ORACLE

W\ Fully updated for Java SE 8 (JDK 8)
—

Java ¢

=)

<

The Complete Reference Java
Ninth Edition

Comprehensive Coverage of the Java Language

Herbert Schildt

ORACLE® Oracle Press”

'The

Complete
Reference

Java™
Ninth Edition

About the Author

Best-selling author Herbert Schildt has written extensively about programming
for nearly three decades and is a leading authority on the Java language. His
books have sold millions of copies worldwide and have been translated into all
major foreign languages. He is the author of numerous books on Java,
including Java: A Beginner’s Guide, Herb Schildt’s Java Programming Cookbook, and
Swing: A Beginner’s Guide. He has also written extensively about C, C++, and
C#. Although interested in all facets of computing, his primary focus is
computer languages, including compilers, interpreters, and robotic control
languages. He also has an active interest in the standardization of languages.
Schildt holds both graduate and undergraduate degrees from the University
of Illinois. He can be reached at his consulting office at (217) 586-4683. His
web site is www.HerbSchildt.com.

About the Technical Editor

Dr. Danny Coward has worked on all editions of the Java platform. He led the
definition of Java Servlets into the first version of the Java EE platform and
beyond, web services into the Java ME platform, and the strategy and planning
for Java SE 7. He founded JavaFX technology and, most recently, designed the
largest addition to the Java EE 7 standard, the Java WebSocket API. From coding
in Java to designing APIs with industry experts, to serving for several years as
an executive to the Java Community Process, he has a uniquely broad
perspective into multiple aspects of Java technology. Additionally, he is the
author of JavaWebSocket Programming and an upcoming book on Java EE.

Dr. Coward holds bachelor’s, master’s, and doctorate’s in mathematics from
the University of Oxford.

http://www.HerbSchildt.com

ORACLE® Oracle Press”

’:[he J ™
Complete _ava N
Reference Ninth Edition

Herbert Schildt

Mc
Graw
Hill

Education

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America. Except
as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of Publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-180856-9

MHID: 0-07-180856-6

e-Book conversion by Cenveo® Publisher Services
Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-071-80855-2,
MHID: 0-07-180855-8.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use
in corporate training programs. To contact a representative, please visit the Contact Us pages at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation
and/or its affiliates.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based
upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited.
Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

http://www.mhprofessional.com

Contents at a Glance

Part |

L T T 0O N

13
14
15

Part Il

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

The Java Language

The History and Evolution of Java

An Overview of Java

Data Types, Variables, and Arrays

Operators

Control Statements

Introducing Classes

A Closer Look at Methods and Classes

Inheritance

Packages and Interfaces

Exception Handling

Multithreaded Programming

Enumerations, Autoboxing, and
Annotations (Metadata)

1/0, Applets, and Other Topics

Generics

Lambda Expressions

The Java Library

String Handling

Exploring java.lang

java.util Part 1: The Collections Framework

java.util Part 2: More Utility Classes

Input/Output: Exploring java.io

Exploring NIO

Networking

The Applet Class

Event Handling

Introducing the AWT: Working with
Windows, Graphics, and Text

Using AWT Controls, Layout Managers, and Menus

Images

The Concurrency Utilities

The Stream API

Regular Expressions and Other Packages

17
35
61
81
109
129
161
187
213
233

263
301
337
381

413
441
497
579
641
689
727
747
769

797
833
885
915
965
991

Vi Java: The Complete Reference, Ninth Edition

Part lll

31
32
33

Part IV

34
35
36

PartV

37
38
Appendix

Introducing GUI Programming with Swing

Introducing Swing
Exploring Swing
Introducing Swing Menus

Introducing GUI Programming with JavaFX

Introducing JavaFX GUI Programming
Exploring JavaFX Controls
Introducing JavaFX Menus

Applying Java

Java Beans
Introducing Servlets
Using Java’s Documentation Comments

Index

1021
1041
1069

1105
1125
1171

1199
1211
1235

1243

Contents

Preface XXX1

Partl The Java Language

Chapter 1 The History and Evolutionof Java 0oL, 3
Java’sLineage 3
The Birth of Modern Programming: C 4
CHt:The NextStepot 5

The Stage IsSetfor Java 6

The Creationof Java i 6
The C# Connection., 8

How Java Changed the Internet 8
JavaApplets 8
SECUTILY. . .ot 9
Portability. 9
Java’s Magic: The Bytecode 9
Servlets: Java on the Server Side L oL 10
The JavaBuzzwords 10
Simple. 11
Object-Oriented. i i 11
Robust.. 11
Multithreaded 12
Architecture-Neutral 12
Interpreted and High Performance....................... .. 12
Distributed 12
Dynamic........ 13

The Evolutionof Java. o 13
Java SE 8 . 15
A Culture of Innovation. i 16
Chapter 2 AnOverviewof Java....... ... ittt 17
Object-Oriented Programming. oo, 17
Two Paradigms. 17
AbStraction. 18

The Three OOP Principles. 18

vii

Viii Java: The Complete Reference, Ninth Edition

Chapter 3

A First Simple Program o i 23
Entering the Program 23
Compiling the Program 23
A Closer Look at the First Sample Program. 24

A Second Short Program............... 26

Two Control Statements. 28
Theif Statement i 28
TheforLoop i 29

Using Blocksof Code.o i i 30

Lexical Issues 32
Whitespace........... 32
Identifiers. 32
Literals 32
Comments 32
Separators. 33
The Java Keywords. i i 33

The Java Class Libraries. 34

Data Types, Variables,and Arrayscoiiiiiiiinnnn, 35

JavaIs a Strongly Typed Language 35

The Primitive Types 35

Integers. 36
Dyte . .o 36
short 37
It . 37
long. ..o 37

Floating-Point Types. 38
float. 38
double.. 38

Characters. 39

Booleans 40

A Closer Look at Literals 41
Integer Literals. 41
Floating-Point Literals. 42
Boolean Literals. 43
Character Literals 43
String Literals. 43

Variables 44
Declaring a Variable, 44
Dynamic Initialization o i 45
The Scope and Lifetime of Variables 45

Type Conversionand Casting 48
Java’s Automatic Conversions 48
Casting Incompatible Types 48

Automatic Type Promotion in Expressions 50

The Type Promotion Rules. 50

Chapter 4

Chapter 5

Chapter 6

Contents

ATTAYS oo 51
One-Dimensional Arrays. oo, 51
Multidimensional Arrays. oo 54
Alternative Array Declaration Syntax 58

A Few Words About Strings 58

A Note to G/ C++ Programmers About Pointers 59

L0 07 1 o) 61

Arithmetic Operators. it 61
The Basic Arithmetic Operators., 62
The Modulus Operator. 63
Arithmetic Compound Assignment Operators 63
Increment and Decrement uo.... 64

The Bitwise Operators i, 66
The Bitwise Logical Operators 67
The Left Shift. e e 69
The Right Shift. 70
The Unsigned Right Shift........... 72
Bitwise Operator Compound Assignments 73

Relational Operatorsovuuun it 74

Boolean Logical Operators 75
Short-Circuit Logical Operators. 76

The Assignment OPerator.vuuun ettt 77

The ? OPErator. . oo v ettt ettt ettt e et e 77

Operator Precedence. o i i 78

Using Parenthesesoouut i 79

Control Statements. . . . oo oo vt ittt eeerenssserososssssosnssaass 81

Java’s Selection Statements i 81
1 81
SWItCH L . 84

Tteration StatemMents.ottt e 89
While . .. e 89
do-while e 90
0) S 93
The For-Each Version of the forLoop 97
Nested Loops 102

Jump Statements 102
Usingbreak 102
Using continue. 106

Introducing Classesovitiiieiiiiiiineneennennnnns 109

Class Fundamentals 109
The General Formofa Class. 109
ASimple Class 110

Declaring Objects.o 113

ACloser LOOK atnew.oo vt i 113

ix

Java: The Complete Reference, Ninth Edition

Chapter 7

Chapter 8

Assigning Object Reference Variables 115
Introducing Methods. i 115
Adding a Method tothe Box Class. 116
ReturningaValue, 118
Adding a Method That Takes Parameters 119
CONSIIUCIOTS . . oottt ettt 121
Parameterized Constructors, 123
The thisKeyword 124
Instance Variable Hiding. 125
Garbage Collection i 125
The finalize() Method 126
AStack Class.o 126
A Closer Look at Methodsand Classescoouvnnn.. 129
Overloading Methods 129
Overloading Constructors. i, 132
Using Objects as Parameters. 134
A Closer Look at Argument Passing 136
Returning Objects i 138
Recursion 139
Introducing Access Control. 141
Understanding Statict 145
Introducing final i 146
Arrays Revisited 147
Introducing Nested and Inner Classes 149
Exploring the String Class. 152
Using Command-Line Arguments 154
Varargs: Variable-Length Arguments 155
Overloading Vararg Methods 158
Varargs and Ambiguity o oL 159
Inheritance.ttt i i i i i i e e 161
Inheritance Basics i 161
Member Access and Inheritance 163
A More Practical Example. L 164
A Superclass Variable Can Reference a Subclass Object. 166
USING SUPET. « ..ttt e ettt et e e e e e 167
Using super to Call Superclass Constructors 167
ASecond Use forsuper.............. i 170
Creating a Multilevel Hierarchy 171
When Constructors Are Executed. 174
Method Overridingt 175
Dynamic Method Dispatch 178
Why Overridden Methods?c.. oo, 179

Chapter 9

Chapter 10

Contents

Using Abstract Classes 181
Using final with Inheritance, 184
Using final to Prevent Overriding 184
Using final to Prevent Inheritance. 185
The Object Class.t 185
Packages and Interfaces., 187
Packagesooi o 187
DefiningaPackage o 188
Finding Packages and CLASSPATH 188
A Short Package Example............................. ... 189
Access Protection 190
AnAccessExample o il 191
Importing Packages ol 194
Interfaces 196
Definingan Interface L 196
Implementing Interfaces.o ... 197
Nested Interfaces. i 200
Applying Interfaces o o 201
Variables in Interfaces. 204
Interfaces Can Be Extended 206
Default Interface Methods.t 207
Default Method Fundamentals. 208
A More Practical Example. o oL 209
Multiple Inheritance Issues. 210
Use static Methods in an Interface, 211
Final Thoughts on Packages and Interfaces 212
ExceptionHandling...............c i, 213
Exception-Handling Fundamentals, 213
Exception Types........ .. i 214
Uncaught Exceptions. i i 215
Usingtryandcatch i 216
Displaying a Description of an Exception 218
Multiple catch Clauses. it 218
Nested try Statementsouuiiniinniuniunaenen..y 220
throw. ... 222
throws . ..o 223
finally.o 224
Java’s Builtin Exceptions. oo oo 226
Creating Your Own Exception Subclasses 227
Chained Exceptions. i i 230
Three Recently Added Exception Features 231

Using Exceptions i 232

Xi

Xii Java: The Complete Reference, Ninth Edition

Chapter 11

Chapter 12

Multithreaded Programmingcivitiiiiiinenannn, 233
The Java Thread Model o ... 234
Thread Priorities 235
Synchronization............ i i i 235
MeSSaging. . ..o ov i 236
The Thread Class and the Runnable Interface 236
The Main Thread. i 237
CreatingaThread i 238
Implementing Runnable. 239
Extending Thread 241
Choosingan Approach 242
Creating Multiple Threads 242
Using isAlive() andjoin() i 243
Thread Priorities e 246
Synchronization ot 247
Using Synchronized Methods. 247
The synchronized Statement 249
Interthread Communication. i .. 251
Deadlock. 255
Suspending, Resuming, and Stopping Threads. 257
Obtaining A Thread’s State. 259
Using Multithreading. o i i 261
Enumerations, Autoboxing, and Annotations (Metadata)........... 263
Enumerations. 263
Enumeration Fundamentals. 263
The values() and valueOf() Methods. 266
Java Enumerations Are Class Types 267
Enumerations Inherit Enum. 269
Another Enumeration Example............... 271
TYPe WIaPPeTs « . oo vttt et e 272
Charactert e e 273
Boolean 273
The Numeric Type Wrappers 273
AULODOXING . . oottt 274
Autoboxing and Methods o i i 275
Autoboxing/Unboxing Occurs in Expressions. 276
Autoboxing/Unboxing Boolean and Character Values 278
Autoboxing/Unboxing Helps Prevent Errors................ 278
AWordof Warning i 279
Annotations (Metadata)t 279
Annotation Basics 280
Specifying a Retention Policy 281
Obtaining Annotations at Run Time by Use of Reflection. 281
The AnnotatedElement Interface 286

Using Default Values 287

Chapter 13

Chapter 14

Contents
Marker Annotations. i 288
Single-Member Annotations. 289
The Built-In Annotations 290
Type Annotations. i 292
Repeating ANNOAtONSottt ettt et 297
Some Restrictions i i 299
I/0, Applets, and Other Topics. . ..o, 301
I/O BasiCS. . . oo 301
SEreams. .. oot 302
Byte Streams and Character Streams 302
The Predefined Streams 304
Reading Console Input 305
Reading Characters 305
Reading Strings 306
Writing Console Output 308
The PrintWriter Class. 308
Reading and Writing Files 309
Automatically ClosingaFile 315
Applet Fundamentals. o i 318
The transient and volatile Modifiers. 322
Usinginstanceof. ol 322
StIICHD . . oo 324
Native Methods. 325
Problems with Native Methods 328
USIng assert. 328
Assertion Enabling and Disabling Options 331
Static Import. 331
Invoking Overloaded Constructors Through this() 334
Compact API Profiles. 336
GeINETICS .+« v vttt ittt ittt enenenens 337
What Are Generics?t 338
A Simple Generics Example oo oo 338
Generics Work Only with Reference Types 342
Generic Types Differ Based on Their Type Arguments. 342
How Generics Improve Type Safety 342
A Generic Class with Two Type Parameters 345
The General Form of a GenericClass. 346
Bounded Types. i 346
Using Wildcard Arguments. oo 349
Bounded Wildcards. 352
Creating a Generic Method. 356
Generic Constructorsttt 359
GenericInterfaces L 360

Raw Types and Legacy Code 362

Xiii

Xiv Java: The Complete Reference, Ninth Edition

Generic Class Hierarchies 364
Using a Generic Superclass. 365

A GenericSubclass. L 367
Run-Time Type Comparisons Within a Generic Hierarchy 368
Castingottt 370
Overriding Methods ina GenericClass..................... 371
Type Inference with Generics 372
Erasuret 373
Bridge Methods 374
Ambiguity Errors 375
Some Generic Restrictionscouuiiiineinnaoa... 377
Type Parameters Can’t Be Instantiated 377
Restrictions on Static Members. 377
Generic Array Restrictions 377
Generic Exception Restriction 379
Chapter 15 Lambda Expressionsccoiiiiiiiiiiiiiiiiiinennn.. 381
Introducing Lambda Expressions. 382
Lambda Expression Fundamentals 382
Functional Interfaces. 383
Some Lambda Expression Examples 384
Block Lambda Expressions o ... 387
Generic Functional Interfaces. 389
Passing Lambda Expressions as Arguments 391
Lambda Expressions and Exceptions 394
Lambda Expressions and Variable Capture 395
Method References 396
Method References to static Methods 396
Method References to Instance Methods. 397
Method References with Generics 401
Constructor References. 404
Predefined Functional Interfaces 408

Partll The Java Library

Chapter 16 StringHandling ittt 413
The String Constructorsoiuiinininiinnnen... 414
String Length o 416
Special String Operations 416
String Literals. 416
String Concatenationoiiiiiiaaia.. 417
String Concatenation with Other Data Types 417
String Conversion and toString () 418
Character Extraction i 419
charAt(). .. 419

Chapter 17

Contents

getBytes() ... 420
toCharArray()t 420
String ComparisSon.ttt 420
equals() and equalsIgnoreCase()......................... 421
regionMatches() i 421
startsWith() and endsWith(). 422
equals() Versus==........ i 422
compareTo(). 423
Searching Strings 424
Modifyinga String 426
SUDSEIING(). . oot 426
COMCAT() et et e ettt e e e e e e e 427
TEPlACE() « vttt 427
15510 () 1S P 428
Data Conversion Using valueOf() 428
Changing the Case of Characters Withina String. 429
Joining Strings 430
Additional String Methods oL 431
StringBuffer 432
StringBuffer Constructors. 432
length() and capacity(). i 433
ensureCapacity()o 433
setbength(). ... o 433
charAt() andsetCharAt() ..., 434
getChars(). ... 434
append() ... 435
INSETt(). oottt e 435
TEVETSE () o ittt e e e 436
delete() and deleteCharAt(). 436
TEPlACE() « vttt 437
SUDSTINE (). o v vttt e e 437
Additional StringBuffer Methods. 438
StringBuilder 439
Exploringjavaldang. i i i 441
Primitive Type Wrappers 442
Number 442
Doubleand Float................. 442
Understanding isInfinite() and isNaN() 446
Byte, Short, Integer,and Long 447
Character 455
Additions to Character for Unicode Code Point Support 458
Boolean 458
Void. .. 460

XV

XVi

Java: The Complete Reference, Ninth Edition

Runtime 461
Memory Management.t 462
Executing Other Programs. 464

ProcessBuilder 465

SYSTEIN . o oottt 467
Using currentTimeMillis() to Time Program Execution. 469
USIng arrayCopy(). .o oo vt 469
Environment Properties 470

ODbDJECt . oottt 471

Using clone() and the Cloneable Interface 471

ClaSS. vttt 473

ClassLoader o 477

Math ... 477
Trigonometric Functions., 477
Exponential Functions 478
Rounding Functions, 478
Miscellaneous Math Methods 479

StrictMath. 481

Compiler. 481

Thread, ThreadGroup, and Runnable 481
The Runnable Interface 481
Thread 482
ThreadGroup. i 484

ThreadLocal and InheritableThreadLocal 488

Package. 489

RuntimePermission i 490

Throwable. 490

SecurityManager. 490

StackTraceElement. i 491

Enum. 492

ClassValue. 493

The CharSequence Interface 493

The Comparable Interface 493

The Appendable Interface 494

The Iterable Interface 494

The Readable Interface.......... 495

The AutoCloseable Interface 495

The Thread.UncaughtExceptionHandler Interface 495

The javalang Subpackageso 495
javalang.annotation o oo 496
javalang.instrument o oo 496
javalang.invoke L i o 496
javalang.management. i 496
jJavadangref L 496

javalangreflect o 496

Contents XVii

Chapter 18 java.util Part 1: The Collections Framework 497
Collections OVeIVIEWo vi i 498
JDK 5 Changed the Collections Framework. 500

Generics Fundamentally Changed the Collections Framework. . 500
Autoboxing Facilitates the Use of Primitive Types 500
The For-Each Style for Loop............. 500
The Collection Interfaces 501
The Collection Interface. 501
The List Interface 504
The SetInterface.......... il 504
The SortedSetInterface 506
The NavigableSet Interface. 507
The Queue Interface. i 508
The Deque Interface............ 509
The Collection Classes., 510
The ArrayList Class 511
The LinkedList Class. oo 515
The HashSet Class. 516
The LinkedHashSet Classo.ooiiiin... 517
The TreeSet Class. 518
The PriorityQueue Class. 519
The ArrayDeque Class. 520
The EnumSet Class 521
Accessing a Collection via an Iterator. 521
Usinganlterator.......... 523
The For-Each Alternative to Iterators. 525
SPLterators i 526
Storing User-Defined Classes in Collections. 529
The RandomAccess Interface 530
Workingwith Maps. o i i 530
The Map Interfaces i 531
The Map Classes. vv ittt 537
COMPATALOTS. .« . oottt ettt 542
Using 2 Comparatoroiuiuiinininnenanann... 544
The Collection Algorithms 550
ATTAYS .o 556
The Legacy Classes and Interfaces 561
The Enumeration Interface 562
VeCtor . ..o 562
Stack . ..o 566
Dictionary. 568
Hashtable 569
Properties.ot 572
Using store() and load(). 576

Parting Thoughts on Collections 577

xviii

Java: The Complete Reference, Ninth Edition

Chapter 19 java.util Part 2: More Utility Classesc.oiiiiiann, 579
StringTokenizer i 579
BitSet. 581
Optional, OptionalDouble, Optionallnt, and OptionalLong. 584
Date. 586
Calendar....... 588
GregorianCalendar i 591
TimeZone 593
SimpleTimeZone i 594
Locale 594
Random 596
Observable 598

The Observer Interface............... 599
An Observer Example o o oo 599
Timer and TimerTask o i 602
CUITENCY . . oot e e 604
Formatter 605
The Formatter Constructors.oovuniuenan... 605
The Formatter Methods 606
Formatting Basics. o i 607
Formatting Strings and Characters. 609
Formatting Numbers............. o ... 609
Formatting Timeand Date 610
The %n and %% Specifiers 612
Specifying a Minimum Field Width 612
Specifying Precision. oo 614
Using the FormatFlags 614
Justifying Output o 615
The Space, +,0,and (Flags 616
The CommaFlag......... 617
The #Flag.o o 617
The Uppercase Optionouuuiiiineennnennn... 617
Using an ArgumentIndex. 618
Closing a Formatter. 619
The Java printf() Connection 620
Scanner. 620
The Scanner Constructorsoouiiniuenon... 620
Scanning Basics i 620
Some Scanner Examples........ o oL 624
Setting Delimiters i 628
Other Scanner Features 629

The ResourceBundle, ListResourceBundle,
and PropertyResourceBundle Classes. 630

Miscellaneous Utility Classes and Interfaces 635

Contents XiX

The java.util Subpackages 635
java.util.concurrent, java.util.concurrent.atomic,
and java.util.concurrent.docks. o oo oL 636
javaatilfunction oo oo 636
Javautiljar ... 639
javaatillogging o 639
Javaatilprefs o oo 639
Javautilregex. 639
Javautilspi 639
Jjavaatilstream. o 639
Javautilzip 639
Chapter 20 Input/Output: Exploring javaio o oL, 641
The I/O Classes and Interfaces. 641
File. 642
Directories 645
Using FilenameFilter............ 646
The listFiles() Alternative.ovvien e, 647
Creating Directories 648
The AutoCloseable, Closeable, and Flushable Interfaces........... 648
I/O EXCeptions. i 649
Two Ways to Close a Stream. oo, 649
The Stream Classes. 650
The Byte Streams 651
InputStream 651
OutputStreamttt 651
FilelnputStream. 652
FileOutputStream, 654
ByteArraylnputStream. L oo 656
ByteArrayOutputStream 658
Filtered Byte Streams. 659
Buffered Byte Streams. 659
SequencelnputStream. oo 663
PrintStream 665
DataOutputStream and DatalnputStream. 667
RandomAccessFile. 669
The Character Streamsouuuunneeiiiunnneen.. 670
Reader ..o 670
WIIEET © .ot 670
FileReadero 672
FileWriter 673
CharArrayReader.ot 674
CharArrayWriter i 675
BufferedReader........... i 676

BufferedWTiter.ot 678

XX Java: The Complete Reference, Ninth Edition

Chapter 21

Chapter 22

PushbackReader i 678
PrintWriter. 679
The Console CIass it 680
Serialization 682
Serializable 682
Externalizable 683
ObjectOutpuL.ttt 683
ObjectOutputStream.t 684
ObjectInput 685
ObjectlnputStream i i 685
A Serialization Exampleo oo 686
Stream Benefits 688
Exploring NIOo oo i i i ittt i i 689
The NIO Classes. . . oo e e et 689
NIO Fundamentals. 690
Buffers 690
Channels. e e 691
Charsets and Selectors. 693
Enhancements Added to NIOby JDK7.......... 694
The Path Interface. 694
The Files Classo e e e 695
The Paths Class 698
The File Attribute Interfaces. 698
The FileSystem, FileSystems, and FileStore Classes............ 700
Using the NIO Systemttt 700
Use NIO for Channel-Based I/O 700
Use NIO for Stream-Based I/O 709
Use NIO for Path and File System Operations 712
Pre-JDK 7 Channel-Based Examples. 719
Read aFile, PreJDK 7. i 720
Write toa File, PresJDK 7. i 723
Networking. . . oo vvvii ittt it ittt ittt iin i 727
Networking Basicsooouniiii i 727
The Networking Classes and Interfaces 728
INEtAdAress. . . oottt 729
Factory Methods ittt 729
Instance Methods. i 730
Inet4Address and InetbAddress 731
TCP/IP Client SOCKEtS. . . .o vttt e e 731
URL . . e 735
URLCONNECHON .« v ettt et e et e e e e et e 736
HttpURLCoNNectionoouuiii i 739
The URLCIass. . . . ovvit ittt e e e e e e e 741

COOKIES . . oottt e e 741

Chapter 23

Chapter 24

Contents
TCP/IP Server SOCKEtS. . . . v v vttt e e e 741
Datagramms.ov ettt e et 742
DatagramSocket. 742
DatagramPacket. 743
ADatagram Example. 744
The Applet Classvtitiiiiiii it iiennennennnnns 747
Two Types of Applets 747
Applet Basics. oo 747
The Applet Class i 749
Applet Architecture o 751
An Applet Skeleton i 751
Applet Initialization and Termination 753
Overridingupdate(). ..ot 754
Simple Applet Display Methods 754
Requesting Repainting. i ... 756
A Simple Banner Applet i i 757
Using the Status Window. 759
The HTMLAPPLET Tag. 760
Passing Parameters to Applets. oo oL 761
Improving the Banner Applet. 763
getDocumentBase() and getCodeBase() 764
AppletContext and showDocument() 765
The AudioClip Interface 767
The AppletStub Interface i 767
Outputting to the Console 767
EventHandling.ttt iiiiniiiininnenennenenns 769
Two Event Handling Mechanisms. 769
The Delegation Event Model 770
EVENES . oot 770
Event SOUICES.ttt 770
Event LiSteners.ttt 771
Event Classes.ottt 771
The ActionEvent Class. 773
The AdjustmentEvent Class 773
The ComponentEvent Class 774
The ContainerEvent Class. 774
The FocusEvent Class, 775
The InputEvent Class 775
The ItemEvent Class 776
The KeyEvent Classiiuuiiin i 777
The MouseEvent Class. 778
The MouseWheelEvent Class 779
The TextEvent Class., 780

The WindowEvent Classo i, 780

xXi

XXii Java: The Complete Reference, Ninth Edition

Chapter 25

Sources Of EVentsot 781
Event Listener Interfaces. oL 782
The ActionListener Interface 783
The AdjustmentListener Interface......................... 783
The ComponentListener Interface 783
The ContainerListener Interface 783
The FocusListener Interface. 783
The ItemListener Interface. 783
The KeyListener Interface 784
The MouseListener Interface 784
The MouseMotionListener Interface.............. 784
The MouseWheelListener Interface. 784
The TextListener Interface......... 784
The WindowFocusListener Interface.............. 785
The WindowListener Interface. 785
Using the Delegation EventModel. 785
Handling Mouse Events 785
Handling Keyboard Events 788
Adapter Classes. . .. oo vttt 791
INNer Classes. . .o v vttt et e e e e 793
Anonymous Inner Classes. 795
Introducing the AWT: Working with Windows, Graphics, and Text . ..797
AWT CIASSES .+ o v vttt ettt e e e e e e e e e 798
Window Fundamentals 800
ComPponentt 800
Container.t 801
Panel. 801
Window. 801
Frame 801
Canvas. 801
Working with Frame Windows. 802
Setting the Window’s Dimensions 802
Hiding and ShowingaWindow 802
Settinga Window’s Title 802
Closing a Frame Window. 803
Creating a Frame Window in an AWT-Based Applet............... 803
Handling Events in a Frame Window. 805
Creating a Windowed Program. 809
Displaying Information WithinaWindow 811
Introducing Graphics. 811
Drawing Lines i 811
Drawing Rectangles, 812
Drawing Ellipses and Circles. 812

Drawing Arcs 812

Chapter 26

Contents
Drawing Polygons 813
Demonstrating the Drawing Methods 813
Sizing Graphics 814
Workingwith Color 815
ColorMethods. 816
Setting the Current Graphics Color........................ 817
A Color Demonstration Applet. 817
Setting the Paint Mode 818
Workingwith Fonts 819
Determining the Available Fonts 821
Creating and SelectingaFont. 322
Obtaining Font Information. 824
Managing Text Output Using FontMetrics. 825
Displaying Multiple Lines of Text. 825
Centering Text. i i 328
Multiline Text Alignment 329
Using AWT Controls, Layout Managers, and Menus. 833
AWT Control Fundamentals 834
Adding and Removing Controls. 834
Responding to Controls 834
The HeadlessException. 835
Labels 835
UsingButtons. 836
Handling Buttons 836
Applying Check Boxes. 840
Handling Check Boxes 840
CheckboxXGroup. i 842
Choice Controls 844
Handling Choice Lists. 844
Using Lists.o o 8346
Handling Liststtt 847
Managing Scroll Bars. i 849
Handling Scroll Bars 850
UsingaTextField 852
Handling a TextField. 853
UsingaTextAreac it 854
Understanding Layout Managers 855
FlowLayout...... i 856
BorderLayout............. i 858
UsinglInsets 860
GridLayout. 861
CardLayout. 862
GridBagLayout. i 865

Menu Bars and Menus.ot 870

xXiii

XXiV Java: The Complete Reference, Ninth Edition

Chapter 27

Chapter 28

Dialog BOXES. . ..t v ittt 876
FileDialog 880
A Word About Overriding paint() 382
T 885
File Formats 885
Image Fundamentals: Creating, Loading, and Displaying 886
Creating an Image Object. 886
LoadinganImage 886
DisplayinganImage 887
ImageObserver. 388
Double Buffering 889
MediaTracker 892
ImageProducer. 895
MemorylmageSource i 895
ImageConSUMEeTr. oottt 897
PixelGrabber 897
ImageFilter 899
CropImageFilter 900
RGBImageFilter. i i 902
Additional Imaging Classes 913
The Concurrency Utilities oo i, 915
The Concurrent API Packages 916
Javautil.concurrent o oo i 916
java.util.concurrent.atomic. o oo 917
java.util.concurrentdocks oo ool 917
Using Synchronization Objects. 917
Semaphore....... 918
CountDownLatch. i 923
CyclicBarrier. 925
Exchanger 927
Phaser. 930
Usingan Executor i 937
A Simple Executor Example............ 937
Using Callable and Future 939
The TimeUnit Enumeration............... 942
The Concurrent Collections oo, 943
Locks. ..o 943
Atomic OPerations.t 946
Parallel Programming via the Fork/Join Framework 947
The Main Fork/Join Classes 948
The Divide-and-Conquer Strategy 951
A Simple First Fork/Join Example 952
Understanding the Impact of the Level of Parallelism......... 955

An Example that Uses RecursiveTask<V>............... 958

Chapter 29

Chapter 30

Contents

Executing a Task Asynchronously. 960
CancellingaTask. o i 961
Determining a Task’s Completion Status. 961
RestartingaTask i il 961
Thingsto Explore i 962
Some Fork/Join Tips. o i 963
The Concurrency Utilities Versus Java’s Traditional Approach 964
TheStream AP i i i ittt 965
Stream Basics 965
Stream Interfaces............. L 966
How to ObtainaStream 969
A Simple Stream Example. 969
Reduction Operationsuuieiiuiinnneenennnn. .. 973
Using Parallel Streams. i 975
Mappingot 978
Collecting i 982
Iterators and Streams. i 986
Use an Iterator witha Stream 986
Use SPHLETator. . ..ottt e e 987
More to Explore in the Stream API 990
Regular Expressions and Other Packages 991
The Core Java API Packages 991
Regular Expression Processing 993
Pattern 994
Matcher 994
Regular Expression Syntax 995
Demonstrating Pattern Matching. 995
Two Pattern-Matching Options. 1001
Exploring Regular Expressions. 1001
Reflection i 1001
Remote Method Invocation (RMI)............................ 1005
A Simple Client/Server Application Using RMI............. 1006
Formatting Date and Time with java.text............ 1009
DateFormat Class. 1009
SimpleDateFormat Class 1011
The Time and Date APIAdded by JDK8.................... ... 1013
Time and Date Fundamentals. 1013
Formatting Dateand Time 1015
Parsing Date and Time Strings 1017

Other Things to Explore in java.time...................... 1018

XXV

XXVi Java: The Complete Reference, Ninth Edition

Partlll Introducing GUI Programming with Swing

Chapter 31 Introducing Swingiiiitiiiiiiii i, 1021
The Origins of Swing 1021
Swing Is Builton the AWT 1022
Two Key Swing Features. 1022
Swing Components Are Lightweight 1022
Swing Supports a Pluggable Look and Feel. 1022

The MVC Connectionuuuueeee e 1023
Components and Containers 1024
COMPONENLS. . oottt ettt 1024
CoNtaINeTSt 1025

The Top-Level Container Panes 1025

The Swing Packages.......... i 1026
A Simple Swing Application o oL 1026
EventHandling i 1030
Create aSwing Applet 1033
Paintingin Swing 1036
Painting Fundamentals 1036
Compute the Paintable Area. 1037
APaintExample i 1037
Chapter 32 Exploring Swing......... ...ttt 1041
JLabel and Imagelcon 1041
JTextField o 1043
The Swing Buttons. i 1045
JButton 1045
JToggleButton 1047
Check Boxes. e e 1049
RadioButtons. 1051
JTabbedPane. L 1053
JScrollPane 1056
JLast . 1058
JComboBox. 1061
Trees oo e 1063
JTable ... 1066
Chapter 33 Introducing Swing Menus.vttitiiiiiiinnennennennns 1069
Menu Basics 1069
An Overview of JMenuBar, JMenu, and J[Menultem 1071
JMenuBar. 1071
JMenu. ... 1072
JMenultem 1073
Create aMain Menu i, 1074
Add Mnemonics and Accelerators to Menu Items. 1078
Add Images and Tooltips to Menu Items 1080
Use JRadioButtonMenultem and JCheckBoxMenultem 1081

CreateaPopupMenu i 1083

Contents
Create aToolbar. 1087
USE ACHIONS .« o ot i e e e e e e 1089
Put the Entire MenuDemo Program Together 1095
Continuing Your Exploration of Swing. 1101
Part IV Introducing GUI Programming with JavaFX
Chapter 34 Introducing JavaFX GUI Programming........................ 1105
JavaFX Basic Concepts.t 1106
The JavaFX Packages............... 1106
The Stage and Scene Classes. 1106
Nodes and Scene Graphs 1107
Layouts . ..o ot 1107
The Application Class and the Lifecycle Methods. 1107
Launching a JavaFX Application 1108
A JavaFX Application Skeleton L o oL 1108
Compiling and Running a JavaFX Program..................... 1111
The Application Thread 1112
A Simple JavaFX Control: Label 1112
Using Buttonsand Events 1114
EventBasics 1115
Introducing the Button Control.......................... 1115
Demonstrating Event Handling and the Button............. 1116
Drawing DirectlyonaCanvas 1119
Chapter 35 Exploring JavaFX Controls. oo, 1125
Using Image and ImageView. 1125
Adding an Image toaLabel 1128
Using an Image withaButton 1130
ToggleButton 1133
RadioButton 1135
Handling Change Events in a Toggle Group................ 1138
An Alternative Way to Handle Radio Buttons 1139
CheckBoXo 1142
LiStVieW. . .o 1146
ListView Scrollbars. 1149
Enabling Multiple Selections 1150
ComboBOX . ..o 1151
TextField. e 1154
ScrollPane.o e 1157
TreeView . .. e 1160
Introducing Effects and Transforms. 1164
Effects. 1165
Transforms 1166
Demonstrating Effects and Transforms 1167
Adding TOOItPSo vttt 1170

Disablinga Control i i 1170

XXVii

XXViii Java: The Complete Reference, Ninth Edition

Chapter 36

PartV
Chapter 37

Chapter 38

Introducing JavaFX Menus.o cvviiiiiin i iiinennnns 1171
Menu Basics . ..ot 1171
An Overview of MenuBar, Menu, and Menultem 1173

MenuBar. 1173

MENU. .« .ot 1174

Menultem. 1174
Create aMain Menu i 1175
Add Mnemonics and Accelerators to Menu Items. 1180
Add ImagestoMenultems.........., 1182
Use RadioMenultem and CheckMenultem..................... 1183
Createa Context Menu 1185
CreateaToolbar. 1189
Put the Entire MenuDemo Program Together 1191
Continuing Your Exploration of JavaFX. 1196

Applying Java

JavaBeans i e 1199
WhatIsaJavaBean?. L i i 1199
Advantagesof JavaBeans. oo oL 1200
Introspection 1200
Design Patterns for Properties 1200
Design Patterns forEvents 1202
Methods and Design Patterns. 1202
Using the BeanInfo Interface............... 1202
Bound and Constrained Properties 1203
Persistence 1203
CUSLOIMIZETS . o o oot e e e e e et e e e e e 1203
The JavaBeans API i 1204
Introspector 1206
PropertyDescriptor L 1206
EventSetDescriptor i i 1206
MethodDescriptor.o 1206
ABean Example. 1206
Introducing Servlets. i i i e 1211
Background 1211
The Life Cycle of aServlet. i, 1212
Servlet Development Options. 1212
Using Tomcat.. i 1213
ASimple Servlet. 1214
Create and Compile the Servlet Source Code 1215
Start Tomcat. e 1215

Start a Web Browser and Request the Servlet 1216

Appendix

Contents
The Servlet APL 1216
The javax.servlet Package 1216
The Servlet Interface.......... 1217
The ServletConfig Interface 1218
The ServletContext Interface 1218
The ServletRequest Interface 1218
The ServletResponse Interface........................... 1218
The GenericServlet Class. 1220
The ServletlnputStream Class. 1220
The ServletOutputStream Class 1220
The Servlet Exception Classes. 1220
Reading Servlet Parameters. 1220
The javax.servlet.http Package 1222
The HttpServletRequest Interface 1222
The HttpServletResponse Interface....................... 1222
The HttpSession Interface 1223
The Cookie Class, 1224
The HttpServlet Class 1225
Handling HTTP Requests and Responses 1227
Handling HTTP GET Requestscouuno... 1227
Handling HTTP POST Requests 1229
Using CooKies.t 1230
Session Tracking. i 1232
Using Java’s Documentation Comments, 1235
ThejavadocTags 1235
@author 1236
{@code}. 1236
@deprecated 1236
{@AOCROOL}. . . o 1237
@EXCEPUON. . ..ottt 1237
{@IinheritDOC).o 1237
(@Link}. 1237
{@linkplain} 1237
(@literal} 1237
@PATAIN . .ottt e 1237
@Teturn 1238
@SEE . .. 1238
@serial 1238
@serialData. 1238
@serialField 1238

@SINCE. . . oot e 1238

XXix

XXX

Java: The Complete Reference, Ninth Edition

@INTOWS . . o 1239
{@value} e 1239
@VETSION . . . e et e e 1239
The General Form of a Documentation Comment. 1239
Whatjavadoc Outputs 1239
An Example that Uses Documentation Comments. 1240

Preface

ava is one of the world’s most important and widely used computer languages.

Furthermore, it has held that distinction for many years. Unlike some other computer

languages whose influence has waned with the passage of time, Java’s has grown stronger.

Java leapt to the forefront of Internet programming with its first release. Each subsequent
version has solidified that position. Today, it is still the first and best choice for developing
web-based applications. Simply put: much of the modern world runs on Java code. Java
really is that important.

A key reason for Java’s success is its agility. Since its original 1.0 release, Java has
continually adapted to changes in the programming environment and to changes in the
way that programmers program. Most importantly, it has not just followed the trends, it has
helped create them. Java’s ability to accommodate the fast rate of change in the computing
world is a crucial part of why it has been and continues to be so successful.

Since this book was first published in 1996, it has gone through several editions, each
reflecting the ongoing evolution of Java. This is the Ninth edition, and it has been updated
for Java SE 8 (JDK 8). As a result, this edition of the book contains a substantial amount of
new material because Java SE 8 adds several new features to the Java language. The most
important is the lambda expression, which introduces an entirely new syntax element and
fundamentally increases the expressive power of the language. Because the impact of
lambda expressions is so significant, an entire chapter is devoted to them. Furthermore,
examples of their use are found elsewhere in the book. The lambda expression was also the
catalyst for other new features. One is the stream library in java.util.stream, which supports
pipeline operations on data. It too has an entire chapter devoted to it. Another is the
default method, which makes it possible to add default functionality to an interface.
Features such as repeating and type annotations further expand the power of Java. Java
SE 8 also makes significant enhancements to the Java API library, several of which are
described in this book.

Another important addition to this edition of the book is coverage of JavaFX, Java’s new
GUI framework. Because of the significant role that JavaFX is expected to play in the way
Java applications are designed, three new chapters are devoted to it. Simply put, experience
with JavaFX is something that Java programmers need. An additional chapter about Swing
has also been included that discusses menus. Although Swing may ultimately be replaced by
JavaFX, itis (at the time of this writing) still the most widely used Java GUI framework.
Thus, expanded coverage was warranted. Finally, many small updates have been made
throughout the book.

xxxi

XXXii

Java: The Complete Reference, Ninth Edition

A Book for All Programmers

This book is for all programmers, whether you are a novice or an experienced pro. The
beginner will find its carefully paced discussions and many examples especially helpful. Its
in-depth coverage of Java’s more advanced features and libraries will appeal to the pro. For
both, it offers a lasting resource and handy reference.

What'’s Inside

This book is a comprehensive guide to the Java language, describing its syntax, keywords,
and fundamental programming principles. Significant portions of the Java API library are
also examined. The book is divided into five parts, each focusing on a different aspect of
the Java programming environment.

Part I presents an in-depth tutorial of the Java language. It begins with the basics,
including such things as data types, operators, control statements, and classes. It then
moves on to inheritance, packages, interfaces, exception handling, and multithreading.
Next, it describes annotations, enumerations, autoboxing, and generics. I/O and applets
are also introduced. The final chapter in Part I covers lambda expressions. As mentioned,
the lambda expression is the single most important new feature in Java SE 8.

Part IT examines key aspects of Java’s standard API library. Topics include strings, 1/O,
networking, the standard utilities, the Collections Framework, applets, the AWT, event
handling, imaging, concurrency (including the Fork/Join Framework), regular
expressions, and the new stream library.

Part III offers three chapters that introduce Swing.

Part IV presents three chapters that introduce JavaFX.

Part V contains two chapters that show examples of Java in action. The first discusses
Java Beans. The second presents an introduction to servlets.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples in this book is available free-of-charge
on the Web at www.oraclepressbooks.com.

Special Thanks

I 'want to give special thanks to Patrick Naughton, Joe O’Neil, and Danny Coward.

Patrick Naughton was one of the creators of the Java language. He also helped write the
first edition of this book. For example, among many other contributions, much of the material
in Chapters 20, 22, and 27 was initially provided by Patrick. His insights, expertise, and
energy contributed greatly to the success of that book.

During the preparation of the second and third editions of this book, Joe O’Neil
provided initial drafts for the material now found in Chapters 30, 32, 37, and 38 of this
edition. Joe helped on several of my books and his input has always been top-notch.

http://www.oraclepressbooks.com

Preface xxXxiii

Danny Coward is the technical editor for this edition of the book. Danny has worked on
several of my books and his advice, insights, and suggestions have always been of great value
and much appreciated.

HERBERT SCHILDT

XXXiV Java: The Complete Reference, Ninth Edition

For Further Study

Java: The Complete Reference is your gateway to the Herb Schildt series of Java programming
books. Here are others that you will find of interest:

Herb Schildt’s Java Programming Cookbook
Java: A Beginner’s Guide
Swing: A Beginner’s Guide

The Art of Java

PART

The Java Language

CHAPTER 1

The History and Evolution
of Java

CHAPTER 2

An Overview of Java

CHAPTER 3

Data Types, Variables,
and Arrays

CHAPTER 4

Operators

CHAPTER 5

Control Statements

CHAPTER 6

Introducing Classes

CHAPTER 7
A Closer Look at Methods
and Classes

CHAPTER 8

Inheritance

CHAPTER 9

Packages and Interfaces

CHAPTER 10
Exception Handling

CHAPTER 11

Multithreaded Programming

CHAPTER

The History and
Evolution of Java

To fully understand Java, one must understand the reasons behind its creation, the forces
that shaped it, and the legacy that it inherits. Like the successful computer languages that
came before, Java is a blend of the best elements of its rich heritage combined with the
innovative concepts required by its unique mission. While the remaining chapters of

this book describe the practical aspects of Java—including its syntax, key libraries, and
applications—this chapter explains how and why Java came about, what makes it so
important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the
Internet, it is important to remember that Java is first and foremost a programming
language. Computer language innovation and development occurs for two fundamental
reasons:

¢ To adapt to changing environments and uses

¢ To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal
measure.

Java’s Lineage

Java is related to C++, which is a direct descendant of C. Much of the character of Java is
inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-
oriented features were influenced by C++. In fact, several of Java’s defining characteristics
come from—or are responses to—its predecessors. Moreover, the creation of Java was
deeply rooted in the process of refinement and adaptation that has been occurring in
computer programming languages for the past several decades. For these reasons, this
section reviews the sequence of events and forces that led to Java. As you will see, each
innovation in language design was driven by the need to solve a fundamental problem
that the preceding languages could not solve. Java is no exception.

4

PART | The Java Language

The Birth of Modern Programming: C

The Clanguage shook the computer world. Its impact should not be underestimated, because
it fundamentally changed the way programming was approached and thought about. The
creation of C was a direct result of the need for a structured, efficient, high-level language
that could replace assembly code when creating systems programs. As you probably know,
when a computer language is designed, trade-offs are often made, such as the following:

* LEase-of-use versus power
e Safety versus efficiency

¢ Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one
set of traits or the other. For example, although FORTRAN could be used to write fairly
efficient programs for scientific applications, it was not very good for system code. And
while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its
usefulness questionable for large programs. Assembly language can be used to produce
highly efficient programs, but it is not easy to learn or use effectively. Further, debugging
assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to understand.
While languages like Pascal are structured, they were not designed for efficiency, and failed
to include certain features necessary to make them applicable to a wide range of programs.
(Specifically, given the standard dialects of Pascal available at the time, it was not practical
to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By
the early 1970s, the computer revolution was beginning to take hold, and the demand for
software was rapidly outpacing programmers’ ability to produce it. A great deal of effort was
being expended in academic circles in an attempt to create a better computer language.

But, and perhaps most importantly, a secondary force was beginning to be felt. Computer
hardware was finally becoming common enough that a critical mass was being reached. No
longer were computers kept behind locked doors. For the first time, programmers were
gaining virtually unlimited access to their machines. This allowed the freedom to experiment.
It also allowed programmers to begin to create their own tools. On the eve of C’s creation,
the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX
operating system, C was the result of a development process that started with an older
language called BCPL, developed by Martin Richards. BCPL influenced a language called
B, invented by Ken Thompson, which led to the development of C in the 1970s. For many
years, the de facto standard for C was the one supplied with the UNIX operating system and
described in The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-
Hall, 1978). C was formally standardized in December 1989, when the American National
Standards Institute (ANSI) standard for C was adopted.

Chapter 1 The History and Evolution of Java

The creation of C is considered by many to have marked the beginning of the modern
age of computer languages. It successfully synthesized the conflicting attributes that had so
troubled earlier languages. The result was a powerful, efficient, structured language that
was relatively easy to learn. It also included one other, nearly intangible aspect: it was a
programmer’s language. Prior to the invention of C, computer languages were generally
designed either as academic exercises or by bureaucratic committees. C is different. It was
designed, implemented, and developed by real, working programmers, reflecting the way
that they approached the job of programming. Its features were honed, tested, thought
about, and rethought by the people who actually used the language. The result was a
language that programmers liked to use. Indeed, C quickly attracted many followers
who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the
programmer community. In short, C is a language designed by and for programmers.

As you will see, Java inherited this legacy.

C++: The Next Step

During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language, you
might ask why a need for something else existed. The answer is complexity. Throughout the
history of programming, the increasing complexity of programs has driven the need for
better ways to manage that complexity. C++ is a response to that need. To better understand
why managing program complexity is fundamental to the creation of C++, consider the
following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done by
manually toggling in the binary machine instructions by use of the front panel. As long as
programs were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger, increasingly
complex programs by using symbolic representations of the machine instructions. As
programs continued to grow, high-level languages were introduced that gave the programmer
more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an
impressive first step, it is hardly a language that encourages clear and easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of programming
championed by languages such as C. The use of structured languages enabled programmers
to write, for the first time, moderately complex programs fairly easily. However, even with
structured programming methods, once a project reaches a certain size, its complexity
exceeds what a programmer can manage. By the early 1980s, many projects were pushing
the structured approach past its limits. To solve this problem, a new way to program was
invented, called object-oriented programming (OOP). Object-oriented programming is discussed
in detail later in this book, but here is a brief definition: OOP is a programming methodology
that helps organize complex programs through the use of inheritance, encapsulation, and
polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once the size of a program exceeds a
certain point, it becomes so complex that it is difficult to grasp as a totality. While the
precise size at which this occurs differs, depending upon both the nature of the program
and the programmer, there is always a threshold at which a program becomes unmanageable.

6

PART | The Java Language

C++ added features that enabled this threshold to be broken, allowing programmers to
comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories
in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.”
However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented
features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes,
and benefits. This is a crucial reason for the success of C++ as a language. The invention of
C++ was not an attempt to create a completely new programming language. Instead, it was
an enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++ took
hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect
language. Because C++ blended the high efficiency and stylistic elements of C with the
object-oriented paradigm, it was a language that could be used to create a wide range of
programs. However, just as in the past, forces were brewing that would, once again, drive
computer language evolution forward. Within a few years, the World Wide Web and the
Internet would reach critical mass. This event would precipitate another revolution in
programming.

