use it too often, your styles won’t follow the normal rules of the
cascade, leading to an “escalation” of the ! importantarms
race. In other words, to overcome the power of I important
inone style, you might add another ! important inanother
style; then to overcome the second ! important property,
you might need to add !important to the same property
in yet another style. So use ! important infrequently, and
before you do, try to figure out whether there’s another way
to overcome the conflict: Renaming or reordering styles in a
style sheet might be all you need to do.

.nav a { color: red; }
a { color: teal !important; }

Normally, a link inside an element with the class of nav would
be colored red since the .nav a style is more specific than
the a tag style.

However, including ! important after a property value
means that property always wins. So in the above example,
all links on the page—including those inside an element with
the nav class—are teal.

I Controlling the Cascade

As you can see, the more CSS styles you create, the greater the potential for format-
ting snafus. For example, you may create a class style specifying a particular font
and font size, but when you apply the style to a paragraph, nothing happens! This
kind of problem is usually related to the cascade. Even though you may think that
directly applying a class to a tag should apply the class’s formatting properties, it
may not if there’s a style with greater specificity.

You have a couple of options for dealing with this kind of problem. First, you can use
limportant (as described in the box above) to make sure a property always applies.
The limportant approach is a bit heavy-handed, though, since it’s hard to predict
that you’ll never, ever, want to overrule an !important property someday. Read on
for two other cascade-tweaking solutions.

Changing the Specificity

The top picture in Figure 5-4 is an example of a specific tag style losing out in the
cascade game. Fortunately, most of the time, you can easily change the specificity of
one of the conflicting styles and save ! important for real emergencies. In Figure 5-4
(top), two styles format the first paragraph. The class style—. intro—isn’t as specific
as the #sidebar pstyle, so .intro’s properties don’t get applied to the paragraph. To
increase the specificity of the class, add the ID name to the style: #sidebar .intro.

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE 105

CONTROLLING

THE CASCADE

B

Problem - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

@ - FORDPE |

Just Say No To Bamboo

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam,

quis nostrud exerci tation ullamcorper

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam,
quis nostrud exerci tation ullamcorper

lﬁ Done

EEX
@-D-E0 PP @ |

) Specificity Solution - Mozilla Firefox
Eile Edit View Go Bookmarks Tools Help

Just Say No To Bamboo

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed
diam nonummy nibh euismod
tincidunt ut laoreet dolore magna
aliquam erat volutpat. Ut wisi

enim ad minim veniam, quis
nostrud exerci tation
ullamcorper

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim i v

[E Done

#sidebar p
font-family: Verdana;
font-size: .9em;

}

.intro {
font-family: Georgia;
font-size: 1.25em;

}

<div id="sidebar”>
<p class="intro”>
</div>

#sidebar p {
font-family: Verdana;
font-size: .9em;

}

#sidebar .intro
font-family: Georgia;
font-size: 1.25em;

}

<div id="sidebar”>
<p class="intro”>
</div>

FIGURE 5-4

Even though a class is ap-
plied to a specific tag—like
the first paragraph in the top
image—its properties may
not always have an effect.

In this case, the paragraph

is inside a <div> tag with
an ID of #sidebar, so the
descendant selector #side-
bar p is more specific

than the . intro class. The
solution: Make the . intro
class more specific by adding
the ID before it—ttsidebar
p.intro—asin the bottom
example.

However, simply tacking on additional selectors to make a style’s properties “win”
can lead to what’s been called specificity wars, where you end up with style sheets
containing very long and convoluted style names like: #home #main #story hi.In
fact, as you’ll read on page 108, you should try to avoid these types of styles and
aim to keep your selectors as short as possible.

106 CSS: THE MISSING MANUAL

If you're into math, the #sidebar p style has a specificity of 101 (100 for the ID, and 1 for the tag
selector), while the . intro style has a specificity of 10 (10 points for a class selector). Since 101 s greater than
10, #sidebar p takes precedence. Changing . introto #sidebar .intro changes its specificity to 110.

Selective Overriding

You can also fine-tune your design by selectively overriding styles on certain pages.
Say you’ve created an external style sheet named styles.css that you’ve attached to
each page in your site. This file contains the general look and feel for your site—the
font and color of <h1> tags, how form elements should look, and so on. But maybe
on your home page, you want the <h1> tag to look slightly different than the rest of
the site—bolder and bigger, perhaps. Or the paragraph text should be smaller on the
home page, so you can wedge in more information. In other words, you still want
to use most of the styles from the styles.css file, but you simply want to override a
few properties for some of the tags (<h1>, <p>, and so on).

One approach is to simply create an internal style sheet listing the styles that you
want to override. Maybe the styles.css file has the following rule:

h1 {
font-family: Arial, Helvetica, sans-serif;
font-size: 24px;
color: #000;

}

You want the <h1> tag on the home page to be bigger and red. So just add the fol-
lowing style in an internal style sheet on the home page:

h1 {
font-size: 36px;
color: red;

}

In this case, the <h1> tag on the home page would use the font Arial (from the
external style sheet) but would be red and 36 pixels tall (from the internal style).

WL Make sure you attach the external style sheet before the internal style sheet in the <head> section of

the HTML. This ensures that the styles from the internal style sheet win out in cases where the specificity of two
styles are the same, as explained on page 103.

Another approach would be to create one more external style sheet—home.css for
example—that you attach to the home page in addition to the styles.css style sheet.
The home.css file would contain the style names and properties that you want to
overrule from the styles.css file. For this to work, you need to make sure the home.
css file appears after the styles.css file in the HTML, like so:

<link rel="stylesheet" href="css/styles.css"/>
<link rel="stylesheet" href="css/home.css"/>

CONTROLLING
THE CASCADE

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE

107

CONTROLLING
THE CASCADE

Another way to fine-tune designs on a page-hy-page basis is to use different class names for the <body>
tag of different types of pages—for example . review, . story, .home—and then create descendant selectors
to change the way tags on these types of pages look. This technique is discussed on page 582.

Avoiding Specificity Wars

Many web designers these days avoid ID selectors in favor of classes. One reason:
ID selectors are very powerful, and therefore require more power to override. This
often leads to specificity wars in which style sheets get loaded with unnecessarily
long-winded and complicated selectors. This problem is best explained by example.
Say, for instance, your page has this snippet of HTML:

<div class="article">

<p>A paragraph</p>

<p>Another paragraph</p>

<p class="special">A special paragraph</p>
</div>

You decide that you want to color the paragraphs inside the article div red, so
you create a descendant selector like this:

#article p { color: red; }

But you want that one paragraph with the class of special to be blue. If you simply
create a class selector, you won’t get what you want.

.special { color: blue; }

As you read on page 102, when determining which properties to apply to a tag, a web
browser uses a simple mathematical formula to deal with style conflicts: Browsers
give an ID selector a value of 100, a class selector a value of 10, and a tag selector a
value of 1. Because the selector #article pis composed of one ID and one element
(a total of 101 specificity points), it overrides the simple class style—forcing you to
change the selector:

#article .special {color: blue; }

Unfortunately, this change causes two more problems. First, it makes the selector
longer, and second, now that blue color is applied only when the special class ap-
pears inside something with an ID of article. For example, if you copy the HTML <p
class="special">A special paragraph</p> and paste it elsewhere in the page, it
will no longer be blue. In other words, the use of the ID makes your selectors both
longer and less useful.

Now look what happens if you simply replace all IDs with classes. The previous
HTML would change to:

<div class="article">

<p>A paragraph</p>

<p>Another paragraph</p>

<p class="special">A special paragraph</p>
</div>

108

CSS: THE MISSING MANUAL

And you could change the CSS to this:

.article p { color: red; }
p.special { color: blue; }

The first style—.article p—is a descendant selector worth 11 points. The second
style—p.special—is also worth 11 points (one tag and one class), and means “apply
the following properties to any paragraph with the special class.” Now if you cut that
HTML and paste it anywhere else on the page, you’d get the blue styling you’re after.

This is just one example, but it’s not hard to find style sheets with ridiculously long
selectors like #home #article #sidebar #legal p and #home #article #sidebar
#legal p.special.

IDs can be useful. For example, many CMSes (Content Management Systems) use
IDs to identify unique page elements, so using ID selectors makes sense. And the
more powerful specificity they offer can make overriding other styles easier. But be
careful using too many ID selectors. In most cases they don’t provide anything that
you can’t accomplish with a simple class selector or tag selector, and their powerful
specificity can lead you to unnecessarily complex style sheets.

For a detailed discussion of why you should avoid ID selectors all together, visit http://csswizardry.
com/2011/09/when-using-ids-can-be-a-pain-in-the-class.

Starting with a Clean Slate

Browsers apply their own styles to tags: For example, <h1> tags are bigger than
<h2> tags, and both are bold, while paragraph text is smaller and isn’t bold; links are
blue and underlined; and bulleted lists are indented. There’s nothing in the HTML
standard that defines any of this formatting: Web browsers just add this formatting
to make basic HTML more readable. However, even though browsers treat all tags
roughly the same, they don’t treat them identically.

For example, Chrome and Firefox use the padding property to indent bulleted lists,
but Internet Explorer uses the margin property. Likewise, you'll find subtle differences
in the size of tags across browsers, and an altogether confusing use of margins among
the most common web browsers. Because of these inconsistencies, you can runinto
problems where, for instance, Firefox adds a top margin, while Internet Explorer
doesn’t. These types of problems aren’t your fault—they stem from differences in
the built-in browser styles.

To avoid cross-browser inconsistencies, it’s a good idea to start a style sheet with
a clean slate. In other words, erase the built-in browser formatting and supply your
own. The concept of erasing browser styling is called CSS reset. This section gives
you a working introduction.

In particular, there’s a core set of styles you should include at the top of your style
sheets. These styles set a baseline for properties that commonly are treated differ-
ently across browsers.

CONTROLLING
THE CASCADE

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE

109

http://csswizardry.com/2011/09/when-using-ids-can-be-a-pain-in-the-class
http://csswizardry.com/2011/09/when-using-ids-can-be-a-pain-in-the-class

CONTROLLING
THE CASCADE

Here’s a bare-bones CSS reset:

html, body, div, span, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote,
pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd,
g, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt,
dd, ol, ul, 1i, fieldset, form, label, legend, table, caption, tbody, tfoot,
thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption,
footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark,
audio, video {

margin: 0;

padding: 0;

border: 0;

font-size: 100%;

vertical-align: baseline;

article, aside, details, figcaption, figure, footer, header, hgroup, menu,
nav, section {
display: block;
}
body {
line-height: 1.2;
}
ol {
padding-left: 1.4em;
list-style: decimal;
}
ul {
padding-left: 1.4em
list-style: square;
}
table {
border-collapse: collapse;
border-spacing: 0;

NOTE The above (SS reset is adapted from Eric Meyer’s well-known and influential CSS reset, which you
can find at http://meyerweb.com/eric/tools/css/reset.

The first style is a very long group selector (page 49) that takes the most common
tags and zeros them out—removing all the padding and margins, setting their base
text size to 100%, and removing bold text formatting. This step makes your tags
look pretty much identical (see Figure 5-5), but that’s the point—you want to start
at zero and then add your own formatting so that all browsers apply a consistent
look to your HTML.

110 CSS: THE MISSING MANUAL

The second selector (article, aside, detail, andsoon)isanother group selector
that helps older browsers correctly display the new HTML5 tags. The third selector
(body) style sets a consistent 1ine-height (space between lines in a paragraph).
You'll learn about the 1ine-height property in the next chapter.

NOTE You don’t have to type all this code yourself. You'll find a file named reset.cssin the 05 tutorial folder
that contains a basic CSS reset file. Just copy the styles from this file and paste them into your own style sheets.
Another approach to resets is normalize.css, a free, open-source style sheet that makes different browsers display
the same tags in a consistent manner. It’s widely used by web designers. You can find it at: http:/necolas.qgithub.
io/normalize.css/.

The fourth and fifth styles (the ol and ul tag styles) set a consistent left margin and
style (page 168 introduces list styling), and the last style makes adding borders to
table cells easier (you’ll learn why this style is useful on page 363).

M Tutorial: The Cascade in Action

In this tutorial, you’ll see how styles interact and how they can sometimes conflict
to create unexpected results. First, you’ll look at a basic page that has the CSS reset
styles mentioned above plus a couple of other styles that provide some simple layout.
Then you’ll create two styles and see how some properties are inherited and how
others are overruled by the cascade. Then you’ll see how inheritance affects tags
on a page, and how a browser resolves any CSS conflicts. Finally, you’ll learn how
to troubleshoot problems created by the cascade.

To get started, you need to download the tutorial files located at https://github.
com/sawmac/css_mm_ 4e. Click the tutorial link and download the files. All of the
files are enclosed in a zip archive, so you’ll need to unzip them first. The files for this
tutorial are contained inside the folder named 05.

Resetting CSS and Styling from Scratch

First, take a look at the page you’ll be working on.
1. In aweb browser, open the file 05— cascade.html (Figure 5-5).

The page doesn’t look like much—two columns, one with a blue background
and a lot of same-looking text. There are a few styles already applied to this
file, so open the CSS up in a text editor and have a look.

2. Using your favorite text or web page editor, open the file 05—styles.css.

This file is the external style sheet that the cascade.htmlfile uses. It has several
styles already in it—the first group is the CSS reset styles discussed on the
previous page. They eliminate the basic browser styles, which is why all of the
text currently looks the same. (You’ll create your own styles to make this page
look great soon.)

TUTORIAL: THE
CASCADE IN
ACTION

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE

m

https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

TUTORIAL: THE
CASCADE IN
ACTION

The last two styles—the class styles .main and .sidebar—create the two columns
you see in Figure 5-5. The HTML is divided into two <div> tags, each with its
own class. The class styles here essentially position the two divs so they appear
side by side as columns (you’ll learn how to control page layout and create
columns in Part Three).

You'll first add a couple of styles to improve the page’s basic appearance and

its top headline.

800 / [} Cs5:The Missing Manual -~
bt

C M [file://macintosh%20hd/Users/davemcfarland/Documents/02_writing /00_css_mm3e/CSS3_MM_TUTORI... F/"g H *]

CSS: The Missing Manual

Sed ut perspiciatis unde omnis iste natus error sit vi
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto
beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi
nesciunt.

Lorem Ipsum Dolor Sat

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto
beatac vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur magni dolores ¢os qui ratione voluptatem sequi
nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit, sed quia non numquam efus modi tempora incidunt ut labore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil
molestiac consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto
beatac vitac dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur
aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi

Sidebar

Sed ut perspiciatis unde omnis iste natus
error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa
quae ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt explicabo.
Nemo enim ipsam voluptatem guia voluptas
sit aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt. Neque porro
quisquam est, qui dolorem ipsum quia dolor
sit amet, consectetur

adipisci velit, sed quia non numquam eius
‘modi tempora incidunt ut labore et dolore
‘magnam aliquam quaerat voluptatem. Ut
enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum fure

it qui in ea voluptate velit esse

nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, cc
adipisci velit, sed quia non numquam efus modi tempora incidunt ut labore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil
molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Nisi Ut Aliquid

Sed ut perspiciatis unde omnis iste natus error sit vi
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto
beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur

et ALt Bt mad min aamamnbee mamad Anlamas ane and eatians sralentntan el

quam nihil molestiae consequatur, vel illum
qui dolorem eum fugiat quo voluptas nulla
pariatur?

FIGURE 5-5

The basic “CSS

reset” styles on this page
eliminate the subtle dif-
ferences in how different
browsers display basic
HTML tags. They also
eliminate any difference
between how the tags
look. Your job is to take
this empty canvas and
style the tags so they
look the way you want
them to.

3. Inthe styles.css file, add these two styles at the bottom of the style sheet

following the last } of the .sidebar style:

body {
color: #B1967C;

font-family: "Palatino Linotype", Baskerville, serif;
padding-top: 115px;
background: #CDE6FF url(images/bg body.png) repeat-x;
max-width: 800px;
margin: 0 auto;

}

h1 {
font-size: 3em;
font-family: "Arial Black", Arial, sans-serif;
margin-bottom: 15px;

12 CSS: THE MISSING MANUAL

TUTORIAL: THE
CASCADE IN
ACTION

The first style adds a background image and color to the page, and also sets a
maximum width for the page. If you save this file and preview the cascade.html file
in a web browser (see Figure 5-6), you’ll notice that these attributes aren’t inherited
by the other tags—the same image, for example, isn’t repeated behind the heading
or paragraph tags.

® O O [cssThe Missing Manual - % || | s FIGURE 5-6
C N | [file://macintosh¥%20hd/Users /davemcfarland/Documents /02_writing/00_css_mm3e/CSS3_MM_TUTORI... i‘g, H Q

Inheritance and the cas-

CSS: The Missing Manual

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas
sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt,

Lorem Ipsum Dolor Sat

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas
sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit
amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis
nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam
nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla

Sidebar

Sed ut perspiciatis unde
omnis iste natus error sit
voluptatem accusantium
doloremque laudantium,
totam rem aperiam,
eaque ipsa quac ab illo
inventore veritatis et quasi
architecto beatae vitae
dicta sunt explicabo.
Nemo enim ipsam
voluptatem quia voluptas
sit aspernatur aut odit aut
fugit, sed quia
consequuntur magni

cade in action: the <h1>
tag at the top of this page
inherits its font color from
the <body> tag style,
but gets its size and font
family from the specific
<h1> tag style.

pariatur? dolores eos qui ratione
voluptatem sequi
nesciunt. Neque porro
quisquam est, qui dolorem
ipsum quia dolor sit amet,
consectetur

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, caque ipsa quac ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas
sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
wnhintatem semii neerinnt Nermie noren nmicemam est i Anlarem ineim Ania dnlor sit

The font-family and color properties, on the other hand, are inherited, so other
tags on the page now use that font and have a brownish color. However, you'll see
that although the top headline is the same color as the other text on the page, it uses
a different font—here’s the cascade in action. The h1 tag style doesn’t have a color
assigned to it, so that the heading inherits the brown color applied to the <body>
tag. But since the h1 tag style specifies a font family, it overrides the inherited font
from the <body> tag style.

Creating a Hybrid Style

In this example, you’ll create two styles. One style formats all the second-level
headlines of the page; another, more specific style reformats just those headings in
the larger, main column of the page.

1. Inthe styles.css file, add the following style to the end of the style sheet:

h2 {
font-size: 2.2em;
color: #AFC3D6;
margin-bottom: 5px;

}

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE 13

TUTORIAL: THE
CASCADE IN
ACTION

This style simply changes the text color and increases the size of the <h2> tag
and adds a little bit of space below it. If you view the file in a web browser,
you’ll see that the <h2> tags in the main column and the one <h2> tag in the
right sidebar now look alike.

Next, you’ll create a style to format just the second-level headlines in the main
column.

2. Return to your web page editor and the sityles.css file. Click directly after
the end of the new <h2> tag style, and then press Enter to create an empty
line. Add the following style:

.main h2 {
color: #E8A064;
border-bottom: 2px white solid;
background: url(images/bullet flower.png) no-repeat;
padding: 0 0 2px 80px;
}

You've just created a descendant selector that formats all <h2> tags that appear
inside a tag with a class of main applied to it. The two columns of text on this
page are enclosed in <div> tags with different class names applied to them.
The larger, left-hand column has the class main, so this particular style will only
apply to the <h2> tags in that div.

This style is similar to the one you created in the tutorial for Chapter 2 in Step
17 on page 36—it adds an underline and a simple flower icon to the headline.
This style also specifies an orange color for the text.

3. Save the style sheet and preview the page once again in a web browser
(Figure 5-7).

You’ll notice that all of the heading 2 tags (the two in the main column and one
in the sidebar) are the same size, but the two in the main column also have the
underline and flower icon.

Because the .main h2 style is more specific than the simple h2 style, if there
are any conflicts between the two styles—the color property, in this case—the
.main h2 properties win out. So, although the second-level headlines in the
main column get a blue text color from the h2 style, the orange color from the
more specific .main h2 style wins out.

However, since the .main h2 style doesn’t specify a font size or bottom margin,
the headlines in the main column get those properties from the h2 style.

14 CSS: THE MISSING MANUAL

TUTORIAL: THE
CASCADE IN
ACTION

8080 / [€SS:The Missing Manual - % |\ |

- > C # ID file://macintosh%20hd/Users/davemcfarland/Documents/02_writing/00_css_mm3e/CSS3_MM_TUTORI... {}‘] E 3

CSS: The Missing Manual

FIGURE 5-7

A tale of two styles:

Both the h2 and .main
h2 styles apply to the
second-level headlines
in the left column of

this page. However, the
.main h2 style applies

]S;(;:(perspiciatis unde omnis iste natus error sit volllui]])jlal.em accusantium doloremque to just those headlines
udantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi . .
architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas inside the main (’ eff t)
sit aspernatur aut c\dil.aut fugit, sed quia consequuntur magni dolores eos qui ratione Sed ut perspiciatis unde column. AISO, since that
voluptatem sequi nesciunt. omnis iste natus error sit .

style is more powerful

Lorem Ipsum Dolor Sat

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, caque ipsa quac ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas
sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit
amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis
nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam
nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi
architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas

voluptatem accusantium
doloremque laudantium,
totam rem aperiam,
eaque ipsa quac ab illo
inventore veritatis et quasi
architecto beatae vitae
dicta sunt explicabo.
Nemo enim ipsam
voluptatem quia voluptas
sit aspernatur aut odit aut
fugit, sed quia
consequuntur magni
dolores eos qui ratione
voluptatem sequi
nesciunt. Neque porro
quisquam est, qui dolorem

than the basic <h2> tag
style, it overrides any
conflicts between the

two styles, in this case,
using an orange text color
instead of the blue color
of the <h2> tag style.

Overcoming Conflicts

Because of how CSS properties sometimes conflict when several styles apply to
the same tag, you’ll sometimes find your pages don’t look exactly as you planned.

When that happens, you’ll need to do a little work to find out why, and rejigger your
CSS selectors to make sure the cascade is working to produce the results you want.

1. Return to your web page editor and the styles.css file.

You’ll now create a new style to format just the paragraphs in the main column
of the page.

2. Add the following style to the end of the style sheet:

.main p {
color: #616161;
font-family: "Palatino Linotype", Baskerville, serif;
font-size: 1.1em;
line-height: 150%;
margin-bottom: 10px;
margin-left: 8opx;

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE 115

TUTORIAL: THE
CASCADE IN Preview the page in a web browser and you’ll see that this new style changes the

ACTION color, size, and font of the text, spreads the lines of text out (the 1ine-height

property), and adjusts the bottom and left margins of the paragraphs.

Next, you’ll make the first paragraph bigger and bolder so that it makes a more
powerful message. One way to style just that one paragraph is to create a class
style and apply it to that paragraph.

3. Add one last style to the end of the style sheet:

Jintro {
color: #6A94CC;
font-family: Arial, Helvetica, sans-serif;
font-size: 1.2em;
margin-left: o;
margin-bottom: 15px;

}

This style changes the color, font, and size, and adjusts the margins a bit. All
you have to do is apply the class to the HTML.

4. Openthe cascade.htmlfile in your web page editor. Locate the <p> tag that
appears after <h1>CSS: The Missing Manual</h1> and directly below <div
class="main">, and then add the following class attribute:

<p class="intro">
5. Preview the page in a web browser.

And...the paragraph is completely unchanged. What gives? Following the rules
of the cascade, . intro s a basic class selector, while the .main pis a descendant
selector composed of both a class and a tag name. These add up to create a
more specific style, so its style properties overrule any conflict between it and
the .intro style.

In order to make the .intro style work, you need to give it a little juice by mak-
ing its selector more powerful.

6. Return to the styles.css file in your web page editor and change the name
of the style from .intro to p.intro.

Make sure there’s no space between the p and . intro. You’ve basically created
a tie—.main p—is one class and one tag selector, and p.intro is one tag and
one class. They both have a specificity value of 11, but because p. intro appears
after .main p in the style sheet, it wins the battle, and its properties apply to
the paragraph. (You could have created an even more specific style—.main
.intro—to overcome the conflict.)

116 CSS: THE MISSING MANUAL

TUTORIAL: THE
CASCADE IN
ACTION

7. Preview the page in a web browser (see Figure 5-8).

Voila! The paragraph changes to blue, with bigger text, a different font, and
no left margin. If you didn’t have a clear understanding of the cascade, you'd
be scratching your head wondering why that class style didn’t work the first
time around.

In this and the previous four chapters, you’ve covered the basics of CSS. Next, in Part
Two, it’s time to take that knowledge and apply it to real design challenges—making
web pages look great.

0 00O [cssithe Missing Manual - = | s FIGURE 5-8
« 2> CAH l 0 ﬁle:,'[ma:imosh%mhd,‘Users[dévemcfarlandﬂDnmm5n!s,,’OZ_wri(ing,lOO_(ss_mmBE/CSS!_MM_TUTORI‘.. i‘g] E Q Even I'n a Simple page

like this one, with just a
handful of styles, the look
of any one tag is often a
combination of properties

css: The MiSSing Manual from various styles.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem

accusantium doloremque laudantium, totam rem aperiam, eaque

ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae Sed ut perspiciatis unde
dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas :‘3:::;::;‘:1:;‘3:‘;

sit aspernatur aut odit aut fugit, sed quia consequuntur magni doloremque laudantium,
dolores eos qui ratione voluptatem sequi nesciunt. tabtm xem P,

eaque ipsa quae abillo
inventore veritatis et quasi
Lorem Ipsum DOIOI‘ Sat architecto beatac vitae
dicta sunt explicabo.
Nemo enim ipsam
i : 2 voluptatem quia voluptas
accusantium doloremque laudantium, totam rem aperiam, eaque sit aspernatur aut odit aut
ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae fugit, sed quia
consequuntur magni

Sed ut perspiciatis unde omnis iste natus error sit voluptatem

dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit S

aspernatur aut odit aut fugit, sed quia consequuntur magni dolores voluptatem sequi
St T . At NI . nesciunt. Neque porro

€0s qui ratione voluptatem sequi nesciunt. Neque porro quisquam g o

Aot rani Anlaram ineum miia Anlar sit amat cancactatar adiniest

CHAPTER 5: MANAGING MULTIPLE STYLES: THE CASCADE 17

Applied CSS

CHAPTER 6:
Formatting Text

CHAPTER 7:
Margins, Padding, and Borders

CHAPTER 8:
Adding Graphics to Web Pages

CHAPTER 9:
Sprucing Up Your Site’s Navigation

CHAPTER 10:
CSS Transforms, Transitions, and Animations

CHAPTER T11:
Formatting Tables and Forms

CHAPTER

6

Formatting Text

to look at photos, movie clips, and animations, but it’s the reading material

that keeps 'em coming back. People are hungry for Facebook updates, news,
gossip, how-to articles, recipes, FAQs, jokes, information lists, and even 140-character
tweets. With CSS, you can—and should—make your headlines and body text grab
a visitor’s attention as compellingly as any photo.

M ost websites still rely on words to get their messages across. Sure, people like

CSS offers a powerful array of text-formatting options, which let you assign fonts,
color, sizes, line spacing, and many other properties that can add visual impact to
headlines, bulleted lists, and regular old paragraphs of text (see Figure 6-1). This
chapter reveals all, and then finishes up with a tutorial where you can practice as-
sembling CSS text styles and put them to work on an actual web page.

M Using Fonts

The first thing you can do to make text on your website look more exciting is to apply
different fonts to headlines, paragraphs, and other written elements on your pages.
To apply a font to a CSS style, you use the font-family property and specify the
font you wish to use. For example, say you want to use the Arial font for paragraphs
on a page. You can create a p tag style and use the font-family property like this:

p{
font-family: Arial;
}

121

USING FONTS

HomellPoctvll MReviews|
- vioonsiocArchivesll -]
BARRY TEBB'S MENTAL HEALTH BLOG SITE|

Barry Tebb's wonderful day-glo Sixties Press productions keep the Apocalyptic flame alive. - JAMES KEERY
Barry Tebb at Haworth.
Barry Tebb’s manuscripts are in Leeds
University's Brotherton Library Special
Collections Archive.
Inactive Plug-in © sia

Times Online January 17, 2007
Small press funding

Sir, - For months [have awaited (along with
the entire small press world) the annual call

T
ixties Press
Bixtics Press [t arbt ot

2 /
have published the following | |2 (o000 10 the winaecs. £2.000 10 the

authors: [Feature Articles]

DAISY ABEY

A SUBLIME AND VISIONARY RE-

THE SHATTERED TH

ANGEL,
DEBJANI CHATTERIEE
SONJA CTVRTECKA
BRIAND "ARCY
MARK FLOYER

ARTER
Tim Allen of TERRIBLE WORK reviews THE
LIGHTS OF LEEDS by Barry Tebb

e trust them?.

Plattorm

SUEST ARTISTS OF OUR PCMS

B; An Unguict Voice Jim Moore

MICHAEL HOLMES CHOOSING NG: . ONS - LAST

T col N by Barry Tebb
Publications

Notes

Tue, March 6th, 2012

When I was in grade school, from the
time I stepped off the bus in the af-
ternoon ’til sunset, my neighbor-
hood was my entire world, and the
possibilities were limitless.

I was part of a BMX kid gang of sorts. We rolled our jeans up
and folded our converse down. We built forts, played Nerf
football, and shot bb guns. When that got old we’d explore
the outer limits of our territory. These boundaries were
defined by geography (the muddy bayou we didn’t dare
cross for fear of alligators), by rules (the busy streets parents

FIGURE 6-1

Good web typography makes sites that are easy
to read and enjoyable to look at. Using too many
fonts or too many typographic flourishes often
leads to confusing and difficult to understand
web pages (top). Using different type sizes,
subtle style choices, and only a couple font
variations makes a page easy to scan, and fun to
read (bottom).

122

CSS: THE MISSING MANUAL

Originally, the font-family property only worked if your site’s visitors had the
same font installed on their computers. In other words, using the above example, if
someone visiting your site didn’t have the Arial font on their computer, the page’s
paragraphs would display with the web browser’s default font (usually some variant
of Times New Roman). Because of this, web designers were limited to a handful of
fonts that come preinstalled on most computers.

More recently, web browsers began supporting web fonts—fonts that the browser
downloads and uses while viewing your site. Web fonts use the font-family property
as well, but require an additional CSS command called the @font-face directive,
which instructs a web browser to download the specified font. Web fonts open up
many exciting design possibilities, letting you choose from a wild array of typefaces.
But, as you’ll learn on page 126, they also come with their own set of challenges.

