Turn in: .75 Board: /.0Ub4b

..

Featuring 15 bonus chapters with expanded coverage of data validation, debugging, plug-ins, security, and mo
plus nine chapters on ready-to-use applications, this monumental reference is truly the most comprehensive
useful guide to JavaScript available today. Writing with his trademark clarity and verve, leading JavaScript
authority Danny Goodman covers everything from Cascading Style Sheets and Document Object Models to
XML data — and gives you all the tools you need to harness the full power of client-side JavaScript.

Encyclopedic coverage of
JavaScript and DOMs

Master JavaScript and DOM concepts with Danny’s
exclusive interactive workbench: The Evaluator

—Mike Warner, Founder, Oak Place Publicat

-of-the- H 3 H —Brant Mutch, Web Application Develc
Learn state-of-the-art debugging and tracing tricks Wells Farees Card Services,

Apply the latest JavaScript 1.5 exception handling
and custom object techniques

Implement cross-browser Dynamic HTML applications

for MSIE 5.5 and Navigator 6 Torn plain
== pages into
Embed a universal sound plug-in controller in your interactive

pages
Develop deployment strategies that best suit
your content goals and target audience

Letabito

® Plus
USA
PC running Windows 95 or later, Windows Canada Beginning to Advanced Web Development/JavaScript
NT 4 or later; Power Macintosh running UK incl. VAT
System 7.6 or later. See Appendix E for
details and complete system requirements. ISBN O0-7b45-4718-k

“‘ H ‘ 5‘6 9|99
9 780764547188

(c) ketabton.com: The Digital Library

Praise for Danny Goodman’s JavaScript Bible

“JavaScript Bible is the definitive resource in JavaScript programming. | am never
more than three feet from my copy.”

—Steve Reich, CEO, PageCoders

“This book is a must-have for any Web developer or programmer.”
— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to
develop advanced Web sites. Mr. Goodman did an excellent job of organizing this
book and writing it so that even a beginning programmer can understand it.”

—Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”
— Dwayne King, Chief Technology Officer, White Horse

“JavaScript Bible is well worth the money spent!”
—Yen CY. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any Internet developer.”
— Uri Fremder, Senior Consultant, TopTier Software

“I' love this book! I use it all the time, and it always delivers. It’s the only JavaScript
book I use!”

—Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”
— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I'd ever teach programming before reading your book [JavaScript
Bible]. It’s so simple to use —the Programming Fundamentals section brought it all
back! Thank you for such a wonderful book, and for breaking through my program-
ming block!”

—Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“I continue to get so much benefit from JavaScript Bible. What an amazing book! Danny
Goodman is the greatest!”

— Patrick Moss

“Danny Goodman is very good at leading the reader into the subject. JavaScript Bible
has everything we could possibly need.”

— Philip Gurdon

(c) ketabton.com: The Digital Library

“An excellent book that builds solidly from whatever level the reader is at. A book that
is both witty and educational.”

— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”

— Mike Warner, Founder, Oak Place Productions

“JavaScript Bible is by far the best JavaScript resource I've ever seen (and I've seen
quite a few).”

—Robert J. Mirro, Independent Consultant, RIM Consulting

JavaScript Bible,
Gold Edition

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript Bible,
Gold Edition

Danny Goodman
With a foreword by Brendan Eich, creator of JavaScript

>

Hungry Minds~
Best-Selling Books e Digital Downloads ® e-Books ® Answer Networks ® e-Newsletters ® Branded Web Sites ® e-Learning

Indianapolis, IN 4+ Cleveland, OH 4+ New York, NY

(c) ketabton.com: The Digital Library

JavaScript® Bible, Gold Edition

Published by

Hungry Minds, Inc.

909 Third Avenue

New York, NY 10022

www . hungryminds.com

Copyright © 2001 Danny Goodman. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Control Number: 2001090713
ISBN: 0-7645-4718-6

Printed in the United States of America
10987654321

1P/RV/QW/QR/IN

Distributed in the United States by Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by

Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for
Micronesia; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department; within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and resellers information,
including discounts, premium and bulk quantity sales
and foreign language translations please contact our
Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

CONSEQUENTIAL, OR OTHER DAMAGES.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,

Trademarks: JavaScript is a registered trademark or trademark of Sun Microsystems, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc. is not associated with any product

or vendor mentioned in this book.

Hungry Minds- is a trademark of Hungry Minds, Inc.

(c) ketabton.com: The Digital Library

About the Author

Danny Goodman is the author of numerous critically acclaimed and best-selling
books, including The Complete HyperCard Handbook, Danny Goodman’s AppleScript
Handbook, and Dynamic HTML: The Definitive Reference. He is a renowned authority
and expert teacher of computer scripting languages and is widely known for his
“JavaScript Apostle” articles at Netscape’s ViewSource online developer newsletter.
His writing style and pedagogy continue to earn praise from readers and teachers
around the world. To help keep his finger on the pulse of real-world programming
challenges, Goodman frequently lends his touch as consulting programmer and
designer to leading-edge World Wide Web and intranet sites from his home base in
the San Francisco area.

(c) ketabton.com: The Digital Library

Credits

Acquisitions Editor
Debra Williams Cauley

Project Editor
Neil Romanosky

Technical Editor
David Wall

Copy Editors
Jerelind Charles
Victoria Lee O’Malley

Proof Editor
Cordelia Heaney

Editorial Manager
Colleen Totz

Project Coordinators
Cindy Phipps
Regina Snyder

Graphics and Production Specialists

Sean Decker

John Greenough
LeAndra Johnson
Stephanie Johnson
Gabriele McCann
Jill Piscitelli
Heather Pope

Ron Terry

Erin Zeltner

Quality Control Technicians
Laura Albert

Joel Draper

Andy Hollandbeck

Susan Moritz

Permissions Editor
Laura Moss

Media Development Specialist
Greg Stephens

Media Development Coordinator
Marisa Pearman

Book Designer
Kurt Krames

Proofreading
TECHBOOKS Production Services

Indexer
Johnna VanHoose Dinse

Cover Illustrator
Kate Shaw

(c) ketabton.com: The Digital Library

Foreword

As JavaScript’s creator, I would like to say a few words about where JavaScript
has been, where it is going, and how the book you’re holding will help you to
make the most of the language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their
documents. This may seem obvious now, but in the spring of 1995 it was novel and
more than a little at odds with both the conventional wisdom (that HTML should
describe static document structure only) and the Next Big Thing (Java applets, which
were hyped as the one true way to enliven and extend Web pages). Once I got past
these contentions, JavaScript quickly shaped up along the following lines:

+ “Javalite” syntax. Although the “natural language” syntax of HyperTalk was fresh
in my mind after a friend lent me The Complete HyperCard Handbook by some fellow
named Goodman, the Next Big Thing weighed heavier, especially in light of another
goal: scripting Java applets. If the scripting language resembled Java, then those pro-
grammers who made the jump from JavaScript to Java would welcome similarities in
syntax. But insisting on Java’s class and type declarations, or on a semicolon after
each statement when a line ending would do, was out of the question — scripting for
most people is about writing short snippets of code, quickly and without fuss.

4+ Events for HTML elements. Buttons should have onC1ick event handlers.
Documents load and unload from windows, so windows should have onLoad and
onUnload handlers. Users and scripts submit forms: thus the onSubmit handler.
Although not initially as flexible as HyperCard’s messages (whose handlers inspired
the onEvent naming convention), JavaScript events let HTML authors take control
of user interaction from remote servers and respond quickly to user gestures and
browser actions. With the adoption of the W3C DOM Level 2 event handling recom-
mendations, JavaScript in modern browsers has fully flexible control over events.

4+ Objects without classes. The Self programming language proved the notion of
prototype-based inheritance. For JavaScript, I wanted a single prototype per object
(for simplicity and efficiency), based by default on the function called using the new
operator (for consonance with Java). To avoid distinguishing constructors from
methods from functions, all functions receive the object naming them as the prop-
erty that was called, in the this parameter. Although prototypes didn’t appear until
Navigator 3, they were prefigured in Version 2 by quoted text being treated as an
object (the String object prototype, to which users could attach methods).

4 Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the
script speak HTML, as if the emitted text and markup were loaded in place of the
script itself. The possibilities went beyond automating current or last-modified
dates, to computing whole trees of tables where all the repeated structure was
rolled up in a scripted loop, while the varying contents to be tabulated came in min-
imal fashion from JavaScript objects forming a catalog or mini-database.

(c) ketabton.com: The Digital Library

X

JavaScript Bible, Gold Edition

At first, I thought JavaScript would most often find use in validating input to HTML
forms. But before long, | was surprised to see how many Web designers devised
compelling applications by way of script-generated HTML and JavaScript objects. It
became clear from user demonstration and feedback that Web designers sought to
build significant applications quickly and effectively with just a few images, HTML,
and JavaScript. Eventually they demanded that the browser support what is now
known as “Dynamic HTML” (one fun link: http://www. javascript-games.org/).

As legions of Web authors embraced the authoring power of JavaScript, they, in turn,
demonstrated the crucial advantages of a scripting environment over old-school
application development. Not only were the HTML and JavaScript languages com-
paratively easy to use, but development did not require the programming expertise
needed to light all pixels and handle all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value
of a scripting language for HTML authors. By keeping the “pixel-lighting” bar low,
HTML with images has made Web designers out of millions of people. By keeping
the “event-handling” bar low, JavaScript has helped many thousands of those
designers become programmers. Perhaps the ultimate example of Web develop-
ment’s convergence with application development is the Mozilla browser, wherein
all of the user-interface and even some custom widgets and modular components
are implemented entirely using JavaScript, Cascading Style Sheets (CSS), custom
XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been
embedded in servers, authoring tools, browser plug-ins, and other kinds of browsers
(for such things as 3D graphical worlds). Its international standard, ECMA-262 (ISO
16262), has advanced to a Third Edition. But compared with languages such as Perl
and even Java, it is still relatively young. Work toward a Fourth Edition of the lan-
guage, supporting optional types, classes, and versioning facilities, progresses
within the ECMA technical committee (see the “JS2” proposal to the ECMA technical
committee documented at http://www.mozilla.org/js/language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal,
and patient community of developers; | owe them each a huge debt of thanks.
Those developers who took up the beta releases of Navigator 2 and disseminated
vital workarounds and feature requests by e-mail and net-news are the language’s
godparents. Developer support and feedback continue to make JavaScript the
eclectic, rambunctious success it is.

The book in your hands compiles thousands of those “developer miles” with the
insight of an expert guide and teacher. Danny didn’t know at the time how much inspi-
ration [found in his HyperCard book, but it was on my desk throughout the develop-
ment of JavaScript in 1995. His energy, compassion, and clear prose helped me keep the
goal of “a language for all” in mind. It is enormously gratifying to write the foreword to
the Gold edition of this book, which has earned so many “satisfied reader miles.”

I highly recommend Danny Goodman'’s JavaScript Bible to anyone who wants to
learn JavaScript, and especially to those HTML authors who've so far written only a
few scripts or programs —you’re in for a lifetime of fun on the “scripting road” with
a trusty guide at your side.

— Brendan Eich
The Mozilla Organization (http://www.mozilla.org)

(c) ketabton.com: The Digital Library

Preface

For nearly 20 years, [have written the books I wished had already been written
to help me learn or use a new technology. Whenever possible, I like to get in at
the very beginning of a new authoring or programming environment, feel the grow-
ing pains, and share with readers the solutions to my struggles. This Gold edition of
the JavaScript Bible represents knowledge and experience accumulated over five
years of daily work in JavaScript and a constant monitoring of newsgroups for ques-
tions, problems, and challenges facing scripters at all levels. My goal is to help you
avoid the same frustration and head scratching I and others have experienced
through multiple generations of scriptable browsers.

While previous editions of this book focused on the then-predominant Netscape
Navigator browser, the swing of the browser market share pendulum currently
favors Microsoft Internet Explorer. At the same time, Netscape has accomplished
the admirable task of reinventing its own browser in light of rapidly advancing
industry standards. As a result of both of these trends, this massively revised and
expanded Gold edition treats both brands of browsers as equals as far as scripters
are concerned. You hear my praise and dismay at various scripting features of both
browser families. But empowering you to design and write good scripts is my pas-
sion, regardless of browser. Therefore, the book contains details about proprietary
and standard implementations to equip you to choose the development path that
best fits your content’s audience. If you detect any bias of mine throughout this
book, it is a desire, where possible, to write scripts that work on as many browsers
as possible.

Organization and Features of This Edition

Because of the greatly expanded range of vocabularies that scripts may use in the
latest browser versions, the biggest change to the structure of the book is in the ref-
erence portion. In this edition, you find a greater distinction between the document
object model and core JavaScript language reference sections. This new division
should help those readers who are primarily interested in only the JavaScript lan-
guage (for use in other applications) find what they need more quickly. Here are
some details about the book’s structure.

Part |

Part I of the book begins with a chapter that shows how JavaScript compares with
Java and discusses its role within the rest of the World Wide Web. The Web browser
and scripting world have undergone significant changes since JavaScript first

(c) ketabton.com: The Digital Library

Xii

(2}

JavaScript Bible, Gold Edition

arrived on the scene. That’s why Chapter 2 is devoted to addressing challenges fac-
ing scripters who must develop applications for both single- and cross-platform
browser audiences amid rapidly changing standards efforts. Chapter 3 provides the
first foray into JavaScript, where you get to write your first practical script.

Part 1l

All of Part Il is handed over to a tutorial for newcomers to JavaScript. Nine lessons
provide you with a gradual path through browser internals, basic programming
skills, and genuine JavaScript scripting. With only a couple of clearly labeled items,
the lessons cover scripting topics that apply to all scriptable browsers. Exercises fol-
low at the end of each lesson to help reinforce what you just learned and challenge
you to use your new knowledge (you’ll find answers to the exercises in Appendix C).
The goal of the tutorial is to equip you with sufficient experience to start scripting
simple pages right away while making it easier for you to understand the in-depth
discussions and examples in the rest of the book. By the end of the final lesson,
you’ll know how to script multiple frame environments and even create the mouse-
rollover image swapping effect that is popular in a lot of Web pages these days.

\ You can find all of the Part Il chapters on the CD-ROM that accompanies this
book.

Part Il

Part III, the largest section of the book, provides in-depth coverage of the document
object models as implemented in browsers from the earliest days to today. In all ref-
erence chapters, a compatibility chart indicates the browser version that supports
each object and object feature. One chapter in particular, Chapter 15, contains ref-
erence material that is shared by most of the remaining chapters of Part IIl. To help
you refer back to Chapter 15 from other chapters, a dark tab along the outside edge
of the page shows you at a glance where the chapter is located. Additional naviga-
tion aids include guide words at the bottoms of most pages to indicate which object
and object feature is covered on the page.

Part IV

Reference information for the core JavaScript language fills Part IV. As with refer-
ence chapters of Part IIl, the JavaScript chapters display browser compatibility
charts for every JavaScript language term. Guide words at the bottoms of pages
help you find a particular term quickly.

PartV

In Part V, I get down to the business of deploying JavaScript. Here are the practical
aspects of JavaScript, such as Chapter 43’s coverage of client-side form data valida-
tion and Chapter 44’s coverage of blending Java applets and plug-ins into pages.

(c) ketabton.com: The Digital Library

Preface X1

Debugging scripts is the focus of Chapter 45, with tips on understanding error
messages, building your own debugging tools. Chapter 46 goes into great detail
about security issues for JavaScript-enabled applications. Dynamic HTML in a cross-
browser environment is the subject of Chapter 47, while Chapter 48 introduces you
to Microsoft’s behaviors mechanism for Windows.

The remaining nine chapters consist of full-fledged applications of JavaScript. These
applications are designed not necessarily as plug-and-play modules you can put into
your pages right away. Instead, their goal is to demonstrate many of the concepts
described earlier in the book by way of real-world examples. New for this edition are
some examples based on XML data islands in Internet Explorer for Windows.

Part Vi

Finally, several appendixes at the end of the book provide helpful reference informa-
tion. These resources include a JavaScript and Browser Objects Quick Reference in
Appendix A, a list of JavaScript reserved words in Appendix B, answers to Part II's
tutorial exercises in Appendix C, and Internet resources in Appendix D. In Appendix E,
you also find information on using the CD-ROM that comes with this book.

CD-ROM

The accompanying CD-ROM contains over 300 ready-to-run HTML documents that
serve as examples of most of the document object model and JavaScript vocabu-
lary words in Parts Il and IV. You can run these examples with your JavaScript-
enabled browser, but be sure to use the index.html page in the listings folder as a
gateway to running the listings. This page shows you the browsers that are compat-
ible with each example listing. I could have provided you with humorous little sam-
ple code fragments out of context, but I think that seeing full-fledged HTML
documents (simple though they may be) for employing these concepts is impor-
tant. [intentionally omitted the script listings from the tutorial part (Part I) of this
book to encourage you to type the scripts. I believe you learn a lot, even by aping
listings from the book, as you get used to the rhythms of typing scripts in docu-
ments. You also find listings from Parts I and V on the CD-ROM.

The CD-ROM holds another valuable resource: dozens and dozens of Example sec-
tions for Parts Il and IV, which are compiled in Appendix F. Many of these sections
reveal detailed descriptions of HTML listings that illustrate a particular object
model or language feature. Even more Example sections invite you to try out an
object model or language feature with the help of an interactive workbench, called
The Evaluator — a JavaScript Bible exclusive! You see instant results and quickly
learn how the feature works.

The Quick Reference from Appendix A is in .pdf format on the CD-ROM for you to
print out and assemble as a handy reference, if desired. Adobe Acrobat Reader is
also included on the CD-ROM so that you can read this .pdf file. Finally, the text of
the book is in a .pdf file format on the CD-ROM for easy searching.

(c) ketabton.com: The Digital Library

Xi\/ JavaScript Bible, Gold Edition

Prerequisites to Learning JavaScript

Although this book doesn’t demand that you have a great deal of programming
experience behind you, the more Web pages you've created with HTML, the easier
you will find it to understand how JavaScript interacts with the familiar elements
you normally place in your pages. Occasionally, you will need to modify HTML tags
to take advantage of scripting. If you are familiar with those tags already, the
JavaScript enhancements will be simple to digest.

Forms and their elements (text fields, buttons, and selection lists) play an espe-
cially important role in much of typical JavaScript work. You should be familiar with
these elements and their HTML attributes. Fortunately, you won’t need to know
about server scripting or passing information from a form to a server. The focus
here is on client-side scripting, which operates independently of the server after
the JavaScript-enhanced HTML page is fully loaded into the browser.

The basic vocabulary of the current HTML standard should be part of your working
knowledge. When we get to using frames, for instance, the focus is on how to script
these elements, not on designing pages with them. Microsoft, Netscape, and other
online sources provide more detailed explanations of frames.

If you've never programmed before

To someone who learned HTML from a slim guidebook a few years ago, the size of
this book must be daunting. JavaScript may not be the easiest language in the
world to learn, but believe me, it’s a far cry from having to learn a full programming
language, such as Java or C. Unlike developing a full-fledged monolithic application
(such as the productivity programs you buy in the stores), JavaScript lets you
experiment by writing small snippets of program code to accomplish big things.
The JavaScript interpreter built into every scriptable browser does a great deal of
the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of
instructions for the computer to follow. We humans follow instructions all the time,
even if we don’t realize it. Traveling to a friend’s house is a sequence of small instruc-
tions: Go three blocks that way; turn left here; turn right there. Amid these instruc-
tions are some decisions that we have to make: If the stoplight is red, then stop; if the
light is green, then go; if the light is yellow, then floor it. Occasionally, we must repeat
some operations several times (kind of like having to go around the block until a
parking space opens up). A computer program not only contains the main sequence
of steps, but it also anticipates what decisions or repetitions may be needed to
accomplish the program’s goal (such as how to handle the various states of a stop-
light or what to do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a
programming language wants its words and numbers organized in these instruc-
tions. Such rules are called syntax, the same as in a living language. Because com-
puters generally are dumb electronic hulks, they aren’t very forgiving if you don’t

(c) ketabton.com: The Digital Library

Preface XV

communicate with them in the specific language they understand. When speaking
to another human, you can flub a sentence’s syntax and still have a good chance of
the other person’s understanding you fully. Not so with computer programming lan-
guages. If the syntax isn’t perfect (or at least within the language’s range of knowl-
edge that it can correct), the computer has the brazenness to tell you that you have
made a syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learn-
ing experiences. Even experienced programmers get them. Every syntax error you
get —and every resolution of that error made by rewriting the wayward
statement — adds to your knowledge of the language.

If you've done a little programming before

Programming experience in a procedural language, such as BASIC or Pascal, may
almost be a hindrance rather than a help to learning JavaScript. Although you may
have an appreciation for precision in syntax, the overall concept of how a program
fits into the world is probably radically different from how JavaScript works. Part of
this has to do with the typical tasks a script performs (carrying out a very specific
task in response to user action within a Web page), but a large part also has to do
with the nature of object-oriented programming.

In a typical procedural program, the programmer is responsible for everything that
appears on the screen and everything that happens under the hood. When the pro-
gram first runs, a great deal of code is dedicated to setting up the visual environ-
ment. Perhaps the screen contains several text entry fields or clickable buttons. To
determine which button a user clicks, the program examines the coordinates of the
click and compares those coordinates against a list of all button coordinates on the
screen. Program execution then branches out to perform the instructions reserved
for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is con-
sidered an object —something tangible. An object has properties, such as its label,
size, alignment, and so on. An object may also contain a script. At the same time, the
system software and browser, working together, can send a message to an object —
depending on what the user does —to trigger the script. For example, if a user clicks
in a text entry field, the system/browser tells the field that somebody has clicked
there (that is, has set the focus to that field), giving the field the task of deciding
what to do about it. That’s where the script comes in. The script is connected to the
field, and it contains the instructions that the field carries out after the user acti-
vates it. Another set of instructions may control what happens when the user types
an entry and tabs or clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They
contain a simple list of instructions that are carried out in order. But when dealing
with data from form elements, these instructions work with the object-based nature
of JavaScript. The form is an object; each radio button or text field is an object as
well. The script then acts on the properties of those objects to get some work done.

(c) ketabton.com: The Digital Library

XVI

JavaScript Bible, Gold Edition

Making the transition from procedural to object-oriented programming may be the
most difficult challenge for you. When I was first introduced to object-oriented pro-
gramming a number of years ago, | didn’t get it at first. But when the concept
clicked —a long, pensive walk helped — so many light bulbs went on inside my
head that I thought I might glow in the dark. From then on, object orientation
seemed to be the only sensible way to program.

If you've programmed in C before

By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript
shares many syntactical characteristics with C. Programmers familiar with C will feel
right at home. Operator symbols, conditional structures, and repeat loops follow very
much in the C tradition. You will be less concerned about data types in JavaScript than
you are in C. In JavaScript, a variable is not restricted to any particular data type.

With so much of JavaScript’s syntax familiar to you, you will be able to concentrate
on document object model concepts, which may be entirely new to you. You will
still need a good grounding in HTML (especially form elements) to put your exper-
tise to work in JavaScript.