The Creation of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working
version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between
the initial implementation of Oak in the fall of 1992 and the public announcement of Java
in the spring of 1995, many more people contributed to the design and evolution of the
language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were
key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the
primary motivation was the need for a platform-independent (that is, architecture-neutral)
language that could be used to create software to be embedded in various consumer
electronic devices, such as microwave ovens and remote controls. As you can probably
guess, many different types of CPUs are used as controllers. The trouble with C and C++
(and most other languages) is that they are designed to be compiled for a specific target.
Although it is possible to compile a C++ program for just about any type of CPU, to do so
requires a full C++ compiler targeted for that CPU. The problem is that compilers are
expensive and time-consuming to create. An easier—and more cost-efficient—solution
was needed. In an attempt to find such a solution, Gosling and others began work on a
portable, platform-independent language that could be used to produce code that would
run on a variety of CPUs under differing environments. This effort ultimately led to the
creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor was emerging that would play a crucial role in the future of Java.
This second force was, of course, the World Wide Web. Had the Web not taken shape at
about the same time that Java was being implemented, Java might have remained a useful
but obscure language for programming consumer electronics. However, with the emergence

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Chapter 1 The History and Evolution of Java

of the World Wide Web, Java was propelled to the forefront of computer language design,
because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat
to other, more pressing problems. Further, because (at that time) much of the computer
world had divided itself into the three competing camps of Intel, Macintosh, and UNIX,
most programmers stayed within their fortified boundaries, and the urgent need for
portable code was reduced. However, with the advent of the Internet and the Web, the
old problem of portability returned with a vengeance. After all, the Internet consists of a
diverse, distributed universe populated with various types of computers, operating systems,
and CPUs. Even though many kinds of platforms are attached to the Internet, users would
like them all to be able to run the same program. What was once an irritating but low-
priority problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of
portability frequently encountered when creating code for embedded controllers are also
found when attempting to create code for the Internet. In fact, the same problem that Java
was initially designed to solve on a small scale could also be applied to the Internet on a
large scale. This realization caused the focus of Java to switch from consumer electronics
to Internet programming. So, while the desire for an architecture-neutral programming
language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by intent.
The Java designers knew that using the familiar syntax of C and echoing the object-oriented
features of C++ would make their language appealing to the legions of experienced C/C++
programmers. In addition to the surface similarities, Java shares some of the other attributes
that helped make C and C++ successful. First, Java was designed, tested, and refined by real,
working programmers. It is a language grounded in the needs and experiences of the
people who devised it. Thus, Java is a programmer’s language. Second, Java is cohesive and
logically consistent. Third, except for those constraints imposed by the Internet environment,
Java gives you, the programmer, full control. If you program well, your programs reflect it.
If you program poorly, your programs reflect that, too. Put differently, Java is not a language
with training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as
simply the “Internet version of C++.” However, to do so would be a large mistake. Java has
significant practical and philosophical differences. While it is true that Java was influenced
by C++, itis not an enhanced version of C++. For example, Java is neither upwardly nor
downwardly compatible with C++. Of course, the similarities with C++ are significant, and if
you are a C++ programmer, then you will feel right at home with Java. One other point: Java
was not designed to replace C++. Java was designed to solve a certain set of problems. C++
was designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons:
to adapt to changes in environment and to implement advances in the art of programming.
The environmental change that prompted Java was the need for platform-independent
programs destined for distribution on the Internet. However, Java also embodies changes
in the way that people approach the writing of programs. For example, Java enhanced
and refined the object-oriented paradigm used by C++, added integrated support for
multithreading, and provided a library that simplified Internet access. In the final analysis,

7

8 PARTI The Java Language

though, it was not the individual features of Java that made it so remarkable. Rather, it was
the language as a whole. Java was the perfect response to the demands of the then newly
emerging, highly distributed computing universe. Java was to Internet programming what
C was to system programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become part
of the baseline for any new language. The success of Java is simply too important to ignore.
Perhaps the most important example of Java’s influence is C#. Created by Microsoft to
support the .NET Framework, C# is closely related to Java. For example, both share the
same general syntax, support distributed programming, and utilize the same object model.
There are, of course, differences between Java and C#, but the overall “look and feel” of
these languages is very similar. This “cross-pollination” from Java to C# is the strongest
testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn, had
a profound effect on the Internet. In addition to simplifying web programming in general,
Java innovated a new type of networked program called the applet that changed the way
the online world thought about content. Java also addressed some of the thorniest issues
associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet
and automatically executed by a Java-compatible web browser. Furthermore, an applet is
downloaded on demand, without further interaction with the user. If the user clicks a link
that contains an applet, the applet will be automatically downloaded and run in the browser.
Applets are intended to be small programs. They are typically used to display data provided
by the server, handle user input, or provide simple functions, such as a loan calculator, that
execute locally, rather than on the server. In essence, the applet allows some functionality to
be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the
universe of objects that can move about freely in cyberspace. In general, there are two very
broad categories of objects that are transmitted between the server and the client: passive
information and dynamic, active programs. For example, when you read your e-mail, you
are viewing passive data. Even when you download a program, the program’s code is still
only passive data until you execute it. By contrast, the applet is a dynamic, self-executing
program. Such a program is an active agent on the client computer, yet it is initiated by
the server.

As desirable as dynamic, networked programs are, they also present serious problems
in the areas of security and portability. Obviously, a program that downloads and executes
automatically on the client computer must be prevented from doing harm. It must also be
able to run in a variety of different environments and under different operating systems.
As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit
more closely at each.

Chapter 1 The History and Evolution of Java 9

Security

As you are likely aware, every time you download a “normal” program, you are taking a risk,
because the code you are downloading might contain a virus, Trojan horse, or other harmful
code. At the core of the problem is the fact that malicious code can cause its damage because
it has gained unauthorized access to system resources. For example, a virus program might
gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java to
enable applets to be downloaded and executed on the client computer safely, it was necessary
to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment
and not allowing it access to other parts of the computer. (You will see how this is
accomplished shortly.) The ability to download applets with confidence that no harm will
be done and that no security will be breached may have been the single most innovative
aspect of Java.

Portability

Portability is 2 major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on
virtually any computer connected to the Internet, there needed to be some way to enable
that program to execute on different systems. For example, in the case of an applet, the
same applet must be able to be downloaded and executed by the wide variety of CPUs,
operating systems, and browsers connected to the Internet. It is not practical to have
different versions of the applet for different computers. The same code must work on all
computers. Therefore, some means of generating portable executable code was needed. As
you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’'s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just described
is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is
a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as
an interpreler for bytecode. This may come as a bit of a surprise since many modern languages
are designed to be compiled into executable code because of performance concerns.
However, the fact that a Java program is executed by the JVM helps solve the major
problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in
a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run
on it. Remember, although the details of the JVM will differ from platform to platform, all
understand the same Java bytecode. If a Java program were compiled to native code, then
different versions of the same program would have to exist for each type of CPU connected
to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode
by the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it can contain the program and prevent it from generating

10

PART | The Java Language

side effects outside of the system. As you will see, safety is also enhanced by certain
restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted
by a virtual machine, it runs slower than it would run if compiled to executable code.
However, with Java, the differential between the two is not so great. Because bytecode has
been highly optimized, the use of bytecode enables the JVM to execute programs much
faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance.
For this reason, the HotSpot technology was introduced not long after Java’s initial release.
HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler is part
of the JVM, selected portions of bytecode are compiled into executable code in real time,
on a piece-by-piece, demand basis. It is important to understand that it is not practical to
compile an entire Java program into executable code all at once, because Java performs
various run-time checks that can be done only at run time. Instead, a JIT compiler compiles
code as it is needed, during execution. Furthermore, not all sequences of bytecode are
compiled—only those that will benefit from compilation. The remaining code is simply
interpreted. However, the just-in-time approach still yields a significant performance boost.
Even when dynamic compilation is applied to bytecode, the portability and safety features
still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side

As useful as applets can be, they are just one half of the client/server equation. Not long
after the initial release of Java, it became obvious that Java would also be useful on the
server side. The result was the servlet. A servlet is a small program that executes on the
server. Just as applets dynamically extend the functionality of a web browser, servlets
dynamically extend the functionality of a web server. Thus, with the advent of the servlet,
Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the
client. For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that is sent
to the browser. Although dynamically generated content is available through mechanisms
such as CGI (Common Gateway Interface), the servlet offers several advantages, including
increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed by
the JVM, they are highly portable. Thus, the same servlet can be used in a variety of
different server environments. The only requirements are that the server support the JVM
and a servlet container.

The Java Buzzwords

No discussion of Java’s history is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security,
other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the following list of buzzwords:

¢ Simple

e Secure

Chapter 1 The History and Evolution of Java 11

e Portable

¢ Object-oriented

e Robust

e Multithreaded

¢ Architecture-neutral
¢ Interpreted

¢ High performance
e Distributed

¢ Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s examine
what each of the others implies.

Simple

Java was designed to be easy for the professional programmer to learn and use effectively.
Assuming that you have some programming experience, you will not find Java hard to master.
If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the object-
oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code compatible
with any other language. This allowed the Java team the freedom to design with a blank
slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing
liberally from many seminal object-software environments of the last few decades, Java
manages to strike a balance between the purist’s “everything is an object” paradigm and

the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to
extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To gain
reliability, Java restricts you in a few key areas to force you to find your mistakes early in
program development. At the same time, Java frees you from having to worry about many
of the most common causes of programming errors. Because Java is a strictly typed
language, it checks your code at compile time. However, it also checks your code at run
time. Many hard-to-track-down bugs that often turn up in hard-to-reproduce run-time
situations are simply impossible to create in Java. Knowing that what you have written
will behave in a predictable way under diverse conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for program
failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious task in traditional

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

12

PART | The Java Language

programming environments. For example, in C/C++, the programmer will often manually
allocate and free all dynamic memory. This sometimes leads to problems, because
programmers will either forget to free memory that has been previously allocated or,
worse, try to free some memory that another part of their code is still using. Java virtually
eliminates these problems by managing memory allocation and deallocation for you. (In fact,
deallocation is completely automatic, because Java provides garbage collection for unused
objects.) Exceptional conditions in traditional environments often arise in situations such
as division by zero or “file not found,” and they must be managed with clumsy and hard-to-
read constructs. Java helps in this area by providing object-oriented exception handling. In
a well-written Java program, all run-time errors can—and should—be managed by your
program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows you
to write programs that do many things simultaneously. The Java run-time system comes with
an elegant yet sophisticated solution for multiprocess synchronization that enables you to
construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading
allows you to think about the specific behavior of your program, not the multitasking
subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. At the time
of Java’s creation, one of the main problems facing programmers was that no guarantee
existed that if you wrote a program today, it would run tomorrow—even on the same
machine. Operating system upgrades, processor upgrades, and changes in core system
resources can all combine to make a program malfunction. The Java designers made
several hard decisions in the Java language and the Java Virtual Machine in an attempt to
alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great
extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling into
an intermediate representation called Java bytecode. This code can be executed on any
system that implements the Java Virtual Machine. Most previous attempts at cross-platform
solutions have done so at the expense of performance. As explained earlier, the Java
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a justin-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a
file. Java also supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Abdullah
Highlight

Chapter 1 The History and Evolution of Java 13

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used
to verify and resolve accesses to objects at run time. This makes it possible to dynamically link
code in a safe and expedient manner. This is crucial to the robustness of the Java environment,
in which small fragments of bytecode may be dynamically updated on a running system.

The Evolution of Java

The initial release of Java was nothing short of revolutionary, but it did not mark the end of
Java’s era of rapid innovation. Unlike most other software systems that usually settle into a
pattern of small, incremental improvements, Java continued to evolve at an explosive pace.
Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The
features added by Java 1.1 were more significant and substantial than the increase in the
minor revision number would have you think. Java 1.1 added many new library elements,
redefined the way events are handled, and reconfigured many features of the 1.0 library. It
also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus,
Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”
The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern
age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the
first release of Java 2 used the 1.2 version number. The reason is that it originally referred
to the internal version number of the Java libraries, but then was generalized to refer to
the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform
Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections
Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2
also contained a few deprecations. The most important affected the Thread class in which
the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,
it added to existing functionality and “tightened up” the development environment. In
general, programs written for version 1.2 and those written for version 1.3 are source-code
compatible. Although version 1.3 contained a smaller set of changes than the preceding
three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important
upgrades, enhancements, and additions. For example, it added the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also made changes to the
Collections Framework and the networking classes. In addition, numerous small changes
were made throughout. Despite the significant number of new features, version 1.4
maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous
Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally
expanded the scope, power, and range of the language. To grasp the magnitude of the
changes that J2SE 5 made to Java, consider the following list of its major new features:

e (Generics

e Annotations

Abdullah
Highlight

14

PART | The Java Language

¢ Autoboxing and auto-unboxing

¢ Enumerations

¢ Enhanced, for-each style for loop

¢ Variable-length arguments (varargs)
e Static import

e Formatted I/O

¢ Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represented
a significant addition to the Java language. Some, such as generics, the enhanced for, and
varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing,
altered the semantics of the language. Annotations added an entirely new dimension to
programming. In all cases, the impact of these additions went beyond their direct effects.
They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number “5.”
The next version number for Java would normally have been 1.5. However, the new features
were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of
the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing
that a major event was taking place. Thus, it was named J2SE 5, and the developer’s kit was
called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its
internal version number, which is also referred to as the developer version number. The
“6” in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6. Sun once again decided to change the
name of the Java platform. First, notice that the “2” was dropped. Thus, the platform was
now named Java SE, and the official product name was Java Platform, Standard Edition 6.

The Java Development Kit was called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product
version number. The internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE 6 added
no major features to the Java language proper, but it did enhance the API libraries, added
several new packages, and offered improvements to the runtime. It also went through several
updates during its (in Java terms) long life cycle, with several upgrades added along the way.
In general, Java SE 6 served to further solidify the advances made by J2SE 5.

Java SE 7 was the next release of Java, with the Java Development Kit being called JDK 7,
and an internal version number of 1.7. Java SE 7 was the first major release of Java since
Sun Microsystems was acquired by Oracle. Java SE 7 contained many new features, including
significant additions to the language and the API libraries. Upgrades to the Java run-time
system that support non-Java languages were also included, but it is the language and
library additions that were of most interest to Java programmers.

The new language features were developed as part of Project Coin. The purpose of
Project Coin was to identify a number of small changes to the Java language that would be
incorporated into JDK 7. Although these features were collectively referred to as “small,”
the effects of these changes have been quite large in terms of the code they impact. In fact, for

Chapter 1 The History and Evolution of Java 15

many programmers, these changes may well have been the most important new features in
Java SE 7. Here is a list of the language features added by JDK 7:

¢ A String can now control a switch statement.
* Binary integer literals.
e Underscores in numeric literals.

* An expanded try statement, called try-with-resources, that supports automatic resource
management. (For example, streams can be closed automatically when they are no
longer needed.)

¢ Type inference (via the diamond operator) when constructing a generic instance.

¢ Enhanced exception handling in which two or more exceptions can be caught by a
single catch (multi-catch) and better type checking for exceptions that are rethrown.

¢ Although not a syntax change, the compiler warnings associated with some types of
varargs methods were improved, and you have more control over the warnings.

As you can see, even though the Project Coin features were considered small changes to
the language, their benefits were much larger than the qualifier “small” would suggest. In
particular, the try-with-resources statement has profoundly affected the way that stream-based
code is written. Also, the ability to use a String to control a switch statement was a long-
desired improvement that simplified coding in many situations.

Java SE 7 made several additions to the Java API library. Two of the most important were
the enhancements to the NIO Framework and the addition of the Fork/Join Framework.
NIO (which originally stood for New I/0) was added to Java in version 1.4. However, the
changes added by Java SE 7 fundamentally expanded its capabilities. So significant were
the changes, that the term NIO.21is often used.

The Fork/Join Framework provides important support for parallel programming. Parallel
programming is the name commonly given to the techniques that make effective use of
computers that contain more than one processor, including multicore systems. The
advantage that multicore environments offer is the prospect of significantly increased
program performance. The Fork/Join Framework addressed parallel programming by

¢ Simplifying the creation and use of tasks that can execute concurrently

¢ Automatically making use of multiple processors

Therefore, by using the Fork/Join Framework, you can easily create scaleable
applications that automatically take advantage of the processors available in the execution
environment. Of course, not all algorithms lend themselves to parallelization, but for those
that do, a significant improvement in execution speed can be obtained.

Java SE 8

The newest release of Java is Java SE 8, with the developer’s kit being called JDK 8. It has
an internal version number of 1.8. JDK 8 represents a very significant upgrade to the Java
language because of the inclusion of a far-reaching new language feature: the lambda
expression. The impact of lambda expressions will be profound, changing both the way that

16

PART | The Java Language

programming solutions are conceptualized and how Java code is written. As explained in
detail in Chapter 15, lambda expressions add functional programming features to Java. In
the process, lambda expressions can simplify and reduce the amount of source code
needed to create certain constructs, such as some types of anonymous classes. The addition
of lambda expressions also causes a new operator (the —>) and a new syntax element to be
added to the language. Lambda expressions help ensure that Java will remain the vibrant,
nimble language that users have come to expect.

The inclusion of lambda expressions has also had a wide-ranging effect on the Java
libraries, with new features being added to take advantage of them. One of the most
important is the new stream API, which is packaged in java.util.stream. The stream API
supports pipeline operations on data and is optimized for lambda expressions. Another
very important new package is java.util.function. It defines a number of functional interfaces,
which provide additional support for lambda expressions. Other new lambda-related features
are found throughout the API library.

Another lambda-inspired feature affects interface. Beginning with JDK 8, it is now
possible to define a default implementation for a method specified by an interface. If no
implementation for a default method is created, then the default defined by the interface
is used. This feature enables interfaces to be gracefully evolved over time because a new
method can be added to an interface without breaking existing code. It can also streamline
the implementation of an interface when the defaults are appropriate. Other new features
in JDK 8 include a new time and date API, type annotations, and the ability to use parallel
processing when sorting an array, among others. JDK 8 also bundles support for JavaFX 8,
the latest version of Java’s new GUI application framework. JavaFX is expected to soon play
an important part in nearly all Java applications, ultimately replacing Swing for most
GUI-based projects. Part IV of this book provides an introduction to it.

In the final analysis, Java SE 8 is a major release that profoundly expands the capabilities
of the language and changes the way that Java code is written. Its effects will be felt throughout
the Java universe and for years to come. It truly is that important of a upgrade.

The material in this book has been updated to reflect Java SE 8, with many new features,
updates, and additions indicated throughout.

A Culture of Innovation

Since the beginning, Java has been at the center of a culture of innovation. Its original release
redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode
changed the way we think about security and portability. The applet (and then the servlet)
made the Web come alive. The Java Community Process (JCP) redefined the way that new
ideas are assimilated into the language. The world of Java has never stood still for very long.
Java SE 8 is the latest release in Java’s ongoing, dynamic history.

CHAPTER

An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation. Rather,
they work together to form the language as a whole. However, this interrelatedness can
make it difficult to describe one aspect of Java without involving several others. Often a
discussion of one feature implies prior knowledge of another. For this reason, this chapter
presents a quick overview of several key features of Java. The material described here will
give you a foothold that will allow you to write and understand simple programs. Most of
the topics discussed will be examined in greater detail in the remaining chapters of Part I.

Object-Oriented Programming

Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to
at least some extent object-oriented. OOP is so integral to Java that it is best to understand
its basic principles before you begin writing even simple Java programs. Therefore, this
chapter begins with a discussion of the theoretical aspects of OOP.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a program
can be conceptually organized around its code or around its data. That is, some programs
are written around “what is happening” and others are written around “who is being
affected.” These are the two paradigms that govern how a program is constructed. The first
way is called the process-oriented model. This approach characterizes a program as a series of
linear steps (that is, code). The process-oriented model can be thought of as code acting on
data. Procedural languages such as C employ this model to considerable success. However,
as mentioned in Chapter 1, problems with this approach appear as programs grow larger
and more complex.

To manage increasing complexity, the second approach, called object-oriented programming,
was conceived. Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented program can
be characterized as data controlling access to code. As you will see, by switching the controlling
entity to data, you can achieve several organizational benefits.

17

18

PART | The Java Language

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of tens
of thousands of individual parts. They think of it as a well-defined object with its own
unique behavior. This abstraction allows people to use a car to drive to the grocery store
without being overwhelmed by the complexity of the parts that form the car. They can
ignore the details of how the engine, transmission, and braking systems work. Instead,
they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see that
the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,
cellular phone, and so on. In turn, each of these subsystems is made up of more specialized
units. For instance, the sound system consists of a radio, a CD player, and/or a tape or MP3
player. The point is that you manage the complexity of the car (or any other complex
system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects. A sequence of process steps can become a collection of messages
between these objects. Thus, each of these objects describes its own unique behavior. You
can treat these objects as concrete entities that respond to messages telling them to do
something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural paradigm
for creating programs that survive the inevitable changes accompanying the life cycle of any
major software project, including conception, growth, and aging. For example, once you
have well-defined objects and clean, reliable interfaces to those objects, you can gracefully
decommission or replace parts of an older system without fear.

The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s
take a look at these concepts now.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse. One way to think about encapsulation
is as a protective wrapper that prevents the code and data from being arbitrarily accessed by
other code defined outside the wrapper. Access to the code and data inside the wrapper is
tightly controlled through a well-defined interface. To relate this to the real world, consider
the automatic transmission on an automobile. It encapsulates hundreds of bits of information
about your engine, such as how much you are accelerating, the pitch of the surface you are
on, and the position of the shift lever. You, as the user, have only one method of affecting
this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission
by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a
well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the

Chapter 2 An Overview of Java 19

transmission does not affect objects outside the transmission. For example, shifting gears
does not turn on the headlights! Because an automatic transmission is encapsulated, dozens
of car manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming. The
power of encapsulated code is that everyone knows how to access it and thus can use it
regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in
great detail later in this book, the following brief discussion will be helpful now. A class defines
the structure and behavior (data and code) that will be shared by a set of objects. Each object
of a given class contains the structure and behavior defined by the class, as if it were stamped
out by a mold in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.
Collectively, these elements are called members of the class. Specifically, the data defined by
the class are referred to as member variables or instance variables. The code that operates on
that data is referred to as member methods or just methods. (If you are familiar with C/C++, it
may help to know that what a Java programmer calls a method, a C/C++ programmer calls a
Junction.) In properly written Java programs, the methods define how the member variables
can be used. This means that the behavior and interface of a class are defined by the methods
that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable in a
class may be marked private or public. The public interface of a class represents everything
that external users of the class need to know, or may know. The private methods and data
can only be accessed by code that is a member of the class. Therefore, any other code that
is not 2 member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’
public methods, you can ensure that no improper actions take place. Of course, this means
that the public interface should be carefully designed not to expose too much of the inner
workings of a class (see Figure 2-1).

Inheritance

Inheritance is the process by which one object acquires the properties of another object. This
is important because it supports the concept of hierarchical classification. As mentioned
earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.
For example, a Golden Retriever is part of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal. Without the use of hierarchies, each
object would need to define all of its characteristics explicitly. However, by use of inheritance,
an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case. Let’s take a closer
look at this process.

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size, intelligence,
and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,
and sleep. This description of attributes and behavior is the class definition for animals.

20 PARTI The Java Language

Public # A Class

instance variables
(not recommended)

Public g \

methods

Private A A A ‘ L ;
methods / | " \

Private L y
instance variables

Figure 2-1 Encapsulation: public methods can be used to protect private data.

If you wanted to describe a more specific class of animals, such as mammals, they would
have more specific attributes, such as type of teeth and mammary glands. This is known as a
subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the
attributes from animals. A deeply inherited subclass inherits all of the attributes from each
of its ancestors in the class hierarchy.

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part of its
specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow
in complexity linearly rather than geometrically. A new subclass inherits all of the attributes
of all of its ancestors. It does not have unpredictable interactions with the majority of the
rest of the code in the system.

[Mammal] [Reptile...]

(_Canine) [Feline..)

[Domesticus] [Lupus...]

/

[Retriever] [Poodle...]

\

[Labrador] [Golden]

Chapter 2 AnOverview of Java 21

Animal
L Sex 3
Weight

Mammal Gestation
w Period

‘—Iuntmg Skills Canine

Leash Trained? »
Indoor/ Outdoor

Domesticus

"\
/-

‘uck Hunting Trained? Retriever

AKC Certified?

Figure 2-2 | abrador inherits the encapsulation of all its superclasses.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to
be used for a general class of actions. The specific action is determined by the exact nature
of the situation. Consider a stack (which is a last-in, first-out list). You might have a program
that requires three types of stacks. One stack is used for integer values, one for floating-
point values, and one for characters. The algorithm that implements each stack is the same,
even though the data being stored differs. In a non—object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in Java you can specify a general set of stack routines
that all share the same names.

22

PART | The Java Language

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to a
group of related activities. This helps reduce complexity by allowing the same interface to
be used to specify a general class of action. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, do not need to make
this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a
cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.
The same sense of smell is at work in both situations. The difference is what is being smelled,
that is, the type of data being operated upon by the dog’s nose! This same general concept
can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together

When properly applied, polymorphism, encapsulation, and inheritance combine to produce
a programming environment that supports the development of far more robust and scaleable
programs than does the process-oriented model. A well-designed hierarchy of classes is the
basis for reusing the code in which you have invested time and effort developing and testing.
Encapsulation allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism allows you to create
clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but
cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)
of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family
minivan, drivers can all more or less find and operate the steering wheel, the brakes, and
the accelerator. After a bit of gear grinding, most people can even manage the difference
between a stick shift and an automatic, because they fundamentally understand their
common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas
pedals hide an incredible array of complexity with an interface so simple you can operate
them with your feet! The implementation of the engine, the style of brakes, and the size of
the tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get an
antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,
or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering
wheel to change direction, and press the accelerator when you want to move. The same
interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented
principles, the various parts of a complex program can be brought together to form a
cohesive, robust, maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put
more precisely, every Java program involves encapsulation, inheritance, and polymorphism.
Although the short example programs shown in the rest of this chapter and in the next few
chapters may not seem to exhibit all of these features, they are nevertheless present. As you

Chapter 2 An Overview of Java 23

will see, many of the features supplied by Java are part of its built-in class libraries, which do
make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program

Now that the basic object-oriented underpinning of Java has been discussed, let’s look at
some actual Java programs. Let’s start by compiling and running the short sample program
shown here. As you will see, this involves a little more work than you might imagine.
/*
This is a simple Java program.
Call this file "Example.java".
*/
class Example {
// Your program begins with a call to main() .
public static void main(String args[])
System.out.println("This is a simple Java program.") ;
}

}

NOTE The descriptions that follow use the standard Java SE 8 Development Kit (JDK 8), which is available
from Oracle. If you are using an integrated development environment (IDE), then you will need to follow
a different procedure for compiling and executing Java programs. In this case, consult your IDE’s
documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code to a program
is immaterial. However, this is not the case with Java. The first thing that you must learn
about Java is that the name you give to a source file is very important. For this example,

the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains
(among other things) one or more class definitions. (For now, we will be using source files
that contain only one class.) The Java compiler requires that a source file use the .java
filename extension.

As you can see by looking at the program, the name of the class defined by the program
is also Example. This is not a coincidence. In Java, all code must reside inside a class. By
convention, the name of the main class should match the name of the file that holds the
program. You should also make sure that the capitalization of the filename matches the
class name. The reason for this is that Java is case-sensitive. At this point, the convention
that filenames correspond to class names may seem arbitrary. However, this convention
makes it easier to maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of
the program. As discussed earlier, the Java bytecode is the intermediate representation of

24

PART | The Java Language

your program that contains instructions the Java Virtual Machine will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher called java. To
do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example
When the program is run, the following output is displayed:
This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give
your Java source files the same name as the class they contain—the name of the source file
will match the name of the .class file. When you execute java as just shown, you are actually
specifying the name of the class that you want to execute. It will automatically search for a
file by that name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are common to
all Java programs. Let’s closely examine each part of the program.
The program begins with the following lines:

/*
This is a simple Java program.
Call this file "Example.java".
*/

This is a comment. Like most other programming languages, Java lets you enter a remark
into a program’s source file. The contents of a comment are ignored by the compiler.
Instead, a comment describes or explains the operation of the program to anyone who is
reading its source code. In this case, the comment describes the program and reminds you
that the source file should be called Example.java. Of course, in real applications, comments
generally explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is
called a multiline comment. This type of comment must begin with /* and end with */.
Anything between these two comment symbols is ignored by the compiler. As the name
suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example

is an identifier that is the name of the class. The entire class definition, including all of its
members, will be between the opening curly brace ({) and the closing curly brace (}). For
the moment, don’t worry too much about the details of a class except to note that in Java,
all program activity occurs within one. This is one reason why all Java programs are (at least
a little bit) object-oriented.

Chapter 2 AnOverview of Java 25

The next line in the program is the single-line comment, shown here:
// Your program begins with a call to main() .

This is the second type of comment supported by Java. A single-line comment begins with a //
and ends at the end of the line. As a general rule, programmers use multiline comments for
longer remarks and single-line comments for brief, line-by-line descriptions. The third type
of comment, a documentation comment, will be discussed in the “Comments” section later in
this chapter.

The next line of code is shown here:

public static void main(String args[1) {

This line begins the main() method. As the comment preceding it suggests, this is the line
at which the program will begin executing. All Java applications begin execution by calling
main(). The full meaning of each part of this line cannot be given now, since it involves a
detailed understanding of Java’s approach to encapsulation. However, since most of the
examples in the first part of this book will use this line of code, let’s take a brief look at
each part now.

The public keyword is an access modifier, which allows the programmer to control the
visibility of class members. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared. (The opposite of public is
private, which prevents a member from being used by code defined outside of its class.) In
this case, main() must be declared as public, since it must be called by code outside of its
class when the program is started. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value. As you will see, methods may also
return values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind
that Java is case-sensitive. Thus, Main is different from main. It is important to understand
that the Java compiler will compile classes that do not contain a main() method. But java
has no way to run these classes. So, if you had typed Main instead of main, the compiler
would still compile your program. However, java would report an error because it would be
unable to find the main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are called
parameters. If there are no parameters required for a given method, you still need to include
the empty parentheses. In main(), there is only one parameter, albeit a complicated one.
String args[| declares a parameter named args, which is an array of instances of the class
String. (Arrays are collections of similar objects.) Objects of type String store character
strings. In this case, args receives any command-line arguments present when the program
is executed. This program does not make use of this information, but other programs
shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the
code that comprises a method will occur between the method’s opening curly brace and its
closing curly brace.

26

PART | The Java Language

One other point: main() is simply a starting place for your program. A complex
program will have dozens of classes, only one of which will need to have a main() method
to get things started. Furthermore, in some cases, you won’t need main() at all. For example,
when creating applets—]Java programs that are embedded in web browsers—you won’t use
main() since the web browser uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out .println("This is a simple Java program.") ;

This line outputs the string "This is a simple Java program." followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display other
types of information, too. The line begins with System.out. While too complicated to explain
in detail at this time, briefly, System is a predefined class that provides access to the system,
and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in most
real-world Java applications. Since most modern computing environments are windowed and
graphical in nature, console I/0 is used mostly for simple utility programs, demonstration
programs, and server-side code. Later in this book, you will learn other ways to generate
output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end
with a semicolon. The reason that the other lines in the program do not end in a semicolon
is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program

Perhaps no other concept is more fundamental to a programming language than that of a
variable. As you may know, a variable is a named memory location that may be assigned a
value by your program. The value of a variable may be changed during the execution of the
program. The next program shows how a variable is declared and how it is assigned a value.
The program also illustrates some new aspects of console output. As the comments

at the top of the program state, you should call this file Example2.java.

/*
Here is another short example.
Call this file "Example2.java".
*/

class Example2 {
public static void main(String args [])
int num; // this declares a variable called num
num = 100; // this assigns num the value 100
System.out.println("This is num: " + num);

num = num * 2;

System.out.print ("The value of num * 2 is ");

Chapter 2 An Overview of Java

System.out.println (num) ;

}
}

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program
is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires
that variables be declared before they are used.
Following is the general form of a variable declaration:

lype var-name;

Here, type specifies the type of variable being declared, and var-nameis the name of the
variable. If you want to declare more than one variable of the specified type, you may use a
comma-separated list of variable names. Java defines several data types, including integer,
character, and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string "This is num:".

System.out.println("This is num: " + num) ;

In this statement, the plus sign causes the value of num to be appended to the string that
precedes it, and then the resulting string is output. (Actually, num is first converted from an
integer into its string equivalent and then concatenated with the string that precedes it.
This process is described in detail later in this book.) This approach can be generalized.
Using the + operator, you can join together as many items as you want within a single
println() statement.

The next line of code assigns num the value of num times 2. Like most other languages,
Java uses the * operator to indicate multiplication. After this line executes, num will contain
the value 200.

Here are the next two lines in the program:

System.out.print ("The value of num * 2 is ");
System.out.println (num) ;

Several new things are occurring here. First, the built-in method print() is used to display
the string "The value of num * 2 is ". This string is not followed by a newline. This means
that when the next output is generated, it will start on the same line. The print() method is
just like println(), except that it does not output a newline character after each call. Now
look at the call to println(). Notice that num is used by itself. Both print() and println()
can be used to output values of any of Java’s built-in types.

27

28

PART | The Java Language

Two Control Statements

Although Chapter 5 will look closely at control statements, two are briefly introduced here
so that they can be used in example programs in Chapters 3 and 4. They will also help
illustrate an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language. Further, it is
syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if (condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.
If condition is false, then the statement is bypassed. Here is an example:

if (num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is true,
and println() will execute. If num contains a value greater than or equal to 100, then the
println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than
== Equal to

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*

Demonstrate the if.

Call this file "IfSample.java".
*/
class IfSample {
public static void main(String args[]) {

int x, vy;
x = 10;
y = 20;

if(x < y) System.out.println("x is less than y");

X =X * 2;
if(x == y) System.out.println("x now equal to y");

Chapter 2 An Overview of Java 29

X =X * 2;
)

if (x > y) System.out.println("x now greater than y");

// this won't display anything
if (x == y) System.out.println("you won't see this");

The output generated by this program is shown here:

x 1s less than y
x now equal to y
X now greater than y

Notice one other thing in this program. The line
int x, vy;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

As you may know from your previous programming experience, loop statements are an
important part of nearly any programming language. Java is no exception. In fact, as you
will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for (initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop control
variable. If the outcome of that test is true, the for loop continues to iterate. If it is false,
the loop terminates. The iteration expression determines how the loop control variable is
changed each time the loop iterates. Here is a short program that illustrates the for loop:

/*

Demonstrate the for loop.

Call this file "ForTest.java".
*/
class ForTest {
public static void main(String args[])
int x;

for(x = 0; x<10; X = x+1)
System.out.println("This is x: " + x);

}

This program generates the following output:

This is
This is
This is
This is

XXX X
W N H o

30

PART | The Java Language

This is
This is
This is
This is
This is
This is

KoM X XX
W W J o U

In this example, x is the loop control variable. It is initialized to zero in the initialization
portion of the for. At the start of each iteration (including the first one), the conditional
test x < 10 is performed. If the outcome of this test is true, the println() statement is
executed, and then the iteration portion of the loop is executed, which increases x by 1.
This process continues until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

X =X + 1;

The reason is that Java includes a special increment operator which performs this operation
more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The
increment operator increases its operand by one. By use of the increment operator, the
preceding statement can be written like this:

X++;
Thus, the for in the preceding program will usually be written like this:
for(x = 0; x<10; X++)

You might want to try this. As you will see, the loop still runs exactly the same as it did
before.

Java also provides a decrement operator, which is specified as — —. This operator
decreases its operand by one.

Using Blocks of Code

Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a
block of code has been created, it becomes a logical unit that can be used any place that a
single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(x < y) { // begin a block
X = y;
y = 0;

} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to logically
link two or more statements, you do so by creating a block.

Chapter 2 An Overview of Java

Let’s look at another example. The following program uses a block of code as the target
of a for loop.

/*

Demonstrate a block of code.

Call this file "BlockTest.java"
*/
class BlockTest {
public static void main(String args[])
int x, y;

y = 20;

// the target of this loop is a block

for(x = 0; x<10; x++) {
System.out.println("This is x: " + Xx);
System.out.println("This is y: " + v);
y =Y - 2;

}

The output generated by this program is shown here:

This is x: 0
This is y: 20
This is x: 1
This is y: 18
This is x: 2
This is y: 16
This is x: 3
This is y: 14
This is x: 4
This is y: 12
This is x: 5
This is y: 10
This is x: 6
This is y: 8
This is x: 7
This is y: 6
This is x: 8
This is y: 4
This is x: 9
This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

32 PARTI The Java Language

Lexical Issues

Now that you have seen several short Java programes, it is time to more formally describe the
atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,
comments, operators, separators, and keywords. The operators are described in the next
chapter. The others are described next.

Whitespace

Java is a free-form language. This means that you do not need to follow any special
indentation rules. For instance, the Example program could have been written all on one
line or in any other strange way you felt like typing it, as long as there was at least one
whitespace character between each token that was not already delineated by an operator
or separator. In Java, whitespace is a space, tab, or newline.

Identifiers

Identifiers are used to name things, such as classes, variables, and methods. An identifier
may be any descriptive sequence of uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters. (The dollar-sign character is not intended for
general use.) They must not begin with a number, lest they be confused with a numeric
literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some
examples of valid identifiers are

| AvgTemp | count | a4 | $test this_is_ok

Invalid identifier names include these:

| 2count | high-temp | Not/ok |

NOTE Beginning with JDK 8, the use of an underscore by itself as an identifier is not recommended.

Literals

A constant value in Java is created by using a lieral representation of it. For example, here
are some literals:

| 100 | 986 X’ “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the third
is a character constant, and the last is a string. A literal can be used anywhere a value of its
type is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have already seen
two: single-line and multiline. The third type is called a documentation comment. This type
of comment is used to produce an HTML file that documents your program. The

Chapter 2 An Overview of Java

documentation comment begins with a /** and ends with a */. Documentation comments
are explained in the Appendix.

Separators

In Java, there are a few characters that are used as separators. The most commonly used

separator in Java is the semicolon. As you have seen, it is used to terminate statements. The

separators are shown in the following table:

33

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and
invocation. Also used for defining precedence in expressions,
containing expressions in control statements, and surrounding
cast types.

{} Braces Used to contain the values of automatically initialized arrays.
Also used to define a block of code, for classes, methods, and
local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array
values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also
used to chain statements together inside a for statement.

Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.
Colons Used to create a method or constructor reference.
(Added by JDK 8.)

The Java Keywords

There are 50 keywords currently defined in the Java language (see Table 2-1). These
keywords, combined with the syntax of the operators and separators, form the foundation

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while
Table 2-1 Java Keywords

34

PART | The Java Language

of the Java language. These keywords cannot be used as identifiers. Thus, they cannot be
used as names for a variable, class, or method.

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java defines only the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes, and
so on.

The Java Class Libraries

The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are available through System.out.
System is a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/O, string handling, networking,
and graphics. The standard classes also provide support for a graphical user interface
(GUI). Thus, Java as a totality is a combination of the Java language itself, plus its standard
classes. As you will see, the class libraries provide much of the functionality that comes with
Java. Indeed, part of becoming a Java programmer is learning to use the standard Java
classes. Throughout Part I of this book, various elements of the standard library classes and
methods are described as needed. In Part I, several class libraries are described in detail.

CHAPTER

Data Types, Variables,
and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables, and
arrays. As with all modern programming languages, Java supports several types of data. You
may use these types to declare variables and to create arrays. As you will see, Java’s approach
to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language

It is important to state at the outset that Java is a strongly typed language. Indeed, part

of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility. There are no automatic coercions or conversions of conflicting types as
in some languages. The Java compiler checks all expressions and parameters to ensure that
the types are compatible. Any type mismatches are errors that must be corrected before the
compiler will finish compiling the class.

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and
boolean. The primitive types are also commonly referred to as simple types, and both
terms will be used in this book. These can be put in four groups:

¢ Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

¢ Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

¢ Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

¢ Boolean This group includes boolean, which is a special type for representing
true/false values.

35

36

PART | The Java Language

You can use these types as-is, or to construct arrays or your own class types. Thus, they
form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the primitive types are not. They are analogous to
the simple types found in most other non—object-oriented languages. The reason for this
is efficiency. Making the primitive types into objects would have degraded performance
too much.

The primitive types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the dictates
of the execution environment. However, Java is different. Because of Java’s portability
requirement, all data types have a strictly defined range. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are guaranteed
to run without porting on any machine architecture. While strictly specifying the size of an
integer may cause a small loss of performance in some environments, it is necessary in
order to achieve portability.

Let’s look at each type of data in turn.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages support both signed and unsigned integers. However, Java’s designers
felt that unsigned integers were unnecessary. Specifically, they felt that the concept of
unsigned was used mostly to specify the behavior of the high-order bit, which defines the sign
of an integer value. As you will see in Chapter 4, Java manages the meaning of the high-
order bit differently, by adding a special “unsigned right shift” operator. Thus, the need for
an unsigned integer type was eliminated.

The width of an integer type should not be thought of as the amount of storage it
consumes, but rather as the behavior it defines for variables and expressions of that type.
The Java run-time environment is free to use whatever size it wants, as long as the types
behave as you declared them. The width and ranges of these integer types vary widely, as
shown in this table:

Name Width Range

long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,307
int 32 —2,147,483,648 to 2,147,483,647

short 16 -32,768 to 32,767

byte 8 -128 to 127

Let’s look at each type of integer.

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from -128 to
127. Variables of type byte are especially useful when you’re working with a stream of data
from a network or file. They are also useful when you’re working with raw binary data that
may not be directly compatible with Java’s other built-in types.

Chapter 3 Data Types, Variables, and Arrays 37

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

short

short is a signed 16-bit type. It has a range from -32,768 to 32,767. It is probably the least-
used Java type. Here are some examples of short variable declarations:

short s;
short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range
from -2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Although you might think that
using a byte or short would be more efficient than using an int in situations in which the
larger range of an int is not needed, this may not be the case. The reason is that when byte
and short values are used in an expression, they are promoted to int when the expression is

evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the
best choice when an integer is needed.

long

long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful
when big, whole numbers are needed. For example, here is a program that computes the
number of miles that light will travel in a specified number of days:

// Compute distance light travels using long variables.
class Light {
public static void main(String args[])
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here

seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute distance
System.out.print ("In " + days);

System.out.print (" days light will travel about ");
System.out.println(distance + " miles.");

38 PARTI The Java Language

This program generates the following output:
In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or
transcendentals such as sine and cosine, result in a value whose precision requires a floating-
point type. Java implements the standard (IEEE-754) set of floating-point types and
operators. There are two kinds of floating-point types, float and double, which represent
single- and double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range
double 64 4.9e-324 to 1.8e+308
float 32 1.4e-045 to 3.4e+038

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is
faster on some processors and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small. Variables of type float are
useful when you need a fractional component, but don’t require a large degree of precision.
For example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have been
optimized for high-speed mathematical calculations. All transcendental math functions,
such as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy
over many iterative calculations, or are manipulating large-valued numbers, double is the
best choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area
public static void main(String argsl[]) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately

Chapter 3 Data Types, Variables, and Arrays 39

a=pi*r * r; // compute area

System.out.println("Area of circle is " + a);

}
}

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This
is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a
fully international character set that can represent all of the characters found in all human
languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic,
Hebrew, Katakana, Hangul, and many more. At the time of Java's creation, Unicode required
16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no
negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as
always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is
designed to allow programs to be written for worldwide use, it makes sense that it would use
Unicode to represent characters. Of course, the use of Unicode is somewhat inefficient for
languages such as English, German, Spanish, or French, whose characters can easily be
contained within 8 bits. But such is the price that must be paid for global portability.

NOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
public static void main(String args[])
char chl, ch2;

chl 88; // code for X
ch2 = 'Y';

System.out.print ("chl and ch2: ");
System.out.println(chl + " " + ch2);

}
}

This program displays the following output:

chl and ch2: X Y

Notice that chl is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127
values in the Unicode character set. For this reason, all the “old tricks” that you may have
used with characters in other languages will work in Java, too.

http://www.unicode.org

40

PART | The Java Language

Although char is designed to hold Unicode characters, it can also be used as an integer
type on which you can perform arithmetic operations. For example, you can add two
characters together, or increment the value of a character variable. Consider the following
program:

// char variables behave like integers.
class CharDemo2 {
public static void main(String argsl[]) {
char chil;

chl = 'X';
System.out.println("chl contains " + chl);

chl++; // increment chl
System.out.println("chl is now " + chl);

}
}

The output generated by this program is shown here:

chl contains X
chl is now Y

In the program, chl is first given the value X. Next, chl is incremented. This results in chl
containing Y, the next character in the ASCII (and Unicode) sequence.

NOTE In the formal specification for Java, char is referred to as an integral type, which means that it is
in the same general category as int, short, long, and byte. However, because its principal use is for
representing Unicode characters, char is commonly considered to be in a category of its own.

Booleans

Java has a primitive type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, as in the
case of a < b. boolean is also the type required by the conditional expressions that govern the
control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest ({
public static void main(String argsl[]) {
boolean b;

b = false;
System.out.println("b is " + b);
b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement
if (b) System.out.println("This is executed.");

b = false;

Chapter 3 Data Types, Variables, and Arrays 41

if (b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

}
}

The output generated by this program is shown here:

b is false

b is true

This is executed.
10 > 9 1is true

There are three interesting things to notice about this program. First, as you can see,
when a boolean value is output by println(), "true" or "false" is displayed. Second, the value
of a boolean variable is sufficient, by itself, to control the if statement. There is no need to
write an if statement like this:

if (b == true) ..

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10>9 displays the value "true." Further, the extra set of parentheses around 10>9
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals

Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally
described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,
meaning they are describing a base 10 number. Two other bases that can be used in integer
literals are octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java by a
leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly
valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7
range. A more common base for numbers used by programmers is hexadecimal, which
matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a
hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is
0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is
strongly typed, you might be wondering how it is possible to assign an integer literal to one
of Java’s other integer types, such as byte or long, without causing a type mismatch error.
Fortunately, such situations are easily handled. When a literal value is assigned to a byte or
short variable, no error is generated if the literal value is within the range of the target type.
An integer literal can always be assigned to a long variable. However, to specify a long
literal, you will need to explicitly tell the compiler that the literal value is of type long. You
do this by appending an upper- or lowercase L to the literal. For example, Ox7{fffff{FffL

42

PART | The Java Language

or 9223372036854775807L is the largest long. An integer can also be assigned to a char as
long as it is within range.

Beginning with JDK 7, you can also specify integer literals using binary. To do so, prefix
the value with Ob or 0B. For example, this specifies the decimal value 10 using a binary
literal:

int x = 0b1010;

Among other uses, the addition of binary literals makes it easier to enter values used as
bitmasks. In such a case, the decimal (or hexadecimal) representation of the value does not
visually convey its meaning relative to its use. The binary literal does.

Also beginning with JDK 7, you can embed one or more underscores in an integer
literal. Doing so makes it easier to read large integer literals. When the literal is compiled,
the underscores are discarded. For example, given

int x = 123 456 789;

the value given to x will be 123,456,789. The underscores will be ignored. Underscores can
only be used to separate digits. They cannot come at the beginning or the end of a literal. It
is, however, permissible for more than one underscore to be used between two digits. For
example, this is valid:

int x = 123 456 789;

The use of underscores in an integer literal is especially useful when encoding such
things as telephone numbers, customer ID numbers, part numbers, and so on. They are
also useful for providing visual groupings when specifying binary literals. For example,
binary values are often visually grouped in four-digits units, as shown here:

int x = 0b1101_0101 0001 1010;

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be
expressed in either standard or scientific notation. Standard notation consists of a whole
number component followed by a decimal point followed by a fractional component. For
example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point numbers.
Scientific notation uses a standard-notation, floating-point number plus a suffix that specifies
a power of 10 by which the number is to be multiplied. The exponent is indicated by an E
or efollowed by a decimal number, which can be positive or negative. Examples include
6.022E23, 314159E-05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an For fto the constant. You can also explicitly specify a double literal by
appending a D or d. Doing so is, of course, redundant. The default double type consumes
64 bits of storage, while the smaller float type requires only 32 bits.

Hexadecimal floating-point literals are also supported, but they are rarely used. They
must be in a form similar to scientific notation, but a P or p, rather than an E or e, is used.
For example, 0x12.2P2 is a valid floating-point literal. The value following the P, called the

Chapter 3 Data Types, Variables, and Arrays 43

binary exponent, indicates the power-of-two by which the number is multiplied. Therefore,
0x12.2P2 represents 72.5.