As a web designer, you can choose to stick with the tried-and-true font method—
selecting fonts from the basic set installed on most computers—or use web fonts
for greater design choice (at the cost of more work). You’re not limited to one ap-
proach or the other, either. Many web designers mix the two—using standard fonts
in some cases (like the main body text of a page) and web fonts in other cases (to
create eye-catching headlines, for instance).

Choosing a Common Font

When you use the font-family property to specify a font, visitors to your site won’t
necessarily see the font you choose—they must either have it installed on their com-
puters already or, in the case of web fonts, temporarily download the font to view
the site. Because you can’t always know whether your preferred font is available
to a particular visitor, it’s common practice to specify not only your main font, but
also a couple of backup choices: This list of font options is called a font stack. If your
viewer’s computer has your first-choice font, then that’s what she’ll see. But when
the first font isn’t installed, the browser looks down the list until it finds a font that
is. The idea is to specify a list of similar-looking fonts that are common to a variety
of operating systems, like so:

font-family: Arial, Helvetica, sans-serif;

In this example, a web browser first looks to see if the Arial font is installed. If it is,
then that font is used; if not, the browser next looks for Helvetica, and if that isn’'t
installed, then it finally settles for a generic font—sans-serif. When you list a generic
font type (like sans-serif or serif), the viewer’s browser gets to choose the actual
font. But at least you can define its basic character.

NOTE In your code, when you put a CSS property into action, you must, of course, include a selector and a
set of braces to create a valid CSS rule. For example:

p { font-family: Arial, Helvetica, sans-serif; }

When you see examples in this book like font-family: Arial, Helvetica, sans-serif;,remember
that’s just the property in isolation, distilled down for your book-reading benefit.

USING FONTS

CHAPTER 6: FORMATTING TEXT

123

Also, if the font’s name is made up of more than one word, you must enclose it in
quote marks:

USING FONTS

font-family: "Times New Roman", Times, serif;

Here are some often-used combinations of commonly installed fonts organized by
the type of font, including a generic font type at the end of each list.

I SERIF FONTS

Serif fonts are best for long passages of text, as it’s widely believed that the ser-
ifs—those tiny “feet” at the end of a letter’s main strokes—gently lead the eye from
letter to letter, making text easier to read. Examples of serif fonts are Times, Times
New Roman, and Georgia.

* “Times New Roman”, Times, serif

* Georgia, “Times New Roman”, Times, serif

» Baskerville, “Palatino Linotype”, Times, serif

* “Hoefler Text”, Garamond, Times, serif

Examples of these fonts are in Figure 6-2.

"Times New Roman", Times, serif

Class aptent taciti sociosqu ad litora torquent per conub
tempor, leo vehicula auctor gravida, sapien lacus cursus
aliquet, magna et sodales tincidunt, metus sem porttitor
Aenean consectetur rutrum nibh quis congue. Cras portt

Georgia, "Times New Roman", Times, serif

Class aptent taciti sociosqu ad litora torquent per cc
Morbi tempor, leo vehicula auctor gravida, sapien 1
non ante. Proin aliquet, magna et sodales tincidunt,
condimentum orci est sit amet odio. Aenean consec
porttitor fermentum interdum.

"Hoefler Text", Garamond, Times, serif

Class aptent taciti sociosqu ad litora torquent per cor
tempor, leo vehicula auctor gravida, sapien lacus curst
aliquet, magna et sodales tincidunt, metus sem porttii
odio. Aenean consectetur ratrum nibh quis congue. C

"Palatino Linotype", Baskerville, Times, serif

Class aptent taciti sociosqu ad litora torquent per conub
tempor, leo vehicula auctor gravida, sapien lacus cursus
aliquet, magna et sodales tincidunt, metus sem porttitor
Aenean consectetur rutrum nibh quis congue. Cras port

"Times New Roman", Times, serif

Class aptent taciti sociosqu ad litora torquent per conut
gravida, sapien lacus cursus tellus, ac eleifend felis eros
nulla, non condimentum orci est sit amet odio. Aenean

Georgia, "Times New Roman", Times, serif

Class aptent taciti sociosqu ad litora torquent per «
vehicula auctor gravida, sapien lacus cursus tellus
tincidunt, metus sem porttitor nulla, non condime
congue. Cras porttitor fermentum interdum.

"Hoefler Text", Garamond, Times, serif

Class aptent taciti sociosqu ad litora torquent per conut
gravida, sapien lacus cursus tellus, ac eleifend felis eros
nulla, non condimentum orci est sit amet odio. Aenean

"Palatino Linotype", Baskerville, Times, serif

Class aptent taciti sociosqu ad litora torquent per c
auctor gravida, sapien lacus cursus tellus, ac eleifer
metus sem porttitor nulla, non condimentum orci €
porttitor fermentum interdum.

FIGURE 6-2

Fonts don’t always display
the same on Mac (left)
and Windows (right). The
two systems come with
different built-in fonts.

In addition, antialiasing,
which makes onscreen

text look smoother, is
better on the Mac than

on Windows. Windows
includes a technology
called ClearType, which can
improve the look of text on
a screen. The quality of text
on Windows depends on
which ClearType settings
your Windows computer
has. You can learn more
about ClearType at www.
microsoft.com/typography/
cleartype.

TIP

The website CSS Font Stack (www.cssfontstack.com) provides a long list of fonts that are commonly
installed on Macs and Windows computers, including detailed percentage breakdowns for each operating system.

For example, you’ll find the font Courier New on 99.73% of Windows computers and 95.68% of Macs.

124

CSS: THE MISSING MANUAL

http://www.microsoft.com/typography/cleartype
http://www.microsoft.com/typography/cleartype
http://www.microsoft.com/typography/cleartype
http://www.cssfontstack.com

I SANS-SERIF FONTS

Sans-serif fonts are often used for headlines, thanks to their clean and simple ap-
pearance. Examples of sans-serif fonts include Arial, Helvetica, and Verdana. The
text in this book is set in a sans-serif font.

USING FONTS

Arial, Helvetica, sans-serif
Verdana, Arial, Helvetica, sans-serif

Geneva, Arial, Helvetica, sans-serif

Tahoma, “Lucida Grande”, Arial, sans-serif

“Trebuchet MS”, Arial, Helvetica, sans-serif

“Century Gothic”, “Gill Sans”, Arial, sans-serif

Examples of sans-serif fonts are shown in Figure 6-3.

Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia nostra,
lacus cursus tellus, ac eleifend felis eros non ante. Proin aliquet, |
orci est sit amet odio. Aenean consectetur rutrum nibh quis congu

Verdana, Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia
auctor gravida, sapien lacus cursus tellus, ac eleifend felis
sem porttitor nulla, non condimentum orci est sit amet oc
fermentum interdum.

Geneva, Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia r
gravida, sapien lacus cursus tellus, ac eleifend felis eros non
porttitor nulla, non condimentum orci est sit amet odio. Aer
fermentum interdum.

Tahoma, “Lucida Grande”, Arial, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia nostra,
lacus cursus tellus, ac eleifend felis eros non ante. Proin aliquet,
orci est sit amet odio. Aenean consectetur rutrum nibh quis congL

“Trebuchet MS", Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia nostra
sapien lacus cursus tellus, ac eleifend felis eros non ante. Proin i
condimentum orci est sit amet odio. Aenean consectetur rutrum

"Century Gothic", "Gill Sans", Arial, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia
gravida, sapien lacus cursus tellus, ac eleifend felis eros nor
nulla, non condimentum orci est sit amet odio. Aenean cor
interdum.

Arial, Helvetica, sans-serif

Class aptent taciti sociesqu ad litora terquent per conubia
tellus, ac eleifend felis eros non ante. Proin aliquet, magn:
consectetur rutrum nibh quis congue. Cras porttitor fermel

Verdana, Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per ¢
sapien lacus cursus tellus, ac eleifend felis eros nor
condimentum orci est sit amet odio. Aenean conse

Geneva, Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia
tellus, ac eleifend felis eros non ante. Proin aliquet, magn:
consectetur rutrum nibh quis congue. Cras porttitor fermer

Tahoma, "Lucida Grande”, Arial, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubia
tellus, ac eleifend felis eros non ante. Proin aliquet, magne
consectetur rutrum nibh quis congue. Cras porttitor ferme

"Trebuchet MS", Arial, Helvetica, sans-serif

Class aptent taciti sociosqu ad litora torquent per conubi
tellus, ac eleifend felis eros non ante. Proin aliquet, mag
Aenean consectetur rutrum nibh quis congue. Cras portti

"Century Gothic", "Gill Sans", Arial, sans-serif

Class aptent taciti sociesqu ad litora torquent per conubia
tellus, ac eleifend felis eros non ante. Proin aliquet, magni
consectetur rutrum nibh quis congue. Cras porttitor fermel

FIGURE 6-3

Sans-serif fonts on Mac
(left) and Windows
(right). Some people
believe that you should
use only sans-serif fonts
on web pages because
they think the delicate
decorative strokes of serif
fonts don’t display well
on the coarse resolution
of a computer screen.
However, high-density
screens—newer screens
that pack more pixels in
per inch—don’t have that
problem. Their ultra-tiny
pixels do an excellent job
displaying small details
like serifs. In the end,
your aesthetic judgment
is your best guide. Pick
the fonts you think look
best.

I MONOSPACED AND FUN FONTS

Monospaced fonts are often used to display computer code like the CSS snippets
you see throughout this book. Each letter in a monospaced font is the same width
(like the ones manual typewriters used).

CHAPTER 6: FORMATTING TEXT 125

USING WEB .

“Courier New”, Courier, monospace
FONTS

* “Lucida Console”, Monaco, monospace

» o«

* “Copperplate Light”, “Copperplate Gothic Light”, serif

* “Marker Felt”, “Comic Sans MS”, fantasy

Examples of these font lists are pictured in Figure 6-4.

"Courier New", Courier, monospace

Class aptent taciti sociosqu ad litora torquent per ¢
inceptos himenaeos. Morbi tempor, leo vehicula aucto:
cursus tellus, ac eleifend felis eros non ante. Proil
tincidunt, metus sem porttitor nulla, non condimentur
Aenean consectetur rutrum nibh quis congue. Cras por:

"Lucida Console", Monaco, monospace

Class aptent taciti sociosqu ad Titora torquent per
inceptos himenaeos. Morbi tempor, leo vehicula aucto
cursus tellus, ac eleifend felis eros non ante. Proil
tincidunt, metus sem porttitor nulla, non condimentur
Aenean consectetur rutrum nibh quis congue. Cras por

"COPPERPLATE LIGHT", "COPPERPLATE GOTHIC LIGHT", SERIF
CLASS APTENT TACITI SOCIOSQU AD LITORA TORQUENT PER CON
HIMENAEOS. MORBI TEMPOR, LEO VEHICULA AUCTOR GRAVIDA, S.
ELEIFEND FELIS EROS NON ANTE. PROIN ALIQUET, MAGNA ET SOL
PORTTITOR NULLA, NON CONDIMENTUM ORCI EST SIT AMET ODIO.
NIBH QUIS CONGUE. CRAS PORTTITOR FERMENTUM INTERDUM.

"Marker Felt”, "Comic Sans MS", fantasy
Class taciti soclosqu ad litora torquent

aptent conubia nostra,
aravida, sapien lacus cursus tellus, ac eleifend

is eros non ante.

inceptos hin
in aliquet, m:

"Courier New", Courier, monospace

Class aptent taciti sociosqu ad litora torquent
Morbi tempor, leo vehicula auctor gravida, sapi
non ante. Proin aliquet, magna et sodales tinci
condimentum orci est sit amet odio. Aenean cons
porttitor fermentum interdum.

"Lucida Console", Monaco, monospace

Class aptent taciti sociosqu ad litora torquent
Morbi tempor, leo vehicula auctor gravida, sapi
non ante. Proin aliquet, magna et sodales tinci
condimentum orci est sit amet odio. Aenean cons:
porttitor fermentum interdum.

"Copperplate Light", "Copperplate Gothic Light", serif

Class aptent taciti sociosqu ad litora torquent per conubia nos
auctor gravida, sapien lacus cursus tellus, ac eleifend felis erc
sem porttitor nulla, non condimentum orci est sit amet odio. .
fermentum interdum.

"Marker Felt", "Comic Sans MS", fantasy

Class aptent taciti sociosqu ad litora torquent per conubia nc
auctor gravida, sapien lacus cursus tellus, ac eleifend felis e
metus sem porttitor nulla, non condimentum orci est sit ame

FIGURE 6-4

Monospaced fonts on
Mac (left) and Windows
(right). Courier New

is the most common
monospaced font, but
you're far from limited to
it. Lucida Console is very
common on Windows,
and Monaco is installed
on every Mac.

I ADDITIONAL FONTS TO CONSIDER

There are literally thousands of fonts, and every operating system ships with many
more fonts than are listed here. However, a few fonts are very common on both

Macs and PCs, so you might want to give these a go:

* “Arial Black”
* “Arial Narrow”

* Impact

Be careful with Arial Black and Impact: They only have a single weight and don’t
include an italic version. Accordingly, if you use these fonts, make sure to set the
font-weight and the font-style (coming up on page 156) to normal. Otherwise, if
the text is bolded or italicized, the browser will make its best (read: ugly) guess at
what the text should look like.

M Using Web Fonts

The traditional way of using fonts in CSS is straightforward: Just specify the font
you want, using the font-family property. However, you’re limited to fonts your
visitors are likely to have installed on their computers. Fortunately, as mentioned
earlier, all major browsers now support web fonts. With web fonts, browsers actually
download the font from a web server and use it to display text on the web page.

126 CSS: THE MISSING MANUAL

The CSS part of web fonts is pretty basic and requires just two CSS commands:

* The @font-face directive is responsible for telling a web browser both the
name of the font and where to download the font from. You’ll learn how this
CSS command works on page 131, but for now just keep in mind that this is how
you tell a browser to download the font.

* The font-family property is used with web fonts in the same manner as the
already installed fonts described on page 121. In other words, once the @font-
face directive instructs the browser to download the font, you can then assign
that font to any CSS style by using the font-family property.

In theory, web fonts aren’t all that difficult to use. However, when you dig into the
details, you’ll need to understand a few unique requirements to use them properly.

NOTE Google offers a really easy method of using web fonts. Page 140 goes into all the details.

Font File Types

Believe it or not, Internet Explorer has had support for web fonts since version 5
(released over 15 years ago!). Unfortunately, it required a unique and difficult method
to create font formatting. That is, you couldn’t just take a regular font from your
computer, slap it up on a web server, and be done. Instead, you needed to take a
regular font and convert it to EOT—Embedded OpenType—format. That’s still true
for versions up through IE8.

There are still other font formats used for web fonts—some of which work in some
browsers but not others. To make sure the largest number of visitors to your site
can enjoy the fonts you specify, you’ll need to provide those fonts in a variety of
formats (you’ll find the details on page 129).

Here’s a list of the different font types and which browsers they work in.

* EOT. Embedded OpenType fonts work only in Internet Explorer. You need a
special tool to convert a regular font to EOT format, but sites like FontSquirrel
(page 129) can do this for you.

* TrueType and OpenType. If you look in your computer’s Fonts folder, you'll
probably find fonts in .ttf (TrueType) or .otf (OpenType), the most common
formats for computer fonts. You can use them for word processing and desktop
publishing as well as for web pages. This font type was once the most common
font type used for web fonts and is still supported by most browsers. However,
it’s been passed by a leaner font format—WOFF.

 WOFF. Web Open Font Format was designed specifically for the Web. WOFF
fonts are basically compressed versions of TrueType or OpenType fonts, which
means they’re generally smaller in file size and download more quickly than
other fonts. WOFF format has wide browser support as well, including IE9 and
later, Firefox, Chrome, Safari, Opera, BlackBerry Browser, iOS Safari version 5
and later, and Android Browser 4.4 and later.

USING WEB
FONTS

CHAPTER 6: FORMATTING TEXT

127

USING WEB
FONTS

NOTE WOFF2 is a newer version of WOFF with up to 30 percent better compression, for even smaller, faster-
loading fonts. However, at the time of this writing, it’s not supported by Internet Explorer, Firefox, or Safari: http://
caniuse.com/#search=woff2.

* SVG. Scalable Vector Graphic format isn’t a font format, per se. It’s actually a
way to create vector graphics—graphics that can scale without losing quality.
Support for SVG fonts is very limited: Internet Explorer, Chrome, Opera, and
Firefox don’t support SVG fonts. Another problem with SVG is that it produces
files that are often twice the size of TrueType and three times the size of WOFF
fonts. The only real benefit of SVG is that it’s the only font format understood
by older versions of iOS running Safari version 4.1 or earlier, as well as Android
Browser 4.3 and 4.1. If you’re not targeting those older mobile devices, then
you can skip SVG fonts.

You don’t have to select just one font type and ignore all other browsers. As you’ll
read on the next page, you can (and usually will) specify multiple formats and let
the browser download the one that works for it. In addition, you can download a
font that’s already been converted to formats, or even convert a regular TrueType
font into these multiple formats.

NOTE A single font file contains just one weight and style for that font. In other words, if you want text
to be bold, italic, or bold and italic, you must download separate font files for each variation of the font. Some
fonts, especially fun display fonts, only include one variant and are best used for headlines or text where you
won’t need italic or bold versions. See page 156 for more information on different font weights and styles.

Legal Issues with Web Fonts

The second hurdle to using web fonts is a legal issue. Individuals and companies
create and sell fonts, like other software, to make their livelihood. When you upload
a TrueType font to your web server for visitors to use while viewing your site, anyone
can simply download the font and start using it on her own website or in her com-
puter’s word processing or page layout program. Most font companies don’t like the
idea of people pirating their creations, so many fonts have licenses that specifically
prohibit their use on the Web.

In other words, even if you buy a font from Adobe, you can’t simply start using it on
your website. Many font companies are now offering different kinds of licenses (at
different prices) to allow for use on the Web. This even applies to fonts that come
supplied with your computer. You're allowed to use them with the programs you
install on your computer, but you may not be allowed to place those same font files
on your web server to use as a web font. If you don’t know whether a font allows Web
use, you’re better off not using it and finding a font that can be used on the Web.

NOTE To sidestep any legal issues, you can use a font service like Google Fonts (page 140) or TypeKit, a
commercial web font service from Adobe (see the box on page 148).

128

CSS: THE MISSING MANUAL

http://caniuse.com/#search=woff2
http://caniuse.com/#search=woff2

Finding Web Fonts

When looking for web fonts, you’re confronted with two issues: finding fonts that
are legal to use on the Web and finding fonts in the font formats your visitor’s web
browsers need (EOT, WOFF, TrueType, and SVG). While some font companies have
begun to offer web licenses for fonts you purchase, there is a wide assortment of free
fonts available for web use. Here are a few of the many sources for free web fonts:

* The League of Moveable Type (www.theleagueofmoveabletype.com). Com-
posed of a group of designers, this site was one of the first to offer free, hand-
crafted fonts for web use. Their font, League Gothic, is widely used on the Web.

» Exljbris font foundry (www.exljbris.com). Provides classic, free fonts: Museo,
Museo Sans, and Museo Slab.

« The Open Font Library (http://openfontlibrary.org). Over 400 free fonts (at the
time of this writing) are available and all of them can be used on your websites
(just don’t use all 400 at once).

* Font Squirrel (www.fontsquirrel.com). A landmark site in the web font world
offering more than a thousand fonts. In addition, Font Squirrel offers an online
tool for converting a TrueType or OpenType font to other font formats includ-
ing EOT, SVG, WOFF, and even WOFF2. You’ll learn how to use this tool in the
next section.

« Google Fonts (www.google.com/fonts). Google provides a simple and free
way to include web fonts on your sites. You’ll learn how to use this service on
page 140.

Generating Multiple Font Formats

Most of the sites offering free fonts provide the font in a single format (usually
TrueType (.ttf) or OpenType (.otf). While many browsers support TrueType and
OpenType, not all do. In addition, the WOFF format is supported by all modern
browsers and has the advantage of being smaller in file size than TrueType. The
newer WOFF2 font is supported by a few browsers now, and will be adopted by all
browsers at some point.

There are several approaches you can take when using web fonts on your own
sites. First, you can be conservative and use fonts that work for old browsers and
older mobile devices. This means including an EOT font (for IE8), TrueType fonts
for older desktop browsers, WOFF fonts for current browsers, and SVG fonts for
older phones and tablets.

Alternatively, since the WOFF file format is well supported by all modern browsers,
you could simply use just WOFF fonts. Older browsers viewing the page will just
skip the WOFF font, and choose the next font in the font stack (page 123).

And, finally, you can use just EOT and WOFF files. The EOT file will be for Internet
Explorer 8, which is still in use (see the box on page 13). The WOFF file will be for
all others current browsers (including IE9 and later.)

USING WEB
FONTS

CHAPTER 6: FORMATTING TEXT

129

http://www.theleagueofmoveabletype.com
http://www.exljbris.com
http://openfontlibrary.org
http://www.fontsquirrel.com
http://www.google.com/fonts

USING WEB However you proceed, you'll need to create the font files. Fortunately, Font Squir-
FONTS rel provides a very useful online tool to help generate the required font formats.
The Webfont Generator (located at http://www.fontsquirrel.com/tools/webfont-
generator) provides a simple method for creating not only the proper fonts, but

also a sample HTML file and a basic CSS style sheet.

To use Font Squirrel’s Webfont Generator:
1. Locate a TrueType (.ttf) or OpenType (.otf) font.

Use one of the sites listed in the previous section, or find a font from another
site. Just make sure that the font is licensed for use as a web font. If it’s not, or
you’re not sure, then skip it and find another font.

2. Go to the Web font Generator at www.fontsquirrel.com/tools/webfont-
generator.

It’s a simple page with just a few options (see Figure 6-5).
3. Click the Upload Fonts button (#1in Figure 6-5).
Your browser opens a “Select files” dialog box.
4. Select one or more fonts from your computer, and then click the Open button.
Your browser uploads the file or files to the Font Squirrel server.
5. Select a conversion option (#2 in Figure 6-5).
» Basic simply converts the font to EOT, WOFF, and SVG formats.

* Optimalis a better choice, since it not only converts the font but also makes
other enhancements to improve the performance and speed of the fonts.

* Expertlets you tweak every last setting for the conversion. For example, it
lets you create a subset of the font—that is, just a handpicked set of charac-
ters. In other words, you could exclude from the font file certain characters
you’re not using, like the semicolon, exclamation mark, or letters that use
diacritical marks such as U, é, or 8. In addition, you can use Expert to get
just certain formats, like WOFF or WOFF2.

6. Turn on the “Yes, the fonts I’m uploading are legally eligible for web em-
bedding” checkbox (#3 in Figure 6-5).

As mentioned on page 128, fonts are intellectual property, and just slapping
one up on a web server promotes software piracy. Make sure your fonts can be
used on the Web; most of the ones listed in this section can.

7. Click the Download Your Kit button (#4 in Figure 6-5).

Depending on the number of fonts you’re converting and their complexity, the
download process may take a while. The Font Squirrel server needs to take the
font and perform its magic to generate each font format. When it’s done, you’ll
download a folder containing the various font format files, a demo file, a CSS

130 CSS: THE MISSING MANUAL

http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator

USING WEB
FONTS

file, and a few other miscellaneous files. The most important are the font files
you want to use (for example, .eot, .ttf, .woff, or .svg files).

Now that you’ve got the fonts you wish to use, it’s time to learn how to use them
with CSS’s @font-face directive.

FIGURE 6-5

WEBFONT GENERATOR

you're doing, stick with
Usage: Click the "Add Fonts" button, check the agreement and download your fonts. If you need more fine-grain control, Font Squirrel’s Optima/

choose the Expert option. . .
pertop conversion setting. It

generates all the font
1 UPLOAD FONTS 4 formats you’ll need

and makes a few other
Sinkin Sans 600 SemiBold Regular otf 414 glyphs 36KB ﬂ adjustments to make the
fonts load faster and look

msic ©opTiMAL " JEXPERT... better onscreen. But for
" e mance and sp e ‘ ultimate control, choose
the Expert option, and

greement: ?es, the fonts I'm uploading are legally all‘glble for web embedding. you’” seea IISt Ofneafly

| off hi €
a dozen settings you can

é DOWNLOAD YOUR KIT use to alter how the fonts
are generated.

Using the @font-face Directive

Once you’ve downloaded the proper font files, it’s time to use them. First, copy the
files to the location on your computer where you keep the files for your website.
Many web designers create a dedicated folder at the site root folder named fonts,
_fonts, or web fonts. Alternatively, if you have a folder for your CSS files, you can
place the font files there. It doesn’t really matter where you put these files on your
site, but it helps to be organized.

The secret to web fonts is a CSS command called the @font-face directive. This
command at its most basic names the font and tells the browser where to find the
font file for download. You place the @font-face directive in your style sheet, just
like a regular style. For example, say you’re using the League Gothic font. You have
a TrueType file named League Gothic-web font.ttfinside a fonts folder on your site.
You’d instruct a browser to download this font by adding the @font-face directive
to your style sheet, like this:

@font-face {
font-family: "League Gothic";
src: url('fonts/League Gothic-web font.woff');

}

CHAPTER 6: FORMATTING TEXT 131

USING WEB
FONTS

The first property, font-family, you’'ve seen before, but here it has a different pur-
pose. When used inside an @font-face directive, font-family assigns a name to
the font. You then use that font name when you want to apply that font to a style.
For example, say you want to use the League Gothic font for all paragraphs on a
page. You could use this style:

p{
font-family: "League Gothic";

}

NOTE You use one @font-face directive for each font you wish to use. If you have three fonts—for

example, regular, italic, and bold versions of a font—you need three @font-face directives. It's a good idea to
keep them grouped together and place them at the top of your style sheet, so the browser can begin downloading
them immediately.

The second attribute—the src property—tells the browser where to look for the
font file on the server. You place the path from the style sheet to the font file on the
system inside quote marks and inside url(). The path works just like other HTML
file paths, like paths to images, links, and JavaScript files. For example, say you had
a style sheet inside a folder named styles, and a font file named my font.woff
inside a folder named fonts. Both folders are in the root of your site. So the path
from the style sheet to the font file is ../ fonts/my font.woff. You'd write an @
font-face directive for that font like this:

@font-face {

font-family: "My Font";

src: url('../ fonts/my font.woff');
}

You've probably noticed that in the examples above, there’s only a single font file—
a WOFF font. That makes it easy to see how @font-face works in general, before
jumping into more detail. As discussed earlier, @font-face lets you specify multiple
files with different font types.

Unfortunately, if you want to support older browsers, phones, and tablets, the
syntax that is a bit complicated. For example, say you want to use all the different
font formats for League Gothic on your site. Here’s how to rewrite the above code:

@font-face {
font-family: 'League Gothic';
src: url('fonts/League Gothic-webfont.eot');
src: url('fonts/League Gothic-webfont.eot?#iefix') format('embedded-
opentype'),
url('fonts/League_Gothic-webfont.woff2') format('woff2'),
url('fonts/League_Gothic-webfont.woff') format('woff"),
url('fonts/League_Gothic-webfont.ttf') format('truetype'),
url('fonts/League_Gothic-webfont.svg') format('svg');

132

CSS: THE MISSING MANUAL

This all looks messy, and unfortunately, due to a bug in IE, it’s unnecessarily com- USING WEB
plicated. Here’s how it breaks down: FONTS

 Line 2 is the same as before. The font-family property supplies the name of
the font—the same name you’ll use when applying the font to your CSS styles.

* Line 3 is for Internet Explorer 9, but only when it’s in Compatibility mode—a
mode where IE9 acts like it’s IE8. This weird feature was added to IE9 so that
websites designed to correctly accommodate the bugs in |IE 8 and earlier would
look okay in IE9. A user has to purposely switch to compatibility mode in IE9,
so you’re probably safe leaving this out.

* Line 4 begins a second src property, which according to the rules of the @font-
face directive, can have multiple font types specified. The first font is the .eot
font again, but this time you’ll see that at the end of the .eot file, you need to
add ?#iefix. This is to accommodate yet more IE bugs—this time for IE6-8. If
you don’t add that little bit to the URL following the .eot, then the font may not
display in |IE8 or earlier correctly.

You’ll also notice that after the URL there’s some new code:
format('embedded-opentype")

This indicates the font format, and you add this after each URL for a different
font format.

* Lines 5-8 simply identify additional font formats. This is actually just one
property—the src property—split over several lines for greater readability. For
each font type you specify for the src property, you add a URL, a format, and
a comma (for all but the last font):

url('fonts/League Gothic-web font.woff') format('woff'),

NOTE At the end of the list of files for the src property, you add a semicolon to note that you've reached
the end of the src property (line 7 above). Don’t forget this final semicolon, or the @font-face directive
won’'t work.

Even though a browser may understand different types of fonts (for example,
Chrome can use WOFF2, WOFF, TrueType, and SVG fonts), it won’t download
all the font files. Instead, as it reads through the list of font types, the browser
downloads only the first one it understands. In other words, if Chrome encoun-
tered the above code, it would skip the .eot file since it doesn’t understand that
font format, but it would download the .woff2 file. It would then skip the Tru-
eType and SVG files entirely. That means the order in which you list the fonts is
important. WOFF is generally preferred, since it’s a smaller file that downloads
more quickly. WOFF2 is an optimized version of WOFF, and thus has the small-
est file size—but it’s only supported in a few browsers. SVG is generally a much
larger file. So you want to make sure that you list the fonts in a specific order to
make sure browsers download the smallest font file that works for them: .eot,
woff2, .woff, .ttf, and .svg.