If you've programmed in Java before

Despite the similarity in their names, the two languages share only surface aspects:
loop and conditional constructions, C-like “dot” object references, curly braces for
grouping statements, several keywords, and a few other attributes. Variable decla-
rations, however, are quite different, because JavaScript is a loosely typed lan-
guage. A variable can contain an integer value in one statement and a string in the
next (though I'm not saying that this is good style). What Java refers to as methods,
JavaScript calls methods (when associated with a predefined object) or functions
(for scripter-defined actions). JavaScript methods and functions may return values
of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are
the object-oriented notions of classes, inheritance, instantiation, and message pass-
ing. These aspects are simply non-issues when scripting. At the same time, however,
JavaScript’s designers knew that you'd have some hard-to-break habits. For example,
although JavaScript does not require a semicolon at the end of each statement line,
if you type one in your JavaScript source code, the JavaScript interpreter won’t balk.

If you've written scripts (or macros) before

Experience with writing scripts in other authoring tools or macros in productivity
programs is helpful for grasping a number of JavaScript’s concepts. Perhaps the
most important concept is the idea of combining a handful of statements to perform
a specific task on some data. For example, you can write a macro in Microsoft Excel
that performs a data transformation on daily figures that come in from a corporate
financial report on another computer. The macro is built into the Macro menu, and
you run it by choosing that menu item whenever a new set of figures arrives.

(c) ketabton.com: The Digital Library

Preface x\/| |

More sophisticated scripting, such as that found in Toolbook or HyperCard, pre-
pares you for the object orientation of JavaScript. In those environments, screen
objects contain scripts that are executed when a user interacts with those objects.
A great deal of the scripting you will do in JavaScript matches that pattern exactly.
In fact, those environments resemble the scriptable browser environment in
another way: They provide a finite set of predefined objects that have fixed sets of
properties and behaviors. This predictability makes learning the entire environ-
ment and planning an application easier to accomplish.

Formatting and Naming Conventions

The script listings and words in this book are presented in a monospace font to
set them apart from the rest of the text. Because of restrictions in page width, lines
of script listings may, from time to time, break unnaturally. In such cases, the
remainder of the script appears in the following line, flush with the left margin of
the listing, just as they would appear in a text editor with word wrapping turned on.
If these line breaks cause you problems when you type a script listing into a docu-
ment yourself, I encourage you to access the corresponding listing on the CD-ROM
to see how it should look when you type it.

As soon as you reach Part Il of this book, you won't likely go for more than a page
before reading about an object model or language feature that requires a specific min-
imum version of one browser or another. To make it easier to spot in the text when a
particular browser and browser version is required, most browser references consist
of a two-letter abbreviation and a version number. For example, IE5 means Internet
Explorer 5 for any operating system; NN6 means Netscape Navigator 6 for any operat-
ing system. If a feature is introduced with a particular version of browser and is sup-
ported in subsequent versions, a plus symbol (+) follows the number. For example, a
feature marked IE4+ indicates that Internet Explorer 4 is required at a minimum, but
the feature is also available in IE5, IE5.5, and so on. Occasionally, a feature or some
highlighted behavior applies to only one operating system. For example, a feature
marked [E4+/Windows works only on Windows versions of Internet Explorer 4 or
later. As points of reference, the first scriptable browsers were NN2, [E3/Windows,
and IE3.01/Macintosh. Moreover, IE3 for Windows can be equipped with one of two
versions of the JScript .dll file. A reference to the earlier version is cited as IE3/J1,
while the later version is cited as IE3/J2. You will see this notation primarily in the
compatibility charts throughout the reference chapters.

'Note Tip Caution Note, Tip, and Ca}ution icons o_ccasionally appear in
— the book to flag important points.

Ll this book’s companion CD-ROM.

\

\ W,

0nthe’"‘\ On the CD-ROM icons point you to useful examples and code listings found on

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Acknowledgments

Before closing, would like to acknowledge the contributions of many folks
who helped make this edition possible: Eric Krock, Tom Pixley, Vidur
Apparao, and especially the ever-patient, all-knowing Brendan Eich (Mozilla);
Martin Honnen (Netscape DevEdge Champion); Tantek Celik (Microsoft’s Macintosh
development group); Brenda McLaughlin, Walt Bruce, Michael Roney, Debra
Williams Cauley, Neil Romanosky, Eric Newman, Cordelia Heaney, Jerelind Charles,
and Victoria Lee O’Malley (Hungry Minds, Inc.); technical reviewer David Wall;
“cookie man” Bill Dortch (hldaho Design); Red and his friends (Mars, Incorporated);
and fellow scripters and newsgroup kibitzers, who unwittingly advised me as to
where scripters were having trouble with the language. Above all, [want to thank
the many readers of the first three editions of this book (with both titles, Danny
Goodman’s JavaScript Handbook and JavaScript Bible) for investing in this ongoing
effort. | wish I had the space here to acknowledge by name so many who have sent
e-mail notes and suggestions: Your input has been most welcome and greatly appre-
ciated. Now it’s time to get down to the fun of learning JavaScript. Enjoy!

(c) ketabton.com: The Digital Library

Contents at a Glance

Foreword ix
Preface. xi
Acknowledgments L xix
Part I: Getting Started with JavaScript 1
Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3
Chapter 2: Authoring Challenges Amid the BrowserWars 11
Chapter 3: Your First JavaScript Script 19
Part IlI: JavaScript Tutorial — Summary 29
Chapter 4: Browser and Document Objects CD-1
Chapter 5: Scripts and HTML Documents CD-23
Chapter 6: Programming Fundamentals, Part1 CD-35
Chapter 7: Programming Fundamentals, PartII CD-47
Chapter 8: Window and Document Objects CD-61
Chapter 9: Forms and Form Elements CD-75
Chapter 10: Strings, Math,andDates CD-89
Chapter 11: Scripting Frames and Multiple Windows CD-99
Chapter 12: Images and Dynamic HTML CD-109
Part Ill: Document Objects Reference 35
Chapter 13: JavaScript Essentials 37
Chapter 14: Document Object Model Essentials 61
Chapter 15: Generic HTML Element Objects 105
Chapter 16: Window and Frame Objects 217
Chapter 17: Location and History Objects 321
Chapter 18: The Document and Body Objects 339
Chapter 19: Body Text Objects 409
Chapter 20: HTML Directive Objects 473
Chapter 21: Link and Anchor Objects 493
Chapter 22: Image, Area, and Map Objects 505
Chapter 23: The Form and Related Objects 527
Chapter 24: Button Objects 549
Chapter 25: Text-Related Form Objects 569
Chapter 26: Select, Option, and FileUpload Objects 589
Chapter 27: Table and List Objects 613
Chapter 28: The Navigator and Other Environment Objects 665
Chapter 29: Event Objects 711

Chapter 30: Style Sheet and Style Objects 777

(c) ketabton.com: The Digital Library

Chapter 31: Positioned Objects 855
Chapter 32: Embedded Objects 901
Chapter 33: XML Objects 919
Part IV: JavaScript Core Language Reference 925
Chapter 34: The String Object 927
Chapter 35: The Math, Number, and Boolean Objects 951
Chapter 36: The Date Object 967
Chapter 37: The Array Object 987
Chapter 38: The Regular Expression and RegExp Objects 1007
Chapter 39: Control Structures and Exception Handling 1033
Chapter 40: JavaScript Operators 1069
Chapter 41: Functions and Custom Objects 1093
Chapter 42: Global Functions and Statements 1127
Part V: Putting JavaScripttoWork 1147
Chapter 43: Data-Entry Validation 1149
Chapter 44: Scripting Java Applets and Plug-ins 1177
Chapter 45: Debugging Scripts 1217
Chapter 46: Security and Netscape Signed Scripts 1239
Chapter 47: Cross-Browser Dynamic HTML Issues 1259
Chapter 48: Internet Explorer Behaviors 1273
Chapter 49: Application: Tables and Calendars 1285
Chapter 50: Application: ALookup Table 1299
Chapter 51: Application: A “Poor Man’s” Order Form 1311
Chapter 52: Application: Outline-Style Table of Contents 1321
Chapter 53: Application: Calculations and Graphics 1355
Chapter 54: Application: Intelligent “Updated” Flags 1365
Chapter 55: Application: DecisionHelper 1375
Chapter 56: Application: Cross-Browser DHTML Map Puzzle 1399
Chapter 57: Application: Transforming XML Datalslands 1415
PartVI: Appendixescciiirinnnrnnnenn 1431
Appendix A: JavaScript and Browser Object Quick Reference 1433
Appendix B: JavaScript ReservedWords 1447
Appendix C: Answers to Tutorial Exercises 1449
Appendix D: JavaScript and DOM Internet Resources 1465
Appendix E: What'sonthe CD-ROM 1469
Appendix F: Examples from Parts lllandIV CD-117
Index L 1473
End User License Agreement 1512

CD-ROM Installation Instructions. 1516

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Contents

Foreword e iX
Preface. Xi
Acknowledgments Xix

Chapter 1: JavaScript’s Role in the World Wide Web and Beyond . . . 3

CompetitionontheWeb 4
Hypertext Markup Language (HTML) 4
CGIScripting e e 5
Of Helpersand Plug-ins 6
Java Applets e 7
JavaScript: A Languagefor All, 7
JavaScript: The Right Tool for the RightJob 9
Chapter 2: Authoring Challenges Amid the Browser Wars 11
Leapfrog o e 12
Duckand Cover e 12
Compatibility Issues Today 13
Developing a Scripting Strategy 16
Chapter 3: Your First JavaScript Script 19
The Software Tools 19
Setting Up Your Authoring Environment 20
What Your First ScriptWillDo 23
Entering Your First Script 24
Examining the Script 25
HaveSomeFun 27
Chapter 4: Browser and Document Objects CD-1
Scripts RuntheShow, CD-1

JavaScriptinAction CD-2

(c) ketabton.com: The Digital Library

XXIV

JavaScript Bible, Gold Edition

The Document Object Model CD-8
WhenaDocumentLoads CD-11
Object References CD-14
AbouttheDotSyntax, CD-17
What Defines an Object? CD-18
Exercises CD-21
Chapter 5: Scripts and HTML Documents CD-23
Where Scripts GoinDocuments CD-23
JavaScript Statements o Lo CD-27
When Script Statements Execute CD-28
Viewing Script Exrrors CD-30
Scripting versus Programming CD-32
Exercises CD-33
Chapter 6: Programming Fundamentals, Part1 CD-35
What LanguageIs This? CD-35
Working with Informationo o Lo CD-35
Variables CD-36
Expressions and Evaluation CD-38
Data Type Conversions CD-40
Operators CD-42
Exercises CD-44
Chapter 7: Programming Fundamentals, Partll CD-47
Decisionsand Loops CD-47
Control Structures CD-48
AboutRepeatLoops CD-50
Functions e CD-51
About CurlyBraces CD-54
Arrays CD-55
Exercises CD-59
Chapter 8: Window and Document Objects CD-61
Document Objects CD-61
The Window Object CD-62
Window Properties and Methods CD-65
The Location Object CD-68
The History Object CD-69
The Document Object CD-69
The Link Object CD-73

Exercises e CD-73

(c) ketabton.com: The Digital Library

Contents XXV
Chapter 9: Forms and FormElements. CD-75
The FORM Object i CD-75
Form Controlsas Objects CD-77
The Button Object CD-79
The Checkbox Object CD-79
The RadioObject CD-80
The SELECT Object i CD-82
Passing Form Data and Elements to Functions CD-83
Submitting and Prevalidating Forms CD-85
Exercises e CD-87
Chapter 10: Strings, Math,andDates CD-89
Core Language Objects, CD-89
String Objects CD-90
The Math Object CD-93
TheDate Object CD-94
Date Calculations CD-96
Exercises e CD-97
Chapter 11: Scripting Frames and Multiple Windows CD-99
Frames: Parents and Children CD-99
References among Family Members CD-101
Frame Scripting Tips CD-103
Controlling Multiple Frames —NavigationBars CD-103
More about Window References CD-106
Exercises L CD-107
Chapter 12: Images and DynamicHTML CD-109
Thelmage Object CD-109
More Dynamismin HTML CD-115
Exercises CD-116
Chapter 13: JavaScript Essentials 37
JavaScript Versions L 37
Core Language Standard —ECMAScript 38
Embedding Scripts in HTML Documents 38
Browser Version Detection 44
Designing for Compatibility 53
Language Essentials for Experienced Programmers 57

OnwardtoObject Models 60

(c) ketabton.com: The Digital Library

XX\/i JavaScript Bible, Gold Edition

Chapter 14: Document Object Model Essentials 61
The Object Model Hierarchy 61
How Document Objects AreBorn 64
Object Properties 64
Object Methods 65
ObjectEventHandlers 66
Object Model Smorgasbord 68
Basic Object Model, 68
Basic Object Model PlusImages 69
Navigator 4-Only Extensions 69
Internet Explorer 4+ Extensions 71
Internet Explorer 5+ Extensions 75
The W3CDOM e e e 76
Mixing Object Models 92
Simulating [E4+ SyntaxinNN6 99
WheretoGofromHere, 102
Chapter 15: Generic HTML Element Objects 105
Generic Objects 106
Chapter 16: Window and Frame Objects 217
Window Terminology 217
Frames 218
Window Object e 225
FRAME Element Object, 299
FRAMESET Element Object 305
IFRAME Element Object 310
popup Object 316
Chapter 17: Location and History Objects 321
Location Object 321
History Object 332
Chapter 18: The Document and Body Objects 339
Document Object e 340
BODY Element Object, 399
Chapter 19: Body Text Objects 409
BLOCKQUOTE and Q Element Objects 410
BR Element Object 411
FONT Element Object 412

H1..H6 Element Objects 414

(c) ketabton.com: The Digital Library

Contents XX\/i |

HR Element Object 415
LABEL Element Object 418
MARQUEE Element Object 420
Methods e 424
EventHandlers e 424
Range Object e 425
selectionObject e 441
Text and TextNode Objects 445
TextRange Object e 448
TextRectangle Object 470
Chapter 20: HTML Directive Objects 473
HTML Element Object 473
HEAD Element Objecto... 474
BASE Element Object 475
BASEFONT Element Object 477
ISINDEX Element Object, 478
LINK Element Object 479
META Element Object 484
SCRIPT Element Object 487
TITLE Element Object 490
Chapter 21: Link and Anchor Objects 493
Anchor, Link, and A Element Objects 493
Chapter 22: Image, Area, and Map Objects 505
Image and IMG Element Objects 505
AREA Element Object. 520
MAP Element Object 524
Chapter 23: The Form and Related Objects 527
The Form in the Object Hierarchy 527
FORMObject e e 528
FIELDSET and LEGEND Element Objects 545
LABEL Element Object, 547
Chapter 24: Button Objects 549
The BUTTON Element Object, and the Button, Submit,
and Reset Input Objects 549
CheckboxInputObject 555
Radio Input Object 559

Image Input Object 565

(c) ketabton.com: The Digital Library

XXVIIl JavaScript Bible, Gold Edition

Chapter 25: Text-Related Form Objects 569
Text Input Object e 570
Password Input Object 582
Hidden Input Object 582
TEXTAREA Element Object 583

Chapter 26: Select, Option, and FileUpload Objects 589
SELECT Element Object 589
OPTION Element Object, 607
OPTGROUP Element Object 609
File Input Element Object 610

Chapter 27: Table and List Objects 613
The Table Object Family Hierarchy 614
TABLE Element Object 628
TBODY, TFOOT, and THEAD Element Objects 643
CAPTION Element Object 645
COL and COLGROUP Element Objects 646
TR Element Object e 648
TD and TH Element Objects 652
OLElement Object 656
UL Element Object e 659
LIElement Object 660
DL, DT, and DD Element Objects 662
DIR and MENU Element Objects 663

Chapter 28: The Navigator and Other Environment Objects 665
clientInformation Object (IE4+) and navigator Object (All) 666
mimeType Object 684
plugin Object e 688
Looking for MIME Types and Plug-ins 691
screen Object e e 698
userProfile Object 703

Chapter 29: EventObjects AL
Why “Events”™? 712
Event Propagation 713
Referencing the event object 732
event Object Compatibility 734
Dueling Event Models 735
Event Types e 738
NN4 event Object 741
[E4+event Object 745

NN6+ event Object e 762

(c) ketabton.com: The Digital Library

Contents XXiX

Chapter 30: Style Sheet and Style Objects 777
Making Sense of the Object Names 778
Imported StyleSheets 779
Reading Style Properties 780
STYLE Element Object i . 780
styleSheet Object 782
cssRuleandruleObjects 792
currentStyle, runtimeStyle, and style Objects 796
filter Object e 840

Chapter 31: Positioned Objects 855
WhatlsaLayer?. 855
NN4 Layer Object e 856
Positioned Elements in the ModernDOM 874

Chapter 32: Embedded Objects 901
APPLET Element Object 902
OBJECT Element Object 907
EMBED Element Object, 913
The Odd Case of the PARAM Element 917

Chapter 33: XMLObjects 919
Elementsand Nodes, 919
XML Element Object 921

Chapter 34: The StringObject 927
String and Number Data Types 927
String Object 930
String Utility Functions 945
URL String Encoding and Decoding 949

Chapter 35: The Math, Number, and Boolean Objects 951
Numbers in JavaScript 951
Math Object e 957
Number Object e 960

Boolean Object 965

(c) ketabton.com: The Digital Library

XXX JavaScript Bible, Gold Edition

Chapter 36: The Date Object 967
Time Zonesand GMT 967
TheDate Object e 969
Validating Date EntriesinForms 983

Chapter 37: The Array Object 987
StructuredData 987
Creatingan Empty Array 988
Populatingan Array 989
JavaScript 1.2 Array Creation Enhancements 991
Deleting Array Entries 991
Parallel Arrays 992
Multidimensional Arrays 995
Array Object Properties 996
Array Object Methods, 998

Chapter 38: The Regular Expression and RegExp Objects 1007
Regular Expressions and Patterns 1007
LanguageBasics 1009
Object Relationships 1013
Using Regular Expressions 1017
Regular Expression Object 1023
RegExp Object 1027

Chapter 39: Control Structures and Exception Handling 1033
IfandIf.. .ElseDecisions 1034
Conditional Expressions, 1038
Repeat (for) Loops 1039
ThewhileLoop e 1044
Thedo-whileLoop 1045
Looping through Properties (for-in) 1046
The with Statement 1047
Labeled Statements L o 1048
The switch Statement 1050
ExceptionHandling 1053
Using try-catch-finally constructions 1055
Throwing Exceptions, 1059
Error Object e 1063

Chapter 40: JavaScript Operators 1069
Operator Categories i 1069
Comparison Operatorso 1070
Equality of Disparate Data Types 1072
Connubial Operators, 1073

Assignment Operators 1076

(c) ketabton.com: The Digital Library

Contents XXX|

Boolean Operators 1078
Bitwise Operators 1082
Object Operators i i i it e e 1083
Miscellaneous Operators i 1087
Operator Precedence 1089
Chapter 41: Functions and Custom Objects 1093
Function Object 1093
Function ApplicationNotes 1102
Custom Objects e 1108
Object-Oriented Concepts, 1120
Object Object e 1123
Chapter 42: Global Functions and Statements 1127
Functions 1128
Statements e 1137
IE/Windows Objects, 1140
Chapter 43: Data-Entry Validation 1149
Real-Time Versus Batch Validation 1149
Designing Filters 1151
Building a Library of Filter Functions 1152
Combining Validation Functions 1156
Date and Time Validation 1158
Selecting Text Fields forReentry 1160
An “Industrial-Strength” Validation Solution 1161
Plan for Data Validation 1176
Chapter 44: Scripting Java Applets and Plug-ins 1177
LiveConnect Overview, 1177
Why Control Java Applets? 1178
AlittleJava 1179
Scripting AppletsinReal Life 1181
Applet-to-Script Communication, 1190
Scripting Plug-ins 1197
Scripting Java Classes Directly 1214
Chapter 45: Debugging Scripts 1217
Syntax versus Runtime Errors 1217
Error Message Notification 1218

Error MessageDetails 1219

(c) ketabton.com: The Digital Library

XXXII

JavaScript Bible, Gold Edition

Sniffing Out Problems, 1226
ASimple Trace Utility 1232
Browser Crashes 1235
Preventing Problems 1235
Testing Your Masterpiece 1236
Chapter 46: Security and Netscape Signed Scripts 1239
Battening DowntheHatches 1239
When Worlds Collide, 1240
TheJavaSandbox 1241
Security Policies 1241
The Same OriginPolicy 1242
The Netscape Signed Script Policy 1244
The Digital Certificate 1246
Signing Scripts 1247
Accessing Protected Properties and Methods 1251
Blending Privileges into Scripts 0 oL, 1254
Example 1254
Handling Privilege Manager Exrrors 1255
Signed Script Miscellany 1256
Chapter 47: Cross-Browser Dynamic HTML Issues 1259
What IsDHTML? e e e 1259
Striving for Compatibility o oo o 1261
Working Around Incompatibilities, 1262
ADHTML APl Example 1269
Chapter 48: Internet Explorer Behaviors 1273
Style Sheets for Scripts 1273
Embedding Behavior Components 1274
Component Structure 1275
Behavior Examples 1277
For More Information 1283
Chapter 49: Application: Tables and Calendars 1285
AbouttheCalendars 1285
StaticTables 1286
Dynamic Tables, 1289
Hybrids e 1293
Dynamic HTML Tables 1293

Further Thoughts, 1297

(c) ketabton.com: The Digital Library

Contents XXXIII

Chapter 50: Application: A LookupTable 1299
A Serverless Database, 1299
TheDatabase. 1300
The ImplementationPlan 1300
TheCode e 1301
Further Thoughts 1308

Chapter 51: Application: A “Poor Man's” Order Form 1311
Definingthe Task 1311
TheFormDesign., 1312
Form HTML and Scripting 1313
Further Thoughts 1319

Chapter 52: Application: Outline-Style Table of Contents 1321
Design Challenges, 1321
The ImplementationPlan 1322
TheCode e 1324
Cascading Style Sheet Version 1336
A Futuristic XML) Outline, 1343
Further Thoughts 1353

Chapter 53: Application: Calculations and Graphics 1355
The Calculation 1355
User Interfaceldeas, 1356
TheCode 1357
Further Thoughts 1363

Chapter 54: Application: Intelligent “Updated” Flags 1365
The Cookie Conundrum 1365
Time’s Noton Your Side 1366
The Application 1367
TheCode e 1369
Further Thoughts 1373

Chapter 55: Application: Decision Helper 1375
The Application 1375
TheDesign e 1376
TheFiles 1377
TheCode 1378

Further Thoughts 1397

(c) ketabton.com: The Digital Library

XXXiV JavaScript Bible, Gold Edition

Chapter 56: Application: Cross-Browser DHTML Map Puzzle . .. 1399

The Puzzle Design, 1399
Implementation Details 1401
LessonsLearned 1414
Chapter 57: Application: Transforming XML Data Islands 1415
Application Overview 1416
ImplementationPlan 1418
TheCode 1418
Dreams of Other Views 1428
What About NN6? e 1429

Appendix A: JavaScript and Browser Object Quick Reference . . . 1433

Appendix B: JavaScript ReservedWords 1447
Appendix C: Answers to Tutorial Exercises 1449
Chapter 4 ANSWErS v v v i i e e e e e e 1449
Chapter 5ANSWErS i ittt e e 1450
Chapter 6 ANSWEIS v v v v e e e e e e e e e e e 1451
Chapter 7ANSWEIS v v v v e e e e e e e e e 1452
Chapter 8Answers i 1456
Chapter 9ANSWErS o i i i e e e e e e e 1457
Chapter 10 Answers o i i e e 1461
Chapter 11 Answers o i i e e 1463
Chapter 12 Answers e e 1463
Appendix D: JavaScript and DOM Internet Resources 1465
Support and Updates for thisBook 1465
NEWSZIOUPS . . . o o o o e e e e e e e e e e 1465
FAQs . . . o e 1466
Online Documentation 1467
WorldWideWeb 1467
Appendix E: What'sonthe CD-ROM 1469
System Requirements 1469

Disc Contents e 1469

(c) ketabton.com: The Digital Library

Contents XXXV
Appendix F: Examples from Parts llland IV CD-117
Chapter 15Examples CD-117
Chapter 16 Examples CD-253
Chapter 17Examples, CD-336
Chapter 18 Examples CD-354
Chapter 19 Examples CD-397
Chapter 22Examples CD-453
Chapter 23Examples CD-471
Chapter 24 Examples CD-479
Chapter 25Examples CD-492
Chapter 26 Examples CD-503
Chapter 27Examples CD-514
Chapter 28 Examples, CD-531
Chapter 29 Examples CD-543
Chapter 30 Examples CD-566
Chapter31Examples CD-572
Chapter 3 Examples CD-600
Chapter 35Examples CD-614
Chapter37Examples CD-616
INdeX. e 1473
End User License Agreement 1512

CD-ROM Installation Instructions 1516

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Getting Started
with JavaScript

+ 0+ v
In This Part

Chapter 1
JavaScript’s Role in
the World Wide Web
and Beyond

Chapter 2
Authoring Challenges
Amid the Browser
Wars

Chapter 3
Your First JavaScript
Script

¢+ 4+ o+

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

CHAPTER

JavaScript's
Role in the L
World Wide Web -

How JavaScript

and Beyond ms

technologies

The history of

JavaScript

Many of the technologies that make the World Wide .)
Web possible have far exceeded their original visions. What kinds of jobs

Envisioned at the outset as a medium for publishing static you should and
text and image content across a network, the Web is forever should not entrust to
being probed, pushed, and pulled by content authors. By tak- JavaScript
ing for granted so much of the “dirty work” of establishing the
connection and conveying the bits between server and client + + + +

computers, content developers and programmers dream of
using that connection to generate new user experiences and
operating system-independent applications. A developer com-
munity essentially taking ownership of a technology and
molding it to do new and exciting things is not new. It’s the
enormous popularity of the Web and the accessibility of the
technologies to everyday folks who have intriguing ideas that
has led to an unprecedented explosion in turning the World
Wide Web from a bland publishing medium into a highly inter-
active, operating system-agnostic authoring platform.