Beginning with JDK 7, you can embed one or more underscores in a floating-point
literal. This feature works the same as it does for integer literals, which were just described.
Its purpose is to make it easier to read large floating-point literals. When the literal is
compiled, the underscores are discarded. For example, given

double num = 9 423 497 862.0;

the value given to num will be 9,423,497,862.0. The underscores will be ignored. As is the
case with integer literals, underscores can only be used to separate digits. They cannot
come at the beginning or the end of a literal. It is, however, permissible for more than one
underscore to be used between two digits. It is also permissible to use underscores in the
fractional portion of the number. For example,

double num = 9 423 497.1 0 9;

is legal. In this case, the fractional part is .109.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can have,
true and false. The values of true and false do not convert into any numerical representation.
The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, the
Boolean literals can only be assigned to variables declared as boolean or used in expressions
with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that
can be converted into integers and manipulated with the integer operators, such as the
addition and subtraction operators. A literal character is represented inside a pair of single
quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as
'd,'7, and '@'. For characters that are impossible to enter directly, there are several escape
sequences that allow you to enter the character you need, such as "\'" for the single-quote
character itself and "\n' for the newline character. There is also a mechanism for directly
entering the value of a character in octal or hexadecimal. For octal notation, use the
backslash followed by the three-digit number. For example, "\I41' is the letter 'a'. For
hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For example,
"\u0061"is the ISO-Latin-1 'a’ because the top byte is zero. \ua432' is a Japanese Katakana
character. Table 3-1 shows the character escape sequences.

String Literals

String literals in Java are specified like they are in most other languages—by enclosing a
sequence of characters between a pair of double quotes. Examples of string literals are

44

PART | The Java Language

Escape Sequence Description

\ddd Octal character (ddd)

\UXXXX Hexadecimal Unicode character (xxxx)
\ Single quote

\' Double quote

N\ Backslash

\r Carriage return

\n New line (also known as line feed)
\f Form feed

\t Tab

\b Backspace

Table 3-1 Character Escape Sequences

"Hello World"
"two\nlines"
"\'"This is in quotes\""

The escape sequences and octal/hexadecimal notations that were defined for character
literals work the same way inside of string literals. One important thing to note about Java
strings is that they must begin and end on the same line. There is no line-continuation
escape sequence as there is in some other languages.

NOTE As you may know, in some other languages, including C/C++, strings are implemented as arrays of
characters. However, this is not the case in Java. Strings are actually object types. As you will see later
in this book, because Java implements strings as objects, Java includes extensive string-handling
capabilities that are both powerful and easy to use.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have
a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value [, identifier [= value] ...1;

Here, typeis one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep in
mind that the initialization expression must result in a value of the same (or compatible)

Chapter 3 Data Types, Variables, and Arrays 45

type as that specified for the variable. To declare more than one variable of the specified type,
use a comma-separated list.

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, £ = 5; // declares three more ints, initializing
// d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates
their type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows
variables to be initialized dynamically, using any expression valid at the time the variable
is declared.

For example, here is a short program that computes the length of the hypotenuse of a
right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit ({
public static void main(String args[])
double a = 3.0, b = 4.0;

// ¢ is dynamically initialized
double ¢ = Math.sgrt(a * a + b * b);

System.out.println ("Hypotenuse is " + c¢);

}
}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized
by constants. However, c is initialized dynamically to the length of the hypotenuse (using
the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(),
which is a member of the Math class, to compute the square root of its argument. The key
point here is that the initialization expression may use any element valid at the time of the
initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in Chapter 2,

a block is begun with an opening curly brace and ended by a closing curly brace. A block
defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope
determines what objects are visible to other parts of your program. It also determines the
lifetime of those objects.

46

PART | The Java Language

Many other computer languages define two general categories of scopes: global and
local. However, these traditional scopes do not fit well with Java’s strict, object-oriented
model. While it is possible to create what amounts to being a global scope, it is by far the
exception, not the rule. In Java, the two major scopes are those defined by a class and those
defined by a method. Even this distinction is somewhat artificial. However, since the class
scope has several unique properties and attributes that do not apply to the scope defined
by a method, this distinction makes some sense. Because of the differences, a discussion of
class scope (and variables declared within it) is deferred until Chapter 6, when classes are
described. For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. Although this
book will look more closely at parameters in Chapter 6, for the sake of this discussion, they
work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible)
to code that is defined outside that scope. Thus, when you declare a variable within a
scope, you are localizing that variable and protecting it from unauthorized access and/or
modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner scope.
This means that objects declared in the outer scope will be visible to code within the inner
scope. However, the reverse is not true. Objects declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
public static void main(String argsl[]) {
int x; // known to all code within main

x = 10;
if(x == 10) { // start new scope
int y = 20; // known only to this block

// x and y both known here.
System.out.println("x and y: " + x + " " + y);
X =y *2;

}

// y = 100; // Error! y not known here

// x is still known here.
System.out.println("x is " + x);

}
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is only visible to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol,
a compile-time error will occur, because y is not visible outside of its block. Within the if
block, x can be used because code within a block (that is, a nested scope) has access to
variables declared by an enclosing scope.

Chapter 3 Data Types, Variables, and Arrays 47

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the
code within that method. Conversely, if you declare a variable at the end of a block, it is
effectively useless, because no code will have access to it. For example, this fragment is
invalid because count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider the next
program:

// Demonstrate lifetime of a variable.
class LifeTime {
public static void main(String args[])

int x;

for(x = 0; x < 3; x++) {
int v = -1; // vy is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}
}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is reinitialized to —1 each time the inner for loop is entered. Even though
it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have
the same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr ({
public static void main(String args[]) {
int bar = 1;

48

PART | The Java Language

{ // creates a new scope
int bar = 2; // Compile-time error - bar already defined!
!

}
}

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common
to assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to
assign an int value to a long variable. However, not all types are compatible, and thus, not

all type conversions are implicitly allowed. For instance, there is no automatic conversion
defined from double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit conversion
between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

¢ The two types are compatible.

e The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, there are no automatic conversions from the
numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a
literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion will not
be performed automatically, because a byte is smaller than an int. This kind of conversion
is sometimes called a narrowing conversion, since you are explicitly making the value narrower
so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

Chapter 3 Data Types, Variables, and Arrays 49

Here, target-type specifies the desired type to convert the specified value to. For example, the
following fragment casts an int to a byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;

byte b;

Y

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As you know, integers do not have fractional components. Thus,
when a floating-point value is assigned to an integer type, the fractional component is lost.
For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 will have been truncated. Of course, if the size of the whole number component is
too large to fit into the target integer type, then that value will be reduced modulo the
target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {
public static void main(String args[])
byte b;
int 1 = 257;
double d = 323.142;

System.out .println("\nConversion of int to byte.");
b = (byte) 1i;
System.out.println("i and b " + 1 + " " + b);

System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and 1 " + d + " " + 1i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;
System.out.println("d and b " + d + " " + b);

This program generates the following output:

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the
remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case. When

50

PART | The Java Language

the d is converted to an int, its fractional component is lost. When d is converted to a byte, its
fractional component is lost, and the value is reduced modulo 256, which in this case is 67.

Automatic Type Promotion in Expressions

In addition to assignments, there is another place where certain type conversions may
occur: in expressions. To see why, consider the following. In an expression, the precision
required of an intermediate value will sometimes exceed the range of either operand. For
example, examine the following expression:

byte a = 40;
byte b 50;
byte ¢ 100;
int d = a * b / ¢;

The result of the intermediate term a * b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression
a*b is performed using integers—not bytes. Thus, 2,000, the result of the intermediate
expression, 50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time
errors. For example, this seemingly correct code causes a problem:

byte b = 50;
b =Db * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte
variable. However, because the operands were automatically promoted to int when the
expression was evaluated, the result has also been promoted to int. Thus, the result of the
expression is now of type int, which cannot be assigned to a byte without the use of a cast.
This is true even if, as in this particular case, the value being assigned would still fit in the
target type.

In cases where you understand the consequences of overflow, you should use an explicit
cast, such as

byte b = 50;
b = (byte) (b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows: First,
all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands are double, the result is double.

The following program demonstrates how each value in the expression gets promoted
to match the second argument to each binary operator:

Chapter 3 Data Types, Variables, and Arrays 51

class Promote {
public static void main(String args[])
byte b = 42;
char ¢ = 'a';
short s = 1024;
int i = 50000;
float £ = 5.67%f;

double d = .1234;

double result = (f * b) + (i / ¢c) - (d * s);
System.out.println((f * b) + " + " + (1 / c) + " - " + (d * 8));
System.out.println("result = " + result);

Let’s look closely at the type promotions that occur in this line from the program:

double result = (f * b) + (i / ¢) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i/c, ¢ is promoted to int, and the result is of type int.
Then, in d * s, the value of s is promoted to double, and the type of the subexpression is
double. Finally, these three intermediate values, float, int, and double, are considered. The
outcome of float plus an int is a float. Then the resultant float minus the last double is
promoted to double, which is the type for the final result of the expression.

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an
array is accessed by its index. Arrays offer a convenient means of grouping related
information.

NOTE If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in those
languages.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one-dimensional
array declaration is

lype var-namel 1;

Here, type declares the element type (also called the base type) of the array. The element type
determines the data type of each element that comprises the array. Thus, the element
type for the array determines what type of data the array will hold. For example, the
following declares an array named month_days with the type “array of int™

int month daysI];

52

PART | The Java Language

Although this declaration establishes the fact that month_days is an array variable, no
array actually exists. To link month_days with an actual, physical array of integers, you must
allocate one using new and assign it to month_days. new is a special operator that allocates
memory.

You will look more closely at new in a later chapter, but you need to use it now to
allocate memory for arrays. The general form of new as it applies to one-dimensional
arrays appears as follows:

array-var = new type [sizel;

Here, type specifies the type of data being allocated, size specifies the number of elements in
the array, and array-varis the array variable that is linked to the array. That is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The elements
in the array allocated by new will automatically be initialized to zero (for numeric types), false
(for boolean), or null (for reference types, which are described in a later chapter). This
example allocates a 12-element array of integers and links them to month_days:

month days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable
of the desired array type. Second, you must allocate the memory that will hold the array,
using new, and assign it to the array variable. Thus, in Java all arrays are dynamically
allocated. If the concept of dynamic allocation is unfamiliar to you, don’t worry. It will
be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days:

month days[1] = 28;
The next line displays the value stored at index 3:
System.out.println (month daysI[3]);

Putting together all the pieces, here is a program that creates an array of the number of
days in each month:

// Demonstrate a one-dimensional array.
class Array {
public static void main(String argsl[]) {
int month daysl];
month days = new int[12];

month days[0] = 31;
month days[1] = 28;
month days([2] = 31;
month days[3] = 30;
month days[4] = 31;

month_days[5] = 30;

Chapter 3 Data Types, Variables, and Arrays 53

month days[6] = 31;
month days[7] = 31;
month days[8] = 30;
month days[9] = 31;
month days[10] = 30;
month days[11] = 31;
System.out.println("April has " + month days[3] + " days.");
}
1

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the
array itself, as shown here:

int month days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.

Arrays can be initialized when they are declared. The process is much the same as that
used to initialize the simple types. An array initializeris a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The
array will automatically be created large enough to hold the number of elements you specify
in the array initializer. There is no need to use new. For example, to store the number of
days in each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
public static void main(String argsl[]) {

int month daysl[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };
System.out.println("April has " + month days[3] + " days.");
}
}

When you run this program, you see the same output as that generated by the previous
version.

Java strictly checks to make sure you do not accidentally try to store or reference values
outside of the range of the array. The Java run-time system will check to be sure that all
array indexes are in the correct range. For example, the run-time system will check the
value of each index into month_days to make sure that it is between 0 and 11 inclusive. If
you try to access elements outside the range of the array (negative numbers or numbers
greater than the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a
set of numbers.

// Average an array of values.
class Average {
public static void main(String args[])
double nums [] {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int 1i;

54

PART | The Java Language

for(i=0; 1i<5; i++)
result = result + nums[i];
System.out.println ("Average is " + result / 5);

}
}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look
and act like regular multidimensional arrays. However, as you will see, there are a couple
of subtle differences. To declare a multidimensional array variable, specify each additional
index using another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD:

int twoD[] [] = new int[4] [5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is implemented as
an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String argsl[]) {
int twoD[] []= new int[4] [5];
int 1, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD[i] [J] = k;
k++;

}

for (i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print (twoD[1] [§] + " ");
System.out.println() ;

}
}
}
This program generates the following output:
01234
56 789

10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions

Chapter 3 Data Types, Variables, and Arrays 55

Right index determines column.

N

[o]fo] | [o][x] |[o](2] | [o][s]|[o](4]

Leftindex EV|CIN{EN(EN) E|EATIENEX]{EN|EY

determines
TOW.

[210o] | (2][a] |[2](2] | [2][s]| (2] L4

[s10o]| (1] |[s102] | (3] [s1| (3] L4l

Given:inttwoD [] [] = new int [4] [5];

Figure 3-1 A conceptual view of a 4 by 5, two-dimensional array

separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[] [] = new int[4] [];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in
this situation, there may be in others. For example, when you allocate dimensions manually,
you do not need to allocate the same number of elements for each dimension. As stated
earlier, since multidimensional arrays are actually arrays of arrays, the length of each array
is under your control. For example, the following program creates a two-dimensional array
in which the sizes of the second dimension are unequal:

// Manually allocate differing size second dimensions.
class TwoDAgain {
public static void main(String argsl[]) {

int twoD[] [] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int([3];

twoD[3] = new int[4];
int 1, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<i+l; Jj++) {
twoD[1] [§] = k;
k++;

56

PART | The Java Language

}

for(i=0; i<4; i++)
for(3=0; j<i+l; J++)
System.out.print (twoD[1] [§] + "™ ");
System.out .println() ;

}
}
}

This program generates the following output:

o W H o
~N N

5
8 9

The array created by this program looks like this:

[o][e]
EV|CIENEY
[2]o]| 2100 |[21[2]
[s10o] | 31 0] 31 [2] | []L5]

The use of uneven (or irregular) multidimensional arrays may not be appropriate
for many applications, because it runs contrary to what people expect to find when a
multidimensional array is encountered. However, irregular arrays can be used effectively in
some situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then an irregular
array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each
dimension’s initializer within its own set of curly braces. The following program creates
a matrix where each element contains the product of the row and column indexes. Also
notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
public static void main(String argsl[]) {
double m[] [] = {
{ o*xo0, 1*0, 2%0, 3*0 },
{ o*1, 1*1, 2*1, 3*1 },
{ 0*2, 1*2, 2%2, 3%2 },
{ 0%3, 1*3, 2%3, 3%3 }

Chapter 3 Data Types, Variables, and Arrays

}i

int i, 9;

for (i=0; i<4; i++) {
for (j=0; j<4; Jj++)
System.out.print (m[i] [J] + " ");
System.out.println() ;
1
}
}

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.

Let’s look at one more example that uses a multidimensional array. The following
program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with
the product of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
public static void main(String args[])
int threeD[] [] [] = new int[3] [4] [5];
int i, j, k;

for (i=0; 1<3; i++)
for(j=0; j<4; j++)
for (k=0; k<5; k++)
threeD[1] [j]1 [k] = 1 * j * k;

for (i=0; 1<3; i++) {
for(j=0; j<4; j++) {
for (k=0; k<5; k++)
System.out.print (threeD[i] [j] [k] + " ");
System.out.println() ;
}
System.out.println() ;
1
}
1

This program generates the following output:

o O O o
o O o o
o O O o
o O o o
o O O o

57

58 PARTI The Java Language

o O o o
w N - o
o N O
0 o W o
= oo & O

00
4 6 8

8 12 16
12 18 24

o O O o
o BN O
o

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:
typel 1 varname;

Here, the square brackets follow the type specifier, and not the name of the array variable.
For example, the following two declarations are equivalent:

int al[] = new int([3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twodl[] [] = new char([3] [4];
char[] [] twod2 new char[3] [4];

This alternative declaration form offers convenience when declaring several arrays at the
same time. For example,

int [] nums, nums2, nums3; // create three arrays
creates three array variables of type int. It is the same as writing
int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for
a method. Both forms are used in this book.

A Few Words About Strings

As you may have noticed, in the preceding discussion of data types and arrays there has
been no mention of strings or a string data type. This is not because Java does not support
such a type—it does. It is just that Java’s string type, called String, is not a primitive type.
Nor is it simply an array of characters. Rather, String defines an object, and a full description
of it requires an understanding of several object-related features. As such, it will be covered
later in this book, after objects are described. However, so that you can use simple strings in
example programs, the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.
A quoted string constant can be assigned to a String variable. A variable of type String can

Chapter 3 Data Types, Variables, and Arrays 59

be assigned to another variable of type String. You can use an object of type String as an
argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str) ;

Here, str is an object of type String. It is assigned the string "this is a test". This string is
displayed by the println() statement.

As you will see later, String objects have many special features and attributes that make
them quite powerful and easy to use. However, for the next few chapters, you will be using
them only in their simplest form.

A Note to C/C++ Programmers About Pointers

If you are an experienced C/C++ programmer, then you know that these languages provide
support for pointers. However, no mention of pointers has been made in this chapter. The
reason for this is simple: Java does not support or allow pointers. (Or more properly, Java
does not support pointers that can be accessed and/or modified by the programmer.) Java
cannot allow pointers, because doing so would allow Java programs to breach the firewall
between the Java execution environment and the host computer. (Remember, a pointer can
be given any address in memory—even addresses that might be outside the Java run-time
system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss
is a significant disadvantage to Java. However, this is not true. Java is designed in such a way
that as long as you stay within the confines of the execution environment, you will never
need to use a pointer, nor would there be any benefit in using one.

This page has been intentionally left blank

CHAPTER

Operators

Java provides a rich operator environment. Most of its operators can be divided into the
following four groups: arithmetic, bitwise, relational, and logical. Java also defines some
additional operators that handle certain special situations. This chapter describes all of
Java’s operators except for the type comparison operator instanceof, which is examined
in Chapter 13 and the new arrow operator (—>), which is described in Chapter 15.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition (also unary plus)

- Subtraction (also unary minus)
* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

—= Subtraction assignment

= Multiplication assignment

/= Division assignment
%= Modulus assignment
-— Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.

61

62 PARTI The Java Language

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and division—all
behave as you would expect for all numeric types. The unary minus operator negates its
single operand. The unary plus operator simply returns the value of its operand. Remember
that when the division operator is applied to an integer type, there will be no fractional
component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also
illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath ({
public static void main(String args[]) {
// arithmetic using integers
System.out .println("Integer Arithmetic");
int a =1 + 1;

int
int
int
int

b =a

c
d

e =

b
c

* 3
/ 4;
~oas

I

_d;

System.
System.
System.
System.
System.

out
out
out
out
out

.println("a
.println("b
.println("c
.println("d
.println("e

+ o+ o+ o+ o+
(O e Yo o]

// arithmetic using doubles

System.out.println("\nFloating Point Arithmetic");
double da = 1 + 1;

double db = da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;
System.out.println("da " + da);
System.out .println("db " + db);
System.out .println("dc "+ dc);
System.out.println("dd "+ dd);
System.out.println("de "+ de);

}
}

When you run this program, you will see the following output:

Integer Arithmetic

(O T e NN e]
I
i

Floating Point Arithmetic

da =
db =

2.0
6.0

Chapter 4 Operators

dc = 1.5
dd = -0.5
de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be
applied to floating-point types as well as integer types. The following example program
demonstrates the %:

// Demonstrate the % operator.
class Modulus ({
public static void main(String args[]) {
int x = 42;
double y = 42.25;

o°

System.out.println("x mod 10 "
System.out.println("y mod 10

R
o°
B

}
}

When you run this program, you will get the following output:

x mod 10 = 2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with
an assignment. As you probably know, statements like the following are quite common in
programming:

This version uses the += compound assignment operator. Both statements perform the same
action: they increase the value of a by 4.
Here is another example,

In this case, the %= obtains the remainder of a /2 and puts that result back into a.
There are compound assignment operators for all of the arithmetic, binary operators.
Thus, any statement of the form

var = var op expression;

63

64

PART | The Java Language

can be rewritten as
var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit
of typing, because they are “shorthand” for their equivalent long forms. Second, in some
cases they are more efficient than are their equivalent long forms. For these reasons, you
will often see the compound assignment operators used in professionally written Java
programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
public static void main(String args[]) {
int a = 1;
int b 2;
int ¢ 3;

+
1]

7

7

N oo
+
([T
[T

* b;

o .
c %= 6;

System.out.println("a
System.out.println("b
System.out.println("c

="+ a);

"+ Db);
"+ o)

The output of this program is shown here:

a =6
b =28
c =3

Increment and Decrement

The ++ and the — — are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some special
properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator
decreases its operand by one. For example, this statement:

X =X + 1;
can be rewritten like this by use of the increment operator:
X4+ ;

Similarly, this statement:

Chapter 4 Operators 65

is equivalent to
X--;

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand. In the
foregoing examples, there is no difference between the prefix and postfix forms. However,
when the increment and/or decrement operators are part of a larger expression, then a
subtle, yet powerful, difference between these two forms appears. In the prefix form,
the operand is incremented or decremented before the value is obtained for use in the
expression. In postfix form, the previous value is obtained for use in the expression, and
then the operand is modified. For example:

X = 42;
Y = ++X;

In this case, y is set to 43 as you would expect, because the increment occurs before x is
assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

X =X + 1;
Y = X
However, when written like this,
X = 42;
Y = X++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.
Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two
statements:

Yy = Xi
X =X + 1;

The following program demonstrates the increment operator.
// Demonstrate ++.

class IncDec ({
public static void main(String args[]) {

int a = 1;

int b = 2;

int c;

int d;

c = ++b;

d = a++;

C++;

System.out.println("a = " + a);
System.out.println("b = " + Db);
System.out.println("c = " + c);
System.out.println("d = " + d);

66

PART | The Java Language

The output of this program follows:

[N o NN o)
o
o W N

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types: long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are
summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

A= Bitwise exclusive OR assignment
>>= Shift right assignment

>>>= Shift right zero fill assignment
<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer: it is important to
understand what effects such manipulations may have on a value. Specifically, it is useful
to know how Java stores integer values and how it represents negative numbers. So, before
continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For
example, the byte value for 42 in binary is 00101010, where each position represents a
power of two, starting with 2° at the rightmost bit. The next bit position to the left would be
2!, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits
set at positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 2' + 2° + 25,
which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can
represent negative values as well as positive ones. Java uses an encoding known as two’s
complement, which means that negative numbers are represented by inverting (changing 1’s
to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, —42
is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then
adding 1, which results in 11010110, or —42. To decode a negative number, first invert all

Chapter 4 Operators 67

of the bits, then add 1. For example, —42, or 11010110 inverted, yields 00101001, or 41, so
when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy to
see when you consider the issue of zero crossing. Assuming a byte value, zero is represented
by 00000000. In one’s complement, simply inverting all of the bits creates 11111111, which
creates negative zero. The trouble is that negative zero is invalid in integer math. This
problem is solved by using two’s complement to represent negative values. When using
two’s complement, 1 is added to the complement, producing 100000000. This produces a 1
bit too far to the left to fit back into the byte value, resulting in the desired behavior, where
—0 is the same as 0, and 11111111 is the encoding for —1. Although we used a byte value in
the preceding example, the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not. To
avoid unpleasant surprises, just remember that the high-order bit determines the sign of an
integer no matter how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, A, and ~. The following table shows the outcome of
each operation. In the discussion that follows, keep in mind that the bitwise operators are
applied to each individual bit within each operand.

A B A|B A&B ANB ~A
0 0 0 0 0 1
1 0 1 0 1 0
0 1 1 0 1 1
1 1 1 1 0 0

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010
becomes
11010101
after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in

all other cases. Here is an example:

00101010 42
&00001111 15

00001010 10

68 PARTI The Java Language

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15

00101111 47
The Bitwise XOR

The XOR operator, A, combines bits such that if exactly one operand is 1, then the result
is 1. Otherwise, the result is zero. The following example shows the effect of the A. This
example also demonstrates a useful attribute of the XOR operation. Notice how the bit
pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second
operand has a 0 bit, the first operand is unchanged. You will find this property useful when
performing some types of bit manipulations.

00101010 42
A 00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {
public static void main(String argsl[]) {
String binary[] = {

"oooo", "ooo1i", "ooO010", "OO11L", "O1lO0O0", "O101", "O1l1O", "O111",
"1000"1 "1001"1 "1010"1 "1011"1 "1100"1 "1101"1 "1110", |lllllll
Vi
int a = 3; // 0 + 2 + 1 or 0011 in binary
int b = 6; // 4 + 2 + 0 or 0110 in binary
int ¢ = a | b;
int d = a & b;
int e = a * b;
int £ = (~a & b)|(a & ~b);
int g = ~a & 0x0f;
System.out.println (" a = " + binarylal);
System.out.println (" b =" + binaryl[b]);
System.out.println (" alb = " + binarylcl);
System.out.println (" a&b = " + binaryl[d]);
System.out.println (" a®b = " + binarylel);
System.out.println("~a&b|a&~b = " + binary[£f]);
System.out.println (" ~a = " + binarylgl);

In this example, a and b have bit patterns that present all four possibilities for two
binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the

Chapter 4 Operators 69

results in ¢ and d. The values assigned to e and f are the same and illustrate how the * works.
The string array named binary holds the human-readable, binary representation of the
numbers 0 through 15. In this example, the array is indexed to show the binary representation
of each result. The array is constructed such that the correct string representation of a
binary value n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in
binary) in order to reduce its value to less than 16, so it can be printed by use of the binary
array. Here is the output from this program:

a = 0011
b = 0110

alb = 0111

a&b = 0010

a®b = 0101
~a&b|a&~b = 0101
~a = 1100

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of
times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the

<< moves all of the bits in the specified value to the left by the number of bit positions
specified by num. For each shift left, the high-order bit is shifted out (and lost), and a zero
is brought in on the right. This means that when a left shift is applied to an int operand,
bits are lost once they are shifted past bit position 31. If the operand is a long, then bits are
lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when an
expression is evaluated. Furthermore, the result of such an expression is also an int. This
means that the outcome of a left shift on a byte or short value will be an int, and the bits
shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte
or short value will be sign-extended when it is promoted to int. Thus, the high-order bits
will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies
that you must discard the high-order bytes of the int result. For example, if you left-shift a
byte value, that value will first be promoted to int and then shifted. This means that you
must discard the top three bytes of the result if what you want is the result of a shifted byte
value. The easiest way to do this is to simply cast the result back into a byte. The following
program demonstrates this concept:

// Left shifting a byte value.
class ByteShift (
public static void main(String args[]) {
byte a = 64, b;
int 1i;

-
I

= a << 2;
(byte) (a << 2);

o
]

70

PART | The Java Language

System.out.println("Original value of a: " + a);
System.out.println("i and b: " + 1 + " " + b);

}
}

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has been
shifted out.

Since each left shift has the effect of doubling the original value, programmers
frequently use this fact as an efficient alternative to multiplying by 2. But you need to watch
out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will become
negative. The following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
public static void main(String argsl[]) {
int 1i;
int num = OxXFFFFFFE;

for (i=0; i<4; i++) {
num = num << 1;
System.out.println (num) ;

}
}
}

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce -32. As you can see, when a 1 bit is shifted into bit 31, the number is
interpreted as negative.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of
times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>
moves all of the bits in the specified value to the right the number of bit positions specified
by num.

Chapter 4 Operators

The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a =a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next
code fragment shifts the value 35 to the right two positions, which causes the two low-order
bits to be lost, resulting again in a being set to 8:

int a = 35;
a =a >> 2; // a contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any
remainder. In some cases, you can take advantage of this for high-performance integer
division by 2.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled
in with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when you shift them right. For example, -8 >> 1 is -4, which,
in binary, is

11111000 -8
>> 1
11111100 -4

It is interesting to note that if you shift —1 right, the result always remains —1, since sign
extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the
right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of
hexadecimal characters.

// Masking sign extension.
class HexByte ({
static public void main(String args[]) ({

char hex[] = {
'0', lll, |2|, |3|’ |4|, |5|, |6|, |7|’
|8|, |9|’ lall |b|’ lcl, |d|’ lell |f|

}i
byte b = (byte) 0xf1l;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

}
}

Al

72 PARTI The Java Language

Here is the output of this program:

b = 0xf1l

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its previous
contents each time a shift occurs. This preserves the sign of the value. However, sometimes
this is undesirable. For example, if you are shifting something that does not represent a
numeric value, you may not want sign extension to take place. This situation is common
when you are working with pixel-based values and graphics. In these cases, you will
generally want to shift a zero into the high-order bit no matter what its initial value was.
This is known as an unsigned shift. To accomplish this, you will use Java’s unsigned, shift-
right operator, >>>, which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to —1, which sets all
32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with
zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 -1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in
expressions. This means that sign-extension occurs and that the shift will take place on a
32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift
on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value
that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift ({
static public void main(String args[]) {

char hex[] = {
‘o', 1+, ‘'2", '3', '4+*, '5', tgr, 70,
‘8'1 |9|, la|, Ib', ‘c'l ldl, le|, Ifl
Vi
byte b = (byte) 0xfl;
byte ¢ = (byte) (b >> 4);
byte d = (byte) (b >>> 4);
byte e = (byte) ((b & 0xff) >> 4);
System.out.println (" b = ox"
+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
System.out.println (" b >> 4 = 0x"
+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
System.out.println (" b >>> 4 = 0ox"

+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

Chapter 4 Operators 73

System.out.println("(b & O0xff) >> 4 = 0x"
+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

The following output of this program shows how the >>> operator appears to do nothing
when dealing with bytes. The variable b is set to an arbitrary negative byte value for this
demonstration. Then c is assigned the byte value of b shifted right by four, which is Oxff
because of the expected sign extension. Then d is assigned the byte value of b unsigned
shifted right by four, which you might have expected to be 0x0f, but is actually Oxff because
of the sign extension that happened when b was promoted to int before the shift. The last
expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted
right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right
operator was not used for d, since the state of the sign bit after the AND was known.

b = 0xf1l

b >> 4 = Oxff

b >>> 4 = 0Oxff

(b & Oxff) >> 4 = 0x0f

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a =a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

The following program creates a few integer variables and then uses compound bitwise
operator assignments to manipulate the variables:

class OpBitEquals
public static void main(String args[])
int a = 1;
int b = 2;
int ¢ = 3;

a |: 4;
b >>= 1;
c <<= 1;
a *= c¢;
System.out.println("a = " + a);
System.out.println("b = " + Db);
System.out.println("c = " + c);

74 PARTI The Java Language

The output of this program is shown here:

a = 3
b=1
c =6

Relational Operators

The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

1= Not equal to

Greater than

Less than
>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop

statements.
Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java

equality is denoted with two equal signs, not one. (Remember: a single equal sign is the
assignment operator.) Only numeric types can be compared using the ordering operators.
That is, only integer, floating-point, and character operands may be compared to see which
is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,
the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean ¢ = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++,
these types of statements are very common:

int done;

Y

if(!done) ... // Valid in C/C++
if (done) ... // but not in Java.

In Java, these statements must be written like this:

if (done == 0)... // This is Java-style.
if (done != 0)...

Chapter 4 Operators

The reason is that Java does not define true and false in the same way as C/C++. In C/
C++, true is any nonzero value and false is zero. In Java, true and false are nonnumeric
values that do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you
must explicitly employ one or more of the relational operators.

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

A Logical XOR (exclusive OR)
[l Short-circuit OR
&& Short-circuit AND

! Logical unary NOT
&= AND assignment

|= OR assignment

N= XOR assignment
== Equal to

I= Not equal to

? Ternary if-then-else

The logical Boolean operators, &, |, and /, operate on boolean values in the same way
that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:
!true == false and !false == true. The following table shows the effect of each logical

operation:
A B A|B A&B AAB 1A
False False False False False True
True False True False True False
False True True False True True
True True True True False False

Here is a program that is almost the same as the BitLogic example shown earlier, but it
operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic {
public static void main(String args[]) {

boolean a = true;
boolean b = false;
boolean ¢ = a | b;
boolean d = a & b;

75

76

PART | The Java Language

boolean e = a * b;

boolean £ = (la & b) | (a & !b);
boolean g = !a;

System.out.println (" a ="+ a);
System.out.println (" b="+Db);
System.out.println (" alb = " + ¢);
System.out.println (" agb = " + d);
System.out.println (" a’b = " + e);
System.out.println("!a&b|a&!b = " + f);
System.out.println (" la =" + g);

After running this program, you will see that the same logical rules apply to boolean
values as they did to bits. As you can see from the following output, the string
representation of a Java boolean value is one of the literal values true or false:

a = true
b = false

alb = true
a&b = false

a’b = true
lagb|a&!b = true
la = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in some other computer
languages. These are secondary versions of the Boolean AND and OR operators, and are
commonly known as short-circuit logical operators. As you can see from the preceding table,
the OR operator results in true when A is true, no matter what B is. Similarly, the AND
operator results in false when A is false, no matter what B is. If you use the || and && forms,
rather than the | and & forms of these operators, Java will not bother to evaluate the right-
hand operand when the outcome of the expression can be determined by the left operand
alone. This is very useful when the right-hand operand depends on the value of the left one
in order to function properly. For example, the following code fragment shows how you
can take advantage of short-circuit logical evaluation to be sure that a division operation
will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time
exception when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when denom is zero.
It is standard practice to use the short-circuit forms of AND and OR in cases involving
Boolean logic, leaving the single-character versions exclusively for bitwise operations.
However, there are exceptions to this rule. For example, consider the following statement:

if (c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether ¢
is equal to 1 or not.

Chapter 4 Operators 77

NOTE The formal specification for Java refers to the short-circuit operators as the conditional-and and
the conditional-or.

The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take a
formal look at it. The assignment operator is the single equal sign, =. The assignment operator
works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. For example, consider this
fragment:

int x, vy, z;
X =y =2z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z =100 is 100, which is then assigned to y, which in turn is assigned to x. Using a
“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-
else statements. This operator is the ?. It can seem somewhat confusing at first, but the ?
can be used very effectively once mastered. The ? has this general form:

expressionl ? expression2 : expression3

Here, expressionl can be any expression that evaluates to a boolean value. If expressionl is
true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required
to return the same (or compatible) type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark
and the colon is evaluated and used as the value of the entire ? expression. If denom does
not equal zero, then the expression afier the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate 2.
class Ternary ({
public static void main(String argsl[]) {
int i, k;

78 PART

}
}

I The Java Language

i = 10;

k =1<07? -1 : 1i; // get absolute
System.out.print ("Absolute value of
System.out.println(i + " is " + k);

i = -10;

k=1<0?-1i: 1i; // get absolute
System.out .print ("Absolute value of
System.out.println(i + " is " + k);

value of 1

")

value of 1

")

The output generated by the program is shown here:

Opera

Table 4-1 shows the order of precedence for Java operators, from highest to lowest.

Absolute value of 10 is 10
Absolute value of -10 is 10

tor Precedence

Operators in the same row are equal in precedence. In binary operations, the order of
evaluation is left to right (except for assignment, which evaluates right to left). Although
they are technically separators, the [], (), and . can also act like operators. In that capacity,
they would have the highest precedence. Also, notice the arrow operator (->). It was added
by JDK 8 and is used in lambda expressions.

Highest
++ (postfix) — — (postfix)
++ (prefix) —— (prefix) ~ ! + (unary) — (unary) (type-cast)
* / %
+ —
>> >>> <<
> >= < <= instanceof
- 1=
&
N
|
&&
|
?:
->
= op=
Lowest
Table 4-1 The Precedence of the Java Operators

Chapter 4 Operators

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often
necessary to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this
expression can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you
will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can
sometimes be used to help clarify the meaning of an expression. For anyone reading your
code, a complicated expression can be difficult to understand. Adding redundant but
clarifying parentheses to complex expressions can help prevent confusion later. For
example, which of the following expressions is easier to read?

al| 4+c>>bs&v7
(a | (((4 +¢c) >>Db) & 7))

One other point: parentheses (redundant or not) do not degrade the performance
of your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

79

This page has been intentionally left blank

CHAPTER

Control Statements

A programming language uses control statements to cause the flow of execution to advance
and branch based on changes to the state of a program. Java’s program control statements
can be put into the following categories: selection, iteration, and jump. Selection statements
allow your program to choose different paths of execution based upon the outcome of an
expression or the state of a variable. Iteration statements enable program execution to
repeat one or more statements (that is, iteration statements form loops). Jump statements
allow your program to execute in a nonlinear fashion. All of Java’s control statements are
examined here.

Java's Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control
the flow of your program’s execution based upon conditions known only during run time.
You will be pleasantly surprised by the power and flexibility contained in these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if statement

is Java’s conditional branch statement. It can be used to route program execution through
two different paths. Here is the general form of the if statement:

if (condition) statementl;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The
else clause is optional.

The if works like this: If the condition is true, then statementl is executed. Otherwise,
statement2 (if it exists) is executed. In no case will both statements be executed. For example,
consider the following:

int a, b;

/] ..

if(a < b) a = 0;
else b = 0;

81

82

PART | The Java Language

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they
both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single boolean
variable, as shown in this code fragment:

boolean dataAvailable;

// ...

if (dataAvailable)
ProcessData() ;

else
waltForMoreData () ;

Remember, only one statement can appear directly after the if or the else. If you want to
include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;

/] ...

if (bytesAvailable > 0) {
ProcessData () ;
bytesAvailable -= n;

} else
waitForMoreData() ;

Here, both statements within the if block will execute if bytesAvailable is greater than zero.

Some programmers find it convenient to include the curly braces when using the if, even
when there is only one statement in each clause. This makes it easy to add another statement
at a later date, and you don’t have to worry about forgetting the braces. In fact, forgetting to
define a block when one is needed is a common cause of errors. For example, consider the
following code fragment:

int bytesAvailable;

/] ...

if (bytesAvailable > 0) {
ProcessDatal() ;
bytesAvailable -= n;

} else
waitForMoreData () ;
bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside the
else clause, because of the indentation level. However, as you recall, whitespace is insignificant
to Java, and there is no way for the compiler to know what was intended. This code will
compile without complaint, but it will behave incorrectly when run. The preceding example
is fixed in the code that follows:

int bytesAvailable;

/] ...

if (bytesAvailable > 0) {
ProcessDatal() ;
bytesAvailable -= n;

} else {

Chapter 5 Control Statements 83

waitForMoreData () ;
bytesAvailable = n;

}
Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. When you nest ifs, the main thing to remember is that an else
statement always refers to the nearest if statement that is within the same block as the else
and that is not already associated with an else. Here is an example:

if (i == 10) {
if(§ < 20) a = b;
if(k > 100) ¢ = d; // this if is
else a = c; // associated with this else

}

else a

d; // this else refers to if (i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in
the same block (even though it is the nearest if without an else). Rather, the final else is
associated with if(i==10). The inner else refers to if(k>100) because it is the closest if within
the same block.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else-
ifladder. It looks like this:

if (condition)
statement,

else if (condition)
statement,

else if (condition)
statement,

else
statement;

The if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest of
the ladder is bypassed. If none of the conditions is true, then the final else statement will be
executed. The final else acts as a default condition; that is, if all other conditional tests fail,
then the last else statement is performed. If there is no final else and all other conditions
are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse {
public static void main(String args[])
int month = 4; // April
String season;

84 PARTI The Java Language

if (month == 12 || month == || month == 2)
season = "Winter";

else if (month == || month == || month == 5)
season = "Spring";

else if (month == || month == || month == 8)
season = "Summer";

else if (month == || month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}
}

Here is the output produced by the program:
April is in the Spring.

You might want to experiment with this program before moving on. As you will find, no
matter what value you give month, one and only one assignment statement within the ladder
will be executed.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression. As
such, it often provides a better alternative than a large series of if-else-if statements. Here is
the general form of a switch statement:

switch (expression) {
case valuel:
// statement sequence
break;
case value2:
// statement sequence
break;

case valueN :
// statement sequence
break;
default:
// default statement sequence

}

For versions of Java prior to JDK 7, expression must be of type byte, short, int, char, or an
enumeration. (Enumerations are described in Chapter 12.) Beginning with JDK 7, expression

Chapter 5 Control Statements 85

can also be of type String. Each value specified in the case statements must be a unique
constant expression (such as a literal value). Duplicate case values are not allowed. The type
of each value must be compatible with the type of expression.

The switch statement works like this: The value of the expression is compared with each of
the values in the case statements. If a match is found, the code sequence following that case
statement is executed. If none of the constants matches the value of the expression, then the
default statement is executed. However, the default statement is optional. If no case matches
and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When a
break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
public static void main(String args[])
for(int 1=0; i<6; 1++)
switch(i) {
case 0:
System.out.println("i is zero.");
break;
case 1:
System.out.println("i is one.");
break;
case 2:
System.out.println("i is two.");
break;
case 3:
System.out.println("i is three.");
break;
default:
System.out.println("i is greater than 3.");

}
}

The output produced by this program is shown here:

is zero.

is one.

is two.

is three.

is greater than 3.
is greater than 3.

(SR SRR SR S S S

As you can see, each time through the loop, the statements associated with the case
constant that matches i are executed. All others are bypassed. After i is greater than 3,
no case statements match, so the default statement is executed.

86

PART | The Java Language

The break statement is optional. If you omit the break, execution will continue on into the

next case.

It is sometimes desirable to have multiple cases without break statements between

them. For example, consider the following program:

// In a
class Mi
public
for (

switch, break statements are optional.
ssingBreak {

static void main(String argsl[]) {

int i=0; 1<12; i++)

switch(i) {

}
}

case 0:
case
case
case
case 4:
System.out .println("i is less than 5");
break;
case 5:
case 6:
case 7:
case 8:
case 9:
System.out.println("i is less than 10");
break;
default:
System.out.println("i is 10 or more");

w N =

This program generates the following output:

is
is
is
is
is
is
is
is
is
is
is
is

[= e i S S A A=

less than
less than
less than
less than
less than 5
less than 10
less than 10
less than 10
less than 10
less than 10
10 or more

10 or more

[S2BNC2 BN RNC]

As you can see, execution falls through each case until a break statement (or the end of the

switch) is
While
the break

reached.
the preceding example is, of course, contrived for the sake of illustration, omitting
statement has many practical applications in real programs. To sample its more

realistic usage, consider the following rewrite of the season example shown earlier. This version
uses a switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {

public
int

static void main(String argsl[]) {
month = 4;

String season;

switch (month) ({

case 12:
case 1:
case 2:
season
break;
case 3:
case 4:
case 5:
season
break;
case 6:
case 7:
case 8:
season
break;
case 9:
case 10:
case 11:
season
break;
default:
season
1

"Winter";

"Spring";

"Summer" ;

"Autumn" ;

"Bogus Month";

Chapter 5

System.out.println("April is in the " + season + ".

}
}

As mentioned, beginning with JDK 7, you can use a string to control a switch statement.

For example,

// Use a string to control a switch statement.

class StringSwitch

public static void main(String argsl[])

String str = "two";

switch(str)

case "one'":

System.out.println("one") ;

break;

case "two":

System.out.println("two") ;

break;

case "three":
System.out.println("three") ;

break;
default:

System.out.println("no match") ;

break;

Control Statements

87

88 PARTI The Java Language

As you would expect, the output from the program is

two

The string contained in str (which is "two" in this program) is tested against the case
constants. When a match is found (as it is in the second case), the code sequence associated
with that sequence is executed.

Being able to use strings in a switch statement streamlines many situations. For example,
using a string-based switch is an improvement over using the equivalent sequence of if /else
statements. However, switching on strings can be more expensive than switching on integers.
Therefore, it is best to switch on strings only in cases in which the controlling data is already
in string form. In other words, don’t use strings in a switch unnecessarily.

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between the
case constants in the inner switch and those in the outer switch. For example, the following
fragment is perfectly valid:

switch(count)

case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;

case 1: // no conflicts with outer switch
System.out.println("target is one");
break;

}

break;
case 2: //

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement
in the outer switch. The count variable is compared only with the list of cases at the outer
level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

¢ The switch differs from the if in that switch can only test for equality, whereas if can
evaluate any type of Boolean expression. That is, the switch looks only for a match
between the value of the expression and one of its case constants.

e No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.

¢ A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler
works. When it compiles a switch statement, the Java compiler will inspect each of the case
constants and create a “jump table” that it will use for selecting the path of execution
depending on the value of the expression. Therefore, if you need to select among a large

Chapter 5 Control Statements 89

group of values, a switch statement will run much faster than the equivalent logic coded using
a sequence of if-elses. The compiler can do this because it knows that the case constants are
all the same type and simply must be compared for equality with the switch expression. The
compiler has no such knowledge of a long list of if expressions.

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true. Here is its general form:

while (condition) {
// body of loop
}

The condition can be any Boolean expression. The body of the loop will be executed as long
as the conditional expression is true. When condition becomes false, control passes to the
next line of code immediately following the loop. The curly braces are unnecessary if only a
single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick:

// Demonstrate the while loop.
class While ({
public static void main(String args[]) {
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n--;
}
}
1

When you run this program, it will “tick” ten times:

tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

o

PN W UToJd o o

90

PART | The Java Language

Since the while loop evaluates its conditional expression at the top of the loop, the body of
the loop will not execute even once if the condition is false to begin with. For example, in the
following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a nuil
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,
consider the following program:

// The target of a loop can be empty.
class NoBody {
public static void main(String args[]) {

int i, j;
i = 100;
j = 200;

// find midpoint between i and j
while(++1i < --j); // no body in this loop

System.out.println("Midpoint is " + 1i);
}
}

This program finds the midpoint between i and j. It generates the following output:
Midpoint is 150

Here is how this while loop works. The value ofi is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop
stops. Upon exit from the loop, i will hold a value that is midway between the original values of
iandj. (Of course, this procedure only works when i is less than j to begin with.) As you can
see, there is no need for a loop body; all of the action occurs within the conditional expression,
itself. In professionally written Java code, short loops are frequently coded without bodies
when the controlling expression can handle all of the details itself.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false, then
the body of the loop will not be executed at all. However, sometimes it is desirable to
execute the body of a loop at least once, even if the conditional expression is false to begin
with. In other words, there are times when you would like to test the termination expression
at the end of the loop rather than at the beginning. Fortunately, Java supplies a loop that
does just that: the do-while. The do-while loop always executes its body at least once,
because its conditional expression is at the bottom of the loop. Its general form is

Chapter 5 Control Statements 91

do {
// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the
loop terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop. It
generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile ({
public static void main(String args[]) {
int n = 10;

do {
System.out.println("tick " + n);
n--;
} while(n > 0);
}
1

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do {
System.out .println("tick " + n);
} while(--n > 0);

In this example, the expression (- -n > 0) combines the decrement of n and the test for zero
into one expression. Here is how it works. First, the — —n statement executes, decrementing
n and returning the new value of n. This value is then compared with zero. If it is greater
than zero, the loop continues; otherwise, it terminates.

The do-while loop is especially useful when you process a menu selection, because you will
usually want the body of a menu loop to execute at least once. Consider the following program,
which implements a very simple help system for Java’s selection and iteration statements:

// Using a do-while to process a menu selection
class Menu {
public static void main(String argsl[])
throws java.io.IOException
char choice;

do {
System.out.println("Help on: ");
System.out.println("™ 1. 1if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out .println(" 4. do-while");
System.out.println(" 5. for\n");

(

System.out.println("Choose one:");

92

}
}

PART |

The Java Language

choice =

(char)
} while(choice < '1!

System.in.read() ;
|| choice > '5");

System.out.println("\n") ;

switch (choice)

case

break;
case

break;
case

break;
case

break;
case

break;

}

lll:
System.
System.
System.

20
System.
System.
System.
System.
System.
System.
System.

|3I:
System.
System.

40
System.
System.
System.
System.

|5I:
System.
System.
System.

out
out
out

out
out
out
out
out
out
out

out
out

out
out
out
out

out
out
out

{

.println("The if:\n")
.println("if (condition)
.println("else statement;

statement;") ;

")

.println ("The switch:\n")
.println "sw1tch(expres51on)

{";

(

(
.println(" case constant:");
.println (" statement sequence") ;
.println (" break;") ;
.println(" //...");
.println("}");

.println ("The while:\n")
.println("while (condition)

.println("The do-while:\n")
.println("do
.println(" statement;"
.println("} while (condition);");

{m;
)i

.println("The for:\n")
.print ("for (init;
.println(" statement;

condition;

")

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for
Choose one:
4
The do-while:
do {
statement;

} while (condition) ;

statement;") ;

iteration)"

)i

Chapter 5 Control Statements

In the program, the do-while loop is used to verify that the user has entered a valid choice.
If not, then the user is reprompted. Since the menu must be displayed at least once, the
do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard
by calling System.in.read(). This is one of Java’s console input functions. Although Java’s
console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used
here to obtain the user’s choice. It reads characters from standard input (returned as integers,
which is why the return value was cast to char). By default, standard input is line buffered, so
you must press ENTER before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java
programs will be graphical and window-based. For these reasons, not much use of console
input has been made in this book. However, it is useful in this context. One other point
to consider: Because System.in.read() is being used, the program must specify the
throws java.io.IOException clause. This line is necessary to handle input errors. It is
part of Java’s exception handling features, which are discussed in Chapter 10.

for

You were introduced to a simple form of the for loop in Chapter 2. As you will see, itis a
powerful and versatile construct.
Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form

93

that has been in use since the original version of Java. The second is the newer “for-each” form.

Both types of for loops are discussed here, beginning with the traditional form.
Here is the general form of the traditional for statement:

for (initialization; condition; iteration) {
// body
}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the
loop is executed. Generally, this is an expression that sets the value of the loop control variable,
which acts as a counter that controls the loop. It is important to understand that the initialization

expression is executed only once. Next, condition is evaluated. This must be a Boolean expression.