CHAPTER 6: FORMATTING TEXT 133

USING WEB
FONTS

If you just need to support Internet Explorer 8 and more modern browsers, you can
safely use just EOT, WOFF2, and WOFF files. In fact, if you’re no longer worried about
Internet Explorer 8 (see the box on page 13), you can get away with just WOFF files!
Here are two alternative ways to specify the same @font-face directive as above:

@font-face {
font-family: 'League Gothic';
src: url('fonts/League Gothic-webfont.eot?#iefix') format('embedded-
opentype'),
url('fonts/League Gothic-webfont.woff2') format('woff2'),
url('fonts/League Gothic-webfont.woff') format('woff');
}

And, if you’re not worried about Internet Explorer 8 or earlier, you can simplify this
even more:

@font-face {
font-family: 'League Gothic';
src: url('fonts/League Gothic-webfont.woff2') format('woff2'),
url('fonts/League Gothic-webfont.woff') format('woff');
}

This book uses the last example, which aims to support only modern web browsers.
But if you find that a significant portion of your website visitors use Internet Explorer
8, then you might wish to use the version that includes the .eot file as well. Likewise,
if you need to support the older phones and tablets listed on page 132, you’ll need
to use the much more complex syntax shown on page 132.

NOTE Just because you don’t include web fonts for older browsers (like .svg, .ttf, or .eot) doesn’t mean those
older browsers won’t see the content on your site. Remember, you’ll use a font stack (page 123) when specifying
a font, so that browsers that don’t have an appropriate web font will use a fallback font—one that looks similar
to the web font. Most of the time, it’s all right if your site doesn’t look exactly the same on every browser.

Creating Styles Using Web Fonts

The hardest part of web fonts is getting the font files in the proper format and
setting up the @font-face directives. Once that’s done, you use web fonts just as
you would the preinstalled fonts discussed on page 121. In other words, when you
create a new style, you simply use the font-family property and supply the name
for the font you used in the @font-face directive. For example, in the previous code,
the @font-face directive names the new font League Gothic. This is the name you
use when applying this font to a style. To make all <h1> tags use the League Gothic
font, you could write this style:

h1 {
font-family: 'League Gothic';
font-weight: normal;

}

134

CSS: THE MISSING MANUAL

Notice that there’s a new property—font-weight—listed here. Browsers normally
display <h1> tags as bold. Most browsers will artificially bold a web font when a
bold version is required. This results in an ugly boldface. Setting the font-weight
to normal tells the browser to just use the League Gothic font “as-is,” and avoids
trying to bold it. In the next section, you’ll learn more about how to deal with font
variants like bold and italic with web fonts.

It’s also a good idea to include a list of backup, preinstalled fonts, in case the
browser can’t load the web font. This is the same technique described on page 123.
For example:

h1 {
font-family: 'League Gothic', Arial, sans-serif;
font-weight: normal;

}

TIP You can use fonts that contain symbols and icons on a web page, too. So rather than creating a graphic
of a warning sign (for example) and placing it inside a paragraph of text, you can use the @font-face direc-
tive to load a font containing the warning sign icon and just use a simple letter (mapped to the icon in the font).
However, before using icon fonts, you may want to check out the vast number of Unicode symbols that are really
graphical icons, or use SVG (scalable vector graphics) for icons. You can learn more about those options at hitps://
developers.google.com/web/fundamentals/media/images/use-icons?hl=en.

Dealing with Bold and Italic Font Variants

The common fonts installed on computers include variations in style and weight, so
when you apply a tag in HTML, a web browser uses the bold version of that
font. Likewise, when you apply an tag to text, the browser uses an italicized
version of that font; and if you combine both tags, you’ll see a bold and italic ver-
sion of the font. These are actually different fonts contained in different font files.
With the original method of using fonts in web pages (described on page 121), you
never have to worry about these different fonts, since the browser uses the correct
version automatically.

However, with web fonts, you need separate font files for each font variant. So for
body text you’ll need at least a regular version of a font, a bold version, an italic
version, and a bold/italic version. Keep this in mind when finding a web font for your
site; some fonts only have a single weight and no italic version. This could be fine
for a headline, but not much use for long paragraphs of text, which most likely will
have some italic and bold text. In addition, you must create separate @font-face
directives for each font variant.

You have two choices when working with italic/bold versions of web fonts. One
method is easier to implement, but doesn’t work on Internet Explorer 8 or earlier
(or IE9 in compatibility mode); the other is more labor intensive, but works on older
versions of Internet Explorer.

USING WEB
FONTS

CHAPTER 6: FORMATTING TEXT

135

USING WEB
FONTS

I THE EASY WAY TO ADD BOLD AND ITALIC

The easiest way to add bold and italic variants of your fonts is to add font-weight
and font-style properties to the @font-face directive. Normally, the CSS font-
weight property (page 156) tells a browser to display a font in bold, normal, or one
of several other weights, while the font-style property (page 156) tells a browser
to display a font as italic or normal. However, when used within the @font-face
directive, font-style tells a browser to apply the font when the style asks for a
particular variant of the font.

Say you have a font named PTSans. You start with the normal, non-bold, non-italic
version of the font. The various font formats begin with PTSansRegular. In your style
sheet, you’d add this @font-face directive:

@font-face {
font-family: 'PTSans';
src: url('PTSansRegular.woff2') format('woff2'),
url('PTSansRegular.woff') format('woff'),
font-weight: normal;
font-style: normal;

NOTE In the code above, no .eot font (required by IE8) is included, because this technique doesn’t work

with that browser. This example also ignores older versions of desktop, mobile, and tablet browsers. However, it
will work with all current browsers, including Internet Explorer 9.

Notice the following:

* You use a generic name for the font family—PTSans in line 2 above—instead of
the specific name for that font file—PTSansRegular.

* The font-weight is set to normal, since this isn’t a bold version of the font (line 8).

* The font-styleis set to normal, since this isn’t an italic version of the font (line 9).

NOTE The code examples here assume that the font files PTSansRegular.eot, PTSansBold.eot, and so on are
in the same folder as the style sheet. If they were in different folders, you’d need to adjust the URL to accurately
point to the location of the font files in relation to the style sheet.

Now, say you had an italicized version of the font—the file name begins with PTSansltalic.
You’'d then add this to your style sheet:

@font-face {
font-family: 'PTSans';
src: url('PTSansItalic.woff2") format('woff2"),
url('PTSansItalic.woff') format('woff');
font-weight: normal;
font-style: italic;
}

136

CSS: THE MISSING MANUAL

You use the same font-family name in line 2—PTSans. However, you change the
font-style to italic (line 6). This tells the browser that the font you're specifying is
the italic version of the PTSans font. You’d add similar @font-face directives for the
bold and the bold/italic versions like this:

@font-face {
font-family: 'PTSans';
src: url('PTSansBold.woff2') format('woff2'),
url('PTSansBold.woff') format('woff');
font-weight: bold;
font-style: normal;

}

@font-face {
font-family: 'PTSans';
src: url('PTSansBoldItalic.woff2') format('woff2'),
url('PTSansBoldItalic.woff') format('woff');
font-weight: bold;
font-style: italic;
}

In other words, you need four @font-face directives to cover all variants of bold,
italic, and regular text. Notice that the font-family name is the same in each case;
only the src properties change (to point to the different files) and the font-weight
and font-style properties change.

The benefit of this method is that you can apply the regular font to text, apply
 and tags to your HTML, and let the browser worry about which font
file to load and use. In this example, if you want to use the PTSans font on all your
paragraphs, you’d simply add this style to your style sheet:

p{
font-family: PTSans;

}

Then you can mark up your paragraph tags with HTML. For example, you might
have a paragraph like this:

<p>When I was younger, I could remember anything, whether it had hap-
pened or not -- Mark Twain
</p>

When the web browser reads the style sheet (with the four @font-face directives
and the p tag style), it would display most of the paragraph using the PTSans-
Regular font. However, the word “anything” contained inside the tags would
use the PTSansltalic font; the word “not” inside the tags would use the
PTSansBold font; and “Mark Twain” inside both and tags would use
the PTSansBoldltalic font.

USING WEB
FONTS

CHAPTER 6: FORMATTING TEXT

137

USING WEB
FONTS

These directives even work for headlines. If you created a style to format all h1 tags
with PTSans, you could create this style:

h1 {
font-family: PTSans;
}

With this style in place, a web browser would actually use the bold version of PT-
Sans, since headlines are normally displayed in bold. (When you use this technique
involving multiple variations of a font, you should not add font-weight: normal;,
as described on page 136.)

Unfortunately, Internet Explorer 8 and earlier don’t understand this method and
will use the PTSansRegular font for all of the text. IE will create faux-italic and faux-
bold for the and tags; that is, it will slant the PTSansRegular font on
screen for italic, and make the PTSansRegular font thicker for bold. The resulting
computer-generated bold and italic usually look pretty bad.

I ADDING BOLD AND ITALIC AND SUPPORTING INTERNET EXPLORER 8

If you're still supporting Internet Explorer 8 (or earlier), the previous solution to bold
and italic won’t work. You can get font variants to work in IE8, but it requires a bit more
work. To begin with, you still create four @font-face directives, one for each variant
of the font. However, instead of giving them the same font-family name (PTSans,
for example), you give each one its unique name (PTSansRegular, PTSansltalic, and
so on). In other words, you'd rewrite the four @font-face directives like this:

@font-face { font-family: 'PTSansRegular';
src: url('PTSansRegular.eot?#iefix') format('embedded-opentype'),
url('PTSansRegular.woff2"') format('woff2'),
url('PTSansRegular.woff) format('woff');

@font-face { font-family: 'PTSansItalic';
src: url('PTSansItalic.eot?#iefix') format('embedded-opentype'),
url('PTSansItalic.woff2') format('woff2'),
url('PTSansItalic.woff) format('woff");

@font-face { font-family: 'PTSansBold';
src: url('PTSansBold.eot?#iefix") format('embedded-opentype'),
url('PTSansBold.woff2") format('woff2"),
url('PTSansBold.woff") format('woff');

@font-face { font-family: 'PTSansBoldItalic';
src: url('PTSansBoldItalic.eot?#iefix') format('embedded-opentype'),
url('PTSansBoldItalic.woff2") format('woff2'),
url('PTSansBoldItalic.woff') format('woff');

}

138

CSS: THE MISSING MANUAL

Notice that each @font-face directive has its one family name—one that matches
the font variant: PTSansRegular, PTSansltalic, PTSansBold, and PTSansBoldltalic.

In addition, notice that the font-weight and font-style properties used in the
examples on pages 136-138 are gone. You don’t need them here.

The hard part comes when it’s time to apply the font. In the example on page 137,
you merely applied the font-family to the style like this:

p{
font-family: PTSans;

}

Now, unfortunately, you have to apply the different font names to the various tags—p
for regular, em for italic, strong for bold, and a descendant selector to handle the
case of bold and italic. So to get the different variants of the PTSans font to work,
you need to create four styles, involving many lines of code, like this:

p{
font-family: PTSansRegular;
font-size: 48px;
font-style: normal;
font-weight: normal;

}

pem {
font-family: PTSansItalic;
font-style: normal;
font-weight: normal;

}

p strong {
font-family: PTSansBold;
font-style: normal;
font-weight: normal;

}

p strong em, p em strong {
font-family: PTSansBoldItalic;
font-weight: normal;
font-style: normal;

}

First, notice there are four styles: the p style applies the PTSansRegular font; p emis
a descendant selector that applies to an tag that’s inside a <p> tag—that style
applies the PTSansltalic font; p strong is another descendant selector, which ap-
plies the PTSansBold font to the tag when it appears inside a paragraph;
and finally, there’s a group selector composed of two descendent selectors. The first
descendant selector applies to an tag that’s inside a tag that’s inside

USING WEB
FONTS

CHAPTER 6: FORMATTING TEXT

139

DISCOVERING
GOOGLE WEB
FONTS

a<p> tag, whereas the second applies to a tag inside an that’s inside
a <p>. You need both because you can nest tags inside of tags and
vice versa. You could end up with HTML like this:

<p>
Hey!
I'm talking to
you
</p>

Thesingle p strong emselector won’t work for the “Hey!” above, since it’s a
tag inside an tag.

NOTE In HTML5, the (for bold) and <i> (for italic) tags are back. You should use them merely for
presentational purposes—when you want text to be italic, but not add any real emphasis to the meaning of the
text. For example, the titles of books are often italicized, so using the <i> tag is recommended:

<i>CSS: The Missing Manual</i>

Using would emphasize the text and cause screen readers to read the text aloud in a different way than
other text. At any rate, if you intended to use and <i>, make sure you create styles that use the italic and
bold variants of the font (again, you only need worry about that if you’re using the |E8-safe way of specifying
italics, not if you’re using the method discussed on page 138).

Another thing to notice is that you have to set the font-weight and font-style to
normal for all these styles. If you don’t, many browsers (not just Internet Explorer) will
try to bold the already bolded font, and italicize the already italic version of the font.

This second technique for supporting bold and italic variants is obviously a lot of
work. It becomes even more work if you use more than one font with bold and italic
versions on the same site. Which technique you use really depends on how important
Internet Explorer 8 support is for you. At the time of this writing, IE 8 is still quite
popular, ranging from 3.71% (http://gs.statcounter.com/#browser_version_par-
tially_combined-ww-monthly-201401-201507) to 19% (http://www.netmarketshare.
com) of web browsers in use.

NOTE Here’s another approach to the problem of supporting bold and italic for IE8. Try the first method
(page 136), and see how it looks in IE8. Some fonts, usually sans-serif fonts, don’t always look that bad when IE
does its faux-italic and -bold thing to them. You might find that the difference isn’t that noticeable, and you can
use the first method without much of a problem. Also, remember that IE8’s market share will continue to decline
as people buy new computers, switch to Chrome or another browser, or upgrade their operating systems.

M Discovering Google Web Fonts

If the instructions for using web fonts discussed in the previous section sound too
daunting to you, there’s an easier way—although one with fewer font options. In

140

CSS: THE MISSING MANUAL

http://gs.statcounter.com/#browser_version_partially_combined-ww-monthly-201401-201501
http://gs.statcounter.com/#browser_version_partially_combined-ww-monthly-201401-201501
http://www.netmarketshare.com
http://www.netmarketshare.com

DISCOVERING
GOOGLE WEB
FONTS

addition to search, maps, email, and all the many services it offers, Google provides
an easy-to-use web fonts service. Rather than downloading fonts, converting them
to proper formats, and then placing them onto your web server, you simply include
a single link to an external style sheet that indicates which fonts you’d like to use.
Google’s server sends the proper fonts to the visitor’s web browser. No muss, no fuss.

Your only responsibilities are finding the fonts you want to use on the Google Fonts
site, copying the necessary code (which Google provides) and adding it to your web
page, and creating CSS styles using those fonts. Start by visiting the Google Fonts
site at www.google.com/fonts (see Figure 6-6).

GO ;816 Fonts More scripts About Analytics New to Google Fonts? FIGURE 6-6
The Google Fonts site lists
the fonts Google offers.
671 font families shown Word Sentence Paragraph Poster Ry Some fonts have mu /ﬁp lo
Preview Text: Grumpy wizards make toxic brew forthee ~ 8§ ~ Size: 28px ~ styles, such as bold, italic,
Filters: thin, ultra-thin, and so
All categories - Normal 400 on. To see all variants for
e — Grumpy wizards make toxic br 8r the ev'|| Que a particular font, click the
S 3/ 4 “Show all styles” link in
» Width Open Sans, 10 Styles by Steve Matteson 5] o Add to Collection the left sidebar (circled).
Script: Alternatively, to see just
Latin - the different variants for

Normal 400

a particular font, click the
“See all styles” button
Roboto, 12 Styles by Christian Robertson 5| =] (#1). To .get started qsing
a font right away, click
the “Quick Use”(#2) but-
ton, which loads the Use
panel described on page
Late, 10t s O E e o
with more information
Nocsl 400 on the font as well as a
» Collection (0 font families) Choose Review Use specimen sheet demon-
strating every letter in
the font (it’s a good way
to see what the entire
alphabet looks like and
also to make sure that it
has all the characters you
need—such as unusual
symbols or punctuation
marks); lastly, the “Add
to Collection” button (#4)
adds the font to your col-
lection. (A collection lets
you select several fonts
that you'd like to add to
your site.)

[Reset al fiters/search Grumpy wizards make toxic brew for the evil Queen

Normal 400

Grumpy wizards make toxic brew for the evil Queen ¢

CHAPTER 6: FORMATTING TEXT 141

http://www.google.com/fonts

DISCOVERING
GOOGLE WEB
FONTS

Finding and Selecting Fonts

You select the fonts you wish to use by creating a collection. It’s as easy as finding a
font you like and clicking the “Add to Collection” button (see Figure 6-6). To find a
font, you can scroll down the main web fonts page and see examples of the available
fonts, but with over 670 fonts to choose from, it might take you a while to locate
one you like. If you have a specific look already in mind, like a bold sans-serif font for
headlines, use one of the filtering options on the left side of the page (see Figure 6-7).

* Search by name. If you know the name of the font you’re interested in, then
just type the name (or part of the name) in the Search field (#1in Figure 6-7).
The page then filters the list of fonts to show you the ones that match.

* Filter by category. The category menu (#2 in Figure 6-7) lets you show fonts
that match one, two, three, four, or five categories: Serif, Sans Serif, Display,
Handwriting, and Monospace. Just uncheck a box to hide that type of font, or
turn on the box to show it. Display fonts are generally bold and stylish; they’re
not really good for long passages of text, but can make short headlines really
jump out of the page. Handwriting fonts, or script fonts, look like someone
wrote the text with a pen. They vary from elegant, wedding invitation-like
scripts, to a hand-scrawled, “Give me the money if you want your cat back”
ransom-note look.

* Physical style. Three sliders let you identify physical characteristics of fonts
(#3 in Figure 6-7). The thickness slider lets you find fonts made of very thin
lines (delicate lines that are often hard to read unless displayed at a large font
size) to very thick lines (bold and chunky). The Slant slider identifies fonts with
a “lean” to them: Generally this means italic versions of fonts, but also is rel-
evant for handwritten fonts, which generally have a pronounced lean toward
the right. Finally, use the Width slider to find fonts that are either narrower or
more spread out. With wider fonts, you fit fewer letters on a single line but often
make a bold statement in a headline.

* Alphabet. Lastly, the Script menu (#4 in Figure 6-7) lets you specify fonts for
use with other languages. English and many European languages use the Latin
alphabet, but if you need a font for Russian text, for example, you would choose
Cyrillic. Pick the one that matches the language your text will appear in.

To see a showcase of some of the best fonts available from Google, check out http.//hellohappy.org/
beautiful-web-type/.

142

CSS: THE MISSING MANUAL

http://hellohappy.org/beautiful-web-type/
http://hellohappy.org/beautiful-web-type/

DISCOVERING
GOOGLE WEB
FONTS

0 font families shown FIGURE 6-7
a To help find the fonts that match your design, you can search Google’s
font directory, or filter down the list of fonts by specifying various
Filters: criteria. If you try to use all of these filters, you’ll most likely end up
' with no results. If so, click the “Reset all filters/search” link (circled) to
e"‘" categories return to the full list of Google web fonts.

Sans Serif
Display
Handwriting w

Monospace

oK || Reset |

thin thick

~ Slant

straight slanted

.:’}:‘

~ Width

narrow wide

\':/‘:l

Script:
e Latin -

Cyrillic
Cyrillic Extended
Devanagari
Greek
Greek Extended
Khmer
Latin
Latin Extended
Telugu

A

[X] Reset all filters/search

Styles:
Show all styles

CHAPTER 6: FORMATTING TEXT 143

DISCOVERING
GOOGLE WEB
FONTS

As you find fonts that you’d like to use, you can click the “Add to Collection” button
(#1in Figure 6-8). The collection is kind of like a shopping cart, so you can add fonts
to it and remove fonts from it.

More scripts About Analytics New to Google Fonts?

GoogleFonts

671 font families shown Word Sentence Paragraph Poster s

Preview Text: Grumpy wizards make toxic brew forthee ~ [~ Size: 28px ~ Sorting: Popularity ~

Grumpy wizards make toxic brew for the evil Queen and Jack.

Filters:

FIGURE 6-8

To see the fonts you've
added to your collection,
click the disclosure arrows
(#2). You can remove a
font from the collection

All categories
» Thickness Oswald, 3 Styles by Vernon Adams B O Remove from Collection b y clicki ng the X (delete)
» Slant button to the right of the
»Width i B e font name (#3). The Re-
s’:;:"‘" Cotectononty Grumpy wizards make toxic brew for the evil Queen and Jack. view button (circled) lets
’ you compare the fonts
Latin Slabo 27px, 1 Style by John Hudson B O Remave from Collection in your collection and
(] Reset al fiters/search retrieve more in-depth
Styles: N information. For example,
&1 Show all styles

you can see the complete
character set for each font
(that is, each letter and
symbol), test drive a font
by adding your own text
and changing the font
Size, and even create an
overlay comparison of all
the fonts in your collec-
tion (if you're truly type
obsessed).

Grumpy wizards make toxic brew for the evil Queen and J:
1
Lora, 4 Styles by Cyreal B O Add to Collection o

- Collection (2 font families) e .,..... use

Oswald normai 400

Slabo 27px Normal 400

Remove all families from Collection

Using Google Fonts

Once you’ve created a collection of fonts, you’re ready to retrieve the code neces-
sary to use them.

1. At the bottom right of the Google Fonts screen (#1in Figure 6-9), click the
Use button.

A page opens with several options as well as the code you need to copy.
2. Choose the style you want to use (#2 in Figure 6-9).

Some fonts include italic, bold, and other variants of the regular font. For body
text, you’ll usually want at least regular, italic, and bold. In the case of a headline,
you can usually get away with just one font. You’ll notice also that there’s a “speed
dial” on the right of this page. As you add more styles and fonts, the speed dial
rotates clockwise indicating that it will take more time to download the fonts.

144 CSS: THE MISSING MANUAL

DISCOVERING
That’s one drawback of web fonts. Since your site’s visitors need to download GOOGLE WEB

them (as well as the web page, external style sheets, graphics, and other ele- FONTS

ments that make up your page), be careful not to go crazy and use too many
fonts. Otherwise, people will have to wait a long time for the fonts to appear.
The number on the dial indicates the number of milliseconds (on average) it
will take to download the font files.

3. Optionally, choose the character sets you want.

This step isn’t required and may not be available for all fonts. In addition, if
you selected a character set other than Latin (see the last bullet point on page
142), then you may see other options besides Latin and Latin Extended. Latin
Extended is a good choice if your text contains words in a language that uses
particular accent characters like Turkish, Welsh, and Hungarian. For most Latin-
based languages like French and Spanish, the normal Latin alphabet is all you
need. You're better off not using the extended Latin if you don’t need it, since
using it adds file size and download time to the font.

WS To see a list of the extra characters available in Latin Extended visit http://en.wikipedia.org/wiki/
Latin_Extended-A.

4. Copy the codeinthe “Add this code to your website” box (#3 in Figure 6-9).
You have three options here.

» Standard provides a <link> tag that points to an external style sheet (this
is the same as linking to any external style sheet, as described on page
26). However, this is actually a special link that points to Google’s web
server and provides the information Google needs to deliver the proper
fonts. For instance:

<link href="http://fonts.googleapis.com/css?family=Lato:300,400,300ital
ic, 400italic|Oswald:400,700' rel='stylesheet' type='text/css'>

Notice that at the end of the href attribute, the fonts and their styles are
listed. In this example, the fonts are Lato and Oswald. And Google will load
several styles of Lato: 300, 400, 300italic and 700italic.Those numbers are
a way of indicating the weight (or thickness) of the font and are discussed
in step 6 on page 147. In addition, a number plus “italic” (for example,
“300italic”) indicates an italicized version of that weight for that font.

Even though the Google Fonts site suggests using "type="text/css"" as part of the <link> tag,
you can leave it out. It’s not needed in HTML5.

* Another option is @import. Click the @import tab under step 3 on the web
page (see Figure 6-9) to see the code needed to use the @import directive.
The benefit of this approach is that you can add @import to the beginning

CHAPTER 6: FORMATTING TEXT 145

http://en.wikipedia.org/wiki/Latin_Extended-A
http://en.wikipedia.org/wiki/Latin_Extended-A

DISCOVERING

GOOGLE WEB of another style sheet. For example, say you have a single external style

FONTS sheet for your site, and you’ve linked all the pages in your site to it. The
standard <1ink> method requires you to add that code to every page on
your site. However, with the @import method, you can add the code to your
single external style sheet and you’re done.

GO gle FO ntS More scripts About Analytics New to Google Fonts? Fl G URE 6 = 9
When you’re ready to
Verify your settings below and then copy the code for your website. use the Google fonts that
you’ve added to your col-
o lection, click the Use but-
+. Choose the syiesyou want ton in the bottom right
(#1), and then choose the
) Dswahli.igm 300 Grumpy wizards make toxic brew for the evil Queen and Jack. 2 STV/ES you want (#Z) and
@Normal 400 Grumpy wizards make toxic brew for the evil Queen and Jack. the method you'd like to
~Bold 700 Grumpy wizards make toxic brew for the evil Queen and Jack. 28 use to attach those fonts
esmb::«?:namo Grumpy wizards make toxic brew for the evil to a page (#3). The most
G ipy wizards e toxic brew for the evil Queen and Jack. Impact on page load time

common way is to simply

Tip: Using many font styles can slow down

your webpage, so only select the font link to a style sheet that
styles that you actually need on your
webpage. loads the fonts from

Google’s servers.

. Tip: If you choose only the languages that
2. Choose the character sets you want: you need, you'll help prevent slowness on
your webpage.

7 Latin (latin)) Latin Extended (latin-ext) rons ot -
» Read more on how to use subsef

Standard | @import | Javascript
§ § Instructions: To embed your Collection
3. Add this code to your website: into your web page, copy the code as the
first element in the <head> of your HTML
document.

<link href='http://fonts Slabo+27px’ rel= 't
= = » See an example

. Instructions: Add the font name to your
4. Integrate the fonts into your CSS: CSS styles just as you'd do normally with
any other font.
The Google Fonts AP will generate the necessary browser-specific CSS to use the fonts. All you need to do is add
the font name to your CSS styles. For example: Example:

hl { font-family:
font-family: 'Oswald', sans-serif; ‘Metrophobic’, Arial, serif;
font-weight: 400; }

font-family: 'Slabo 27px', serif;

» Collection (2 font families) Choose Review Use

» Finally, you can choose a JavaScript approach. This book doesn’t cover
this method, since it requires a lot of code, and unless you know JavaScript
really well, it’s easy to make a mistake. In addition, it doesn’t offer much
benefit over the other options.

146 CSS: THE MISSING MANUAL

5. Paste the code on your site’s web pages. ADDING COLOR
TO TEXT

In the case of the <1ink> method described in the previous step, you must paste
the code onto every page you wish to use the fonts on. If you’re just beginning
the process of building your site, this isn’t such a big deal, but if you already have
lots of pages, this may end up being quite a bit of work. In that case, consider
the @import method: You can place the @import code at the top of your site’s
external style sheet, and then all the pages that link to that style sheet will also
download the proper fonts.

The @import method can have a slight effect on your website’s performance; that is, it can slow
download speed.

6. Create styles using the fonts.

Now that the fonts are loading, you can use them much like any other font.
Just create a style, add the font-family property, and list the font. Google’s
Web Fonts page shows the font’s name at the bottom of the Use page (#4 in
Figure 6-9).

If you're using multiple styles of a font, then you also need to add the font-
weight and font-style properties to the style. Google doesn’t use the regular
normal or bold keywords to indicate a font’s weight. Instead, it uses a numeric
scale from 100 to 900. A value of 700 is bold, 400 is normal, and the other
numbers indicate variations in thickness. For example, say you want to apply
the regular italic version of the Gentium Book Basic font to the tag. You
can write this style:

em {
font-family: "Gentium Book Basic", Palatino, serif;
font-weight: 400;
font-style: italic;

}

M Adding Color to Text

Black and white is great for Casablanca and Woody Allen films, but when it comes
to text, a nice sky blue looks snazzier than drab black. Coloring your text with CSS
is easy. In fact, you’ve used the color property in a few tutorials already. You have
several different ways to define the exact color you want, but they all follow the
same basic structure. You type color: followed by a color value:

color: #3E8988;

In this example, the color value is a hexadecimal number indicating a muted shade
of teal (more in a moment on what hexadecimal is).

CHAPTER 6: FORMATTING TEXT 147

ADDING COLOR
TO TEXT

UP TO SPEED

TypeKit, a Google Alternative

Because of the technical and legal requirements for using web
fonts, several companies have sprouted up that handle all the
heavy lifting for you. Google Web Fonts is one example, but
there are others. These font serviceslet you select fromalarge
collection of fonts hosted on their own web servers. In other
words, you don’t put the fonts on your server; you simply
reference their servers by using a snippet of (SS or JavaScript.
These services take care of sending the proper font format
(EOT to IE8 and earlier, for example) to your visitors’ browsers.

A commercial service from Adobe called TypeKit also provides
a wide selection of fonts, but for a fee. Because it’s part of
Adobe (which makes fonts in addition to all the other software

they create), you have access to a wide range of professionally
created fonts. With TypeKit, you create individual kits, or col-
lections of fonts, and assign them to a website. You thenadd a
snippet of JavaScript code to each page on your site. This code
connects with the TypeKit servers, and delivers the fonts you
requested to your site’s visitors. TypeKit is a commercial service,
though it does offer a free, limited trial version. Depending on
how many fonts you want access to and how many people visit
your website each month, you can end up spending from $24 a
year up. You can also get access to these fonts if you subscribe
to Adobe’s Creative Cloud service: https://www.adobe.com/
creativecloud.html.

Every graphics program from Fireworks to Photoshop to the GIMP lets you select a
color using hexadecimal or RGB values. Also, the color pickers built into Windows
and Mac let you use a color wheel or palette to select the perfect color and translate

it into a hexadecimal or RGB value.

NOTE

If your color design sense needs some help, you can find lots of attractive, coordinated collections
of colors as well as great color-related resources at www.colourlovers.com. Another site, http://paletton.com,

provides a handy web-based color and palette creation tool.

Hexadecimal Color Notation

The oldest color system used by web designers is hexadecimal notation. A color
value like #6600FF actually contains three hexadecimal numbers—in this example
66, 00, FF—each of which specifies an amount of red, green, and blue, respectively.
As in the RGB color system described next, the final color value is a blend of the

amounts of red, green, and blue specified by these numbers.

TIP

You can shorten the hexadecimal numbers to just three characters if each set contains the same two

numbers. For example, shorten #6600FF to #60F, or #FFFFFF to #FFF.