The JavaScript language is a Web-enhancing technology.
When employed on the client computer, the language can help
turn a static page of content into an engaging, interactive, and
intelligent experience. Applications can be as subtle as wel-
coming a site’s visitor with the greeting “Good morning!”
when it is morning in the client computer’s time zone — even
though it is dinnertime where the server is located. Or appli-
cations can be much more obvious, such as delivering the
content of a slide show in one-page download while JavaScript
controls the sequence of hiding, showing, and “flying slide”
transitions while navigating through the presentation.

Of course, JavaScript is not the only technology that can
give life to drab Web content. Therefore, it is important to
understand where JavaScript fits within the array of

(c) ketabton.com: The Digital Library

4

Part | + Getting Started with JavaScript

standards, tools, and other technologies at your disposal. The alternative technolo-
gies described in this chapter are HTML, server programs, plug-ins, and Java
applets. In most cases, JavaScript can work side by side with these other technolo-
gies, even though the hype around some make them sound like one-stop shopping
places for all your interactive needs. That’s rarely the case. Finally, you learn about
the origins of JavaScript and what role it plays in today’s advanced Web browsers.

Competition on the Web

Web page publishers revel in logging as many visits to their sites as possible.
Regardless of the questionable accuracy of Web page hit counts, a site consistently
logging 10,000 dubious hits per week is clearly far more popular than one with 1,000
dubious hits per week. Even if the precise number is unknown, relative popularity is
a valuable measure.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing.
Competition for viewers is enormous. Not only is the Web like a ten million-channel
television, but the Web competes for viewers’ attention with all kinds of computer-
generated information. That includes anything that appears onscreen as interactive
multimedia.

Users of entertainment programs, multimedia encyclopedias, and other colorful,
engaging, and mouse finger-numbing actions are accustomed to high-quality
presentations. Frequently, these programs sport first-rate graphics, animation, live-
action video, and synchronized sound. In contrast, the lowest common denomina-
tor Web page has little in the way of razzle-dazzle. Even with the help of recent
advances in Dynamic HTML and style sheets, the layout of pictures and text is
highly constrained compared with the kinds of desktop publishing documents you
see all the time. Regardless of the quality of its content, a vanilla HTML document is
flat. At best, interaction is limited to whatever navigation the author offers in the
way of hypertext links or forms whose filled-in content magically disappears into
the Web site’s server.

With so many ways to spice up Web sites and pages, you can count on competi-
tors for your site’s visitors to do their darndest to make their sites more engaging
than yours. Unless you are the sole purveyor of information that is in high demand,
you continually must devise ways to keep your visitors coming back and entice new
ones. If you design an intranet, your competition is the drive for improved produc-
tivity by the colleagues who use the internal Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more
Web technologies to raise your pages above the noise. Let’s look at the major tech-
nologies you should know about.

Hypertext Markup Language (HTML)

As an outgrowth of SGML (Standard Generalized Markup Language), HTML is gen-
erally viewed as nothing more than a document formatting, or fagging, language.
The tags (inside <> delimiter characters) instruct a viewer program (the browser or,
more generically, the clienf) how to display chunks of text or images.

(c) ketabton.com: The Digital Library

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond 5

Relegating HTML to the category of a tagging language does disservice not only
to the effort that goes into fashioning a first-rate Web page, but also to the way
users interact with the pages. To my way of thinking, any collection of commands
and other syntax that directs the way users interact with digital information is pro-
gramming. With HTML, a Web page author controls the user experience with the
content just as the engineers who program Microsoft Excel craft the way users
interact with spreadsheet content and functions.

Recent enhancements to the published standards for HTML (HTML 4.0 and later)
endeavor to define more narrowly the purpose of HTML to assign context to con-
tent, leaving the appearance to a separate standard for style sheets. In other words,
it’s not HTML'’s role to signify that some text is italic, but rather to signify why it is
italic. (For example, you tag a chunk of text that conveys emphasis regardless of
how the style sheet or browser sets the appearance of that emphasized text.)

The most interactivity that HTML lets authors play with is associated with
fill-in-the-blank forms. Browsers display text boxes, radio buttons, checkboxes, and
select lists in response to HTML tags for those types of form controls. But that’s as
far as HTML goes. Any processing of the choices or information entered into the
form by the user is the job of other technologies, such as programs on the server or
client-side scripts.

CGlI Scripting

One way to enhance the interaction between user and content is to have the page
communicate with the Web server that houses the Web pages. Popular Web search
sites, such as Yahoo!, Google, and Lycos, enable users to type search criteria and
click a button or two to specify the way the search engine should treat the query.
E-commerce sites enable you to gather products in a virtual shopping cart and then
click a button to submit an order for processing. When you click the Submit or
Search buttons, your browser sends your entries from a form to the server. On the
server, a program known as a CGI (Common Gateway Interface) script formats the
data you enter and sends this information to a database or other program running
on the server. The CGI script then sends the results to your browser, sometimes in
the form of a new page or as information occupying other fields in the form.

Writing customized CGI scripts typically requires considerable programming
skill. Most CGI scripts are written in languages such as Perl, Java, and C or C++.
Very few servers are equipped to run server scripts written in JavaScript.

Whatever language you use, the job definitely requires the Web page author to
be in control of the server, including whatever back-end programs (such as
databases) are needed to supply results or massage the information coming from
the user. Even with the new, server-based Web site design tools available, CGI
scripting often is not a task that a content-oriented HTML author can do without
handing it off to a more experienced programmer.

As interesting and useful as CGI scripting is, it burdens the server with the job of
processing queries. A busy server may process hundreds of CGI scripts at a time,
while the client computers —the personal computers running the browsers — sit
idle as the browser’s logo icon dances its little animation. This wastes desktop pro-
cessing horsepower, especially if the process running on the server doesn’t need to

(c) ketabton.com: The Digital Library

6 Part | + Getting Started with JavaScript

access big databases or other external computers. That’s why some people regard
browsing a basic Web page as little more than using a dumb terminal to access
some server content.

Of Helpers and Plug-ins

In the early days of the World Wide Web, a browser needed to present only a few
kinds of data before a user’s eyes. The power to render text (tagged with HTML)
and images (in popular formats such as GIF and JPEG) was built into browsers
intended for desktop operating systems. Not to be limited by those data types,
developers worked hard to extend browsers so that data in other formats could be
rendered on the client computer. It was unlikely, however, that a browser would
ever be built that could download and render, say, any of several sound file formats.

One way to solve the problem was to allow the browser, upon recognizing an
incoming file of a particular type, to launch a separate application on the client
machine to render the content. As long as this helper application was installed on
the client computer (and the association with the helper program set in the
browser’s preferences), the browser would launch the program and send the
incoming file to that program. Thus, you might have one helper application for a
MIDI sound file and another for a WAV sound file.

Beginning with Netscape Navigator 2, software plug-ins for browsers enabled
developers to extend the capabilities of the browser without having to modify the
browser. Unlike a helper application, a plug-in can enable external content to blend
into the document seamlessly.

The most common plug-ins are those that facilitate the playback of audio and
video from the server. Audio may include music tracks that play in the background
while visiting a page or live (streaming) audio, similar to a radio station. Video and
animation can operate in a space on the page when played through a plug-in that
knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common
sound file types. Developers of plug-ins for Internet Explorer for the Windows oper-
ating system commonly implement plug-ins as ActiveX controls —a distinction that
is important to the underpinnings of the operating system, but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A
popular helper application is the Adobe Acrobat Reader, which displays Acrobat
files that are formatted just as if they were being printed. But for interactivity,
developers today frequently rely on Macromedia Corporation’s Flash plug-in.
Created using the Macromedia Flash authoring environment, a Flash document can
have active clickable areas and draggable elements. Some authors even simulate
artistic video games and animated stories in Flash. A browser equipped with the
Flash plug-in displays the content in a rectangular area embedded within the
browser page.

One potential downside for authoring interactive content in Flash or similar
environments is that if the user does not have the plug-in installed, it can take some
time to download the plug-in (if the user even wants to bother). Moreover, once the
plug-in is installed, highly graphic and interactive content can take longer to down-
load to the client (especially on a dial-up connection) than some users are willing to
wait. This is one of those situations in which you must balance your creative
palette with the user’s desire for your interactive content.

(c) ketabton.com: The Digital Library

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

Java Applets

When the interaction between user and Web page exceeds the capabilities of
HTML, experienced programmers may prefer to “roll their own” programs to handle
the special needs not available in existing plug-ins. The Java programming language
fills this need. Developed by Sun Microsystems, this language enables programmers
to write small applications (applets) that download to the browser as separate files.
An applet runs as the user needs it and then is automatically discarded from mem-
ory when the user moves elsewhere in the Web.

Animation, including animated text whose content can change over time, is a
popular application of the Java applet in an HTML page. Because applets can also
communicate with the Internet as they run (it is a very network-centric program-
ming language), they are also used for real-time, data-streaming applications that
display up-to-the-minute news, stock market, and sports data as this information
comes across the wires. Standard HTML content can surround all of this activity as
the Web page designer sees fit.

To play a Java applet, a browser company must license the technology from Sun
and build it into its browser (or link up with a Java engine that is part of the operat-
ing system). Netscape was the first third-party browser supplier to license and pro-
duce a browser capable of running Java applets (Navigator 2 under Windows 95 and
UNIX). Today, both Netscape Navigator and Microsoft Internet Explorer (IE) can
load and run Java applets on almost every operating system platform supported by
the browser.

Despite a flash of popularity in the early Java days, Java is used less and less for
browser applets. It is quite popular, however, on the server, where it is used fre-
quently to create small server application modules called servlets. On the client,
Java applets suffer the same problem as some plug-ins: the delay required to down-
load the file. Also, not every browser is equipped with the desired Java component,
causing potential compatibility conflicts.

JavaScript: A Language for All

The Java language is derived from C and C++, but it is a distinct language. Its
main audience is the experienced programmer. That leaves out many Web page
authors. I was dismayed at this situation when I first read about Java’s specifica-
tions. I would have preferred a language that casual programmers and scripters
who were comfortable with authoring tools such as Apple’s once-formidable
HyperCard and Microsoft’s Visual Basic could adopt quickly. As these accessible
development platforms have shown, nonprofessional authors can dream up many
creative applications, often for very specific tasks that no professional programmer
would have the inclination to work on. Personal needs often drive development in
the classroom, office, den, or garage. But Java was not going to be that kind of inclu-
sive language.

My spirits lifted several months later, in November 1995, when I heard of a script-
ing language project brewing at Netscape. Initially born under the name LiveScript,
this language was developed in parallel with Netscape’s Web server software. The
language was to serve two purposes with the same syntax. One purpose was as a

(c) ketabton.com: The Digital Library

8

Part | + Getting Started with JavaScript

scripting language that Web server administrators could use to manage the server
and connect its pages to other services, such as back-end databases and search
engines for users looking up information. Extending the “Live” brand name further,
Netscape assigned the name LiveWire to the database connectivity usage of
JavaScript on the server.

On the client side—in HTML documents — authors could employ scripts written
in this new language to enhance Web pages in a number of ways. For example, an
author could use LiveScript to make sure that the information a user enters into a
form is of the proper type. Instead of forcing the server or database to do the data
validation (requiring data exchanges between the client browser and the server),
the user’s computer handles all the calculation work — putting some of that other-
wise wasted horsepower to work. In essence, LiveScript could provide HTML-level
interaction for the user.

As the intensity of industry interest in Java grew, Netscape saw another opportu-
nity for LiveScript: as a way for HTML documents (and their users) to communicate
with Java applets. For example, a user might make some preference selections from
checkboxes and pop-up selection lists located at the top of a Web page. Scrolling
down to the next screenful, the user sees text in the Java applet scrolling banner on
the page that is customized to the settings made above. In this case, the LiveScript
script sends the text that is to appear in the scrolling banner to the applet (and per-
haps a new color to use for the banner’s background and text). While this is hap-
pening, the server doesn’t have to worry a bit about it, and the user hasn’t had to
wait for communication between the browser and the server. As great an idea as
this was initially, this connectivity feature didn’t make it into Navigator 2 when
JavaScript first became available.

LiveScript becomes JavaScript

In early December 1995, just prior to the formal release of Navigator 2, Netscape
and Sun jointly announced that the scripting language thereafter would be known
as JavaScript. Though Netscape had several good marketing reasons for adopting
this name, the changeover may have contributed more confusion to both the Java
and HTML scripting worlds than anyone expected.

Before the announcement, the language was already related to Java in some
ways. Many of the basic syntax elements of the scripting language were reminiscent
of the C and C++ style of Java. For client-side scripting, the language was intended
for very different purposes than Java— essentially to function as a programming
language integrated into HTML documents rather than as a language for writing
applets that occupy a fixed rectangular area on the page (and that are oblivious to
anything else on the page). Instead of Java’s full-blown programming language
vocabulary (and conceptually more difficult to learn object-oriented approach),
JavaScript had a small vocabulary and a more easily digestible programming
model.

The true difficulty, it turned out, was making the distinction between Java and
JavaScript clear to the world. Many computer journalists made major blunders
when they said or implied that JavaScript provided a simpler way of building Java
applets. To this day, many programmers believe JavaScript is synonymous with the
Java language: They post Java queries to JavaScript-specific Internet newsgroups
and mailing lists.

(c) ketabton.com: The Digital Library

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

The fact remains today that Java and JavaScript are more different than they are
similar. The two languages employ entirely different interpreter engines to execute
their lines of code. Whereas JavaScript support shipped in every platform-specific
version of Navigator 2 in February 1996, Java was not available for Windows 3.1
users until late in the life of Navigator 3. (Many squirrelly technical issues make it
difficult for this modern language to work in an “ancient” MS-DOS operating system.)

The Microsoft world

Although the JavaScript language originated at Netscape, Microsoft acknowl-
edged the potential power and popularity of the language by implementing it
(under the JScript name) in Internet Explorer 3. Even if Microsoft would rather that
the world use the VBScript (Visual Basic Script) language that it provides in the
Windows versions of IE, the fact that JavaScript is available on more browsers and
operating systems makes it the client-side scripter’s choice for anyone who must
design for a broad range of users.

In keeping with the competitive nature of the Web browser market, Netscape and
Microsoft continue to attract developers to their camps with different philosophies.
As this book is written, Netscape is waving the banner of support for published
Web standards; Microsoft, on the other hand, provides only partial standards
support but many proprietary extensions that are useful, especially when the
clients are running Win32 operating systems exclusively. If you develop pages for
an audience that uses both browser brands and multiple operating systems, this
creates challenges. [address these issues in the next chapter and in several techni-
cal sections in Parts IIl and IV.

JavaScript: The Right Tool for the Right Job

Knowing how to match an authoring tool to a solution-building task is an impor-
tant part of being a well-rounded Web page author. A Web page designer who
ignores JavaScript is akin to a plumber who bruises his knuckles by using pliers
instead of the wrench at the bottom of the toolbox.

By the same token, JavaScript won't fulfill every dream. The more you under-
stand about JavaScript’s intentions and limitations, the more likely you will be to
turn to it immediately when it is the proper tool. In particular, look to JavaScript for
the following kinds of solutions:

4+ Getting your Web page to respond or react directly to user interaction with
form elements (input fields, text areas, buttons, radio buttons, checkboxes,
selection lists) and hypertext links —a class of application I call the
serverless CGI

4+ Distributing small collections of database-like information and providing a
friendly interface to that data

4 Controlling multiple-frame navigation, plug-ins, or Java applets based on user
choices in the HTML document

4+ Preprocessing data on the client before submission to a server

4+ Changing content and styles in modern browsers dynamically and instantly in
response to user interaction

(c) ketabton.com: The Digital Library

10

Part | + Getting Started with JavaScript

At the same time, understanding what JavaScript is not capable of doing is vital.
Scripters waste many hours looking for ways of carrying out tasks for which
JavaScript was not designed. Most of the limitations are designed to protect visitors
from invasions of privacy or unauthorized access to their desktop computers.
Therefore, unless a visitor uses a modern browser and explicitly gives you
permission to access protected parts of his or her computer, JavaScript cannot
surreptitiously perform any of the following actions:

4+ Setting or retrieving the browser’s preferences settings, main window
appearance features, action buttons, and printing

4 Launching an application on the client computer

4+ Reading or writing files or directories on the client or server computer
4 Capturing live data streams from the server for retransmission

4+ Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging
(if not “cool”) with the least amount of effort. This is particularly true when the task
is in the hands of people more comfortable with writing, graphic design, and page
layout than with hard-core programming. Not every Webmaster has legions of expe-
rienced programmers on hand to whip up some special, custom enhancement for
the site. Nor does every Web author have control over the Web server that physi-
cally houses the collection of HTML and graphics files. JavaScript brings program-
ming power within reach of anyone familiar with HTML, even when the server is a
black box at the other end of a telephone line.

+ o+ 0+

(c) ketabton.com: The Digital Library

Authoring
Challenges
Amid the
Browser Wars

If you are starting to learn JavaScript at this point in the
brief history of scriptable browsers, you have both a dis-
tinct advantage and disadvantage. The advantage is that you
have the wonderful capabilities of the latest browser offerings
from Netscape and Microsoft at your bidding. The disadvan-
tage is that you have not experienced the painful history of
authoring for older browser versions that were buggy and at
times incompatible with one another due to a lack of stan-
dards. You have yet to learn the anguish of carefully devising
a scripted application for the browser version you use only to
have site visitors sending you voluminous e-mail messages
about how the page triggers all kinds of script errors when
run on a different browser brand, generation, or operating
system platform.

Welcome to the real world of scripting Web pages in
JavaScript. Several dynamics are at work to help make an
author’s life difficult if the audience for the application uses
more than a single type of browser. This chapter introduces
you to these challenges before you type your first word of
JavaScript code. My fear is that the subjects I raise may dis-
suade you from progressing further into JavaScript and its
powers. But as a developer myself —and as someone who has
been using JavaScript since the earliest days of its public pre-
release availability —I dare not sugarcoat the issues facing
scripters today. Instead, | want to make sure you have an
appreciation of what lies ahead to assist you in learning the
language. I believe if you understand the big picture of the
browser-scripting world as it stands at the start of the year
2001, you will find it easier to target JavaScript usage in your
Web application development.

CHAPITER

+ ¢+
In This Chapter

How leapfrogging
browser develop-
ments hurt Web
developers

Separating the core
JavaScript language
from document
objects

The importance of
developing a cross-

browser strategy

¢+ 4+

(c) ketabton.com: The Digital Library

12

Part | + Getting Started with JavaScript

Leapfrog

Browser compatibility has been an issue for authors since the earliest days of
rushing to the Web —long before JavaScript. Despite the fact that browser develop-
ers and other interested parties voiced their opinions during formative stages of
standards development, HTML authors could not produce a document that
appeared the same pixel by pixel on all client machines. It may have been one thing
to establish a set of standard tags for defining heading levels and line breaks, but it
was rare for the actual rendering of content inside those tags to look identical on
different brands of browsers.

Then, as the competitive world heated up—and Web browser development
transformed itself from a volunteer undertaking into profit-seeking businesses —
creative people defined new features and new tags that helped authors develop
more flexible and interesting looking pages. As happens a lot in any computer-
related industry, the pace of commercial development easily outpaced the studied
processing of standards. A browser maker would build a new HTML feature into a
browser and only then propose that feature to the relevant standards body. Web
authors were using these features (sometimes for prerelease browser versions)
before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive
engine on the client computer receiving the data—the HTML engine in a browser,
for example —authors face an immediate problem. Unlike a standalone computer
program that can extend and even invent functionality across a wide range and
have it run on everyone’s computer (at least for a given operating system), Web
content providers must rely on the functionality built into the browser. This led to
questions such as, “If not all browsers coming to my site support a particular HTML
feature, then should I apply newfangled HTML features for visitors only at the
bleeding edge?” and “If I do deploy the new features, what do I do for those with
older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with
these questions for many HTML features that we today take for granted. Tables and
frames come to mind. Eventually, the standards caught up with the proposed HTML
extensions — but not without a lot of author anguish along the way:.

The same game continues today. But the field of players has shrunk to two pri-
mary players: Netscape and Microsoft. The independent Opera browser runs a
distant third in the browser race. For all of these companies, the stakes are higher
than ever before — market share, investor return on investment, and so on. Pick a
business buzzword, and you'll find a reason behind the competition. What had
begun years ago as a friendly game of leapfrog (long before Microsoft even
acknowledged the Web) has become an out-and-out war.

Duck and Cover

Sometimes it is difficult to tell from week to week where the battles are being
fought. Marketing messages from the combatants turn on a dime. You can'’t tell if
the message is proactive to stress a genuinely new corporate strategy or reactive to
match the opponent’s latest salvo. The combatants keep touting to each other:
“Anything you can do, we can do better!” Or, in a more recent salvo: “We support
Web standards!” and “We integrate seamlessly with the operating system!”