It usually tests the loop control variable against a target value. If this expression is true, then the
body of the loop is executed. If it is false, the loop terminates. Next, the ileration portion of the
loop is executed. This is usually an expression that increments or decrements the loop control
variable. The loop then iterates, first evaluating the conditional expression, then executing the
body of the loop, and then executing the iteration expression with each pass. This process
repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick {
public static void main(String args[])
int n;

for (n=10; n>0; n--)

94 PARTI The Java Language

System.out.println("tick " + n);
}
}

Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is needed only for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, here is the preceding program recoded so
that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
public static void main(String argsl[]) {

// here, n is declared inside of the for loop
for (int n=10; n>0; n--)
System.out.println("tick " + n);

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need to
use the loop control variable elsewhere in your program, you will not be able to declare it
inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime numbers.
Notice that the loop control variable, i, is declared inside the for since it is not needed
elsewhere.

// Test for primes.
class FindPrime ({
public static void main(String argsl[]) {
int num;
boolean isPrime;

num = 14;
if (num < 2) isPrime = false;
else isPrime = true;

for(int i=2; i <= num/i; i++)
if ((num % 1) ==
isPrime = false;
break;
}
1

if (isPrime) System.out.println("Prime");
else System.out.println("Not Prime");

Chapter 5 Control Statements 95

Using the Comma

There will be times when you will want to include more than one statement in the
initialization and iteration portions of the for loop. For example, consider the loop in
the following program:

class Sample {
public static void main(String args[])

int a, b;

b = 4;

for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + Db);
b--;

}

}
}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is
governed by two variables, it would be useful if both could be included in the for statement,
itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish
this. To allow two or more variables to control a for loop, Java permits you to include
multiple statements in both the initialization and iteration portions of the for. Each
statement is separated from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded, as shown here:

// Using the comma.
class Comma
public static void main(String args[])

int a, b;

for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);

1

}
}

In this example, the initialization portion sets the values of both a and b. The two comma-
separated statements in the iteration portion are executed each time the loop repeats. The
program generates the following output:

oL oo
|
W N R

NOTE If you are familiar with C/C++, then you know that in those languages the comma is an operator
that can be used in any valid expression. However, this is not the case with Java. In Java, the comma
is a separator.

96 PARTI The Java Language

Some for Loop Variations

The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts—the initialization, the conditional test, and
the iteration—do not need to be used for only those purposes. In fact, the three sections of the
for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically, this
expression does not need to test the loop control variable against some target value. In fact,
the condition controlling the for can be any Boolean expression. For example, consider the
following fragment:

boolean done = false;
for(int i=1; !done; i++) {
//
if (interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is set to true.
It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration
expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar
public static void main(String argsl[]) {

int i;

boolean done = false;

i = 0;

for(; !done;) {
System.out.println("i is " + 1i);
if (i == 10) done = true;
14+;

}

}
}

Here, the initialization and iteration expressions have been moved out of the for. Thus,
parts of the for are empty. While this is of no value in this simple example—indeed, it
would be considered quite poor style—there can be times when this type of approach
makes sense. For example, if the initial condition is set through a complex expression
elsewhere in the program or if the loop control variable changes in a nonsequential
manner determined by actions that occur within the body of the loop, it may be
appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop
that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) |
//
}

Chapter 5 Control Statements 97

This loop will run forever because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors, that
require an infinite loop, most “infinite loops” are really just loops with special termination
requirements. As you will soon see, there is a way to terminate a loop—even an infinite loop
like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a “for-each” style
loop. As you may know, contemporary language theory has embraced the for-each concept,
and it has become a standard feature that programmers have come to expect. A for-each
style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. Unlike some languages, such as C#, that implement
a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing
the for statement. The advantage of this approach is that no new keyword is required, and
no preexisting code is broken. The for-each style of for is also referred to as the enhanced
for loop.

The general form of the for-each version of the for is shown here:

for (type itr-var: collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that can
be used with the for, but the only type used in this chapter is the array. (Other types of
collections that can be used with the for, such as those defined by the Collections
Framework, are discussed later in this book.) With each iteration of the loop, the next
element in the collection is retrieved and stored in itr-var. The loop repeats until all
elements in the collection have been obtained.

Because the iteration variable receives values from the collection, #ype must be the same as
(or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
lype must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int 1=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus, the
entire array is read in strictly sequential order. This is accomplished by manually indexing the
nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need to
establish a loop counter, specify a starting and ending value, and manually index the array.
Instead, it automatically cycles through the entire array, obtaining one element at a time, in

98

PART | The Java Language

sequence, from beginning to end. For example, here is the preceding fragment rewritten
using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for (int x: nums) sum += Xx;

With each pass through the loop, x is automatically given a value equal to the next element
in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so
on. Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

// use for-each style for to display and sum the values

for (int x : nums) {
System.out .println("Value is: " + Xx);
sum += X;

System.out.println ("Summation: " + sum);

The output from the program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is: 10
Summation: 55

H W oo J0 Ul WwN B

As this output shows, the for-each style for automatically cycles through an array in
sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
itis possible to terminate the loop early by using a break statement. For example, this program
sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 {
public static void main(String args[]) {
int sum = 0;

Chapter 5 Control Statements 99

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values

for (int x : nums) {
System.out.println("Value is: " + Xx);
sum += X;
if(x == 5) break; // stop the loop when 5 is obtained

1

System.out.println("Summation of first 5 elements: " + sum);

1

This is the output produced:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break
statement can also be used with Java’s other loops, and it is discussed in detail later in this
chapter.

There is one important point to understand about the for-each style loop. Its iteration
variable is “read-only” as it relates to the underlying array. An assignment to the iteration
variable has no effect on the underlying array. In other words, you can’t change the contents of
the array by assigning the iteration variable a new value. For example, consider this program:

// The for-each loop is essentially read-only.
class NoChange ({
public static void main(String args([])
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for (int x: nums) {
System.out.print(x + " ");
X = x * 10; // no effect on nums

}

System.out.println() ;

for (int x : nums)
System.out.print(x + " ");

System.out.println() ;

The first for loop increases the value of the iteration variable by a factor of 10. However,
this assignment has no effect on the underlying array nums, as the second for loop illustrates.
The output, shown here, proves this point:

123456 78910
12345678910

100

PART | The Java Language

lterating Over Multidimensional Arrays

The enhanced version of the for also works on multidimensional arrays. Remember,
however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,

a two-dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array, because each iteration obtains the next array, not an
individual element. Furthermore, the iteration variable in the for loop must be compatible
with the type of array being obtained. For example, in the case of a two-dimensional array,
the iteration variable must be a reference to a one-dimensional array. In general, when
using the for-each for to iterate over an array of N dimensions, the objects obtained will be
arrays of N-1 dimensions. To understand the implications of this, consider the following
program. It uses nested for loops to obtain the elements of a two-dimensional array in row-
order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 {
public static void main(String argsl[]) {
int sum = 0;
int nums[] [] = new int[3] [5];

// give nums some values

for(int 1 = 0; 1 < 3; 1++)
for(int j = 0; j < 5; Jj++)
nums [1] [§] = (1+1)* (J+1);

// use for-each for to display and sum the values
for (int x[] : nums) {
for(int y : x) {
System.out.println("vValue is: " + vy);
sum += Yy;
1
}
System.out .println("Summation: " + sum);

}
}

The output from this program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:

W o WRE o B NU B WNR

Chapter 5 Control Statements 101

Value is: 12
Value is: 15
Summation: 90

In the program, pay special attention to this line:
for (int xI[]: nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for

Since the for-each style for can only cycle through an array sequentially, from start to finish,
you might think that its use is limited, but this is not true. A large number of algorithms
require exactly this mechanism. One of the most common is searching. For example, the
following program uses a for loop to search an unsorted array for a value. It stops if the
value is found.

// Search an array using for-each style for.
class Search
public static void main(String argsl[])
int nums(] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;

// use for-each style for to search nums for val
for (int x : nums)

if(x == val) {
found = true;
break;
}
1
if (found)

System.out.println("Value found!") ;

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other types
of applications that benefit from for-each style loops include computing an average, finding
the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style for is
especially useful when operating on collections defined by the Collections Framework, which is
described in Part II. More generally, the for can cycle through the elements of any collection
of objects, as long as that collection satisfies a certain set of constraints, which are described in
Chapter 18.

102 PARTI The Java Language

Nested Loops

Like all other programming languages, Java allows loops to be nested. That is, one loop
may be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
public static void main(String argsl[]) {
int i, §;

for(i=0; 1<10; i++) {
for(j=1; j<10; j++)
System.out.print (".");
System.out.println() ;

}
}
}

The output produced by this program is shown here:

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer
control to another part of your program. Each is examined here.

NOTE In addition to the jump statements discussed here, Java supports one other way that you can
change your program’s flow of execution: through exception handling. Exception handling provides
a structured method by which run-time errors can be trapped and handled by your program. It is
supported by the keywords try, catch, throw, throws, and finally. In essence, the exception handling
mechanism allows your program to perform a nonlocal branch. Since exception handling is a large
topic, it is discussed in its own chapter, Chapter 10.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used
as a “civilized” form of goto. The last two uses are explained here.

Chapter 5 Control Statements 103

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is
encountered inside a loop, the loop is terminated and program control resumes at the next
statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
public static void main(String argsl[]) {
for (int i1=0; 1<100; i++) {

if (i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
1
System.out.println("Loop complete.");
}
1
This program generates the following output:
i: 0
i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
i: 7
i: 8
i: 9

Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement
causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally infinite
loops. For example, here is the preceding program coded by use of a while loop. The output
from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
public static void main(String args[])
int 1 = 0;

while(i < 100)

if (i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
i++;

}

System.out.println("Loop complete.");

104

PART | The Java Language

When used inside a set of nested loops, the break statement will only break out of the
innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 ({
public static void main(String argsl[]) {
for(int i=0; i<3; i++) {

System.out.print ("Pass " + i + ": ");
for (int j=0; j<100; j++) {
if (j == 10) break; // terminate loop if j is 10

System.out.print(j + " ");

}

System.out.println() ;

}

System.out.println ("Loops complete.");
1
}

This program generates the following output:

Pass 0: 01 23 456 72829
Pass 1: 01 2 3 456 7 829
Pass 2: 01 23 456 7829
Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency to
destructure your code. Second, the break that terminates a switch statement affects only that
switch statement and not any enclosing loops.

REMEMBER break was not designed to provide the normal means by which a loop is terminated. The
loop’s conditional expression serves this purpose. The break statement should be used to cancel a
loop only when some sort of special situation occurs.

Using break as a Form of Goto

In addition to its uses with the switch statement and loops, the break statement can also be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement because it provides a way to branch in an arbitrary and unstructured
manner. This usually makes goto-ridden code hard to understand and hard to maintain. It
also prohibits certain compiler optimizations. There are, however, a few places where the
goto is a valuable and legitimate construct for flow control. For example, the goto can be
useful when you are exiting from a deeply nested set of loops. To handle such situations,
Java defines an expanded form of the break statement. By using this form of break, you can,
for example, break out of one or more blocks of code. These blocks need not be part of a
loop or a switch. They can be any block. Further, you can specify precisely where execution
will resume, because this form of break works with a label. As you will see, break gives you
the benefits of a goto without its problems.

Chapter 5 Control Statements 105

The general form of the labeled break statement is shown here:
break label,

Most often, label is the name of a label that identifies a block of code. This can be a stand-
alone block of code but it can also be a block that is the target of another statement. When
this form of break executes, control is transferred out of the named block. The labeled
block must enclose the break statement, but it does not need to be the immediately
enclosing block. This means, for example, that you can use a labeled break statement to
exit from a set of nested blocks. But you cannot use break to transfer control out of a block
that does not enclose the break statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed by
a colon. Once you have labeled a block, you can then use this label as the target of a break
statement. Doing so causes execution to resume at the end of the labeled block. For example,
the following program shows three nested blocks, each with its own label. The break statement
causes execution to jump forward, past the end of the block labeled second, skipping the two
println() statements.

// Using break as a civilized form of goto.
class Break ({
public static void main(String args[])
boolean t = true;

first: {
second: {
third: {
System.out.println ("Before the break.");
if (t) break second; // break out of second block
System.out.println("This won't execute");

}

System.out.println("This won't execute") ;
}
System.out.println("This is after second block.");
}
}
}

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.
For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4
public static void main(String args[]) {
outer: for(int i=0; i<3; i++) {
System.out.print ("Pass " + i + ": ");
for(int j=0; j<100; j++) {
if(j == 10) break outer; // exit both loops

PART | The Java Language

System.out.print(j + " ");

}

System.out.println("This will not print");

}

System.out.println ("Loops complete.");
1
}

This program generates the following output:

Pass 0: 01 2 3 45 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been
terminated. Notice that this example labels the for statement, which has a block of code as
its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {
public static void main(String argsl[]) {

one: for(int i=0; i<3; i++) {
System.out.print ("Pass " + i + ": ");

}

for (int j=0; j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

}
}
}

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control out of that block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop but stop processing the remainder of the code in its body for
this particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s
end. The continue statement performs such an action. In while and do-while loops, a
continue statement causes control to be transferred directly to the conditional expression
that controls the loop. In a for loop, control goes first to the iteration portion of the for
statement and then to the conditional expression. For all three loops, any intermediate
code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on
each line:

// Demonstrate continue.
class Continue {
public static void main(String args[]) {

Chapter 5 Control Statements

for (int 1=0; 1<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("") ;
1
} }

This code uses the % operator to check if i is even. If it is, the loop continues without
printing a newline. Here is the output from this program:

W o BN O
O g U W

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue to print a triangular
multiplication table for 0 through 9:

// Using continue with a label.
class ContinueLabel {
public static void main(String args[])
outer: for (int i=0; i<10; i++) {
for(int j=0; j<10; F++) {
if (5 > i) {
System.out.println() ;
continue outer;
}
System.out.print (" " + (i * j));
}
}
System.out.println() ;
}
1

107

The continue statement in this example terminates the loop counting j and continues with

the next iteration of the loop counting i. Here is the output of this program:

4

6 9

8 12 16

10 15 20 25

12 18 24 30 36

14 21 28 35 42 49

16 24 32 40 48 56 64

18 27 36 45 54 63 72 81

O O O O O OO0 o oo
O 0w ~J0 Ul b WwN -

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in which

early iteration is needed, the continue statement provides a structured way to accomplish it.

108 PARTI The Java Language

return

The last control statement is return. The return statement is used to explicitly return from a
method. That is, it causes program control to transfer back to the caller of the method. As
such, it is categorized as a jump statement. Although a full discussion of return must wait
until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method, the return statement can be used to cause execution to branch
back to the caller of the method. Thus, the return statement immediately terminates the
method in which it is executed. The following example illustrates this point. Here, return
causes execution to return to the Java run-time system, since it is the run-time system that calls
main():

// Demonstrate return.
class Return
public static void main(String argsl[]) {
boolean t = true;

System.out .println("Before the return.");
if(t) return; // return to caller

System.out.println("This won't execute.");

}
}

The output from this program is shown here:

Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,
control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the
Java compiler would flag an “unreachable code” error because the compiler would know that
the last println() statement would never be executed. To prevent this error, the if statement is
used here to trick the compiler for the sake of this demonstration.

CHAPTER

Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java language
is built because it defines the shape and nature of an object. As such, the class forms the
basis for object-oriented programming in Java. Any concept you wish to implement in a Java
program must be encapsulated within a class.

Because the class is so fundamental to Java, this and the next few chapters will be devoted
to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been shown. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new
data type. Once defined, this new type can be used to create objects of that type. Thus, a
class is a template for an object, and an object is an nstance of a class. Because an object is an
instance of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will see, a
class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to
this point are actually very limited examples of its complete form. Classes can (and usually
do) get much more complex. A simplified general form of a class definition is shown here:

class classname {
type instance-variablel;

109

110 PARTI The Java Language

type instance-variable2;

// .

type instance-variableN;

type methodnamel (parameter-list) {
// body of method

}

type methodname2(parameter-list) {
// body of method

}

// .

type methodnameN(parameter-list) {

// body of method
}
}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class
are called members of the class. In most classes, the instance variables are acted upon and
accessed by the methods defined for that class. Thus, as a general rule, it is the methods
that determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of
the class (that is, each object of the class) contains its own copy of these variables. Thus, the
data for one object is separate and unique from the data for another. We will come back to
this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general
form of a class does not specify a main() method. Java classes do not need to have a main()
method. You only specify one if that class is the starting point for your program. Further,
some kinds of Java applications, such as applets, don’t require a main() method at all.

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {
double width;
double height;
double depth;

}

As stated, a class defines a new type of data. In this case, the new data type is called Box. You
will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

Chapter 6 Introducing Classes 111

To actually create a Box object, you will use a statement like the following:
Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an
object that contains its own copy of each instance variable defined by the class. Thus, every
Box object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of
the object with the name of an instance variable. For example, to assign the width variable
of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the
instance variables and the methods within an object. One other point: Although commonly
referred to as the dot operator, the formal specification for Java categorizes the . as a separator.
However, since the use of the term “dot operator” is widespread, it is used in this book.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {
double width;
double height;
double depth;

}

// This class declares an object of type Box.
class BoxDemo ({
public static void main(String args[])
Box mybox = new Box() ;
double vol;

// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}
}

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this

112

PART| The Java Language

program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is not
necessary for both the Box and the BoxDemo class to actually be in the same source file.
You could put each class in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means
that if you have two Box objects, each has its own copy of depth, width, and height. It is
important to understand that changes to the instance variables of one object have no
effect on the instance variables of another. For example, the following program declares
two Box objects:

// This program declares two Box objects.

class Box {
double width;
double height;
double depth;

}

class BoxDemo2 {
public static void main(String args[]) {
Box myboxl = new Box () ;
Box mybox2 = new Box() ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
mybox1l.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box
vol = myboxl.width * myboxl.height * myboxl.depth;
System.out.println("Volume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out .println("Volume is " + vol);

Chapter 6 Introducing Classes 113

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new
operator. The new operator dynamically allocates (that is, allocates at run time) memory
for an object and returns a reference to it. This reference is, more or less, the address in
memory of the object allocated by new. This reference is then stored in the variable. Thus,
in Java, all class objects must be dynamically allocated. Let’s look at the details of this
procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box() ;

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox
does not yet refer to an actual object. The next line allocates an object and assigns a
reference to it to mybox. After the second line executes, you can use mybox as if it were a
Box object. But in reality, mybox simply holds, in essence, the memory address of the actual
Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname ();

114

PART | The Java Language

Statement Effect

Box mybox;

mybox

Width

\

mybox = new Box();

mybox Height
Depth

Box object

Figure 6-1 Declaring an object of type Box

Here, class-varis a variable of the class type being created. The classnameis the name of

the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class is
created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their

class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to
treat them differently than it treats the primitive types. By not applying the same overhead
to the primitive types that applies to objects, Java can implement the primitive types more
efficiently. Later, you will see object versions of the primitive types that are available for your
use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory
exists. If this happens, a run-time exception will occur. (You will learn how to handle
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class,
you are creating an instance of that class. Thus, a class is a logical construct. An object has
physical reality. (That is, an object occupies space in memory.) It is important to keep this
distinction clearly in mind.

Chapter 6 Introducing Classes 115

Assigning Object Reference Variables

Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box bl
Box b2

= new Box () ;
= bl;
You might think that b2 is being assigned a reference to a copy of the object referred to by
bl. That is, you might think that bl and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, bl and b2 will both refer to the
same object. The assignment of bl to b2 did not allocate any memory or copy any part of
the original object. It simply makes b2 refer to the same object as does b1l. Thus, any
changes made to the object through b2 will affect the object to which b1 is referring, since
they are the same object.

This situation is depicted here:

/ Height Box object
Depth

—

b2

Although bl and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1l from the original object
without affecting the object or affecting b2. For example:

Box bl = new Box () ;
Box b2 = bl;

// ...

bl = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBER When you assign one object reference variable to another object reference variable, you are
not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods

As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However,
there are some fundamentals that you need to learn now so that you can begin to add
methods to your classes.

116

PART | The Java Language

This is the general form of a method:

type name(parameter-list) {
// body of method
}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially
variables that receive the value of the arguments passed to the method when it is called.
If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value,

Here, valueis the value returned.
In the next few sections, you will see how to create various types of methods, including
those that take parameters and those that return values.

Adding a Method to the Box Class

Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In
fact, methods define the interface to most classes. This allows the class implementor to
hide the specific layout of internal data structures behind cleaner method abstractions. In
addition to defining methods that provide access to data, you can also define methods that
are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while
looking at the preceding programs that the computation of a box’s volume was something
that was best handled by the Box class rather than the BoxDemo class. After all, since the
volume of a box is dependent upon the size of the box, it makes sense to have the Box class
compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box
void volume ()
System.out.print ("Volume is ") ;
System.out.println(width * height * depth);
1
}

class BoxDemo3 {
public static void main(String args[]) {

Chapter 6 Introducing Classes 117

Box myboxl = new Box () ;
Box mybox2 = new Box () ;

// assign values to myboxl's instance variables
myboxl.width = 10;
mybox1l.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box
myboxl.volume () ;

// display volume of second box
mybox2 .volume () ;

}
}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1l.volume () ;
mybox2 .volume () ;

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined
by its class, it does so directly, without explicit reference to an object and without use of the
dot operator. This is easy to understand if you think about it. A method is always invoked
relative to some object of its class. Once this invocation has occurred, the object is known.
Thus, within a method, there is no need to specify the object a second time. This means
that width, height, and depth inside volume() implicitly refer to the copies of those
variables found in the object that invokes volume().

118 PARTI The Java Language

Let’s review: When an instance variable is accessed by code that is not part of the class
in which that instance variable is defined, it must be done through an object, by use of the
dot operator. However, when an instance variable is accessed by code that is part of the
same class as the instance variable, that variable can be referred to directly. The same thing
applies to methods.

Returning a Value

While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what if
another part of your program wanted to know the volume of a box, but not display its
value? A better way to implement volume() is to have it compute the volume of the box
and return the result to the caller. The following example, an improved version of the
preceding program, does just that:

// Now, volume () returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {
return width * height * depth;
}
1

class BoxDemo4 {
public static void main(String argsl[]) {
Box myboxl = new Box() ;
Box mybox2 = new Box () ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
mybox1l.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume is " + vol);

Chapter 6 Introducing Classes 119

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = myboxl.volume () ;

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

® The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

¢ The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is" + myboxl.volume()) ;

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be
used in a number of slightly different situations. To illustrate this point, let’s use a very
simple example. Here is a method that returns the square of the number 10:

int square ()

{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square (int i)

{

return i * 1i;

}

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather
than just 10.

Here is an example:

int x, vy;
square (5); // x equals 25
X = square(9); // x equals 81

%
1]

120 PARTI The Java Language

Yy = 25
x square (y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameleris a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the
parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence of
statements, such as:

myboxl.width = 10;
mybox1l.height = 20;
myboxl.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed Java
programs, instance variables should be accessed only through methods defined by their
class. In the future, you can change the behavior of a method, but you can’t change the
behavior of an exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that
takes the dimensions of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box
double width;
double height;
double depth;

// compute and return volume
double volume () {
return width * height * depth;

}

// sets dimensions of box
void setDim(double w, double h, double d) {

width = w;
height = h;
depth = d;

}
}

class BoxDemo5 {

Chapter 6 Introducing Classes 121

public static void main(String args[]) {
Box myboxl = new Box() ;
Box mybox2 = new Box() ;
double vol;

// initialize each box
myboxl.setDim (10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume is " + vol);

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

myboxl.setDim (10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you, then
you might want to take some time to experiment before moving on. The concepts of the
method invocation, parameters, and return values are fundamental to Java programming.

Constructors

It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of a
constructor.

A constructor initializes an object immediately upon creation. It has the same name as
the class in which it resides and is syntactically similar to a method. Once defined, the
constructor is automatically called when the object is created, before the new operator
completes. Constructors look a little strange because they have no return type, not even
void. This is because the implicit return type of a class’ constructor is the class type itself.
Itis the constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.

122

PART | The Java Language

Let
the

/*
*/

’s begin by defining a simple constructor that simply sets the dimensions of each box to

same values. This version is shown here:

Here, Box uses a constructor to initialize the
dimensions of a box.

class Box {
double width;
double height;
double depth;

// This is the constructor for Box.

Box () {
System.out.println("Constructing Box") ;
width = 10;
height = 10;
depth = 10;

}

// compute and return volume
double volume () {

}
}

return width * height * depth;

class BoxDemo6 {
public static void main(String args[]) {

}
}

// declare, allocate, and initialize Box objects
Box myboxl = new Box() ;
Box mybox2 = new Box () ;

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume is " + vol);

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor

when they were created. Since the constructor gives all boxes the same dimensions, 10 by
10 by 10, both mybox1 and mybox2 will have the same volume. The println() statement

Chapter 6 Introducing Classes 123

inside Box() is for the sake of illustration only. Most constructors will not display anything.
They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an
object, you use the following general form:

class-var = new classname ();

Now you can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

Box myboxl = new Box () ;

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding
line of code worked in earlier versions of Box that did not define a constructor. The default
constructor automatically initializes all instance variables to their default values, which are
zero, null, and false, for numeric types, reference types, and boolean, respectively. The
default constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor is no
longer used.

Parameterized Constructors

While the Box() constructor in the preceding example does initialize a Box object, it is not
very useful—all boxes have the same dimensions. What is needed is a way to construct Box
objects of various dimensions. The easy solution is to add parameters to the constructor. As
you can probably guess, this makes it much more useful. For example, the following version
of Box defines a parameterized constructor that sets the dimensions of a box as specified by
those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
initialize the dimensions of a box.
*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box (double w, double h, double d) {

width = w;
height = hj;
depth = d;

}

// compute and return volume
double volume () {
return width * height * depth;

}
}

124 PARTI The Java Language

class BoxDemo7 {
public static void main(String argsl[]) {
// declare, allocate, and initialize Box objects
Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box (3, 6, 9);

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume is " + vol);

}
}

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Box myboxl = new Box (10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.
Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

The this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You can
use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box (double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is

Chapter 6 Introducing Classes 125

redundant in this case, this is useful in other contexts, one of which is explained in the next
section.

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name inside the
same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which overlap with the names of the class’ instance variables. However,
when a local variable has the same name as an instance variable, the local variable Aides the
instance variable. This is why width, height, and depth were not used as the names of the
parameters to the Box() constructor inside the Box class. If they had been, then width, for
example, would have referred to the formal parameter, hiding the instance variable width.
While it is usually easier to simply use different names, there is another way around this
situation. Because this lets you refer directly to the object, you can use it to resolve any
namespace collisions that might occur between instance variables and local variables. For
example, here is another version of Box(), which uses width, height, and depth for parameter
names and then uses this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box (double width, double height, double depth) {
this.width = width;
this.height = height;
this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing, and
some programmers are careful not to use local variables and formal parameter names that
hide instance variables. Of course, other programmers believe the contrary—that itis a
good convention to use the same names for clarity, and use this to overcome the instance
variable hiding. It is a matter of taste which approach you adopt.

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be wondering
how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of a
delete operator. Java takes a different approach; it handles deallocation for you automatically.
The technique that accomplishes this is called garbage collection. It works like this: when no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object can be reclaimed. There is no explicit need to destroy objects as in
C++. Garbage collection only occurs sporadically (if at all) during the execution of your
program. It will not occur simply because one or more objects exist that are no longer
used. Furthermore, different Java run-time implementations will take varying approaches to
garbage collection, but for the most part, you should not have to think about it while writing
your programs.

126

PART | The Java Language

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example,
if an object is holding some non-Java resource such as a file handle or character font, then
you might want to make sure these resources are freed before an object is destroyed. To
handle such situations, Java provides a mechanism called finalization. By using finalization,
you can define specific actions that will occur when an object is just about to be reclaimed
by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.
The garbage collector runs periodically, checking for objects that are no longer referenced
by any running state or indirectly through other referenced objects. Right before an asset is
freed, the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize ()

{

// finalization code here

}

Here, the keyword protected is a specifier that limits access to finalize(). This and the other
access modifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope, for example. This means that you cannot
know when—or even if—finalize() will be executed. Therefore, your program should
provide other means of releasing system resources, etc., used by the object. It must not
rely on finalize() for normal program operation.

NOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for a class,
which is called when an object goes out-of-scope. Java does not support this idea or provide for
destructors. The finalize() method only approximates the function of a destructor. As you get more
experienced with Java, you will see that the need for destructor functions is minimal because of
Java’s garbage collection subsystem.

A Stack Class

While the Box class is useful to illustrate the essential elements of a class, it is of little
practical value. To show the real power of classes, this chapter will conclude with a more
sophisticated example. As you recall from the discussion of object-oriented programming
(OOP) presented in Chapter 2, one of OOP’s most important benefits is the encapsulation
of data and the code that manipulates that data. As you have seen, the class is the mechanism
by which encapsulation is achieved in Java. By creating a class, you are creating a new data
type that defines both the nature of the data being manipulated and the routines used to
manipulate it. Further, the methods define a consistent and controlled interface to the
class’ data. Thus, you can use the class through its methods without having to worry about
the details of its implementation or how the data is actually managed within the class. In a
sense, a class is like a “data engine.” No knowledge of what goes on inside the engine is
required to use the engine through its controls. In fact, since the details are hidden, its

Chapter 6 Introducing Classes 127

inner workings can be changed as needed. As long as your code uses the class through
its methods, internal details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the
table is the last plate to be used. Stacks are controlled through two operations traditionally
called push and pop. To put an item on top of the stack, you will use push. To take an item
off the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack
mechanism.

Here is a class called Stack that implements a stack for up to ten integers:

// This class defines an integer stack that can hold 10 values
class Stack {

int stck[] = new int[10];

int tos;

// Initialize top-of-stack
Stack () {

tos = -1;
}

// Push an item onto the stack
void push(int item) {

if (tos==9)

System.out.println("Stack is full.");
else

stck[++tos] = item;

}

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out .println("Stack underflow.") ;
return 0;

}

else
return stck[tos--];

}
}

As you can see, the Stack class defines two data items and three methods. The stack of
integers is held by the array stck. This array is indexed by the variable tos, which always
contains the index of the top of the stack. The Stack() constructor initializes tos to -1,
which indicates an empty stack. The method push() puts an item on the stack. To retrieve
an item, call pop(). Since access to the stack is through push() and pop(), the fact that the
stack is held in an array is actually not relevant to using the stack. For example, the stack
could be held in a more complicated data structure, such as a linked list, yet the interface
defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer
stacks, pushes some values onto each, and then pops them off.

128 PARTI The Java Language

class TestStack ({
public static void main(String argsl[]) {
Stack mystackl = new Stack() ;
Stack mystack2 = new Stack() ;

// push some numbers onto the stack
for(int i=0; 1i<10; i++) mystackl.push (i) ;
for(int i=10; 1<20; i++) mystack2.push (i) ;

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; 1<10; i++)
System.out.println (mystackl.pop()) ;

System.out .println("Stack in mystack2:");

for(int 1=0; 1i<10; 1i++)
System.out.println (mystack2.pop()) ;
}

}
This program generates the following output:

Stack in mystackl:

O N Wk Ul v 9 © O

Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.

One last point about the Stack class. As it is currently implemented, it is possible for the
array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves
Stack open to misuse or mischief. In the next chapter, you will see how to remedy this
situation.

CHAPTER

A Closer Look at
Methods and Classes

This chapter continues the discussion of methods and classes begun in the preceding
chapter. It examines several topics relating to methods, including overloading, parameter
passing, and recursion. The chapter then returns to the class, discussing access control, the
use of the keyword static, and one of Java’s most important built-in classes: String.

Overloading Methods

In Java, it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case,
the methods are said to be overloaded, and the process is referred to as method overloading.
Method overloading is one of the ways that Java supports polymorphism. If you have never
used a language that allows the overloading of methods, then the concept may seem
strange at first. But as you will see, method overloading is one of Java’s most exciting and
useful features.

When an overloaded method is invoked, Java uses the type and/or number of arguments
as its guide to determine which version of the overloaded method to actually call. Thus,
overloaded methods must differ in the type and/or number of their parameters. While
overloaded methods may have different return types, the return type alone is insufficient to
distinguish two versions of a method. When Java encounters a call to an overloaded method,
it simply executes the version of the method whose parameters match the arguments used in
the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
void test ()
System.out.println("No parameters") ;
}

// Overload test for one integer parameter.
void test (int a) {

System.out.println("a: " + a);
}

129

130 PARTI The Java Language

// Overload test for two integer parameters.
void test(int a, int b)
System.out.println("a and b: " + a + " " + Db);

}

// Overload test for a double parameter

double test (double a)
System.out.println("double a: " + a);
return a*a;

}
}

class Overload ({
public static void main(String argsl[]) {
OverloadDemo ob = new OverloadDemo () ;
double result;

// call all versions of test()

ob.test () ;

ob.test (10) ;

ob.test (10, 20);

result = ob.test (123.25);

System.out .println("Result of ob.test(123.25): " + result);

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns a
value is of no consequence relative to overloading, since return types do not play a role in
overload resolution.

When an overloaded method is called, Java looks for a match between the arguments
used to call the method and the method’s parameters. However, this match need not always
be exact. In some cases, Java’s automatic type conversions can play a role in overload
resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.
class OverloadDemo {
void test ()
System.out.println("No parameters") ;

}

// Overload test for two integer parameters.
void test (int a, int b)
System.out.println("a and b: " + a + " " + b);

Chapter 7 A Closer Look at Methods and Classes 131

}

// Overload test for a double parameter
void test (double a)

System.out.println("Inside test (double) a: " + a);
}

}

class Overload ({
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo () ;

int i = 88;

ob.test () ;
ob.test (10, 20);

ob.test(i); // this will invoke test (double)
ob.test (123.2); // this will invoke test (double)

This program generates the following output:

No parameters
a and b: 10 20
Inside test (double) a: 88
Inside test (double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore,
when test() is called with an integer argument inside Overload, no matching method is
found. However, Java can automatically convert an integer into a double, and this conversion
can be used to resolve the call. Therefore, after test(int) is not found, Java elevates i to double
and then calls test(double). Of course, if test(int) had been defined, it would have been
called instead. Java will employ its automatic type conversions only if no exact match is found.

Method overloading supports polymorphism because it is one way that Java implements
the “one interface, multiple methods” paradigm. To understand how, consider the following.
In languages that do not support method overloading, each method must be given a unique
name. However, frequently you will want to implement essentially the same method for
different types of data. Consider the absolute value function. In languages that do not
support overloading, there are usually three or more versions of this function, each with a
slightly different name. For instance, in C, the function abs() returns the absolute value of
an integer, labs() returns the absolute value of a long integer, and fabs() returns the
absolute value of a floating-point value. Since C does not support overloading, each
function has its own name, even though all three functions do essentially the same thing.
This makes the situation more complex, conceptually, than it actually is. Although the
underlying concept of each function is the same, you still have three names to remember.
This situation does not occur in Java, because each absolute value method can use the same
name. Indeed, Java’s standard class library includes an absolute value method, called abs().
This method is overloaded by Java’s Math class to handle all numeric types. Java determines
which version of abs() to call based upon the type of argument.

132

PART | The Java Language

The value of overloading is that it allows related methods to be accessed by use of a
common name. Thus, the name abs represents the general action that is being performed. It
is left to the compiler to choose the right specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through
the application of polymorphism, several names have been reduced to one. Although this
example is fairly simple, if you expand the concept, you can see how overloading can help
you manage greater complexity.

When you overload a method, each version of that method can perform any activity you
desire. There is no rule stating that overloaded methods must relate to one another. However,
from a stylistic point of view, method overloading implies a relationship. Thus, while you
can use the same name to overload unrelated methods, you should not. For example, you
could use the name sqr to create methods that return the square of an integer and the
square oot of a floating-point value. But these two operations are fundamentally different.
Applying method overloading in this manner defeats its original purpose. In practice, you
should only overload closely related operations.

Overloading Constructors

In addition to overloading normal methods, you can also overload constructor methods. In
fact, for most real-world classes that you create, overloaded constructors will be the norm,
not the exception. To understand why, let’s return to the Box class developed in the
preceding chapter. Following is the latest version of Box:

class Box
double width;
double height;
double depth;

// This is the constructor for Box.
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

As you can see, the Box() constructor requires three parameters. This means that all
declarations of Box objects must pass three arguments to the Box() constructor. For
example, the following statement is currently invalid:

Box ob = new Box() ;

Since Box() requires three arguments, it’s an error to call it without them. This raises
some important questions. What if you simply wanted a box and did not care (or know)
what its initial dimensions were? Or, what if you want to be able to initialize a cube by
specifying only one value that would be used for all three dimensions? As the Box class is
currently written, these other options are not available to you.

Chapter 7 A Closer Look at Methods and Classes 133

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that contains
an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize
the dimensions of a box various ways.
*/
class Box
double width;
double height;
double depth;

// constructor used when all dimensions specified
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;
}
1

class OverloadCons {
public static void main(String args[])
// create boxes using the various constructors
Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box () ;
Box mycube = new Box(7) ;

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println("Volume of myboxl is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume of mybox2 is " + vol);

134 PARTI The Java Language

// get volume of cube
vol = mycube.volume () ;
System.out .println("Volume of mycube is " + vol);
}
}

The output produced by this program is shown here:

Volume of myboxl is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

Using Objects as Parameters

So far, we have only been using simple types as parameters to methods. However, it is both
correct and common to pass objects to methods. For example, consider the following short

program:

// Objects may be passed to methods.
class Test {
int a, b;

Test (int i, int j) {
a = 1i;
b =73;

}

// return true if o is equal to the invoking object
boolean equalTo(Test o)
if(o.a == a && o0.b == b) return true;
else return false;
1
}

class PassOb {
public static void main(String argsl[]) {
Test obl = new Test (100, 22);
Test ob2 = new Test (100, 22);
Test ob3 = new Test (-1, -1);

System.out.println("obl == ob2: " + obl.equalTo(ob2)) ;
System.out.println("obl == ob3: " + obl.equalTo(ob3)) ;

}
}

This program generates the following output:

obl == ob2: true
obl == ob3: false

Chapter 7 A Closer Look at Methods and Classes 135

As you can see, the equalTo() method inside Test compares two objects for equality
and returns the result. That is, it compares the invoking object with the one that it is
passed. If they contain the same values, then the method returns true. Otherwise, it returns
false. Notice that the parameter o in equalTo() specifies Test as its type. Although Test is a
class type created by the program, it is used in just the same way as Java’s built-in types.

One of the most common uses of object parameters involves constructors. Frequently,
you will want to construct a new object so that it is initially the same as some existing object.
To do this, you must define a constructor that takes an object of its class as a parameter. For
example, the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {
double width;
double height;
double depth;

// Notice this constructor. It takes an object of type Box.
Box (Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box (double len) ({
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;
}
1

class OverloadCons2 {
public static void main(String args[])
// create boxes using the various constructors

136

PART | The Java Language

Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box () ;
Box mycube = new Box(7) ;

Box myclone = new Box (myboxl); // create copy of myboxl
double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println("Volume of myboxl is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume of mybox2 is " + vol);

// get volume of cube
vol = mycube.volume () ;
System.out.println("Volume of cube is " + vol);

// get volume of clone
vol = myclone.volume () ;
System.out.println("Volume of clone is " + vol);

}
}

As you will see when you begin to create your own classes, providing many forms of
constructors is usually required to allow objects to be constructed in a convenient and
efficient manner.

A Closer Look at Argument Passing

In general, there are two ways that a computer language can pass an argument to a subroutine.
The first way is call-by-value. This approach copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument. The second way an argument can be passed is call-by-reference.
In this approach, a reference to an argument (not the value of the argument) is passed to
the parameter. Inside the subroutine, this reference is used to access the actual argument
specified in the call. This means that changes made to the parameter will affect the
argument used to call the subroutine. As you will see, although Java uses call-by-value
to pass all arguments, the precise effect differs between whether a primitive type or a
reference type is passed.

When you pass a primitive type to a method, it is passed by value. Thus, a copy of the
argument is made, and what occurs to the parameter that receives the argument has no
effect outside the method. For example, consider the following program:

// Primitive types are passed by value.
class Test
void meth(int i, int j)

i *= 2;
j /= 2;

}

}

Chapter 7 A Closer Look at Methods and Classes 137

class CallByValue {
public static void main(String args[])
Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +
a+ " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +
a+ " "+ b);

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values of a
and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because
objects are passed by what is effectively call-by-reference. Keep in mind that when you
create a variable of a class type, you are only creating a reference to an object. Thus, when
you pass this reference to a method, the parameter that receives it will refer to the same
object as that referred to by the argument. This effectively means that objects act as if they
are passed to methods by use of call-by-reference. Changes to the object inside the method
do affect the object used as an argument. For example, consider the following program:

// Objects are passed through their references.

class Test {
int a, b;

Test (int i, int j) {
a = 1i;
b = 3;

}

// pass an object
void meth (Test o) {
o.a *= 2;
o.b /= 2;
}
1

class PassObjRef
public static void main(String args[])
Test ob = new Test (15, 20);

138 PARTI The Java Language

System.out.println("ob.a and ob.b before call: " +
ob.a + " " + ob.b);

ob.meth (ob) ;

System.out.println("ob.a and ob.b after call: " +
ob.a + " " + ob.b);

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used as an
argument.

REMEMBER When an object reference is passed to a method, the reference itself is passed by use of
call-by-value. However, since the value being passed refers to an object, the copy of that value will
still refer to the same object that its corresponding argument does.

Returning Objects

A method can return any type of data, including class types that you create. For example, in
the following program, the incrByTen() method returns an object in which the value of a is
ten greater than it is in the invoking object.

// Returning an object.
class Test {
int a;

Test (int i)
a = 1i;

}

Test incrByTen() {
Test temp = new Test (a+10) ;
return temp;

}
}

class RetOb {
public static void main(String args[]) {
Test obl = new Test (2);
Test ob2;

ob2 = obl.incrByTen() ;
System.out.println("obl.a: " + obl.a);
System.out.println("ob2.a: " + ob2.a);

Chapter 7 A Closer Look at Methods and Classes 139

ob2 = ob2.incrByTen() ;
System.out.println("ob2.a after second increase: "
+ ob2.a);

The output generated by this program is shown here:

obl.a: 2
ob2.a: 12
ob2.a after second increase: 22

As you can see, each time incrByTen() is invoked, a new object is created, and a reference
to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are
dynamically allocated using new, you don’t need to worry about an object going out-of-
scope because the method in which it was created terminates. The object will continue to
exist as long as there is a reference to it somewhere in your program. When there are no
references to it, the object will be reclaimed the next time garbage collection takes place.

Recursion

Java supports recursion. Recursion is the process of defining something in terms of itself. As

it relates to Java programming, recursion is the attribute that allows a method to call itself.
A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number Nis the product of all the whole numbers between 1 and N. For

example, 3 factorial is 1 x 2 x 3 x, or 6. Here is how a factorial can be computed by use
of a recursive method:

// A simple example of recursion.
class Factorial ({
// this is a recursive method
int fact(int n) {
int result;

if (n==1) return 1;
result = fact(n-1) * n;
return result;
}
1

class Recursion
public static void main(String args[]) {
Factorial £ = new Factorial() ;

System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}
}

140

PART | The Java Language

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may seem
a bit confusing. Here is how it works. When fact() is called with an argument of 1, the
function returns 1; otherwise, it returns the product of fact(n-1)*n. To evaluate this
expression, fact() is called with n—1. This process repeats until n equals 1 and the calls
to the method begin returning.

To better understand how the fact() method works, let’s go through a short example.
When you compute the factorial of 3, the first call to fact() will cause a second call to be
made with an argument of 2. This invocation will cause fact() to be called a third time with
an argument of 1. This call will return 1, which is then multiplied by 2 (the value of n in the
second invocation). This result (which is 2) is then returned to the original invocation of
fact() and multiplied by 3 (the original value of n). This yields the answer, 6. You might
find it interesting to insert println() statements into fact(), which will show at what level
each call is and what the intermediate answers are.

When a method calls itself, new local variables and parameters are allocated storage on
the stack, and the method code is executed with these new variables from the start. As each
recursive call returns, the old local variables and parameters are removed from the stack,
and execution resumes at the point of the call inside the method. Recursive methods could
be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional method calls. Many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the stack and each new call creates a new copy of these variables, it is possible
that the stack could be exhausted. If this occurs, the Java run-time system will cause an
exception. However, you probably will not have to worry about this unless a recursive
routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer and
simpler versions of several algorithms than can their iterative relatives. For example, the
QuickSort sorting algorithm is quite difficult to implement in an iterative way. Also, some
types of Al-related algorithms are most easily implemented using recursive solutions.

When writing recursive methods, you must have an if statement somewhere to force the
method to return without the recursive call being executed. If you don’t do this, once you
call the method, it will never return. This is a very common error in working with recursion.
Use println() statements liberally during development so that you can watch what is going
on and abort execution if you see that you have made a mistake.

Here is one more example of recursion. The recursive method printArray() prints the
firsti elements in the array values.

// Another example that uses recursion.

class RecTest {
int values|];

Chapter 7 A Closer Look at Methods and Classes

RecTest (int i) {
values = new int[i];
}

// display array -- recursively
void printArray(int i) {
if (i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-11);
}
}

class Recursion2 {
public static void main(String args[])
RecTest ob = new RecTest (10) ;
int i;

for(i=0; 1<10; i++) ob.values[i] = 1i;

ob.printArray(10) ;
}
}

This program generates the following output:

(o]
[1]
[2]
[3]
[4]
[5]
[el
[7]
(8]
[9]

W oW J0 Ul b WwWwNPRE o

Introducing Access Control

As you know, encapsulation links data with the code that manipulates it. However,

encapsulation provides another important attribute: access control. Through encapsulation,
you can control what parts of a program can access the members of a class. By controlling
access, you can prevent misuse. For example, allowing access to data only through a well-

defined set of methods, you can prevent the misuse of that data. Thus, when correctly

implemented, a class creates a “black box” which may be used, but the inner workings of
which are not open to tampering. However, the classes that were presented earlier do not

completely meet this goal. For example, consider the Stack class shown at the end of
Chapter 6. While it is true that the methods push() and pop() do provide a controlled

141

interface to the stack, this interface is not enforced. That is, it is possible for another part of
the program to bypass these methods and access the stack directly. Of course, in the wrong

hands, this could lead to trouble. In this section, you will be introduced to the mechanism

by which you can precisely control access to the various members of a class.

142

PART | The Java Language

How a member can be accessed is determined by the access modifier attached to its
declaration. Java supplies a rich set of access modifiers. Some aspects of access control are
related mostly to inheritance or packages. (A packageis, essentially, a grouping of classes.)
These parts of Java’s access control mechanism will be discussed later. Here, let’s begin by
examining access control as it applies to a single class. Once you understand the fundamentals
of access control, the rest will be easy.

Java’s access modifiers are public, private, and protected. Java also defines a default
access level. protected applies only when inheritance is involved. The other access modifiers
are described next.

Let’s begin by defining public and private. When a member of a class is modified by
public, then that member can be accessed by any other code. When a member of a class is
specified as private, then that member can only be accessed by other members of its class.
Now you can understand why main() has always been preceded by the public modifier. It
is called by code that is outside the program—that is, by the Java run-time system. When
no access modifier is used, then by default the member of a class is public within its own
package, but cannot be accessed outside of its package. (Packages are discussed in the
following chapter.)

In the classes developed so far, all members of a class have used the default access
mode. However, this is not what you will typically want to be the case. Usually, you will want
to restrict access to the data members of a class—allowing access only through methods.
Also, there will be times when you will want to define methods that are private to a class.

An access modifier precedes the rest of a member’s type specification. That is, it must
begin a member’s declaration statement. Here is an example:

public int i;
private double j;

private int myMethod(int a, char b) { //...
To understand the effects of public and private access, consider the following program:

/* This program demonstrates the difference between
public and private.
*/
class Test {
int a; // default access
public int b; // public access
private int c¢; // private access

// methods to access c

void setc(int i) { // set c's value
c = 1i;

}

int getc() { // get c's value
return c;

}
}

Chapter 7 A Closer Look at Methods and Classes 143

class AccessTest {
public static void main(String args[])
Test ob = new Test();

// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error
// ob.c = 100; // Error!

// You must access c¢ through its methods

ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " " +
ob.b + " " + ob.getc());

As you can see, inside the Test class, a uses default access, which for this example is
the same as specifying public. b is explicitly specified as public. Member c is given private
access. This means that it cannot be accessed by code outside of its class. So, inside the
AccessTest class, ¢ cannot be used directly. It must be accessed through its public methods:
setc() and getc(). If you were to remove the comment symbol from the beginning of the
following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the
following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.
class Stack {
/* Now, both stck and tos are private. This means
that they cannot be accidentally or maliciously
altered in a way that would be harmful to the stack.
*/
private int stck[] = new int[10];
private int tos;

// Initialize top-of-stack
Stack () {
tos = -1;

}

// Push an item onto the stack
void push(int item) {
if (tos==9)
System.out .println("Stack is full.");
else
stck[++tos] = item;

144

PART | The Java Language

// Pop an item from the stack
int pop () {
if(tos < 0) {
System.out.println("Stack underflow.") ;
return 0;

}

else
return stck[tos--];

As you can see, now both stck, which holds the stack, and tos, which is the index of the
top of the stack, are specified as private. This means that they cannot be accessed or altered
except through push() and pop(). Making tos private, for example, prevents other parts of
your program from inadvertently setting it to a value that is beyond the end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {
public static void main(String args[]) {
Stack mystackl = new Stack() ;
Stack mystack2 = new Stack();

// push some numbers onto the stack
for(int i=0; 1i<10; i++) mystackl.push(i) ;
for(int i=10; 1<20; i++) mystack2.push (i) ;

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; 1<10; i++)
System.out.println (mystackl.pop()) ;

System.out .println("Stack in mystack2:");

for(int 1=0; 1i<10; i++)
System.out .println (mystack2.pop()) ;

// these statements are not legal
// mystackl.tos = -2;
// mystack2.stck[3] = 100;

Although methods will usually provide access to the data defined by a class, this does
not always have to be the case. It is perfectly proper to allow an instance variable to be
public when there is good reason to do so. For example, most of the simple classes in this
book were created with little concern about controlling access to instance variables for the
sake of simplicity. However, in most real-world classes, you will need to allow operations on
data only through methods. The next chapter will return to the topic of access control. As
you will see, it is particularly important when inheritance is involved.