M RGB

You can also use the RGB—red, green, blue—method used in computer graphics
programs. The color value consists of three numbers representing either percentages
(0-100 percent) or numbers between 0-255 for each hue (red, green, and blue). So

148

CSS: THE MISSING MANUAL

https://www.adobe.com/creativecloud.html
https://www.adobe.com/creativecloud.html
http://www.colourlovers.com
http://paletton.com

when you want to set the text color to white (perhaps to set it off from an ominous
dark page background), you can use this:

color: rgb(100%,100%,100%);
or

color: rgb(255,255,255);

NOTE If all these numbers and digits have your head spinning, then you can always fall back on the classic
HTML color keywords. (Just don’t expect your site to win any awards for originality.) There are 17 colors—aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy, olive, orange, purple, red, silver, teal, white, and yellow.
In CSS, you add them to your style like so: color: fuchsiaj;. Inaddition, most browsers support 147 SVG
colors (also called X11 colors), so if you really want to show off, start using colors like linen, chocolate, khaki, and
whitesmoke. You can find these colors listed at https://developer.mozilla.org/en-US/docs/Web/(SS/color value.
And you can find a list of the colors organized by hue at http://html-color-codes.info/color-names/.

M RGBA

To add depth to a page, consider one of the newer color methods. RGBA stands for
Red, Green, Blue, Alpha, and it works just like the RGB colors, with the addition of an
alpha channel. That is, you can specify a level of opacity so that the color isn’t solid,
but see-through (see Figure 6-10). To the RGB colors, you add one last number: a
value between 0 and 1. A value of 0 makes the color invisible, while 1 renders the
color totally opaque (that is, you can’t see through it):

color: rgba(255, 100, 50, .5);

You can create interesting visual effects by placing RGBA colored text over back-
ground images. For example, you can make the images seep through the color of
the text a little (by using a high value like .9) or a lot (by using a low value like .1).

WL RGBA works particularly well with the text-shadow property discussed on page 160 and the box-

shadow property discussed on page 201. Using RGBA, you can create even more subtle drop shadow effects by
letting more of the background show through the shadow.

The downside? Internet Explorer 8 and earlier don’t understand RGBA color. One
solutionis to declare a solid color first using hexadecimal notation, and then a second
color property with RGBA color, like this:

color: rgb(255,100,50); /* for IE8 */

color: rgba(255,100,50,.5); /* for newer browsers */

All browsers interpret the first line; the second line overrides the first line, but only
for browsers that understand RGBA color. In other words, IE8 applies the first color
declaration and ignores the second, while IE9 and other browsers apply the RGBA
color. You just won’t get the transparency effect in IE8.

ADDING COLOR
TO TEXT

CHAPTER 6: FORMATTING TEXT

149

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
http://html-color-codes.info/color-names/

ADDING COLOR
TO TEXT

FIGURE 6-10

RGBA colors aren’t just
for text. You can use
RGBA color with any (5SS
ARCHIVES AUTHORS 'RSS TWITTER) property that accepts a
color value, like the back-
ground color of the search
box in the top-right of

B
2005 2006 2007 2008 2009 2010 f

Crafting the Front-end

23 Ben Bodien fosters seasonal goodwill with his sparkling vision ? 24 ways is the advent calendar this image, or the color of
1212011 3 .
of web workers as dedicated craftspeople: understanding and we " H H "
: i ; [ReD dosls So dy the navigation buttons:
22 'sharpening the tools of our trade; appreciating the challenges, throughout December we
nuances and responsibilities of our craft; and instinctively publish a daily dose of web H()meJ A["(‘hIVeSJ Au[hofs,
21 knowing when something just works. Hope and joy for the new design and development and soon
year! goodness to bring you all a little .
20 Christmas cheer.
Impress your friends with your webcraft apprenticeship
19
18 23 There’s No Formula for Great Designs
AT Andy Clarke re-examines the formula used to convert static to
b fluid grids, and describes how he adapts it within his own
16 custom grids to maintain connectedness in designs across
devices. Like great design, there's a perfect Christmas out
15 there somewhere, but there's no formula for it.
14 Impress your friends with your fluid connectedness

I HSL AND HSLA

HSL stands for hue, saturation, and lightness (also sometimes labeled luminance). It’s
yet another way to specify color. It’s not supported by Internet Explorer 8 or earlier,
but works in all other browsers. If you’re used to RGB or hex colors, you may find
the HSL syntax a bit unusual. Here’s an example of a bright red color:

color: hsl(o, 100%, 50%);

You supply three values inside hs1(). The first is a degree value from 0 to 360, which
maps to a circle of hues. If you remember the order of the colors in a rainbow—red,
orange, yellow, green, blue, indigo, and violet (ROYGBIV)—then you’ve got a basic
idea of the values you’ll need to specify a color. Red is 0 (it’s also 360, since that’s one
full rotation around a circle), yellow is around 50, orange around 100, green around
150, and so on. Each color is separated by about 51 degrees.

The second is the saturation, or how pure the color is. You specify saturation in a
percentage from 0% to 100%. A value of 0% is no saturation at all, or a dull gray. In
fact, no matter what hue you specify, 0% will produce the same gray hue. A value
of 100% is the pure color—bright and vibrant. The third value is the lightness value,
specified in a percentage from 0% (completely black) to 100% (completely white). If
you want to have a pure color, then you use a value of 50%.

150 CSS: THE MISSING MANUAL

HSL is supposed to be more intuitive then RGB or hexadecimal color values, but if
you don’t find it easy to understand, you don’t have to use it. Instead, use a program
like Fireworks or Photoshop or an online color picker to make picking an RGB or
hex value easy.

If you're interested in using HSL, you'll find an easy-to-use HSL color picker at http://hslpicker.com.

Just as RGB has its companion format, RGBA, HSL supports opacity with the HSLA
format. It works similarly to RGB, described on page 148. You specify an opacity
value from 0 (invisible) to 1 (totally opaque) to set the opacity value. This will create
a bright red color with 50% opacity:

color: hsla(o, 100%, 50%, .5);

The examples in this book mostly stick with RGB and RGBA, but if you find HSL
easier to understand, then use it!

M Changing Font Size

Varying the size of text on a web page is a great way to create visual interest and
direct your visitors’ attention to important areas of a page. Headlines in large type
sizes capture attention, while copyright notices displayed in small type subtly recede
from prominence.

The font-size property sets text size. It’s always followed by a unit of measure-
ment, like so:

font-size: 1em;

The value and unit you specify for the font size (in this example, lem) determine the
size of the text. CSS offers a dizzying selection of sizing units: keywords, ems, exes,
pixels, percentages, picas, points, and even inches, centimeters, and millimeters.

Units of measurement commonly used with printed materials—picas, points, inches,
and so on—don’t work well on web pages because you can’t predict how they’ll look
from one monitor to the next. But you may have occasion to use points when creating
style sheets for printer-friendly pages. Only a few of the measurement units—pixels,
keywords, ems, rems, and percentages—make sense when you’re sizing text for a
computer monitor. The rest of this section explains how they work.

Using Pixels

Pixel values are the easiest to understand, since they’re completely independent
from any browser settings. When you specify, for example, a 36-pixel font size for
an <h1> tag, the web browser displays text that’s 36 pixels tall, period. Web design-
ers cherish pixel values because they provide consistent text sizes across different
types of computers and browsers.

CHANGING
FONT SIZE

CHAPTER 6: FORMATTING TEXT

151

CHANGING
FONT SIZE

To set a pixel value for the font-size property, type a number followed by the ab-
breviation px:

font-size: 36px;

Don’tinclude a space between the number and the unit type. For example, 36px is correct, but 36 px isn't.

UP TO SPEED

Pixels and Retina Displays

When Apple introduced the iPhone with Retina display, iPhone
owners rejoiced at the clarity and sharpness of the images.
Apple’s Retina display provides its clear image by cramming
more pixelsinto a square inch. While regular computer displays
range from 72-100 pixels per inch, the new Retina displays
boast upward of 224 pixels per inch.

Apple has since added Retina displays to iPads and laptops.
Other tablet and computer manufacturers are also jumping
on the bandwagon, offering considerably more pixels per inch
than older screens. What does this mean for web designers?

When it comes to the pixels mentioned above, browsers on
devices with Retina displays actually multiply a pixel value by
2. That is, if you specify text to be 16 pixels, a Retina-enabled
web browser will actually use 32 pixels on the screen to draw
the text. This is a good thing. If the browser only used 16 of its
super-tiny pixels to display the text, then no one could read
what you have to say.

In other words, although more dense displays are entering

both the mobile and desktop computing world, they won’t
suddenly make the pixel-based type on your weh pages appear

Quite a bit. As you’ll read in the box on “When Is a Pixel Nota microscopically small.
Pixel?”, these screens have considerable effect on images, and
you’ll need to do a bit of work to make great looking images

for dense pixel displays.

Using Keywords, Percentages, and Ems

Three ways of sizing text with CSS—keywords, percentages, and ems—work by either
adding to or subtracting from the text size already on the viewer’s browser screen.
In other words, if you don’t specify a text size using CSS, a web browser falls back
on its preprogrammed settings. In most browsers, text inside a non-header tag is
displayed 16px tall—that’s called the base text size.

Web surfers can adjust their browsers by pumping up or dropping down that base
size; however, changing the base font size requires fiddling with the browser’s pref-
erence settings, a step most folks won’t bother with.

Most browsers have a zoom function that makes text, graphics, and the entire page smaller or larger.
This setting doesn’t really change the base text size as much as it magnifies the entire page. Ctrl++ (38-+) on
most browsers zooms in on a page, while Ctrl+- (88--) zooms out. Pressing the Ctrl (Control) key and using the
scroll wheel on a mouse also lets you zoom in and out of a page.

152 CSS: THE MISSING MANUAL

When you resize text with CSS, the browser takes the base text size (whether it’s the
original 16 pixels or some other size the viewer ordered) and adjusts it up or down
according to your keyword, em, or percentage value.

I KEYWORDS

CSS provides seven keywords that let you assign a size that’s relative to the base
text size: xx-small, x-small, small, medium, large, x-1large, and xx-large. The CSS
looks like this:

font-size: large;

The medium optionis the same as the browser’s base font size. Each of the other op-
tions decreases or increases the size by a different factor. In other words, while each
size change is supposed to be a consistent increase or decrease from the previous
size, it isn’t. Basically, xx-small is the equivalent of 9 pixels (assuming you haven’t
adjusted the base font size in your browser); x-small is 10 pixels, small is 13 pixels,
large is 18 pixels; x-1large is 24 pixels, and xx-1large is 32 pixels.

Keywords are pretty limited: You have only seven choices. When you want more
control over the size of your text, turn to one of the other font-sizing options dis-
cussed next.

I PERCENTAGES

Like keywords, percentage values adjust text in relationship to the font size defined
by the browser, but they give you much finer control than just large, x-large, and
so on. Every browser has a preprogrammed base text size, which in most browsers
is 16 pixels. You can adjust this base size in your browser’s preferences. Whatever
setting has been chosen, the base text size for a particular browser is equivalent to
100%. In other words, for most browsers, setting the CSS percentage to 100% is the
same as setting it to 16 pixels.

Say you want to make a particular headline appear two times the size of average
text on a page. You simply set the font size to 200%, like so:

font-size: 200%;

Or, when you want the text to be slightly smaller than the default size, use a value
like 90% to shrink the font size down a bit.

The above examples are pretty straightforward, but here’s where it gets a little tricky:
Font size is an inherited property (as discussed in Chapter 4), so any tags inside of
a tag that has a font size specified inherit that font size. So the exact size of 100%
can change if a tag inherits a font-size value.

For example, at the lower left of Figure 6-11, there’s a <div> tag that has its font
size set to 200%. That’s two times the browser’s base text size, or 32 pixels. All tags
inside that <div> inherit that text size and use it as the basis for calculating their
text sizes. In other words, for tags inside that <div>, 100% is 32 pixels. So the <h1>
tag inside the <div> that has a font size of 100% displays at two times the base-text
size for the page, or 32 pixels.

CHANGING
FONT SIZE

CHAPTER 6: FORMATTING TEXT

153

CHANGING

FONT SIZE

3l Font Size - Microsoft Internet Explorer FIGURE 6-11
File Edit View Favorites Tools Help
Q- O WA G Ot o @ 3-8 ®-LJ B e 7| The three most common
Address |§] hitps//css.Jocal/ch08/TMPjztuvyBb 17.himl v| B U[]ltS for sizing text are
= pixels, ems, and percent-
Pixel Text Size Values Em Text Size Values ages. Watch out for
inherited text sizes when
using ems or percentages,

Heading 2: 48px

This paragraph is set to 32px.
The italicized text is set to 18px and the bold
text (which is inside the tag) is 24

px.

% Text Size Values

This box is a <div> tag. The
font-size is set to 200%.

Heading 2: 100%

This paragraph is set to 75%. The ialicized

text is set to 73% and the bold text (which is inside the
tag) is 75%.

This box is a <div> tag. The
font-size is set to 2ems. Other
tags inside this <div> will
inherit that text size.

Heading 2: 1em
This paragraph is set to .75em. The

Nested List Problems

Percentage values pose
problems for nested lists.

« Textis 75%
« Textis 75%
o Textis 75% of 75%
o Textis 75% of 75%
. Textis 75%

&] Done

@ Intemet

as explained on the next
page. If you notice that
some text on a page looks
unusually large or small,
then check to see if the
offending text isn’t inside
a tag that inherits a font

italicized text is set to .75em and the bold text (which is size from another tag.

idethe e tag) - Toem. | Also consider using the
rem value described on
the next page.

M EMS

Once you understand percentages, you know everything you need to understand
ems. The two work exactly the same way, but many web designers use ems because
of its roots in typography.

The word em comes from the world of printed (as in paper) typography, where it
refers to the size of a capital letter M for a particular font. As it’s worked its way into
the Web world, an em in CSS no longer means the same thing as in typography.
Think of it as referring to the base text size. That is, a value of Tem means the same
thing as a value of 100 percent, as described in the previous section. You can even
say it the opposite way: A percentage value is just an em multiplied by 100: .5em is
50 percent, .75em is 75 percent, 3em is 300 percent, and so on.

154 CSS: THE MISSING MANUAL

For example, this CSS does the exact same thing as font-size: 200%;:

font-size: 2em;

NOTE As with pixel values, there’s no space hetween the number and the word em. Also, even if you specify
more than one em, you never add an s to the end: 2. 5em, never 2. 5ems.

When it comes to inheritance, ems also work just like percentage values (see the
top-right of Figure 6-11 for an example). The bottom paragraph is set to . 75em, which,
since the <p> tag inherits the 2em (32px) setting from the <div> tag, works out to .75
x 32, or 24 pixels. Inside the <p> tag are two other tags that also have a font-size
setting of .75em. The innermost tag, a tag, is set to .75em or, in essence,
75 percent of its inherited size. There’s a lot of math to this one: 32 pixels (inherited
from the <div> tag) x.75 (inherited from the <p> tag) x .75 (inherited from the
tag) x .75 (the tag’s own font size). The result of this brainteaser is a text
size of roughly 14 pixels.

Inherited font-size values can cause problems for nested lists. You can see an example
in the bottom-right square of Figure 6-11. If you create a style like ul { font-size:
75% }, then a nested list (a tag inside of another tag) is set to 75 percent
of 75 percent—making the text in the nested list smaller than the rest of the list.

To get around this conundrum, create an additional descendant selector style like this:
ul ul {font-size: 100%}. This style sets any ul tag inside of a ul to 100 percent;
in other words, 100 percent of the surrounding ul tag’s font size. In this example,
it keeps any nested lists to 75 percent of the base text size. There’s another way
to prevent this hall-of-mirrors, shrinking-text effect: the rem unit (discussed next).

I REMS

CSS includes another measurement unit called rem. No, it’s not named after sleep
patterns or a band. It stands for root em—meaning its value is based on the text
size of the root element. In most cases this just means the base text size, so you can
change the .75em shown in Figure 6-11 to this:

font-size: .75rem;

This style makes the font size .75 of the base text size, not the inherited font size (as
is the case with ems). The root element in HTML is actually the html element you
find at the beginning of a web page. When using rem values, you can set the base
text size of the html element and then use rem units to set text to a size relative to
that. For example, you can set the base text size to 20 pixels like this:

html {
font-size: 20px;

}

CHANGING
FONT SIZE

CHAPTER 6: FORMATTING TEXT

155

FORMATTING
WORDS AND
LETTERS

Then use rem units to create fonts in relation to that 20-pixel base text size. For
example, to then make all paragraphs 15 pixels in size, add this style:

p{

font-size: .75rem;

}

The rem unit avoids the problems associated with inherited percentage and em font
sizes. Percentages and ems are based on the font size of their parent element. A
percentage font size applied to multiple nested elements will compound, making
each successive font size a percentage of the previous element’s font size. However,
rem units are always based on the font size of the html element; in other words, a
rem is always the same value even when nested inside elements that inherit differ-
ent font sizes.

You should be aware, however, that while most browsers now understand the rem
unit, Internet Explorer 8 and earlier don’t.

TIP You can make type stand out on a page in many different ways. Making certain words larger than others
or making some text darker, lighter, or brighter visually sets them apart from the surrounding text. Contrast is
one of the most important principles of good graphic design; it can help highlight important messages, guide a
reader’s eye around a page, and generally make understanding a page easier. For a quick overview of typographic
contrast, check out this page: www.creativepro.com/article/dot-font-seven-principles-of-typographic-contrast.

M Formatting Words and Letters

Although you’ll spend a lot of time fine-tuning the color, size, and fonts of the text
on your web pages, CSS also lets you apply other common text-formatting proper-
ties (like bold and italic) as well as some less common ones (like small caps and
letter spacing).

NOTE (SS lets you combine multiple text properties, but don’t get carried away. Too much busy formatting
makes your page harder to read. But worse, your hard work loses its impact.

Italicizing and Bolding

Web browsers display type inside the and <i> tags in italicized type, and text
inside the , , <th> (table header), and header tags (<h1> and so on) in
bold type. But you can control these settings yourself—either turn off bold for a
headline or italicize text that normally isn’t—using the font-style and font-weight
properties.

To italicize text, add this to a style:

font-style: italic;

156

CSS: THE MISSING MANUAL

http://www.creativepro.com/article/dot-font-seven-principles-of-typographic-contrast

Alternatively, you can make sure text isn't italicized, like so:

font-style: normal;

The font-style property actually has a third option—oblique—which works identically to
italic.

The font-weight property lets you make text bold or not. In fact, according to the
rules of CSS, you can actually specify nine numeric values (100-900) to choose
subtle gradations of boldness (from super-extra-heavy [900] to nearly invisible-
light [100]). Of course, the fonts you use must have nine different weights for these
values to have any visible effect for your website’s visitors. The only way to use the
numeric values is with the web fonts discussed on page 126. In fact, Google Fonts
(page 126) use the numeric values exclusively for specifying font weights.

NOTE When using web fonts, you’ll find that making text bold and italic requires a few other steps. See
page 126 for the details.

To make text bold:
font-weight: bold;
And to make text un-bold:

font-weight: normal;

NOTE Since headlines are already displayed as bold type, you may want to find another way of highlighting
a word or words that are strongly emphasized or bolded inside a headline. Here’s one way:

h1 strong { color: #3399FF; }

This descendant selector changes the color of any tags (usually displayed as bold) that appear
inside a <h1> tag.

Capitalizing

Capitalizing text is pretty easy—just hit the caps lock key and start typing, right?
But what if you want to capitalize every heading on a page, and the text you’ve
copied and pasted from a Word document is lowercase? Rather than retyping the
headline, turn to the CSS text-transform property. With it, you can make text all
uppercase, all lowercase, or even capitalize the first letter of each word (for titles
and headlines). Here’s an example:

text-transform: uppercase;

For the other two options, just use lowercase or capitalize.

FORMATTING
WORDS AND
LETTERS

CHAPTER 6: FORMATTING TEXT

157

FORMATTING
WORDS AND
LETTERS

Because this property is inherited, a tag that’s nested inside a tag with text-transform
applied to it gets the same uppercase, lowercase, or capitalized value. To tell CSS not
to change the case of text, use the none value:

text-transform: none;

I SMALL CAPS

For more typographic sophistication, you can also turn to the font-variant property,
which lets you set type as small-caps. In small cap style, lowercase letters appear as
slightly downsized capital letters, like so: pomp AND circumsTANCE. While difficult to read
for long stretches of text, small caps lend your page an old-world, bookish gravitas
when used on headlines and captions. To create small-cap text:

font-variant: small-caps;

Decorating

CSS also provides the text-decoration property to add various enhancements to
text. With it, you can add lines over, under, or through the text (see Figure 6-12), or
for real giggles, you can make the text blink like a No Vacancy sign. Use the text-
decoration property by adding one or more of the following keywords: underline,
overline, line-through, or blink. For example, to underline text:

text-decoration: underline;

‘A Untitled Document - Microsoft Internet Explorer =13 FIGURE 6-12
Fie Edit View Favorites Tools Help w The text-decoration property in ac-
@ SR \.) @ @ @ ,O — * g @ @ A tion. If this is what the people at (5§
headquarters call “decorations,” you'd
Address | http:fcss.Jocal jch8 TMPcowxDv7tez. htmi v| B co best not ask for their design help on
your next home remodel.

Text Decoration

Underlined text is often confused for a link.

Overlined text must be useful for some reason.

Erwatd " . okt Yibed ok
Blink is just plain annoying.
Zrdyerremrappiy-riof-Hresesetthresto-omreslerrent

a Done | | | | | 4 Internet —I

158 CSS: THE MISSING MANUAL

You can also combine multiple keywords for multiple effects. Here’s how to add a
line over and under some text:

text-decoration: underline overline;

But just because you can add these not-so-decorative decorations to text doesn’t
mean you should. For one thing, anyone who’s used the Web for any length of time
instinctively associates any underlined text with a link and tries to click it. So it’s not
a good idea to underline words that aren’t part of a link. And blink is like a neon
sign flashing “Amateur! Amateur! Amateur!” (That’s probably why most browsers
don’t make text blink even if you ask for it.)

NOTE You can get a similar effect to underlining and overlining by adding a border to the bottom or top of
an element (see page 194). The big advantage of borders is that you can control their placement, size, and color
to create a more attractive design that doesn’t look like a link.

The overline option simply draws a line above text, while 1ine-through draws a
line right through the center of text. Some designers use this strike-through effect to
indicate an edit on a page where text has been removed from the original manuscript.

Finally, you can turn off all decorations by using the none keyword like this:
text-decoration: none;
Why do you need a text-decoration property that removes decorations? The most

common example is removing the line that appears under a link. (See page 283.)

Letter and Word Spacing

Another way to make text stand out from the crowd is to adjust the space that ap-
pears between letters or words (see Figure 6-13). Reducing the space between let-
tersusing the CSS letter-spacing property can tighten up headlines, making them
seem even bolder and heavier while fitting more letters on a single line. Conversely,
increasing the space can give headlines a calmer, more majestic quality. To reduce
the space between letters, you use a negative value like this:

letter-spacing: -1px;
A positive value adds space between letters:
letter-spacing: .7em;

Likewise, you can open up space (or remove space) between words using the word-
spacing property. This property makes the space between words wider (or narrower)
without actually affecting the spacing between the letters inside a word:

word-spacing: 2px;

With either of these properties, you can use any type of measurement you'd use
for text sizing—pixels, ems, percentages—with either positive or negative values.

FORMATTING
WORDS AND
LETTERS

CHAPTER 6: FORMATTING TEXT

159

ADDING TEXT

SHADOW

3 Letter and Word Spacing - Microsoft Internet Explorer] FIGURE 6-13
Fle Edit View Favortes Tooks Help "
” Use word and letter spac-
Q- © BB Q| Ot Frre @28 B - i I ’
< = ing judiciously. Too much
Adéress | €] http:fess. Jocaljch0s TMPSd 1c7vcvha.himl = E: or too little of either can
w_ 100X make text difficult, if not
" P impossible, to read.

Nagdlivel ctinSadgighasUpled: -5px

Negative Letter Spacing Tightens Up Text: -1px

No Letter Spacing

Positive Letter Spacing Spreads Text Out: 1px

Positive Letter Spacing Spreads Text Out: 5px
Positive Letter Spacing:10px

Negative word spacing: -.5emLoremipsundolositametconsectetuemndipiscinglitsed
diarmonummumnibleuismodinciduniiaoreetdoloranagnaliquaneratvolutpat.

Negative word spacing! -.1temLorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nenummy nibh euismeod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Positive Word spacing: .1em Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat.

Positive Word spacing: 1em Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat wvolutpat.

&] Dane #® Internet R

Unless you’re going for some really far-out design effect—in other words, totally
unreadable text—keep your values small. Too high a negative value, and letters and
words overlap. To keep the message of your site clear and legible, use both letter
and word spacing with care.

I Adding Text Shadow

CSS includes a property that lets you add drop shadows to text to add depth and
interest to headlines, lists, and paragraphs (see Figure 6-14).

The text-shadow property requires four pieces of information: the horizontal offset
(how far to the left or right of the text the shadow should appear), the vertical offset
(how far above or below the text the shadow should appear), the blurriness of the

160 CSS: THE MISSING MANUAL

shadow, and the color of the drop shadow. For example, here’s the text-shadow
property that creates the effect at the top of Figure 6-14:

text-shadow: -4px 4px 3px #999999;

ADDING TEXT
SHADOW

FIGURE 6-14

Explorer 9 or earlier.

Text Shadow]

text-shadow: -4px 4px 3px #999999, Ipx -1px 2px #000;

Text shadows are a great way to add subtle (or, if you insist, not so
subtle) depth to headlines and other text. While the text-shadow
property works in all current browsers, it doesn’t work in Internet

The first value, 4px, means “place the shadow 4 pixels to the left of the text.” (A posi-
tive value here would place the shadow to the right of the text.) The second value,
4px, places the shadow 4 pixels below the text. (A negative value would place the
shadow above the text.) The 3px value defines how blurry the shadow should be.
A 0px value (no blur) results in a sharp drop shadow; the larger the value, the more
blurry and indistinct the shadow. Finally, the last value is the drop shadow’s color.

You can even add multiple drop shadows for more complex effects (see the bot-
tom image in Figure 6-14): Just add a comma followed by additional drop shadow
values, like this:

text-shadow: -4px 4px 3px #666, 1px -1px 2px #000;

There’s no limit (except good taste) to the number of shadows you can add this way.
Sadly, this effect doesn’t work in Internet Explorer 9 or earlier. It does, however,
work in all other current browsers (including later versions of Internet Explorer). In
other words, don’t rely on this effect to make text readable. The bottom image in
Figure 6-14 shows you what not to do: The text color is white, and it’s readable only
because the drop shadows define the outline of the text. In Internet Explorer 9 and
earlier, the text would be invisible—white text on a white background.

NOTE For some examples of heautiful ways to use text shadows, visit http.//webexpeditioni8.com/articles/

css3-text-shadow-property/. You can also see a great example using multiple text shadows to create a 3-D text
effect at http://markdotto.com/playgroundy/3d-text/.

CHAPTER 6: FORMATTING TEXT

161

http://webexpedition18.com/articles/css3-text-shadow-property/
http://webexpedition18.com/articles/css3-text-shadow-property/
http://markdotto.com/playground/3d-text/

FORMATTING
ENTIRE
PARAGRAPHS

M Formatting Entire Paragraphs

Some CSS properties apply to chunks of text rather than individual words. You can
use the properties in this section on complete paragraphs, headlines, and so on.

Adjusting the Space Between Lines

In addition to changing the space between words and letters, CSS lets you adjust
the space between lines of text using the line-height property. The bigger the line
height, the more space that appears between each line of text (see Figure 6-15).

FIGURE 6-15
The Line-height property lets
you spread a paragraph’s lines
apart or bring them closer together.
Line- ht 75%: Lorem ijpsum dolor sit amet, consectetuer adipiscing elit ing i i

aeggﬁw nonymm Eﬁ:}'ﬁ e;.ndsmad 'ng?gu’nt Ut Qaoreat %glarg_ sacqné The normal setting is equivalent to
e et ietind, Do ol ol o el Uiy | mperert o2omaler e
§1]q’|_|as§ erat varutpat. Y S tightens up the lines (top), while

a larger percentage pushes them

apart (bottom).

Line-height 100%: Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volatpat. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat.

Line-height Normal: Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volatpat. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat.

Line-height 120%: Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volatpat. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat.

Line-height 200%: Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna

aliquam erat volutpat.

I LINE SPACING BY PIXEL, EM, OR PERCENTAGE
Just as with the font-size property, you can use pixels, ems, or percentages to set
the size of line height:

line-height: 150%;

162 CSS: THE MISSING MANUAL

In general, percentages or ems are better than pixels, because they change accord-
ing to, and along with, the text’s font-size property. If you set the line height to 10
pixels and then later adjust the font size to something much larger (like 36 pixels),
because the line height remains at 10 pixels, your lines then overlap. However, using
a percentage (150% percent, say) means the line-height spacing adjusts propor-
tionally whenever you change the font-size value.

The normal 1ine-height setting for a browser is 120%. So, when you want to tighten
up the line spacing, use a value less than 120%; to spread lines apart, use a value
greater than that.

NOTE To determine the amount of space that appears between lines of text, a web browser subtracts the
font size from the line height. The result—called /eading—is the amount of space between lines in a paragraph.
Say the font size is 12 pixels, and the line height (set to 150%) works out to 18 pixels. 18 - 12 = 6 pixels, so the
browser adds 6 pixels of space between each line.

I LINE SPACING BY NUMBER

CSS offers another measurement method specific to line height, which is simply a
number. You write it like this:

line-height: 1.5;

There’s no unit (like em or px) after this value. The browser multiplies this number by
the font size to determine the line height. So if the text is Tem and the line-height
value is 1.5, then the calculated line height is 1.5em. In some cases, the effect may
be no different from specifying a value of 1.5em or 150%.

However, because nested tags inherit the line-height value of their parent, you
can often run into problems using an em or percentage value.

For example, say you set the 1line-height property of the <body> tag to 150%. All
tags inside the page would inherit that value. However, it’s not the percentage that’s
inherited; it’s the calculated line height. So, say the font size for the page is set to
10 pixels; 150 percent of 10 is 15 pixels. Every tag would inherit a line height of 15
pixels, not 150 percent. So if you happened to have a paragraph with large, 36 pixel
text, then its line height—15 pixels—would be much smaller than the text, making
the lines squish together in a hard-to-read mess.