(c) ketabton.com: The Digital Library

Chapter 2 4 Authoring Challenges Amid the Browser Wars 13

If it were a case of Netscape and Microsoft pitching their server and browser
software to customers for the creation of monolithic intranets, I could understand
and appreciate such efforts. The battle lines would be clearly drawn, and potential
customers would base their decisions on unemotional criteria— how well the solu-
tion fits the customer’s information distribution and connectivity goals. In fact, if
you develop for an organization-wide intranet, whose browser choice is dictated by
management, you are in luck because authoring for a single browser brand and
version is a piece of cake. But you are not in the majority.

As happens in war, civilian casualties mount when the big guns start shooting.
The battle lines have shifted dramatically in only a few years. The huge market
share territory once under Netscape’s command now lies in Microsoft hands (no
doubt aided by the millions of America Online users who receive IE as part of the
AOL software). While a fair amount of authoring common ground exists between
the latest versions of the two browsers, the newest features cause the biggest
problems for authors wishing to deploy on both browsers. Trying to determine
where the common denominator is may be the toughest part of the authoring job.

Compatibility Issues Today

Allow me to describe the current status of compatibility between Netscape
Navigator and Internet Explorer. The discussion in the next few sections intention-
ally does not get into specific scripting technology very deeply — some of you may
know very little about programming. In many chapters throughout Parts Ill and IV,
offer scripting suggestions to accommodate both browsers.

Separating language from objects

Although early JavaScript authors initially treated client-side scripting as one
environment that permitted the programming of page elements, the scene has
changed as the browsers have matured. Today, a clear distinction exists between
specifications for the core JavaScript language and for the elements you script in a
document (for example, buttons and fields in a form).

On one level, this separation is a good thing. It means that one specification
exists for basic programming concepts and syntax that enables you to apply the
same language to environments that may not even exist today. You can think of the
core language as basic wiring. Once you know how electric wires work, you can
connect them to all kinds of electrical devices, including some that may not be
invented yet. Similarly, JavaScript today is used to wire together page elements in
an HTML document. Tomorrow, operating systems could use the core language to
enable users to wire together desktop applications that need to exchange informa-
tion automatically.

At the ends of today’s JavaScript wires are the elements on the page. In program-
ming jargon, these items are known as document objects. By keeping the specifica-
tions for document objects separate from the wires that connect them, you can use
other kinds of wires (other languages) to connect them. It’s like designing tele-
phones that can work with any kind of wire, including a type of wire that hasn’t
been invented yet. Today the devices can work with copper wire or fiber optic
cable. You get a good picture of this separation in Internet Explorer, whose set of
document objects can be scripted with JavaScript or VBScript. They’re the same
objects, just different wiring.

(c) ketabton.com: The Digital Library

14

Part | + Getting Started with JavaScript

The separation of core language from document objects enables each concept to
have its own standards effort and development pace. But even with recommended
standards for each factor, each browser maker is free to extend the standards.
Furthermore, authors may have to expend more effort to devise one version of a
page or script that plays on both browsers unless the script adheres to a common
denominator (or uses some other branching techniques to let each browser run its
own way).

Core language standard

Keeping track of JavaScript language versions requires study of history and poli-
tics. History covers the three versions developed by Netscape; politics covers
Microsoft’s versions and the joint standards effort. The first version of JavaScript
(in Navigator 2) was Version 1.0, although that numbering was not part of the lan-
guage usage. JavaScript was JavaScript. Version numbering became an issue when
Navigator 3 was released. The version of JavaScript associated with that Navigator
version was JavaScript 1.1. As you will learn later in this book, the version number
is sometimes necessary in an attribute of the HTML tags that surround a script. The
Navigator 4.x generation increased the language version one more notch with
JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The
first version of Internet Explorer to include scripting was Internet Explorer 3. The
timing of Internet Explorer 3 was roughly coincidental to Navigator 3. But as
scripters soon discovered, Microsoft’s scripting effort was one generation behind.
Microsoft did not license the JavaScript name. As a result, the company called its
language JScript. Even so, the HTML tag attribute that requires naming the language
of the script inside the tags could be either JScript or JavaScript for Internet
Explorer. Internet Explorer 3 could understand a JavaScript script written for
Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting
newcomers were often confused because they expected the scripting languages to
be the same. Unfortunately for the scripters, there were language features in
JavaScript 1.1 that were not available in the older JavaScript version in Internet
Explorer 3. Microsoft improved JavaScript in IE3 with an upgrade to the .dll file that
gives IE its JavaScript syntax. However, it’s hard to know which .dll is installed in
any given visitor’s IE3. The situation smoothed out for Internet Explorer 4. Its core
language was essentially up to the level of JavaScript 1.2 in Navigator 4. Microsoft
still officially called the language JScript. Almost all language features that were new
in Navigator 4 (including the script tag attribute identifying JavaScript 1.2) were
understood when you loaded the scripts into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape,
Microsoft, and other concerned parties met to establish a core language standard.
The standards body is a Switzerland-based organization originally called the
European Computer Manufacturer’s Association and now known simply as ECMA
(commonly pronounced ECK-ma). In mid-1997, the first formal language specifica-
tion was agreed on and published (ECMA-262). Due to licensing issues with the
JavaScript name, the body created a new name for the language: ECMAScript.

(c) ketabton.com: The Digital Library

Chapter 2 4 Authoring Challenges Amid the Browser Wars 15

With only minor and esoteric differences, this first version of ECMAScript was
essentially the same as JavaScript 1.1 found in Navigator 3. Both Navigator 4 and
Internet Explorer 4 supported the ECMAScript standard. Moreover, as happens so
often when commerce meets standards bodies, both browsers went beyond the
ECMAScript standard. Fortunately, the common denominator of this extended core
language is broad, lessening authoring headaches on this front.

IE5 advances to JavaScript version 1.3, while NN6 has the luxury of implementing
JavaScript 1.5. In the meantime, the ECMA standard has evolved to a new release
that incorporates features found in JavaScript 1.3 and 1.5.

While the core language tends to exhibit the most compatibility between IE and
NN, authors must pay attention to which language features are available in the
browsers visiting scripted pages. Older browser versions are not equipped to han-
dle newer JavaScript features. But you can sometimes script around these incom-
patibilities (as described throughout the language reference in Part IV).

Document object model

If NN and IE are close in core JavaScript language compatibility, nothing could be
further from the truth when it comes to the document objects. Internet Explorer 3
based its document object model (DOM) on that of Netscape Navigator 2, the same
browser level it used as a model for the core language. When Netscape added a
couple of new objects to the model in Navigator 3, the addition caused further
headaches for neophyte scripters who expected those objects to appear in Internet
Explorer 3. Probably the most commonly missed object in Internet Explorer 3 was
the image object, which lets scripts swap the image when a user rolls the cursor
atop a graphic — mouse rollovers, they’re commonly called.

In the Level 4 browsers, however, Internet Explorer’s document object model
jumped way ahead of the object model Netscape implemented in Navigator 4. The
two most revolutionary aspects of IE4 were the ability to script virtually every
element in an HTML document and the instant reflow of a page when the content
changed. This opened the way for HTML content to be genuinely dynamic without
requiring the browser to fetch a rearranged page from the server. NN4 implemented
only a small portion of this dynamism, without exposing all elements to scripts or
reflowing the page. Inline content could not change as it could in IE4. Suffice it to
say IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of
the World Wide Web Consortium (W3C). The hope among scripters was that once a
standard was in place, it would be easier to develop dynamic content for all
browsers that supported the standard.

Netscape took this wish to heart and designed an almost entirely new browser:
Navigator 6. It incorporates all of the W3C DOM Level 1 and a good chunk of Level
2. Even though Microsoft participated in the W3C DOM standards development, IE5
implements only some of the W3C DOM standard — in some cases, just enough to
allow cross-browser scripting that adheres to the standard. Of course, the standard
is not perfect either, and it brings to the DOM several brand-new concepts for
scripters. When you take these issues into account, and add to the mix the number
of older browsers still in use, scripting HTML objects is touchy business. It requires
a good knowledge of compatibility, as described in the object discussions through-
out this book.

(c) ketabton.com: The Digital Library

16

Part | + Getting Started with JavaScript

Cascading Style Sheets

Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibil-
ity with a W3C recommendation called Cascading Style Sheets Level 1 (CSS1). This
specification customized content in an organized fashion throughout a document
(and thus minimized the HTML in each tag); it was also an effort to extend the
Web’s tradition of publishing static content. As implementations go, NN4 had a lot
of rough edges, especially when trying to mix style sheets and tables. But IE4 was
no angel, either, especially when comparing the results of style sheet assignments
as rendered in the Windows and Macintosh versions of the browser.

CSS Level 2 adds more style functionality to the standard, and both IE5 and NN6
support a good deal of Level 2. Rendering of styled content is more harmonious
between both browsers, largely thanks to more stringent guidelines about how
styles should render.

JavaScript plays a role in style sheets in [E4+ and NN6 because those browsers’
object models permit dynamic modification to styles associated with any content
on the page. Style sheet information is part of the object model and is therefore
accessible and modifiable from JavaScript.

Dynamic HTML

Perhaps the biggest improvements to the inner workings of the Level 4 browsers
from both Netscape and Microsoft revolve around a concept called Dynamic HTML
(DHTML). The ultimate goal of DHTML is to enable scripts in documents to control
the content, content position, and content appearance in response to user actions.
To that end, the W3C organization developed another standard for the precise posi-
tioning of HTML elements on a page as an extension of the CSS standards effort.
The CSS-Positioning recommendation was later blended into the CSS standard, and
both are now part of CSS Level 2. With positioning, you can define an exact location
on the page where an element should appear, whether the item should be visible,
and what stacking order it should take among all the items that might overlap it.

IE4+ adheres to the positioning standard syntax and makes positionable items
subject to script control. Navigator 4 followed the standard from a conceptual point
of view, but it implemented an alternative methodology involving an entirely new,
and eventually unsanctioned, tag for layers. Such positionable items were scriptable
in Navigator 4 as well, although a lot of the script syntax differed from that used in
Internet Explorer 4. Fortunately for DHTML authors, NN6, by its adherence to the
CSS standard, is more syntactically in line with DHTML style properties employed in
IE4+. Cross-browser scripting can be challenging, yet it is certainly possible if you
understand the limitations imposed by following a common denominator.

Developing a Scripting Strategy

Browsers representing the latest generation contain a hodgepodge of standards
and proprietary extensions. Even if you try to script to a common denominator
among today’s browsers, your code probably won'’t take into account the earlier
versions of both the JavaScript core language and the browser document object
models.

(c) ketabton.com: The Digital Library

Chapter 2 4 Authoring Challenges Amid the Browser Wars 17

The true challenge for authors these days is determining the audience for which
scripted pages are intended. You will learn techniques in Chapter 13 that enable
you to redirect users to different paths in your Web site based on their browser
capabilities. In Chapter 14, you will discover the alternatives you can take depend-
ing on the object model version(s) and specific features you need to support. Each
new browser generation not only brings with it new and exciting features you are
probably eager to employ in your pages, it also adds to the fragmentation of the
audience visiting a publicly accessible page. With each new browser upgrade, fewer
existing users are willing to download megabytes of browser merely to have the
latest and greatest browser version. For many pioneers —and certainly for most
nontechie users —there is an increasingly smaller imperative to upgrade browsers,
unless that browser comes via a new computer or operating system upgrade.

As you work your way through this book, know that the common denominator
you choose depends on where you draw the line for browser support. Even if you
wish to adhere to the absolutely lowest common denominator of scripting, I've got
you covered: The Part Il tutorial focuses on language and object aspects that are
compatible with every version of JavaScript and every document object model.

At the same time, I think it is important for you to understand that the cool
application you see running on your latest, greatest browser may not translate to
Internet Explorer 3 or Navigator 2. Therefore, when you see a technique that you’d
like to emulate, be realistic in your expectations of adapting that trick for your
widest audience. Only a good working knowledge of each language term’s compati-
bility and an examination of the cool source code will reveal how well it will work
for your visitors.

¢+ o+ 4

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

CHAPTER

Your First
JavaScript Script

¢+ 4+

In This Chapter

. . . . How to choose basic
n this chapter, you set up a productive script-writing and JavaScript authoring

previewing environment on your computer, and then you tools
write a simple script whose results you can see in your
JavaScript-compatible browser.

Because of differences in the way various personal comput-
ing operating systems behave, I present details of environ-
ments for two popular variants: Win32 operating systems
(Windows 95/98/NT/2000/ME) and the MacOS. For the most
part, your JavaScript authoring experience is the same regard-
less of the operating system platform you use —including
Linux or UNIX. Although there may be slight differences in
font designs depending on your browser and operating sys-
tem, the information remains the same. Most illustrations of
browser output in this book are made from the Win32 version
of Internet Explorer 5.x. If you run another browser or version,
don'’t fret if every pixel doesn’t match with the illustrations in
this book.

The Software Tools

The best way to learn JavaScript is to type the HTML and
scripting code into documents in a text editor. Your choice of
editor is up to you, although I provide you with some guide-
lines for choosing a text editor in the next section.

Choosing a text editor

For the purposes of learning JavaScript in this book, avoid
WYSIWYG (What You See Is What You Get) Web page author-
ing tools, such as FrontPage and DreamWeaver, for now. These
tools certainly will come in handy afterward when you can
productively use those facilities for molding the bulk of your
content and layout. But the examples in this book focus more
on script content (which you must type in anyway), so there
isn’t much HTML that you have to type. Files for all complete
Web page listings (except for the tutorial chapters) also
appear on the companion CD-ROM.

How to set up your
authoring
environment

How to enter a
simple script fo a
Web page

¢+ 4+ 0+

(c) ketabton.com: The Digital Library

20

Part | + Getting Started with JavaScript

"Note

An important factor to consider in your choice of editor is how easy it is to save
standard text files with an .html filename extension. In the case of Windows, any
program that not only saves the file as text by default but also enables you to set
the extension to .htm or .html prevents a great deal of problems. If you use
Microsoft Word, for example, the program tries to save files as binary Word files —
something that no Web browser can load. To save the file initially as a text or .html
extension file requires mucking around in the Save As dialog box. This requirement
is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that
includes the WordPad program or a more fully featured product such as the share-
ware editor called TextPad. For the MacOS, SimpleText is also fine— although the
lack of a search-and-replace function may get in the way when you start managing
your Web site pages. A favorite among Mac HTML authors and scripters is BBEdit
(Bare Bones Software), which includes a number of useful aids for scripters, such
as optional line numbers (which help in debugging JavaScript).

Choosing a browser

The other component that is required for learning JavaScript is the browser. You
don’t have to be connected to the Internet to test your scripts in the browser. You
can perform all testing offline. This means you can learn JavaScript and create cool,
scripted Web pages with a laptop computer —even on a boat in the middle of an
ocean.

The browser brand and version you use is up to you. Until you reach Chapter 12,
virtually everything you script will run in every scriptable browser. For page devel-
opment, however, you want a more modern browser, such as IE5.x or NN6. And to
derive the most benefit from the examples scattered throughout this book, you
should have the latest versions of IE and NN available for your primary operating
system.

Many example listings in this book demonstrate language or document object

~~ model (DOM) features that work on only specific browsers and versions. Check

the compatibility listing for that language or DOM feature to make sure you use
the right browser to load the page.

Setting Up Your Authoring Environment

To make the job of testing your scripts easier, make sure that you have enough
free memory in your computer to let both your text editor and browser run simulta-
neously. You need to be able to switch quickly between editor and browser as you
experiment and repair any errors that may creep into your code. The typical work-
flow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.
2. Save the latest version to disk.

3. Switch to the browser.

(c) ketabton.com: The Digital Library

Chapter 3 4 Your First JavaScript Script 21

4. Do one of the following: If this is a new document, open the file via the
browser’s Open menu. If the document is already loaded, reload the file into
the browser.

Steps 2 through 4 are the key ones you will follow frequently. I call this three-step
sequence the save-switch-reload sequence. You will perform this sequence so often
as you script that the physical act quickly will become second nature to you. How
you arrange your application windows and effect the save-switch-reload sequence
varies according to your operating system.

Windows

You don’t have to have either the editor or browser window maximized (at full
screen) to take advantage of them. In fact, you may find them easier to work with if
you adjust the size and location of each window so both windows are as large as
possible while still enabling you to click a sliver of the other’s window. Or, you can
leave the taskbar visible so you can click the desired program’s button to switch to
its window (Figure 3-1). A monitor that displays more than 640 x 480 pixels cer-
tainly helps in offering more screen real estate for the windows and the taskbar.

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut
makes the job of the save-switch-reload steps outlined earlier a snap. If you run
Windows and also use a Windows-compatible text editor (which more than likely
has a Ctrl+S file-saving keyboard shortcut), you can effect the save-switch-reload
sequence from the keyboard all with the left hand: Ctrl+S (save the source file);
Alt+Tab (switch to the browser); Ctrl+R (reload the saved source file).

As long as you keep switching between the browser and text editor via Alt+Tab
task switching, either program is always just an Alt+Tab away.

v Metscape - [Welcome to Netscape]

Eile

A E J[=] E3
_B File Edit Wiew Insert Format Help
sEEEEC =

I &

<HTHL>
<HEAD>
<TITLE»Qutline Takble of Contents</TITLE:
</HEAD>

<FRAMESET COLS="35%, "'"»

<NOFRAMES>

<H1>It's really cool,..</Hl>

<HzZ>,..but only if you have Netscape Navigator 3.0</HZ>
<HR>

<Ak HREF="../index.html":Back</Ax

J </MOFRAMES>

<FRAME MNAME="Framel'" SRC="foodol.htm'">

G

of <FRAME NAME="FramezZ"™ 3JRC="olintro.htm>

~ </FRAMESET>

@ </HTHL>

ot

4,
=t

For Help, press F1 A

iﬂStalll ﬂNelscape - [Welcome to Nl ‘5)| outline_htm - WordPad j‘(ﬂ* 810 PM

Figure 3-1: Editor and browser window arrangement in Windows 98

(c) ketabton.com: The Digital Library

22 Part| + Getting Started with JavaScript

MacOS

If you expand the windows of your text editor and browser to full screen, you
have to use the rather inconvenient Application menu (right-hand icon of the menu
bar) to switch between the programs. A better method is to adjust the size and
location of the windows of both programs so they overlap, while allowing a portion
of the inactive window to remain visible (Figure 3-2). That way, all you have to do is
click anywhere on the inactive window to bring its program to the front.

With this arrangement, the save-switch-reload sequence is a two-handed affair:

1. Press 88-S (save the source file).

2. Click in the browser window.

3. Press 3-R (reload the saved source file).

To return to editing the source file, click any exposed part of the text editor’s
window.

A useful utility called Program Switcher (http://www.kamprath.net/

claireware) puts the Alt+Tab program switching functionality on the Mac key-
board. It is more convenient than using the Application menu.

& File Edit Text Mark Search Eutensions Windows &3 & & 3
=
Netscape: Welcome 1o Netscape
I 1 1 [1 I I 1 | I ——— =]
EIE—————— uullinehin =c-F"———ni
B3 5
- FE E = Last Saved: 2/12496 2t 9:07:57 PM
Nete s EHERLE$ Magintesh HD Documents Editorial Bocks iJavaSar.. autlinelhtm
<HTHL> s
why HIML?] AppTications
— <TITLEsOutl ine Table of Contents</TITLE>
< /HERD>
<FRAMESET COLS="358,%">
<HOFRAMES>
<HI*It's real Iy cool. .. <M1
H2>...but only if you haus Metscape Nauigatar 3.0¢/HZ»
<HR>
<A HREF="1ndex . hin| " *Back < /A
< MOFRAMES>
<FRAME NAME="Frame1" SRC="foodo! htm">
<FAAME NAME="Frame2" SAC="olintro.him">
< fFRANESET>
L1 e
Go
9a
Ba
and] I
s |
Trash
gt galliji 2= res
T T
/00 [http/ fhome meom.com /hame Amise /pe3_betatest him [=27]

Figure 3-2: Editor and browser window arrangement on the
Macintosh screen

(c) ketabton.com: The Digital Library

Chapter 3 4 Your First JavaScript Script 23

Reloading issues

For the most part, a simple page reload is enough to let you test a revised ver-
sion of a script right away. But sometimes the browser’s cache (with its default
settings) can preserve parts of the previous page’s attributes when you reload,
even though you have changed the source code. To perform a more thorough
reload, hold down the Shift key while clicking the browser’s Reload/Refresh button.
Alternatively, you can turn off the browser’s cache in the preferences area, but that
setting may negatively affect the overall performance of the browser during your
regular Web surfing.

What Your First Script Will Do

For the sake of simplicity, the kind of script you look at in the next section is the
kind that runs automatically when the browser loads the HTML page. Although all
scripting and browsing work done here is offline, the behavior of the page is identi-
cal if you place the source file on a server and someone accesses it via the Web.

Figure 3-3 shows the page as it appears in the browser after you're finished. (The
exact wording differs slightly if you run your browser on an operating system plat-
form other than Win32 or if you use a browser other than Internet Explorer.) The
part of the page that is defined in regular HTML contains nothing more than an
<H1>-level header with a horizontal rule under it. If someone does not use a
JavaScript-equipped browser, all he or she sees is the header and horizontal rule
(unless that person has a truly outmoded browser, in which case some of the script
words appear in the page).

X C:\Documents'SCRIPT1.HTM - Microsoft Internet Explorer

J File Edit View Favorites Tools Help
J « = .2 al Q@ @ @ | B
Back Forward Stop Rehesh Home Search Favori... History Mail
=
' .
Let's Script!
This browser is version 4.0 {compatible, MSIE 5.0, Windows 98, DigExt) of Microsoft
Internet Explorer
K
|@ Done ’_’_E My Computer 4

Figure 3-3: The finished page of your first JavaScript script

(c) ketabton.com: The Digital Library

24

Part | + Getting Started with JavaScript

Below the rule, the script displays plain body text that combines static text with
information about the browser you use to load the document. The script writes a
stream of HTML information to the browser, including a tag to render a portion of
the information in boldface. Even though two lines of code are writing information
to the page, the result is rendered as one line —just as it is when all the text is
hard-coded in HTML.

Entering Your First Script

It’s time to start creating your first JavaScript script. Launch your text editor and
browser. If your browser offers to dial your Internet service provider (ISP) or begins
dialing automatically, cancel or quit the dialing operation. If the browser’s Stop
button is active, click it to halt any network searching it may try to do. You may
receive a dialog box message indicating that the URL for your browser’s home page
(usually the home page of the browser’s publisher — unless you've changed the set-
tings) is unavailable. That’s fine. You want the browser open, but you shouldn’t be
connected to your ISP. If you're automatically connected via a local area network in
your office or school, that’s also fine. However, you don’t need the network connec-
tion for now. Next, follow these steps to enter and preview your first JavaScript
script:

1. Activate your text editor and create a new, blank document.

2. Type the script into the window exactly as shown in Listing 3-1.

Listing 3-1: Source Code for script1.htm

<HTML>
<HEAD>
{TITLE>My First Script</TITLE>
</HEAD>

<BODY>

<HI>Let's Script...</H1>

<HR>

{SCRIPT LANGUAGE="JavaScript">

<l-- hide from old browsers

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")
// end script hiding -->

</SCRIPT>

</BODY>

<THTMLY

3. Save the document with the name scriptl.htm. (This is the lowest common
denominator filenaming convention for Windows 3.1 —feel free to use an
.html extension if your operating system allows it.)