Chapter 7 A Closer Look at Methods and Classes 145

Understanding static

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally, a class member must be accessed only
in conjunction with an object of its class. However, it is possible to create a member that can
be used by itself, without reference to a specific instance. To create such a member, precede
its declaration with the keyword static. When a member is declared static, it can be accessed
before any objects of its class are created, and without reference to any object. You can declare
both methods and variables to be static. The most common example of a static member is
main(). main() is declared as static because it must be called before any objects exist.
Instance variables declared as static are, essentially, global variables. When objects of
its class are declared, no copy of a static variable is made. Instead, all instances of the class
share the same static variable.
Methods declared as static have several restrictions:

¢ They can only directly call other static methods.
® They can only directly access static data.

¢ They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can
declare a static block that gets executed exactly once, when the class is first loaded. The
following example shows a class that has a static method, some static variables, and a static
initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {

static int a = 3;

static int b;

static void meth(int x)
System.out.println("x
System.out.println("a = " + a);
System.out.println("b "+ Db);

}

static {
System.out.println("Static block initialized.");
b =a * 4;

}

public static void main(String args[]) {
meth (42) ;
}

}

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is
set to 3, then the static block executes, which prints a message and then initializes b to a*4
or 12. Then main() is called, which calls meth(), passing 42 to x. The three println()
statements refer to the two static variables a and b, as well as to the local variable x.

146 PARTI The Java Language

Here is the output of the program:

Static block initialized.

X = 42
a = 3
b =12

Outside of the class in which they are defined, static methods and variables can be
used independently of any object. To do so, you need only specify the name of their class
followed by the dot operator. For example, if you wish to call a static method from outside
its class, you can do so using the following general form:

classname.method()

Here, classnameis the name of the class in which the static method is declared. As you
can see, this format is similar to that used to call non-static methods through object-
reference variables. A static variable can be accessed in the same way—by use of the dot
operator on the name of the class. This is how Java implements a controlled version of
global methods and global variables.

Here is an example. Inside main(), the static method callme() and the static variable b
are accessed through their class name StaticDemo.

class StaticDemo {
static int a = 42;
static int b = 99;

static void callme()
System.out.println("a = " + a);

}
}

class StaticByName {
public static void main(String args[]) {
StaticDemo.callme () ;
System.out.println("b = " + StaticDemo.Db) ;

}
}

Here is the output of this program:

a 42
b = 99

Introducing final

A field can be declared as final. Doing so prevents its contents from being modified,
making it, essentially, a constant. This means that you must initialize a final field when

it is declared. You can do this in one of two ways: First, you can give it a value when it is
declared. Second, you can assign it a value within a constructor. The first approach is the
most common. Here is an example:

Chapter 7 A Closer Look at Methods and Classes 147

final int FILE NEW = 1
final int FILE OPEN =
final int FILE_SAVE =
final int FILE SAVEAS =
final int FILE QUIT = 5;

7

w N~

7

4;

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants,
without fear that a value has been changed. It is a common coding convention to choose all
uppercase identifiers for final fields, as this example shows.

In addition to fields, both method parameters and local variables can be declared final.
Declaring a parameter final prevents it from being changed within the method. Declaring a
local variable final prevents it from being assigned a value more than once.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This additional usage of final is described
in the next chapter, when inheritance is described.

Arrays Revisited

Arrays were introduced earlier in this book, before classes had been discussed. Now that
you know about classes, an important point can be made about arrays: they are implemented
as objects. Because of this, there is a special array attribute that you will want to take
advantage of. Specifically, the size of an array—that is, the number of elements that an array
can hold—is found in its length instance variable. All arrays have this variable, and it will
always hold the size of the array. Here is a program that demonstrates this property:

// This program demonstrates the length array member.
class Length {
public static void main(String args[])

int al[] = new int[10];
int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
int a3[] = {4, 3, 2, 1};

System.out.println("length of al is " + al.length);
System.out.println("length of a2 is " + a2.length);
System.out.println("length of a3 is " + a3.length);

This program displays the following output:

length of al is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of length
has nothing to do with the number of elements that are actually in use. It only reflects the
number of elements that the array is designed to hold.

You can put the length member to good use in many situations. For example, here is
an improved version of the Stack class. As you might recall, the earlier versions of this class

148

PART | The Java Language

always created a ten-element stack. The following version lets you create stacks of any size.
The value of stck.length is used to prevent the stack from overflowing.

// Improved Stack class that uses the length array member.
class Stack {

private int stck[];

private int tos;

// allocate and initialize stack
Stack (int size)

stck = new int[size];

tos = -1;

}

// Push an item onto the stack
void push(int item) {
if (tos==stck.length-1) // use length member
System.out .println("Stack is full.");
else
stck [++tos] = item;

}

// Pop an item from the stack
int pop () {
if(tos < 0) {
System.out .println("Stack underflow.") ;
return 0;
}
else
return stck|[tos--];

}
}

class TestStack2 ({
public static void main(String argsl[]) {
Stack mystackl = new Stack(5);
Stack mystack2 = new Stack(8);

// push some numbers onto the stack
for(int i=0; i<5; i++) mystackl.push(i);
for(int i=0; 1i<8; i++) mystack2.push(i) ;

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int 1=0; 1i<5; i++)
System.out .println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");
for (int i=0; i<8; i++)
System.out.println (mystack2.pop()) ;

Chapter 7 A Closer Look at Methods and Classes 149

Notice that the program creates two stacks: one five elements deep and the other eight

elements deep. As you can see, the fact that arrays maintain their own length information
makes it easy to create stacks of any size.

Introducing Nested and Inner Classes

Itis possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class. A nested class that
is declared directly within its enclosing class scope is 2 member of its enclosing class. It is
also possible to declare a nested class that is local to a block.

There are two types of nested classes: static and non-static. A static nested class is one

that has the static modifier applied. Because it is static, it must access the non-static members
of its enclosing class through an object. That is, it cannot refer to non-static members of its
enclosing class directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a non-static

nested class. It has access to all of the variables and methods of its outer class and may refer
to them directly in the same way that other non-static members of the outer class do.

The following program illustrates how to define and use an inner class. The class named

Outer has one instance variable named outer_x, one instance method named test(), and
defines one inner class called Inner.

// Demonstrate an inner class.
class Outer ({

}

int outer x = 100;

void test () {
Inner inner = new Inner();
inner.display () ;

}

// this is an inner class
class Inner {
void display () {
System.out.println("display: outer x = " + outer x);
1

}

class InnerClassDemo {

}

public static void main(String args[])
Outer outer = new Outer() ;
outer.test () ;

}

150

PART | The Java Language

Output from this application is shown here:
display: outer x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.
Therefore, any code in class Inner can directly access the variable outer_x. An instance
method named display() is defined inside Inner. This method displays outer_x on the
standard output stream. The main() method of InnerClassDemo creates an instance of
class Outer and invokes its test() method. That method creates an instance of class Inner
and the display() method is called.

It is important to realize that an instance of Inner can be created only in the context of
class Outer. The Java compiler generates an error message otherwise. In general, an inner
class instance is often created by code within its enclosing scope, as the example does.

As explained, an inner class has access to all of the members of its enclosing class, but
the reverse is not true. Members of the inner class are known only within the scope of the
inner class and may not be used by the outer class. For example,

// This program will not compile.
class Outer {
int outer x = 100;

void test ()
Inner inner = new Inner();
inner.display () ;

}

// this is an inner class
class Inner ({
int y = 10; // y is local to Inner

void display () {
System.out.println("display: outer x = " + outer x);
}

}

void showy () {
System.out.println(y); // error, y not known here!

}
}

class InnerClassDemo {
public static void main(String argsl[]) {
Outer outer = new Outer() ;
outer.test () ;
}
}

Here, y is declared as an instance variable of Inner. Thus, it is not known outside of that
class and it cannot be used by showy().

Chapter 7 A Closer Look at Methods and Classes 151

Although we have been focusing on inner classes declared as members within an outer
class scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body of
a for loop, as this next program shows:

// Define an inner class within a for loop.
class Outer (
int outer x = 100;

void test ()
for (int i1=0; 1<10; i++)
class Inner {
void display () {
System.out.println("display: outer x = " + outer x);
}

}

Inner inner = new Inner();
inner.display () ;

}
}
}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer () ;
outer.test () ;

}
}

The output from this version of the program is shown here:

display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100

While nested classes are not applicable to all situations, they are particularly helpful
when handling events. We will return to the topic of nested classes in Chapter 24. There
you will see how inner classes can be used to simplify the code needed to handle certain
types of events. You will also learn about anonymous inner classes, which are inner classes that
don’t have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for
Java. They were added by Java 1.1.

152

PART | The Java Language

Exploring the String Class

Although the String class will be examined in depth in Part II of this book, a short
exploration of it is warranted now, because we will be using strings in some of the example
programs shown toward the end of Part I. String is probably the most commonly used class
in Java’s class library. The obvious reason for this is that strings are a very important part of
programming.

The first thing to understand about strings is that every string you create is actually an
object of type String. Even string constants are actually String objects. For example, in the
statement

System.out.println("This is a String, too");

the string "This is a String, too" is a String object.

The second thing to understand about strings is that objects of type String are immutable;
once a String object is created, its contents cannot be altered. While this may seem like a
serious restriction, it is not, for two reasons:

¢ Ifyou need to change a string, you can always create a new one that contains the
modifications.

¢ Java defines peer classes of String, called StringBuffer and StringBuilder, which
allow strings to be altered, so all of the normal string manipulations are still
available in Java. (StringBuffer and StringBuilder are described in Part II of this
book.)

Strings can be constructed in a variety of ways. The easiest is to use a statement like this:
String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed.
For example, this statement displays myString:

System.out.println (myString) ;

Java defines one operator for String objects: +. It is used to concatenate two strings. For
example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing "I like Java."
The following program demonstrates the preceding concepts:

// Demonstrating Strings.
class StringDemo {
public static void main(String argsl[]) {
String strObl = "First String";
String strOb2 = "Second String";
String strOb3 strObl + " and " + strOb2;

System.out.println(strObl) ;

Chapter 7 A Closer Look at Methods and Classes 153

System.out.println(strOb2) ;
System.out.println (strOb3) ;

}
}

The output produced by this program is shown here:

First String
Second String
First String and Second String

The String class contains several methods that you can use. Here are a few. You can test
two strings for equality by using equals(). You can obtain the length of a string by calling
the length() method. You can obtain the character at a specified index within a string by
calling charAt(). The general forms of these three methods are shown here:

boolean equals (secondStr)
int length (')
char charAt(index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.
class StringDemo2
public static void main(String args[])
String strObl = "First String";
String strOb2 "Second String";
String strOb3 strObl;

System.out.println("Length of strObl: " +
strObl.length()) ;

System.out.println("Char at index 3 in strObl: " +
strObl.charAt (3)) ;

if (strObl.equals (strOb2))

System.out .println("strObl == strOb2") ;
else
System.out.println("strObl != strOb2") ;

if (strObl.equals (strOb3))

System.out.println("strObl == strOb3") ;
else
System.out .println("strObl != strOb3") ;

This program generates the following output:

Length of strObl: 12

Char at index 3 in strObl: s
strObl != strOb2

strObl == strOb3

154 PARTI The Java Language

Of course, you can have arrays of strings, just like you can have arrays of any other type
of object. For example:

// Demonstrate String arrays.
class StringDemo3 {
public static void main(String argsl[]) {
String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)
System.out.println("str[" + 1 + "]: " +
strlil);

Here is the output from this program:

str[0]: one
str[l]: two
str[2]: three

As you will see in the following section, string arrays play an important part in many Java
programs.

Using Command-Line Arguments

Sometimes you will want to pass information into a program when you run it. This is
accomplished by passing command-line arguments to main(). A command-line argument is
the information that directly follows the program’s name on the command line when it is
executed. To access the command-line arguments inside a Java program is quite easy—they
are stored as strings in a String array passed to the args parameter of main(). The first
command-line argument is stored at args[0], the second at args[1], and so on. For example,
the following program displays all of the command-line arguments that it is called with:

// Display all command-line arguments.
class CommandLine {
public static void main(String args[]) {
for(int i=0; i<args.length; i++)
System.out.println("args[" + 1 + "]: " +
args[i]);

Try executing this program, as shown here:
java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0]: this
args([1l]: is
args([2]: a
args[3]: test
args[4]: 100
args[5]: -1

Chapter 7 A Closer Look at Methods and Classes 155

REMEMBER All command-line arguments are passed as strings. You must convert numeric values to
their internal forms manually, as explained in Chapter 17.

Varargs: Variable-Length Arguments

Beginning with JDK 5, Java has included a feature that simplifies the creation of methods
that need to take a variable number of arguments. This feature is called varargs and it is
short for variable-length arguments. A method that takes a variable number of arguments is
called a variable-arity method, or simply a varargs method.

Situations that require that a variable number of arguments be passed to a method are
not unusual. For example, a method that opens an Internet connection might take a user
name, password, filename, protocol, and so on, but supply defaults if some of this information
is not provided. In this situation, it would be convenient to pass only the arguments to
which the defaults did not apply. Another example is the printf() method that is part of
Java’s I/O library. As you will see in Chapter 20, it takes a variable number of arguments,
which it formats and then outputs.

Prior to JDK 5, variable-length arguments could be handled two ways, neither of which
was particularly pleasing. First, if the maximum number of arguments was small and known,
then you could create overloaded versions of the method, one for each way the method
could be called. Although this works and is suitable for some cases, it applies to only a
narrow class of situations.

In cases where the maximum number of potential arguments was larger, or unknowable,
a second approach was used in which the arguments were put into an array, and then the
array was passed to the method. This approach is illustrated by the following program:

// Use an array to pass a variable number of

// arguments to a method. This is the old-style
// approach to variable-length arguments.

class PassArray

static void vaTest (int vI[]) {
System.out.print ("Number of args: " + v.length +
" Contents: ");

for (int x : v)
System.out.print(x + " ");
System.out.println() ;

}

public static void main(String argsl(])

{

// Notice how an array must be created to
// hold the arguments.

int n1[] = { 10 };
int n2[] = { 1, 2, 3 };
int n3[] = { };

vaTest (nl); // 1 arg
vaTest (n2); // 3 args
vaTest (n3); // no args

156

PART | The Java Language

The output from the program is shown here:

Number of args: 1 Contents: 10
Number of args: 3 Contents: 1 2 3
Number of args: 0 Contents:

In the program, the method vaTest() is passed its arguments through the array v. This
old-style approach to variable-length arguments does enable vaTest() to take an arbitrary
number of arguments. However, it requires that these arguments be manually packaged
into an array prior to calling vaTest(). Not only is it tedious to construct an array each time
vaTest() is called, it is potentially error-prone. The varargs feature offers a simpler, better
option.

A variable-length argument is specified by three periods (...). For example, here is how
vaTest() is written using a vararg:

static void vaTest (int ... v) {

This syntax tells the compiler that vaTest() can be called with zero or more arguments. As a
result, v is implicitly declared as an array of type int[]. Thus, inside vaTest(), v is accessed
using the normal array syntax. Here is the preceding program rewritten using a vararg:

// Demonstrate variable-length arguments.
class VarArgs {

// vaTest () now uses a vararg.

static void vaTest (int ... v) {
System.out.print ("Number of args: " + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println() ;

}

public static void main(String argsl(])

{

// Notice how vaTest () can be called with a
// variable number of arguments.

vaTest (10) ; // 1 arg
vaTest (1, 2, 3); // 3 args
vaTest () ; // no args

}
}

The output from the program is the same as the original version.

There are two important things to notice about this program. First, as explained, inside
vaTest(), v is operated on as an array. This is because v is an array. The ... syntax simply tells
the compiler that a variable number of arguments will be used, and that these arguments will
be stored in the array referred to by v. Second, in main(), vaTest() is called with different
numbers of arguments, including no arguments at all. The arguments are automatically put
in an array and passed to v. In the case of no arguments, the length of the array is zero.

Chapter 7 A Closer Look at Methods and Classes 157

A method can have “normal” parameters along with a variable-length parameter.
However, the variable-length parameter must be the last parameter declared by the
method. For example, this method declaration is perfectly acceptable:

int doIt (int a, int b, double ¢, int ... vals) {

In this case, the first three arguments used in a call to dolt() are matched to the first three
parameters. Then, any remaining arguments are assumed to belong to vals.

Remember, the varargs parameter must be last. For example, the following declaration
is incorrect:

int doIt (int a, int b, double ¢, int ... vals, boolean stopFlag) { // Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter, which
is illegal.

There is one more restriction to be aware of: there must be only one varargs parameter.
For example, this declaration is also invalid:

int doIt (int a, int b, double ¢, int ... vals, double ... morevals) { // Error!

The attempt to declare the second varargs parameter is illegal.
Here is a reworked version of the vaTest() method that takes a regular argument and a
variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 {

// Here, msg is a normal parameter and v is a
// varargs parameter.

static void vaTest (String msg, int ... v) {
System.out.print (msg + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println() ;

}

public static void main(String argsl|])
vaTest ("One vararg: ", 10);
vaTest ("Three varargs: ", 1, 2, 3);
vaTest ("No varargs: ") ;

}
}

The output from this program is shown here:
One vararg: 1 Contents: 10

Three varargs: 3 Contents: 1 2 3
No varargs: 0 Contents:

158 PARTI The Java Language

Overloading Vararg Methods

You can overload a method that takes a variable-length argument. For example, the
following program overloads vaTest() three times:

// Varargs and overloading.
class VarArgs3 {

static void vaTest (int ... v) {
System.out .print ("vaTest (int ...): " +
"Number of args: " + v.length +
" Contents: ");

for (int x : v)
System.out.print(x + " ");

System.out.println() ;

}

static void vaTest (boolean ... v) {
System.out.print ("vaTest (boolean ...) " +
"Number of args: " + v.length +
" Contents: ");

for (boolean x : V)
System.out.print(x + " ");

System.out.println() ;

}

static void vaTest (String msg, int ... v) {
System.out.print ("vaTest (String, int ...): " +
msg + Vv.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println() ;

}

public static void main(String argsl([])
{

vaTest (1, 2, 3);

vaTest ("Testing: ", 10, 20);

vaTest (true, false, false);

}
}

The output produced by this program is shown here:
vaTest (int ...): Number of args: 3 Contents: 1 2 3

vaTest (String, int ...): Testing: 2 Contents: 10 20
vaTest (boolean ...) Number of args: 3 Contents: true false false

Chapter 7 A Closer Look at Methods and Classes 159

This program illustrates both ways that a varargs method can be overloaded. First, the types
of its vararg parameter can differ. This is the case for vaTest(int ...) and vaTest(boolean ...).
Remember, the ... causes the parameter to be treated as an array of the specified type.
Therefore, just as you can overload methods by using different types of array parameters,
you can overload vararg methods by using different types of varargs. In this case, Java uses
the type difference to determine which overloaded method to call.

The second way to overload a varargs method is to add one or more normal parameters.
This is what was done with vaTest(String, int ...). In this case, Java uses both the number of
arguments and the type of the arguments to determine which method to call.

NOTE A varargs method can also be overloaded by a non-varargs method. For example, vaTest(int x)
is a valid overload of vaTest() in the foregoing program. This version is invoked only when one int
argument is present. When two or more int arguments are passed, the varargs version vaTest (int...v)
is used.

Varargs and Ambiguity

Somewhat unexpected errors can result when overloading a method that takes a variable-
length argument. These errors involve ambiguity because it is possible to create an
ambiguous call to an overloaded varargs method. For example, consider the following
program:

// Varargs, overloading, and ambiguity.

//

// This program contains an error and will
// not compile!

class VarArgs4 {

static void vaTest (int ... v) {
System.out.print ("vaTest (int ...): " +
"Number of args: " + v.length +
" Contents: ") ;

for (int x : v)
System.out.print(x + " ");

System.out.println() ;

}

static void vaTest (boolean ... v) {
System.out .print ("vaTest (boolean ...) " +
"Number of args: " + v.length +
" Contents: ");

for (boolean x : V)
System.out.print(x + " ");

System.out.println() ;

}

public static void main(String argsl(])

{

160

PART | The Java Language

vaTest (1, 2, 3); // OK
vaTest (true, false, false); // OK

vaTest (); // Error: Ambiguous!

}
}

In this program, the overloading of vaTest() is perfectly correct. However, this program will
not compile because of the following call:

vaTest (); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to
vaTest(int ...) or vaTest(boolean ...). Both are equally valid. Thus, the call is inherently
ambiguous.

Here is another example of ambiguity. The following overloaded versions of vaTest()
are inherently ambiguous even though one takes a normal parameter:

static void vaTest (int ... v) { //
static void vaTest(int n, int ... v) { //

Although the parameter lists of vaTest() differ, there is no way for the compiler to
resolve the following call:

vaTest (1)

Does this translate into a call to vaTest(int ...), with one varargs argument, or into a call to
vaTest(int, int ...) with no varargs arguments? There is no way for the compiler to answer
this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to forego
overloading and simply use two different method names. Also, in some cases, ambiguity
errors expose a conceptual flaw in your code, which you can remedy by more carefully
crafting a solution.

CHAPTER

Inheritance

Inheritance is one of the cornerstones of object-oriented programming because it allows
the creation of hierarchical classifications. Using inheritance, you can create a general class
that defines traits common to a set of related items. This class can then be inherited by
other, more specific classes, each adding those things that are unique to it. In the terminology
of Java, a class that is inherited is called a superclass. The class that does the inheriting is
called a subclass. Therefore, a subclass is a specialized version of a superclass. It inherits

all of the members defined by the superclass and adds its own, unique elements.

Inheritance Basics

To inherit a class, you simply incorporate the definition of one class into another by using
the extends keyword. To see how, let’s begin with a short example. The following program
creates a superclass called A and a subclass called B. Notice how the keyword extends is
used to create a subclass of A.

// A simple example of inheritance.
// Create a superclass.
class A {

int i, §;

void showij ()
System.out.println("i and j: " + 1 + " " + j);
}

}

// Create a subclass by extending class A.
class B extends A

int k;
void showk () {
System.out.println("k: " + k);

}
161

162 PARTI The Java Language

void sum() {
System.out.println("i+j+k: " + (i+j+k));
1
}

class SimpleInheritance {
public static void main(String args []) {
A superOb = new A();
B subOb = new B() ;

// The superclass may be used by itself.
superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");
superOb.showij () ;

System.out.println() ;

/* The subclass has access to all public members of
its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb . k

System.out.println("Contents of subOb: ");

subOb.showij () ;

subOb. showk () ;

System.out.println() ;

]
o}

System.out.println("Sum of i, j and k in subOb:");
subOb.sum/() ;

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is
why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred
to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be used
by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

Chapter 8 Inheritance 163

class subclass-name extends superclass-name {
// body of class
}

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. You can, as stated,
create a hierarchy of inheritance in which a subclass becomes a superclass of another
subclass. However, no class can be a superclass of itself.

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider the
following simple class hierarchy:

/* In a class hierarchy, private members remain
private to their class.

This program contains an error and will not
compile.

*/

// Create a superclass.

class A {
int i; // public by default
private int j; // private to A

void setij (int x, int y) {
i = x;
j=vi
}
1

// A's j 1s not accessible here.
class B extends A
int total;

void sum()
total = 1 + j; // ERROR, j is not accessible here

}
}

class Access
public static void main(String args[])
B subOb = new B();

subOb.setij (10, 12);

subOb.sum() ;
System.out.println("Total is " + subOb.total) ;

164

PART | The Java Language

This program will not compile because the use of j inside the sum() method of B
causes an access violation. Since j is declared as private, it is only accessible by other members
of its own class. Subclasses have no access to it.

REMEMBER A class member that has been declared as private will remain private to its class. It is not
accessible by any code outside its class, including subclasses.

A More Practical Example

Let’s look at a more practical example that will help illustrate the power of inheritance. Here,
the final version of the Box class developed in the preceding chapter will be extended to
include a fourth component called weight. Thus, the new class will contain a box’s width,
height, depth, and weight.

// This program uses inheritance to extend Box.
class Box

double width;

double height;

double depth;

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;

}
}

// Here, Box is extended to include weight.
class BoxWeight extends Box

Chapter 8 Inheritance

double weight; // weight of box

// constructor for BoxWeight
BoxWeight (double w, double h, double d, double m) {

width = w;
height = h;
depth = d

weight = m;
}
}

class DemoBoxWeight {
public static void main(String args[]) {
BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight (2, 3, 4, 0.076);
double vol;

vol = myboxl.volume () ;

System.out.println("Volume of myboxl is " + vol);
System.out.println("Weight of myboxl is " + myboxl.weight) ;
System.out.println() ;

vol = mybox2.volume () ;
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight) ;

The output from this program is shown here:

Volume of myboxl is 3000.0
Weight of myboxl is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight

component. It is not necessary for BoxWeight to re-create all of the features found in

Box. It can simply extend Box to meet its own purposes.

165

A major advantage of inheritance is that once you have created a superclass that defines

the attributes common to a set of objects, it can be used to create any number of more
specific subclasses. Each subclass can precisely tailor its own classification. For example,

the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
int color; // color of box

ColorBox (double w, double h, double d, int c) {

width = w;
height = h;
depth = 4d;
color = c;

166 PARTI The Java Language

Remember, once you have created a superclass that defines the general aspects of an
object, that superclass can be inherited to form specialized classes. Each subclass simply
adds its own unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object

A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass. You will find this aspect of inheritance quite useful in a variety of
situations. For example, consider the following:

class RefDemo {
public static void main(String args[]) {
BoxWeight weightbox = new BoxWeight (3, 5, 7, 8.37);
Box plainbox = new Box() ;
double vol;

vol = weightbox.volume () ;

System.out.println("Volume of weightbox is " + wvol);

System.out.println("Weight of weightbox is " +
weightbox.weight) ;

System.out.println() ;

// assign BoxWeight reference to Box reference
plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox
does not define a weight member. */
// System.out.println("Weight of plainbox is " + plainbox.weight) ;

1
}
Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box
objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference
to the weightbox object.

It is important to understand that it is the type of the reference variable—not the type
of the object that it refers to—that determines what members can be accessed. That is,
when a reference to a subclass object is assigned to a superclass reference variable, you will
have access only to those parts of the object defined by the superclass. This is why plainbox
can’t access weight even when it refers to a BoxWeight object. If you think about it, this
makes sense, because the superclass has no knowledge of what a subclass adds to it. This is
why the last line of code in the preceding fragment is commented out. It is not possible for
a Box reference to access the weight field, because Box does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

Chapter 8 Inheritance 167

Using super

In the preceding examples, classes derived from Box were not implemented as efficiently
or as robustly as they could have been. For example, the constructor for BoxWeight explicitly
initializes the width, height, and depth fields of Box. Not only does this duplicate code
found in its superclass, which is inefficient, but it implies that a subclass must be granted
access to these members. However, there will be times when you will want to create a
superclass that keeps the details of its implementation to itself (that is, that keeps its data
members private). In this case, there would be no way for a subclass to directly access or
initialize these variables on its own. Since encapsulation is a primary attribute of OOP, it is
not surprising that Java provides a solution to this problem. Whenever a subclass needs to
refer to its immediate superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second is
used to access a member of the superclass that has been hidden by a member of a subclass.
Each use is examined here.

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following form of
super:

super (arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.
To see how super() is used, consider this improved version of the BoxWeight class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight (double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor

weight = m;
}
1

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value
unique to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since constructors
can be overloaded, super() can be called using any form defined by the superclass. The
constructor executed will be the one that matches the arguments. For example, here is a
complete implementation of BoxWeight that provides constructors for the various ways that

168

PART | The Java Language

a box can be constructed. In each case, super() is called using the appropriate arguments.
Notice that width, height, and depth have been made private within Box.

// A complete implementation of BoxWeight.
class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box (double len) ({
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;

}
}

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) {

super (w, h, d);
weight = m;

}

// default constructor
BoxWeight ()
super () ;
weight = -1;

}

Chapter 8 Inheritance

// call superclass constructor

// constructor used when cube is created

BoxWeight (double len,
super (len) ;
weight = m;
}
1

class DemoSuper {
public static void

double m)

{

main (String args[])

BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight (2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight (); // default

BoxWeight mycube = new BoxWeight (3, 2);

BoxWeight myclone = new BoxWeight (mybox1) ;

double vol;

vol = myboxl.volume () ;

System.out.println("Volume of myboxl is " + vol);
System.out.println("Weight of myboxl is " + myboxl.weight) ;

System.out.println() ;

vol = mybox2.volume () ;
System.out.println ("Volume
System.out.println ("Weight
System.out.println() ;

vol = mybox3.volume () ;
System.out.println ("Volume
System.out.println ("Weight
System.out.println() ;

vol = myclone.volume () ;
System.out.println ("Volume
System.out.println ("Weight
System.out.println() ;

vol = mycube.volume () ;
System.out.println ("Volume
System.out.println ("Weight
System.out.println() ;

of
of

of
of

of
of

of
of

mybox2 is " + vol);
mybox2 is " + mybox2.weight) ;
mybox3 is " + vol);

mybox3 is " + mybox3.weight) ;
myclone is " + vol);
myclone is " + myclone.weight) ;

mycube is " + vol);
mycube is " + mycube.weight) ;

169

170 PARTI The Java Language

This program generates the following output:

Volume of myboxl is 3000.0
Weight of myboxl is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight:

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box. This still
invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable can be
used to reference any object derived from that class. Thus, we are able to pass a BoxWeight
object to the Box constructor. Of course, Box only has knowledge of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass
immediately above the calling class. This is true even in a multileveled hierarchy. Also,
super() must always be the first statement executed inside a subclass constructor.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names
of a subclass hide members by the same name in the superclass. Consider this simple class
hierarchy:

// Using super to overcome name hiding.

class A {
int 1i;
}

// Create a subclass by extending class A.

Chapter 8 Inheritance 171

class B extends A
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // 1 in A
i=Db; // 1iin B

}

void show () {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + 1i);

}
}

class UseSuper ({
public static void main(String args[]) {
B subOb = new B(1, 2);

subOb. show () ;

}
}

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. As you will see, super can also be used to call methods that are
hidden by a subclass.

Creating a Multilevel Hierarchy

Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of
another. For example, given three classes called A, B, and C, C can be a subclass of B, which
is a subclass of A. When this type of situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all aspects of B and A. To see how a
multilevel hierarchy can be useful, consider the following program. In it, the subclass
BoxWeight is used as a superclass to create the subclass called Shipment. Shipment inherits
all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost of
shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {
private double width;
private double height;
private double depth;

172 PARTI The Java Language

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;
1
}

// Add weight.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) ({
super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor
BoxWeight ()

super () ;

weight = -1;

}

Chapter 8 Inheritance

// constructor used when cube is created
BoxWeight (double len, double m) {
super (len) ;
weight = m;
}
1

// Add shipping costs.
class Shipment extends BoxWeight ({
double cost;

// construct clone of an object

Shipment (Shipment ob) { // pass object to constructor
super (ob) ;
cost = ob.cost;

}

// constructor when all parameters are specified
Shipment (double w, double h, double 4,
double m, double c) {
super (w, h, d, m); // call superclass constructor
cost = c;

}

// default constructor
Shipment ()

super () ;

cost = -1;

}

// constructor used when cube is created
Shipment (double len, double m, double c) {
super (len, m);
cost = c;
}
1

class DemoShipment {
public static void main(String args[])
Shipment shipmentl =
new Shipment (10, 20, 15, 10, 3.41);
Shipment shipment2 =
new Shipment (2, 3, 4, 0.76, 1.28);

double vol;

vol = shipmentl.volume () ;
System.out.println("Volume of shipmentl is " + wvol);
System.out.println("Weight of shipmentl is "

+ shipmentl.weight) ;
System.out.println("Shipping cost: $" + shipmentl.cost);
System.out.println() ;

173

174 PART1 The Java Language

vol = shipment2.volume () ;
System.out.println("Volume of shipment2 is " + wvol);
System.out .println ("Weight of shipment2 is "
+ shipment2.weight) ;
System.out .println("Shipping cost: $" + shipment2.cost);

The output of this program is shown here:

Volume of shipmentl is 3000.0
Weight of shipmentl is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of Box
and BoxWeight, adding only the extra information it needs for its own, specific application.
This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in Shipment calls the constructor in
BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class hierarchy, if a
superclass constructor requires parameters, then all subclasses must pass those parameters
“up the line.” This is true whether or not a subclass needs parameters of its own.

NOTE In the preceding program, the entire class hierarchy, including Box, BoxWeight, and Shipment, is
shown all in one file. This is for your convenience only. In Java, all three classes could have been
placed into their own files and compiled separately. In fact, using separate files is the norm, not the
exception, in creating class hierarchies.

When Constructors Are Executed

When a class hierarchy is created, in what order are the constructors for the classes that
make up the hierarchy executed? For example, given a subclass called B and a superclass
called A, is A’s constructor executed before B’s, or vice versa? The answer is that in a class
hierarchy, constructors complete their execution in order of derivation, from superclass to
subclass. Further, since super() must be the first statement executed in a subclass’
constructor, this order is the same whether or not super() is used. If super() is not used,
then the default or parameterless constructor of each superclass will be executed. The
following program illustrates when constructors are executed:

// Demonstrate when constructors are executed.

// Create a super class.
class A {
a0 |
System.out.println("Inside A's constructor.");
}

Chapter 8 Inheritance

// Create a subclass by extending class A.
class B extends A {
B() {
System.out.println("Inside B's constructor.");
}
1

// Create another subclass by extending B.
class C extends B ({
cO) |
System.out.println("Inside C's constructor.");

}
}

class CallingCons ({
public static void main(String args[]) {
C ¢ = new C();

}
}

The output from this program is shown here:

Inside A's constructor
Inside B's constructor
Inside C's constructor

As you can see, the constructors are executed in order of derivation.

If you think about it, it makes sense that constructors complete their execution in order
of derivation. Because a superclass has no knowledge of any subclass, any initialization it
needs to perform is separate from and possibly prerequisite to any initialization performed
by the subclass. Therefore, it must complete its execution first.

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type signature as
a method in its superclass, then the method in the subclass is said to override the method in
the superclass. When an overridden method is called from within its subclass, it will always
refer to the version of that method defined by the subclass. The version of the method
defined by the superclass will be hidden. Consider the following:

// Method overriding.
class A {
int i, J;
A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show () {
System.out.println("i and j: " + i + " " + J);
}
}

175

176 PARTI The Java Language

class B extends A
int k;

B(int a, int b, int c) {
super (a, b);

k = ¢;
}
// display k - this overrides show() in A
void show () {
System.out.println("k: " + k);
1

}

class Override {
public static void main(String args[])
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}
}

The output produced by this program is shown here:
k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you wish to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This allows all instance variables to be displayed.

class B extends A
int k;

B(int a, int b, int c) {
super (a, b);
k = ¢;

}

void show ()
super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

If you substitute this version of A into the previous program, you will see the following
output:

iand j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

Chapter 8 Inheritance

Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded - not
// overridden.
class A {

int i, j;

// display i and j
void show () {
System.out.println("i and j: " + i + " " + J);

}
}

// Create a subclass by extending class A.
class B extends A
int k;

B(int a, int b, int c) {
super (a, b);
k = ¢c;

}

// overload show ()
void show (String msg) {
System.out.println(msg + k);

}

1
class Override {
public static void main(String args[])
B subOb = new B(1, 2, 3);
subOb.show ("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A
}
1

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature

177

different from the one in A, which takes no parameters. Therefore, no overriding (or name

hiding) takes place. Instead, the version of show() in B simply overloads the version of

show() in A.

178

PART | The Java Language

Dynamic Method Dispatch

While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a name space convention, then it would be, at best, an interesting curiosity,
but of little real value. However, this is not the case. Method overriding forms the basis for
one of Java’s most powerful concepts: dynamic method dispatch. Dynamic method dispatch is
the mechanism by which a call to an overridden method is resolved at run time, rather than
compile time. Dynamic method dispatch is important because this is how Java implements
run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer
to a subclass object. Java uses this fact to resolve calls to overridden methods at run time.
Here is how. When an overridden method is called through a superclass reference, Java
determines which version of that method to execute based upon the type of the object
being referred to at the time the call occurs. Thus, this determination is made at run time.
When different types of objects are referred to, different versions of an overridden method
will be called. In other words, i is the type of the object being referred to (not the type of the
reference variable) that determines which version of an overridden method will be executed.
Therefore, if a superclass contains a method that is overridden by a subclass, then when
different types of objects are referred to through a superclass reference variable, different
versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {
void callme() {
System.out.println("Inside A's callme method") ;

}
}

class B extends A
// override callme ()
void callme()
System.out.println("Inside B's callme method") ;

}
}

class C extends A
// override callme ()
void callme () {
System.out.println("Inside C's callme method") ;

}
}

class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C

Chapter 8 Inheritance 179

A r; // obtain a reference of type A

-

= a; // r refers to an A object
r.callme(); // calls A's version of callme

-

= b; // r refers to a B object
r.callme(); // calls B's version of callme

-

= c; // r refers to a C object
.callme(); // calls C's version of callme

=

The output from the program is shown here:

Inside A's callme method
Inside B's callme method
Inside C's callme method

This program creates one superclass called A and two subclasses of it, called B and C.
Subclasses B and C override callme() declared in A. Inside the main() method, objects of
type A, B, and C are declared. Also, a reference of type A, called r, is declared. The program
then in turn assigns a reference to each type of object to r and uses that reference to invoke
callme(). As the output shows, the version of callme() executed is determined by the type
of object being referred to at the time of the call. Had it been determined by the type of
the reference variable, r, you would see three calls to A’s callme() method.

NOTE Readers familiar with C++ or C# will recognize that overridden methods in Java are similar to
virtual functions in those languages.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some or all of those methods.
Overridden methods are another way that Java implements the “one interface, multiple
methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization. Used correctly, the superclass provides all elements that a subclass can use
directly. It also defines those methods that the derived class must implement on its own.
This allows the subclass the flexibility to define its own methods, yet still enforces a
consistent interface. Thus, by combining inheritance with overridden methods, a superclass
can define the general form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that object-
oriented design brings to bear on code reuse and robustness. The ability of existing code
libraries to call methods on instances of new classes without recompiling while maintaining
a clean abstract interface is a profoundly powerful tool.

180

PART | The Java Language

Applying Method Overriding

Let’s look at a more practical example that uses method overriding. The following program
creates a superclass called Figure that stores the dimensions of a two-dimensional object. It
also defines a method called area() that computes the area of an object. The program
derives two subclasses from Figure. The first is Rectangle and the second is Triangle. Each
of these subclasses overrides area() so that it returns the area of a rectangle and a triangle,
respectively.

// Using run-time polymorphism.
class Figure

double diml;

double dim2;

Figure (double a, double b) ({
diml = a;
dim2 b;

}

double area() {
System.out.println("Area for Figure is undefined.");
return O;

}
}

class Rectangle extends Figure {
Rectangle (double a, double b) {
super(a, b);
1

// override area for rectangle

double area() {
System.out.println("Inside Area for Rectangle.");
return diml * dim2;

}
}

class Triangle extends Figure {
Triangle (double a, double b) {
super(a, b);

}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return diml * dim2 / 2;
}
}

class FindAreas ({
public static void main(String argsl[]) {
Figure f = new Figure (10, 10);
Rectangle r = new Rectangle(9, 5);

Chapter 8 Inheritance 181

Triangle t = new Triangle (10, 8);
Figure figref;

figref = r;
System.out.println("Area is " + figref.areal());

figref = t;
System.out.println("Area is " + figref.areal());

figref = £;
System.out.println("Area is " + figref.areal());

}
}

The output from the program is shown here:

Inside Area for Rectangle.
Area 1is 45

Inside Area for Triangle.
Area 1is 40

Area for Figure is undefined.
Area 1is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is possible
to define one consistent interface that is used by several different, yet related, types of
objects. In this case, if an object is derived from Figure, then its area can be obtained by
calling area(). The interface to this operation is the same no matter what type of figure is
being used.

Using Abstract Classes

There are situations in which you will want to define a superclass that declares the structure
of a given abstraction without providing a complete implementation of every method. That
is, sometimes you will want to create a superclass that only defines a generalized form that
will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a
class determines the nature of the methods that the subclasses must implement. One way
this situation can occur is when a superclass is unable to create a meaningful implementation
for a method. This is the case with the class Figure used in the preceding example. The
definition of area() is simply a placeholder. It will not compute and display the area of any
type of object.

As you will see as you create your own class libraries, it is not uncommon for a method
to have no meaningful definition in the context of its superclass. You can handle this
situation two ways. One way, as shown in the previous example, is to simply have it report
a warning message. While this approach can be useful in certain situations—such as
debugging—it is not usually appropriate. You may have methods that must be overridden
by the subclass in order for the subclass to have any meaning. Consider the class Triangle.
It has no meaning if area() is not defined. In this case, you want some way to ensure that a
subclass does, indeed, override all necessary methods. Java’s solution to this problem is the
abstract method.

182

PART | The Java Language

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier. These methods are sometimes referred to as subclasser responsibility
because they have no implementation specified in the superclass. Thus, a subclass must
override them—it cannot simply use the version defined in the superclass. To declare an
abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

Any class that contains one or more abstract methods must also be declared abstract. To
declare a class abstract, you simply use the abstract keyword in front of the class keyword at
the beginning of the class declaration. There can be no objects of an abstract class. That is,
an abstract class cannot be directly instantiated with the new operator. Such objects would
be useless, because an abstract class is not fully defined. Also, you cannot declare abstract
constructors, or abstract static methods. Any subclass of an abstract class must either
implement all of the abstract methods in the superclass, or be declared abstract itself.

Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

// A Simple demonstration of abstract.
abstract class A {
abstract void callme () ;

// concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.") ;

}
}

class B extends A
void callme() {
System.out.println("B's implementation of callme.");

}
}

class AbstractDemo {
public static void main(String argsl[]) {
B b = new B();

b.callme() ;
b.callmetoo () ;

}
}

Notice that no objects of class A are declared in the program. As mentioned, it is not
possible to instantiate an abstract class. One other point: class A implements a concrete
method called callmetoo(). This is perfectly acceptable. Abstract classes can include as
much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to
create object references, because Java’s approach to run-time polymorphism is implemented
through the use of superclass references. Thus, it must be possible to create a reference to
an abstract class so that it can be used to point to a subclass object. You will see this feature
put to use in the next example.

Chapter 8 Inheritance 183

Using an abstract class, you can improve the Figure class shown earlier. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following version
of the program declares area() as abstract inside Figure. This, of course, means that all
classes derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {

double dimil;

double dim2;

Figure (double a, double b) {
diml = a;
dim2 = b;

}

// area is now an abstract method
abstract double areal() ;

}

class Rectangle extends Figure ({
Rectangle (double a, double b) {
super (a, b);

}

// override area for rectangle

double area()
System.out.println("Inside Area for Rectangle.");
return diml * dim2;

}
}

class Triangle extends Figure {
Triangle (double a, double b) {
super (a, b);

}

// override area for right triangle
double area()
System.out.println("Inside Area for Triangle.");
return diml * dim2 / 2;
}
1

class AbstractAreas
public static void main(String args[]) {
// Figure f = new Figure (10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle (10, 8);
Figure figref; // this is OK, no object is created

figref = r;
System.out.println("Area is " + figref.areal());

figref = t;

184

PART | The Java Language

System.out.println("Area is " + figref.areal());
}
}

As the comment inside main() indicates, it is no longer possible to declare objects of
type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To
prove this to yourself, try creating a subclass that does not override area(). You will receive
a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference
variable of type Figure. The variable figref is declared as a reference to Figure, which means
that it can be used to refer to an object of any class derived from Figure. As explained, it is
through superclass reference variables that overridden methods are resolved at run time.

Using final with Inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply
to inheritance. Both are examined here.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times when
you will want to prevent it from occurring. To disallow a method from being overridden,
specify final as a modifier at the start of its declaration. Methods declared as final cannot
be overridden. The following fragment illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");

}
}

class B extends A
void meth() { // ERROR! Can't override.
System.out .println("Illegal!");

}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do
so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by a
subclass. When a small final method is called, often the Java compiler can copy the bytecode
for the subroutine directly inline with the compiled code of the calling method, thus
eliminating the costly overhead associated with a method call. Inlining is an option only with
final methods. Normally, Java resolves calls to methods dynamically, at run time. This is called
late binding. However, since final methods cannot be overridden, a call to one can be resolved
at compile time. This is called early binding.

Chapter 8 Inheritance 185

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its methods as
final, too. As you might expect, it is illegal to declare a class as both abstract and final since
an abstract class is incomplete by itself and relies upon its subclasses to provide complete
implementations.

Here is an example of a final class:

final class A {
/]
}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A
/...

1

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class

There is one special class, Object, defined by Java. All other classes are subclasses of Object.
That is, Object is a superclass of all other classes. This means that a reference variable of
type Object can refer to an object of any other class. Also, since arrays are implemented as
classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object
being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class<?> getClass() Obtains the class of an object at run time.

int hashCode () Returns the hash code associated with the invoking
object.

void notify() Resumes execution of a thread waiting on the
invoking object.

void notifyAll() Resumes execution of all threads waiting on the
invoking object.

String toString() Returns a string that describes the object.

void wait() Waits on another thread of execution.

void wait(long milliseconds)
void wait(long milliseconds,

int nanoseconds)

186

PART | The Java Language

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You may
override the others. These methods are described elsewhere in this book. However, notice
two methods now: equals() and toString(). The equals() method compares two objects. It
returns true if the objects are equal, and false otherwise. The precise definition of equality
can vary, depending on the type of objects being compared. The toString() method returns
a string that contains a description of the object on which it is called. Also, this method is
automatically called when an object is output using println(). Many classes override this
method. Doing so allows them to tailor a description specifically for the types of objects that
they create.

One last point: Notice the unusual syntax in the return type for getClass(). This relates
to Java’s generics feature, which is described in Chapter 14.

CHAPTER

Packages and Interfaces

This chapter examines two of Java’s most innovative features: packages and interfaces. Packages
are containers for classes. They are used to keep the class name space compartmentalized. For
example, a package allows you to create a class named List, which you can store in your own
package without concern that it will collide with some other class named List stored elsewhere.
Packages are stored in a hierarchical manner and are explicitly imported into new class
definitions.

In previous chapters, you have seen how methods define the interface to the datain a
class. Through the use of the interface keyword, Java allows you to fully abstract an interface
from its implementation. Using interface, you can specify a set of methods that can be
implemented by one or more classes. In its traditional form, the interface, itself, does not
actually define any implementation. Although they are similar to abstract classes, interfaces
have an additional capability: A class can implement more than one interface. By contrast, a
class can only inherit a single superclass (abstract or otherwise).

Packages

In the preceding chapters, the name of each example class was taken from the same name
space. This means that a unique name had to be used for each class to avoid name collisions.
After a while, without some way to manage the name space, you could run out of convenient,
descriptive names for individual classes. You also need some way to be assured that the
name you choose for a class will be reasonably unique and not collide with class names
chosen by other programmers. (Imagine a small group of programmers fighting over who
gets to use the name “Foobar” as a class name. Or, imagine the entire Internet community
arguing over who first named a class “Espresso.”) Thankfully, Java provides a mechanism for
partitioning the class name space into more manageable chunks. This mechanism is the
package. The package is both a naming and a visibility control mechanism. You can define
classes inside a package that are not accessible by code outside that package. You can also
define class members that are exposed only to other members of the same package. This
allows your classes to have intimate knowledge of each other, but not expose that knowledge
to the rest of the world.

187

188

PARTI The Java Language

Defining a Package

To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored. If you omit the
package statement, the class names are put into the default package, which has no name.
(This is why you haven’t had to worry about packages before now.) While the default
package is fine for short, sample programs, it is inadequate for real applications. Most of
the time, you will define a package for your code.

This is the general form of the package statement:

package pkg;
Here, pkgis the name of the package. For example, the following statement creates a
package called MyPackage:

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called MyPackage.
Remember that case is significant, and the directory name must match the package name
exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package
statement is shown here:

package pkgl[.pkg2[.pkg311;

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to choose your
package names carefully. You cannot rename a package without renaming the directory in
which the classes are stored.

Finding Packages and CLASSPATH

As just explained, packages are mirrored by directories. This raises an important question:
How does the Java run-time system know where to look for packages that you create? The
answer has three parts. First, by default, the Java run-time system uses the current working
directory as its starting point. Thus, if your package is in a subdirectory of the current
directory, it will be found. Second, you can specify a directory path or paths by setting the
CLASSPATH environmental variable. Third, you can use the -classpath option with java
and javac to specify the path to your classes.