In this example, instead of using a 1ine-height of 150% applied to the <body> tag,
you could have all tags share the same basic proportional line height by setting the
line-height to 1.5. Every tag, instead of inheriting a precise pixel value for line height
from the body style, simply multiplies its font size by 1.5. So in the above example
of a paragraph with 36-pixel text, the line height would be 1.5 x 36 or 54 pixels.

In other words, it’s best to skip the ems and percentages for line heights and just
use a simple numeric value.

FORMATTING
ENTIRE
PARAGRAPHS

CHAPTER 6: FORMATTING TEXT

163

FORMATTING
ENTIRE
PARAGRAPHS

Aligning Text

One of the quickest ways to change the look of a web page is with paragraph align-
ment. Using the text-align property, you can center a paragraph on a page, align
the text along its left or right edge, or justify both left and right edges (like the
paragraphs in this book). Normally, text on a page is left aligned, but you may want
to center headlines to give them a formal look. Languages that read from right to
left, like Hebrew and Arabic, require right-alignment. To change the alignment of
text, use any of the following keywords—left, right, justify, center:

text-align: center;

Justified text looks great on a printed page—mainly because the fine resolution
possible with printing allows for small adjustments in spacing, and because most
programs used to lay out printed material can hyphenate long words (thus attempting
to equally distribute the number of characters per line). This prevents large, unsightly
gaps or rivers of white space flowing through the paragraphs. Web pages are limited
to much coarser spacing because of the generally low resolution of monitors, and
because web browsers don’t know how to hyphenate long words. So when you use
the justify option, the space between words can vary significantly from line to
line, making the text harder to read. When you want to use the justify option on
your web pages, test it thoroughly to make sure the text is attractive and readable.

Indenting the First Line and Removing Margins

In many books, the first line of each paragraph is indented. This first-line indent marks
the beginning of a paragraph when there are no spaces separating paragraphs. On
the Web, however, paragraphs don’t have indents but are instead separated by a
bit of space—like the paragraphs in this book.

If you have a hankering to make your web pages look less like other web pages and
more like a handsomely printed book, take advantage of the CSS text-indent and
margin properties. With them, you can add afirst-line indent and remove (or increase)
the margins that appear at the beginnings and ends of paragraphs.

I FIRST-LINE INDENTS

You can use pixel and em values to set the first-line indent like this:
text-indent: 25px;

or
text-indent: 5em;

A pixel value is an absolute measurement—a precise number of pixels—while an
em value specifies the number of letters (based on the current font size) you want
to indent.

164

CSS: THE MISSING MANUAL

TIP

doesn’t stick outside the left side of a page, column, or layout box.

You can use negative text-indent values to create what’s called a hanging indent, where the first
line starts further to the left than the other lines in the paragraph. (Think of it as “hanging” off the left edge.)
You’ll usually use a negative text indent along with a position margin value, so that the negative text indent

You can also use a percentage value, but with the text-indent property, percent-
ages take on a different meaning than you’ve seen before. In this case, percentages
aren’t related to the font size; they’re related to the width of the element containing
the paragraph. For example, if the text-indent is set to 50%, and a paragraph spans
the entire width of the web browser window, then the first line of the paragraph
starts half the way across the screen. If you resize the window, both the width of
the paragraph and its indent change. (You'll learn more about percentages and how
they work with the width of elements in the next section.)

POWER USERS’ CLINIC

FORMATTING
ENTIRE
PARAGRAPHS

Writing one text property after another gets tiring, especially
when you want to use several different text properties at once.
Fortunately, CSS offers a shorthand property called font,
which lets you combine the following properties into a single
line: font-style (page 156), font-variant (page 158),
font-weight (page 156), font-size (page 151), line-
height (page 163), and font-family (page 121). For
example, consider the following declaration:

font: italic bold small-caps 18px/1.5
Arial, Helvetica, sans-serif;

It creates bold, italicized type in small caps, using 18px Arial
(or Helvetica or sans-serif) with a line height of 150 percent.
Keep these rules in mind:

* Youdon’t have to include every one of these properties,
but you mustinclude the font size and font family:

font: 1.5em Georgia, Times, serif;

+ Useasingle space between each property value. You use
a comma only to separate fonts in the list at the end of
the value like this:

Arial, Helvetica, sans-serif

+ When specifying the line height, add a slash after the font
size followed by the line-height value, like this:

1.5em/1.5

A Shorthand Method for Text Formatting

The last two properties must be font-size (or font-
size/line-height)followed by font-family, inthat
order. All the other properties may be writtenin any order. For
example, these two declarations are the same:

font: italic bold small-caps 1.5em Arial;
font: bold small-caps italic 1.5em Arial;

Finally, omitting a value from the list is the same as setting that
value to normal. Say you create a <p> tag style that formats
all paragraphsinbold, italics, and small caps with a line height
0f 2000 percent (not that you’d actually dothat). You can then
create a class style named . specialParagraph with the
following font declaration:

font: 1.5em Arial;
When you apply this style to one paragraph on the page, then
that paragraph would not inherit the italic, bold, small caps,
or line height. Omitting those four valuesin the . special-
Paragraph style is the same as writing this:

font: normal normal normal 1.5em/normal

Arial;

CHAPTER 6: FORMATTING TEXT

165

FORMATTING
ENTIRE
PARAGRAPHS

I CONTROLLING MARGINS BETWEEN PARAGRAPHS

Many designers hate the space that every browser throws in between paragraphs.
Before CSS, there was nothing you could do about it. Fortunately, you can now tap
into the margin-top and margin-bottom properties to remove (or, if you wish, expand)
that gap. To totally eliminate a top and bottom margin, write this:

margin-top: 0;
margin-bottom: 0;

To eliminate the gaps between all paragraphs on a page, create a style like this:

p{
margin-top: 0;
margin-bottom: 0;

}

As with text-indent, you can use pixel or em values to set the value of the margins.
You can also use percentages, but as with text-indent, the percentage is related to
the width of the paragraph’s containing element. Because it’s confusing to calculate
the space above and below a paragraph based on its width, it’s easier to stick with
either em or pixel values.

NOTE Because not all browsers treat the top and bottom margin of headlines and paragraphs consistently,
it’s often a good idea to simply zero out (that is, eliminate) all margins at the beginning of a style sheet. To see
how this works, turn to page 109.

For a special effect, you can assign a negative value to a top or bottom margin. For
example, a -10px top margin moves the paragraph up 10 pixels, perhaps even visually
overlapping the page element above it. (See step 4 on page 183 for an example.)

Formatting the First Letter or First Line of a Paragraph

CSS also provides a way of formatting just a part of a paragraph by using the : : first-
letter and ::first-line pseudo-elements (see Figure 6-16). Technically, these
aren’t CSS properties, but types of selectors that determine what part of a paragraph
CSS properties should apply to. With the : : first-letter pseudo-element, you can
create an initial capital letter to simulate the look of a hand-lettered manuscript.
To make the first letter of each paragraph bold and red you could write this style:

p::first-letter {
font-weight: bold;
color: red;

}

To be more selective and format just the first letter of a particular paragraph, you
can apply a class style to the paragraph—.intro, for example:

<p class="intro">Text for the introductory paragraph goes here...</p>

Then you could create a style with a name like this: .intro: :first-letter.

166

CSS: THE MISSING MANUAL

FORMATTING
ENTIRE
PARAGRAPHS

The ::first-1line pseudo-element formats the initial line of a paragraph. You
can apply this to any block of text, like a heading (h2::first-1ine) or paragraph
(p::first-line). As with ::first-letter, you can apply a class to just one para-
graph and format only the first line of that paragraph. Say you want to capitalize
every letter in the first line of the first paragraph of a page. Apply a class to the
HTML of the first paragraph—<p class="intro">—and then create a style like this:

.intro::first-line { text-transform: uppercase; }

@866 first-word, :first-line (=1 FIGURE 6-16
W v @ Q © hitp:/ fess.localjchos, (O Coogle) » The =first-letter
Back Forward Reload Stop Location Search pseudo_e[ement formats
the first letter of the
u orem ipsum dolor sit amet, consectetuer adipiscing styled element like the
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore y

initial caps to the left. The

magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis -
“first-line selector, on

nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea

commodo consequat. Duis autem vel eum iriure d the other hand, styles the
first line of a paragraph.

olore magna aliquam erat volutpat. Ut wisi enim ad Even if your guest resizes

minim veniam, quis nostrud exerci tation ullamcorper suscipit the window (bottom), the

lobortis nisl ut aliquip ex ea commodo consequat. Ut wisi enim ad)
minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis browser still styles every
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure d word that appears on a
paragraph’s first line.
ut wisi enim ad minim veniam, quis nostrud exerci

tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamecorper suseipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure d

GG -first-word, :first-line e
w L . '." @ 0 © http:/ fcss.local /ch06/TMP2tbxoww| (Qr Google)| ﬁ|
Back Forward Reload Stop Location Search Bookmarks

u orem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut
aliquip ex ea commodo consequat. Duis autem vel eum iriure d

nolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam,
quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Ut wisi enim ad minim veniam, quis nostrud exerci tation
ullameorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum
iriure d

ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamecorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure d

CHAPTER 6: FORMATTING TEXT 167

STYLING LISTS

NOTE For some strange reason, neither Chrome nor Safari understands the text-transform property
(page 157) when it’s used with the : :first-1ine pseudo-element. In other words, you can’t use CSS to
capitalize the letters of a paragraph’s first line in Chrome or Safari.

M Styling Lists

The and tags create bulleted and numbered lists, like lists of related items
or numbered steps. But you don’t always want to settle for the way web browsers
automatically format those lists. You may want to swap in a more attractive bullet,
use lettersinstead of numbers, or even completely eliminate the bullets or numbers.

Types of Lists

Most web browsers display unordered lists (tags) using round bullets, and num-
bered lists (tags) using...well..numbers. With CSS, you can choose from among
three types of bullets—disc (a solid round bullet), circle (a hollow round bullet), or
square (a solid square). There are also six different numbering schemes—decimal,
decimal-leading-zero, upper-alpha, lower-alpha, upper-roman, or lower-roman (see
Figure 6-17). You select all these options using the /ist-style-type property, like so:

list-style-type: square;
or
list-style-type: upper-alpha;

Most of the time, you use this property on a style that’s formatting an or
 tag. Typical examples include an ol or ul tag style—ul { list-style-type:
square; }—or a class you're applying to one of those tags. However, you can also
apply the property to an individual list item (<1i> tag) as well. You can even apply
different types of bullet styles to items within the same list. For example, you can
create a style for a <1i> tag that sets the bullets to square, but then create a class
named .circle that changes the bullet type to circle, like this:

1i {list-style-type: square; }
.circle { list-style-type: circle; }

You can then apply the class to every other item in the list to create an alternating
pattern of square and circular bullets:

Ttem 1</1i>

<li class="circle">Item 2</1li>
<1li>Ttem 3</1i>

<li class="circle">Item 4</1li>

168

CSS: THE MISSING MANUAL

STYLING LISTS

‘800 Lists © ' FIGURE 6-17
g U @ @ 6 http:/ /css.local /ch06 /TMPgpd| Q. Google 1 ﬁ| (SS provides many differ-
Back Forward Reload Stop Location Search Bookmarks ent ways to mark bulleted

and numbered lists, from
disc circle square a handful of geometric
shapes to many different
® item 1 o item 1 m item 1 numbering systems. If
s item 2 o item 2 = item 2 you feel like rushing a
* item 3 o item 3 = item 3 fraternity or sorority, you
can also replace numbers
decimal decimal-leading-zero upper-alpha)M(/ﬂf,;egelzhlgt,fxerjmﬁzk
1. item 1 01. item 1 A, item 1 option. In fact, there are a
2, item 2 02, item 2 B. item 2 number of other number-
3. item 3 03. item 3 C. item 3 ing schemes including
Armenian, Georgian,
Katakana, and other re-
lower-alpha upper-roman lower-roman gional variations. You can
. . o find out about them at
a. item1 L item1 L item1 https://developer.mozilla.
b. item 2 II. item 2 L 1tem 2 org/en-US/docs/Web/CSS/
c. item 3 III. item 3 iil. item 3 list-style-type.
Ak

Or, using the nth-of-type selector (page 66) you could skip the class name entirely:

1i {list-style-type: square; }
li:nth-of-type(odd) { list-style-type: circle; }

At times you’ll want to completely hide bullets, like when you’d rather use your own
graphic bullets (see page 171). Also, when a site’s navigation bar is a list of links, you
can use an list, but hide its bullets (see the example on page 290). To turn off
the bullets, use the keyword none:

list-style-type: none;

Positioning Bullets and Numbers

Web browsers usually display bullets or numbers hanging to the left of the list
item’s text (Figure 6-18, left). With CSS, you can control the position of the bullet
(somewhat) using the list-style-position property. You can either have the bullet
appear outside of the text (the way browsers normally display bullets) or inside
the text block itself (Figure 6-18, right):

list-style-position: outside;

CHAPTER 6: FORMATTING TEXT 169

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type

STYLING LISTS

or

list-style-position: inside;

TIP You can adjust the space between the bullet and its text—increase or decrease that gap—hy using the
padding-left property. To use it, you create a style that applies to the <11> tags. This technique works
only if you set the 1ist-style-position property to the outside option (or don’tuse list-style-
positionatall).

In addition, if you don’t like how web browsers indent a list from the left edge, then
you can remove that space by setting both the margin-left and padding-left
properties to 0 for the list. To remove the indent from all lists, you can create this
group selector:

ul, ol {
padding-left: 0;
margin-left: o;

}

Or you can create a class style with those properties and apply it to a particular
or tag. The reason you need to set both the padding and margin properties
is that some browsers use padding (Firefox, Mozilla, Safari) and some use margin
(Internet Explorer) to control the indent. (You’ll learn more about the margin and

padding properties in the next chapter.)

Lists

@ htp: [fcss.local {ch06 / TMP1yrj8unusw.html

list-style-position: outside

= iLorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh enismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat.

Ut wisi enim ad minim veniam, quis
nostrud exerci tatio tincidunt ut laoreet
dolore magna aliquam erat volutpat.
Tincidunt ut laoreet dolore magna
aliquam erat volutpat nonummy nibh
euismod tineid.

1. iLorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh enismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat.

2. Ut wisi enim ad minim veniam, guis
nostrud exerci tatio tincidunt ut laoreet
dolore magna aliquam erat volutpat.

3. Tincidunt ut laoreet dolore magna
aliquam erat volutpat nonummy nibh
euismod tineid.

= iLorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh enismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat.

= Ut wisi enim ad minim veniam, quis
nostrud exerci tatio tincidunt ut laoreet
dolore magna aliquam erat volutpat.

= Tincidunt ut laoreet dolore magna
aliquam erat volutpat nonummy nibh
euismod tineid.

1. iLorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam
nonummy nibh enismod tincidunt ut
laoreet dolore magna aliquam erat
volutpat.

2. Ut wisi enim ad minim veniam, quis
nostrud exerci tatio tincidunt ut laoreet
dolore magna aliquam erat volutpat.
3. Tincidunt ut laoreet dolore magna
aliquam erat volutpat nonummy nibh
euismod tineid.

0.- Google

list-style-position: inside

FIGURE 6-18

Using the 1ist-
style-position
property, you can control
the position of bullets
and numbers in a list. The
outside option (left)
emphasizes the “listness”
of your list. Use the
inside option (right) if
you need to maximize the
width of your list.

170 CSS: THE MISSING MANUAL

Browsers normally display one bulleted item directly above another, but you can
add space between list items using the margin-top or margin-bottom properties
on the particular list items. These properties work for spacing list items exactly the
same way they work for spacing paragraphs, as explained on page 166. You just
need to make sure that the style applies to the <1i> tags by creating a class style
and applying it individually to each <1i> tag. Or, better yet, create an <1i> tag style
or descendant selector. The style should not apply to the or tag. Adding
margins to the top or bottom of those tags simply increases the space between
the entire list and the paragraphs above or below it—not the space between each
item in the list.

Graphic Bullets

If you’re not happy with squares and circles for your bullets, create your own. Us-
ing an image-editing program like Photoshop or Fireworks, you can quickly create
colorful and interesting bullets. Clip art collections and most symbol fonts (like
Webdings) provide great inspiration.

The CSS list-style-image property lets you specify a path to a graphic on your
site, much as you specify a file when adding an image to a page by using the src
attribute of the HTML tag. You use the property like this:

list-style-image: url(images/bullet.gif);

The termurl and the parentheses are required. The part inside the parentheses—im-
ages/bullet.gif in this example—is the path to the graphic. Notice that, unlike HTML,
you don’t have to use quotation marks around the path (though you can, if you like).

NOTE When specifying a graphic in an external style sheet, the path to the image is relative to the style
sheet file, not the web page. You'll learn more about how this works in the box on page 237, as you start to use
images with CSS.

While the 1ist-style-image property lets you use a graphic for a bullet, it doesn’t
provide any control over its placement. The bullet may appear too far above or below
the line, requiring you to tweak the bullet graphic until you get it just right. A better
approach—one you’ll learn in Chapter 8—is to use the background-image property.
That property lets you very accurately place a graphic for your bulleted lists.

NOTE As with the font property (see the box on page 165), there’s a shorthand method of specifying list
properties. The 1ist-style property caninclude a value for each of the other list properties—1ist-style-
image, list-style-position,andlist-style-type.Forexample,ul { list-style: circle
inside; } formats unordered lists with the hollow circle bullet on the inside position. When you include hoth
a style type and style image—1list-style: circle url(images/bullet.gif) inside;—web
browsers use the style type (circle in this example) if the graphic can’t be found.

STYLING LISTS

CHAPTER 6: FORMATTING TEXT

171

TUTORIAL:

TEXT
FORMATTING
IN ACTION

FREQUENTLY ASKED QUESTION

Customizing List Bullets and Numbers

I'd like the numbers in my numbered lists to be bold and red
instead of boring old black. How do | customize bullets and
numbers?

(SS gives you a few ways to customize the markers that appear
before list items. For bullets, you can use your own graphics, as
described previously. The cool, “I'm so (SS-savvy” way is to use
what’s called generated content. Basically, generated content is
just stuff that isn’t actually typed on the page but is added by
the web browser when it displays the page. A good example
is bullets themselves. You don’t type bullet characters when

}
ul li:before {

content: counter(item, disc) ;
color: red;
}
And, if you wanted to make the items in a numbered list red,
you can add this (SS:
ol 1i {
list-style-type: none;
counter-increment: item;

you create a list; the browser adds them for you. With CSS, you }

can have a browser add content, and even style that content, ol li:before {

before each <11i> tag. You read about generated content on content: counter(item) ". ";
page 57, but just so you have the code at hand if you want to color: red;

make regular bullets next to the list items red, add this (SS }

to your style sheet:

ul 11 {
list-style-type: none;

For a more in-depth explanation of styling numbered lists
visit http://blog.teamtreehouse.com/customize-ordered-
lists-pseudo-element.

M Tutorial: Text Formatting in Action

In this tutorial, you’ll gussy up headlines, lists, and paragraphs of text, using CSS’s
powerful formatting options.

To get started, you need to download the tutorial files from https://github.com/
sawmac/css_mm_4e. Click the tutorial link and download the files. All of the files
are enclosed in a zip archive, so you’ll need to unzip them first. The files for this
tutorial are contained inside the folder named 06.

Setting Up the Page
First, you’ll get your style sheet started, add the @font-face directive to load some
web fonts, and add styles to format the body text.

1. Launch your web browser and open the file 06 —text.html (see Figure 6-19).

It’s not much to look at—just a collection of headlines, paragraphs and a lone
bulleted list—but you’ll turn it into something far better looking.

172 CSS: THE MISSING MANUAL

http://blog.teamtreehouse.com/customize-ordered-lists-pseudo-element
http://blog.teamtreehouse.com/customize-ordered-lists-pseudo-element
https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

TUTORIAL:

TEXT

2. Open the file text.htmlin your favorite text editor. FORMATTING
IN ACTION

You’ll use a Google font as well as your own font files for this project. Start by
adding a link to a Google font.

CSS The Missing Manual FIGURE 6-19

. . P The page begins with
Exploring Typographic Possibilities nothing but basic, drab,
november 30 Rod Dibble HIML.

+ Lorem Ipsum
+ Reprehenderit qui in ea
+ Lorem Ipsum
+ Reprehenderit qui in ea
+ Lorem Ipsum
« Reprehenderit qui in ea

Esse quam nulla

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis
autem vel eum iure reprehenderit qui in ea volupiate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiai quo
voluptas nulla pariarur? Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ca
commedi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui
dolorem eum fugiat quo voluptas nulla pariatur?

Quis autem vel eum

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis
autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat
quo voluptas nulla pariatur? Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex
ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui
dolorem cum fugiat quo voluptas nulla pariatur?

3. Inthe <head> of the web page, click directly after the closing </title> tag.
Hit Enter (Return), and then type:

<link href="http://fonts.googleapis.com/css?family=Slabo+27px"
rel="stylesheet">

This line tells Google to send you a font named Slabo 27px—a serif display font.
Next, you’ll link to an external style sheet that will hold the styles for this tutorial.

4. After the <link> tag you just added, type the following line of code:
<link href="css/styles.css" rel="stylesheet">

You’ve linked to an external style sheet in a folder named css. That folder holds
an external style sheet and your web fonts.

5. Openthefile css—styles.css. This style sheet has a basic set of reset styles
(see page 109).

If you preview the text.html file in a web browser now, you’ll see that all of the
text on the page (headlines, paragraphs, and so on) looks nearly the same—in
other words, all the basic HTML formatting the browser applied has been re-
moved, so you can start with a clean slate.

Next, you’ll add the necessary @font-face directives to load four web fonts.
Actually, they are all the same font—PTSans—but include the bold, italic, and
bold-italic variants.

CHAPTER 6: FORMATTING TEXT 173

TUTORIAL:

TEXT
FORMATTING
IN ACTION

6. Add the following code to the top of the sty/es.css file (before the reset
styles). (If you’d rather not type all this code, you can open the at-font-
face.css file in the tutorial folder and just copy and paste that code into
the styles.cssfile.)

@font-face {
font-family: 'PTSans';
src: url('fonts/PTSansRegular.woff2') format('woff2'),
url('fonts/PTSansRegular.woff') format('woff');
font-weight: normal;
font-style: normal;
}
@font-face {
font-family: 'PTSans';
src: url('fonts/PTSansItalic.woff2') format('woff2'),
url('fonts/PTSansItalic.woff') format('woff');
font-weight: normal;
font-style: italic;
}
@font-face {
font-family: 'PTSans';
src: url('fonts/PTSansBold.woff2') format('woff2'),
url('fonts/PTSansBold.woff') format('woff');
font-weight: bold;
font-style: normal;
}
@font-face {
font-family: 'PTSans';
src: url('fonts/PTSansBoldItalic.woff2') format('woff2'),
url('fonts/PTSansBoldItalic.woff') format('woff');
font-weight: bold;
font-style: italic;
}

In a nutshell, you’ve created a new font family named PTSans. You'll be able to
use it in any new styles you create. You’re using the method described on page
136 to add the bold-italic variants of the font. This method means that whenever
you apply a normal bolded tag to text (like a headline, or the tag), the
browser will automatically swap in the bold version of the font.

You placed the @font-face directive at the beginning of the external style sheet.
That’s not a requirement, though—it just feels neater to put all the fonts at the
top and all of the regular styles after.

Next, you'll create a style that defines some general properties for all text on
the page.

174

CSS: THE MISSING MANUAL

7. At the bottom of the style sheet, after the reset styles, add a new line and

NOTE

type html {.

This is a basic tag selector that applies to the <html> tag. As discussed in
Chapter 4, other tags inherit the properties of this tag. You can set up some
basic text characteristics like font, color, and font size for later tags to use as
their starting point.

Press Enter again, and then add the following two properties:

font-family: PTSans, Arial, sans-serif;
font-size: 62.5%;

These two instructions set the font to PTSans (or Arial if the browser can’t
download PTSans), and the font size to 62.5 percent.

Why set the page’s base font to 62.5 percent? It just so happens that 62.5 percent times 16 pixels

(the normal size of text in most web browsers) equals 10 pixels. With 10 pixels as a starting point, it’s easy to
compute what other text sizes will look like on the screen. For example, 1.5em would be 1.5 x 10 or 15 pixels. 2em
is 20 pixels, and so on—easy multiples of ten. You can also use the rem unit (see page 155), which is similar to
the em, but avoids the problem associated with nested inherited em units.

9.

10.

Complete this style by pressing Enter and typing a closing bracket to mark
the end of the style.

At this point, your completed style should look like this:

html {
font-family: PTSans, Arial, sans-serif;
font-size: 62.5%;

}

Your style sheet is complete.

Save the styles.css file, and open the text.him/ file in a web browser to
preview your work.

The text on the page changes font...it also gets really small. Don’t worry, that’s the
62.5 percent font size you set in step 8. That’s just the starting point for all text,
and you’ll easily increase the size of text by defining em sizes for the other tags.

Formatting the Headings and Paragraphs

Now that the basic text formatting is done, it’s time to refine the presentation of
the headlines and paragraphs.

1.

Return to your text editor and the styles.cssfile. Click at the end of the clos-
ing brace of the HTML tag selector, add a new line, and then type .main h1 {.

This is a descendant selector (page 50). It provides more specific direction than
a basic HTML tag selector. In this case, the selector tells the web browser “ap-
ply the following formatting to any <h1> tag inside another tag with the class

TUTORIAL:

TEXT
FORMATTING
IN ACTION

CHAPTER 6: FORMATTING TEXT

175

TUTORIAL:

2.9

FORMATTING name main.” If you look at the page’s HTML, you’ll see that there’s a <div> tag
IN ACTION with a class of main (<div class="main">). As you’ll learn later, it’s very com-
mon in CSS-based designs to group HTML tags inside of <div> tags. You can

then position individual <div> tags to create columns and other complex page

layouts. It’s also common to use descendant selectors like this one to pinpoint

your formatting choices by affecting just the tags in certain areas of the page.

2. Hit Enter, and then type these three CSS properties:

color: rgb(249,212,120);
font-family: "Arial Black", Arial, Helvetica, sans-serif;
font-size: 4em;

You've just changed the color of the <h1> tag as well as the font. This time,
instead of using a web font, you’re specifying a font that visitors must have
installed on their computers. Many computers have Arial Black, but if the one
visiting this page doesn’t, it will fall back to Arial or Helvetica or just a generic
sans serif. You’ve also set the font size to 4em, which for most browsers (unless
the visitor has tweaked his browser’s font settings) comes out to 40 pixels tall.
That’s all thanks to the 62.5% size you set for the body back at step 7. That
smooth move made the base font size 10 pixels tall, so 4 x 10 comes out to 40
pixels. Next you’ll add a text shadow to the headline.

3. Complete this style by hitting Enter, adding the code in bold below (don’t
forget the closing brace):

.main h1 {
color: rgh(249,212,120);
font-family: "Arial Black", Arial, Helvetica, sans-serif;
font-size: 4em;
text-shadow: 4px 4px 6px rgba(0,0,0,.75);
}

Here, you’ve added a text shadow (page 160), which is offset 4 pixels to the
right, 4 pixels below, and is feathered out 6 pixels. In addition, you’re using the
RGBA color (page 149) to set the shadow to black with 75 percent transparency.

4. Save the file and preview the text.him/ file in a web browser.

Next, spruce up the appearance of the other headings and paragraphs.

NOTE Once a browser opens a file, it saves it in a type of easily accessible storage called a cache. If the

browser needs that same file again, it plucks the cached version instead of wasting time downloading the file
a second time. However, the cache can be a pain when designing locally. The browser may load the old version
of your external style sheet from the cache instead of loading the one with your new changes. If the web page
doesn’t seem to get updated when you update an external style sheet, pressing F5 or Ctrl-Shift-R (88-Shift-R)
will usually force the browser to load the new version of the file.

176 CSS: THE MISSING MANUAL

TUTORIAL:

TEXT
FORMATTING

5. Returnto yourtext editorand the siyles.cssfile. Click after the closing brace
IN ACTION

of the .main h1 tag, hit Enter, and add the following style:

.main h2 {
font: normal 3.5em "Slabo 27px", Garamond, Times, serif;
color: rgh(37,76,143);
border-bottom: 1px solid rgb(200,200,200);
margin-top: 25px;

}

Here you have another descendant selector that only applies to <h2> tags inside
another tag with the class main (you’re probably getting the hang of these now).
The font property used here is shorthand that combines the more long-winded
font-weight, font-size, and font-family (see the box on page 165). In other
words, this one line makes the headline bold, 3.5ems tall, and specifies the
Google font you linked to earlier.

In addition, this style adds a decorative border below the headline and a bit of
space between the headline and the tag above it (in other words, it adds some
space between the “CSS The Missing Manual” and the “Exploring Typographic
Possibilities” headlines). You’ll read more about borders and margins in the
next chapter.

Time to tackle more headlines.
6. Add another style below the one you added in the last step:

.main h3 {
color: rgh(241,47,6);
font-size: 1.9em;
font-weight: bold;
text-transform: uppercase;
margin-top: 25px;
margin-bottom: 10px;

}

This style dishes out some of the usual formatting—color, size, boldness—and
also uses the text-transform property (page 157) to make all of the text in the
<h3> headlines uppercase. Finally, it adds a bit of space above and below the
headlines by using the margin properties.

Next, you’ll improve the look of the paragraphs.
7. Add one more style to the page:

.main p {
font-size: 1.8em;
line-height: 1.5;
margin-left: 150px;
margin-right: 50px;
margin-bottom: 10px;

CHAPTER 6: FORMATTING TEXT 177

TUTORIAL:

TEXT
FORMATTING
IN ACTION

This style introduces the 1ine-height property, which sets the spacing between
lines. The number 1.5 is a multiplier: It calculates the line height by multiplying
the font size (1.75em) and 1.5. Basically, it sets the line height to 1.5x or 150 per-
cent of the font size. This adds a little more space between lines in a paragraph
than you’d normally see in a web browser. This extra breathing room gives the
text a lighter, airier quality and makes the sentences a little easier to read (but
only if you speak Latin).

The style also increases the font size to 1.8em (18 pixels for most browsers) and
indents the paragraph from the left and right edges of the page. You’ll notice
that there’s a lot of typing going on for the margin properties—fortunately, as
you’ll read on page 189 in the next chapter, there’s a margin shortcut property
that requires much less typing to control the four margins of an element.