4. Switch to your browser.

(c) ketabton.com: The Digital Library

Chapter 3 4 Your First JavaScript Script 25

5. Choose Open (or Open File on some browsers) from the File menu and select
scriptl.htm. (On some browsers, you have to click a Browse button to reach
the File dialog box.)

If you typed all lines as directed, the document in the browser window should
look like the one in Figure 3-3 (with minor differences for your computer’s operating
system and browser version). If the browser indicates that a mistake exists some-
where as the document loads, don’t do anything about it for now. (Click the OK but-
ton if you see a script error dialog box.) Let’s first examine the details of the entire
document so you understand some of the finer points of what the script is doing.

Examining the Script

You do not need to memorize any of the commands or syntax discussed in this
section. Instead, relax and watch how the lines of the script become what you see
in the browser. In Listing 3-1, all of the lines up to the <SCRIPT> tag are very stan-
dard HTML. Your JavaScript-enhanced HTML documents should contain the same
style of opening tags you normally use.

The <SCRIPT> tag

Any time you include JavaScript verbiage in an HTML document, you must
enclose those lines inside a <SCRIPT>...</SCRIPT> tag pair. These tags alert the
browser program to begin interpreting all the text between these tags as a script.
Because other scripting languages (such as Microsoft’s VBScript) can take advan-
tage of these script tags, you must specify the precise name of the language in
which the enclosed code is written. Therefore, when the browser receives this sig-
nal that your script uses the JavaScript language, it employs its built-in JavaScript
interpreter to handle the code. You can find parallels to this setup in real life: If you
have a French interpreter at your side, you need to know that the person with
whom you’re conversing also knows French. If you encounter someone from Russia,
the French interpreter can’t help you. Similarly, if your browser has only a
JavaScript interpreter inside, it can’t understand code written in VBScript.

Now is a good time to instill an aspect of JavaScript that will be important to you
throughout all your scripting ventures: JavaScript is case-sensitive. Therefore, you
must enter any item in your script that uses a JavaScript word with the correct
uppercase and lowercase letters. Your HTML tags (including the <SCRIPT> tag) can
be in the case of your choice, but everything in JavaScript is case-sensitive. When a
line of JavaScript doesn’t work, look for the wrong case first. Always compare your
typed code against the listings printed in this book and against the various vocabu-
lary entries discussed throughout it.

A script for all browsers

The next line after the <SCRIPT> tag in Listing 3-1 appears to be the beginning of
an HTML comment tag. It is, but the JavaScript interpreter treats comment tags in a
special way. Although JavaScript dutifully ignores a line that begins with an HTML
comment start tag, it treats the next line as a full-fledged script line. In other words,
the browser begins interpreting the next line after a comment start tag. If you want
to put a comment inside JavaScript code, the comment must start with a double
slash (//). Such a comment may go near the end of a line (such as after a JavaScript

(c) ketabton.com: The Digital Library

26

il

Part | + Getting Started with JavaScript

statement that is to be interpreted by the browser) or on its own line. In fact, the
latter case appears near the end of the script. The comment line starts with two
slashes.

Step back for a moment and notice that the entire script (including comments) is
contained inside a standard HTML comment tag (<!--comment-->). The value of
this containment is not clear until you see what happens to your scripted HTML
document in a non-JavaScript-compatible browser. Such a browser blows past the
<SCRIPT> tag as being an advanced tag it doesn’t understand. But it treats a line of
script as regular text to be displayed in the page. If you enclose script lines between
HTML comment tags, most older browsers don’t display the script lines. Still, some
old browsers can get tripped up and present some ugliness because they interpret
any > symbol (not the whole --> symbol) as an end-of-comment character. Figure
3-4 shows the results of your first script when viewed in a now obsolete version of
the America Online Web browser (version 2.5 for Windows).

America Online - [My First Script] [_[O] %]
‘ File Edit GoTo Mal Members Window Help -|ﬂ|5|

] @ renad] [fswsd] [EFooriteFlaces] [Prefs | [@ Home] [Fohew | S A
|me MocalhostiCDOCUME~1 MAY ASC~1 SCRIPT1 HTM j|

-

Let's Script...

"+ navigator. appName + ") /f end script hiding -->

¥

TG

Figure 3-4: If you enclose script lines between HTML comments,
the entire script is ignored by most, but not all, non-JavaScript
browsers. Here, an old America Online browser shows part of the

script anyway.

Remember, too, that some users don’t have access to modern browsers or
graphical browsers. (They use the Lynx text-oriented UNIX Web reader software or
Lynx-like browsers in handheld computers.) By embracing your script lines within
these comments, your Web pages don’t look completely broken in relatively mod-
ern, non-JavaScript browsers.

Notice that the comment lines that shield older browsers from your scripts go
inside the <SCRIPT>...</SCRIPT> tags. Do not put these comment lines above
the <SCRIPT> tag or below the </SCRIPT> tag and expect them to work.

One more issue about the script-hiding comment lines in this book. To save
space on the page, most examples do not have comment lines inserted in them. But
as you can see in the full-fledged application examples from Chapters 49 through
57, the comment lines are where they should be. For any pages you produce for
public consumption, always encase your script lines inside these comments.

(c) ketabton.com: The Digital Library

Chapter 3 4 Your First JavaScript Script 27

Displaying some text

Both script lines in Listing 3-1 use one of the possible actions a script can ask a
document to perform (document.write(), meaning display text in the current doc-
ument). You learn more about the document object in Chapter 18.

Whenever you ask an object (a document in this case) to perform a task for you,
the name of the task is always followed by a set of parentheses. In some cases —
the write() task, for example — JavaScript needs to know what information it
should act on. That information (called a parameter) goes inside parentheses after
the name of the task. Thus, if you want to write the name of the first U.S. president
to a document, the command to do so is

document.write("George Washington")

The line of text that the script writes starts with some static text ("This
browser is version") and adds some evaluated text (the version of the browser)
to it. The writing continues with more static text that includes an HTML tag ("of
™"), more evaluated text (the name of the browser application), and an HTML
closing tag and the sentence’s period ("."). JavaScript uses the plus symbol
(+) to join (concatenate) text components into a larger, single string of text charac-
ters to be written by the document. Neither JavaScript nor the + symbol knows any-
thing about words and spaces, so the script is responsible for making sure that the
proper spaces are passed along as part of the parameters. Notice, therefore, that an
extra space exists after the word “version” in the first document.write() parame-
ter, and extra spaces exist on both sides of “of” in the second document.write()
parameter.

To fetch the information about the browser version and name for your parame-
ters, you call upon JavaScript to extract the corresponding properties from the
navigator object. You extract a property by appending the property name to the
object name (navigator in this case) and separating the two names with a period.
If you're searching for some English to mentally assign to this scheme as you read
it, start from the right side and call the right item a property “of” the left side: the
appVersion property of the navigator object. This dot syntax looks a great deal
like the document.write() task, but a property name does not have parentheses
after it. In any case, the reference to the property in the script tells JavaScript to
insert the value of that property in the spot where the call is made. For your first
attempt at the script, JavaScript substitutes the internal information about the
browser as part of the text string that gets written to the document.

Have Some Fun

If you encounter an error in your first attempt at loading this document into your
browser, go back to the text editor and check the lines of the script section against
Listing 3-1, looking carefully at each line in light of the explanations. There may be a
single character out of place, a lowercase letter where an uppercase one belongs,
or a quote or parenthesis missing. Make necessary repairs, switch to your browser,
and click Reload.

(c) ketabton.com: The Digital Library

28 Part| + Getting Started with JavaScript

To see how dynamic the script in scriptl.htmis, go back into the text editor
and replace the word “browser” with “client software.” Save, switch, and reload
to see how the script changes the text in the document. Feel free to substitute
other text for the quoted text in the document.write() statement. Or, add
more text with additional document.write() statements. The parameters to
document.write() are HTML text, so you can even write "
" to make a line
break. Always be sure to save, switch, and reload to see the results of your
handiwork.

4+ + +

(c) ketabton.com: The Digital Library

JavaScript /]
Tutorial- o
sSummary

Nine Tutorial
Chapters
T What Scripts Do in
he JavaScript tutorial is intended for the newcomer who Documents
has little or no programming experience. But even expe-
rienced programmers who have not worked in an object- Programming

based environment will find many of the tutorial chapters
helpful in grasping basic concepts about the ways scripts
interact with HTML elements on a page. In fact, an experi-
enced programmer may have to “unlearn” some concepts
while making the transition to a looser, interpreted environ-
ment in contrast to the rigorous discipline required in other + + + +
environments.
That’s not to say that JavaScript is anything less than “real”
programming. As several chapters in this tutorial prove, the
JavaScript language provides the same fundamental program-
ming facilities that exist in most heavy-duty languages. At the
same time, however, the language is simplified and forgiving in
an attempt to attract a wider audience than may gravitate to
languages such as C, C++, or Java.
A significant challenge in molding a tutorial about client-
side JavaScript is accommodating the wide range of document
object models that are spread among numerous browser
brands, operating systems, and versions. Despite the large
number of object model permutations implemented in the
browsers that visit a public Web site, the earliest object
model, as implemented in the first scriptable browsers, serves
as a convenient and easily digestible common denominator
for learning the basics. Therefore, the tutorial focuses most of
its energy on the first-generation object model. Everything
you learn from the tutorial is immediately applicable to the
latest browsers. This knowledge also serves as an excellent
foundation for understanding newer object model concepts,
whether your development target is just one browser type for
a corporate intranet or any browser “out there” surfing the
Web. After you have been through the tutorial, Chapter 14’s
overview of the branches of the object model evolutionary
tree becomes crystal clear.

Fundamentals

Infroduction to
Document Obijects

(c) ketabton.com: The Digital Library

30 Part Il + JavaScript Tutorial — Summary

On the The following sections provide brief summaries of the topics covered in the tuto-
CD\ rial chapters found on the CD-ROM in Acrobat format. Each of the chapters ends
| with exercises, whose answers are also on the CD-ROM in Appendix C.

Chapter 4. Browser and Document Objects

One of the best ways to understand why JavaScript is so valuable on the client
computer is to see how scripts add life to otherwise flat HTML documents. Popular
categories of scripting implementations include interactive user interfaces, instan-
taneous form validation, small data collection lookups (the data is embedded in the
document for JavaScript to search through), multiple frame management, and, in
more recent browsers, dynamic designs that allow dragging elements around the
page. At the same time, it is important to recognize when JavaScript is not the pre-
ferred technology.

This chapter introduces the concept of a document object model (DOM). You can
visualize the object model as a kind of road map to the page elements that become
objects in the browser’s memory as the page loads into the browser. Figure II-1 is
aroadmap for a hypothetical Web page that contains one of each kind of element
recognized as an object in the lowest common denominator model. The containment
notion conveyed by the grey boxes reinforces the way script statements reference
objects, starting with the window object at the top of the hierarchy. For example,
to address a text box, you assemble a reference like this: window.document.
formName.textBoxName.

window

frame| self | top | parent

hisltory document

Ii|I1k l_form_‘ anchor

text | | radio | | button | | select |
| | | |
| textarea | | checkbox | | reset | | option |
| |
| password | | submit |

Figure 11-1: Map of the lowest common denominator document object model

(c) ketabton.com: The Digital Library

Part Il + JavaScript Tutorial — Summary 31

After a discussion of how “dot syntax” works, the chapter ends with an introduc-
tion to the way objects distinguish themselves from each other by way of their
properties, methods, and event handlers. An object’s properties are like adjectives
that describe various characteristics of the object. Methods are like an object’s
verbs, which provide scripts with ways to ask objects to do something. Event han-
dlers denote the kinds of user and system actions (such as clicking on a button)
that trigger script statements to run. Once you know an object’s properties, meth-
ods, and event handlers, you know everything your scripts can do to make it
“dance.”

Chapter 5. Scripts and HTML Documents

This chapter helps you begin to see the physical relationships between blocks of
scripts and the rest of the tags in an HTML document. By and large, scripts go
inside a set of <SCRIPT> tags. These tags tell the HTML rendering engines of script-
able browsers to ignore the content between the start and end tags. Such script
blocks can occur inside the HEAD or BODY elements, or both, depending on what
your scripts have to do in the page. But non-scriptable browsers do not recognize
the <SCRIPT> tag and try to render the scripts. To avoid this possibility, surround
the content of <SCRIPT> tags with HTML comment symbols. Scriptable browsers
can still run the scripts, but most non-scriptable browsers skip over the com-
mented material.

Script statements — each line of script code is a statement —run either immedi-
ately or in deferred mode. An immediate script statement is one that runs while the
page loads into the browser. Such a statement might use scripting to generate part
of the page’s content dynamically (as the script in Chapter 3 does). Most scripts,
however, load into the browser’s memory and sit quietly until some user or system
action triggers those statements.

While you develop scripts — and especially while you learn JavaScript — script
errors are bound to occur. It is important to view the messages associated with an
error. In this chapter you learn the ways various browsers and browser generations
let you view error messages.

Chapter 6. Programming Fundamentals, Part |

For the next two chapters, you momentarily leave the browser world, and dive
into vital concepts that the JavaScript language shares with just about every pro-
gramming language. The terminology may be foreign at first (if you are a non-pro-
grammer), but you will use this knowledge virtually every day that you apply
JavaScript to your pages.

First is the simple idea that any piece of information —a string of text charac-
ters, a number, a special indicator of “true” or “false” —is a value. To simplify a
script statement’s interaction with values, you typically assign each value to a vari-
able. In the JavaScript world, a variable is simply a name (identifier) that makes it
easy to preserve a value in memory while other statements run.

One of the most important concepts to master is that a script statement usually
consists of one or more expressions — either a value or combination of values, such

(c) ketabton.com: The Digital Library

32

Part Il + JavaScript Tutorial — Summary

as 3 + 4. Each expression is said to evaluate to some value. The expression 3+4
evaluates to 7; if the value 3 is assigned to a variable named a, and 4 is assigned to
a variable named b, then the expression a+b also evaluates to 7.

To help you experiment with values, expressions, and expression evaluation,
Chapter 6 introduces you to a tool called Evaluator Jr., a simplified version of a
more powerful authoring and learning tool found in Chapter 13. You can type an
expression into one field on Evaluator Jr.’s page, and immediately see the value to
which it evaluates.

Every value is of some fype, such as a number or string of text characters. While
so-called data typing is not as rigid in JavaScript as it is in other languages, it is
sometimes necessary to convert a value of one type to another. Thus, the chapter
demonstrates simple conversions between number and string values. You then
meet basic operators for simple arithmetic and comparisons.

Chapter 7. Programming Fundamentals,
Part I

The tour of programming fundamentals continues with ways to influence the
sequence that the browser follows to execute statements in a script. A few
approaches to these control structures allow a script to follow different paths based
on decisions (using the comparison operators shown in Chapter 6) or on criteria
for repetition (such as inspecting each character of a text string). You learn about
if constructions and simple repeat loops.

Next you learn how to gather a related sequence of script statements into a
group called a function. A function contains the statements of a deferred script.
Functions are most commonly invoked by user actions (from object model event
handlers), but they are also invoked by statements in other functions. You can also
hand off values from one function to another in the form of parameters to a function.

To round out the fundamentals discussion, this chapter introduces the very
important concept of arrays. An array is an organized list of values (visualize a one-
column spreadsheet). You can use arrays to keep a set of related values together,
very commonly as a way to facilitate looking for a value within a collection (with the
help of the repeat loops you learned earlier). Arrays also play a role in related
groups of objects in the document object model, as you learn in subsequent chapters.

Chapter 8. Window and Document Objects

Starting with Chapter 8, you come back to the browser objects, and begin to
apply your working knowledge of the core JavaScript language to understanding the
way scripts work with objects in a document. This chapter focuses on object high
up the hierarchy shown earlier in Figure II-1.

At the top of the hierarchy is the window object, which represents the window
created by the browser program. You can also use scripts to create subwindows.
For the tutorial, you learn about setting text in the window’s status bar, three types
of dialog boxes, and how to trigger scripts when a pages finishes loading all of its
content into the window.

(c) ketabton.com: The Digital Library

Part Il + JavaScript Tutorial — Summary 33

The Tocation and history objects are not quite as concrete as the window
object. The Tocation object is the more important of the two, because it contains
information about the URL (and various pieces of the URL) of the page currently in
the window. For privacy and security reasons, scripts have very little access to the
browser’s history, but the history object provides limited script access to actions
that simulate the Back and Forward navigation buttons.

A pivotal object is the document. It is the master container of all content that
arrives with the page. Scripts reference elements on the page by way of the document
object, such that the term, document, becomes part of the reference to an element.
You can use one of the document object’s methods to generate content on the page
as it loads (as demonstrated in Chapter 3).

Chapter 9. Forms and Form Elements

Most interactive Web pages contain forms, which provide text boxes to fill in,
lists to choose from, and buttons to click. The form, itself, is an object. Many of its
properties reflect the attributes you typically assign to a form, such as METHOD,
ACTION, and TARGET. Thus, scripts can change the values of those attributes based
on other user settings in the form.

A form object is also a container. Nested inside are the form controls with which
users interact. In this chapter you meet the most common properties and event
handlers of text fields, buttons, radio buttons, checkboxes, and SELECT elements.
Because form control interaction so often triggers script execution, you learn how to
pass information from the form to a function invoked by a control’s event handler.

While you're on the subject of forms, you see the basics of client-side validation
of data to assure that form settings or text in a desired format get submitted to the
server. Client-side validation is much faster and more user-friendly than having the
server return the form for the user to complete.

Chapter 10. Strings, Math, and Dates

In Chapter 10, you come back momentarily to the core JavaScript language to
learn about a few objects that many of your document object scripts use to manipu-
late form or other kinds of values. You see more and more how the core JavaScript
language and document object models work together to produce your applications.

A string object represents a sequence of text characters. Script statements often
need to assemble longer strings out of smaller components. Operators (introduced
back in Chapter 6) play a role. But a string object also has several methods avail-
able to simplify the copying of sections of a string or finding out if a longer string
contains a shorter one (for example, whether a text box for an e-mail address con-
tains an @ character).

The JavaScript Math object is a resource that is always available to any script
statement. Use the object’s properties to get copies of constant values, such as pi;
use its methods for operations such as getting the absolute value of a number or
raising a number to a power.

Calculations involving dates and times take advantage of a huge assortment of
methods associated with the Date object. With the help of this object, your scripts

(c) ketabton.com: The Digital Library

34

Part Il + JavaScript Tutorial — Summary

can grab a snapshot of the date and time of the client’s system clock or create a
date object for dates in the past or future. Want to display on your page how many
shopping days remain until next Christmas? That’s one application for Date object
calculations.

Chapter 11. Scripting Frames and Multiple
Windows

One of the strengths of a scriptable browser is that scripts facilitate the manage-
ment of multiple frames far better than server-based applications. For example, you
can script a link in one frame of a three-frame window to change the documents
loaded into the other two frames. Or you can use one static frame to preserve accu-
mulated data from pages that come and go from one of the other frames.

The trickiest part of managing frames is knowing how script statements refer to
other frames and elements in those other frames. In this chapter you learn the
three possible relationships among a parent (that is, the framesetting document)
and two or more child frames. Depending on which document contains the script
and which document contains the element to reference, the format of the reference
needs to be assembled properly.

Some of the same techniques apply to managing multiple windows. Not only are
multiple windows more difficult to manage from a user interface point of view,
scripting them also presents several challenges. In this lesson you begin to appreci-
ate the issues involved.

Chapter 12. Images and Dynamic HTML

In the final chapter of the tutorial, you travel beyond the confines of the lowest
common denominator to embrace concepts that work with a lot of browsers and
can greatly improve the user experience on your page.

At the core is the image object. The image object has a split personality. On one
side is the object represented in a page by its tag; on the other side is an
image object in memory that allows scripts to preload images invisibly into the
browser’s memory cache. Through these two mechanisms, scripts can pre-cache an
alternate version of, say, an iconic button so that when the user rolls the mouse
atop the normal version, a script instantly swaps the visible image with a preloaded
one. Here you learn how to implement simple mouse rollovers with pre-cached
images.

With even more advanced browsers, particularly those that reflow their content
automatically, scripts make pages far more dynamic. Not only can elements be
dragged around the page, but table rows can be added or deleted, and entire sec-
tions of pages can be inserted or removed. These are just the tip of the iceberg of
Dynamic HTML.

+ + +

(c) ketabton.com: The Digital Library

Browser and
Document
Objects

This chapter marks the first of nine tutorial chapters
(which compose Part II) tailored to Web authors who
have at least basic grounding in HTML concepts. In this chap-
ter, you see several practical applications of JavaScript and
begin to see how a JavaScript-enabled browser turns familiar
HTML elements into objects that your scripts control. Most of
what you learn throughout the tutorial can be applied to all
scriptable browsers (back to Navigator 2 and Internet
Explorer 3). I clearly label a handful of fancy features that
require recent browser versions.

Scripts Run the Show

If you have authored Web pages with HTML, you are famil-
iar with how HTML tags influence the way content is rendered
on a page when viewed in the browser. As the page loads, the
browser recognizes angle-bracketed tags as formatting
instructions. Instructions are read from the top of the docu-
ment downward, and elements defined in the HTML document
appear onscreen in the same order in which they appear in
the document’s source code. As an author, you do a little work
one time and up front —adding the tags to text content —and
the browser does a lot more work every time a visitor loads
the page into a browser.

Assume for a moment that one of the elements on the page
is a text input field inside a form. The user is supposed to
enter some text in the text field and then click the Submit
button to send that information back to the Web server. If that
information must be an Internet e-mail address, how do you
ensure the user includes the “@” symbol in the address?

One way is to have a Common Gateway Interface (CGI)
program on the server inspect the submitted form data after
the user clicks the Submit button and the form information is

CHAPTER

+ ¢+
In This Chapter

What client-side

scripts do

What happens when
a document loads

How the browser
creates objects

How scripts refer to
obijects

How to find out what
is scriptable in an

object

¢+ 4+ 0+

(c) ketabton.com: The Digital Library

CD-2

Part Il + JavaScript Tutorial

transferred to the server. If the user omits or forgets the “@” symbol, the CGI pro-
gram serves the page back to the browser — but this time with an instruction to
include the symbol in the address. Nothing is wrong with this exchange, but it
means a significant delay for the user to find out that the address does not contain
the crucial symbol. Moreover, the Web server has to expend some of its resources
to perform the validation and communicate back to the visitor. If the Web site is a
busy one, the server may try to perform hundreds of these validations at any given
moment, probably slowing the response time to the user even more.

Now imagine that the document containing that text input field has some intelli-
gence built into it that makes sure the text field entry contains the “@” symbol
before ever submitting one bit (literally!) of data to the server. That kind of intelli-
gence would have to be embedded in the document in some fashion —downloaded
with the page’s content so it can stand ready to jump into action when called upon.
The browser must know how to run that embedded program. Some user action
must start the program, perhaps when the user clicks the Submit button. If the
program runs inside the browser and detects a lack of the “@” symbol, an alert
message should appear to bring the problem to the user’s attention. The same pro-
gram also should be capable of deciding if the actual submission can proceed or if
it should wait until a valid e-mail address is entered into the field.

This kind of pre-submission data entry validation is but one of the practical ways
JavaScript adds intelligence to an HTML document. Looking at this example, you
might recognize that a script must know how to look into what is typed in a text
field; a script must also know how to let a submission continue or how to abort the
submission. A browser capable of running JavaScript programs conveniently treats
elements such as the text field as objects. A JavaScript script controls the action and
behavior of objects —most of which you see on the screen in the browser window.