Chapter 9 Packages and Interfaces 189

For example, consider the following package specification:
package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program
can be executed from a directory immediately above MyPack, or the CLASSPATH must be
set to include the path to MyPack, or the -classpath option must specify the path to MyPack
when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself. It
must simply specify the path to MyPack. For example, in a Windows environment, if the path
to MyPack is

C:\MyPrograms\Java\MyPack
then the class path to MyPack is
C:\MyPrograms\Java

The easiest way to try the examples shown in this book is to simply create the package
directories below your current development directory, put the .class files into the
appropriate directories, and then execute the programs from the development directory.
This is the approach used in the following example.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance {
String name;

double bal;

Balance (String n, double b)

name = n;
bal = b;
}
void show () ({
if (bal<0)
System.out .print ("--> ") ;
System.out.println(name + ": $" + bal);

}
}

class AccountBalance {
public static void main(String args[])
Balance current[] = new Balancel[3];

current [0] new Balance ("K. J. Fielding", 123.23);
current [1] = new Balance("Will Tell", 157.02);
current [2] = new Balance ("Tom Jackson", -12.33);

190

PART | The Java Language

for(int 1=0; i<3; 1i++) current[i].show() ;
1
!

Call this file AccountBalance.java and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack
directory. Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this
command. (Alternatively, you can use one of the other two options described in the
preceding section to specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it
cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection

In the preceding chapters, you learned about various aspects of Java’s access control
mechanism and its access modifiers. For example, you already know that access to a private
member of a class is granted only to other members of that class. Packages add another
dimension to access control. As you will see, Java provides many levels of protection to allow
fine-grained control over the visibility of variables and methods within classes, subclasses,
and packages.

Classes and packages are both means of encapsulating and containing the name space
and scope of variables and methods. Packages act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class is Java’s
smallest unit of abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

¢ Subclasses in the same package
¢ Non-subclasses in the same package
¢ Subclasses in different packages

¢ (Classes that are neither in the same package nor subclasses

The three access modifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories. Table 9-1 sums up the
interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit access
specification, it is visible to subclasses as well as to other classes in the same package. This is
the default access. If you want to allow an element to be seen outside your current package,
but only to classes that subclass your class directly, then declare that element protected.

Chapter 9 Packages and Interfaces 191

Private No Modifier Protected Public
Same class Yes Yes Yes Yes
Same package subclass No Yes Yes Yes
Same package non-subclass No Yes Yes Yes
Different package subclass No No Yes Yes
Different package non-subclass No No No Yes

Table 9-1 Class Member Access

Table 9-1 applies only to members of classes. A non-nested class has only two possible
access levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code within its
same package. When a class is public, it must be the only public class declared in the file,
and the file must have the same name as the class.

An Access Example

The following example shows all combinations of the access control modifiers. This
example has two packages and five classes. Remember that the classes for the two different
packages need to be stored in directories named after their respective packages—in this
case, pl and p2.

The source for the first package defines three classes: Protection, Derived, and
SamePackage. The first class defines four int variables in each of the legal protection
modes. The variable n is declared with the default protection, n_pri is private, n_pro is
protected, and n_pub is public.

Each subsequent class in this example will try to access the variables in an instance of
this class. The lines that will not compile due to access restrictions are commented out.
Before each of these lines is a comment listing the places from which this level of
protection would allow access.

The second class, Derived, is a subclass of Protection in the same package, pl. This
grants Derived access to every variable in Protection except for n_pri, the private one. The
third class, SamePackage, is not a subclass of Protection, but is in the same package and
also has access to all but n_pri.

This is file Protection.java:

package pl;

public class Protection
int n = 1;
private int n pri = 2;
protected int n pro = 3;
public int n_pub = 4;

public Protection() {
System.out.println("base constructor") ;
System.out.println("n = " + n);
System.out.println("n pri = " + n pri);
(

System.out.println("n pro = " + n_pro) ;

192

PART | The Java Language

System.out.println("n pub = " + n pub);

}
}

This is file Derived.java:
package pl;
class Derived extends Protection ({
Derived () {
System.out.println("derived constructor") ;

System.out.println("n = " + n);

// class only

// System.out.println("n pri = "4 + n pri);
System.out.println("n pro = " + n_pro);
System.out.println("n pub = " + n pub);

This is file SamePackage.java:
package pl;

class SamePackage
SamePackage () {

Protection p = new Protection() ;
System.out.println ("same package constructor");

System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);
System.out.println("n pro = " + p.n pro);
System.out.println("n pub = " + p.n pub);

Following is the source code for the other package, p2. The two classes defined in p2
cover the other two conditions that are affected by access control. The first class, Protection2,
is a subclass of pl.Protection. This grants access to all of p1.Protection’s variables except
for n_pri (because it is private) and n, the variable declared with the default protection.
Remember, the default only allows access from within the class or the package, not extra-
package subclasses. Finally, the class OtherPackage has access to only one variable, n_pub,
which was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends pl.Protection
Protection2() {

Chapter 9 Packages and Interfaces

System.out.println("derived other package constructor");

// class or package only
// System.out.println("n = " + n);

// class only

// System.out.println("n_pri = " + n_pri);
System.out.println("n pro = " + n_pro);
System.out.println("n pub = " + n pub);

This is file OtherPackage.java:
package p2;

class OtherPackage ({
OtherPackage () {
pl.Protection p = new pl.Protection() ;
System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n pri = " + p.n pri);

// class, subclass or package only
// System.out.println("n pro = " + p.n pro);

System.out.println("n pub = " + p.n _pub);

If you want to try these two packages, here are two test files you can use. The one for
package pl is shown here:

// Demo package pl.
package pl;

// Instantiate the various classes in pl.
public class Demo {
public static void main(String argsl[]) {
Protection obl = new Protection|() ;
Derived ob2 = new Derived() ;
SamePackage ob3 = new SamePackage () ;

}
}

The test file for p2 is shown next:

// Demo package p2.
package p2;

193

194 PARTI The Java Language

// Instantiate the various classes in p2.
public class Demo {
public static void main(String argsl[]) {
Protection2 obl = new Protection2 () ;
OtherPackage ob2 = new OtherPackage() ;

}
}

Importing Packages

Given that packages exist and are a good mechanism for compartmentalizing diverse classes
from each other, it is easy to see why all of the built-in Java classes are stored in packages.
There are no core Java classes in the unnamed default package; all of the standard classes
are stored in some named package. Since classes within packages must be fully qualified with
their package name or names, it could become tedious to type in the long dot-separated
package path name for every class you want to use. For this reason, Java includes the import
statement to bring certain classes, or entire packages, into visibility. Once imported, a class
can be referred to directly, using only its name. The import statement is a convenience to
the programmer and is not technically needed to write a complete Java program. If you are
going to refer to a few dozen classes in your application, however, the import statement will
save a lot of typing.

In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:

import pkgl [.pkg2].(classname | *);

Here, pkgl is the name of a top-level package, and pkg2is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on the
depth of a package hierarchy, except that imposed by the file system. Finally, you specify
either an explicit classname or a star (*), which indicates that the Java compiler should
import the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

All of the standard Java classes included with Java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang. Normally, you have to import every package or class that you want to use, but
since Java is useless without much of the functionality in java.lang, it is implicitly imported
by the compiler for all programs. This is equivalent to the following line being at the top
of all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import using the
star form, the compiler will remain silent, unless you try to use one of the classes. In that
case, you will get a compile-time error and have to explicitly name the class specifying its
package.

Chapter 9 Packages and Interfaces 195

It must be emphasized that the import statement is optional. Any place you use a class
name, you can use its fully qualified name, which includes its full package hierarchy. For
example, this fragment uses an import statement:

import java.util.*;
class MyDate extends Date

}
The same example without the import statement looks like this:

class MyDate extends java.util.Date ({

}

In this version, Date is fully-qualified.

As shown in Table 9-1, when a package is imported, only those items within the package
declared as public will be available to non-subclasses in the importing code. For example, if
you want the Balance class of the package MyPack shown earlier to be available as a stand-
alone class for general use outside of MyPack, then you will need to declare it as public and
put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
show () method are public. This means that they can
be used by non-subclass code outside their package.

*/

public class Balance {

String name;
double bal;

public Balance(String n, double b) {

name = n;
bal = b;
}
public void show() {
if (bal<0)
System.out .print ("--> ") ;
System.out.println(name + ": $" + bal);

}
}

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside
the MyPack package. For example, here TestBalance imports MyPack and is then able to
make use of the Balance class:

import MyPack.*;

class TestBalance ({
public static void main(String args[])

196

PART | The Java Language

/* Because Balance is public, you may use Balance
class and call its constructor. */
Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()

}
}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces

Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it. Interfaces
are syntactically similar to classes, but they lack instance variables, and, as a general rule,
their methods are declared without any body. In practice, this means that you can define
interfaces that don’t make assumptions about how they are implemented. Once it is
defined, any number of classes can implement an interface. Also, one class can implement
any number of interfaces.

To implement an interface, a class must provide the complete set of methods required
by the interface. However, each class is free to determine the details of its own implementation.
By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time. Normally,
in order for a method to be called from one class to another, both classes need to be
present at compile time so the Java compiler can check to ensure that the method
signatures are compatible. This requirement by itself makes for a static and nonextensible
classing environment. Inevitably in a system like this, functionality gets pushed up higher
and higher in the class hierarchy so that the mechanisms will be available to more and
more subclasses. Interfaces are designed to avoid this problem. They disconnect the
definition of a method or set of methods from the inheritance hierarchy. Since interfaces
are in a different hierarchy from classes, it is possible for classes that are unrelated in terms
of the class hierarchy to implement the same interface. This is where the real power of
interfaces is realized.

Defining an Interface
An interface is defined much like a class. This is a simplified general form of an interface:

access interface name {
return-type method-namel (parameter-list);
return-type method-name2(parameter-list);

type final-varnamel = value;

type final-varname2 = value;

//

return-type method-nameN(parameter-list) ;
type final-varnameN = value,

Chapter 9 Packages and Interfaces 197

When no access modifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as
public, the interface can be used by any other code. In this case, the interface must be the
only public interface declared in the file, and the file must have the same name as the
interface. name is the name of the interface, and can be any valid identifier. Notice that
the methods that are declared have no bodies. They end with a semicolon after the parameter
list. They are, essentially, abstract methods. Each class that includes such an interface must
implement all of the methods.

Before continuing an important point needs to be made. JDK 8 added a feature to
interface that makes a significant change to its capabilities. Prior to JDK 8, an interface
could not define any implementation whatsoever. This is the type of interface that the
preceding simplified form shows, in which no method declaration supplies a body. Thus,
prior to JDK 8, an interface could define only “what,” but not “how.” JDK 8 changes this.
Beginning with JDK 8, it is possible to add a default implementation to an interface method.
Thus, it is now possible for interface to specify some behavior. However, default methods
constitute what is, in essence, a special-use feature, and the original intent behind interface
still remains. Therefore, as a general rule, you will still often create and use interfaces in
which no default methods exist. For this reason, we will begin by discussing the interface in
its traditional form. The default method is described at the end of this chapter.

As the general form shows, variables can be declared inside of interface declarations.
They are implicitly final and static, meaning they cannot be changed by the implementing
class. They must also be initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that
contains one method called callback() that takes a single integer parameter.

interface Callback {
void callback (int param) ;

}

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface.

To implement an interface, include the implements clause in a class definition, and then
create the methods required by the interface. The general form of a class that includes the
implements clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {

// class-body
}

If a class implements more than one interface, the interfaces are separated with a comma.
If a class implements two interfaces that declare the same method, then the same method
will be used by clients of either interface. The methods that implement an interface must
be declared public. Also, the type signature of the implementing method must match
exactly the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier:

class Client implements Callback {
// Implement Callback's interface

198

PART | The Java Language

public void callback(int p) {

System.out.println("callback called with " + p);

}
}

Notice that callback() is declared using the public access modifier.

REMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client implements
callback() and adds the method nonIfaceMeth():

class Client implements Callback {
// Implement Callback's interface
public void callback(int p)
System.out.println("callback called with " + p);

}

void nonIfaceMeth() {
System.out .println("Classes that implement interfaces " +
"may also define other members, too.");

}
}

Accessing Implementations Through Interface References

You can declare variables as object references that use an interface rather than a class type.
Any instance of any class that implements the declared interface can be referred to by such
a variable. When you call a method through one of these references, the correct version
will be called based on the actual instance of the interface being referred to. This is one of
the key features of interfaces. The method to be executed is looked up dynamically at run
time, allowing classes to be created later than the code which calls methods on them. The
calling code can dispatch through an interface without having to know anything about the
“callee.” This process is similar to using a superclass reference to access a subclass object, as
described in Chapter 8.

CAUTION Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use interfaces
casually in performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface ({
public static void main(String args[])
Callback ¢ = new Client () ;
c.callback(42) ;
}
}

Chapter 9 Packages and Interfaces 199

The output of this program is shown here:
callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an
instance of Client. Although c can be used to access the callback() method, it cannot access
any other members of the Client class. An interface reference variable has knowledge only
of the methods declared by its interface declaration. Thus, ¢ could not be used to access
nonlfaceMeth() since it is defined by Client but not Callback.

While the preceding example shows, mechanically, how an interface reference variable
can access an implementation object, it does not demonstrate the polymorphic power of
such a reference. To sample this usage, first create the second implementation of Callback,
shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println ("Another version of callback") ;
System.out.println("p squared is " + (p*p));

}
}

Now, try the following class:

class TestIface2 {
public static void main(String args[])
Callback ¢ = new Client() ;
AnotherClient ob = new AnotherClient () ;

c.callback(42) ;

c = ob; // ¢ now refers to AnotherClient object
c.callback(42) ;

}
}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object
that c refers to at run time. While this is a very simple example, you will see another, more
practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods required by that
interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
int a, b;

200

PART | The Java Language

void show () {
System.out.println(a + " " + b);

}
/...

}

Here, the class Incomplete does not implement callback() and must be declared
as abstract. Any class that inherits Incomplete must implement callback() or be declared
abstract itself.

Nested Interfaces

An interface can be declared a member of a class or another interface. Such an interface
is called a member interface or a nested interface. A nested interface can be declared as public,
private, or protected. This differs from a top-level interface, which must either be declared
as public or use the default access level, as previously described. When a nested interface is
used outside of its enclosing scope, it must be qualified by the name of the class or interface
of which it is a member. Thus, outside of the class or interface in which a nested interface is
declared, its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.
class A {
// this is a nested interface
public interface NestedIF ({
boolean isNotNegative (int x) ;

}
}

// B implements the nested interface.
class B implements A.NestedIF ({
public boolean isNotNegative (int x) {
return X < 0 ? false: true;

}
}

class NestedIFDemo {
public static void main(String argsl[]) {

// use a nested interface reference
A.NestedIF nif = new B();

if (nif.isNotNegative (10))
System.out.println("10 is not negative");
if (nif.isNotNegative (-12))
(

System.out.println("this won't be displayed") ;

Chapter 9 Packages and Interfaces 201

Notice that A defines a member interface called NestedIF and that it is declared public.
Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the main()
method, an A.NestedIF reference called nif is created, and it is assigned a reference to
a B object. Because B implements A.NestedlIF, this is legal.

Applying Interfaces

To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters, you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list,
a binary tree, and so on. No matter how the stack is implemented, the interface to the
stack remains the same. That is, the methods push() and pop() define the interface to
the stack independently of the details of the implementation. Because the interface to a
stack is separate from its implementation, it is easy to define a stack interface, leaving it to
each implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called
IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack {
void push(int item); // store an item
int pop(); // retrieve an item

The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack
FixedStack (int size) {

stck = new int[size]l;

tos = -1;

}

// Push an item onto the stack
public void push(int item)
if (tos==stck.length-1) // use length member
System.out.println("Stack is full.");
else
stck[++tos] = item;

202

PART | The Java Language

// Pop an item from the stack
public int pop()
if(tos < 0) {
System.out.println("Stack underflow.") ;
return 0;
}
else
return stck[tos--];

}
}

class IFTest
public static void main(String args[])
FixedStack mystackl = new FixedStack(5) ;
FixedStack mystack2 = new FixedStack (8) ;

// push some numbers onto the stack
for(int i=0; i<5; i++) mystackl.push(i);
for(int i=0; 1i<8; i++) mystack2.push(i) ;

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int 1=0; i<5; i++)
System.out .println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");
for(int i=0; 1<8; i++)
System.out.println (mystack2.pop()) ;

Following is another implementation of IntStack that creates a dynamic stack by use
of the same interface definition. In this implementation, each stack is constructed with an
initial length. If this initial length is exceeded, then the stack is increased in size. Each time
more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack {
private int stckl[];
private int tos;

// allocate and initialize stack
DynStack (int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack
public void push(int item) {
// if stack is full, allocate a larger stack
if (tos==stck.length-1) {
int temp[] = new int[stck.length * 2]; // double size
for(int i=0; i<stck.length; i++) temp[i] = stck[i];

}

}

Chapter 9 Packages and Interfaces

stck = temp;

stck[++tos] = item;
1
else

stck[++tos] = item;

// Pop an item from the stack
public int pop() {

}

if (tos < 0) {
System.out .println("Stack underflow.") ;
return 0O;

else
return stck[tos--1];

class IFTest2 {
public static void main(String args[])

through an interface reference. This means that calls to push() and pop() are resolved at

DynStack mystackl = new DynStack(5);
DynStack mystack2 = new DynStack(8) ;

// these loops cause each stack to grow
for(int i=0; i<12; i++) mystackl.push(i);
for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystackl:");
for(int 1=0; i<12; i++)
System.out .println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");
for(int i=0; 1<20; i++)
System.out.println (mystack2.pop()) ;

203

The following class uses both the FixedStack and DynStack implementations. It does so

run time rather than at compile time.

/* Create an interface variable and

*/

access stacks through it.

class IFTest3 (

public static void main(String args[]) {

IntStack mystack; // create an interface reference variable
DynStack ds = new DynStack(5) ;
FixedStack fs = new FixedStack(8) ;

mystack = ds; // load dynamic stack
// push some numbers onto the stack
for(int i=0; i<12; i++) mystack.push(i) ;

204

PART | The Java Language

mystack = fs; // load fixed stack
for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int 1=0; 1i<12; 1i++)
System.out .println (mystack.pop()) ;

mystack = fs;
System.out.println("Values in fixed stack:");
for(int i=0; 1<8; i++)
System.out.println (mystack.pop()) ;
}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds,
it uses the versions of push() and pop() defined by the DynStack implementation. When it
refers to fs, it uses the versions of push() and pop() defined by FixedStack. As explained,
these determinations are made at run time. Accessing multiple implementations of an
interface through an interface reference variable is the most powerful way that Java
achieves run-time polymorphism.

Variables in Interfaces

You can use interfaces to import shared constants into multiple classes by simply declaring
an interface that contains variables that are initialized to the desired values. When you
include that interface in a class (that is, when you “implement” the interface), all of those
variable names will be in scope as constants. (This is similar to using a header file in C/C++
to create a large number of #defined constants or const declarations.) If an interface
contains no methods, then any class that includes such an interface doesn’t actually
implement anything. It is as if that class were importing the constant fields into the class
name space as final variables. The next example uses this technique to implement an
automated “decision maker”:

import java.util.Random;

interface SharedConstants {
int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3
int SOON = 4;
int NEVER = 5;

7

}

class Question implements SharedConstants {
Random rand = new Random() ;
int ask() {
int prob = (int) (100 * rand.nextDouble()) ;
if (prob < 30)

else 1if

else if

else 1if

return NO;

return YES;

return LATER;

return SOON;

else

}
}

class AskMe implements SharedConstants {

return NEVER;

(prob < 60)
(prob < 75)

(prob < 98)

//
!/
!/
//

!/

static void answer (int result)
switch (result)

}
}

public static void main(String argsl[])

case NO:

System.out.println("No") ;

break;
case YES:

System.out.println("Yes") ;

break;
case MAYBE:

System.out.println ("Maybe") ;

break;
case LATER:

System.out.println("Later") ;

break;
case SOON:

System.out.println("Soon") ;

break;
case NEVER:

System.out.println ("Never") ;

break;

Question g = new Question() ;

answer (q.ask())
answer (q.ask ())
answer (g.ask())
answer (g.ask())

}
}

Notice that this program makes use of one of Java’s standard classes: Random. This class
provides pseudorandom numbers. It contains several methods that allow you to obtain

Chapter 9

Packages and Interfaces

random numbers in the form required by your program. In this example, the method
nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the

SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are

205

206

PART | The Java Language

defined. Inside each class, the code refers to these constants as if each class had defined or
inherited them directly. Here is the output of a sample run of this program. Note that the
results are different each time it is run.

Later
Soon
No
Yes

NOTE The technique of using an interface to define shared constants, as just described, is controversial.
It is described here for completeness.

Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the same as
for inheriting classes. When a class implements an interface that inherits another interface,
it must provide implementations for all methods required by the interface inheritance
chain. Following is an example:

// One interface can extend another.
interface A {

void methl () ;

void meth2 () ;

}

// B now includes methl () and meth2() -- it adds meth3 ().
interface B extends A
void meth3 () ;

}

// This class must implement all of A and B
class MyClass implements B {
public void methl () {
System.out.println("Implement methl ().");

}

public void meth2 ()
System.out.println("Implement meth2().");
}

public void meth3 () {
System.out .println("Implement meth3().");
}

}

class IFExtend {
public static void main(String argl]) ({
MyClass ob = new MyClass() ;

Chapter 9 Packages and Interfaces 207

ob.methl () ;
ob.meth2 () ;
ob.meth3 () ;

}
}

As an experiment, you might want to try removing the implementation for methl() in
MyClass. This will cause a compile-time error. As stated earlier, any class that implements
an interface must implement all methods required by that interface, including any that are
inherited from other interfaces.

Default Interface Methods

As explained earlier, prior to JDK 8, an interface could not define any implementation
whatsoever. This meant that for all previous versions of Java, the methods specified by an
interface were abstract, containing no body. This is the traditional form of an interface and
is the type of interface that the preceding discussions have used. The release of JDK 8 has
changed this by adding a new capability to interface called the default method. A default
method lets you define a default implementation for an interface method. In other words,
by use of a default method, it is now possible for an interface method to provide a body,
rather than being abstract. During its development, the default method was also referred to
as an extension method, and you will likely see both terms used.

A primary motivation for the default method was to provide a means by which
interfaces could be expanded without breaking existing code. Recall that there must be
implementations for all methods defined by an interface. In the past, if a new method were
added to a popular, widely used interface, then the addition of that method would break
existing code because no implementation would be found for that new method. The
default method solves this problem by supplying an implementation that will be used if no
other implementation is explicitly provided. Thus, the addition of a default method will not
cause preexisting code to break.

Another motivation for the default method was the desire to specify methods in an
interface that are, essentially, optional, depending on how the interface is used. For
example, an interface might define a group of methods that act on a sequence of elements.
One of these methods might be called remove(), and its purpose is to remove an element
from the sequence. However, if the interface is intended to support both modifiable and
nonmodifiable sequences, then remove() is essentially optional because it won’t be used by
nonmodifiable sequences. In the past, a class that implemented a nonmodifiable sequence
would have had to define an empty implementation of remove(), even though it was not
needed. Today, a default implementation for remove() can be specified in the interface
that does nothing (or throws an exception). Providing this default prevents a class used for
nonmodifiable sequences from having to define its own, placeholder version of remove().
Thus, by providing a default, the interface makes the implementation of remove() by a
class optional.

It is important to point out that the addition of default methods does not change a key
aspect of interface: its inability to maintain state information. An interface still cannot have
instance variables, for example. Thus, the defining difference between an interface and a
class is that a class can maintain state information, but an interface cannot. Furthermore, it

208

PART | The Java Language

is still not possible to create an instance of an interface by itself. It must be implemented by
a class. Therefore, even though, beginning with JDK 8, an interface can define default
methods, the interface must still be implemented by a class if an instance is to be created.

One last point: As a general rule, default methods constitute a special-purpose feature.
Interfaces that you create will still be used primarily to specify what and not how. However,
the inclusion of the default method gives you added flexibility.

Default Method Fundamentals

An interface default method is defined similar to the way a method is defined by a class.
The primary difference is that the declaration is preceded by the keyword default. For
example, consider this simple interface:

public interface MyIF {
// This is a "normal" interface method declaration.
// It does NOT define a default implementation.
int getNumber () ;

// This is a default method. Notice that it provides
// a default implementation.
default String getString()

return "Default String";

}
}

MyIF declares two methods. The first, getNumber(), is a standard interface method
declaration. It defines no implementation whatsoever. The second method is getString(),
and it does include a default implementation. In this case, it simply returns the string
"Default String". Pay special attention to the way getString() is declared. Its declaration is
preceded by the default modifier. This syntax can be generalized. To define a default
method, precede its declaration with default.

Because getString() includes a default implementation, it is not necessary for an
implementing class to override it. In other words, if an implementing class does not provide
its own implementation, the default is used. For example, the MyIFImp class shown next is
perfectly valid:

// Implement MyIF.
class MyIFImp implements MyIF {
// Only getNumber () defined by MyIF needs to be implemented.
// getString() can be allowed to default.
public int getNumber () {
return 100;
1
}

The following code creates an instance of MyIFImp and uses it to call both
getNumber() and getString().

// Use the default method.
class DefaultMethodDemo {

Chapter 9 Packages and Interfaces 209

public static void main(String args[]) {
MyIFImp obj = new MyIFImp () ;

// Can call getNumber (), because it is explicitly
// implemented by MyIFImp:
System.out.println (obj.getNumber ()) ;

// Can also call getString(), because of default
// implementation:
System.out.println (obj.getString()) ;
}
}

The output is shown here:

100
Default String

As you can see, the default implementation of getString() was automatically used. It was not
necessary for MyIFImp to define it. Thus, for getString(), implementation by a class is
optional. (Of course, its implementation by a class will be required if the class uses getString()
for some purpose beyond that supported by its default.)

It is both possible and common for an implementing class to define its own
implementation of a default method. For example, MyIFImp2 overrides getString():

class MyIFImp2 implements MyIF {
// Here, implementations for both getNumber() and getString() are provided.
public int getNumber ()
return 100;

}

public String getString() ({
return "This is a different string.";

}
}

Now, when getString() is called, a different string is returned.

A More Practical Example

Although the preceding shows the mechanics of using default methods, it doesn’t illustrate
their usefulness in a more practical setting. To do this, let’s once again return to the
IntStack interface shown earlier in this chapter. For the sake of discussion, assume that
IntStack is widely used and many programs rely on it. Further assume that we now want to
add a method to IntStack that clears the stack, enabling the stack to be re-used. Thus, we
want to evolve the IntStack interface so that it defines new functionality, but we don’t want
to break any preexisting code. In the past, this would be impossible, but with the inclusion

210

PART | The Java Language

of default methods, it is now easy to do. For example, the IntStack interface can be
enhanced like this:

interface IntStack
void push(int item); // store an item

int pop(); // retrieve an item

// Because clear() has a default, it need not be

// implemented by a preexisting class that uses IntStack.
default void clear()

System.out.println("clear () not implemented.");

}
}

Here, the default behavior of clear() simply displays a message indicating that it is not
implemented. This is acceptable because no preexisting class that implements IntStack
would ever call clear() because it was not defined by the earlier version of IntStack.
However, clear() can be implemented by a new class that implements IntStack.
Furthermore, clear() needs to be defined by a new implementation only if it is used.
Thus, the default method gives you

® away to gracefully evolve interfaces over time, and

® away to provide optional functionality without requiring that a class provide a
placeholder implementation when that functionality is not needed.

One other point: In real-world code, clear() would have thrown an exception, rather than
displaying an error message. Exceptions are described in the next chapter. After working
through that material, you might want to try modifying clear() so that its default
implementation throws an UnsupportedOperationException.

Multiple Inheritance Issues

As explained earlier in this book, Java does not support the multiple inheritance of classes.
Now that an interface can include default methods, you might be wondering if an interface
can provide a way around this restriction. The answer is, essentially, no. Recall that there is
still a key difference between a class and an interface: a class can maintain state information
(especially through the use of instance variables), but an interface cannot.

The preceding notwithstanding, default methods do offer a bit of what one would
normally associate with the concept of multiple inheritance. For example, you might have a
class that implements two interfaces. If each of these interfaces provides default methods,
then some behavior is inherited from both. Thus, to a limited extent, default methods do
support multiple inheritance of behavior. As you might guess, in such a situation, it is
possible that a name conflict will occur.

For example, assume that two interfaces called Alpha and Beta are implemented by a
class called MyClass. What happens if both Alpha and Beta provide a method called reset()
for which both declare a default implementation? Is the version by Alpha or the version by
Beta used by MyClass? Or, consider a situation in which Beta extends Alpha. Which version
of the default method is used? Or, what if MyClass provides its own implementation of the

Chapter 9 Packages and Interfaces 211

method? To handle these and other similar types of situations, Java defines a set of rules
that resolves such conflicts.

First, in all cases, a class implementation takes priority over an interface default
implementation. Thus, if MyClass provides an override of the reset() default method,
MyClass’ version is used. This is the case even if MyClass implements both Alpha and Beta.
In this case, both defaults are overridden by MyClass’ implementation.

Second, in cases in which a class implements two interfaces that both have the same
default method, but the class does not override that method, then an error will result.
Continuing with the example, if MyClass implements both Alpha and Beta, but does not
override reset(), then an error will occur.

In cases in which one interface inherits another, with both defining a common default
method, the inheriting interface’s version of the method takes precedence. Therefore,
continuing the example, if Beta extends Alpha, then Beta’s version of reset() will be used.

It is possible to explicitly refer to a default implementation in an inherited interface by
using a new form of super. Its general form is shown here:

InterfaceName.super.methodName()

For example, if Beta wants to refer to Alpha’s default for reset(), it can use this statement:

Alpha.super.reset () ;

Use static Methods in an Interface

JDK 8 added another new capability to interface: the ability to define one or more static
methods. Like static methods in a class, a static method defined by an interface can be
called independently of any object. Thus, no implementation of the interface is necessary,
and no instance of the interface is required, in order to call a static method. Instead, a
static method is called by specifying the interface name, followed by a period, followed by
the method name. Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.

The following shows an example of a static method in an interface by adding one
to MylIF, shown in the previous section. The static method is getDefaultNumber(). It
returns zero.

public interface MyIF {
// This is a "normal" interface method declaration.
// It does NOT define a default implementation.
int getNumber () ;

// This is a default method. Notice that it provides
// a default implementation.
default String getString()
return "Default String";
}

212 PARTI The Java Language

// This is a static interface method.
static int getDefaultNumber () {
return O0O;

}
}

The getDefaultNumber() method can be called, as shown here:
int defNum = MyIF.getDefaultNumber () ;

As mentioned, no implementation or instance of MyIF is required to call

getDefaultNumber() because it is static.
One last point: static interface methods are not inherited by either an implementing

class or a subinterface.

Final Thoughts on Packages and Interfaces

Although the examples we’ve included in this book do not make frequent use of packages
or interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs that you write in Java will be contained within packages. A
number will probably implement interfaces as well. It is important, therefore, that you be
comfortable with their usage.

CHAPTER

1 O Exception Handling

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal
condition that arises in a code sequence at run time. In other words, an exception is a run-
time error. In computer languages that do not support exception handling, errors must be
checked and handled manually—typically through the use of error codes, and so on. This
approach is as cumbersome as it is troublesome. Java’s exception handling avoids these
problems and, in the process, brings run-time error management into the object-oriented
world.

Exception-Handling Fundamentals

A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method that caused the error. That
method may choose to handle the exception itself, or pass it on. Either way, at some point,
the exception is caught and processed. Exceptions can be generated by the Java run-time
system, or they can be manually generated by your code. Exceptions thrown by Java relate
to fundamental errors that violate the rules of the Java language or the constraints of the
Java execution environment. Manually generated exceptions are typically used to report
some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. Briefly, here is how they work. Program statements that you want to monitor for
exceptions are contained within a try block. If an exception occurs within the try block,
it is thrown. Your code can catch this exception (using catch) and handle it in some
rational manner. System-generated exceptions are automatically thrown by the Java run-
time system. To manually throw an exception, use the keyword throw. Any exception that
is thrown out of a method must be specified as such by a throws clause. Any code that
absolutely must be executed after a try block completes is put in a finally block.

213

214

PART | The Java Language

This is the general form of an exception-handling block:

try {

// block of code to monitor for errors

}

catch (ExceptionTypel exOb) {
// exception handler for ExceptionTypel
}

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2
}
// ..
finally {
// block of code to be executed after try block ends
}

Here, ExceptionTypeis the type of exception that has occurred. The remainder of this
chapter describes how to apply this framework.

NOTE Beginning with JDK 7, there is another form of the try statement that supports automatic resource
management. This form of try, called try-with-resources, is described in Chapter 13 in the context of
managing files because files are some of the most commonly used resources.

Exception Types

All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy. Immediately below Throwable are two subclasses that
partition exceptions into two distinct branches. One branch is headed by Exception. This
class is used for exceptional conditions that user programs should catch. This is also the
class that you will subclass to create your own custom exception types. There is an important
subclass of Exception, called RuntimeException. Exceptions of this type are automatically
defined for the programs that you write and include things such as division by zero and
invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program. Exceptions of type Error are used
by the Java run-time system to indicate errors having to do with the run-time environment,
itself. Stack overflow is an example of such an error. This chapter will not be dealing with
exceptions of type Error, because these are typically created in response to catastrophic
failures that cannot usually be handled by your program.

Chapter 10 Exception Handling 215

The top-level exception hierarchy is shown here:

Throwable

Exception Error

A
‘ RuntimeException

Uncaught Exceptions

Before you learn how to handle exceptions in your program, it is useful to see what
happens when you don’t handle them. This small program includes an expression that
intentionally causes a divide-by-zero error:

class ExcO {
public static void main(String args[])
int d = 0;
int a = 42 / 4;

When the Java run-time system detects the attempt to divide by zero, it constructs a new
exception object and then throws this exception. This causes the execution of Exc0 to stop,
because once an exception has been thrown, it must be caught by an exception handler and
dealt with immediately. In this example, we haven’t supplied any exception handlers of our
own, so the exception is caught by the default handler provided by the Java run-time
system. Any exception that is not caught by your program will ultimately be processed by
the default handler. The default handler displays a string describing the exception, prints a
stack trace from the point at which the exception occurred, and terminates the program.

Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero
at ExcO.main (Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java; and
the line number, 4, are all included in the simple stack trace. Also, notice that the type of
exception thrown is a subclass of Exception called ArithmeticException, which more
specifically describes what type of error happened. As discussed later in this chapter, Java
supplies several built-in exception types that match the various sorts of run-time errors that
can be generated.

216

PART | The Java Language

The stack trace will always show the sequence of method invocations that led up to the
error. For example, here is another version of the preceding program that introduces the
same error but in a method separate from main():

class Excl {
static void subroutine() {
int d = 0;
int a = 10 / 4;

}

public static void main(String argsl[]) {
Excl.subroutine () ;

}

The resulting stack trace from the default exception handler shows how the entire call
stack is displayed:

java.lang.ArithmeticException: / by zero
at Excl.subroutine (Excl.java:4)
at Excl.main(Excl.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(),
which caused the exception at line 4. The call stack is quite useful for debugging, because it
pinpoints the precise sequence of steps that led to the error.

Using try and catch

Although the default exception handler provided by the Java run-time system is useful for
debugging, you will usually want to handle an exception yourself. Doing so provides two
benefits. First, it allows you to fix the error. Second, it prevents the program from
automatically terminating. Most users would be confused (to say the least) if your program
stopped running and printed a stack trace whenever an error occurred! Fortunately, it is
quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want to
monitor inside a try block. Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch. To illustrate how easily this can be done,
the following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero error:

class Exc2
public static void main(String args[])
int d, a;

try { // monitor a block of code.
d = 0;
a = 42 / d4;
System.out.println("This will not be printed.");
} catch (ArithmeticException e) { // catch divide-by-zero error
System.out.println("Division by zero.");

Chapter 10 Exception Handling 217

System.out.println ("After catch statement.");

}
}

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception
is thrown, program control transfers out of the try block into the catch block. Put differently,
catch is not “called,” so execution never “returns” to the try block from a catch. Thus, the
line "This will not be printed." is not displayed. Once the catch statement has executed,
program control continues with the next line in the program following the entire try /
catch mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to
those statements specified by the immediately preceding try statement. A catch statement
cannot catch an exception thrown by another try statement (except in the case of nested
try statements, described shortly). The statements that are protected by try must be
surrounded by curly braces. (That is, they must be within a block.) You cannot use try
on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened. For example, in the
next program each iteration of the for loop obtains two random integers. Those two
integers are divided by each other, and the result is used to divide the value 12345. The
final result is put into a. If either division operation causes a divide-by-zero error, it is
caught, the value of a is set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError
public static void main(String argsl[]) {
int a=0, b=0, c=0;
Random r = new Random() ;

for (int i1=0; 1<32000; i++) {
{

try
b r.nextInt () ;
c = r.nextInt();
a = 12345 / (b/c);

} catch (ArithmeticException e) ({
System.out.println("Division by zero.");
a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

}

218

PART | The Java Language

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a string
containing a description of the exception. You can display this description in a println()
statement by simply passing the exception as an argument. For example, the catch block
in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
System.out.println ("Exception: " + e);
a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-
zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of
an exception is valuable in other circumstances—particularly when you are experimenting
with exceptions or when you are debugging.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To
handle this type of situation, you can specify two or more catch clauses, each catching a
different type of exception. When an exception is thrown, each catch statement is inspected
in order, and the first one whose type matches that of the exception is executed. After one
catch statement executes, the others are bypassed, and execution continues after the try /
catch block. The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultipleCatches
public static void main(String argsl[]) {

try {
int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
cl42] = 99;
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);

}

System.out.println ("After try/catch blocks.");

This program will cause a division-by-zero exception if it is started with no command-
line arguments, since a will equal zero. It will survive the division if you provide a command-

Chapter 10 Exception Handling 219

line argument, setting a to something larger than zero. But it will cause an
ArraylndexOutOfBoundsException, since the int array ¢ has a length of 1, yet
the program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultipleCatches

a =20

Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultipleCatches TestArg

a =1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses. This is because a catch statement
that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a
subclass would never be reached if it came after its superclass. Further, in Java, unreachable
code is an error. For example, consider the following program:

/* This program contains an error.

A subclass must come before its superclass in
a series of catch statements. If not,
unreachable code will be created and a
compile-time error will result.
*/
class SuperSubCatch {
public static void main(String args[]) ({
try {
int a = 0;
int b = 42 / a;
} catch(Exception e) {
System.out.println ("Generic Exception catch.");
}

/* This catch is never reached because
ArithmeticException is a subclass of Exception. */

catch (ArithmeticException e) { // ERROR - unreachable
System.out.println("This is never reached.");

}
}
}

If you try to compile this program, you will receive an error message stating that the
second catch statement is unreachable because the exception has already been caught.
Since ArithmeticException is a subclass of Exception, the first catch statement will handle
all Exception-based errors, including ArithmeticException. This means that the second
catch statement will never execute. To fix the problem, reverse the order of the catch
statements.

220 PARTI The Java Language

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of another
try. Each time a try statement is entered, the context of that exception is pushed on the
stack. If an inner try statement does not have a catch handler for a particular exception,
the stack is unwound and the next try statement’s catch handlers are inspected for a match.
This continues until one of the catch statements succeeds, or until all of the nested try
statements are exhausted. If no catch statement matches, then the Java run-time system

will handle the exception. Here is an example that uses nested try statements:

// An example of nested try statements.
class NestTry {
public static void main(String argsl[]) {

try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if (a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */
if (a==2) {

int ¢l = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}
}

As you can see, this program nests one try block within another. The program works
as follows. When you execute the program with no command-line arguments, a divide-by-
zero exception is generated by the outer try block. Execution of the program with one
command-line argument generates a divide-by-zero exception from within the nested try
block. Since the inner block does not catch this exception, it is passed on to the outer try
block, where it is handled. If you execute the program with two command-line arguments,

Chapter 10 Exception Handling 221

an array boundary exception is generated from within the inner try block. Here are sample
runs that illustrate each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a =1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a = 2

Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.
For example, you can enclose a call to a method within a try block. Inside that method is
another try statement. In this case, the try within the method is still nested inside the outer
try block, which calls the method. Here is the previous program recoded so that the nested
try block is moved inside the method nesttry():

/* Try statements can be implicitly nested via
calls to methods. */
class MethNestTry
static void nesttry(int a)
try { // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if (a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if (a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println ("Array index out-of-bounds: " + e);
1

}

public static void main(String args[])

try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

222 PARTI The Java Language

nesttry(a) ;
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}
}

The output of this program is identical to that of the preceding example.

throw

So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw
statement. The general form of throw is shown here:

throw ThrowableInstance,

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.
Primitive types, such as int or char, as well as non-Throwable classes, such as String and
Object, cannot be used as exceptions. There are two ways you can obtain a Throwable
object: using a parameter in a catch clause or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that
catches the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
static void demoproc() {
try {
throw new NullPointerException ("demo") ;
} catch(NullPointerException e) {
System.out .println ("Caught inside demoproc.") ;
throw e; // rethrow the exception

}
}

public static void main(String args[]) {
try {
demoproc () ;
} catch(NullPointerException e) {
System.out .println("Recaught: " + e);
}

}
}

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up

Chapter 10 Exception Handling 223

another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then rethrown.
Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay
close attention to this line:

throw new NullPointerException ("demo") ;

Here, new is used to construct an instance of NullPointerException. Many of Java’s built-in
run-time exceptions have at least two constructors: one with no parameter and one that
takes a string parameter. When the second form is used, the argument specifies a string that
describes the exception. This string is displayed when the object is used as an argument to
print() or println(). It can also be obtained by a call to getMessage(), which is defined by
Throwable.

throws

If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You do
this by including a throws clause in the method’s declaration. A throws clause lists the types
of exceptions that a method might throw. This is necessary for all exceptions, except those
of type Error or RuntimeException, or any of their subclasses. All other exceptions that a
method can throw must be declared in the throws clause. If they are not, a compile-time
error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{

// body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Following is an example of an incorrect program that tries to throw an exception that
it does not catch. Because the program does not specify a throws clause to declare this fact,
the program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
static void throwOne () {
System.out.println("Inside throwOne.") ;
throw new IllegalAccessException("demo") ;
}
public static void main(String args[]) {
throwOne () ;

}

224

PART | The Java Language

To make this example compile, you need to make two changes. First, you need to
declare that throwOne() throws IllegalAccessException. Second, main() must define
a try / catch statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
static void throwOne () throws IllegalAccessException {
System.out.println("Inside throwOne.");
throw new IllegalAccessException ("demo") ;
1
public static void main(String args[]) {
try {
throwOne () ;
} catch (IllegalAccessException e) ({
System.out.println("Caught " + e);

}
}
}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

finally

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path
that alters the normal flow through the method. Depending upon how the method is
coded, it is even possible for an exception to cause the method to return prematurely. This
could be a problem in some methods. For example, if a method opens a file upon entry
and closes it upon exit, then you will not want the code that closes the file to be bypassed
by the exception-handling mechanism. The finally keyword is designed to address this
contingency.

finally creates a block of code that will be executed after a try /catch block has completed
and before the code following the try/catch block. The finally block will execute whether
or not an exception is thrown. If an exception is thrown, the finally block will execute even
if no catch statement matches the exception. Any time a method is about to return to the
caller from inside a try/catch block, via an uncaught exception or an explicit return
statement, the finally clause is also executed just before the method returns. This can be
useful for closing file handles and freeing up any other resources that might have been
allocated at the beginning of a method with the intent of disposing of them before
returning. The finally clause is optional. However, each try statement requires at least
one catch or a finally clause.

Chapter 10 Exception Handling 225

Here is an example program that shows three methods that exit in various ways, none
without executing their finally clauses:

// Demonstrate finally.
class FinallyDemo ({
// Throw an exception out of the method.
static void procA() {
try {
System.out.println("inside procA") ;
throw new RuntimeException ("demo") ;
} finally {
System.out.println("procA's finally");
1
}

// Return from within a try block.

static void procB()
try {
System.out.println("inside procB") ;
return;
} finally {
System.out.println("procB's finally");
}

}

// Execute a try block normally.
static void procC() {

try {
System.out.println("inside procC") ;
} finally {

System.out .println("procC's finally");

}
}

public static void main(String args[]) {

try {
prochA() ;

} catch (Exception e) {
System.out.println ("Exception caught") ;

}

procB() ;
procC() ;

In this example, procA() prematurely breaks out of the try by throwing an exception.
The finally clause is executed on the way out. procB()’s try statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the try
statement executes normally, without error. However, the finally block is still executed.

REMEMBER If a finally block is associated with a try, the finally block will be executed upon conclusion
of the try.

226 PARTI The Java Language

Here is the output generated by the preceding program:

inside procA
procA's finally
Exception caught
inside procB
procB's finally
inside procC
procC's finally

Java’s Built-in Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few have
been used by the preceding examples. The most general of these exceptions are subclasses
of the standard type RuntimeException. As previously explained, these exceptions need not
be included in any method’s throws list. In the language of Java, these are called unchecked
exceptions because the compiler does not check to see if a method handles or throws these
exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1. Table
10-2 lists those exceptions defined by java.lang that must be included in a method’s throws
list if that method can generate one of these exceptions and does not handle it itself. These
are called checked exceptions. In addition to the exceptions in java.lang, Java defines several
more that relate to its other standard packages.

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible
type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined
enumeration value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an
unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current
thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

Table 10-1 Java's Unchecked RuntimeException Subclasses Defined in java.lang

Chapter 10 Exception Handling 227

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the
Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

ReflectiveOperationException Superclass of reflection-related exceptions.

Table 10-2 Java's Checked Exceptions Defined in java.lang

Creating Your Own Exception Subclasses

Although Java’s built-in exceptions handle most common errors, you will probably want to
create your own exception types to handle situations specific to your applications. This is
quite easy to do: just define a subclass of Exception (which is, of course, a subclass of
Throwable). Your subclasses don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable. Thus, all exceptions, including those that you
create, have the methods defined by Throwable available to them. They are shown in Table
10-3. You may also wish to override one or more of these methods in exception classes that
you create.

Exception defines four public constructors. Two support chained exceptions, described
in the next section. The other two are shown here:

Exception()
Exception (String msg)

The first form creates an exception that has no description. The second form lets you
specify a description of the exception.

Although specifying a description when an exception is created is often useful,
sometimes it is better to override toString(). Here’s why: The version of toString|()
defined by Throwable (and inherited by Exception) first displays the name of the
exception followed by a colon, which is then followed by your description. By overriding
toString(), you can prevent the exception name and colon from being displayed. This
makes for a cleaner output, which is desirable in some cases.

228 PARTI

The Java Language

Method

Description

final void
addSuppressed (Throwable exc)

Adds exc to the list of suppressed exceptions
associated with the invoking exception. Primarily
for use by the try-with-resources statement.

Throwable filllnStackTrace()

Returns a Throwable object that contains a
completed stack trace. This object can be
rethrown.

Throwable getCause ()

Returns the exception that underlies the current
exception. If there is no underlying exception,
null is returned.

String getLocalizedMessage ()

Returns a localized description of the exception.

String getMessage ()

Returns a description of the exception.

StackTraceElement[| getStackTrace()

Returns an array that contains the stack

trace, one element at a time, as an array of
StackTraceElement. The method at the top

of the stack is the last method called before

the exception was thrown. This method is
found in the first element of the array. The
StackTraceElement class gives your program
access to information about each element in the
trace, such as its method name.

final Throwable[] getSuppressed()

Obtains the suppressed exceptions associated
with the invoking exception and returns an array
that contains the result. Suppressed exceptions
are primarily generated by the try-with-resources
statement.

Throwable initCause (Throwable causeExc)

Associates causelixc with the invoking exception
as a cause of the invoking exception. Returns a
reference to the exception.

void printStackTrace()

Displays the stack trace.

void printStackTrace (PrintStream stream)

Sends the stack trace to the specified stream.

void printStackTrace (PrintWriter stream)

Sends the stack trace to the specified stream.

void setStackTrace (StackTraceElement
elements|)

Sets the stack trace to the elements passed
in elements. This method is for specialized
applications, not normal use.

String toString ()

Returns a String object containing a description
of the exception. This method is called by
println() when outputting a Throwable object.

Table 10-3 The Methods Defined by Throwable

Chapter 10 Exception Handling 229

The following example declares a new subclass of Exception and then uses that subclass
to signal an error condition in a method. It overrides the toString() method, allowing a
carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;

MyException (int a) {
detail = a;
}

public String toString() {
return "MyException[" + detail + "]";
}

}

class ExceptionDemo {
static void compute (int a) throws MyException {
System.out.println("Called compute(" + a + ")");
if(a > 10)
throw new MyException(a) ;
System.out.println("Normal exit");

}

public static void main(String args[])

try {
compute (1) ;
compute (20) ;

} catch (MyException e) {
System.out.println("Caught " + e);

This example defines a subclass of Exception called MyException. This subclass is quite
simple: It has only a constructor plus an overridden toString() method that displays the
value of the exception. The ExceptionDemo class defines a method named compute()
that throws a MyException object. The exception is thrown when compute()’s integer
parameter is greater than 10. The main() method sets up an exception handler for
MyException, then calls compute() with a legal value (less than 10) and an illegal one
to show both paths through the code. Here is the result:

Called compute (1)
Normal exit

Called compute (20)
Caught MyException[20]

230 PARTI The Java Language

Chained Exceptions

Beginning with JDK 1.4, a feature was incorporated into the exception subsystem: chained
exceptions. The chained exception feature allows you to associate another exception with an
exception. This second exception describes the cause of the first exception. For example,
imagine a situation in which a method throws an ArithmeticException because of an attempt
to divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let the
calling code know that the underlying cause was an I/O error. Chained exceptions let you
handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to
Throwable. The constructors are shown here:

Throwable (Throwable causelxc)
Throwable (String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is,

causelixc is the underlying reason that an exception occurred. The second form allows you

to specify a description at the same time that you specify a cause exception. These two

constructors have also been added to the Error, Exception, and RuntimeException classes.
The chained exception methods supported by Throwable are getCause() and

initCause(). These methods are shown in Table 10-3 and are repeated here for the sake

of discussion.