Time to try out a more advanced selector type.

. Add the following style to your style sheet:

.main p::first-line {
font-weight: bold;
color: rgh(153,153,153);

}

The ::first-line pseudo-element (page 56) affects just the first line of a
paragraph. In this case, just the first line of text for each of the paragraphs
inside the main div will be bold and gray.

. Save the styles.css file and open the text.himl file in a web browser to

preview your work.

At this point, the page should look like Figure 6-20.

Formatting Lists

This page has a single bulleted list. The plan is to move the list over to the right
edge of the page and have the text following it wrap around it. CSS makes this little
trick easy.

1.

Return to your text editor and the styles.cssfile. Add the following style at
the end of the style sheet:

.main ul {
margin: 50px O 25px 50pX;
width: 25%;
float: right;

}

When formatting lists, you’ll usually create styles for two different elements:
the list itself (either the tag for bulleted lists or the tag for numbered
lists) and the individual list items (the <1i> tag). This style controls the entire list.

178

CSS: THE MISSING MANUAL

TUTORIAL:

TEXT
FORMATTING
IN ACTION

C33 Tuz Vsl ¥lanuz) FIGURE 6-20
The page is starting
. . e seas to come together. The
Exploring Typographic Possibilities headlines, paragraphs,
november 30 Rod Dibble and basic text settings are
e imes in place. Depending on
~ Repranandars cui mea which fonts you have on
~ Repranadars cui mea your computer, you may

notice slight differences

ESSE QUAM NULLA between your design
Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit and the one pictured
laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autern vel eum iure here. For example, if your
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel computer doesn’t have
illum qui dolorem eum fugiat quo voluptas nulla pariatur? Ut enim ad minima Arial Black, the headline,
veniam, quis nostrum exercitationem ullam corporis suscipit laberiosam, nisi ut (5SS The Missing Manual,
aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui might not be as bold as is
in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui pictured here.

dolorem eum fugiat quo voluptas nulla pariatur?

QUIS AUTEM VEL EUM

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur,
vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? Ut enim ad
minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur,
vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

There are a few things happening in this style. First, the margin property uses the
shorthand method. This one line sets all four margins around the list, replacing
the four individual margin properties (margin-top, margin-right, and so on).
The four values are ordered like this: top, right, bottom, left. So for this style,
50 pixels of space get added above the list, O space on the right, 25 pixels on
the bottom, and 50 pixels on the left.

The width property (discussed in detail on page 204) makes the entire list
25% the width of the browser window. If any particular list item has more text
than will fit within that space, it wraps to another line. The float property is the
real magic—in this case, float: right means “move the list over to the right
edge of the page.” This property also causes the text following the list to wrap
around the left side of the list. It’s a cool trick, and you’ll learn a lot more about
floats on page 210.

CHAPTER 6: FORMATTING TEXT 179

TUTORIAL:

2.9

FORMATTING You'll control the look of the individual list items next.
IN ACTION

2. Add one more style to the style sheet:

.main 1i {
color: rgb(32,126,191);
font-size: 1.5em;
margin-bottom: 7px;

}

Nothing new here: just changing the color and size and adding space below
each list item. Time to check out your progress.

NOTE If you want to add space between list items, you need to add top or bottom margins to the <1i>
tag. Adding margins to the or <ol1> tags simply adds space around the entire list.

3. Save the page and preview it in a web browser.

The page should now look like Figure 6-21.

C33 Tuz illsslyy anuzl FIGURE 6-21
The float property
Exploring Typographic Possibilities gives you some interest-

ing design options. In
this case, the bulleted
list is floated to the right
edge of the page. In fact,

november 30 Rod Dibble

ESSE QUAM NULLA

Ut en.im ?d minima veniam, l.‘-|ui5 nn-st.rum - * Loram 'Psum‘ B the float property is
e>.te-rC|tat!0nfam ullam corporl_s suscipit I.aborlos?m, 'L‘::;“ﬁ):i:‘t quiinea so useful, you'll see that
nisi ut aliquid F?x ea commeodi c.onSFTr.?uatur? Quis + Reprehenderit quiin ea it’s the main ingredient
autem vel eum iure reprehenderit qui in ea voluptate « Lorem Ipsum of (SS-based layouts,
velit esse quam nihil molestiae consequatur, vel illum qui « Reprehenderit qui in ea like the ones you'll learn
dolorem eum fugiat quo voluptas nulla pariatur? Ut about in Chapter 12.

enim ad minima veniam, quis nostrum exercitationem

ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil
molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

QUIS AUTEM VEL EUM

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel
illum qui dolorem eum fugiat quo voluptas nulla pariatur? Ut enim ad minima
veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut
aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in
ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem
eum fugiat quo voluptas nulla pariatur?

180 CSS: THE MISSING MANUAL

TUTORIAL:

TEXT

Fine-Tuning with Classes FORMATTING
IN ACTION

Sometimes you want even more control over how a style is applied. For example,
while you might want most paragraphs in one section of the page to look the
same, you might also want one or two paragraphs to have their own unique look.
In this tutorial, the paragraph of text near the top of the page—“November 30 Rod
Dibble”—contains some unique information: a publication date and author. You
want it to stand out from the other paragraphs, so you’ll add a class to the HTML
and create a class style.

1. Open the text.html file in your text editor. Locate the HTML for that para-
graph— <p>november 30 Rod Dibble</p>—and add
class="byline" to the opening <p> tag. The HTML should look like this:

<p class="byline">november 30 Rod Dibble</p>

Now it’s a simple matter of creating a class style that overrides the generic
formatting of the other paragraphs on the page.

2. Openthe styles.cssfilein your text editor. At the bottom of the style sheet,
add a style for that paragraph:

.main .byline {
font-size: 1.6em;
margin: 5px O 25px 50pX;

}

This style tweaks the size and placement of just that one paragraph. Note that
if you'd just named that style .byline—a basic class selector—it wouldn’t work.
Thanks to the rules of the cascade described in the last chapter, .byline is less
specific (less powerful) than the .main p style you created in step 7 on page
177, so it wouldn’t be able to override the size and margins specified by .main
p. However, .main .byline is more specific.

That paragraph still needs some work. It would be great if the name stood out
more. The HTML in this case provides just the hook you need.

3. Add another style to the style sheet:

.main .byline strong {
color: rgh(32,126,191);
text-transform: uppercase;
margin-left: 11px;

}

If you look at the HTML in step 1above, you’ll see that the name—Rod Dibble—is
inside a tag. The tag is used to emphasize text and mark
it as important. But that doesn’t mean you have to let it be bold, the way web
browsers normally display that tag. Instead, this descendant selector targets
the tag, but only when it appears inside another tag with the class

CHAPTER 6: FORMATTING TEXT 181

TUTORIAL:

TEXT

FORMATTING .byline, and only if all of that is inside yet another tag with the class main—
IN ACTION whew, that’s pretty specific.

This style turns the text blue, makes it uppercase, and adds a bit of space on
the left side (nudging the name over just a bit from the “November 30” text).

Adding the Finishing Touches

For the last bit of design, you’ll incorporate a few design touches that format the
page and that main div so they both look better. Then you’ll finish up with a cool
bit of text formatting.

1. Return to your text editor and the styles.css file.
First, you’ll add a background color and image to the page.

2. Locate the html styleinthe external style sheet—the first style that appears
after the CSS reset rules—and add one new property so that it looks like
this (changes are in bold):

html {

font-family: PTSans, Arial, sans-serif;

font-size: 62.5%;

background: rgb(225,238,253) url(../images/bg_body.png) repeat-x;
}

The background property is a powerful tool for any web designer. You’ve already
used it a couple of times in earlier tutorials; it lets you add color and insert and
control the placement of an image to the background of any tag. You’'ll learn
the ins and outs of this property on page 231, but for now this line changes the
background color of the page to light blue and adds a dark blue stripe to the
top of the page.

Next you’ll spruce up the main div.
3. Add another style in between the html style and the .main h1 style:

.main {
max-width: 740px;
margin: 0 auto;
padding: 0 10px;
border: 4px solid white;
background: transparent url(../images/bg banner.jpg) no-repeat;

}

In other words, click after the closing } for the html style, hit Enter, and type
the code above. You don’t necessarily have to put the style in that spot for it
to work, but for organizational purposes, putting the style that controls the div
before the other styles that format tags inside that div makes sense.

The max-width property sets a maximum overall width for this div. That is, the
div could shrink to be smaller—great if a visitor is using a screen that’s less than

182 CSS: THE MISSING MANUAL

TUTORIAL:

TEXT

740 pixels wide—but it will never stretch wider than 740 pixels. The margin FORMATTING
property values—0 auto—put O pixels of space above and below the div and IN ACTION
set the left and right margins to auto, which centers the div in the middle of

the browser window. The padding property adds space inside the box, pushing

content inside the div away from the border line. Finally, you’ve placed animage

into the background of the div.

Those last two styles didn’t have anything to do with text formatting, but if you
preview the page, you’ll see that they make it look a lot better...except for those
two top headlines. The first headline isn’t bold enough, and the second should
fall below the newly added graphic.

4. Add one last style right after the .main hi style:

.main h1 strong {
font-size: 150px;
color: white;
line-height: 1;
margin-right: -.5em;

}
The HTML for the headline looks like this:

<h1>CSS The Missing Manual</h1>

The “CSS” is enclosed inside tags, so this descendant selector formats
only that text (in that sense, it’s like the style you added in step 3 on page 181
that took advantage of a tag embedded within a paragraph). The text
size is pumped way up, its color is changed, and the line height is adjusted so
that it fits inside the top of the page. You'll notice that the line height is set to
1, so in this case, the line height will translate to 150 pixels—that’s 1 times the
font size of this style.

The one cool trick is the margin-right property, which is set to a negative
value: -.5em. Since a positive margin pushes elements away, a negative margin
actually pulls elements on top of each other. In this case, the rest of the text in
the headline—“The Missing Manual”—is scooted over .5 em, which is .5 times
the font size (150 pixels), on top of the “CSS” text.

NOTE Negative margins are perfectly legal (although tricky) CSS.

5. Save the styles.css file and preview the text.himlfile in a web browser.

It should look like Figure 6-22. You can compare your work to the finished text.
html page located in the 06_finished folder.

Congratulations! You've explored many of the text formatting properties offered by
CSS and turned ho-hum HTML into an attractive, attention-getting design. In the

CHAPTER 6: FORMATTING TEXT 183

TUTORIAL:

TEXT
FORMATTING next chapter, you’ll explore graphics, borders, margins, and other powerful CSS
IN ACTION design options offered by CSS.

FIGURE 6-22

With a little CSS, you

can turn plain text

into a powerful design
statement that helps

X . T quide readers through the
Exploring Typographic Possibilities information on your site.

november 30 ROD DIBBLE

ESSE QUAM NULLA
Ut enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi

= Lorem Ipsum
= Reprehenderit qui in ea
= Lorem Ipsum

consequatur? Quis autem vel eum iure - Reprehenderit qui in ea
reprehenderit qui in ea voluptate velit esse = Lorem Ipsum
quam nihil molestiae consequatur, vel illum = Reprehenderit qui in ea

qui dolorem eum fugiat quo voluptas nulla

pariatur? Ut enim ad minima veniam, quis nostrum exercitationem
ullam corporis suscipit laberiosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui
dolorem eum fugiat quo voluptas nulla pariatur?

QUIS AUTEM VEL EUM

Ut enim ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
consequatur? Quis autem vel eum iure reprehenderit qui in ea
voluptate velit esse quam nihil molestiae consequatur, vel illum qui
dolorem eum fugiat quo voluptas nulla pariatur? Ut enim ad minima
veniam, quis nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem
vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil
molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas
nulla pariatur?

184 CSS: THE MISSING MANUAL

CHAPTER

7

Margins, Padding,
and Borders

appears in a web browser. Some properties—like borders and background
colors—are immediately obvious to the naked eye. Others, though, are invis-
ible—like padding and margin. They provide a bit of empty space on one or more
sides of a tag. By understanding how these properties work, you can create attractive
columns and decorative sidebars and control the space around them (what designers
call white space) so your pages look less cluttered, lighter, and more professional.

E very HTML tag is surrounded by a world of properties that affect how the tag

Taken together, the CSS properties discussed in this chapter make up one of the
most important concepts in CSS—the box model.

M Understanding the Box Model

You probably think of letters, words, and sentences when you think of a paragraph
or headline. You also probably think of a photo, logo, or other picture when you
think of the tag. But a web browser treats these (and all other) tags as little
boxes. To a browser, any tag is a box with something inside it—text, an image, or
even other tags containing other things, as illustrated in Figure 7-1.

Surrounding the content are different properties that make up the box:

*+ padding is the space between the content and the content’s border. Padding is
what separates a photo from the border that frames the photo.

* border is the line that’s drawn around each edge of the box. You can have a
border around all four sides, on just a single side, or any combination of sides.

185

UNDERSTANDING
THE BOX MODEL

* background-color fills the space inside the border, including the padding area.

+ margin is what separates one tag from another. The space that commonly ap-
pears between the tops and bottoms of paragraphs of text on a web page, for
example, is the margin.

For a given tag, you can use any or all of these properties in combination. You can
set just a margin for a tag or add a border, margins, and padding. Or you can have
a border and margin but no padding, and so on. If you don’t adjust any of these
properties, then you’ll end up with the browser’s settings, which you may or may not
like. For example, although browsers usually don’t apply either padding or borders
to any tags on a page, some tags (like headings and paragraphs) have a preset top
and bottom margin.

top margin FIGURE 7-1
""""""""" t-o-p-k-)c;r:j-e; T The (SS box model includes the content inside a
--------------- S tag (for example, several sentences of text) plus
top padding padding, borders, and margins. The area within

the border, which includes the content and pad-

E margin E border i paddingi content i padding

A
I
1
|
. ' . .
left left left right ! bflggt right ding, may also have a background color. Actually,
I .
; DOrCEr , margin the background color is drawn underneath the
_________ | border, so when you assign a dashed or dotted
I .
bottom padding ' border, the background color appears in the gaps
""""""""""""" ' between the dots or dashes.
bottom border
bottom margin
__ I
000 Boxes o
& O merrow
xDisahle v |a/Cookies ™ E:}CSS' [Forms~ #“Images * "ﬁlnformation v [Z]Miscellaneous
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure.
border
Lorem ipsum dolor sit amet, consectetuer adipiscing
content

elit, sed diam nonummy nibh euismod tincidunt ut™ |
laoreet dolore magna aliquam erat volutpat. Ut wisi < .
enim ad minim veniam, quis nostrud exerci tation padding
ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriurs.

margin
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure.

[E= Done o 9/

186 CSS: THE MISSING MANUAL

CONTROLLING

SPACE WITH
NOTE As discussed on page 109, because different browsers apply different amounts of padding and margin MARGINS AND
to the same tags, it’s common to “zero-out” padding and margin values for all tags. In other words, use a set PADDING

of simple styles—called a (SS resei—to remove padding and margins from HTML tags. Then, when you create
additional styles that add margins and padding, you can be assured that you’ll have a consistent cross-browser
presentation.

I Controlling Space with Margins and
Padding

Both margins and padding add space around content. You use these properties to
separate one element from another—for example, to add space between a left-hand
navigation menu and the main page content on the right—or to inject some white
space between content and a border. You may want to move the border away from
the edge of a photo (see Figure 7-2).

FIGURE 7-2

Each photo on this page has a 10-pixel margin,

so the gap separating two photos is 20 pixels.
Padding separates the images from their borders
and exposes a gray background color. You can set
the border, margin, and padding independently
for each edge. Notice the larger padding applied to
the bottom edge of each photo.

—— border

L padding

Padding and margin function similarly, and unless you apply a border or background
color, you can’t really tell whether the space between two tags is caused by padding
or by amargin. But if you have a border around an element or a background behind
it, then the visual difference between the two properties is significant. Padding adds
space between the content and the border, and keeps the content from appearing
cramped inside the box; it also includes the background area, so the space taken
up by padding might be empty of content (like text or a photo), but it will still be
filled with a background color or image. Margins, on the other hand, add white

CHAPTER 7: MARGINS, PADDING, AND BORDERS 187

CONTROLLING

SPACE WITH
MARGINS AND space (often called a gutter) between elements, giving the overall look of the page

PADDING a lighter appearance.

You can control each side of the margin or padding for an element independently.
Four properties control margin edges: margin-top, margin-right, margin-bottom,
andmargin-left. Similarly, four properties control padding: padding-top, padding-
right, padding-bottom, and padding-left. You can use any valid CSS measurement
to define the size of a margin or padding, like so:

margin-right: 20px;
padding-top: 3em;
margin-left: 10%;

Pixels and ems are commonly used and act just as they do with text (see page 151).
A 20-pixel margin adds 20 pixels of space, and 3 ems of padding adds space equal
to 3 times the font size of the styled element.

Percentage values are also commonly used. They let you add margins and padding
that are flexible and change based on the width of the browser window, which makes
them ideal for responsive designs (see Chapter 15).

To remove all the space for a margin or padding, use 0 (margin-top: Oor padding-bottom:
0, for example). To remove space around all four edges of the browser window—to let a banner or logo or other
page element hutt right up to the edge without a gap—give the <body> tag a margin of 0 and a padding of 0:
margin: 0; padding 0;.

POWER USERS’ CLINIC

Margins, Padding, and Percentages

When you use percentages, web browsers calculate theamount you create more sophisticated layouts, you can introduce new
of space based on the widih of the containing element. Ona elements that help organize your page.

simple web page, the containing element is the body of the v, may want to add a <div> tag to a page in order to group
page, and it fills the browser window. In this case, the percent- rejated content into a sidebar area. (You'll see an example of
age value is based on the width of the browser window atany s in the tutorial on page 223.) That sidebar might have a
given time. Say the window is 760 pixels wide. Inthat case, @ ¢pacified width of 300 pixels. Tags inside the sidebar consider
10% left margin adds 76 pixels of space to the left edge of the tna <44y > tag their containing element. So a tag in the sidebar
styled element. Butif you resize the browser window, thenthat ith 3 right margin of 10% will have 30 pixels of empty space
value changes. Narrowing the browser window to 600 pixels 4 jts right.

changes the margin to 60 pixels (10 percent of 600).)
g g P (10p) To make matters more confusing, top and bottom percentage

However, the cpntaining element isp’t always the width of 3165 are also calculated based on the width of the containing
the browser window. As you'll see in later chapters, when qjament, not its height. So a 20% top margin is 20 percent of
the width of the styled tag’s container.

188 CSS: THE MISSING MANUAL

Margin and Padding Shorthand

You'll frequently want to set all four sides of a style’s margin or padding. But typing
out all four properties (margin-right, margin-left, and so on) for each style gets
tedious. Fear not: You can use the shortcut properties named margin and padding
to set all four properties quickly:

margin: 0 10px 10px 20pX;
padding: 10px 5px 5px 10px;

NOTE If the value used in a CSS property is 0, then you don’t need to add a unit of measurement. For
example, just type margin: Oj; instead of margin: Opx;.

The order in which you specify the four values is important. It must be top, right,
bottom, and left. If you get it wrong, you’ll be in trouble. In fact, the easiest way to
keep the order straight is to remember to stay out of TRouBLe—top, right, bottom,
and left.

If you want to use the same value for all four sides, it’s even easier—just use a single
value. If you want to remove margins from all <h1> tags, you can write this style:

h1 {
margin: 0;

}

Similarly, use shorthand to add the same amount of space between some content
and its border:

padding: 10px;

NOTE When you’re using the same value for both top and bottom and another value for both left and

right, you can use two values. margin: 0 2em; sets the top and bottom margins to 0 and the left and right
margins to 2 ems. Likewise, if the top and bottom margins (or padding) differ, but the left and right remain the
same, you can use three values. For example, margin: 0 2em lem; sets the top margin to 0, the left and
right margins to 2 ems, and the bottom margin to T em.

Colliding Margins

When it comes to CSS, two plus two doesn’t always equal four. You could run into
some bizarre math when the bottom margin of one element touches the top margin
of another. Instead of adding the two margins together, a web browser applies the
larger of the two margins (Figure 7-3, top). Say the bottom margin of an unordered
list is set to 30 pixels, and the top margin of a paragraph following the list is 20
pixels. Instead of adding the two values to create 50 pixels of space between the list
and the paragraph, a web browser uses the /largest margin—in this case 30 pixels.
If you don’t want this to happen, then use top or bottom padding instead (Figure
7-3, bottom).

CONTROLLING

SPACE WITH
MARGINS AND
PADDING

CHAPTER 7: MARGINS, PADDING, AND BORDERS

189

CONTROLLING
SPACE WITH
MARGINS AND

PADDING

©) Margin Collapse - Mozilla Firefox FIGURE 7-3
Fle Edit View Go Bookmarks Tools Help

3 Disable~ [1] Cookies~ ©7» CSS¥ (3} Forms+ /7 Images~ (@ Information~ [] Miscellaneous]

When two vertical margins meet, the smaller one
collapses. Although the top headline has a bottom
margin of 20 pixels, and the paragraph has a top
margin of 15 pixels, a web browser adds only 20

2- - & 0 B0 wissixv] © o G \

~

Heading: 20px bottom margin

20 pixels ——

pixels of space between the two elements. To get

Paragraph: 15 pX top margin the full 35 pixels’ worth of space that you want, use
padding instead of margins, as shown in the bottom

Heading: 20 px bottom padding headline. Here, the heading has 20 pixels of bottom

35 pixels —

padding. Those 20 pixels get added to the 15-pixel
top margin of the paragraph to form a 35-pixel gap.

[E= Done

Paragraph: 15 px top margin

<

Things get even weirder when one element is inside another element. This situation
can lead to some head-scratching behavior. For example, say you add a “warning”
box to a page (like a div tag to hold a warning message inside it). You add a 20-pixel
top and bottom margin to separate the warning box from the heading above it and
the paragraph of text below it. So far so good.

But say you insert a heading inside the warning box, and to put a little room between
it and the top and bottom of the div, you set the heading’s margin to 10 pixels. You
may think you’re adding 10 pixels of space between the heading and the top and
bottom of the div, but you’d be wrong (Figure 7-4, top). Instead, the margin appears
above the div. In this case, it doesn’t matter how large a margin you apply to the
headline—the margin still appears above the div.

NOTE In the lingo of (SS, this phenomenon is known as collapsing margins, meaning two margins actually
become one.

You have two ways around this problem: Either add a small amount of padding
around the <div> tag or add a border to it. Since border and padding sit between
the two margins, the margins no longer touch, and the headline has a little breathing
room (Figure 7-4, bottom).

NOTE Horizontal (left and right) margins and margins between floating elements don’t collapse in this way.
Absolutely and relatively positioned elements—which you’ll earn about in Chapter 15—don’t collapse either.

190

CSS: THE MISSING MANUAL

CONTROLLING

SPACE WITH
MARGINS AND

Removing Space with Negative Margins PADDING

Most measurements in CSS have to be a positive value—after all, what would text
that’s negative 20 pixels tall (or short) look like? Padding also has to be a positive
value. But CSS allows for many creative techniques using negative margins.

<> ——BATHTUB HYDROPONICS wmum PIGURE 74

: Holy shrinking margins, Batman! Top:
//A Do not try this at home! 1 Whenever vertical margins touch, even
<div> : when one element is inside another ele-
Lorem ipsum dolor sit amet, consectetuer adipiscing . Lo .
! elit, sed diam nonummy nibh euismod tincidunt ut k ment (like the <h2> tag inside this div),
! laoreet dolore magna aliquam erat volutpat. Ut wisi the margins collapse. Bottom: To solve this
! enim ad minim veniam, quis nostrud exerci tation H dil dd a little paddi bord
. ullamcorper suscipit lobortis nisl ut aliquip ex ea : ilemma, add a little padding or a border
! commodo consequat. Duis autem vel eum iriure. around the containing element (1 pixel of

; ‘, top and bottom padding on the <div>,
BATHTUB HYDROPONICS - inthis case).

20 pixel margin ——_ ;

1 pixel padding —I T

D t try this at h !
20 pixel margin 4 Do not try this at home

! Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut

. laoreet dolore magna aliquam erat volutpat. Ut wisi
| enim ad minim veniam, quis nostrud exerci tation

: ullamcorper suscipit lobortis nisl ut aliquip ex ea

| commodo consequat. Duis autem vel eum iriure.

Instead of adding space between a tag and elements around it, a negative margin
removes space. So you can have a paragraph of text overlap a headline, poke out
of its containing element (a sidebar or other layout <div>), or even disappear off
an edge of the browser window. And, hey, you can even do something useful with
negative margins.

Even when you set the margins between two headlines to O, there’s still a little space
between the text of the headlines (thanks to the text’s line height, as described on
page 163). That’s usually a good thing, since it’s hard to read sentences that bunch
together and touch. But, used in moderation, tightening the space between two
headlines can produce some interesting effects. The second headline of Figure
7-5 (the one that begins “Raise Tuna”) has a top margin of -10px applied to it. This
moves the headline up 10 pixels so it slightly overlaps the space occupied by the
headline above it. Also, the left and right borders of the “Extra! Extra!” headline
actually touch the letters of the larger headline.

You can also use a negative margin to simulate negative padding. In the third headline
of Figure 7-5, the one that begins with “The Extraordinary Technique,” a line appears
directly under the text. This line is actually the top border for the paragraph that
follows. (You’ll learn how to add borders on page 194.) But because that paragraph
has a negative top margin, the border moves up and under the headline. Notice how

CHAPTER 7: MARGINS, PADDING, AND BORDERS 191

CONTROLLING

SPACE WITH
MARGINS AND

the descending tail for the letter Q in the headline actually hangs below the border.
PADDING

Since padding—the space between content (like that letter Q) and a border—can’t
be negative, you can’t move a bottom border up over text or any other content. But
you get the same effect by applying a border to the following element and using a
negative margin to move it up.

) Negative margins - Mozilla Firefox : : : FIGURE 7-5
File Edit View Go Bookmarks Tools Help o In this example, to make the last
di‘ & E> L} @ @ [0 hesicss ocalidozines. %] © co [GL | paragraph’s top border look like

it’s actually the bottom border for
x Disabler |1] Cookiesw 575 €55+ (& Forms~ ¥ Images~ @@ Information~ Miscellaneous~ @ Outline the headline above it, add a little

EXTRA! EXTRA! READ ALL ABOUT IT padding to the paragraph. Around

RA][SE TU NA IN YOU ﬁ HOT TU B 5 pixels of top padding moves the

paragraph down from the border,
while 4ems of left padding indents

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh the paragraph’s text, still allowing
enismed tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim the top border to extend to the left
ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut

aliquip ex ea commedo consequat. Duis autem vel eum irfure dolor in hendrerit in edge.

vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis
at vero eros et accumsan et fusto odio dignissim qui blandit praesent luptatum
zzril delenit a

| Done

WL You can actually use a negative top margin on the paragraph or a negative bottom margin on the

headline. Both have the same effect of moving the paragraph up close to the headline.

Inline, Block, and Other Display Settings

Although web browsers treat every tag as a kind of box, not all boxes are alike. CSS
has two different types of boxes—block boxes and inline boxes—that correspond
to the two types of tags—block-level and inline tags.

A block-leveltag creates a break before and after it. The <p> tag, for example, creates
a block that’s separated from tags above and below. Headlines, <div> tags, tables,
lists, and list items are other examples of block-level tags.

Inline tags don’t create a break before or after them. They appear on the same
line as the content and tags beside them. The tag is an inline tag. A word
formatted with this tag happily sits next to other text—even text wrapped in other
inline tags like . In fact, it would look pretty weird if you emphasized a single
word in the middle of a paragraph with the tag and that word suddenly
appeared on its own line by itself. Other inline tags are for adding images, <a>
for creating links, and the various tags used to create form fields.

In most cases, CSS works the same for inline boxes and block boxes. You can style
the font, color, and background and add borders to both types of boxes. However,

192 CSS: THE MISSING MANUAL

CONTROLLING

SPACE WITH
when it comes to margins and padding, browsers treat inline boxes differently. Al- MARGINS AND
though you can add space to the left or right of an inline element using either left PADDING
or right padding or left or right margins, you can’t increase the height of the inline
element with top or bottom padding or margins. In the top paragraph in Figure
7-6, the inline element is styled with borders, a background color, and 20 pixels of
margin on all four sides. But the browser only adds space to the left and right sides
of the inline element.

A Inline links - Microsoft Internet Explorer E]@‘g‘ FIGURE 7-6
ar

Fie Edit View Favorites Tools Help))
Qus- O RNEA G Pmo forms @3- B3 B Adding top or bottom margins
reieti v e e | and padding doesn’t make an
~ inline element any taller, so you

Address | @) 2:\dave On My

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh enismod

20 pixel tincidunt ut faoreet dolore magna aliquam crat voltpat. Ut wisi enim ad i im veriam, quis can run into some weird format-
nostrud exerci tation ullamc orper susc ipit lobo rtis nisl ut ali quip ex ea commodo consequat. H i
mgrgin S Duis autem vel cum irfure dolor in _|hendrerit in vulputate vﬁ' consequat, vel illum dolore ting. In the middie paragraph,
eu feug iat nu lla facilis is at vero eros et accumsan et fusto odio dignissim qui blan dit prae sent the bafkgro”nd and borders of
Tupt atum zzril delenit augue duis dolore te feug ait nulla facilisi Lorem ipsum dolor sit amet. .
dipiscin el sed diam nomummy ibh evisimod tincidunt ut loreet dolore magna a link overlap the text above
sliquam eset volatpat. Ut wisi e | and below. The background
20 pixel Lorem ipsum dolor sit amet, consectetuer adipiscing elit. sed diam nonummy nibh enismod appears on top of the line
pixe tincidunt ut lacreet dolore magna aliquam erat volutpat. Ut isi enim ad minim veniam, quis P
mar /'ns nostrud exerci tation ullamcorper sus kommodo consequat. before the Styl6d I"’Ine teXt’ but
g Duis suceus vel e e dolosin—) i L isate 1ot vel fum underneath the line following it
Gnd dolore eu feugiat nulla fa cilisis at verq eros et accu msan et fusto odio|dignissim qui blandit
20 pixel pracsent huptatum zzril delenit augue dufs dolore te feug ait nulla Faciisi Lorem ipsum dolor sit because the browser treats each
padd/ng ::m, consa;cq::e;:t&:;shlﬁve&i::xnmmmymbhcutsmodmudmtutlame et dolo line as if it’s stacked on top of

.) o) the previous line. Normally, that
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod o) .
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut w isi enim ad minim veniam, quis isn’t a problem since lines of
nostrud exerci tation ullamcorper suscipit | obortis nisl ut ali quip ex ea co modo conseq uat. text donyt USUa”y OVefIap If you

. o want top and bottom margins
dISP/G/y //_n//ﬁe bé(()j(_l-k, autem vel eum irfure dolor in hendrerit in vulputate velit conse quat, vel illum and padding to work for an
vertical-aiign: miadie; inline element, you can use the
PGddIl’]g,' 2OPX,' dolore eu feug iat nulla faci lisis at vero eros et accumsan et fusto odio dignissim qui blan dit . . .
margin: 20px; prae sent hupta tum 2zl delenit angue duis dolore te fengait mila facilisi Lorem ipsum dolor sit display:inline-block
. 4

amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore

e sl erat volapat Ut s enion instruction (bottom). This leaves

the item inline, but treats it
like a box so padding, margins,
borders, and width and height
are all applied (and obeyed).