JavaScript in Action

By adding lines of JavaScript code to your HTML documents, you control
onscreen objects in whatever way your applications require. To give you an idea of
the scope of applications you can create with JavaScript, I show you several appli-
cations on the CD-ROM (in the folders for Chapters 49 through 57). I strongly sug-
gest you open the applications and play with them in your browser as they are
described in the next several pages.

Interactive user interfaces

HTML hyperlinks do a fine job, but they’re not necessarily the most engaging
way to present a table of contents for a large site or document. With a bit of
JavaScript, you can create an interactive, expandable table of contents listing that
displays the hierarchy of a large body of material (see Figure 4-1). Just like the text
listings (or free views) in operating system file management windows, the expand-
able table of contents lets the user see as much or as little as possible while dis-
playing the big picture of the entire data collection.

(c) ketabton.com: The Digital Library

Chapter 4 + Browser and Document Objects

CD-3

0 e Table o Dhte 050 Dre =1 ES
J File Edit View Favorites Tools Help ‘
J@,@v@ﬁ@@@%v =
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...
Pickles-- Cucumber--Dill o
Composition of Selected
Foods Water (percent)
93.3
Food energy (calories)
B FPeas 11
B Boiled Proten (grams)
Canned 0.7
@ Picldes Fat (grams)
8 Cucumber 0.2
B Ds
mF Fickles--Cucumber--Fresh
® Sour
Water (percent)
787
Food energy {calories)
73
Protein (grams)
0%
Fat (grams) |
0.2
Pickles--Cucumber--Sour
=
€] Pucker up... ’_’_‘Q Internet

Figure 4-1: An expandable table of contents

Click a gray widget icon to expand the items underneath. An endpoint item has
an orange and black widget icon. Items in the outline can be links to other pages or
descriptive information. You also maintain the same kind of font control over each
entry, as expected from HTML. While such outlines have been created with server
CGlIs in the past, the response time between clicks is terribly slow. By placing all of
the smarts behind the outline inside the page, it downloads once and runs quickly
after each click.

As demonstrated in the detailed description of this outline in the application
Outline-Style Table of Contents (Chapter 52 on the CD-ROM), you can implement
the scriptable workings within straight HTML for Navigator 2 and 3 —although
limitations in page rendering require rewriting the page after each click. Internet
Explorer 4+ and Navigator 6+ automatically reflow the page in response to changes
of content, turning this outliner into a truly dynamic HTML application. Either way
you do it, the quick response and action on the screen makes for a more engaging
experience for Web surfers who are in a hurry to scout your site.

Small data lookup

A common application on the Web is having a CGI program present a page that
visitors use to access large databases on the server. Large data collections are best
left on the server where search engines and other technologies are the best fit. But
if your page acts as a front end to a small data collection lookup, you can consider
embedding that data collection in the document (out of view) and letting JavaScript
act as the intermediary between user and data.

(c) ketabton.com: The Digital Library

CD-4

Part Il + JavaScript Tutorial

I do just that in a Social Security prefix lookup system shown in Figure 4-2. I con-
vert a printed table of about 55 entries into a JavaScript list that occupies only a
few hundred bytes. When the visitor types the three-character prefix of his or her
Social Security number into the field and clicks the Search button, a script behind
the scenes compares that number against the 55 or so ranges in the table. When the
script finds a match, it displays the corresponding state of registration in a second
field.

If the application were stored on the server and the data stored in a server
database, each click of the Search button would mean a delay of many seconds as
the server processed the request, got the data from the database, and reformulated
the page with the result for the user. Built instead as a JavaScript application, once
the page downloads the first time, scripts perform all lookups instantaneously.

Forms validation

I've already used data entry form validation as an example of when JavaScript is a
good fit. In fact, the data entry field in the Social Security lookup page (see Figure
4-2) includes scripting to check the validity of the entered number. Just as a CGI
program for this task has to verify that the entry is a three-digit number, so, too,
must the JavaScript program verify the entered value. If a mistake appears in the
entry — perhaps a finger slips and hits a letter key—the visitor is advised of the
problem and directed to try another entry. The validation script even preselects the
text in the entry field for the visitor so that typing a new value replaces the old one.

Z§Where Were You Born? - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help

Where Were You Born?

According to an article in the Wall Street Journal, the first three digits of a .5 Social Security number is a code that may
indicate the state or territory in which your application stated you were born (because the code reveals the state in which you
registered). For recent immigrants, the number is supposed to match up with the state or territory m which vou were living
when you recerved proper working papers.

Mote: The database in this document 13 not 100 percent complete. Populous states have added numenic ranges not contained
here.

Instructions
1. Enter the first three digits of a T1.3. Social Security number in question.
2. Chck on the Search butten
3. See the corresponding state or territory in the field

For the paraneid: Mo information vou enter here is recorded or monitored--it stays entirely within your browser.

Enter the first three digits of a Social Security number{HEE | _Search !

The Feds link this number to‘IWESt Yirginia

] Done ’_’_‘Q Internet
Figure 4-2: Looking up data in a small table

[4]

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects (CD-5

Interactive data

JavaScript opens opportunities for turning static information into interactive
information. Figure 4-3 shows a graphical calculator for determining the value of an
electrical component (called a resistor) whose only markings are colored bars.

2l Graphical Resistance Calculator - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help ‘ 4

« s @ a4 @ @ @ (s 5 59
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...

Calculate Resistor Values from Color Codes

[Red [=][vellow =] [Bue =] [Gow =]
Black
Brown
Fed

. 24 bohms, +-6%
Resistance Va%

Green

Blue
Violet
Gray
‘White

Tustration: VO (Zan Francisco)

] Done ’_’_‘O Internet
Figure 4-3: An interactive graphical calculator

The image in the bottom half of the page is composed of seven images in vertical
slices all bunched up against each other. Four slices display the colored bands,
while the remaining three slices contain the ends of the resistor and the spacer
between groups of bands. As the visitor selects a color from a pop-up list near the
top, the associated image slice changes to the selected color and the resistance
value is calculated and displayed.

Again, once the page is loaded, response time is instantaneous. Conversely, a
server-based version of this calculator would take many seconds between color
changes. Moreover, JavaScript provides the power to preload all possible images
into the browser cache while the main page loads. Therefore, with only a slight
extra delay to download all images with the page, no further delay occurs when a
visitor chooses a new color. Not only is the application practical (for its intended
audience), but it’s just plain fun to play with.

Multiple frames

While frames are the domain of HTML, they suddenly become more powerful
with some JavaScript behind them. The Decision Helper application shown in
Figure 4-4 takes this notion to the extreme.

(c) ketabton.com: The Digital Library

CD-6

Part Il 4+ JavaScript Tutorial

A Decision Helper - Microsoft Internet Explorer
J File Edit View Favorites Tools Help |

Jév».@ﬁ@@ge%véﬁv”
Back Forward Stop Refresh Home Search Favori... Historp Mail Print Edit
=
Buying a FAX machine
Results Ranking
| FaxO-Matic 1000 [72 | mom
| DkyFax300 56 | e
| LagFaIX [—
|Lnnse Cannon M-200 ‘I?Z 4 ‘_
D —
Results = |
Results are calculated based on the various weights and rankings you entered in previous
: i screens. The specific mimbers are not particularly important: their relative positions, however, |
% are what you're loclang for. The highest number represents the alternative rating the hughest =l
||@ ’_’_|O Internet 4

Figure 4-4: The Decision Helper

The Decision Helper is a full-fledged application that includes four input screens
and one screen that displays the results of some fairly complex calculations based
on the input screens. Results are shown both in numbers and in a bar graph form,
as displayed in Figure 4-4.

Interaction among the three frames requires JavaScript. For example, suppose
the user clicks one of the directional arrows in the top-left frame. Not only does the
top-right frame change to another document, but the instructions document in the
bottom frame also shifts to the anchor point that parallels the content of the input
screen. Scripting behind the top-right frame documents uses various techniques to
preserve entry information as the user navigates through the sequence of input
pages. These are the same techniques you might use to build an online product
catalog and shopping cart — accumulating the customer’s selections from various
catalog pages and then bringing them together in the checkout order form.

Certainly you could fashion this application out of a CGI program on the server.
But the high level of interaction and calculation required would turn this now
speedy application into a glacially slow exchange of information between user and
server.

Dynamic HTML

Starting with the version 4 browsers from both Netscape and Microsoft, you can
modify more and more content on the page with the help of client-side scripts. In
Figure 4-5, for example, scripts in the page control the dragging of map pieces in the
puzzle. Highlighted colors change as you click the state maps, instruction panels fly
in from the edge of the screen, and another item appears when you place all the
states in their proper positions.

(c) ketabton.com: The Digital Library

Chapter 4 + Browser and Document Objects CD-7

3 a 050 Brne Dre =1 ES
J File Edit View Favorites Tools Help ‘
J - 4| @ @m & | B 5 = . D
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...
"Lower 48" U.S. Map Puzzle
LI
] Done ’_’_‘Q Internet

Figure 4-5: A map game in scriptable Dynamic HTML

The browser feature that makes this level of script control possible is Dynamic
HTML (DHTML). JavaScript becomes the vital connection between the user and
dynamically respositionable elements on the screen. Not even a program on the
server could help this application because you need immediate programmatic
control in the page to respond to user mouse motion and instantaneous changes to
screen elements.

When to use JavaScript

The preceding examples demonstrate a wide range of applications for JavaScript,
but by no means do they come close to exhausting JavaScript’s possibilities. When
faced with a Web application task, I look to client-side JavaScript for help with the
following requirements:

4+ Data entry validation: If form fields need to be filled out for processing on the
server, | let client-side scripts prequalify the data entered by the user.

4+ Serverless CGls: | use this term to describe processes that, were it not for
JavaScript, would be programmed as CGIs on the server, yielding slow perfor-
mance because of the interactivity required between the program and user.
This includes tasks such as small data collection lookup, modification of
images, and generation of HTML in other frames and windows based on user
input.

(c) ketabton.com: The Digital Library

CD-8

Part Il + JavaScript Tutorial

4+ Dynamic HTML interactivity: It’s one thing to use DHTML'’s capabilities to
precisely position elements on the page—you don’t need scripting for that.
But if you intend to make the content dance on the page, scripting makes that
happen.

4+ CGI prototyping: Sometimes you may want a CGI program to be at the root of
your application because it reduces the potential incompatibilities among
browser brands and versions. It may be easier to create a prototype of the CGI
in client-side JavaScript. Use this opportunity to polish the user interface
before implementing the application as a CGIL.

4+ Offloading a busy server: If you have a highly trafficked Web site, it may be
beneficial to convert frequently used CGI processes to client-side JavaScript
scripts. Once a page is downloaded, the server is free to serve other visitors.
Not only does this lighten server load, but users also experience quicker
response to the application embedded in the page.

4+ Adding life to otherwise dead pages: HTML by itself is pretty “flat.” Adding a
blinking chunk of text doesn’t help much; animated GIF images more often
distract from, rather than contribute to, the user experience at your site. But
if you can dream up ways to add some interactive zip to your page, it may
engage the user and encourage a recommendation to friends or repeat visits.

4+ Creating “Web pages that think”: If you let your imagination soar, you may

develop new, intriguing ways to make your pages appear “smart.” For exam-
ple, in the application Intelligent “Updated” Flags (Chapter 54), you see how
(without a server CGI or database) an HTML page can “remember” when a vis-
itor last came to the page. Then any items that have been updated since the
last visit —regardless of the number of updates you've done to the page —are
flagged for that visitor. That’s the kind of subtle, thinking Web page that best
displays JavaScript’s powers.

The Document Object Model

Before you can truly start scripting, you should have a good feel for the kinds of
objects you will be scripting. A scriptable browser does a lot of the work of creating
software objects that generally represent the visible objects you see in an HTML
page in the browser window. Obvious objects include form controls (text boxes and
buttons) and (in recent browsers) images. However, there may be other objects
that aren’t so obvious by looking at a page, but which make perfect sense when you
consider the HTML tags used to generate a page’s content —frames of a frameset,
for example.

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects (CD-9

To help scripts control these objects —and to help authors see some method to
the madness of potentially dozens of objects on a page —the browser makers
define a document object model (DOM). A model is like a prototype or plan for the
organization of objects on a page.

Object models implemented in browsers have grown rapidly with each genera-
tion of browser. Moreover, Microsoft and Netscape have added their own touches
from time to time in a competitive features race. The lack of compatibility among
browser versions and brands can drive scripters to distraction, especially if (at the
outset) they learn the object model only of the latest version of only one brand —
unaware of limits in earlier browsers or those from other makers.

All is not lost, however. This tutorial focuses on the document object model that
you can find in every scriptable browser. Figure 4-6 shows a map of the lowest com-
mon denominator object model, which is safe to use on all browsers. At this stage
of the learning process, it is not important to memorize the model but rather to get
a general feel for what’s going on.

window

frame | self t0p| parent

[]
| history | |document| | location |
I
[[]
| link | | form | | anchor |
[TT [TT [T
text | | radio | | button | | select |
textarea checkbox reset option
| | | | | | | |

|password|| submit |

Figure 4-6: Lowest common denominator document object
model for all scriptable browsers

One misconception you must avoid at the outset is that the model shown in
Figure 4-6 is the model for every document that loads into the browser. On the
contrary —it represents an idealized version of a document that includes one of
every possible type of object that the browser knows. In a moment, I will show you
how the document object model stored in the browser at any given instant reflects
the HTML in the document. But for now, I want to impress an important aspect of
the structure of the idealized model: its hierarchy.

(c) ketabton.com: The Digital Library

CD-10 Partil + JavaScript Tutorial

Object model features that are proprietary to one browser version and/or brand are per-
fectly usable provided you know that your audience uses that brand or version exclusively
(for example, in a corporate environment where a browser version might be mandated for
all employees). If you develop in this kind of controlled environment, then be assured that
browser-specific features are covered in the reference portions of this book.

An industry standards effort (by the W3C) has begun specifying a common set of object
model features and syntax that provide more flexibility than the original implementations.
The biggest improvement is that every HTML element becomes an object that scripts can
manipulate (a feature also found in IE4’s object model). This DOM, built upon the original
object model you learn in this tutorial, is implemented in varying degrees of completion in
IE5+ and NN6+ (the latter offering a much more complete W3C DOM implementation).
The scripter’s dream is that one day W3C DOM-compatible browsers will be the majority of
the installed base, and creating cross-browser, highly dynamic pages will be easier than
today. In the meantime, you have lots of fundamentals to learn —knowledge that you'll use
for many years to come.

Containment hierarchy

Notice in Figure 4-6 that objects are grouped together in various levels desig-
nated by the density of the gray background. Objects are organized in a hierarchy,
not unlike the hierarchy of a company’s organization chart of job positions. At the
top is the president. Reporting to the president are several vice presidents. One of
the vice presidents manages a sales force that is divided into geographical regions.
Each region has a manager who reports to the vice president of sales; each region
then has several salespeople. If the president wants to communicate to a salesper-
son who handles a big account, the protocol dictates that the president should
route the message through the hierarchy —to the vice president of sales; to the
sales manager; to the salesperson. The hierarchy clearly defines each unit’s role
and relationship to the other units.

This hierarchical structure applies to the organization of objects in a document.
Allow me to highlight the key objects in Figure 4-6 and explain their relationships to
others.

4+ Window object: At the top of the hierarchy is the window. This object repre-
sents the content area of the browser window where HTML documents
appear. In a multiple-frame environment, each frame is also a window (but
don’t concern yourself with this just yet). Because all document action takes
place inside the window, it is the outermost element of the object hierarchy.
Its physical borders contain the document.

4 Document object: Each HTML document that gets loaded into a window
becomes a document object. Its position in the object hierarchy is an impor-
tant one, as you can see in Figure 4-6. The document object contains most of
the other kinds of objects in the model. This makes perfect sense when you
think about it: The document contains the content that you are likely to
script.

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects CD-1 1

4 Form object: Users don’t see the beginning and ending of forms on a page, only
their elements. But a form is a distinct grouping of content inside an HTML
document. Everything that is inside the <FORM>. . .</FORM> tag set is part of
the form object. A document might have more than one pair of <FORM> tags if
dictated by the page design. If so, the map of the objects for that particular
document has two form objects instead of the one that appears in Figure 4-6.

4+ Form control elements: Just as your HTML defines form elements within the
confines of the <FORM>. . .</FORM> tag pair, so does a form object contain all
the elements defined for that object. Each one of those form elements — text
fields, buttons, radio buttons, checkboxes, and the like —is a separate object.
Unlike the one-of-everything model shown in Figure 4-6, the precise model for
any document depends on the HTML tags in the document.

When a Document Loads

Programming languages, such as JavaScript, are convenient intermediaries
between your mental image of how a program works and the true inner workings of
the computer. Inside the machine, every word of a program code listing influences
the storage and movement of bits (the legendary 1s and 0s of the computer’s
binary universe) from one RAM storage slot to another. Languages and object mod-
els are inside the computer (or, in the case of JavaScript, inside the browser’s area
of the computer) to make it easier for programmers to visualize how a program
works and what its results will be. The relationship reminds me a lot of knowing
how to drive an automobile from point A to point B without knowing exactly how an
internal combustion engine, steering linkages, and all that other internal “stuff”
works. By controlling high-level objects such as the ignition key, gearshift, gas
pedal, brake, and steering wheel, | can get the results | need.

Of course, programming is not exactly like driving a car with an automatic trans-
mission. Even scripting requires the equivalent of opening the hood and perhaps
knowing how to check the transmission fluid or change the oil. Therefore, now it’s
time to open the hood and watch what happens to the document object model as a
page loads into the browser.

A simple document

Figure 4-7 shows the HTML and corresponding object model for a very simple
document. When this page loads, the browser maintains in its memory a map of the
objects generated by the HTML tags in the document. The window object is always
there for every document. Every window object also contains an object called the
Tocation object (it stores information about the URL of the document being
loaded). I'll skip that object for now, but acknowledge its presence (as a dimmed
box in the diagram) because it is part of the model in the browser memory. Finally,
because a document has been loaded, the browser generates a document object in
its current map.

(c) ketabton.com: The Digital Library

CD-12

Part Il 4+ JavaScript Tutorial

"Note

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
</BODY>
</HTML>

Figure 4-7: A simple document and object map

In IE4+ and the W3C DOM, every HTML element (such as the H1 element of

~~ Figure 4-7) becomes an object contained by the document. But this tutorial

observes the original model, which turns only a handful (albeit an important
handful) of HTML elements into scriptable objects.

Add a form

Now, I modify the HTML file to include a blank <FORM> tag set and reload the
document. Figure 4-8 shows what happens to both the HTML (changes in boldface)
and the object map as constructed by the browser. Even though no content
appears in the form, the <FORM> tags are enough to tell the browser to create that
form object. Also note that the form object is contained by the document in the
hierarchy of objects in the current map. This mirrors the structure of the idealized
map shown in Figure 4-6.

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
<FORM>
</FORM>
</BODY>
</HTML> Form

Figure 4-8: Adding a form

Add a text input element

I modify and reload the HTML file again, this time including an <INPUT> tag that
defines the text field form element shown in Figure 4-9. As mentioned earlier, the
containment structure of the HTML (the <INPUT> tag goes inside a <FORM> tag set)
is reflected in the object map for the revised document. Therefore, the window con-
tains a document; the document contains a form; and the form contains a text input
element.

(c) ketabton.com: The Digital Library

Chapter 4 4+ Browser and Document Objects CD-13

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
<FORM>

<INPUT TYPE="text">
</FORM>
</BODY> Form
</HTML>

Text

Figure 4-9: Adding a text input element to the form

Add a button element

The last modification [make to the file is to add a button input element to the
same form as the one that holds the text input element (see Figure 4-10). Notice
that the HTML for the button is contained by the same <FORM> tag set as the text
field. As a result, the object map hierarchy shows both the text field and button
contained by the same form object. If the map were a corporate organization chart,
the employees represented by the Text and Button boxes would be at the same
level reporting to the same boss.

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
<FORM>

<INPUT TYPE="text">

<INPUT TYPE="button">

</FORM> Form

</BODY>

</HTML> |
Text Button

Figure 4-10: Adding a button element to the same form

(c) ketabton.com: The Digital Library

CD-14 partil + JavaScript Tutorial

Now that you see how objects are created in memory in response to HTML tags,
the next step is to figure out how scripts can communicate with these objects. After
all, scripting is mostly about controlling these objects.

Object References

After a document is loaded into the browser, all of its objects are safely stored in
memory in the containment hierarchy structure specified by the browser’s docu-
ment object model. For a script to control one of those objects, there must be a way
to communicate with an object and find out something about it such as, “Hey, Mr.
Text Field, what did the user type?”

The JavaScript language uses the containment hierarchy structure to let scripts
get in touch with any object in a document. For a moment, pretend you are the
browser with a document loaded into your memory. You have this road map of
objects handy:. If a script needs you to locate one of those objects, it would be a big
help if the script showed you what route to follow in the map to reach that object.
That is precisely what an object reference in a script does for the browser.

Object naming

The biggest aid in creating script references to objects is assigning names to
every scriptable object in your HTML. Scriptable browsers, such as modern ver-
sions of Navigator and Internet Explorer, acknowledge an optional tag attribute
called NAME. This attribute enables you to assign a unique name to each object.
Here are some examples of NAME attributes added to typical tags:

<FORM NAME="dataEntry" METHOD=GET>
{INPUT TYPE="text" NAME="entry">

<FRAME SRC="info.html" NAME="main">
The only rules about object names (also called identifiers) are that they
4+ May not contain spaces
4+ Should not contain punctuation except for the underscore character
4 Must be inside quotes when assigned to the NAME attribute
4 Must not start with a numeric character

Think of assigning names the same as sticking nametags on everyone attending a
conference meeting. The name of the object, however, is only one part of the actual
reference that the browser needs to locate the object. For each object, the refer-
ence must include the steps along the object hierarchy from the top down to the
object —no matter how many levels of containment are involved. In other words,
the browser cannot pick out an object by name only. A reference includes the
names of each object along the path from the window to the object. In the
JavaScript language, each successive object name along the route is separated from
another by a period.

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects CD-15

The HTML 4.0 specification introduces a new way to assign an identifier to HTML elements:
the ID attribute. The 1D attribute is helpful for some aspects of Cascading Style Sheets
(CSS) and Dynamic HTML. Even so, the NAME attribute is still required for common denom-
inator elements covered in this tutorial — FRAME, FORM, and INPUT elements, for example.
The newest browsers can access an element by name or ID, but authors typically use the 1D
attribute for HTML element objects not shown in Figure 4-6. You can read more about the
1D attribute (and id property) in Chapter 15 after you finish the tutorial.

To demonstrate what real references look like within the context of an object
model you've already seen, I retrace the same model steps shown earlier but this
time I show the reference to each object as the document acquires more objects.

A simple document

I start with the model whose only objects are the window (and its Tocation
object) and document from the simple HTML file. Figure 4-11 shows the object map
and references for the two main objects. Every document resides in a window, so to
reference the window object you start with window. Also fixed in this reference is
the document because there can be only one document per window (or frame).
Therefore, a reference to the document object is window.document.

Window Location

window

window.document Document

Figure 4-11: References to the window and document

Add a form

Modifying the document to include the empty <FORM> tag generates the form
object in the map. If [do the job right, the <FORM> tag also includes a NAME
attribute. The reference to the form object, as shown in Figure 4-12, starts with the
window, wends through the document, and reaches the form, which I call by name:
window.document.formName (the italics meaning that in a real script, I would sub-
stitute the form’s name for formName).