Throwable getCause()
Throwable initCause (Throwable causel:xc)

The getCause() method returns the exception that underlies the current exception.
If there is no underlying exception, null is returned. The initCause() method associates
causelixc with the invoking exception and returns a reference to the exception. Thus, you
can associate a cause with an exception after the exception has been created. However, the
cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you
can’t set it again using initCause(). In general, initCause() is used to set a cause for legacy
exception classes that don’t support the two additional constructors described earlier.

Here is an example that illustrates the mechanics of handling chained exceptions:

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {

// create an exception
NullPointerException e =

new NullPointerException("top layer");

// add a cause
e.initCause (new ArithmeticException("cause")) ;

throw e;

Chapter 10 Exception Handling 231

public static void main(String args[]) {

try {
demoproc () ;

} catch(NullPointerException e)
// display top level exception
System.out .println("Caught: " + e);

// display cause exception
System.out .println("Original cause: " +
e.getCause()) ;

The output from the program is shown here:

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added a cause
exception, ArithmeticException. When the exception is thrown out of demoproc(), it is
caught by main(). There, the top-level exception is displayed, followed by the underlying
exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause
exception can, itself, have a cause. Be aware that overly long chains of exceptions may
indicate poor design.

Chained exceptions are not something that every program will need. However, in cases
in which knowledge of an underlying cause is useful, they offer an elegant solution.

Three Recently Added Exception Features

Beginning with JDK 7, three interesting and useful features have been added to the
exception system. The first automates the process of releasing a resource, such as a file,
when it is no longer needed. It is based on an expanded form of the try statement called
try-with-resources, and is described in Chapter 13 when files are introduced. The second
feature is called multi-catch, and the third is sometimes referred to as final rethrow or more
precise rethrow. These two features are described here.

The multi-catch feature allows two or more exceptions to be caught by the same catch
clause. It is not uncommon for two or more exception handlers to use the same code
sequence even though they respond to different exceptions. Instead of having to catch
each exception type individually, you can use a single catch clause to handle all of the
exceptions without code duplication.

To use a multi-catch, separate each exception type in the catch clause with the OR
operator. Each multi-catch parameter is implicitly final. (You can explicitly specify final,
if desired, but it is not necessary.) Because each multi-catch parameter is implicitly final, it
can’t be assigned a new value.

232

PART | The Java Language

Here is a catch statement that uses the multi-catch feature to catch both
ArithmeticException and ArrayIndexOutOfBoundsException:

catch (ArithmeticException | ArrayIndexOutOfBoundsException e) {
The following program shows the multi-catch feature in action:

// Demonstrate the multi-catch feature.
class MultiCatch {
public static void main(String argsl[]) {
int a=10, b=0;
int vals[] = { 1, 2, 3 };

try {
int result = a / b; // generate an ArithmeticException

// vals[10] = 19; // generate an ArrayIndexOutOfBoundsException

// This catch clause catches both exceptions.
} catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {
System.out .println ("Exception caught: " + e);

}

System.out.println ("After multi-catch.");
}
}

The program will generate an ArithmeticException when the division by zero is attempted.
If you comment out the division statement and remove the comment symbol from the next
line, an ArrayIndexOutOfBoundsException is generated. Both exceptions are caught by
the single catch statement.

The more precise rethrow feature restricts the type of exceptions that can be rethrown
to only those checked exceptions that the associated try block throws, that are not handled
by a preceding catch clause, and that are a subtype or supertype of the parameter. Although
this capability might not be needed often, it is now available for use. For the more precise
rethrow feature to be in force, the catch parameter must be either effectively final, which

means that it must not be assigned a new value inside the catch block, or explicitly declared
final.

Using Exceptions

Exception handling provides a powerful mechanism for controlling complex programs that
have many dynamic run-time characteristics. It is important to think of try, throw, and catch
as clean ways to handle errors and unusual boundary conditions in your program’s logic.
Unlike some other languages in which error return codes are used to indicate failure, Java
uses exceptions. Thus, when a method can fail, have it throw an exception. This is a cleaner
way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a general
mechanism for nonlocal branching. If you do so, it will only confuse your code and make it
hard to maintain.

CHAPTER

1 1 Multithreaded
Programming

Java provides built-in support for multithreaded programming. A multithreaded program
contains two or more parts that can run concurrently. Each part of such a program is called a
thread, and each thread defines a separate path of execution. Thus, multithreading is a
specialized form of multitasking.

You are almost certainly acquainted with multitasking because it is supported by virtually
all modern operating systems. However, there are two distinct types of multitasking:
process-based and thread-based. It is important to understand the difference between the
two. For many readers, process-based multitasking is the more familiar form. A process is,
in essence, a program that is executing. Thus, process-based multitasking is the feature that
allows your computer to run two or more programs concurrently. For example, process-
based multitasking enables you to run the Java compiler at the same time that you are using
a text editor or visiting a web site. In process-based multitasking, a program is the smallest
unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code. This means that a single program can perform two or more tasks simultaneously. For
instance, a text editor can format text at the same time that it is printing, as long as these two
actions are being performed by two separate threads. Thus, process-based multitasking deals
with the “big picture,” and thread-based multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Interprocess communication
is expensive and limited. Context switching from one process to another is also costly. Threads,
on the other hand, are lighter weight. They share the same address space and cooperatively
share the same heavyweight process. Interthread communication is inexpensive, and context
switching from one thread to the next is lower in cost. While Java programs make use of
process-based multitasking environments, process-based multitasking is not under Java’s
control. However, multithreaded multitasking is.

Multithreading enables you to write efficient programs that make maximum use of the
processing power available in the system. One important way multithreading achieves this is
by keeping idle time to a minimum. This is especially important for the interactive, networked

233

234

PART | The Java Language

environment in which Java operates because idle time is common. For example, the
transmission rate of data over a network is much slower than the rate at which the computer
can process it. Even local file system resources are read and written at a much slower pace
than they can be processed by the CPU. And, of course, user input is much slower than the
computer. In a single-threaded environment, your program has to wait for each of these tasks
to finish before it can proceed to the next one—even though most of the time the program is
idle, waiting for input. Multithreading helps you reduce this idle time because another thread
can run when one is waiting.

If you have programmed for operating systems such as Windows, then you are already
familiar with multithreaded programming. However, the fact that Java manages threads
makes multithreading especially convenient because many of the details are handled for you.

The Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the entire
environment to be asynchronous. This helps reduce inefficiency by preventing the waste
of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its
counterpart. Single-threaded systems use an approach called an event loop with polling. In
this model, a single thread of control runs in an infinite loop, polling a single event queue
to decide what to do next. Once this polling mechanism returns with, say, a signal that a
network file is ready to be read, then the event loop dispatches control to the appropriate
event handler. Until this event handler returns, nothing else can happen in the program.
This wastes CPU time. It can also result in one part of a program dominating the system
and preventing any other events from being processed. In general, in a single-threaded
environment, when a thread blocks (that is, suspends execution) because it is waiting for
some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is
eliminated. One thread can pause without stopping other parts of your program. For
example, the idle time created when a thread reads data from a network or waits for user
input can be utilized elsewhere. Multithreading allows animation loops to sleep for a
second between each frame without causing the whole system to pause. When a thread
blocks in a Java program, only the single thread that is blocked pauses. All other threads
continue to run.

As most readers know, over the past few years, multi-core systems have become
commonplace. Of course, single-core systems are still in widespread use. It is important to
understand that Java’s multithreading features work in both types of systems. In a single-
core system, concurrently executing threads share the CPU, with each thread receiving a
slice of CPU time. Therefore, in a single-core system, two or more threads do not actually
run at the same time, but idle CPU time is utilized. However, in multi-core systems, it is
possible for two or more threads to actually execute simultaneously. In many cases, this
can further improve program efficiency and increase the speed of certain operations.

Chapter 11 Multithreaded Programming 235

NOTE Recently, the Fork/Join Framework was added to Java. It provides a powerful means of creating
multithreaded applications that automatically scale to make best use of multi-core environments. The
Fork/Join Framework is part of Java’s support for parallel programming, which is the name commonly
given to the techniques that optimize some types of algorithms for parallel execution in systems that have
more than one CPU. For a discussion of the Fork/Join Framework and other concurrency utilities, see
Chapter 28. Java’s traditional multithreading capabilities are described here.

Threads exist in several states. Here is a general description. A thread can be running.
It can be ready to run as soon as it gets CPU time. A running thread can be suspended, which
temporarily halts its activity. A suspended thread can then be resumed, allowing it to pick up
where it left off. A thread can be blocked when waiting for a resource. At any time, a thread
can be terminated, which halts its execution immediately. Once terminated, a thread
cannot be resumed.

Thread Priorities

Java assigns to each thread a priority that determines how that thread should be treated
with respect to the others. Thread priorities are integers that specify the relative priority

of one thread to another. As an absolute value, a priority is meaningless; a higher-priority
thread doesn’t run any faster than a lower-priority thread if it is the only thread running.
Instead, a thread’s priority is used to decide when to switch from one running thread to the
next. This is called a context switch. The rules that determine when a context switch takes
place are simple:

o A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping,
or blocking on pending I/O. In this scenario, all other threads are examined, and
the highest-priority thread that is ready to run is given the CPU.

o A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread
that does not yield the processor is simply preempted—no matter what it is doing—
by a higher-priority thread. Basically, as soon as a higher-priority thread wants to
run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows, threads of equal
priority are time-sliced automatically in round-robin fashion. For other types of operating
systems, threads of equal priority must voluntarily yield control to their peers. If they don't,
the other threads will not run.

CAUTION Portability problems can arise from the differences in the way that operating systems
context-switch threads of equal priority.

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there must
be a way for you to enforce synchronicity when you need it. For example, if you want two
threads to communicate and share a complicated data structure, such as a linked list, you

236

PART | The Java Language

need some way to ensure that they don’t conflict with each other. That is, you must prevent
one thread from writing data while another thread is in the middle of reading it. For

this purpose, Java implements an elegant twist on an age-old model of interprocess
synchronization: the monitor. The monitor is a control mechanism first defined by C.A.R.
Hoare. You can think of a monitor as a very small box that can hold only one thread. Once
a thread enters a monitor, all other threads must wait until that thread exits the monitor. In
this way, a monitor can be used to protect a shared asset from being manipulated by more
than one thread at a time.

In Java, there is no class “Monitor”; instead, each object has its own implicit monitor
that is automatically entered when one of the object’s synchronized methods is called.
Once a thread is inside a synchronized method, no other thread can call any other
synchronized method on the same object. This enables you to write very clear and concise
multithreaded code, because synchronization support is built into the language.

Messaging

After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with some other languages, you must
depend on the operating system to establish communication between threads. This, of
course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more
threads to talk to each other, via calls to predefined methods that all objects have. Java’s
messaging system allows a thread to enter a synchronized method on an object, and then
wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its companion
interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly
refer to the ethereal state of a running thread, you will deal with it through its proxy, the
Thread instance that spawned it. To create a new thread, your program will either extend
Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. Several of those
used in this chapter are shown here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.
join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.
start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The
remainder of this chapter explains how to use Thread and Runnable to create and manage
threads, beginning with the one thread that all Java programs have: the main thread.

Chapter 11 Multithreaded Programming 237

The Main Thread

When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:

¢ Jtis the thread from which other “child” threads will be spawned.

¢ Often, it must be the last thread to finish execution because it performs various
shutdown actions.

Although the main thread is created automatically when your program is started, it
can be controlled through a Thread object. To do so, you must obtain a reference to it by
calling the method currentThread(), which is a public static member of Thread. Its general
form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.
Let’s begin by reviewing the following example:

// Controlling the main Thread.
class CurrentThreadDemo {
public static void main(String args[])
Thread t = Thread.currentThread() ;

System.out.println("Current thread: " + t);

// change the name of the thread
t.setName ("My Thread") ;

System.out.println ("After name change: " + t);
try {
for(int n = 5; n > 0; n--) {

System.out.println(n) ;
Thread.sleep(1000) ;

} catch (InterruptedException e) {
System.out.println("Main thread interrupted") ;

}
}
}

In this program, a reference to the current thread (the main thread, in this case) is
obtained by calling currentThread(), and this reference is stored in the local variable t.
Next, the program displays information about the thread. The program then calls
setName() to change the internal name of the thread. Information about the thread is
then redisplayed. Next, a loop counts down from five, pausing one second between each
line. The pause is accomplished by the sleep() method. The argument to sleep() specifies
the delay period in milliseconds. Notice the try/catch block around this loop. The sleep()
method in Thread might throw an InterruptedException. This would happen if some other

238 PARTI The Java Language

thread wanted to interrupt this sleeping one. This example just prints a message if it gets
interrupted. In a real program, you would need to handle this differently. Here is the
output generated by this program:

Current thread: Thread|[main,5,main]
After name change: Thread[My Thread, 5,main]
5

N W s

Notice the output produced when t is used as an argument to println(). This displays, in
order: the name of the thread, its priority, and the name of its group. By default, the name of
the main thread is main. Its priority is 5, which is the default value, and main is also the name
of the group of threads to which this thread belongs. A thread group is a data structure that
controls the state of a collection of threads as a whole. After the name of the thread is
changed, tis again output. This time, the new name of the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the program.
The sleep() method causes the thread from which it is called to suspend execution for the
specified period of milliseconds. Its general form is shown here:

static void sleep (long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw
an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify the
period in terms of milliseconds and nanoseconds:

static void sleep (long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short as
nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName().
You can obtain the name of a thread by calling getName() (but note that this is not
shown in the program). These methods are members of the Thread class and are
declared like this:

final void setName (String threadName)
final String getName()

Here, threadName specifies the name of the thread.

Creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

* You can implement the Runnable interface.

e You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Chapter 11 Multithreaded Programming 239

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on any
object that implements Runnable. To implement Runnable, a class need only implement a
single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just like
the main thread can. The only difference is that run() establishes the entry point for another,
concurrent thread of execution within your program. This thread will end when run()
returns.

After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will use
is shown here:

Thread (Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new
thread is specified by threadName.

After the new thread is created, it will not start running until you call its start() method,
which is declared within Thread. In essence, start() executes a call to run(). The start()
method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.
class NewThread implements Runnable {
Thread t;

NewThread () {
// Create a new, second thread
t = new Thread(this, "Demo Thread") ;
System.out.println("Child thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + 1i);

Thread.sleep (500) ;

}

} catch (InterruptedException e) {
System.out .println("Child interrupted.");

}

System.out.println("Exiting child thread.");

240

PART | The Java Language

}

class ThreadDemo {

public static void main(String args[1) {
new NewThread(); // create a new thread
try {
for(int i = 5; i > 0; i--) {
System.out .println("Main Thread: " + 1i);

Thread.sleep (1000) ;

}

} catch (InterruptedException e)

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

Inside NewThread’s constructor, a new Thread object is created by the following statement:
t = new Thread(this, "Demo Thread") ;

Passing this as the first argument indicates that you want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution
beginning at the run() method. This causes the child thread’s for loop to begin. After
calling start(), NewThread’s constructor returns to main(). When the main thread
resumes, it enters its for loop. Both threads continue running, sharing the CPU in single-
core systems, until their loops finish. The output produced by this program is as follows.
(Your output may vary based upon the specific execution environment.)

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5

Child Thread: 5
Child Thread: 4

Main Thread: 4

Child Thread: 3
Child Thread: 2

Main Thread: 3

Child Thread: 1
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the
last thread to finish running. In fact, for some older JVMs, if the main thread finishes before a
child thread has completed, then the Java run-time system may “hang.” The preceding
program ensures that the main thread finishes last, because the main thread sleeps for
1,000 milliseconds between iterations, but the child thread sleeps for only 500 milliseconds.
This causes the child thread to terminate earlier than the main thread. Shortly, you will see
a better way to wait for a thread to finish.

Chapter 11 Multithreaded Programming 241

Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to begin execution of the new
thread. Here is the preceding program rewritten to extend Thread:

// Create a second thread by extending Thread
class NewThread extends Thread ({

NewThread () {
// Create a new, second thread
super ("Demo Thread") ;
System.out.println("Child thread: " + this);
start(); // Start the thread

}

// This is the entry point for the second thread.
public void run() {

try {
for(int 1 = 5; i > 0; i--) {
System.out.println("Child Thread: " + 1i);

Thread.sleep(500) ;
}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}
}

class ExtendThread {
public static void main(String args([])

new NewThread(); // create a new thread
try |
for(int 1 = 5; i > 0; i--) {
System.out.println("Main Thread: " + 1i);

Thread.sleep(1000) ;

}

} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}
}

This program generates the same output as the preceding version. As you can see, the
child thread is created by instantiating an object of NewThread, which is derived from

Thread.

242

PART | The Java Language

Notice the call to super() inside NewThread. This invokes the following form of the
Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Choosing an Approach

At this point, you might be wondering why Java has two ways to create child threads, and
which approach is better. The answers to these questions turn on the same point. The
Thread class defines several methods that can be overridden by a derived class. Of these
methods, the only one that must be overridden is run(). This is, of course, the same
method required when you implement Runnable. Many Java programmers feel that classes
should be extended only when they are being enhanced or modified in some way. So, if you
will not be overriding any of Thread’s other methods, it is probably best simply to implement
Runnable. Also, by implementing Runnable, your thread class does not need to inherit
Thread, making it free to inherit a different class. Ultimately, which approach to use is up
to you. However, throughout the rest of this chapter, we will create threads by using classes
that implement Runnable.

Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.
However, your program can spawn as many threads as it needs. For example, the following
program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread (String threadname) {

name = threadname;
t = new Thread(this, name) ;
System.out .println("New thread: " + t);
t.start(); // Start the thread
1
// This is the entry point for thread.
public void run() {
try {
for(int 1 = 5; i > 0; i--) {
System.out.println(name + ": " + 1i);

Thread.sleep (1000) ;

} catch (InterruptedException e) {
System.out .println(name + "Interrupted");

}

System.out.println(name + " exiting.");

Chapter 11 Multithreaded Programming 243

class MultiThreadDemo {
public static void main(String args[])
new NewThread ("One"); // start threads
new NewThread ("Two") ;
new NewThread ("Three") ;

try {
// wait for other threads to end
Thread.sleep(10000) ;

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted") ;

1

System.out.println("Main thread exiting.");

Sample output from this program is shown here. (Your output may vary based upon the
specific execution environment.)

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]

One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3
One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures
that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding examples,

this is accomplished by calling sleep() within main(), with a long enough delay to ensure
that all child threads terminate prior to the main thread. However, this is hardly a

244

PART | The Java Language

satisfactory solution, and it also raises a larger question: How can one thread know when
another thread has ended? Fortunately, Thread provides a means by which you can answer
this question.

Two ways exist to determine whether a thread has finished. First, you can call isAlive()
on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It
returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to
wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from
the concept of the calling thread waiting until the specified thread joins it. Additional forms
of join() allow you to specify a maximum amount of time that you want to wait for the
specified thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure that
the main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name) ;
System.out .println("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {

try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + 1i);

Thread.sleep(1000) ;

} catch (InterruptedException e)
System.out.println(name + " interrupted.");
System.out .println(name + " exiting.");
}

class DemoJoin {
public static void main(String args[]) {
NewThread obl = new NewThread("One") ;
NewThread ob2 = new NewThread ("Two") ;
NewThread ob3 = new NewThread ("Three") ;

Chapter 11 Multithreaded Programming 245

System.out.println("Thread One is alive: "
+ obl.t.isAlive()) ;
System.out.println("Thread Two is alive: "
+ ob2.t.isAlive()) ;
System.out.println("Thread Three is alive: "
+ ob3.t.isAlive()) ;
// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
obl.t.join();
ob2.t.join() ;
ob3.t.join() ;
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted") ;

}

System.out.println("Thread One is alive: "

+ obl.t.isAlive()) ;
System.out.println("Thread Two is alive: "

+ ob2.t.isAlive()) ;
System.out.println("Thread Three is alive: "

+ ob3.t.isAlive()) ;

System.out.println("Main thread exiting.");

}
}

Sample output from this program is shown here. (Your output may vary based upon the
specific execution environment.)

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread|[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.

One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1

Two exiting.
Three exiting.

246

PART | The Java Language

One exiting.

Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities

Thread priorities are used by the thread scheduler to decide when each thread should be
allowed to run. In theory, over a given period of time, higher-priority threads get more CPU
time than lower-priority threads. In practice, the amount of CPU time that a thread gets
often depends on several factors besides its priority. (For example, how an operating system
implements multitasking can affect the relative availability of CPU time.) A higher-priority
thread can also preempt a lower-priority one. For instance, when a lower-priority thread is
running and a higher-priority thread resumes (from sleeping or waiting on I/0O, for
example), it will preempt the lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need to
be careful. Remember, Java is designed to work in a wide range of environments. Some of
those environments implement multitasking fundamentally differently than others. For
safety, threads that share the same priority should yield control once in a while. This ensures
that all threads have a chance to run under a nonpreemptive operating system. In practice,
even in nonpreemptive environments, most threads still get a chance to run, because most
threads inevitably encounter some blocking situation, such as waiting for I/O. When this
happens, the blocked thread is suspended and other threads can run. But, if you want
smooth multithreaded execution, you are better off not relying on this. Also, some types
of tasks are CPU-intensive. Such threads dominate the CPU. For these types of threads, you
want to yield control occasionally so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.
This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be
within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and
10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of
Thread, shown here:

final int getPriority()

Implementations of Java may have radically different behavior when it comes to
scheduling. Most of the inconsistencies arise when you have threads that are relying on
preemptive behavior, instead of cooperatively giving up CPU time. The safest way to obtain
predictable, cross-platform behavior with Java is to use threads that voluntarily give up
control of the CPU.

Chapter 11 Multithreaded Programming 247

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization. As you will see, Java provides unique, language-level
support for it.

Key to synchronization is the concept of the monitor. A monitoris an object that is used
as a mutually exclusive lock. Only one thread can own a monitor at a given time. When a
thread acquires a lock, it is said to have entered the monitor. All other threads attempting to
enter the locked monitor will be suspended until the first thread exits the monitor. These
other threads are said to be waiting for the monitor. A thread that owns a monitor can
reenter the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor associated
with them. To enter an object’s monitor, just call a method that has been modified with the
synchronized keyword. While a thread is inside a synchronized method, all other threads that
try to call it (or any other synchronized method) on the same instance have to wait. To exit
the monitor and relinquish control of the object to the next waiting thread, the owner of the
monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does
not use it—but should. The following program has three simple classes. The first one, Callme,
has a single method named call(). The call() method takes a String parameter called msg. This
method tries to print the msg string inside of square brackets. The interesting thing to notice
is that after call() prints the opening bracket and the msg string, it calls Thread.sleep(1000),
which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme
class and a String, which are stored in target and msg, respectively. The constructor also
creates a new thread that will call this object’s run() method. The thread is started immediately.
The run() method of Caller calls the call() method on the target instance of Callme, passing
in the msg string. Finally, the Synch class starts by creating a single instance of Callme, and
three instances of Caller, each with a unique message string. The same instance of Callme
is passed to each Caller.

// This program is not synchronized.
class Callme {
void call (String msg) {
System.out.print ("[" + msg) ;
try {
Thread.sleep(1000) ;
} catch(InterruptedException e) {
System.out.println("Interrupted") ;

}

System.out.println("]");

248

PART | The Java Language

}

class Caller implements Runnable {
String msg;
Callme target;

Thread t;

public Caller (Callme targ,

target

}

= targ;
msg = S;
t = new Thread(this) ;
t.start () ;

public void run()
target.call (msg) ;

}
}

class Synch {
public static void main(String argsl[]) {

Callme
Caller
Caller
Caller

target

obl
ob2
ob3

= new Callme() ;
new Caller (target,
new Caller (target,
new Caller (target,

// wait for threads to end

try {

obl.t.join() ;
ob2.t.join() ;
ob3.t.join() ;
} catch (InterruptedException e)
System.out.println ("Interrupted") ;

}
}
}

String s)

"Hello") ;
"Synchronized") ;
"World") ;

{

Here is the output produced by this program:

Hello[Synchronized [World]

1
1

As you can see, by calling sleep(), the call() method allows execution to switch to another
thread. This results in the mixed-up output of the three message strings. In this program,
nothing exists to stop all three threads from calling the same method, on the same object,
at the same time. This is known as a race condition, because the three threads are racing each
other to complete the method. This example used sleep() to make the effects repeatable
and obvious. In most situations, a race condition is more subtle and less predictable,
because you can’t be sure when the context switch will occur. This can cause a program

to run right one time and wrong the next.

Chapter 11 Multithreaded Programming 249

To fix the preceding program, you must serialize access to call(). That is, you must
restrict its access to only one thread at a time. To do this, you simply need to precede call()’s
definition with the keyword synchronized, as shown here:

class Callme {
synchronized void call (String msg) {

This prevents other threads from entering call() while another thread is using it. After
synchronized has been added to call(), the output of the program is as follows:

[Hellol
[Synchronized]
[World]

Any time that you have a method, or group of methods, that manipulates the internal
state of an object in a multithreaded situation, you should use the synchronized keyword to
guard the state from race conditions. Remember, once a thread enters any synchronized
method on an instance, no other thread can enter any other synchronized method on the
same instance. However, nonsynchronized methods on that instance will continue to be
callable.

The synchronized Statement

While creating synchronized methods within classes that you create is an easy and effective
means of achieving synchronization, it will not work in all cases. To understand why, consider
the following. Imagine that you want to synchronize access to objects of a class that was not
designed for multithreaded access. That is, the class does not use synchronized methods.
Further, this class was not created by you, but by a third party, and you do not have access to
the source code. Thus, you can’t add synchronized to the appropriate methods within the
class. How can access to an object of this class be synchronized? Fortunately, the solution to
this problem is quite easy: You simply put calls to the methods defined by this class inside a
synchronized block.

This is the general form of the synchronized statement:

synchronized (objRef) {
// statements to be synchronized

}

Here, objRefis a reference to the object being synchronized. A synchronized block ensures
that a call to a synchronized method that is a member of 0bjRef’s class occurs only after the
current thread has successfully entered objRef’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.
class Callme {
void call (String msg) {

250

PART | The Java Language

System.out.print ("[" + msg) ;

try {
Thread.sleep(1000) ;

} catch (InterruptedException e) {
System.out.println ("Interrupted") ;

}

System.out.println("]");

}
}

class Caller implements Runnable {
String msg;
Callme target;
Thread t;

public Caller(Callme targ, String s) ({
target = targ;
msg = s;
t = new Thread(this) ;
t.start () ;

}

// synchronize calls to call()
public void run() {
synchronized (target) { // synchronized block
target.call (msg) ;
!
}
1

class Synchl
public static void main(String argsl[]) {
Callme target = new Callme() ;
Caller obl = new Caller(target, "Hello");
Caller ob2 = new Caller (target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {
obl.t.join() ;
ob2.t.join() ;
ob3.t.join() ;

} catch(InterruptedException e)
System.out.println ("Interrupted") ;

}

}
}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as the
preceding example, because each thread waits for the prior one to finish before proceeding.

Chapter 11 Multithreaded Programming 251

Interthread Communication

The preceding examples unconditionally blocked other threads from asynchronous access
to certain methods. This use of the implicit monitors in Java objects is powerful, but you
can achieve a more subtle level of control through interprocess communication. As you will
see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing your
tasks into discrete, logical units. Threads also provide a secondary benefit: they do away
with polling. Polling is usually implemented by a loop that is used to check some condition
repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time.
For example, consider the classic queuing problem, where one thread is producing some
data and another is consuming it. To make the problem more interesting, suppose that the
producer has to wait until the consumer is finished before it generates more data. In a
polling system, the consumer would waste many CPU cycles while it waited for the producer
to produce. Once the producer was finished, it would start polling, wasting more CPU
cycles waiting for the consumer to finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via
the wait(), notify(), and notifyAll() methods. These methods are implemented as final
methods in Object, so all classes have them. All three methods can be called only from
within a synchronized context. Although conceptually advanced from a computer science
perspective, the rules for using these methods are actually quite simple:

¢ wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify() or notifyAll().

¢ notify() wakes up a thread that called wait() on the same object.

¢ notifyAll() wakes up all the threads that called wait() on the same object. One of
the threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notify All()

Additional forms of wait() exist that allow you to specify a period of time to wait.

Before working through an example that illustrates interthread communication, an
important point needs to be made. Although wait() normally waits until notify() or
notifyAll() is called, there is a possibility that in very rare cases the waiting thread could be
awakened due to a spurious wakeup. In this case, a waiting thread resumes without notify()
or notifyAll() having been called. (In essence, the thread resumes for no apparent reason.)
Because of this remote possibility, Oracle recommends that calls to wait() should take place
within a loop that checks the condition on which the thread is waiting. The following
example shows this technique.

Let’s now work through an example that uses wait() and notify(). To begin, consider
the following sample program that incorrectly implements a simple form of the producer/
consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize;
Producer, the threaded object that is producing queue entries; Consumer, the threaded

252 PARTI The Java Language

object that is consuming queue entries; and PC, the tiny class that creates the single Q,
Producer, and Consumer.

// An incorrect implementation of a producer and consumer.

class Q {
int n;
synchronized int get() {
System.out.println("Got: " + n);
return n;

}

synchronized void put (int n)
this.n = n;
System.out.println("Put: " + n);

}

}

class Producer implements Runnable {
Q g;

Producer (Q q) {
this.q = g;
new Thread(this, "Producer") .start();

}

public void run() {
int i = 0;

while (true) {

g.put (i++) ;
1
}
class Consumer implements Runnable {
Q qi
Consumer (Q q) {
this.q = qg;
new Thread(this, "Consumer") .start () ;

}

public void run() {
while (true) {
g.get () ;

}
}

class PC {
public static void main(String argsl[]) {

Chapter 11 Multithreaded Programming 253

Q g = new Q();
new Producer (q) ;
new Consumer (q) ;

System.out.println("Press Control-C to stop.");

}
}

Although the put() and get() methods on Q are synchronized, nothing stops the producer
from overrunning the consumer, nor will anything stop the consumer from consuming the

same queue value twice. Thus, you get the erroneous output shown here (the exact output

will vary with processor speed and task load):

Put:
Got:
Got:
Got:
Got:
Got:
Put:
Put:
Put:
Put:
Put:
Put:
Got:

9N A WNRRR R R R

As you can see, after the producer put 1, the consumer started and got the same 1 five
times in a row. Then, the producer resumed and produced 2 through 7 without letting
the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal in
both directions, as shown here:

// A correct implementation of a producer and consumer.
class Q {

int n;

boolean valueSet = false;

synchronized int get () {
while (!valueSet)
try {
wait () ;
} catch(InterruptedException e) ({
System.out.println("InterruptedException caught") ;

}

System.out.println("Got: " + n);
valueSet = false;

notify () ;

return n;

}

synchronized void put (int n) {

254 PARTI The Java Language

while (valueSet)
try {
wait () ;
} catch(InterruptedException e)
System.out .println("InterruptedException caught") ;
1

this.n = n;

valueSet = true;
System.out.println("Put: " + n);
notify () ;

}
}

class Producer implements Runnable {
Q g;

Producer (Q q) {
this.q = q;
new Thread(this, "Producer") .start();

}

public void run() {
int i = 0;

while (true) {

g.put (i++) ;
}
}
class Consumer implements Runnable {
Q qgj
Consumer (Q q) {
this.q = qg;
new Thread(this, "Consumer") .start () ;
}
public void run()
while (true) {
g.get () ;
}
}

}

class PCFixed {
public static void main(String argsl[]) {
Q g = new Q();
new Producer (q) ;
new Consumer (q) ;

System.out .println ("Press Control-C to stop.");

Chapter 11 Multithreaded Programming 255

Inside get(), wait() is called. This causes its execution to suspend until Producer notifies
you that some data is ready. When this happens, execution inside get() resumes. After the
data has been obtained, get() calls notify(). This tells Producer that it is okay to put more
data in the queue. Inside put(), wait() suspends execution until Consumer has removed the
item from the queue. When execution resumes, the next item of data is put in the queue,
and notify() is called. This tells Consumer that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

Put:
Got:
Put:
Got:
Put:
Got:
Put:
Got:
Put:
Got:

Deadlock

A special type of error that you need to avoid that relates specifically to multitasking is deadlock,
which occurs when two threads have a circular dependency on a pair of synchronized objects.
For example, suppose one thread enters the monitor on object X and another thread enters
the monitor on object Y. If the thread in X tries to call any synchronized method on'Y, it will
block as expected. However, if the thread in'Y, in turn, tries to call any synchronized method
on X, the thread waits forever, because to access X, it would have to release its own lock on' Y
so that the first thread could complete. Deadlock is a difficult error to debug for two reasons:

Ugros W W NN R R

® In general, it occurs only rarely, when the two threads time-slice in just the right way.

¢ [t may involve more than two threads and two synchronized objects. (That is,
deadlock can occur through a more convoluted sequence of events than just
described.)

To understand deadlock fully, it is useful to see it in action. The next example creates
two classes, A and B, with methods foo() and bar(), respectively, which pause briefly before
trying to call a method in the other class. The main class, named Deadlock, creates an A
and a B instance, and then starts a second thread to set up the deadlock condition. The
foo() and bar() methods use sleep() as a way to force the deadlock condition to occur.

// An example of deadlock.
class A
synchronized void foo(B b)
String name = Thread.currentThread () .getName () ;

System.out.println(name + " entered A.foo");

try {
Thread.sleep(1000) ;

} catch(Exception e) ({
System.out.println("A Interrupted") ;

256 PARTI The Java Language

System.out.println(name + " trying to call B.last()");
b.last () ;

}

synchronized void last() ({
System.out .println("Inside A.last");

}
}

class B {
synchronized void bar (A a)
String name = Thread.currentThread() .getName () ;
System.out.println(name + " entered B.bar");

try {
Thread.sleep(1000) ;

} catch(Exception e)
System.out.println ("B Interrupted") ;

}

System.out.println(name + " trying to call A.last()");
a.last();

}

synchronized void last () {
System.out.println("Inside A.last");

}
}

class Deadlock implements Runnable {
A a = new A();
B b new B() ;

Deadlock ()
Thread.currentThread () .setName ("MainThread") ;
Thread t = new Thread(this, "RacingThread") ;
t.start () ;

a.foo(b); // get lock on a in this thread.
System.out.println("Back in main thread");

}

public void run() {
b.bar(a); // get lock on b in other thread.
System.out.println("Back in other thread");

}

public static void main(String argsl[]) {
new Deadlock() ;

}
}

Chapter 11 Multithreaded Programming 257

When you run this program, you will see the output shown here:

MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last ()

Because the program has deadlocked, you need to press CTRL-C to end the program.
You can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC. You
will see that RacingThread owns the monitor on b, while it is waiting for the monitor on a.
At the same time, MainThread owns a and is waiting to get b. This program will never
complete. As this example illustrates, if your multithreaded program locks up occasionally,
deadlock is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads

Sometimes, suspending execution of a thread is useful. For example, a separate thread can
be used to display the time of day. If the user doesn’t want a clock, then its thread can be
suspended. Whatever the case, suspending a thread is a simple matter. Once suspended,
restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between early versions of
Java, such as Java 1.0, and modern versions, beginning with Java 2. Prior to Java 2, a program
used suspend(), resume(), and stop(), which are methods defined by Thread, to pause,
restart, and stop the execution of a thread. Although these methods seem to be a perfectly
reasonable and convenient approach to managing the execution of threads, they must not
be used for new Java programs. Here’s why. The suspend() method of the Thread class was
deprecated by Java 2 several years ago. This was done because suspend() can sometimes
cause serious system failures. Assume that a thread has obtained locks on critical data
structures. If that thread is suspended at that point, those locks are not relinquished. Other
threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, was deprecated by Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread is
writing to a critically important data structure and has completed only part of its changes. If
that thread is stopped at that point, that data structure might be left in a corrupted state.
The trouble is that stop() causes any lock the calling thread holds to be released. Thus, the
corrupted data might be used by another thread that is waiting on the same lock.

Because you can’t now use the suspend(), resume(), or stop() methods to control a
thread, you might be thinking that no way exists to pause, restart, or terminate a thread. But,
fortunately, this is not true. Instead, a thread must be designed so that the run() method
periodically checks to determine whether that thread should suspend, resume, or stop its
own execution. Typically, this is accomplished by establishing a flag variable that indicates
the execution state of the thread. As long as this flag is set to “running,” the run() method
must continue to let the thread execute. If this variable is set to “suspend,” the thread must
pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in
which to write such code, but the central theme will be the same for all programs.

258

PART | The Java Language

The following example illustrates how the wait() and notify() methods that are
inherited from Object can be used to control the execution of a thread. Let us consider its
operation. The NewThread class contains a boolean instance variable named suspendFlag,
which is used to control the execution of the thread. It is initialized to false by the
constructor. The run() method contains a synchronized statement block that checks
suspendFlag. If that variable is true, the wait() method is invoked to suspend the execution
of the thread. The mysuspend() method sets suspendFlag to true. The myresume()
method sets suspendFlag to false and invokes notify() to wake up the thread. Finally, the
main() method has been modified to invoke the mysuspend() and myresume() methods.

// Suspending and resuming a thread the modern way.
class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name) ;
System.out .println("New thread: " + t);
suspendFlag = false;
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {

try {
for(int i = 15; 1 > 0; i--) {
System.out.println (name + ": " + 1i);

Thread.sleep(200) ;
synchronized (this) {
while (suspendFlag) {
wait () ;

}
}
}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");
}

System.out .println(name + " exiting.");

}

synchronized void mysuspend () {
suspendFlag = true;
}

synchronized void myresume () {
suspendFlag = false;
notify () ;
}
}

Chapter 11 Multithreaded Programming 259

class SuspendResume {
public static void main(String args[])
NewThread obl = new NewThread("One") ;
NewThread ob2 = new NewThread("Two") ;

try {
Thread.sleep(1000) ;
obl.mysuspend () ;
System.out.println ("Suspending thread One") ;
Thread.sleep(1000) ;
obl.myresume () ;
System.out.println ("Resuming thread One") ;
ob2.mysuspend () ;
System.out .println("Suspending thread Two") ;
Thread.sleep(1000) ;
ob2.myresume () ;
System.out.println ("Resuming thread Two") ;
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted") ;
}

// wait for threads to finish

try {
System.out.println("Waiting for threads to finish.");

obl.t.join() ;
ob2.t.join() ;

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted") ;

System.out.println("Main thread exiting.");

When you run the program, you will see the threads suspend and resume. Later in this
book, you will see more examples that use the modern mechanism of thread control.
Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the way required to
ensure that run-time errors don’t occur. It is the approach that must be used for all new code.

Obtaining A Thread’s State

As mentioned earlier in this chapter, a thread can exist in a number of different states. You
can obtain the current state of a thread by calling the getState() method defined by
Thread. It is shown here:

Thread.State getState()

It returns a value of type Thread.State that indicates the state of the thread at the time at
which the call was made. State is an enumeration defined by Thread. (An enumeration is a

260 PARTI The Java Language

list of named constants. It is discussed in detail in Chapter 12.) Here are the values that can
be returned by getState():

Value State

BLOCKED A thread that has suspended execution because it is waiting to
acquire a lock.

NEW A thread that has not begun execution.

RUNNABLE A thread that either is currently executing or will execute when it
gains access to the CPU.

TERMINATED A thread that has completed execution.

TIMED_WAITING A thread that has suspended execution for a specified period of

time, such as when it has called sleep(). This state is also entered
when a timeout version of wait() or join() is called.

WAITING A thread that has suspended execution because it is waiting for
some action to occur. For example, it is waiting because of a call to
a non-timeout version of wait() or join().

Figure 11-1 diagrams how the various thread states relate.

NEW

Thread starts

v Waiting WAITING

Waiting for lock
BLOCKED i » RUNNABLE F or
Lock acquired Wait ended TIMED_WAITING

Thread ends

A 4
TERMINATED '

Figure 11-1 Thread states

Chapter 11 Multithreaded Programming 261

Given a Thread instance, you can use getState() to obtain the state of a thread. For
example, the following sequence determines if a thread called thrd is in the RUNNABLE
state at the time getState() is called:

Thread.State ts = thrd.getState() ;
if (ts == Thread.State.RUNNABLE) //

It is important to understand that a thread’s state may change after the call to getState().
Thus, depending on the circumstances, the state obtained by calling getState() may not
reflect the actual state of the thread only a moment later. For this (and other) reasons,
getState() is not intended to provide a means of synchronizing threads. It’s primarily used
for debugging or for profiling a thread’s run-time characteristics.

Using Multithreading

The key to utilizing Java’s multithreading features effectively is to think concurrently rather
than serially. For example, when you have two subsystems within a program that can execute
concurrently, make them individual threads. With the careful use of multithreading, you
can create very efficient programs. A word of caution is in order, however: If you create

too many threads, you can actually degrade the performance of your program rather than
enhance it. Remember, some overhead is associated with context switching. If you create
too many threads, more CPU time will be spent changing contexts than executing your
program! One last point: To create compute-intensive applications that can automatically
scale to make use of the available processors in a multi-core system, consider using the new
Fork/Join Framework, which is described in Chapter 28.

This page has been intentionally left blank

CHAPTER

1 2 Enumerations, Autoboxing,
and Annotations (Metadata)

This chapter examines three relatively recent additions to the Java language: enumerations,
autoboxing, and annotations (also referred to as metadata). Each expands the power of the
language by offering a streamlined approach to handling common programming tasks. This
chapter also discusses Java’s type wrappers and introduces reflection.

Enumerations

Versions of Java prior to JDK 5 lacked one feature that many programmers felt was needed:
enumerations. In its simplest form, an enumeration is a list of named constants. Although
Java offered other features that provide somewhat similar functionality, such as final
variables, many programmers still missed the conceptual purity of enumerations—
especially because enumerations are supported by many other commonly used languages.
Beginning with JDK 5, enumerations were added to the Java language, and they are now an
integral and widely used part of Java.

In their simplest form, Java enumerations appear similar to enumerations in other
languages. However, this similarity may be only skin deep because, in Java, an enumeration
defines a class type. By making enumerations into classes, the capabilities of the enumeration
are greatly expanded. For example, in Java, an enumeration can have constructors, methods,
and instance variables. Therefore, although enumerations were several years in the making,
Java’s rich implementation made them well worth the wait.

Enumeration Fundamentals

An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

263

264

PART | The Java Language

The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is
implicitly declared as a public, static final member of Apple. Furthermore, their type is the
type of the enumeration in which they are declared, which is Apple in this case. Thus, in
the language of Java, these constants are called self-typed, in which “self” refers to the
enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However,
even though enumerations define a class type, you do not instantiate an enum using new.
Instead, you declare and use an enumeration variable in much the same way as you do one
of the primitive types. For example, this declares ap as a variable of enumeration type Apple:

Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are
those defined by the enumeration. For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Notice that the symbol RedDel is preceded by Apple.

Two enumeration constants can be compared for equality by using the = = relational
operator. For example, this statement compares the value in ap with the GoldenDel
constant:

if (ap == Apple.GoldenDel) //

An enumeration value can also be used to control a switch statement. Of course, all
of the case statements must use constants from the same enum as that used by the switch
expression. For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:

!/

case Winesap:

//

Notice that in the case statements, the names of the enumeration constants are used without
being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is
used. This is because the type of the enumeration in the switch expression has already
implicitly specified the enum type of the case constants. There is no need to qualify the
constants in the case statements with their enum type name. In fact, attempting to do so
will cause a compilation error.

When an enumeration constant is displayed, such as in a println() statement, its name
is output. For example, given this statement:

System.out.println (Apple.Winesap) ;

the name Winesap is displayed.

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 265

The following program puts together all of the pieces and demonstrates the Apple
enumeration:

// An enumeration of apple varieties.
enum Apple {

Jonathan, GoldenDel, RedDel, Winesap, Cortland
1

class EnumDemo {
public static void main(String argsl[])

{

Apple ap;
ap = Apple.RedDel;

// Output an enum value.
System.out.println("vValue of ap: " + ap);
System.out.println() ;

ap = Apple.GoldenDel;

// Compare two enum values.
if (ap == Apple.GoldenDel)
System.out.println("ap contains GoldenDel.\n") ;

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
System.out.println("Jonathan is red.");
break;
case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;
case RedDel:
System.out.println("Red Delicious is red.");
break;
case Winesap:
System.out.println("Winesap is red.");
break;
case Cortland:
System.out.println("Cortland is red.");
break;

The output from the program is shown here:
Value of ap: RedDel
ap contains GoldenDel.

Golden Delicious is yellow.

266

PART | The Java Language

The values() and valueOf() Methods

All enumerations automatically contain two predefined methods: values() and valueOf().
Their general forms are shown here:

public static enum-type [] values()
public static enum-type valueOf (String str)

The values() method returns an array that contains a list of the enumeration constants. The
valueOf() method returns the enumeration constant whose value corresponds to the string
passed in str. In both cases, enum-typeis the type of the enumeration. For example, in the
case of the Apple enumeration shown earlier, the return type of Apple.valueOf('""Winesap')
is Winesap.

The following program demonstrates the values() and valueOf() methods:

// Use the built-in enumeration methods.

// An enumeration of apple varieties.
enum Apple
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo2 {
public static void main(String argsl([])

{

Apple ap;
System.out.println("Here are all Apple constants:");

// use values ()

Apple allapples[] = Apple.values();

for (Apple a : allapples)
System.out.println(a) ;

System.out.println() ;

// use valueOf ()
ap = Apple.valueOf ("Winesap") ;
System.out.println("ap contains " + ap);

The output from the program is shown here:

Here are all Apple constants:
Jonathan

GoldenDel

RedDel

Winesap

Cortland

ap contains Winesap

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 267

Notice that this program uses a for-each style for loop to cycle through the array of
constants obtained by calling values(). For the sake of illustration, the variable allapples
was created and assigned a reference to the enumeration array. However, this step is not
necessary because the for could have been written as shown here, eliminating the need for
the allapples variable:

for (Apple a : Apple.values())
System.out.println(a) ;

Now, notice how the value corresponding to the name Winesap was obtained by calling
valueOf().

ap = Apple.valueOf ("Winesap") ;

As explained, valueOf() returns the enumeration value associated with the name of the
constant represented as a string.

Java Enumerations Are Class Types

As explained, a Java enumeration is a class type. Although you don’t instantiate an enum
using new, it otherwise has much the same capabilities as other classes. The fact that enum
defines a class gives the Java enumeration extraordinary power. For example, you can give
them constructors, add instance variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its
enumeration type. Thus, when you define a constructor for an enum, the constructor is
called when each enumeration constant is created. Also, each enumeration constant has its
own copy of any instance variables defined by the enumeration. For example, consider the
following version of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple {
Jonathan (10), GoldenDel (9), RedDel(12), Winesap(15), Cortland(8);

private int price; // price of each apple

// Constructor
Apple (int p) { price = p; }

int getPrice() { return price; }

}

class EnumDemo3 {
public static void main(String argsl(])

{

Apple ap;

// Display price of Winesap.

System.out.println("Winesap costs " +
Apple.Winesap.getPrice() +
" cents.\n") ;

// Display all apples and prices.

268 PARTI The Java Language

System.out.println("All apple prices:");
for (Apple a : Apple.values())
System.out.println(a + " costs " + a.getPrice() +
" cents.");

}
}

The output is shown here:
Winesap costs 15 cents.

All apple prices:
Jonathan costs 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

This version of Apple adds three things. The first is the instance variable price, which is
used to hold the price of each variety of apple. The second is the Apple constructor, which
is passed the price of an apple. The third is the method getPrice(), which returns the value
of price.

When the variable ap is declared in main(), the constructor for Apple is called once for
each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses after each constant, as shown here:

Jonathan (10), GoldenDel (9), RedDel (12), Winesap (15), Cortland(8);

These values are passed to the p parameter of Apple(), which then assigns this value to
price. Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price
of a specified type of apple by calling getPrice(). For example, in main() the price of a
Winesap is obtained by the following call:

Apple.Winesap.getPrice()

The prices of all varieties are obtained by cycling through the enumeration using a for
loop. Because there is a copy of price for each enumeration constant, the value associated
with one constant is separate and distinct from the value associated with another constant.
This is a powerful concept, which is only available when enumerations are implemented as
classes, as Java does.

Although the preceding example contains only one constructor, an enum can offer two
or more overloaded forms, just as can any other class. For example, this version of Apple
provides a default constructor that initializes the price to -1, to indicate that no price data
is available:

// Use an enum constructor.
enum Apple
Jonathan (10), GoldenDel (9), RedDel, Winesap(1l5), Cortland(8);

private int price; // price of each apple

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 269

// Constructor
Apple (int p) { price = p; }

// Overloaded constructor
Apple() { price = -1; }

int getPrice() { return price; }

}

Notice that in this version, RedDel is not given an argument. This means that the default
constructor is called, and RedDel’s price variable is given the value —1.