<

€] Done ® Internet

NOTE One exception to the rule that inline elements don’t get taller when padding or margins are added

is the tag (even though it’s an inline tag). Web browsers correctly expand the height of the image’s hox
to accommodate any padding and margins you add.

At times, you may wish an inline element behaved more like a block-level element
and vice versa. Bulleted lists present each item as its own block—each list item is
stacked above the next. You may want to change that behavior so the list items ap-
pear side by side, all on a single line, as in a navigation bar (you can see an example
of one in Figure 9-4 on page 290). Finally, you may want to treat an inline element
like a block-level element. Maybe you want an image embedded in a paragraph to
be on its own line, with space above and below.

CHAPTER 7: MARGINS, PADDING, AND BORDERS 193

ADDING
BORDERS

Fortunately, CSSincludes a property that lets you do just that—the display property.
With it, you can make a block-level element act like an inline element:

display: inline;
Or you can make an inline element, like an image or link, behave like a block-level
element:

display: block;

Finally, you can make an element act both like a block and an inline element. The
inline-block setting makes an element sit on the same line as tags on either side
of it, but also makes the element obey top and bottom margin and padding settings
as well as height settings:

display: inline-block;

The display property has a myriad of possible options, some of which don’t work in all browsers.
The inline-block value works in current browsers (see Figure 7-6). Another value, none, works in most
browsers and has many uses. It does one simple thing—completely hides the styled element so it doesn’t appear
in a web browser. With a dab of JavaScript programming, you can make an element hidden in this way instantly
become visible, simply by changing its display back to either inline or block. You can even make an element
with a display of none suddenly appear using CSS.

M Adding Borders

A border is simply a line that runs around an element. As shown back in Figure 7-1,
it sits between any padding and margins you set. A border around every edge can
frame an image or mark the boundaries of a banner or other page element. But
borders don’t necessarily have to create a full box around your content. While you
can add a border to all four edges, you can just as easily add a border to just the
bottom or any combination of sides. This flexibility lets you add design elements
that don’t necessarily feel like a border. For example, add a border to the left of an
element, make it around 1lem thick, and it looks like a square bullet. A single border
under a paragraph can function just like the <hr> (horizontal rule) by providing a
visual separator between sections of a page.

You control three different properties of each border: color, width, and style. The
color can be any of the CSS color values discussed starting on page 148, such as a
hexadecimal number, a keyword, or an RGB (or RGBA) value. A border’s width is
the thickness of the line used to draw the border. You can use any CSS measure-
ment type (except percentages) or the keywords thin, medium, and thick. The most
common and easily understood method is pixels.

Finally, the style controls the type of line drawn. There are many different styles, as
you can see in Figure 7-7. You specify the style with a keyword. For example, solid
draws a solid line and dashed creates a line made up of dashes. CSS offers these

194

CSS: THE MISSING MANUAL

styles: solid, dotted, dashed, double, groove, ridge, inset, outset, none, and hidden.
(None and hidden work the same way: They remove the border entirely. The none

value is useful for turning off a single border.)

ADDING
BORDERS

[] | | | Iy E S EEEEEEEEEEEN

I l. .

Border 1 Border 1 E Border E

solid | dashed |: dotted .

I . .

| | | | -.-IIIIIIIIIIII-.
Border Border Border
double groove inset
Border Border Border
outset ridge none

FIGURE 7-7

(5SS offers nine different
border styles. Solid is the
plainest, but if you want
to go for other visual
effects, you can make
the border dotted or
dashed, or simulate a 3D
frame with the groove,
ridge, inset, and
outset values. You can
even apply a different
border style to each side
of the element, with a
solid top border and dot-
ted borders on the other
three sides.

Border Property Shorthand

If you’ve ever seen a list of the different border properties available in CSS, you may
think borders are really complex. After all, there are 20 different border properties,
which you’ll meet in the following sections, plus a couple that apply to tables. But
all these properties are merely variations on a theme that provide different ways
of controlling the same three properties—color, width, and style—for each of the
four borders. The most basic and straightforward property is border, which simply

adds four borders:

border: 4px solid rgh(255,0,0);

CHAPTER 7: MARGINS, PADDING, AND BORDERS

195

ADDING
BORDERS

The above style creates a solid, red, 4-pixel border. You can use this property to
create a basic frame around a picture, navigation bar, or other item that you want
to appear as a self-contained box.

MZT The order in which you write the properties doesn’t matter: border: 4px solid
rgb(255,0,0); works as well as border: rgb(255,0,0) solid 4px;.

Formatting Individual Borders

You can control each border individually using the appropriate property: border-
top, border-bottom, border-left, or border-right. These properties work just like
the regular border property, but they control just one side. The following property
declaration adds a 2-pixel, red, dashed line below the style:

border-bottom: 2px dashed red;

You can combine the border property with one of the edge-specific properties
like border-1left to define the basic box for the entire style but customize a single
border. Say you want the top, left, and right sides of a paragraph to have the same
type of border, but you want the bottom border to look slightly different. You can
write four lines of CSS, like this:

border-top: 2px solid black;
border-left: 2px solid black;
border-right: 2px solid black;
border-bottom: 4px dashed #333;

Or, you can achieve the same effect as the previous four lines of CSS with just two
lines:

border: 2px solid black;
border-bottom: 4px dashed #333;

The first line of code defines the basic look of all four borders, and the second line
redefines just the look of the bottom border. Not only is it easier to write two lines
of CSS instead of four, but it also makes changing the style easier. If you want to
change the color of the top, left, and right borders to red, then you only have to edit
a single line, instead of three:

border: 2px solid red;
border-bottom: 4px dashed #333;

When you use this shortcut method—defining the basic look of all four borders us-
ing the border property and then overriding the look of a single border with one of
the edge-specific properties like border-1left—it’s crucial that you write the code
in a specific order. The more general, global border setting must come first, and the
edge-specific setting second, like so:

border: 2px solid black;
border-bottom: 4px dashed #333;

196

CSS: THE MISSING MANUAL

Because the border-bottom property appears second, it overrides the setting of the
border property. If the border-bottom line came before the border property, then
it would be cancelled out by the border property, and all four borders would be
identical. The last property listed can overrule any related properties listed above
it. This behavior is an example of the CSS cascade you read about in Chapter 5.

You can also use this shortcut method to turn off the display of a single border with
the none keyword. Say you want to put a border around three sides of a style (top,
left, and bottom) but no border on the last side (right). Just two lines of code get
you the look you’re after:

border: 2px inset #FFCC33;
border-right: none;

The ability to subtly tweak the different sides of each border is the reason there
are so many different border properties. The remaining 15 properties let you define
individual colors, styles, and widths for the border and for each border side. For
example, you could rewrite border: 2px double #FFCC33; like this:

border-width: 2px;
border-style: double;
border-color: #FFCC33;

Since you’re using three lines of code instead of one, you'll probably want to avoid
this method. However, each border edge has its own set of three properties, which
are helpful for overriding just one border property for a single border edge. The
right border has these three properties: border-right-width, border-right-style,
and border-right-color. The left, top, and bottom borders have similarly named
properties—border-left-width, border-left-style, and so on.

You can change the width of just a single border like this: border-right-width: 4px;.
One nice thing about this approach is that if you later decide the border should be
solid, you need to edit only the generic border property by changing dashed to solid.

In addition, you can specify individual values for each side of the border by us-
ing the border-width, border-style, and border-color properties. For example,
border-width: 10px 5px 15px 13px; applies four different widths to each (top,
right, bottom, and left) side.

Imagine that you want to have a 2-pixel, dashed border around the four edges of
a style, but you want each border to be a different color. (Perhaps you're doing a
website for kids.) Here’s a quick way to do that:

border: 2px dashed;
border-color: green yellow red blue;

This set of rules creates a 2-pixel dashed border around all four edges, while mak-
ing the top edge green, the right edge yellow, the bottom edge red, and the left
edge blue.

ADDING
BORDERS

CHAPTER 7: MARGINS, PADDING, AND BORDERS

197

COLORING THE
BACKGROUND

NOTE You usually add padding whenever you use borders. Padding provides space between the border and
any content, such as text, images, or other tags. Unless you want to put a border around an image, borderlines
usually sit too close to the content without padding.

M Coloring the Background

It’s a cinch to add a background to an entire page, an individual headline, or any
other page element. Use the background-color property followed by any of the valid
color choices described starting on page 148. If you want, add a shockingly bright
green to the background of a page with this line of code:

body { background-color: rgb(109,218,63); }

Alternatively, you can create a class style named, say, . review with the background-
color property defined, and then apply the class to the <body> tag in the HTML, like
so: <body class="review">.

NOTE You can also place an image in the background of a page and control that image’s placement in many
different ways. You’ll explore that in the next chapter. In addition, you can add a color gradient to the background
of any element, another cool trick that you’ll learn in the next chapter.

Background colors come in handy for creating many different visual effects. You
can create a bold-looking headline by setting its background to a dark color and its
text to a light color. Background colors are also a great way to set off part of a page
like a navigation bar, banner, or sidebar.

And, don’t forget about the RGBA color method described on page 149. With it, you
can make the background partially transparent, letting underlying colors, textures, or
images from other objects show through. For example, you can set the background
color of the page to a tan color. Then, say you want a <div> tag inside that to be a
lighter shade of that tan. Instead of placing a solid color in the background of that
div, you can add the color white and then control the opacity of that color, so that
various degrees of the tan color show through:

body {
background-color: rgb(247,226,155);
}
.special-div {
background-color: rgba(255,255,255,.75);
}

198

CSS: THE MISSING MANUAL

CREATING

NOTE [y you use background colors and borders, keep the following in mind: If the border style is either ROUNDED
dotted or dashed (see Figure 7-7), the background color shows in the empty spaces between the dots or dashes. CORNERS
In other words, web browsers actually paint the background color under the borderline. However, you can get
around that behavior by using the background-clip property and setting its value to padding-box like
this:

background-clip: padding-box;

M Creating Rounded Corners

As mentioned earlier, web browsers treat all elements as stark rectangular boxes.
That becomes obvious when you put a border around a paragraph or div. Fortunately,
you can soften the hard edges of those boxes by adding a rounded corner to your
styles (see Figure 7-8). CSS includes the border-radius property to let designers
add curves to one or more corners of an element. At its simplest, the border-radius
property accepts a single value, which it then applies to all four corners of an element:

.specialBox {
background-color: red;
border-radius: 20px;

}

The browser uses the supplied radius value to draw a circle at each corner of the
element. The value equals the distance from the center of the circle to its edge—its
radius—as pictured in Figure 7-9. Pixels and ems are the most common measure-
ments you’ll use, but you can use percentages as well (though they behave a little
differently than you might expect, as discussed in Figure 7-9).

FIGURE 7-8
(5SS lets you apply rounded

corners to any element.
Order today! -.Or tomorrow! Make sure you have a
background color or border

on the element, or else you
won’t be able to see any of

that awesome rounded-
ness.
--0r whenever! =-just order!

With a single value, the browser draws the same radius for each corner of the ele-
ment. For example, the top-left image in Figure 7-8 uses the following declaration:

border-radius: 30px;

CHAPTER 7: MARGINS, PADDING, AND BORDERS 199

CREATING
ROUNDED
CORNERS

However, you’re not limited to the same value for each corner. You can supply sepa-
rate values for each corner by providing four values. For example, the top-right box
in Figure 7-8 has four different corners. The declaration is:

border-radius: 0 30px 10px 5px;

The numbers start at the top-left of the box and work their way around clockwise.
In other words, the first value (O in the example in Figure 7-8) applies to the top-
left, the second (30px) to the top-right, the third (10px) to the bottom-right, and
the fourth (5px) to the bottom-left corner. You can also supply just two values, in
which case the first number applies to the top-left and bottom-right corners, while
the second number applies to the top-right and bottom-left corners.

FIGURE 7-9

You can create either circular corners (top) or elliptical corners
(bottom) by supplying either a single value—border-radius:
20px—or a combination of two values separated by /~border-
radius: 40px/20px;. If you use a single percentage value, you'll
most likely end up with an elliptical corner. That’s because the browser
calculates the horizontal radius by using a percentage of the element’s
width, and the vertical radius, using a percentage of the element’s
height. So, if you write something like border-radius: 20%,
unless the element is a perfect square, the browser will calculate an
elliptical corner more like this: border-radius: 20px/40px;.

In addition to the perfectly round (that is, circular) corners you’ve seen so far, it’s
also possible to apply an elliptical corner, like the ones in the two bottom examples
in Figure 7-8. An elliptical path requires two radius values: The first is the radius from
the center of the path to one of the left or right edges, while the second number
is the distance from the center of the path to one of the top or bottom edges. For
example, to add corners like the one pictured in the bottom-left corner in Figure
7-8, you’d create this declaration:

border-radius: 40px/20px ;

The 40px value is the horizontal radius; the 20px value is the vertical radius. The slash
between them lets a browser know that you’re creating an elliptical path. You can
make all four corners have different oblong shapes by providing four values for each
radius of the ellipsis. This is a bit confusing: You first provide the four values for the
horizontal radius of each corner (starting in the top-left corner); then a forward slash
(/) followed by four values for the vertical radius of each corner, like this:

border-radius: 40px 10px 20px 10px / 20px 30px 40px 20pX;

200

CSS: THE MISSING MANUAL

ADDING DROP
SHADOWS

To mix and match elliptical and circular corners you need to use this same syntax.
Circular corners will have the same horizontal and vertical radii:

border-radius: 10px 10px 20px 10px / 10px 30px 40px 10px;

Finally, if you want to go the longhand route, you can use separate properties to
define the appearance of each corner. For example:

border-radius: lem 2em 1.5em .75em;
can also be written as:

border-top-left-radius: 1em;
border-top-right-radius: 2em;
border-bottom-right-radius: 1.5em;
border-bottom-left-radius: .75em;

NOTE Internet Explorer versions 8 and earlier don’t understand the border-radius property, so they’ll
display square corners instead.

M Adding Drop Shadows

As you read on page 160, you can create subtle (or not so subtle) drop shadows
to text to make it pop from the page. The box-shadow property lets you add drop
shadows to an element’s bounding box so you can, for example, make a <div> ap-
pear to float above the page (see Figure 7-10). There are a few more options than
with the text-shadow property. For example, you can make a shadow appear inside
the box as at the bottom in Figure 7-10.

The basic syntax for the box-shadow property is pictured in Figure 7-11. The first value
is a horizontal offset; that is, this value moves the shadow to the element’s right or
the left. A positive number moves the shadow to the right (Figure 7-10, top), and a
negative number moves the shadow to the left.

The second value is the vertical offset—the position of the shadow either above
or below the element. A positive element positions the shadow below the bottom
edge of the box (Figure 7-10, top), while a negative value moves the shadow above
the top edge of the box.

NOTE You must use pixels or ems for the drop shadow values. Percentages will not work.

CHAPTER 7: MARGINS, PADDING, AND BORDERS 201

ADDING DROP
SHADOWS

FIGURE 7-10

The box-shadow property lets you
add shadows to your elements

to make them appear as though
they’re floating above the page.

This property works in most current
browsers, including Internet Explorer
9. Unfortunately, IE9 draws the shad-
ows noticeably thinner than do other
browsers. In addition, IE8 and earlier
simply ignore the property and won’t
draw any shadows on elements.

202

CSS: THE MISSING MANUAL

The third value is the radius of the shadow. It determines how blurry and wide the ADDING DROP
shadow is. A value of 0 creates no blur, so the edges of the shadow are sharp. A SHADOWS
large value creates more blur and a thicker shadow. Finally, the last value is the drop

shadow’s color. You can use any CSS color value, but RGBA values look particularly

good since you can control the color’s opacity to make it appear more translucent

and shadow-like.

FIGURE 7-11

The most basic drop shadow
positions a colored shadow
either to the left (using a
negative value as pictured
here) or right (positive value)
and above the top (negative
value) or below the bottom
I— (positive value) of the ele-

* ment’ and blurs the shadow

with a specified blur radius.

horizontal offset | | vertical offset

box-shadow: -4px 6px 8px #000000;

shadow radius shadow color

The box-shadow property includes two optional values: inset and a spread value.
The inset keyword tells a browser to draw the shadow inside the box (Figure 7-10,
bottom). Simply add inset as the first value of the box-shadow property to create
an inset shadow:

box-shadow: inset 4px 4px 8px rgha(0,0,0,.75);

You can also add a spread as a fourth value (between the shadow radius and shadow
color). The spread expands the shadow by the specified amount. In other words,
if you add a spread value of 10px, a browser expands the shadow 10 pixels in each
direction (basically making it 20 pixels wider and 20 pixels taller). The value also
dictates when the blur radius is applied; when you add a spread value, the blurring
of the shadow doesn’t begin until after the spread value is applied. This is particu-
larly useful when you want to add a shadow around the entire element—what a lot
of image-editing programs call glow.

box-shadow: 2px 2px 10px #000000;

For example, at the second-from-top box in Figure 7-10, both the horizontal and
vertical offsets are set to 0; the shadow radius is 8px; and the spread is 2px. The
spread value pushes the shadow outward 2 pixels on all four sides of the box, and
then the 8 pixels of shadow radius extends the blurring another 8 pixels. You can
even use the spread value to create a second, different-colored border around an
existing border. Here’s an example of that:

CHAPTER 7: MARGINS, PADDING, AND BORDERS 203

DETERMINING
HEIGHT AND
WIDTH

border: 10px solid rgb(100,255,30);
box-shadow: 0 0 0 10px rgb(0,33,255);

Finally, you can even apply multiple shadows to a style (Figure 7-10, second from
bottom). Just add a comma after the first set of shadow settings, and then add
another shadow:

box-shadow: 10px 5px 8px #FFOOFF,
-5px -10px 20px 5px rgh(0,33,255);

You can add as many shadows as you want (and as common design sense allows).

NOTE Drop shadows can force browsers to do a lot of re-rendering and redrawing. Use drop shadows
carefully, and make sure you test the performance of pages with drop shadows in mobile devices, which lack the
powerful CPUs of a desktop or laptop computer.

M Determining Height and Width

Two other CSS properties that form part of the CSS box model are useful for assign-
ing dimensions to an object, such as a table, column, banner, or sidebar. The height
and width properties assign a height and width to the content area of a style. You'll
use these properties often when building the kinds of CSS layouts described in Part
Three of this book, but they’re also useful for more basic design chores like assigning
the width to a table, creating a simple sidebar, or creating a gallery of thumbnail
images (like the one described in the steps on page 266).

Adding these properties to a style is very easy. Just type the property followed by
any of the CSS measurement systems you’ve already encountered. For example:

width: 300px;
width: 30%;
height: 20em;

Pixels are, well, pixels. They’re simple to understand and easy to use. They also
create an exact width or height that doesn’t change. An em is the same as the text
size for the styled element. Say you set the text size to 24px; an em for that style is
24px, so if you set the width to 2em, then it would be 2 x 24 or 48 pixels. If you don’t
set a text size in the style, the em is based on the inherited text size (see page 152).

For the width property, percentage values are based on the percentage of the width
of the style’s containing element. If you set the width of a headline to 75% and that
headline isn’t inside any other elements with a set width, then the headline will be
75 percent of the width of the browser window. If the visitor adjusts the size of his
browser, then the width of the headline will change. However, if the headline is
contained inside a div (maybe to create a column) that’s 200 pixels wide, the width
of that headline will be 150 pixels. Percentage values for the height property work
similarly, but are based on the containing element’s height, instead of width.

204

CSS: THE MISSING MANUAL

Calculating a Box’s Actual Width and Height

While the width and height properties seem pretty straightforward, there are a
few nuances that can throw you for a loop. First of all, there’s a difference between
the value you set for a style’s width and height and the amount of space that a web
browser actually uses to display the style’s box. The width and height properties
set the width and height of the content area of the style—the place where the text,
images, or other nested tags sit. (See Figure 7-1for a refresher on where the content
area sits within the overall box model.) The actual width—that is, the amount of
screen real estate given by the web browser—is the total of the widths of the margins,
borders, padding, and width properties, as illustrated in Figure 7-12.

Say you’ve set the following properties:

width: 100px;
padding: 15px;
border-width: 5px;
margin: 10px;

When the width property is set, you always know how much room is allocated just
for your content—the words and images that fill the space—regardless of any other
properties you may set. You don’t need to do any math because the value of the
width property is the room for your content (in the previous example, 100 pixels). Of
course, you do have to perform a little math when you’re trying to figure out exactly
how much space an element will take up on a web page. In the preceding example,
the width that a web browser allocates for the style’s box is 160 pixels: 20 pixels for
the left and right margins, 10 pixels for the left and right borders, 30 pixels for the
left and right padding, and 100 pixels for the width.

DETERMINING
HEIGHT AND
WIDTH

) FIGURE 7-12
— L width 100px

left padding ~ 15px
————— right padding ~ 15px
left border 5px
-—— right border 5px

left margin 10px
—— right margin ~ 10px

total width 160px

A
A

width property

displayed width in browser

(alculate the actual width of a styled
element’s box by adding up its margin,
border, padding, andwidth properties.
The height occupied on the screen by the ele-
ment is calculated in the same way—the total
of the height property, the top and bottom
margins, the top and bottom borders, and the
top and bhottom padding.

CHAPTER 7: MARGINS, PADDING, AND BORDERS

205

DETERMINING
HEIGHT AND The general rule of thumb for setting heights on page elements is don’t! A lot of bud-

WIDTH

ding CSS designers try to set heights on everything in an attempt to get pixel-perfect
control. But unless you’re totally sure of the exact dimensions of the content inside
a tag, you can run into some unwanted results (see Figure 7-13). In this example, a
pull-quote box used to highlight an interesting comment from an article has a set
width and height of 100 pixels. When more text than fits into the 100-pixel height is
added to the box, its contents spill out the bottom. Even if you make sure that the
text you put inside a box with a fixed height fits, if a visitor increases the font size
in her browser, the text might resize to a height larger than the box.

The height property is useful for controlling the height of a div containing images,
for example, because you can correctly determine the height of the images; how-
ever, if you use the height for elements that have text, make sure to not only test
your pages in the major browsers, but also test the page with different font sizes
by increasing the font size in the web browser.

TIP The banner area of a page is another good candidate for a set height. Usually, the banner has limited
content: a logo, search box, maybe some navigation buttons. Frequently, banners have a fair amount of white
space (empty areas that help draw a visitor’s attention to the key elements in the banner like the navigation
bar), so specifying a height for a banner doesn’t usually cause problems.

= FIGURE 7-13

When you set the height of an element
(like the right sidebar div here), but the
content inside is taller than the element,

. browsers simply let the content spill out
When helghts gO bad If the the bottom of the element below its
| edges.

800 ;"I: [weathering the Heights

C & [I file://macintosh%20hd/Users/davemcfarland... 77 ﬂ £

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, amount of .
sed diam nonummy nibh euismod tincidunt ut laoreet | s |
dolore magna aliquam erat volutpat. Ut wisi enim ad : content in a :

minim veniam, quis nostrud exerci tation ullamcorper fixed height

suscipit lobortis nis] ut aliquip ex ea commodo i : 1
consequat. Duis autem vel eum iriure dolor in hendrerit bﬂx lSta.“el' -
in vulputate velit esse molestie consequat, vel illum than the

dolore eu feugiat nulla faci box. some
’

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, scdmmumny nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat, Ut wisi enim ad
minim veniam, quis nostrud exerci tation ullamcorper suscipﬁmﬂsl ut aliquip
ex ea commodo consequat. Duis autem vel eum iriure dolor kin
vulputate velit esse molestie consequat, vel illum dolore eu fm ulfa faci

206 CSS: THE MISSING MANUAL

Redefining Box Width with Box-Sizing

As mentioned on page 205, web browsers traditionally calculate the width of an
element by adding together the border, padding, and width properties. Not only
does this force you to (heaven forbid) do math to figure out an element’s actual
display width, it can cause other problems as well. This is especially true when you
create float-based layouts using percentages. You’'ll learn the details of float layouts
later in this book, but in a nutshell, CSS lets you place elements side by side using
the float property, which lets you create multiple column layouts.

When using percentages with multiple columns, you can run into some weird prob-
lems. Say you have two columns (really, two tags, such as <div> tags), and you want
each to be 50 percent of the width of the window. So you set the two columns to
a width of 50%; however, the moment you add padding or a border to one of the
columns, you’'ll increase its width to more than 50% (to be exact, it will be 50% plus
the amount of left and right padding and the width of the left and right borders). In
most cases, this will force the second column to drop below the first.

Fortunately, CSS offers a property that lets you change how a browser calculates
the screen width (and height) of an element. The box-sizing property provides
three options:

* The content-box option is the way browsers have always defined the screen
width and height of an element, as described on page 205. That is, the browser
adds the border widths and padding thicknesses to the values set for the width
and height properties to determine the tag’s onscreen width and height. Since
this is the default behavior, you don’t need to specify anything for content-box.

* The padding-box option tells a browser that when you set a style’s width or
height property, it should include the padding as part of that value. For ex-
ample, say you give an element 20 pixels of left and right padding and set the
width of the element to 100 pixels. The browser will consider the padding part
of that 100-pixel value. In other words, the content area will be only 60 pixels
wide (100 - 20 [left padding] - 20 [right padding]).

* The border-box value includes both the padding and the border thickness as
part of the width and height values. This setting solves the problem of using
percentage values for widths discussed above. For example, with the box-
sizing property set to border-box, when you set an element’s width to 50%,
that element will take up 50 percent of the space, even if you add padding and
borders to that element.

If you don’t like the standard way browsers calculate element widths and heights,
go with the border-box value. (Unless, of course, you have some unusual reason
why you’d want to include the padding but not the border as part of the calcula-
tion.) To use the box-sizing property, simply supply one of the three values from
the list. For example:

box-sizing: border-box;

DETERMINING
HEIGHT AND
WIDTH

CHAPTER 7: MARGINS, PADDING, AND BORDERS

207

DETERMINING
HEIGHT AND
WIDTH

Many web designers find the border-box setting so useful that they create a universal
selector (page 49) style to apply it to every element on a page:

A
box-sizing: border-box;

}

As you’ll read on page 416, the border-box property is very useful in overcoming
common problems with certain types of CSS.

Controlling the Tap with the Overflow Property

When the content inside a styled tag is larger than the style’s defined width and
height, some weird things happen. As shown in Figure 7-13, browsers let the content
spill out of the box (past the borders and often over other content).

Fortunately, you can control what a browser should do in this situation with the
overflow property. Overflow accepts four keywords that control how content that
overflows the edges of a box should be displayed:

* visible. This option is what browsers do normally. It’s the same as not setting
the property at all (Figure 7-14, top).

* scroll. Lets you add scroll bars (Figure 7-14, middle). It creates a kind of mini-
browser window in your page and looks similar to old-school HTML frames,
or the HTML <iframe> tag. You can use scroll to provide a lot of content in a
small amount of space. Unfortunately, scroll bars always appear when you use
this option, even if the content fits within the box.

* auto. To make scroll bars optional, use the auto option. It does the same thing
as scroll but adds scroll bars only when needed.

* hidden. Hides any content that extends outside the box (Figure 7-14, bottom).
This option is a bit dangerous—it can make some content disappear from the
page.

Maximum and Minimum Heights and Widths

In case you haven’t yet realized it, CSS offers a lot of flexibility. In addition to the
standard width and height properties, you'll find four variations:

* The max-width property, not surprisingly, sets the maximum width for an ele-
ment. That element can be thinner than the setting, but it can’t be any wider
than that setting. This option comes in handy when you want your page to
resize to fit different display widths, but you don’t want the page to get so
wide that it’s too hard to read on a really large monitor. For example, say you
add this style to a page:

body {
max-width: 1200px;

}

208

CSS: THE MISSING MANUAL

DETERMINING

This style lets the page reflow to fit the width of smaller displays like smart- HEIGHT AND
phones and tablets. But on a really large desktop monitor, the page won’t get WIDTH
wider than 1200 pixels, so the page can’t grow unreadably wide.

) Weathering the Heights - Mozilla Firefox M=} FIGURE 7-14

File The overf1low property gives you three basic ways to deal with
text that doesn’t fit inside a box: visible displays the content

Edit WView Go Bookmarks Tools Help

h h h anyway (top); scroll and auto add scroll bars (middle); and
en elg ts | ' The overflow 1 A hidden just doesn’t show anything that doesn’t fit (bottom).
bad - property is set
| to "visible"—any content
s psum dolor sitamet, [USECh
 ctetner adipiscing cli. sed [N
nommmmy nibh enismod displayed 1
funt ut laoreet dolore anyway.
a aliquam erat volutpat. Ut wisi enim ad minim veniam,
1.:)=‘.tmd exerci tation nllamcorner snscmnit lohortis nisl & b
| i} |

) Weathering the Heights - Mozilla Firefox | X
File Edit View Go Bookmarks Tools Help {:}

When heights [0 a0

go bad propertyis
| set |
to" n'-—"a |
Lorem ipsum dolor sit amet. t;e s "e N |
consectetuer adipiscing elit. sed | . - i'i
diam nonummy nibh enismod < | | 3 |

tincidunt ut laoreet dolore
magna aliquam erat volutpat. Ut wisi enim ad minim veniam,
qms noslrud exerci tation u]lamcorpa susc:pﬂ lobortis nisl

) Weathering the Heights - Mozilla Firefox

File Edit WView Go Bookmarks Tools Help {:}

When heights [

The overflow 1
go bad propertyisset
! to "hidden" —
. . | content outside
Lorem ipsum dolor sit amet, ['

consectetuer adipiscing elit, sed | i |
diam nommmmy nibh enismod ol S It just £o
tincidunt ut laoreet dolore

magna aliquam erat volutpat. Ut wisi enim ad minim veniam,
qms noslrud exerci tation u]lamcorpa susc:pﬂ lobortis nisl

CHAPTER 7: MARGINS, PADDING, AND BORDERS 209

WRAPPING

CONTENT WITH
FLOATING
ELEMENTS

* Themax-height property works much like max-width, except it’s for the element’s
height. As mentioned on page 206, however, it’s usually best not to mess with
the height of an element.