(c) ketabton.com: The Digital Library

CD-16 Partll + JavaScript Tutorial

window Window Location
window.document Document
window.document.formName Form

Figure 4-12: Reference to the form object

Add a text input element

As the hierarchy gets deeper, the object reference gets longer. In Figure 4-13,
add a text input object to the form. The reference to this deeply nested object still
starts at the window level and works its way down to the name [assigned to the
object in its <INPUT> tag: window.document.formName.textName.

window Window Location
window.document Document
window.document.formName Form
window.document.formName.textName Text

Figure 4-13: Reference to the text field object

Add a button element

When I add a button to the same form as the text object, the reference
stays the same length (see Figure 4-14). All that changes is the last part of
the reference where the button name goes in place of the text field name:
window.document.formName.buttonName.

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects CD-17

window Window Location
window.document Document
window.document.formName Form

I

I |
window.document.formName.textName Text Button
window.document.formName.buttonName

Figure 4-14: Reference to the button object

About the Dot Syntax

JavaScript uses the period to separate components of a hierarchical reference.
This convention is adopted from Java, which, in turn, based this formatting on the
C language. Every reference typically starts with the most global scope —the win-
dow for client-side JavaScript — and narrows focus with each “dot” (.) delimiter.

If you have not programmed before, don’t be put off by the dot syntax. You are
probably already using it, such as when you access Usenet newsgroups. The
methodology for organizing the thousands of newsgroups is to group them in a
hierarchy that makes it relatively easy to both find a newsgroup and visualize
where the newsgroup you’re currently reading is located in the scheme of things.

Newsgroup organization model

Let me briefly dissect a typical newsgroup address to help you understand dot
syntax: rec.sport.skating.inline. The first entry (at the left edge) defines the
basic group —recreation — among all the newsgroup categories. Other group cate-
gories, such as comp and alt, have their own sections and do not overlap with
what goes on in the rec section. Within the rec section are dozens of subsections,
one of which is sport. That name distinguishes all the sport-related groups from,
say, the automobile or music groups within recreational newsgroups.

Like most broad newsgroup categories, rec.sport has many subcategories,
with each one devoted to a particular sport. In this case, it is skating. Other sport
newsgroups include rec.sport.rugby and rec.sport.snowboarding. Even
within the rec.sport.skating category, a further subdivision exists to help
narrow the subject matter for participants. Therefore, a separate newsgroup just
for inline skaters exists, just as a group for roller-skating exists (rec.sport.
skating.roller). As a narrower definition is needed for a category, a new level is
formed by adding a dot and a word to differentiate that subgroup from the thou-
sands of newsgroups on the Net. When you ask your newsgroup software to view
messages in the rec.sport.skating.inline group, you're giving it a map to
follow in the newsgroup hierarchy to go directly to a single newsgroup.

(c) ketabton.com: The Digital Library

CD-18 Partil + JavaScript Tutorial

Another benefit of this syntactical method is that names for subcategories can
be reused within other categories, if necessary. For example, with this naming
scheme, it is possible to have two similarly named subcategories in two separate
newsgroup classifications (such as rec.radio.scannersandalt.radio.
scanners). When you ask to visit one, the hierarchical address, starting with the
rec or alt classification, ensures you get to the desired place. Neither collection of
messages is automatically connected with the other (although subscribers fre-
quently cross-post to both newsgroups).

For complete newbies to the Net, this dot syntax can be intimidating. Because
the system was designed to run on UNIX servers (the UNIX operating system is
written in C), the application of a C-like syntax for newsgroup addressing is hardly
surprising.

What Defines an Object?

When an HTML tag defines an object in the source code, the browser creates a
slot for that object in memory as the page loads. But an object is far more complex
internally than, say, a mere number stored in memory. The purpose of an object is
to represent some “thing.” Because in JavaScript you deal with items that appear in
a browser window, an object may be an input text field, a button, or the whole
HTML document. Outside of the pared-down world of a JavaScript browser, an
object can also represent abstract entities, such as a calendar program’s appoint-
ment entry or a layer of graphical shapes in a drawing program.

Every object is unique in some way, even if two or more objects look identical to
you in the browser. Three very important facets of an object define what it is, what
it looks like, how it behaves, and how scripts control it. Those three facets are
properties, methods, and event handlers. They play such key roles in your future
JavaScript efforts that the Quick Reference in Appendix A summarizes the proper-
ties, methods, and event handlers for each object in the object models imple-
mented in various browser generations. You might want to take a quick peek at that
road map of the original object model if for no other reason than to gain an appreci-
ation for the size of the scripting vocabulary that this tutorial covers.

Properties

Any physical object you hold in your hand has a collection of characteristics
that defines it. A coin, for example, has shape, diameter, thickness, color, weight,
embossed images on each side, and any number of other attributes that distinguish
it from, say, a feather. Each of those features is called a property. Each property has
a value of some kind attached to it (even if the value is empty or null). For example,
the shape property of a coin might be “circle”—in this case, a text value. In con-
trast, the denomination property is most likely a numeric value.

You may not have known it, but if you've written HTML for use in a scriptable
browser, you have set object properties without writing one iota of JavaScript. Tag
attributes are the most common way to set an HTML object’s initial properties. The
presence of JavaScript often adds optional attributes whose initial values you can
set when the document loads. For example, the following HTML tag defines a
button object that assigns two property values:

<INPUT TYPE="button" NAME="clicker" VALUE="Hit Me...">

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects CD-19

In JavaScript parlance, then, the name property holds the word “clicker,” while
the value property is the text that appears on the button label, “Hit Me. . ..” In
truth, a button has more properties than just these, but you don’t have to set every
property for every object. Most properties have default values that are automati-
cally assigned if nothing special is set in the HTML or later from a script.

The contents of some properties can change while a document is loaded and the
user interacts with the page. Consider the following text input tag:

<INPUT TYPE="text" NAME="entry" VALUE="User Name?">

The name property of this object is the word “entry.” When the page loads, the
text of the VALUE attribute setting is placed in the text field — the automatic behav-
ior of an HTML text field when the VALUE attribute is specified. But if a user enters
some other text into the text field, the value property changes —not in the HTML,
but in the memory copy of the object model that the browser maintains. Therefore,
if a script queries the text field about the content of the value property, the
browser yields the current setting of the property — which isn’t the one specified
by the HTML if a user changes the text.

To gain access to an object’s property, you use the same kind of dot syntax,
hierarchical addressing scheme you saw earlier for objects. A property is contained
by its object, so the reference to it consists of the reference to the object plus one
more extension naming the property. Therefore, for the button and text object tags
just shown, references to various properties are

document.formName.clicker.name
document.formName.clicker.value
document.formName.entry.value

You may wonder what happened to the window part of the reference. It turns out
that there can be only one document contained in a window, so references to
objects inside the document can omit the window portion and start the reference
with document. You cannot omit the document object, however, from the reference.
In [E4+, you can reference an element object by simply referring to the element’s 1D
attribute if one is assigned. Even so, I strongly recommend spelling out references
so that your code is easier to read and understand long after you’ve written it.
Notice, too, that the button and text fields both have a property named value.
These properties represent very different attributes for each object. For the button,
the property determines the button label; for the text field, the property reflects the
current text in the field. You now see how the (sometimes lengthy) hierarchical
referencing scheme helps the browser locate exactly the object and property your
script needs. No two items in a document can have identical references even
though parts of these references may have the same component names.

Methods

If a property is like a descriptive adjective for an object, then a method is a verb.
A method is all about action related to the object. A method either does something
to the object or with the object that affects other parts of a script or document.
They are commands of a sort, but whose behaviors are tied to a particular object.

An object can have any number of methods associated with it (including none at
all). To set a method into motion (usually called invoking a method), a JavaScript
statement must include a reference to it —via its object with a pair of parentheses
after the method name —as in the following examples:

(c) ketabton.com: The Digital Library

CD-20 Partil + JavaScript Tutorial

document.orderForm.submit()
document.orderForm.entry.select()

The first is a scripted way of clicking a Submit button to send a form (named
orderForm) to a server. The second selects the text inside a text field named entry
(which is contained by a form named orderForm).

Sometimes a method requires that you send additional information with it so
that it can do its job. Each chunk of information passed with the method is called a
parameter or argument (you can use the terms interchangeably). You saw examples
of passing a parameter in your first script in Chapter 3. Two script statements
invoked the write() method of the document object:

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")

As the page loaded into the browser, each document.write() method sent
whatever text was inside the parentheses to the current document. In both cases,
the content being sent as a parameter consisted of straight text (inside quotes) and
the values of two object properties: the appVersion and appName properties of the
navigator object. (The navigator object does not appear in the object hierarchy
diagram of Figure 4-6 because in early browsers this object exists outside of the
document object model.)

Some methods require more than one parameter. If so, the multiple parameters
are separated by commas. For example, Version 4 and later browsers support a
window object method that moves the window to a particular coordinate point on
the screen. A coordinate point is defined by two numbers that indicate the number
of pixels from the left and top edges of the screen where the top-left corner of the
window should be. To move the browser window to a spot 50 pixels from the left
and 100 pixels from the top, the method is

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you
can script, pay close attention to the range of methods defined for each object.
They reveal a lot about what an object is capable of doing under script control.

Event handlers

One last characteristic of a JavaScript object is the event handler. Events are
actions that take place in a document, usually as the result of user activity.
Common examples of user actions that trigger events include clicking a button or
typing a character into a text field. Some events, such as the act of loading a docu-
ment into the browser window or experiencing a network error while an image
loads, are not so obvious.

Almost every JavaScript object in a document receives events of one kind or
another — summarized for your convenience in the Quick Reference of Appendix A.
What determines whether the object does anything in response to the event is an
extra attribute you enter into the object’s HTML definition. The attribute consists of
the event name, an equal sign (just like any HTML attribute), followed by instruc-
tions about what to do when the particular event fires. Listing 4-1 shows a very
simple document that displays a single button with one event handler defined for it.

(c) ketabton.com: The Digital Library

Chapter 4 4 Browser and Document Objects CD-21

Listing 4-1: A Simple Button with an Event Handler

<HTML>
<BODY>
<FORM>
CINPUT TYPE="button" VALUE="Click Me" onClick="window.alert ('Ouch!")">
</FORM>
</BODY>
</HTMLY>

The form definition contains what, for the most part, looks like a standard input
item. But notice the last attribute, onCl1ick="window.alert('Ouch!"')". Button
objects, as you see in their complete descriptions in Chapter 24, react to mouse
clicks. When a user clicks the button, the browser sends a click event to the button.
In this button’s definition, the attribute says that whenever the button receives that
message, it should invoke one of the window object’s methods, alert (). The
alert() method displays a simple alert dialog box whose content is whatever text
is passed as a parameter to the method. Like most arguments to HTML attributes,
the attribute setting to the right of the equal sign goes inside quotes. If additional
quotes are necessary, as in the case of the text to be passed along with the event
handler, those inner quotes can be single quotes. In actuality, JavaScript doesn’t
distinguish between single or double quotes but does require that each set be of
the same type. Therefore, you can write the attribute this way:

onClick="alert("Ouch!")"

Exercises

1. Which of the following applications are well suited to client-side JavaScript?
Why or why not?

a. Music jukebox

b. Web-site visit counter

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator
e. All of the above

f. None of the above

(c) ketabton.com: The Digital Library

CD-22

Part Il + JavaScript Tutorial

2. General Motors has separate divisions for its automobile brands: Chevrolet,

Pontiac, Buick, and Cadillac. Each brand has several models of automobile.
Following this hierarchy model, write the dot-syntax equivalent reference to
the following three vehicle models:

a. Chevrolet Malibu
b. Pontiac Firebird

c. Pontiac GrandAm

. Which of the following object names are valid in JavaScript? For each one that

is invalid, explain why.
a. lastName
b. company_name
c. IstLineAddress
d. zip code
e. today's_date

4. An HTML document contains tags for one link and one form. The form con-

tains tags for three text boxes, one checkbox, a Submit button, and a Reset
button. Using the object hierarchy diagram from Figure 4-6 for reference, draw
a diagram of the object model that the browser would create in its memory
for these objects. Give names to the link, form, text fields, and checkbox, and
write the references to each of those objects.

5. Write the HTML tag for a button input element named “Hi,” whose visible label

reads “Howdy” and whose onC11ck event handler displays an alert dialog box
that says “Hello to you, too!”

—_

(c) ketabton.com: The Digital Library

Scripts and
HTML
Documents

In this chapter’s tutorial, you begin to see how scripts are
embedded within HTML documents and what comprises a
script statement. You also see how script statements can run
when the document loads or in response to user action.

Finally, you find out where script error information is hiding.

Where Scripts Go in Documents

Chapter 4 did not thoroughly cover what scripts look like
or how you add them to an HTML document. That’s where
this lesson picks up the story.

The <SCRIPT> tag

To assist the browser in recognizing lines of code in an
HTML document as belonging to a script, you surround lines
of script code with a <SCRIPT>...</SCRIPT> tag set. This is
common usage in HTML where start and end tags encapsulate
content controlled by that tag, whether the tag set is for a
form or a paragraph.

Depending on the browser, the <SCRIPT> tag has a variety
of attributes you can set that govern the script. One attribute
shared by scriptable browsers is the LANGUAGE attribute. This
attribute is essential because each browser brand and version
accepts a different set of scripting languages. One setting that
all scriptable browsers accept is the JavaScript language, as in

<SCRIPT LANGUAGE="JavaScript">

Other possibilities include later versions of JavaScript
(version numbers are part of the language name), Microsoft’s
JScript variant, and the separate VBScript language. You don’t
need to specify any of these other languages unless your
script intends to take specific advantage of a particular
language version to the exclusion of all others. Until you learn

CHAPTER

PR SR SRS
In This Chapter
Where to place
scripts in HTML

documents

What a JavaScript
statement is

What makes a script
run

Viewing script errors

¢+ o+ o+

(c) ketabton.com: The Digital Library

CD-24 partil + JavaScript Tutorial

the differences among the language versions, you can safely specify plain
JavaScript on all scriptable browsers.

Be sure to include the ending tag for the script. Lines of JavaScript code go
between the two tags:

{SCRIPT LANGUAGE="JavaScript">
one or more lines of JavaScript code here
</SCRIPT>

If you forget the closing script tag, the script may not run properly and the HTML
elsewhere in the page may look strange.

Although you don’t work with it in this tutorial, another attribute works with
more recent browsers to blend the contents of an external script file into the
current document. An SRC attribute (similar to the SRC attribute of an tag)
points to the file containing the script code. Such files must end with a .js exten-
sion. The tag set looks like the following:

<SCRIPT LANGUAGE="JavaScript" SRC="myscript.js"></SCRIPT>

All script lines are in the external file, so no script lines are included between the
start and end script tags in the document.

Tag positions

Where do these tags go within a document? The answer is, anywhere they're
needed in the document. Sometimes it makes sense to include the tags nested
within the <HEAD>. . .</HEAD> tag set; other times it is essential that you drop the
script into a very specific location in the <BODY>. . .</BODY> section.

In the following four listings, | demonstrate —with the help of a skeletal HTML
document —some of the possibilities of <SCRIPT> tag placement. Later in this les-
son, you see why scripts may need to go in different places within a page depending
on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a
<SCRIPT> tag set in a document: in the <HEAD> tag section. Typically, the Head is a
place for tags that influence noncontent settings for the page —so-called HTML
“directive” elements, such as <META> tags and the document title. It turns out that
this is also a convenient place to plant scripts that are called on in response to user
action.

The HTML 4.0 specification does not endorse the popular LANGUAGE attribute for script tags.
Instead, it suggests the TYPE attribute, which requires a value in the form of a MIME
(Multipurpose Internet Mail Extensions) type descriptor:

TYPE="text/Jjavascript"

Only browsers with W3C DOM capabilities (such as IE5+ and NN6+) support the TYPE
attribute, but the LANGUAGE attribute continues to be supported and should be for some
time to come. All examples in this book use the compatible LANGUAGE attribute.

(c) ketabton.com: The Digital Library

Chapter 5 4 Scripts and HTML Documents (CD-25

Listing 5-1: Scripts in the Head

<HTML>

<HEAD>

C(TITLE>A Document</TITLE>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</HEAD>

<BODY>

</BODY>
</HTML>

On the other hand, if you need a script to run as the page loads so that the script
generates content in the page, the script goes in the <BODY> portion of the docu-
ment, as shown in Listing 5-2. If you check the code listing for your first script in
Chapter 3, you see that the script tags are in the Body because the script needs to
fetch information about the browser and write the results to the page as the page
loads.

Listing 5-2: A Script in the Body

<HTML>

<HEAD>

KTITLE>A Document</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</BODY>

</HTML>

It’s also good to know that you can place an unlimited number of <SCRIPT> tag
sets in a document. For example, Listing 5-3 shows a script in both the Head and
Body portions of a document. Perhaps this document needs the Body script to cre-
ate some dynamic content as the page loads, but the document also contains a but-
ton that needs a script to run later. That script is stored in the Head portion.

(c) ketabton.com: The Digital Library

CD-26 Partll + JavaScript Tutorial

Listing 5-3: Scripts in the Head and Body

<HTML>

<HEAD>

C(TITLE>A Document</TITLE>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</BODY>

</HTML>

You also are not limited to one <SCRIPT> tag set in either the Head or Body. You
can include as many <SCRIPT> tag sets in a document as are needed to complete
your application. In Listing 5-4, for example, two <SCRIPT> tag sets are located in
the Body portion, with some other HTML between them.

Listing 5-4: Two Scripts in the Body

<HTML>

<HEAD>

<TITLE>A Document</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

<MORE HTML>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</BODY>

</HTML>

Handling older browsers

Only browsers that include JavaScript in them know to interpret the lines of
code between the <SCRIPT>...</SCRIPT> tag pair as script statements and not
HTML text for display in the browser. This means that a pre-JavaScript browser not
only ignores the tags, but it also treats the JavaScript code as page content. As you

(c) ketabton.com: The Digital Library

Chapter 5 4+ Scripts and HTML Documents (CD-27

saw at the end of Chapter 3 in an illustration of your first script running on an old
browser, the results can be disastrous to a page.

You can reduce the risk of old browsers displaying the script lines by playing a
trick. The trick is to enclose the script lines between HTML comment symbols, as
shown in Listing 5-5. Most nonscriptable browsers completely ignore the content
between the <!-- and --> comment tags, whereas scriptable browsers ignore
those comment symbols when they appear inside a <SCRIPT> tag set.

Listing 5-5: Hiding Scripts from Most Old Browsers

<SCRIPT LANGUAGE="JavaScript">

<h--

//script statement(s) here
/1 -->
</SCRIPT>

The odd construction right before the ending script tag needs a brief explana-
tion. The two forward slashes are a JavaScript comment symbol. This symbol is
necessary because JavaScript otherwise tries to interpret the components of the
ending HTML symbol (-->). Therefore, the forward slashes tell JavaScript to skip
the line entirely; a nonscriptable browser simply treats those slash characters as
part of the entire HTML comment to be ignored.

Despite the fact that this technique is often called hiding scripts, it does not
disguise the scripts entirely. All client-side JavaScript scripts are part of the HTML
document and download to the browser just like all other HTML. Furthermore, you
can view them as part of the document’s source code. Do not be fooled into think-
ing that you can hide your scripts entirely from prying eyes.

JavaScript Statements

Virtually every line of code that sits between a <SCRIPT>...</SCRIPT> tag pair
is a JavaScript statement. To be compatible with habits of experienced program-
mers, JavaScript accepts a semicolon at the end of every statement. Fortunately for
newcomers, this semicolon is optional. The carriage return at the end of a state-
ment suffices for JavaScript to know the statement has ended.

A statement must be in the script for a purpose. Therefore, every statement does
“something” relevant to the script. The kinds of things that statements do are

4 Define or initialize a variable

4 Assign a value to a property or variable

4+ Change the value of a property or variable
4+ Invoke an object’s method

4 Invoke a function routine

4 Make a decision

If you don’t yet know what all of these mean, don’t worry — you will by the end
of this tutorial. The point | want to stress is that each statement contributes to the
scripts you write. The only statement that doesn’t perform any explicit action is the

(c) ketabton.com: The Digital Library

CD-28 Partll + JavaScript Tutorial

comment. A pair of forward slashes (no space between them) is the most common
way to include a comment in a script. You add comments to a script for your bene-
fit. They usually explain in plain language what a statement or group of statements
does. The purpose of including comments is to remind you six months from now
how your script works.

When Script Statements Execute

Now that you know where scripts go in a document, it’s time to look at when
they run. Depending on what you need a script to do, you have four choices for
determining when a script runs:

4 While a document loads

4+ Immediately after a document loads

4 In response to user action

4 When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

While a document loads —immediate execution

Your first script in Chapter 3 (reproduced in Listing 5-6) runs while the docu-
ment loads into the browser. For this application, it is essential that a script
inspects some properties of the navigator object and includes those property
values in the content being rendered for the page as it loads. It makes sense, there-
fore, to include the <SCRIPT> tags and statements in the Body portion of the docu-
ment. | call the kind of statements that run as the page loads immediate statements.

Listing 5-6: HTML Page with Immediate Script Statements

<HTML>
<HEAD>
KTITLE>My First Script</TITLE>
</HEAD>

<BODY>

<{H1>Let's Script...</H1>

<HR>

<SCRIPT LANGUAGE="JavaScript">

{I-- hide from old browsers

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")
// end script hiding -->

</SCRIPT>

</BODY>

</HTMLD

Deferred scripts

The other three ways that script statements run are grouped together as what
I called deferred scripts. To demonstrate these deferred script situations, I must

(c) ketabton.com: The Digital Library

Chapter 5 4 Scripts and HTML Documents (CD-29

introduce you briefly to a concept covered in more depth in Chapter 7: the func-
tion. A function defines a block of script statements summoned to run some time
after those statements load into the browser. Functions are clearly visible inside a
<SCRIPT> tag because each function definition begins with the word function fol-
lowed by the function name (and parentheses). Once a function is loaded into the
browser (commonly in the Head portion so it loads early), it stands ready to run
whenever called upon.

One of the times a function is called upon to run is immediately after a page
loads. The Window object has an event handler called onlLoad. Unlike most event
handlers, which are triggered in response to user action (for example, clicking a
button), the onlLoad event handler fires the instant that all of the page’s compo-
nents (including images, Java applets, and embedded multimedia) are loaded into
the browser. The onLoad event handler goes in the <BODY> tag, as shown in Listing
5-7. Recall from Chapter 4 (Listing 4-1) that an event handler can run a script state-
ment directly. But if the event handler must run several script statements, it is usu-
ally more convenient to put those statements in a function definition and then have
the event handler invoke that function. That’s what happens in Listing 5-7: When
the page completes loading, the onlLoad event handler triggers the done () function.
That function (simplified for this example) displays an alert dialog box.

Listing 5-7: Running a Script from the onLoad Event Handler

<HTML>
<HEAD>
KTITLE>An onlLoad script</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<l--
function done() {
alert("The page has finished loading.")
}
/] -=>
</SCRIPT>
</HEAD>
<BODY onLoad="done()">
Here is some body text.
</B0ODY>
</HTML>

Don’t worry about the curly braces or other oddities in Listing 5-7 that cause you
concern at this point. Focus instead on the structure of the document and the flow.
The entire page loads without running any script statements, although the page
loads the done () function in memory so that it is ready to run at a moment’s
notice. After the document loads, the browser fires the onLoad event handler,
which causes the done () function to run. Then the user sees the alert dialog box.