Here are two restrictions that apply to enumerations. First, an enumeration can’t
inherit another class. Second, an enum cannot be a superclass. This means that an enum
can’t be extended. Otherwise, enum acts much like any other class type. The key is to
remember that each of the enumeration constants is an object of the class in which it is
defined.

Enumerations Inherit Enum

Although you can’t inherit a superclass when declaring an enum, all enumerations
automatically inherit one: java.lang.Enum. This class defines several methods that are
available for use by all enumerations. The Enum class is described in detail in Part II, but
three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant’s position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal() method,
shown here:

final int ordinal ()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in
the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal
value of 1, RedDel has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using
the compareTo() method. It has this general form:

final int compareTo (enum-type e)

Here, enum-type is the type of the enumeration, and ¢is the constant being compared to
the invoking constant. Remember, both the invoking constant and ¢ must be of the same
enumeration. If the invoking constant has an ordinal value less than ¢’s, then compareTo()
returns a negative value. If the two ordinal values are the same, then zero is returned. If the
invoking constant has an ordinal value greater than ¢’s, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using
equals(), which overrides the equals() method defined by Object. Although equals() can
compare an enumeration constant to any other object, those two objects will be equal only
if they both refer to the same constant, within the same enumeration. Simply having
ordinal values in common will not cause equals() to return true if the two constants are
from different enumerations.

Remember, you can compare two enumeration references for equality by using = =.

270 PARTI The Java Language

The following program demonstrates the ordinal(), compareTo(), and equals() methods:
// Demonstrate ordinal (), compareTo(), and equals().

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo4 {
public static void main(String argsl([])

{

Apple ap, ap2, ap3;

// Obtain all ordinal values using ordinal ().
System.out.println("Here are all apple constants" +
" and their ordinal values: ");
for (Apple a : Apple.values())
System.out.println(a + " " + a.ordinal());

ap = Apple.RedDel;
ap2 Apple.GoldenDel;
ap3 Apple.RedDel;

System.out.println() ;
// Demonstrate compareTo() and equals ()
if (ap.compareTo (ap2) < 0)

System.out.println(ap + " comes before " + ap2);

if (ap.compareTo (ap2) > 0)

System.out.println(ap2 + " comes before " + ap);
if (ap.compareTo (ap3) == 0)

System.out.println(ap + " equals " + ap3);
System.out.println() ;
if (ap.equals (ap2))

System.out .println ("Error!") ;
if (ap.equals (ap3))

System.out.println(ap + " equals " + ap3);
if (ap == ap3)

System.out.println(ap + " == " + ap3);

The output from the program is shown here:

Here are all apple constants and their ordinal values:
Jonathan 0

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 271

GoldenDel 1
RedDel 2
Winesap 3
Cortland 4

GoldenDel comes before RedDel
RedDel equals RedDel

RedDel equals RedDel
RedDel == RedDel

Another Enumeration Example

Before moving on, we will look at a different example that uses an enum. In Chapter 9, an
automated “decision maker” program was created. In that version, variables called NO,
YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to
represent the possible answers. While there is nothing technically wrong with that approach,
the enumeration is a better choice. Here is an improved version of that program that uses
an enum called Answers to define the answers. You should compare this version to the
original in Chapter 9.

// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to

// represent the answers.

import java.util.Random;

// An enumeration of the possible answers.
enum Answers {
NO, YES, MAYBE, LATER, SOON, NEVER

class Question ({
Random rand = new Random() ;
Answers ask() {
int prob = (int) (100 * rand.nextDouble()) ;
if (prob < 15)
return Answers.MAYBE; // 15%
else 1f (prob < 30)

return Answers.NO; // 15%
else 1f (prob < 60)
return Answers.YES; // 30%

else 1f (prob < 75)

return Answers.LATER; // 15%
else 1f (prob < 98)

return Answers.SOON; // 13%
else

return Answers.NEVER; // 2%

272

PART | The Java Language

class AskMe
static void answer (Answers result)
switch(result) ({

case NO:
System.out .println("No") ;
break;

case YES:
System.out.println("Yes") ;
break;

case MAYBE:
System.out .println ("Maybe") ;
break;

case LATER:
System.out.println("Later") ;
break;

case SOON:
System.out .println("Soon") ;
break;

case NEVER:
System.out .println ("Never") ;
break;

}
}

public static void main(String args[])
Question g new Question() ;
answer (q.as
answer (q
answer (g.as
answer (q

}

}

Type Wrappers

As you know, Java uses primitive types (also called simple types), such as int or double, to
hold the basic data types supported by the language. Primitive types, rather than objects,
are used for these quantities for the sake of performance. Using objects for these values
would add an unacceptable overhead to even the simplest of calculations. Thus, the
primitive types are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when
you will need an object representation. For example, you can’t pass a primitive type by
reference to a method. Also, many of the standard data structures implemented by Java
operate on objects, which means that you can’t use these data structures to store primitive
types. To handle these (and other) situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object. The type wrapper classes are described
in detail in Part II, but they are introduced here because they relate directly to Java’s
autoboxing feature.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and
Boolean. These classes offer a wide array of methods that allow you to fully integrate the
primitive types into Java’s object hierarchy. Each is briefly examined next.

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 273

Character
Character is a wrapper around a char. The constructor for Character is
Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.
To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the encapsulated character.

Boolean
Boolean is a wrapper around boolean values. It defines these constructors:

Boolean (boolean boolValue)
Boolean (String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string "true" (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers

By far, the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an
object in each of the different number formats. These methods are shown here:

byte byteValue ()
double doubleValue()
float floatValue()

int intValue()

long longValue()
short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue()
returns the value as a float, and so on. These methods are implemented by each of the
numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be
constructed from a given value, or a string representation of that value. For example, here
are the constructors defined for Integer:

Integer (int num)
Integer (String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.
All of the type wrappers override toString(). It returns the human-readable form of the

value contained within the wrapper. This allows you to output the value by passing a type

wrapper object to println(), for example, without having to convert it into its primitive type.

274

PART | The Java Language

The following program demonstrates how to use a numeric type wrapper to encapsulate
avalue and then extract that value.

// Demonstrate a type wrapper.
class Wrap {
public static void main(String argsl[]) {

Integer i0Ob = new Integer(100) ;
int i = iOb.intVvalue() ;
System.out.println(i + " " + 10b); // displays 100 100

}
}

This program wraps the integer value 100 inside an Integer object called iOb. The
program then obtains this value by calling intValue() and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the
program, this line boxes the value 100 into an Integer:

Integer i0Ob = new Integer(100) ;

The process of extracting a value from a type wrapper is called unboxing. For example, the
program unboxes the value in iOb with this statement:

int i1 = iOb.intValue() ;

The same general procedure used by the preceding program to box and unbox values has
been employed since the original version of Java. However, since JDK 5, Java fundamentally
improved on this through the addition of autoboxing, described next.

Autoboxing

Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need
to explicitly construct an object. Auto-unboxing is the process by which the value of a
boxed object is automatically extracted (unboxed) from a type wrapper when its value

is needed. There is no need to call a method such as intValue() or doubleValue().

The addition of autoboxing and auto-unboxing greatly streamlines the coding of
several algorithms, removing the tedium of manually boxing and unboxing values. It also
helps prevent errors. Moreover, it is very important to generics, which operate only on
objects. Finally, autoboxing makes working with the Collections Framework (described in
Part IT) much easier.

With autoboxing, it is no longer necessary to manually construct an object in order to
wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to
construct an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 275

Notice that the object is not explicitly created through the use of new. Java handles this for
you, automatically.

To unbox an object, simply assign that object reference to a primitive-type variable. For
example, to unbox iOb, you can use this line:

int i = i0Ob; // auto-unbox

Java handles the details for you.
Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.
class AutoBox {
public static void main(String args[])

Integer i0b = 100; // autobox an int
int i = i0Ob; // auto-unbox

System.out.println(i + " " + iOb); // displays 100 100

}
}

Autoboxing and Methods

In addition to the simple case of assignments, autoboxing automatically occurs whenever a
primitive type must be converted into an object; auto-unboxing takes place whenever an
object must be converted into a primitive type. Thus, autoboxing/unboxing might occur
when an argument is passed to a method, or when a value is returned by a method. For
example, consider this:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
// Take an Integer parameter and return
// an int value;
static int m(Integer v) {
return v ; // auto-unbox to int

}

public static void main(String args[])
// Pass an int to m() and assign the return value
// to an Integer. Here, the argument 100 is autoboxed
// into an Integer. The return value is also autoboxed
// into an Integer.
Integer iOb = m(100) ;

System.out .println (iOb) ;

This program displays the following result:

100

276

PART | The Java Language

In the program, notice that m() specifies an Integer parameter and returns an int
result. Inside main(), m() is passed the value 100. Because m() is expecting an Integer,
this value is automatically boxed. Then, m() returns the int equivalent of its argument. This
causes v to be auto-unboxed. Next, this int value is assigned to iOb in main(), which causes
the int return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions

In general, autoboxing and unboxing take place whenever a conversion into an object or
from an object is required. This applies to expressions. Within an expression, a numeric
object is automatically unboxed. The outcome of the expression is reboxed, if necessary.
For example, consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
public static void main(String argsl[]) {

Integer iOb, i0b2;

int i;
i0b = 100;
System.out.println("Original value of iOb: " + iODb) ;

// The following automatically unboxes 1i0Db,
// performs the increment, and then reboxes
// the result back into iOb.

++10b;

System.out .println("After ++iOb: " + 1iOb) ;

// Here, 1i0b is unboxed, the expression is

// evaluated, and the result is reboxed and

// assigned to iOb2.

i0b2 = i0Ob + (iOb / 3);

System.out.println("iOb2 after expression: " + i0b2) ;

// The same expression is evaluated, but the
// result is not reboxed.

i = i0b + (i0b / 3);

System.out.println("i after expression: " + 1i);

}
}

The output is shown here:

Original value of iOb: 100
After ++1i0b: 101

i0b2 after expression: 134
i after expression: 134

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 277

In the program, pay special attention to this line:
++10b;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the value
is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an
expression. Once the values are unboxed, the standard type promotions and conversions
are applied. For example, the following program is perfectly valid:

class AutoBox4 {
public static void main(String args[]) {

Integer 10b = 100;
Double dOb = 98.6;

dOb = dOb + iOb;
System.out.println("dOb after expression: " + dOb) ;

The output is shown here:
dOb after expression: 198.6

As you can see, both the Double object dOb and the Integer object iOb participated in the
addition, and the result was reboxed and stored in dOb.

Because of auto-unboxing, you can use Integer numeric objects to control a switch
statement. For example, consider this fragment:

Integer i0b = 2;

switch (i0b)
case 1: System.out.println("one") ;
break;
case 2: System.out.println("two") ;
break;
default: System.out.println("error");

}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.

As the examples in the program show, because of autoboxing/unboxing, using numeric
objects in an expression is both intuitive and easy. In the past, such code would have
involved casts and calls to methods such as intValue().

278

PART | The Java Language

Autoboxing/Unboxing Boolean and Character Values

As described earlier, Java also supplies wrappers for boolean and char. These are Boolean
and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider
the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5 {
public static void main(String args[]) {

// Autobox/unbox a boolean.
Boolean b = true;

// Below, b is auto-unboxed when used in
// a conditional expression, such as an if.
if (b) System.out.println("b is true");

// Autobox/unbox a char.
Character ch = 'x'; // box a char
char ch2 = ch; // unbox a char

System.out .println("ch2 is " + ch2);

}
}

The output is shown here:

b is true
ch2 is x

The most important thing to notice about this program is the auto-unboxing of b inside
the if conditional expression. As you should recall, the conditional expression that controls
an if must evaluate to type boolean. Because of auto-unboxing, the boolean value contained
within b is automatically unboxed when the conditional expression is evaluated. Thus, with
the advent of autoboxing/unboxing, a Boolean object can be used to control an if statement.

Because of auto-unboxing, a Boolean object can now also be used to control any of
Java’s loop statements. When a Boolean is used as the conditional expression of a while, for,
or do/while, it is automatically unboxed into its boolean equivalent. For example, this is
now perfectly valid code:

Boolean b;

/] ...
while(b) { //

Autoboxing/Unboxing Helps Prevent Errors

In addition to the convenience that it offers, autoboxing/unboxing can also help prevent
errors. For example, consider the following program:

// An error produced by manual unboxing.
class UnboxingError {
public static void main(String args[]) {

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 279

Integer i0b = 1000; // autobox the value 1000
int 1 = iOb.byteValue(); // manually unbox as byte !!!

System.out.println(i); // does not display 1000 !

}
}

This program displays not the expected value of 1000, but —24! The reason is that the value
inside iOb is manually unboxed by calling byteValue(), which causes the truncation of the
value stored in iOb, which is 1,000. This results in the garbage value of —24 being assigned
to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-
unbox into a value compatible with int.

In general, because autoboxing always creates the proper object, and auto-unboxing
always produces the proper value, there is no way for the process to produce the wrong type
of object or value. In the rare instances where you want a type different than that produced
by the automated process, you can still manually box and unbox values. Of course, the
benefits of autoboxing/unboxing are lost. In general, new code should employ
autoboxing/unboxing. It is the way that modern Java code is written.

A Word of Warning

Because of autoboxing and auto-unboxing, some might be tempted to use objects such
as Integer or Double exclusively, abandoning primitives altogether. For example, with
autoboxing/unboxing it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c;

a = 10.0;
b =4.0;

¢ = Math.sqgrt (a*a + b*b);
System.out.println ("Hypotenuse is " + c¢);

In this example, objects of type Double hold values that are used to calculate the hypotenuse
of a right triangle. Although this code is technically correct and does, in fact, work properly,
itis a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code
written using the primitive type double. The reason is that each autobox and auto-unbox
adds overhead that is not present if the primitive type is used.

In general, you should restrict your use of the type wrappers to only those cases in
which an object representation of a primitive type is required. Autoboxing/unboxing was
not added to Java as a “back door” way of eliminating the primitive types.

Annotations (Metadata)

Since JDK 5, Java has supported a feature that enables you to embed supplemental
information into a source file. This information, called an annotation, does not change the
actions of a program. Thus, an annotation leaves the semantics of a program unchanged.

280

PART | The Java Language

However, this information can be used by various tools during both development and
deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

Annotation Basics

An annotation is created through a mechanism based on the interface. Let’s begin with an
example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.
@interface MyAnno {

String str () ;

int val();

}

First, notice the @ that precedes the keyword interface. This tells the compiler that an
annotation type is being declared. Next, notice the two members str() and val(). All
annotations consist solely of method declarations. However, you don’t provide bodies for
these methods. Instead, Java implements these methods. Moreover, the methods act much
like fields, as you will see.

An annotation cannot include an extends clause. However, all annotation types
automatically extend the Annotation interface. Thus, Annotation is a super-interface of all
annotations. It is declared within the java.lang.annotation package. It overrides hashCode(),
equals(), and toString(), which are defined by Object. It also specifies annotationType(),
which returns a Class object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate something. Prior to
JDK 8, annotations could be used only on declarations, and that is where we will begin.
(JDK 8 adds the ability to annotate type use, and this is described later in this chapter.
However, the same basic techniques apply to both kinds of annotations.) Any type of
declaration can have an annotation associated with it. For example, classes, methods, fields,
parameters, and enum constants can be annotated. Even an annotation can be annotated.
In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an
example of MyAnno being applied to a method declaration:

// Annotate a method.
@MyAnno (str = "Annotation Example", val = 100)
public static void myMeth() { //

This annotation is linked with the method myMeth(). Look closely at the annotation
syntax. The name of the annotation, preceded by an @, is followed by a parenthesized list
of member initializations. To give a member a value, that member’s name is assigned a
value. Therefore, in the example, the string "Annotation Example" is assigned to the str
member of MyAnno. Notice that no parentheses follow str in this assignment. When an
annotation member is given a value, only its name is used. Thus, annotation members look
like fields in this context.

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 281

Specifying a Retention Policy

Before exploring annotations further, it is necessary to discuss annotation retention policies.
A retention policy determines at what point an annotation is discarded. Java defines three
such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy
enumeration. They are SOURCE, CLASS, and RUNTIME.

An annotation with a retention policy of SOURCE is retained only in the source file
and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during
compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during
compilation and is available through the JVM during run time. Thus, RUNTIME retention
offers the greatest annotation persistence.

NOTE An annotation on a local variable declaration is not retained in the .class file.

A retention policy is specified for an annotation by using one of Java’s built-in
annotations: @Retention. Its general form is shown here:

@Retention (retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no
retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention
policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int val() ;

}

Obtaining Annotations at Run Time by Use of Reflection

Although annotations are designed mostly for use by other development or deployment
tools, if they specify a retention policy of RUNTIME, then they can be queried at run time
by any Java program through the use of reflection. Reflection is the feature that enables
information about a class to be obtained at run time. The reflection API is contained in
the java.lang.reflect package. There are a number of ways to use reflection, and we won’t
examine them all here. We will, however, walk through a few examples that apply to
annotations.

The first step to using reflection is to obtain a Class object that represents the class
whose annotations you want to obtain. Class is one of Java’s built-in classes and is defined in
java.lang. It is described in detail in Part II. There are various ways to obtain a Class object.
One of the easiest is to call getClass(), which is a method defined by Object. Its general
form is shown here:

final Class<?> getClass()

It returns the Class object that represents the invoking object.

282

PART | The Java Language

NOTE Notice the <?> that follows Class in the declaration of getClass() just shown. This is related to
Java’s generics feature. getClass() and several other reflection-related methods discussed in this
chapter make use of generics. Generics are described in Chapter 14. However, an understanding of
generics is not needed to grasp the fundamental principles of reflection.

After you have obtained a Class object, you can use its methods to obtain information
about the various items declared by the class, including its annotations. If you want to
obtain the annotations associated with a specific item declared within a class, you must first
obtain an object that represents that item. For example, Class supplies (among others) the
getMethod(), getField(), and getConstructor() methods, which obtain information about
amethod, field, and constructor, respectively. These methods return objects of type
Method, Field, and Constructor.

To understand the process, let’s work through an example that obtains the annotations
associated with a method. To do this, you first obtain a Class object that represents the
class, and then call getMethod() on that Class object, specifying the name of the method.
getMethod() has this general form:

Method getMethod (String methName, Class<?> ... paramTypes)

The name of the method is passed in methName. If the method has arguments, then Class
objects representing those types must also be specified by paramTypes. Notice that
paramTypes is a varargs parameter. This means that you can specify as many parameter
types as needed, including zero. getMethod() returns a Method object that represents the
method. If the method can’t be found, NoSuchMethodException is thrown.

From a Class, Method, Field, or Constructor object, you can obtain a specific annotation
associated with that object by calling getAnnotation(). Its general form is shown here:

<A extends Annotation> getAnnotation (Class<A> annoType)

Here, annoTypeis a Class object that represents the annotation in which you are interested.
The method returns a reference to the annotation. Using this reference, you can obtain the
values associated with the annotation’s members. The method returns null if the annotation
is not found, which will be the case if the annotation does not have RUNTIME retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to
display the annotation associated with a method:

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration.
@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int val();

}

class Meta

// Annotate a method.
@MyAnno (str = "Annotation Example", val = 100)

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 283

public static void myMeth() ({
Meta ob = new Metal() ;

// Obtain the annotation for this method
// and display the values of the members.

try {
// First, get a Class object that represents

// this class.
Class<?> c = ob.getClass() ;

// Now, get a Method object that represents
// this method.
Method m = c.getMethod ("myMeth") ;

// Next, get the annotation for this class.
MyAnno anno = m.getAnnotation (MyAnno.class) ;

// Finally, display the values.
System.out.println(anno.stxr() + " " + anno.val());
} catch (NoSuchMethodException exc) {
System.out .println("Method Not Found.") ;
}

}

public static void main(String argsl[]) {
myMeth () ;

}
}

The output from the program is shown here:
Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth() in the Meta class. There are two things
to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation (MyAnno.class) ;

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation. This construct is called a class literal. You can use this type of
expression whenever a Class object of a known class is needed. For example, this statement
could have been used to obtain the Class object for Meta:

Class<?> ¢ = Meta.class;

Of course, this approach only works when you know the class name of an object in advance,
which might not always be the case. In general, you can obtain a class literal for classes,
interfaces, primitive types, and arrays. (Remember, the <?> syntax relates to Java’s generics
feature. It is described in Chapter 14.)

284

PART | The Java Language

The second point of interest is the way the values associated with str and val are
obtained when they are output by the following line:

System.out.println(anno.str() + " " + anno.val());

Notice that they are invoked using the method-call syntax. This same approach is used
whenever the value of an annotation member is required.

A Second Reflection Example

In the preceding example, myMeth() has no parameters. Thus, when getMethod() was
called, only the name myMeth was passed. However, to obtain a method that has parameters,
you must specify class objects representing the types of those parameters as arguments to
getMethod(). For example, here is a slightly different version of the preceding program:

import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str () ;

int val();

}

class Meta {

// myMeth now has two arguments.
@MyAnno (str = "Two Parameters", val = 19)
public static void myMeth(String str, int i)

{

Meta ob = new Meta() ;

try {
Class<?> ¢ = ob.getClass() ;

// Here, the parameter types are specified.
Method m = c.getMethod ("myMeth", String.class, int.class);

MyAnno anno = m.getAnnotation (MyAnno.class) ;
System.out.println(anno.str() + " " + anno.vall());

} catch (NoSuchMethodException exc)
System.out .println ("Method Not Found.") ;
}

}

public static void main(String argsl[]) {
myMeth ("test", 10);

}
}

The output from this version is shown here:

Two Parameters 19

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 285

In this version, myMeth() takes a String and an int parameter. To obtain information
about this method, getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

Obtaining All Annotations
You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations() on that item. It has this general form:

Annotation|[] getAnnotations()

It returns an array of the annotations. getAnnotations() can be called on objects of type
Class, Method, Constructor, and Field, among others.

Here is another reflection example that shows how to obtain all annotations associated
with a class and with a method. It declares two annotations. It then uses those annotations
to annotate a class and a method.

// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int val() ;

}

@Retention (RetentionPolicy.RUNTIME)
@interface What
String description() ;

@What (description = "An annotation test class")
@MyAnno (str = "Meta2", val = 99)
class Meta2

@What (description = "An annotation test method")
@MyAnno (str = "Testing", val = 100)
public static void myMeth() ({

Meta2 ob = new Meta2 () ;

try {
Annotation annos[] = ob.getClass () .getAnnotations() ;

// Display all annotations for Meta2.
System.out.println("All annotations for Meta2:");
for (Annotation a : annos)

System.out.println(a) ;

System.out .println() ;

// Display all annotations for myMeth.

286

PART | The Java Language

Method m = ob.getClass() .getMethod ("myMeth") ;
annos = m.getAnnotations() ;

System.out.println("All annotations for myMeth:");
for (Annotation a : annos)
System.out.println(a) ;

} catch (NoSuchMethodException exc)
System.out .println("Method Not Found.") ;
}

}

public static void main(String args[])
myMeth () ;

}
}

The output is shown here:

All annotations for Meta2:
@What (description=An annotation test class)
@MyAnno (str=Meta2, val=99)

All annotations for myMeth:
@What (description=An annotation test method)
@MyAnno (str=Testing, val=100)

The program uses getAnnotations() to obtain an array of all annotations associated
with the Meta2 class and with the myMeth() method. As explained, getAnnotations()
returns an array of Annotation objects. Recall that Annotation is a super-interface of all
annotation interfaces and that it overrides toString() in Object. Thus, when a reference to
an Annotation is output, its toString() method is called to generate a string that describes
the annotation, as the preceding output shows.

The AnnotatedElement Interface

The methods getAnnotation() and getAnnotations() used by the preceding examples are
defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This
interface supports reflection for annotations and is implemented by the classes Method,
Field, Constructor, Class, and Package, among others.

In addition to getAnnotation() and getAnnotations(), AnnotatedElement defines several
other methods. Two have been available since JDK 5. The first is getDeclaredAnnotations(),
which has this general form:

Annotation|[] getDeclaredAnnotations()

It returns all non-inherited annotations present in the invoking object. The second is
isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class<? extends Annotation> annoType)

It returns true if the annotation specified by annoTypeis associated with the invoking object.
It returns false otherwise. To these, JDK 8 adds getDeclaredAnnotation(),

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 287

getAnnotationsByType(), and getDeclaredAnnotationsByType(). Of these, the last two
automatically work with a repeated annotation. (Repeated annotations are discussed at the
end of this chapter.)

Using Default Values

You can give annotation members default values that will be used if no value is specified
when the annotation is applied. A default value is specified by adding a default clause to
a member’s declaration. It has this general form:

type member() default value;

Here, value must be of a type compatible with type.
Here is @MyAnno rewritten to include default values:

// An annotation type declaration that includes defaults.
@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str() default "Testing";

int val() default 9000;

}

This declaration gives a default value of "Testing" to str and 9000 to val. This means that
neither value needs to be specified when @MyAnno is used. However, either or both can be
given values if desired. Therefore, following are the four ways that @MyAnno can be used:

@MyAnno () // both str and val default

@MyAnno (str = "some string") // val defaults
@MyAnno (val = 100) // str defaults

@MyAnno (str = "Testing", val = 100) // no defaults

The following program demonstrates the use of default values in an annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration that includes defaults.
@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str() default "Testing";

int val() default 9000;

}

class Meta3 {

// Annotate a method using the default values.
@MyAnno ()
public static void myMeth() ({

Meta3 ob = new Meta3 () ;

// Obtain the annotation for this method
// and display the values of the members.

try {
Class<?> ¢ = ob.getClass() ;

PART | The Java Language

Method m = c.getMethod ("myMeth") ;
MyAnno anno = m.getAnnotation (MyAnno.class);

System.out.println(anno.str() + " " + anno.vall());
} catch (NoSuchMethodException exc) {
System.out.println ("Method Not Found.") ;
}

}

public static void main(String argsl[]) {
myMeth () ;

}
}

The output is shown here:

Testing 9000

Marker Annotations

A marker annotation is a special kind of annotation that contains no members. Its sole
purpose is to mark an item. Thus, its presence as an annotation is sufficient. The best way to
determine if a marker annotation is present is to use the method isAnnotationPresent(), which
is defined by the AnnotatedElement interface.
Here is an example that uses a marker annotation. Because a marker interface contains
no members, simply determining whether it is present or absent is sufficient.

import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation.
@Retention (RetentionPolicy.RUNTIME)
@interface MyMarker { }

class Marker

// Annotate a method using a marker.

// Notice that no () is needed.

@MyMarker

public static void myMeth()
Marker ob = new Marker() ;

try {
Method m = ob.getClass () .getMethod ("myMeth") ;

// Determine if the annotation is present.
if (m.isAnnotationPresent (MyMarker.class))
System.out.println("MyMarker is present.");

} catch (NoSuchMethodException exc) {
System.out.println ("Method Not Found.") ;

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 289

public static void main(String args[]) {
myMeth () ;

}
}

The output, shown here, confirms that @MyMarker is present:
MyMarker is present.

In the program, notice that you do not need to follow @MyMarker with parentheses
when it is applied. Thus, @MyMarker is applied simply by using its name, like this:

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations

A single-member annotation contains only one member. It works like a normal annotation
except that it allows a shorthand form of specifying the value of the member. When only
one member is present, you can simply specify the value for that member when the
annotation is applied—you don’t need to specify the name of the member. However,
in order to use this shorthand, the name of the member must be value.

Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention (RetentionPolicy.RUNTIME)
@interface MySingle {
int value(); // this variable name must be value
1

class Single {
// Annotate a method using a single-member annotation.
@MySingle (100)
public static void myMeth() {

Single ob = new Single();

try {
Method m = ob.getClass () .getMethod ("myMeth") ;

MySingle anno = m.getAnnotation (MySingle.class) ;
System.out.println(anno.value()); // displays 100

} catch (NoSuchMethodException exc) {
System.out .println("Method Not Found.") ;
}

}

290

PART | The Java Language

public static void main(String args[]) {
myMeth () ;

}

As expected, this program displays the value 100. In the program, @MySingle is used to
annotate myMeth(), as shown here:

@MySingle (100)

Notice that value = need not be specified.

You can use the single-value syntax when applying an annotation that has other
members, but those other members must all have default values. For example, here the
value xyz is added, with a default value of zero:

@interface SomeAnno {
int value() ;
int xyz () default 0;

}

In cases in which you want to use the default for xyz, you can apply @SomeAnno, as shown
next, by simply specifying the value of value by using the single-member syntax.

@SomeAnno (88)

In this case, xyz defaults to zero, and value gets the value 88. Of course, to specify a
different value for xyz requires that both members be explicitly named, as shown here:

@SomeAnno (value = 88, xyz = 99)

Remember, whenever you are using a single-member annotation, the name of that
member must be value.

The Built-In Annotations

Java defines many built-in annotations. Most are specialized, but nine are general purpose.
Of these, four are imported from java.lang.annotation: @Retention, @Documented,
@Target, and @Inherited. Five—@Override, @Deprecated, @Functionallnterface,
@SafeVarargs, and @SuppressWarnings—are included in java.lang. Each is described here.

NOTE To java.lang.annotation, JDK 8 adds the annotations Repeatable and Native. Repeatable
supports repeatable annotations, as described later in this chapter. Native annotates a field that can
be accessed by native code.

@Retention

@Retention is designed to be used only as an annotation to another annotation. It specifies
the retention policy as described earlier in this chapter.

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 291

@Documented

The @Documented annotation is a marker interface that tells a tool that an annotation is
to be documented. It is designed to be used only as an annotation to an annotation
declaration.

@Target

The @Target annotation specifies the types of items to which an annotation can be applied.
Itis designed to be used only as an annotation to another annotation. @Target takes one
argument, which is an array of constants of the ElementType enumeration. This argument
specifies the types of declarations to which the annotation can be applied. The constants
are shown here along with the type of declaration to which they correspond:

Target Constant Annotation Can Be Applied To
ANNOTATION_TYPE Another annotation
CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration
TYPE_PARAMETER Type parameter (Added by JDK 8.)
TYPE_USE Type use (Added by JDK 8.)

You can specify one or more of these values in a @Target annotation. To specify multiple
values, you must specify them within a braces-delimited list. For example, to specify that an
annotation applies only to fields and local variables, you can use this @Target annotation:

@Target ({ ElementType.FIELD, ElementType.LOCAL VARIABLE })

If you don't use @Target, then, except for type parameters, the annotation can be used on
any declaration. For this reason, it is often a good idea to explicitly specify the target or
targets so as to clearly indicate the intended uses of an annotation.

@Inherited

@Inherited is a marker annotation that can be used only on another annotation declaration.
Furthermore, it affects only annotations that will be used on class declarations. @Inherited
causes the annotation for a superclass to be inherited by a subclass. Therefore, when a
request for a specific annotation is made to the subclass, if that annotation is not present in
the subclass, then its superclass is checked. If that annotation is present in the superclass,
and if it is annotated with @Inherited, then that annotation will be returned.

292

PART | The Java Language

@Override

@Override is a marker annotation that can be used only on methods. A method annotated
with @Override must override a method from a superclass. If it doesn’t, a compile-time
error will result. It is used to ensure that a superclass method is actually overridden, and not
simply overloaded.

@Deprecated
@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has
been replaced by a newer form.

@Functionalinterface

@Functionallnterface is a marker annotation added by JDK 8 and designed for use on
interfaces. It indicates that the annotated interface is a functional interface. A functional
interfaceis an interface that contains one and only one abstract method. Functional interfaces
are used by lambda expressions. (See Chapter 15 for details on functional interfaces and
lambda expressions.) If the annotated interface is not a functional interface, a compilation
error will be reported. It is important to understand that @Functionallnterface is not
needed to create a functional interface. Any interface with exactly one abstract method is,
by definition, a functional interface. Thus, @FunctionalInterface is purely informational.

@SafeVarargs

@SafeVarargs is a marker annotation that can be applied to methods and constructors. It
indicates that no unsafe actions related to a varargs parameter occur. It is used to suppress
unchecked warnings on otherwise safe code as it relates to non-reifiable vararg types and
parameterized array instantiation. (A non-reifiable type is, essentially, a generic type.
Generics are described in Chapter 14.) It must be applied only to vararg methods or
constructors that are static or final.

@SuppressWarnings

@SuppressWarnings specifies that one or more warnings that might be issued by the
compiler are to be suppressed. The warnings to suppress are specified by name, in
string form.

Type Annotations

Beginning with JDK 8, the places in which annotations can be used has been expanded. As
mentioned earlier, annotations were originally allowed only on declarations. However, with
the advent of JDK 8, annotations can also be specified in most cases in which a type is used.
This expanded aspect of annotations is called #ype annotation. For example, you can
annotate the return type of a method, the type of this within a method, a cast, array levels,
an inherited class, and a throws clause. You can also annotate generic types, including
generic type parameter bounds and generic type arguments. (See Chapter 14 for a
discussion of generics.)

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 293

Type annotations are important because they enable tools to perform additional checks
on code to help prevent errors. Understand that, as a general rule, javac will not perform
these checks, itself. A separate tool is used for this purpose, although such a tool might
operate as a compiler plug-in.

A type annotation must include ElementType. TYPE_USE as a target. (Recall that valid
annotation targets are specified using the @Target annotation, as previously described.) A
type annotation applies to the type that the annotation precedes. For example, assuming
some type annotation called @TypeAnno, the following is legal:

void myMeth () throws @TypeAnno NullPointerException { //

Here, @TypeAnno annotates NullPointerException in the throws clause.

You can also annotate the type of this (called the receiver). As you know, this is an
implicit argument to all instance methods and it refers to the invoking object. To annotate
its type requires the use of another new JDK 8 feature. Beginning with JDK 8, you can
explicitly declare this as the first parameter to a method. In this declaration, the type of this
must be the type of its class; for example:

class SomeClass {
int myMeth (SomeClass this, int i, int j) { //

Here, because myMeth() is a method defined by SomeClass, the type of this is SomeClass.
Using this declaration, you can now annotate the type of this. For example, again assuming
that @TypeAnno is a type annotation, the following is legal:

int myMeth (@TypeAnno SomeClass this, int i, int j) { //

Itis important to understand that it is not necessary to declare this unless you are
annotating it. (If this is not declared, it is still implicitly passed. JDK 8 does not change this
fact.) Also, explicitly declaring this does not change any aspect of the method’s signature
because this is implicitly declared, by default. Again, you will declare this only if you want to
apply a type annotation to it. If you do declare this, it must be the first parameter.

The following program shows a number of the places that a type annotation can be
used. It defines several annotations, of which several are for type annotation. The names
and targets of the annotations are shown here:

Annotation Target

@TypeAnno ElementType. TYPE_USE
@MaxLen ElementType. TYPE_USE
@NotZeroLen ElementType. TYPE_USE
@Unique ElementType. TYPE_USE

@What ElementType. TYPE_PARAMETER
@EmptyOK ElementType FIELD
@Recommended ElementType METHOD

294 PARTI The Java Language

Notice that @EmptyOK, @Recommended, and @What are not type annotations. They are
included for comparison purposes. Of special interest is @What, which is used to annotate
a generic type parameter declaration and is another new annotation feature added by JDK 8.
The comments in the program describe each use.

// Demonstrate several type annotations.
import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation that can be applied to a type.
@Target (ElementType.TYPE USE)
@interface TypeAnno { }

// Another marker annotation that can be applied to a type.
@Target (ElementType.TYPE USE)
@interface NotZeroLen ({

}

// Still another marker annotation that can be applied to a type.
@Target (ElementType.TYPE USE)
@interface Unique { }

// A parameterized annotation that can be applied to a type.
@Target (ElementType.TYPE USE)
@interface MaxLen {

int value() ;

}

// An annotation that can be applied to a type parameter.
@Target(ElementType.TYPE_PARAMETER)
@interface What {

String description() ;

}

// An annotation that can be applied to a field declaration.
@Target (ElementType.FIELD)
@interface EmptyOK { }

// An annotation that can be applied to a method declaration.
@Target (ElementType .METHOD)
@interface Recommended { }

// Use an annotation on a type parameter.
class TypeAnnoDemo<@What (description = "Generic data type") T> {

// Use a type annotation on a constructor.
public @Unique TypeAnnoDemo () {}

// Annotate the type (in this case String), not the field.
@TypeAnno String str;

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 295

// This annotates the field test.
@EmptyOK String test;

// Use a type annotation to annotate this (the receiver).
public int f (@TypeAnno TypeAnnoDemo<T> this, int x) {
return 10;

// Annotate the return type.

public @TypeAnno Integer f2(int j, int k) {
return j+k;

}

// BAnnotate the method declaration.

public @Recommended Integer £3(String str)
return str.length() / 2;

}

// Use a type annotation with a throws clause.
public void f4() throws @TypeAnno NullPointerException {

//
}

// Annotate array levels.
String @MaxLen (10) [] @NotZeroLen [] w;

// Annotate the array element type.
@TypeAnno Integer([] vec;

public static void myMeth (int i) {

// Use a type annotation on a type argument.
TypeAnnoDemo<@TypeAnno Integer> ob =
new TypeAnnoDemo<@TypeAnno Integers () ;

// Use a type annotation with new.
@Unique TypeAnnoDemo<Integer> ob2 = new @Unique TypeAnnoDemo<Integers () ;

Object x = new Integer(10);
Integer y;

// Use a type annotation on a cast.
y = (@TypeAnno Integer) Xx;

}

public static void main(String args[]) {
myMeth (10) ;
}

// Use type annotation with inheritance clause.
class SomeClass extends @TypeAnno TypeAnnoDemo<Booleans> {}

296

PART | The Java Language

Although what most of the annotations in the preceding program refer to is clear, four
uses require a bit of discussion. The first is the annotation of a method return type versus
the annotation of a method declaration. In the program, pay special attention to these two
method declarations:

// Annotate the return type.
public @TypeAnno Integer f£2(int j, int k)
return j+k;

}

// Annotate the method declaration.
public @Recommended Integer £3(String str) ({
return str.length() / 2;

}

Notice that in both cases, an annotation precedes the method’s return type (which is
Integer). However, the two annotations annotate two different things. In the first case, the
@TypeAnno annotation annotates f2()’s return type. This is because @TypeAnno has its
target specified as ElementType. TYPE_USE, which means that it can be used to annotate
type uses. In the second case, @Recommended annotates the method declaration, itself.
This is because @Recommended has its target specified as ElementType.METHOD. As a
result, @Recommended applies to the declaration, not the return type. Therefore, the
target specification is used to eliminate what, at first glance, appears to be ambiguity
between the annotation of a method declaration and the annotation of the method’s
return type.

One other thing about annotating a method return type: You cannot annotate a return
type of void.

The second point of interest are the field annotations, shown here:

// Annotate the type (in this case String), not the field.
@TypeAnno String str;

// This annotates the field test.
@EmptyOK String test;

Here, @TypeAnno annotates the type String, but @EmptyOK annotates the field test. Even
though both annotations precede the entire declaration, their targets are different, based
on the target element type. If the annotation has the ElementType. TYPE_USE target, then
the type is annotated. If it has ElementType_FIELD as a target, then the field is annotated.
Thus, the situation is similar to that just described for methods, and no ambiguity exists.
The same mechanism also disambiguates annotations on local variables.

Next, notice how this (the receiver) is annotated here:

public int f (@TypeAnno TypeAnnoDemo<T> this, int x) {

Here, this is specified as the first parameter and is of type TypeAnnoDemo (which is the
class of which f() is a member). As explained, beginning with JDK 8, an instance method
declaration can explicitly specify the this parameter for the sake of applying a type
annotation.

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 297

Finally, look at how array levels are annotated by the following statement:
String @MaxLen(10) [] @NotZeroLen [] w;

In this declaration, @MaxLen annotates the type of the first level and @NotZeroLen
annotates the type of the second level. In this declaration

@TypeAnno Integer|[] vec;

the element type Integer is annotated.

Repeating Annotations

Another new JDK 8 annotation feature enables an annotation to be repeated on the same
element. This is called repeating annotations. For an annotation to be repeatable, it must be
annotated with the @Repeatable annotation, defined in java.lang.annotation. Its value field
specifies the container type for the repeatable annotation. The container is specified as an
annotation for which the value field is an array of the repeatable annotation type. Thus, to
create a repeatable annotation, you must create a container annotation and then specify
that annotation type as an argument to the @Repeatable annotation.

To access the repeated annotations using a method such as getAnnotation(), you will
use the container annotation, not the repeatable annotation. The following program shows
this approach. It converts the version of MyAnno shown previously into a repeatable
annotation and demonstrates its use.

// Demonstrate a repeated annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// Make MyAnno repeatable.
@Retention (RetentionPolicy.RUNTIME)
@Repeatable (MyRepeatedAnnos.class)
@interface MyAnno {
String str() default "Testing";
int val() default 9000;

}

// This is the container annotation.

@Retention (RetentionPolicy.RUNTIME)

@interface MyRepeatedAnnos {
MyAnno [] value() ;

1

class RepeatAnno {

// Repeat MyAnno on myMeth () .

@MyAnno (str = "First annotation", wval = -1)
@MyAnno (str = "Second annotation", val = 100)
public static void myMeth(String str, int i)

298

PART | The Java Language

RepeatAnno ob = new RepeatAnno () ;

try {
Class<?> ¢ = ob.getClass() ;

// Obtain the annotations for myMeth() .
Method m = c.getMethod("myMeth", String.class, int.class);

// Display the repeated MyAnno annotations.
Annotation anno = m.getAnnotation (MyRepeatedAnnos.class) ;
System.out .println (anno) ;

} catch (NoSuchMethodException exc) {
System.out .println("Method Not Found.") ;
}

}

public static void main(String args[])
myMeth ("test", 10);

}
}

The output is shown here:

@MyRepeatedAnnos (value=[@MyAnno (str=First annotation, wval=-1),
@MyAnno (str=Second annotation, wval=100)])

As explained, in order for MyAnno to be repeatable, it must be annotated with the
@Repeatable annotation, which specifies its container annotation. The container annotation
is called MyRepeatedAnnos. The program accesses the repeated annotations by calling
getAnnotation(), passing in the class of the container annotation, not the repeatable
annotation, itself. As the output shows, the repeated annotations are separated by a comma.
They are not returned individually.

Another way to obtain the repeated annotations is to use one of the new methods
added to AnnotatedElement by JDK 8, which can operate directly on a repeated annotation.
These are getAnnotationsByType() and getDeclaredAnnotationsByType(). Here, we will
use the former. It is shown here:

<T extends Annotation> T[] getAnnotationsByType (Class<T> annoType)

It returns an array of the annotations of annoType associated with the invoking object. If no
annotations are present, the array will be of zero length. Here is an example. Assuming the
preceding program, the following sequence uses getAnnotationsByType() to obtain the
repeated MyAnno annotations:

Annotation[] annos = m.getAnnotationsByType (MyAnno.class) ;
for (Annotation a : annos)
System.out.println(a) ;

Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 299

Here, the repeated annotation type, which is MyAnno, is passed to getAnnotationsByType().
The returned array contains all of the instances of MyAnno associated with myMeth(),
which, in this example, is two. Each repeated annotation can be accessed via its index in the
array. In this case, each MyAnno annotation is displayed via a for-each loop.

Some Restrictions
There are a number of restrictions that apply to annotation declarations. First, no
annotation can inherit another. Second, all methods declared by an annotation must
be without parameters. Furthermore, they must return one of the following:

¢ A primitive type, such as int or double

* An object of type String or Class

* An enum type

¢ Another annotation type

® An array of one of the preceding types
Annotations cannot be generic. In other words, they cannot take type parameters.

(Generics are described in Chapter 14.) Finally, annotation methods cannot specify a
throws clause.

This page has been intentionally left blank

CHAPTER

1 3 1/0, Applets, and
Other Topics

1/0

This chapter introduces two of Java’s most important packages: io and applet. The io
package supports Java’s basic I/O (input/output) system, including file I/O. The applet
package supports applets. Support for both I/O and applets comes from Java’s core API
libraries, not from language keywords. For this reason, an in-depth discussion of these
topics is found in Part II of this book, which examines Java’s API classes. This chapter
discusses the foundation of these two subsystems so that you can see how they are integrated
into the Java language and how they fit into the larger context of the Java programming
and execution environment. This chapter also examines the try-with-resources statement
and the last of Java’s keywords: transient, volatile, instanceof, native, strictfp, and assert. It
concludes by discussing static import, describing another use for the this keyword, and
introducing compact profiles (a feature added by JDK 8).

Basics

As you may have noticed while reading the preceding 12 chapters, not much use has been
made of I/O in the example programs. In fact, aside from print() and println(), none of
the I/O methods have been used significantly. The reason is simple: most real applications
of Java are not text-based, console programs. Rather, they are either graphically oriented
programs that rely on one of Java’s graphical user interface (GUI) frameworks, such as
Swing, the AWT, or JavaFX, for user interaction, or they are Web applications. Although
text-based, console programs are excellent as teaching examples, they do not constitute an
important use for Java in the real world. Also, Java’s support for console I/O is limited and
somewhat awkward to use—even in simple example programs. Text-based console I/0 is
just not that useful in real-world Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible support
for I/O as it relates to files and networks. Java’s I/O system is cohesive and consistent. In
fact, once you understand its fundamentals, the rest of the I/O system is easy to master. A
general overview of I/O is presented here. A detailed description is found in Chapters 20
and 21.

301

302

PART | The Java Language

Streams

Java programs perform I/O through streams. A stream is an abstraction that either produces
or consumes information. A stream is linked to a physical device by the Java I/O system. All
streams behave in the same manner, even if the actual physical devices to which they are
linked differ. Thus, the same I/O classes and methods can be applied to different types of
devices. This means that an input stream can abstract many different kinds of input: from a
disk file, a keyboard, or a network socket. Likewise, an output stream may refer to the
console, a disk file, or a network connection. Streams are a clean way to deal with input/
output without having every part of your code understand the difference between a keyboard
and a network, for example. Java implements streams within class hierarchies defined in the
java.io package.

NOTE In addition to the stream-based |/0 defined in java.io, Java also provides buffer- and channel-
based 1/0, which is defined in java.nio and its subpackages. They are described in Chapter 21.

Byte Streams and Character Streams

Java defines two types of streams: byte and character. Byte streams provide a convenient
means for handling input and output of bytes. Byte streams are used, for example, when
reading or writing binary data. Character streams provide a convenient means for handling
input and output of characters. They use Unicode and, therefore, can be internationalized.
Also, in some cases, character streams are more efficient than byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus, all
I/0 was byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented
classes and methods were deprecated. Although old code that doesn’t use character streams
is becoming increasingly rare, it may still be encountered from time to time. As a general
rule, old code should be updated to take advantage of character streams where appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The character-based
streams simply provide a convenient and efficient means for handling characters.

An overview of both byte-oriented streams and character-oriented streams is presented
in the following sections.

The Byte Stream Classes

Byte streams are defined by using two class hierarchies. At the top are two abstract classes:
InputStream and OutputStream. Each of these abstract classes has several concrete
subclasses that handle the differences among various devices, such as disk files, network
connections, and even memory buffers. The byte stream classes in java.io are shown in
Table 13-1. A few of these classes are discussed later in this section. Others are described in
Part IT of this book. Remember, to use the stream classes, you must import java.io.

Chapter 13 1/0, Applets, and Other Topics

303

Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DatalnputStream An input stream that contains methods for reading the Java
standard data types

DataOutputStream An output stream that contains methods for writing the Java
standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

ObjectInputStream Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that supports one-byte “unget,” which returns a
byte to the input stream

SequencelnputStream Input stream that is a combination of two or more input
streams that will be read sequentially, one after the other

Table 13-1 The Byte Stream Classes in java.io

The abstract classes InputStream and OutputStream define several key methods that
the other stream classes implement. Two of the most important are read() and write(),
which, respectively, read and write bytes of data. Each has a form that is abstract and must
be overridden by derived stream classes.

The Character Stream Classes
Character streams are defined by using two class hierarchies. At the top are two abstract
classes: Reader and Writer. These abstract classes handle Unicode character streams. Java

has several concrete subclasses of each of these. The character stream classes in java.io are
shown in Table 13-2.

304

PART | The Java Language

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input
stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

Table 13-2 The Character Stream 1/0 Classes in java.io

The abstract classes Reader and Writer define several key methods that the other stream
classes implement. Two of the most important methods are read() and write(), which read
and write characters of data, respectively. Each has a form that is abstract and must be
overridden by derived stream classes.

The Predefined Streams

As you know, all Java programs automatically import the java.lang package. This package
defines a class called System, which encapsulates several aspects of the run-time environment.
For example, using some of its methods, you can obtain the current time and the settings
of various properties associated with the system. System also contains three predefined
stream variables: in, out, and err. These fields are declared as public, static, and final within
System. This means that they can be used by any other part of your program and without
reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console. System.in
refers to standard input, which is the keyboard by default. System.err refers to the standard
error stream, which also is the console by default. However, these streams may be redirected
to any compatible I/O device.

Chapter 13 1/0, Applets, and Other Topics 305

System.in is an object of type InputStream; System.out and System.err are objects
of type PrintStream. These are byte streams, even though they are typically used to read
and write characters from and to the console. As you will see, you can wrap these within
character-based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is a
little more complicated.

Reading Console Input

In Java 1.0, the only way to perform console input was to use a byte stream. Today, using a
byte stream to read console input is still acceptable. However, for commercial applications,
the preferred method of reading console input is to use a character-oriented stream. This
makes your program easier to internationalize and maintain.

In Java, console input is accomplished by re