* The min-width property sets an element’s minimum width. The element can
stretch wider than the minimum width value, but it can never get thinner. If, for
example, you notice that when you resize your browser window, the element’s
so thin that the layout falls apart, you can set a minimum width like this:

body {
min-width: 760px;
}

If a visitor shrinks his browser window so it’s only 500 pixels wide, then the
browser will add a scrollbar rather than let the elements on the page get too
narrow.

* The min-height property works like min-width, except for height. This prop-
erty can solve the problem pictured in Figure 7-13. With a minimum height,
you’re telling a web browser to make the element at least a certain height. If
the content inside the element is taller, then the browser will make the entire
element taller as well.

M Wrapping Content with Floating Elements

HTML normally flows from the top of the browser window down to the bottom, one
headline, paragraph, or block-level element on top of another. This word-processor-
like display is visually boring (Figure 7-15, top), but with CSS, you’re far from stuck
with it. You’ll learn lots of new methods for arranging items on a web page in Part
3, but you can spice up your pages plenty with one little CSS property—float.

The float property moves an element to either the left or right. In the process, con-
tent below the floated element moves up and wraps around the float (Figure 7-15,
bottom). Floating elements are ideal for moving supplemental information out of
the way of the page’s main text. Images can move to either edge, letting text wrap
elegantly around them. Similarly, you can shuttle a sidebar of related information
and links off to one side.

Although you can use floats in some complex (and confusing) ways, as you’ll see in
Chapter 13, the basic property is very simple. It takes one of three keywords—left,
right or none—like so:

float: left;

» left. Slides the styled element to the left while content below wraps around
the right side of the element.

+ right. Slides the element to the right.

210

CSS: THE MISSING MANUAL

WRAPPING

CONTENT WITH
FLOATING

* none. Turns off the float and returns the object to its normal position. This prop-
ELEMENTS

erty represents the element’s normal behavior, so you’ll only set this property if
you want to override a left or right float that’s applied from another style. (See
Chapter 5 for rules about how multiple styles interact.)

FIGURE 7-15
006 Floats =) The regular flow of HTML is left to right, top
> - 1 to bottom, with one block-level element—
. O hup://css.local/cho7 (QrCoogle D] o ’
\9 L P e m headline, paragraph, div, and so on—stacked

Reload 0 Location Search Bookmarks

on top of the next. By letting you break up

Reg ul ar P age FIOW this uniformity, the f1oat property is one
of (55’s most powerful tools. Its uses range

from simply moving an image to one side

Right Sidebar of a paragraph to providing complete layout
control over banners, sidebars, navigation
This is a <div> tag that would look better, if it were thinner and bars, and other page elements.

aligned to the right edge of the page.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit v

>

006 Floats (=]
o 0 R © http://css.local/ch07 (Qr Coogle D) m
!ack‘ Foowar Reload Location Search Bookmarks

M
The CSS Float Property

Lorem ipsum dolor sit amet, .
consectetuer adipiscing elit, nght

sed diam nonuygamy nibh Sidebar
euismod tinci!
dolore magna
volutpat. Ut wigi
minim veniam
exerci tation ullamcorper suscipit 1
aliquip ex ea commodo consequat.
vel eum iriure dolor in hendrerit in
velit esse molestie consequat, vel ilflim dolore eu feugiat nulla faci

This is a <div> tag
! that's floated right o
uis nostrud | o4 g a set width.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis
autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie vy
consequat, vel illum dolore eu feugiat nulla faci $

CHAPTER 7: MARGINS, PADDING, AND BORDERS 21

WRAPPING

CONTENT WITH
FLOATING
ELEMENTS

Floated elements move to the left or right edge of their containing element. In
some cases, this just means that the element moves to the left or right edge of the
browser window. However, if you float an element that’s inside another tag with a
set width or position on a web page, then the float will go to the left or right edge
of that tag—the floated element’s “container.” For example, you may have a box
on the page whose width is 30 percent of the browser window. That box is floated
to the right edge of the browser window. Inside that box, you’ve got an image that
floats to the left. That image slides to the left edge of that box—not the left edge
of the browser window.

You can even use the float property with an inline element, such as the tag.
In fact, floating a photo to the left or right using CSS is a very common use of the
float property. A web browser treats a floated inline element just like a block-level
element, so you don’t run into the problems with padding and margin that normally
trouble inline elements (see page 192).

You can also float a block-level element like a headline or paragraph. A common
technique is to float a <div> tag (or one of the HTML5 elements like <article>,
<section>, or <aside>) containing other HTML tags and page content to create a
kind of containing box. In this way, you can create sidebars, pull quotes, and other
self-contained page elements. (You’ll see an example of this in this chapter’s tuto-
rial.) When you float block-level elements, you should also set the width property
for that element (in fact, CSS rules require setting the width for floated elements for
all tags except images). This way, you can control how much horizontal space the
block takes up and how much space is available for the content below it to move
up and wrap around the block.

NOTE The source order—the order in which you write your HTML—has a big impact on the display of floated
elements. The HTML for the floated tag must appear before the HTML of any content that wraps around the floated
element. Say you've created a web page composed of an <h1> tag followed by a <p> tag. Toward the end of
that <p> tag, you've also inserted a photo using the tag. If you float that photo to the right, say, then
the <h1> tag and most of the content inside that <p> tag will still appear above the photo; only content that
follows the tag will wrap around the left side of the image.

Backgrounds, Borders, and Floats

To the frustration of many web designers, backgrounds and borders don’t react to
floated elements the same way content does. Say you float an element—a sidebar for
example—to the right. The content below the sidebar moves up and wraps around
it, just as it should. But if that content has a background or border set on it, then
that background or border actually appears underneath the floated sidebar (Figure
7-16, left). In essence, a web browser wraps the text around the float, but not the
border or background. Believe it or not, this is absolutely kosher and (according to
the rules) how it’s supposed to work. Of course, you may not want to follow these
rules; you might want to have the border or background stop when it reaches the
floated element (Figure 7-16, right). With a little CSS magic, you can do it.

212

CSS: THE MISSING MANUAL

WRAPPING

CONTENT WITH
FLOATING
ELEMENTS

First, you need to add one rule to the style that has background or borders running
underneath the float. Once you locate the style, add this line: overflow: hidden;.
The overflow property (page 407) makes any background or border that extends
underneath the float disappear.

Another approachis to add a borderline around the floated element; when you make
the borderline thick enough and match its color to the background color of the page,
the border looks just like empty space—even though it’s covering and hiding the
background color and borderlines that are extending below it.

800 Sidebar S 806 Sidebar o]
o Sidebar [+l | = Sidebar [+l
G)I] [@ file:///valum C | (- coogle Q) (M) [22] G)I] | @ file:t//volum ¢ | (3§~ coogle Q) (]

FIGURE 7-16

In this example, there’s
an<h1> tag with a

Heading 2

exerci tation ullamcorper

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit,

around it.

Content from surrounding tags

Heading 2

Lorem ipsum dolor sit amet,

consectetuer adipiscing elit,

exerci tation ullamcorper

around it.

Content from surrounding tags

i Sidebar i Sidebar
He ad'llne This sidebar is floated right I Head'llne This sidebar is floated right ba(kg ro Und COIOI and
and has 20 pixels margins and has 20 pixels margins an<h2> tag witha

border (left). Adding
overflow: hidden;

sed diam nonummy nibh is displaced but the boxes for sed diam nonummy nibh is displaced but the boxes for

euismod tincidunt ut laoreet those tags stay the same width euismod tincidunt ut laoreet those tags stay the same width to the style for the <h1>
dolore magna aliquam erat and display their backgrounds dolore magna aliquam erat and display their backgrounds . 4

volutpat. Ut wisi enim ad and borders (as per the CSS volutpat. Ut wisi enim ad and borders (as per the CSS tag (right) prevents the
‘minim veniam, quis nostrud spec.) ‘minim veniam, quis nostrud spec.)

headline from appearing

suscipit lobortis nisl ut suscipit lobortis nisl ut H -
aliquip ex ea commodo consequat. Duis autem vel eum iriure. Lorem aliquip ex ea commodo consequat. Duis autem vel eum iriure. Lorem Under the ﬂoatmg e/e
ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy ment (Slde bar)_

nibh euismed tincidunt ut laoreet dolore magna aliquam erat volutpat.
Ut wisi enim ad minim veniam, quis nostrud exerei tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem

nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.
Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem

x 53 ox x 53 ox

Stopping the Float

Sometimes you need a way to tell a tag to ignore a floated element. For example,
you may have a copyright notice that should always appear at the bottom of the
browser window. If you have a particularly tall sidebar that’s floated to the left side
of the page, the copyright notice might actually be drawn up the page and wrap
around the float. Instead of appearing at the bottom of the page, the copyright is
sitting farther up the page next to the sidebar. You want the copyright notice part of
your page to refuse to wrap around the floated element and instead drop below it.

Other problems occur when you have several floated items close together. If the
floated items aren’t very wide, they float up and next to each other, and if they’re
of varying heights they can get into an unattractive logjam (see Figure 7-17, top). In
this case, the floated elements shouldn’t float next to each other. CSS provides the
clear property for just these types of problems.

The clear property instructs an element to not wrap around a floated item. By
clearing an element, you essentially force it to drop down below the floated item.
Also, you can control which type of float (left or right) is cleared or force a style to
simply ignore both types of floats.

CHAPTER 7: MARGINS, PADDING, AND BORDERS 213

WRAPPING

CONTENT WITH
FLOATING
ELEMENTS

The clear property accepts the following options:

« left. The style will drop below elements that are floated left, but will still wrap
around right-floated objects.

+ right. Forces a drop below right-floated objects, but still wraps around left-
floated objects.

* both. Forces a drop below both left- and right-floated elements.

* none. Turns off clearing altogether. In other words, it makes an item wrap around
both left- and right-floated objects, which is how web browsers normally work.

In the case of a copyright notice that must appear at the bottom of the page, you'd
want it to clear both left- and right-floated objects—it should always be below other
content, and should never wrap to the left or right of any other item. Here’s a class
style that would do just that:

.copyright {
clear: both;
}

Figure 7-17 shows how the clear property can prevent floated items of varying
heights from clumping together. All three photos in that figure have a right float
applied to them. In the top figure, the photo of the tomatoes (1) is the first image
on the page and appears at the far right edge. The second image (2) obeys the float
set on the first image and wraps up to the left of it. The last photo (3) is too wide
to sit next to the second photo (2) but still tries to wrap around both (1) and (2). It
gets stuck in the process.

Using clear: right; on the images prevents the photos from sitting next to each
other (Figure 7-17, bottom). The clear applied to the second photo prevents it from
wrapping up next to the first image, while the last image’s right clear property
forces it to appear below the second image.

NOTE This business of left floats, right floats, and how to clear them sounds complicated—and it is. This
section gives you a basic introduction. You’ll see the subject again in Chapter 13 and eventually learn how to use
floats in more sophisticated ways.

214

CSS: THE MISSING MANUAL

WRAPPING

CONTENT WITH
FLOATING
ELEMENTS

Bumping floats S———
[¢][+][a A] @htto://css.local/ch07 /floats _not_cleared.ht /3| Q- Coogle |

Floats Bumping Into Each Other

Lorem ipsum dolor sit
amet, consectetuer
adipiscing elit, sed diam
nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat
volutpat. Ut wisi enim ad
minim veniam, quis
nostrud exerci tation
ullamcorper suscipit
lobortis nisl ut
aliquip ex ea
commodo consequat.
Duis autem vel eum
iriure dolor in
hendrerit in
vulputate velit esse
molestie consequat,
vel illum dolore eu
feugiat nulla faci

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit

lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure
dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore

Much better =

€ http://css.local/ch07 [floats_cleared.htr® = Q- Coogle B
Floats Cleared

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh enismod
tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis
nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in
hendrerit in vulputate velit esse molestie
consequat, vel illum dolore eu feugiat nulla faci

Lorem ipsum dolor sit amet, uer

adipiscing elit, sed diam nonummy nibh enismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.
Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure dolor in
hendrerit in vulputate velit esse molestie consequat, vel
illum dolore eu feugiat nulla faci

Lorem ipsum dolor sit amet, uer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat volutpat. Ut
wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip
ex ea commodo consequat. Duis autem vel eum
iriure dolor in hendrerit in vulputate velit esse
F 1 a1 P

|=—

FIGURE 7-17

Top: Sometimes you don’t want an element to wrap around a
floated object. Bottom: Applying the c1ear property (in this
case clear: right;) to eachimage prevents them from
sitting next to each other. The clear applied to photo (2) pre-
vents it from wrapping up next to image (1). Applying clear :
right; tophoto (3) forces it to appear below photo (2).

CHAPTER 7: MARGINS, PADDING, AND BORDERS

215

TUTORIAL:

MARGINS,
BACKGROUNDS,
AND BORDERS

M Tutorial: Margins, Backgrounds, and
Borders

In this tutorial, you’ll explore elements of the CSS box model, adjust the spacing
around objects on a page, add colorful borders to items on a page, and control the
size and flow of page elements.

To get started, you need to download the tutorial files located on this book’s com-
panion website at https://github.com/sawmac/css_mm_4e. Click the tutorial link
and download the files. (All of the files are enclosed in a zip archive.

See detailed instructions for unzipping the files on the website.) The files for this
tutorial are contained inside the 07 folder.

Controlling Page Margins and Backgrounds

You’ll start with a very basic HTML file containing an internal style sheet with a basic
CSS reset style. It’s not much to look at right now (see Figure 7-18).

800 Margins, Padding, Borders, and Backgrounds "
Margins, Padding, Borders, and .. I_ Sk

p = This web page is
4 0 file:// JUsers/davemcfarlandf Documents f02_writing/00_c* c | (- Google Q,' : -I :: -“’ |z .
@ ‘ 1 barebones HTML, with a

single style that removes
much of the built-in web
browser styling. It’ll look
a lot better with a box
model makeover.

FIGURE 7-18

The Amazing World of CSS
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia

voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.
NOTE

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia
voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque
porro quisquam est.

‘Who Knew CSS Had Such Power?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia
voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores.

Not Me!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia
voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque
porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi
tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Me Neither!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia
voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque
porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi
tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit laboriosam.

Copyright 2010, The Lorem Ipsum Corporation

216 CSS: THE MISSING MANUAL

https://github.com/sawmac/css_mm_4e

NOTE For a sneak preview of the final result, check out Figure 7-21.

1. In your favorite text editor, open 07—main.css.

This style sheet is already linked to the index.html file, so the styles you add here
will apply to that web page. The styles here (the same set of styles discussed on
page 109) basically remove all margins, padding, and font size from the most
common block-level elements and eliminate many of the cross-browser display
problems you’ll encounter related to these properties.

Probably the most important properties are the margin and padding settings
in the first style. There’s enough cross-browser weirdness related to those two
properties that many designers zero them out and start fresh. Another common
alternative is a style sheet that eliminates cross-browser display differences, but
still keeps some basic margins in place: normalize.css (http://necolas.github.io/
normalize.css/) is one common choice.

You’ll start with something simple: a background color.

2. Atthe bottom of the main.css file, click directly after the CSS comment /* end
reset styles */and add a tag selector style:

html {
background-color: rgb(253,248,171);
}

This style adds a light yellow background color to the page. If you want to color
the background of a web page, you can add the background-color property to
either the <html> tag or the <body> tag. Next, you’lladd some margins, borders,
and other properties to the <body> tag.

You may be used to using hexadecimal colors (like #FDF8AB) instead of RGB colors. You can use
a tool like the online convertor at www.colorhexa.com to convert between the two. Using RGB is a good idea
because RGBA colors, with their optional transparency (page 149), are so useful, and it’s easier to just stick with
one color model (RGB) instead of mixing two (RGB and hex).

3. Add another style to the style sheet:

body {
background-color: rgb(255,255,255);
border: 3px solid rgb(75,75,75);

}

This style adds a white background color to the <body> tag and a 3-pixel dark
gray border. Because the <body> tag sits inside the <html> tag, a web browser
considers it to be “on top” of the <html> tag, so the white background will cover
the yellow color you added in the previous step. Next you’ll give the <body> tag
a width and adjust its padding and margins.

TUTORIAL:

MARGINS,
BACKGROUNDS,
AND BORDERS

CHAPTER 7: MARGINS, PADDING, AND BORDERS

217

http://necolas.github.io/normalize.css/
http://necolas.github.io/normalize.css/
http://www.colorhexa.com

TUTORIAL:

MARGINS,
BACKGROUNDS, Normally, if you add a background color property to the <body> tag, that color fills the entire browser
AND BORDERS window; however, if you also add a background color to the <htm1> tag, the body’s background color fills only
the area that has content. To see this in action, just preview the web page after completing step 4 above; then
delete the htm1 tag style, and preview the page again. A weird, but useful, bit of (SS trivia.

4. Editthe body style you just created by adding five new properties (changes
are in bold):

body {
background-color: rgb(255,255,255);
border: 3px solid rgh(75,75,75);
max-width: 760px;
margin-top: 20px;
margin-left: auto;
margin-right: auto;
padding: 15px;
}

The max-width property constrains the body so that it never gets more than 760
pixels wide: If a visitor’s browser window is wider than 760 pixels, then he’ll see
the background color from the html style and a 760-pixel box with the white
background of the <body> tag. However, the browser window can get smaller
than that, and the body will then shrink to fit the window, which makes viewing
the page on a small tablet or phone easier.

The margin-top property adds 20 pixels of space from the browser window’s
top edge—nudging the <body> tag down just a bit—while the left and right
margin settings center the body in the middle of the browser window. “Auto”
is just another way of telling a browser, “You figure it out,” and since that auto
value is applied to both the left and right margins, a browser simply provides
equal space on the left and right side.

You could also use the margin shorthand property (page 189) to condense those three lines of
margin settings to just one, like this:

margin: 20px auto 0 auto;

Finally, to keep the content inside the <body> tag from touching the border
line, 15 pixels of space are added to the inside of the body by using the padding
property—in other words, the image and text are indented 15 pixels from all four
edges. Next, you'll add a glow around the box using the box-shadow property.

218 CSS: THE MISSING MANUAL

TUTORIAL:

MARGINS,
5. Edit the body style you just created by adding one last property after the BACKGROUNDS,

border but before the width (changes are in bold): AND BORDERS

body {
background-color: rgh(255,255,255);
border: 3px solid rgb(75,75,75);
box-shadow: 0 0 15px 5px rgba(44,82,100,.75);
max-width: 760px;
margin-top: 20px;
margin-left: auto;
margin-right: auto;
padding: 15px;
}

This style adds a glow to the box by creating a 15-pixel shadow placed directly
behind the box (the 0 0 part at the beginning indicates that the shadow isn’t
offset to the left/right or top/bottom; it’s simply in the background). The 5px
value is the spread value (page 203), and it pushes the shadow out 5 pixels
around all four edges. Finally, the rgba value sets the color to a dark blue that’s
only 75 percent solid (that is, you can see through to the background yellow).

Your style sheet is pretty far along, and you’re ready to check the page.
6. Save the file and preview the page in a web browser.

You should see a white box with an image, a bunch of text, and a gray outline
with a bluish glow floating in a sea of yellow (see Figure 7-19). The text needs
some loving attention. You’ll take care of that next.

Adjusting the Space Around Tags

Since the CSS reset styles pretty much stripped the text on this page of all format-
ting, you’ll need to create styles to make the headings and paragraphs look great.
You’ll start with the <h1> tag at the top of the page.

1. Returnto your text editor and the main.cssfile. Click at the end of the clos-
ing brace of the <body> tag selector, press Enter (Return) to create a new
line, and then add the following style:

h1 {

font-size: 2.75em;

font-family: Georgia, “Times New Roman”, Times, serif;
font-weight: normal;

text-align: center;

letter-spacing: 1px;

color: rgb(133,161,16);

text-transform: uppercase;

CHAPTER 7: MARGINS, PADDING, AND BORDERS 219

TUTORIAL:

MARGINS,
BACKGROUNDS,

This style uses many of the text-formatting properties discussed in the previ-
AND BORDERS

ous chapter—the top headline is 2.75 ems tall (44 pixels in most browsers) and
all uppercase, uses the Georgia font, and has a green color, with a little space
between each letter. The text-align property makes sure the text is centered
in the middle of the box. The real fun is adding a background color to really
highlight the headline.

8006
" Margins, Padding, Borders, and .. [_+ {

‘ «0 file:/{ /Users/davemcfarland/Documents/02_writing/00_css_mm3e/!

Margins, Padding, Borders, and Backgrounds 'y

FIGURE 7-19

Setting the left and

right margins to auto
for any element with

a set width centers it.

In this case, setting a
width for the body and
addingmargin-left:
auto; andmargin-
right: auto; places
it smack dab in the center

[<] 1 (*§~ Coogle

Q) [#) (B (=]

The Amazing World of CSS

‘Who Knew CSS Had Such Power?
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem

ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores.
Not Me!
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem

aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem of the browser window.
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim

ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione Unfortunate/y, tO center
voluptatem sequi nesciunt. an element ver t/(ally
NOTE .

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem (Wlth equal Space abOVe
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim and below it) you need to
ipsam veoluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione hi h
voluptatem sequi nesciunt. Neque porro quisquam est. use somet, Ing more than

margin properties. For a
great overview of vertical
(and horizontal) centering
tricks, check out https://

aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
Me Neither!

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut
enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam.

Copyright 2010, The Lorem Ipsum Corporation

css-tricks.com/centering-
css-complete-guide/.

UL Save the file and preview it in a web browser after each step in this tutorial. That way, you’ll get a better
understanding of how these (SS properties affect the elements they format. You may need to press the Ctrl or
38 key as you reload the web page to force the browser to reload the main.css file and not use the version that
the browser stored in its cache. (See page 25 for more on how a browser’s cache works).

220 CSS: THE MISSING MANUAL

https://css-tricks.com/centering-css-complete-guide/
https://css-tricks.com/centering-css-complete-guide/
https://css-tricks.com/centering-css-complete-guide/

TUTORIAL:

MARGINS,
2. Add one new property to the h1 tag style so that it looks like this (changes BACKGROUNDS,
in bold): AND BORDERS

h1 {

font-size: 2.75em;

font-family: Georgia, "Times New Roman", Times, serif;
font-weight: normal;

text-align: center;

letter-spacing: 1px;

color: rgb(133,161,16);

text-transform: uppercase;

background-color: rgb(226,235,180);

}

If you preview the page now, you'll see that the headline has a light green back-
ground. When applied to a block-level element like a headline, the background
fills the entire horizontal space available (in other words, the color doesn’t just
sit behind the text “The Amazing World of CSS,” but extends all the way to the
right edge of the box).

The headline text is a little cramped—the “T” that begins the headline touches
the edge of the background. With a little padding, you can fix this.

3. Add another property to the h1 tag style so that it looks like this (changes
in bold):

h1 {

font-size: 2.75em;

font-family: Georgia, "Times New Roman", Times, serif;
font-weight: normal;

text-align: center;

letter-spacing: 1px;

color: rgb(133,161,16);
text-transform: uppercase;
background-color: rgh(226,235,180);
padding: 5px 15px 2px 15px;

}

The padding shorthand property provides a concise way to add padding around
all four sides of the content—in this case, 5 pixels of space are added above
the text, 15 pixels to the right, 2 pixels to the bottom, and 15 pixels to the left.

There’s one other problem with the headline: Because of the padding added to
the <body> tag (see step 4 on page 218), the headline (including its background
color) is indented 15 pixels from the left and right edges of the gray border
surrounding the body. The headline would look better if its background color
touched the gray border. No problem; negative margins to the rescue.

CHAPTER 7: MARGINS, PADDING, AND BORDERS 221

TUTORIAL:

MARGINS,

BACKGROUNDS, 4. Add one last property to the h1 tag style so that it looks like this (changes
AND BORDERS in bold):

h1 {

font-size: 2.75em;

font-family: Ceorgia, "Times New Roman", Times, serif;
font-weight: normal;

text-align: center;

letter-spacing: 1px;

color: rgh(133,161,16);
text-transform: uppercase;
background-color: rgh(226,235,180);
padding: 5px 15px 2px 15px;

margin: 0 -15px 20px -15pX;

}

Here, the margin shorthand sets the top margin to 0, the right margin to -15
pixels, the bottom margin to 20 pixels, and the left margin to -15 pixels. The
bottom margin just adds a bit of space between the headline and the paragraph
that follows. The next trick is the use of negative values for the left and right
margins. You can assign a negative margin to any element. This property pulls
the element out toward the direction of the margin—in this case, the headline
extends 15 pixels to the left and 15 pixels to the right, actually expanding the
headline and pulling it out over the <body> tag’s padding.

5. Now, you’ll add some formatting of the <h2> tags. Add the following style
after the h1 tag style:

h2 {

font-size: 1.5em;

font-family: "Arial Narrow", Arial, Helvetica, sans-serif;
color: rgh(249,107,24);

border-top: 2px dotted rgb(141,165,22);

border-bottom: 2px dotted rgh(141,165,22);

padding-top: 5px;

padding-bottom: 5px;

margin: 15px O 5px O;

}

This style adds some basic text formatting and a dotted border above and below
the headline. To add a bit of space between the headline text and the lines, it
puts a small bit of padding at the top and bottom. Finally, the margin property
adds 15 pixels above the headline and 5 pixels below it.

6. Save the file and preview the page in a web browser.

The headlines are looking good (see Figure 7-20). Next, you’ll create a sidebar
on the right side of the page.

222 CSS: THE MISSING MANUAL

TUTORIAL:

MARGINS,
BACKGROUNDS,
AND BORDERS

[: Ns Ns] Margins, Padding, Borders, and Backgrounds
- FIGURE 7-20

| Margins, Padding, Borders, and ... I +

| & file:// Users/davemecfarland /Documents 02_writing/ 00_css_mm3e/CSS3_Mh | (2§~ Google Q) [E]

With just a few styles,
you can add background
colors, control margins
throughout the page,
and adjust the space

-'Jj
N U AL ' between headlines and
Cogilhe

paragraphs.

THE AMAZING WORLD OF CSS

Sed ut perspiciatis unde omnis iste natus error sit i i totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione
voluptatem sequi nesciunt.

NOTE

Sed ut perspiciatis unde omnis iste natus error sit i qn i totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores ¢os qui ratione
‘voluptatem sequi nesciunt. Neque porro quisquam est.

Who Knew CSS Had Such Power?

Sed ut perspiciatis unde omnis iste natus error sit i i totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores.

Not Me!

Sed ut perspiciatis unde omnis iste natus error sit i qn i totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores ¢os qui ratione
voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
wvelit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Me Neither!

Sed ut perspiciatis unde omnis iste natus error sit i i totam rem
aperiam, caque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim
ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores cos qui ratione
voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
elit, sed quia non numquam ejus modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut
enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam.

‘Copyright 2010, The Lorem Ipsum Corporation

Building a Sidebar

Sidebars are common elements in most types of print publications like magazines,
books, and newspapers. They compartmentalize and highlight small chunks of in-
formation like a resource list, contact information, or a related anecdote. But to be
effective, sidebars shouldn’t interrupt the flow of the main story. They should, like
the name says, sit unobtrusively off to one side, which you can easily make happen
with CSS.

CHAPTER 7: MARGINS, PADDING, AND BORDERS 223

TUTORIAL:

MARGINS,

BACKGROUNDS, 1. Return to your text editor and open the index.html file.
AND BORDERS

First, you must isolate the region of the page that makes up the sidebar. The
<div> tag is the perfect tool. You can enclose any amount of HTML into its own
self-contained chunk by wrapping it in a <div> tag.

2. Scroll down the page into the HTML and click before the first <h2> tag (the
one with the “NOTE” headline). Then type <div class="sidebar">, and
press Enter (Return).

This HTML marks the beginning of the sidebar and applies a class to it. You'll
create the .sidebar class style soon, but first you need to indicate the end of
the sidebar by closing the <div>.

3. Click after the closing </p> tag that immediately follows the <h2> tag (this is
the </p> that appears just before <h2>Who Knew CSS Had Such Power?</h2>).
Press Enter, and then type </div>.

You've just wrapped a headline and paragraph inside a <div> tag. Next, you’ll
create a style for it.

4. Return to the main.css file. Add the following style below the h2 style you
created earlier:

.sidebar {
width: 30%;
float: right;
margin: 10px;

}

This style sets the width of the content area (where the text appears) to 30
percent. In this case, the sidebar’s width is 30 percent of the width of the con-
tainer. The container is the <body> tag and its width will be up to 760 pixels (see
step 4 on page 18.) The float property moves the sidebar to the right side of
the box, and the margin property adds 10 pixels of space around the sidebar.

If you preview the page in a browser, you'll see that the basic shape and place-
ment of the sidebar are set, but there’s one problem: The borders from the <h2>
tags appear underneath the box. Even though the floated sidebar moves the text
of the headlines out of the way, floats don’t displace borders or backgrounds.
Those just appear right under the floated sidebar. One way to fix this problem is
to simply add a background color to the sidebar, so you can’t see the h2 borders.
(There’s another technique, as well, which you’ll use in step 9 on page 226.)

5. Addtwo other properties to the .sidebar style so it looks like this (changes
in bold):

.sidebar {
width: 30%;
float: right;
margin: 10px;

224 CSS: THE MISSING MANUAL

background-color: rgh(250,235,199);
padding: 10p