Getting a script to execute in response to a user action is very similar to the
preceding example for running a deferred script right after the document loads.
Commonly, a script function is defined in the Head portion, and an event handler in,
say, a form element calls upon that function to run. Listing 5-8 includes a script that
runs when a user clicks a button.

(c) ketabton.com: The Digital Library

CD-30 Partll + JavaScript Tutorial

Listing 5-8: Running a Script from User Action

<HTML>

<HEAD>

KTITLE>An onCTlick script</TITLE>

{SCRIPT LANGUAGE="JavaScript">

<l--

function alertUser() {
alert("Ouch!™)

}

/] -=>

</SCRIPT>

</HEAD>

<BODY>

Here is some body text.

<FORM>
CINPUT TYPE="text" NAME="entry">
CINPUT TYPE="button" NAME="oneButton" VALUE="Press Me!"

onClick="alertUser()">

</FORM>

</BODY>

</HTMLD

Not every object must have an event handler defined for it in the HTML, as
shown in Listing 5-8 —only the ones for which scripting is needed. No script state-
ments execute in Listing 5-8 until the user clicks the button. The alertUser()
function is defined as the page loads, and it waits to run as long as the page remains
loaded in the browser. If it is never called upon to run, there’s no harm done.

The last scenario for when script statements run also involves functions. In this
case, a function is called upon to run by another script statement. Before you see
how that works, it helps to read through the next lesson (Chapter 6). Therefore, 1
will hold off on this example until later in the tutorial.

Viewing Script Errors

In the early days of JavaScript in browsers, script errors displayed themselves in
very obvious dialog boxes. These boxes were certainly helpful for scripters who
wanted to debug their scripts. However, if a bug got through to a page served up to
a non-technical user, the error alert dialog boxes were not only disruptive, but also
scary. To prevent such dialog boxes from disturbing unsuspecting users, the
browser makers tried to diminish the visual impact of errors in the browser win-
dow. Unfortunately for scripters, it is often easy to overlook the fact that your
script contains an error because the error is not so obvious. Recent versions of IE
and NN have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog
boxes (got to Tools = Internet Options => Advanced => Browsing and find the checkbox
entry that says “Display a notification about every script error”). Even with error

(c) ketabton.com: The Digital Library

Chapter 5 4 Scripts and HTML Documents (CD-31

dialog boxes turned off, error indications are displayed subtly at the left edge of the
browser window’s status bar. An alert icon and message (“Error on page.”) appear in
the status bar. If you double-click the icon, the error dialog box appears (see Figure
5-1). Be sure to expand the dialog box by clicking the Show Details button. Unless you
turn on script error dialog boxes and keep them coming, you have to train yourself to
monitor the status bar when a page loads and after each script runs.

2l Internet Explorer

of functioning properly. In the future, you can display this message by

Problems with this 'eb page might prevent it from being displayed properly
& double-clicking the warning icon displaped in the status bar.

r Always display this message when a page contains erors.

| Hide Detais <<k
by

Line: 23

Char: 2

Erar: ‘fred iz undefined
Code: 0

URL: file://C:Mevalustor html

Brevious | il |

Figure 5-1: The expanded IE error dialog box

For NN 4.07 and later, the status bar is also your first indication of a script error.
A message appears in the status bar that instructs you to go to the location
Javascript: to see the error details. Viewing the details of the error requires dif-
ferent steps, depending on the Navigator version. For NN 4.07 and all subsequent
4.x versions, choose File™> Open and enter

javascript:

For NN6, choose Tasks &> Tools &> JavaScript Console. The JavaScript console
window (a separate window from the Java console) opens to reveal the error mes-
sage details (see Figure 5-2). You can keep this window open all the time if you like.
Unless you clear the window, subsequent error messages are appended to the
bottom of the window.

Understanding error messages and doing something about them is a very large
subject, reserved for advanced discussion in Chapter 45. During this tutorial, how-
ever, you can use the error messages to see if you have perhaps mistyped a script
from a listing in the book.

(c) ketabton.com: The Digital Library

CD-32

Part Il 4+ JavaScript Tutorial

[JavaScript Console =]

File Edit Tasks Help

TE| Frings Clear
Error: fred is not defined

Source File: file://C /e valuator himl
Line: 31 Colurnn: 0

Figure 5-2: The NN6 JavaScript Console window

Scripting versus Programming

You may get the impression that scripting is easier than programming. “Scripting”
simply sounds easier or more friendly than “programming.” In many respects, this is
true. One of my favorite analogies is the difference between a hobbyist who builds
model airplanes from scratch and a hobbyist who builds model airplanes from com-
mercial kits. The “from scratch” hobbyist carefully cuts and shapes each piece of
wood and metal according to very detailed plans before the model starts to take
shape. The commercial kit builder starts with many prefabricated parts and assem-
bles them into the finished product. When both builders are finished, you may not
be able to tell which airplane was built from scratch and which one came out of a
box of components. In the end, both builders used many of the same techniques to
complete the assembly, and each can take pride in the result.

As you've seen with the document object model, the browser gives scripters
many prefabricated components with which to work. Without the browser, you'd
have to be a pretty good programmer to develop from scratch your own application
that served up content and offered user interaction. In the end, both authors have
working applications that look equally professional.

Beyond the document object model, however, “real programming” nibbles its
way into the scripting world. That’s because scripts (and programs) work with

(c) ketabton.com: The Digital Library

Chapter 5 + Scripts and HTML Documents (CD-33

more than just objects. When I said earlier in this lesson that each statement of a
JavaScript script does something, that “something” involves data of some kind.
Data is the information associated with objects or other pieces of information that a
script pushes around from place to place with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are num-
bers; text (called strings); objects (both from the object model and others you can
create with scripts); and true and false (called Boolean values).

Each programming or scripting language determines numerous structures and
limits for each kind of data. Fortunately for newcomers to JavaScript, the universe
of knowledge necessary for working with data is smaller than in a language such as
Java. At the same time, what you learn about data in JavaScript is immediately
applicable to future learning you may undertake in any other programming lan-
guage —don’t believe for an instant that your efforts in learning scripting will be
wasted.

Because deep down scripting is programming, you need to have a basic knowl-
edge of fundamental programming concepts to consider yourself a good JavaScript
scripter. In the next two lessons, [set aside most discussion about the document
object model and focus on the programming principles that will serve you well in
JavaScript and future programming endeavors.

Exercises

1. Write the complete script tag set for a script whose lone statement is
document.write("Hello, world.")

2. Build an HTML document and include the answer to the previous question
such that the page executes the script as it loads. Open the document in your
browser.

3. Add a comment to the script in the previous answer that explains what the
script does.

4. Create an HTML document that displays an alert dialog box immediately after
the page loads and displays a different alert dialog box when the user clicks a
form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the
document, predict

a. What the page looks like
b. How users interact with the page
c. What the script does

Then type the listing into a text editor as shown (observe all capitalization
and punctuation). Do not type a carriage return after the “=" sign in the
upperMe function statement; let the line word-wrap as it does in the follow-
ing listing. It’s okay to use a carriage return between attribute name/value
pairs, as shown in the first <INPUT> tag. Save the document as an HTML file,
and load the file into your browser to see how well you did.

(c) ketabton.com: The Digital Library

CD-34 Partl + JavaScript Tutorial

Listing 5-9: How Does This Page Work?

<HTML>

<HEAD>

KTITLE>Text Object Value</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

{I--

function upperMe() {
document.converter.output.value =

document.converter.input.value.toUpperCase()

}

/1 -=>

</SCRIPTS

</HEAD>

<BODY>
Enter Towercase letters for conversion to uppercase:

<FORM NAME="converter">
<INPUT TYPE="text" NAME="input" VALUE="sample"
onChange="upperMe()">

<INPUT TYPE="text" NAME="output" VALUE="">
</FORM>
</BODY>
</HTMLD

(c) ketabton.com: The Digital Library

Programming
Fundamentals,
Part |

The tutorial breaks away from HTML and documents for a
while as you begin to learn programming fundamentals
that apply to practically every scripting and programming lan-
guage you will encounter. Here, you start learning about vari-
ables, expressions, data types, and operators —things that
might sound scary if you haven’t programmed before. Don’t
worry. With a little practice, you will become quite comfort-
able with these terms and concepts.

What Language Is This?

The language you're studying is called JavaScript. But the
language has some other names that you may have heard.
JScript is Microsoft’s name for the language. By leaving out
the “ava,” the company doesn’t have to license the “Java”
name from its trademark owner: Sun Microsystems.

A standards body called ECMA (pronounced ECK-ma) now
governs the specifications for the language (no matter what
you call it). The document that provides all of the details
about the language is known as ECMA-262 (it’s the 262nd stan-
dard published by ECMA). Both JavaScript and JScript are
ECMA-262 compatible. Some earlier browser versions exhibit
very slight deviations from ECMA-262 (which came later than
the earliest browsers). The most serious discrepancies are
noted in the core language reference in Part IV of this book.

Working with Information

With rare exception, every JavaScript statement you write
does something with a hunk of information — data. Data may
be text information displayed on the screen by a JavaScript
statement or the on/off setting of a radio button in a form.
Each single piece of information in programming is also called

CHAPTER

+ ¢+
In This Chapter

What variables are
and how to use them

Why you must learn
how to evaluate
expressions

How to convert data
from one type to

another

How to use basic
operators

¢+ 4+ o+

(c) ketabton.com: The Digital Library

CD-36 Partll + JavaScript Tutorial

a value. Outside of programming, the term value usually connotes a number of
some kind; in the programming world, however, the term is not as restrictive. A
string of letters is a value. A number is a value. The setting of a check box (whether
it is checked or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s
formal data types, with examples of the values you will see displayed from time

to time.
Table 6-1 JavaScript Value (Data) Types
Type Example Description
String "Howdy" A series of characters inside quote marks
Number 4.5 Any number not inside quote marks
Boolean true A logical true or false
Null null Completely devoid of any value
Object A software “thing” that is defined by its properties and
methods (arrays are also objects)
Function A function definition

A language that contains these few data types simplifies programming tasks,
especially those involving what other languages consider to be incompatible types
of numbers (integers versus real or floating-point values). In some definitions of
syntax and parts of objects later in this book, I make specific reference to the type
of value accepted in placeholders. When a string is required, any text inside a set of
quotes suffices.

You will encounter situations, however, in which the value type may get in the
way of a smooth script step. For example, if a user enters a number into a form'’s
text input field, the browser stores that number as a string value type. If the script
is to perform some arithmetic on that number, you must convert the string to a
number before you can apply the value to any math operations. You see examples
of this later in this lesson.

Variables

Cooking up a dish according to a recipe in the kitchen has one advantage over
cooking up some data in a program. In the kitchen, you follow recipe steps and
work with real things: carrots, milk, or a salmon fillet. A computer, on the other
hand, follows a list of instructions to work with data. Even if the data represents
something that looks real, such as the text entered into a form’s input field, once
the value gets into the program, you can no longer reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on
and off states) in your computer’s memory. More specifically, data in a JavaScript-
enhanced Web page occupies parts of the computer’s memory set aside for exclu-
sive use by the browser software. In the olden days, programmers had to know the
numeric address in memory (RAM) where a value was stored to retrieve a copy of it

(c) ketabton.com: The Digital Library

Chapter 6 4+ Programming Fundamentals, Part1 (CD-37

for, say, some addition. Although the innards of a program have that level of
complexity, programming languages such as JavaScript shield you from it.

The most convenient way to work with data in a script is to first assign the data
to a variable. It’s usually easier to think of a variable as a basket that holds informa-
tion. How long the variable holds the information depends on a number of factors.
But the instant a Web page clears the window (or frame), any variables it knows
about are immediately discarded.

Creating a variable

You have a couple of ways to create a variable in JavaScript, but one covers you
properly in all cases. Use the var keyword, followed by the name you want to give
that variable. Therefore, to declare a new variable called myAge, the JavaScript
statement is

var myAge

That statement lets the browser know that you can use that variable later to
hold information or to modify any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most
common one by far is the equal sign. If | want to assign a value to the myAge vari-
able at the same time I declare it (a combined process known as initializing the
variable), I use that operator in the same statement as the var keyword:

var myAge = 45

On the other hand, if I declare a variable in one statement and later want to
assign a value to it, the sequence of statements is

var myAge
myAge = 45

Use the var keyword only for declaration or initialization — once for the life of
any variable name in a document.

A JavaScript variable can hold any value type. Unlike many other languages, you
don’t have to tell JavaScript during variable declaration what type of value the vari-
able will hold. In fact, the value type of a variable can change during the execution
of a program. (This flexibility drives experienced programmers crazy because
they’re accustomed to assigning both a data type and a value to a variable.)

Variable names

Choose the names you assign to variables with care. You'll often find scripts that
use vague variable names, such as single letters. Other than a few specific times
where using letters is a common practice (for example, using i as a counting vari-
able in repeat loops in Chapter 7), I recommend using names that truly describe a
variable’s contents. This practice can help you follow the state of your data through
a long series of statements or jumps, especially for complex scripts.

A number of restrictions help instill good practice in assigning names. First, you
cannot use any reserved keyword as a variable name. That includes all keywords
currently used by the language and all others held in reserve for future versions of
JavaScript. The designers of JavaScript, however, cannot foresee every keyword
that the language may need in the future. By using the kind of single words that cur-
rently appear in the list of reserved keywords (see Appendix B), you always run a
risk of a future conflict.

(c) ketabton.com: The Digital Library

CD-38 Partll + JavaScript Tutorial

To complicate matters, a variable name cannot contain space characters.
Therefore, one-word variable names are fine. Should your description really benefit
from more than one word, you can use one of two conventions to join multiple
words as one. One convention is to place an underscore character between the
words; the other is to start the combination word with a lowercase letter and capi-
talize the first letter of each subsequent word within the name —I refer to this as
the interCap format. Both of the following examples are valid variable names:

my_age
myAge

My preference is for the second version. I find it easier to type as [write
JavaScript code and easier to read later. In fact, because of the potential conflict
with future keywords, using multiword combinations for variable names is a good
idea. Multiword combinations are less likely to appear in the reserved word list.

Variable names have a couple of other important restrictions. Avoid all punctua-
tion symbols except for the underscore character. Also, the first character of a vari-
able name cannot be a numeral. If these restrictions sound familiar, it’s because
they’re identical to those for HTML element identifiers described in Chapter 5.

Expressions and Evaluation

Another concept closely related to the value and variable is expression evalua-
tion — perhaps the most important concept of learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of The
Beverly Hillbillies?

Then one day he was shootin’ at some food
And up through the ground came a-bubblin’ crude
Oil that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (“crude,” “oil,”
“black gold,” and “Texas tea”). They all mean oil. They’re all expressions for oil. Say
any one of them and other people know what you mean. In our minds, we evaluate
those expressions to mean one thing: oil.

In programming, a variable always evaluates to its contents, or value. For exam-
ple, after assigning a value to a variable, such as

var myAge = 45

anytime the variable is used in a statement, its value (45) is automatically
applied to whatever operation that statement calls. Therefore, if you're 15 years my
junior, I can assign a value to a variable representing your age based on the evalu-
ated value of myAge:

var yourAge = myAge - 15

(c) ketabton.com: The Digital Library

Chapter 6 4+ Programming Fundamentals, Part1 (CD-39

The variable, yourAge, evaluates to 30 the next time the script uses it. If the
myAge value changes later in the script, the change has no link to the yourAge vari-
able because myAge evaluated to 45 when it was used to assign a value to yourAge.

Expressions in script1l.htm

You probably didn’t recognize it at the time, but you saw how expression
evaluation came in handy in your first script of Chapter 3. Recall the second
document.write() statement:

document.write(" of " + navigator.appName + ".")

The document.write() method (remember, JavaScript uses the term method to
mean command) requires a parameter in parentheses: the text string to be dis-
played on the Web page. The parameter here consists of one expression that joins
three distinct strings:

"oof "
navigator.appName

The plus symbol is one of JavaScript’s ways of joining strings. Before JavaScript
can display this line, it must perform some quick evaluations. The first evaluation is
the value of the navigator.appName property. This property evaluates to a string
of the name of your browser. With that expression safely evaluated to a string,
JavaScript can finish the job of joining the three strings in the final evaluation. That
evaluated string expression is what ultimately appears on the Web page.

Expressions and variables

As one more demonstration of the flexibility that expression evaluation offers, this
section shows you a slightly different route to the document .write() statement.
Rather than join those strings as the direct parameter to the document.write()
method, I can gather the strings in a variable and then apply the variable to the
document.write() method. Here’s how that method looks, as I simultaneously
declare a new variable and assign it a value:

var textToWrite = " of " + navigator.appName +
document.write(textToWrite)

This method works because the variable, textToWrite, evaluates to the com-
bined string. The document .write() method accepts that string value and does its
display job. As you read a script or try to work through a bug, pay special attention
to how each expression (variable, statement, object property) evaluates. [guaran-
tee that as you learn JavaScript (or any language), you will end up scratching your
head from time to time because you haven’t stopped to examine how expressions
evaluate when a particular kind of value is required in a script.

(c) ketabton.com: The Digital Library

CD-40 Partil + JavaScript Tutorial

You can begin experimenting with the way JavaScript evaluates expressions with the help
of The Evaluator Jr. (seen in the following figure), an HTML page you can find on the com-
panion CD-ROM. (I introduce the Senior version in Chapter 13.) Enter any JavaScript expres-
sion into the top text box, and either press Enter/Return or click the Evaluate button.

A The Evaluator Jr. - Microsoft Internet Explorer
J File Edit View Favorites Tools Help ‘
S A - | al a m @ | B 5 o [®
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit
H
The Evaluator Jr.
Enter an expression to evaluate:
I Evaluate
Results:
15 =
=
Enter a reference to an object:
| List Properties
|
[&] Done | |Emy Computer 4

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore,
you can assign values to variables, test comparison operators, and even do math here.
Using the age variable examples from earlier in this chapter, type each of the following
statements into the upper text box and observe how each expression evaluates in the
Results field. Be sure to observe case-sensitivity in your entries.

= 45

0 T T Y D
! I
(o o3}
|
—
ol

To start over, click the Refresh/Reload button.

Data Type Conversions

[mentioned earlier that the type of data in an expression can trip up some script
operations if the expected components of the operation are not of the right type.
JavaScript tries its best to perform internal conversions to head off such problems,
but JavaScript cannot read your mind. If your intentions differ from the way
JavaScript treats the values, you won’t get the results you expect.

(c) ketabton.com: The Digital Library

Chapter 6 4 Programming Fundamentals, Part1 (CD-41

A case in point is adding numbers that may be in the form of text strings. In a
simple arithmetic statement that adds two numbers together, you get the expected
result:

3+3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the
other value to a string— thus turning the plus sign’s action from arithmetic addi-
tion to joining strings. Therefore, in the statement

3+ "3" // result = "33"

the “string-ness” of the second value prevails over the entire operation. The first
value is automatically converted to a string, and the result joins the two strings. Try
this yourself in The Evaluator Jr.

If I take this progression one step further, look what happens when another num-
ber is added to the statement:

3+3+ "3" // result = "63"

This might seem totally illogical, but there is logic behind this result. The expres-
sion is evaluated from left to right. The first plus operation works on two numbers,
yielding a value of 6. But as the 6 is about to be added to the “3,” JavaScript lets the
“string-ness” of the “3” rule. The 6 is converted to a string, and two string values are
joined to yield “63.”

Most of your concern about data types will focus on performing math operations
like the ones here. However, some object methods also require one or more param-
eters of particular data types. While JavaScript provides numerous ways to convert
data from one type to another, it is appropriate at this stage of the tutorial to intro-
duce you to the two most common data conversions: string to number and number
to string.

Converting strings to numbers

As you saw in the last section, if a numeric value is stored as a string—as it is
when entered into a form text field —your scripts will have difficulty applying that
value to a math operation. The JavaScript language provides two built-in functions
to convert string representations of numbers to true numbers: parselnt() and
parseFloat().

There is a difference between integers and floating-point numbers in JavaScript.
Integers are always whole numbers, with no decimal point or numbers to the right
of a decimal. Floating-point numbers, on the other hand, can have fractional values
to the right of the decimal. By and large, JavaScript math operations don’t differen-
tiate between integers and floating-point numbers: A number is a number. The only
time you need to be cognizant of the difference is when a method parameter
requires an integer because it can’t handle fractional values. For example, parame-
ters to the scrol1() method of a window require integer values of the number of
pixels vertically and horizontally you want to scroll the window. That’s because you
can’t scroll a window a fraction of a pixel on the screen.

To use either of these conversion functions, insert the string value you wish to
convert as a parameter to the function. For example, look at the results of two dif-
ferent string values when passed through the parselnt () function:

parselnt("42") // result = 42
parselnt("42.33") /] result = 42

(c) ketabton.com: The Digital Library

CD-42

Part Il + JavaScript Tutorial

Even though the second expression passes the string version of a floating-point
number to the function, the value returned by the function is an integer. No round-
ing of the value occurs here (although other math functions can help with that if
necessary). The decimal and everything to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a
floating-point number as follows:

parseFloat("42") /] result = 42
parsefFloat("42.33") /] result = 42.33

Because these two conversion functions evaluate to their results, you simply
insert the entire function wherever you need a string value converted to a number.
Therefore, modifying an earlier example in which one of three values was a string,
the complete expression can evaluate to the desired result:

3+ 3 + parselnt("3") // result =9

Converting numbers to strings

You'll have less need for converting a number to its string equivalent than the
other way around. As you saw in the previous section, JavaScript gravitates toward
strings when faced with an expression containing mixed data types. Even so, it is
good practice to perform data type conversions explicitly in your code to prevent
any potential ambiguity. The simplest way to convert a number to a string is to take
advantage of JavaScript’s string tendencies in addition operations. By adding an
empty string to a number, you convert the number to its string equivalent:

("" + 2500) // result = "2500"
("" + 2500).1ength // result = 4

In the second example, you can see the power of expression evaluation at work.
The parentheses force the conversion of the number to a string. A string is a
JavaScript object that has properties associated with it. One of those properties is
the Tength property, which evaluates to the number of characters in the string.
Therefore, the length of the string “2500” is 4. Note that the length value is a num-
ber, not a string.

Operators

You will use lots of operators in expressions. Earlier, you used the equal sign (=)
as an assignment operator to assign a value to a variable. In the preceding exam-
ples with strings, you used the plus symbol (+) to join two strings. An operator gen-
erally performs some kind of calculation (operation) or comparison with two values
(the value on each side of an operator is called an operand) to reach a third value.
In this lesson, I briefly describe two categories of operators —arithmetic and com-
parison. Chapter 40 covers many more operators, but once you understand the
basics here, the others are easier to grasp.

(c) ketabton.com: The Digital Library

Chapter 6 4+ Programming Fundamentals, Part1 (CD-43

Arithmetic operators

It may seem odd to talk about text strings in the context of “arithmetic” opera-
tors, but you have already seen the special case of the plus (+) operator when one
or more of the operands is a string. The plus operator instructs JavaScript to con-
catenate (pronounced kon-KAT-en-eight), or join, two strings together precisely
where you place the operator. The string concatenation operator doesn’t know
about words and spaces, so the programmer must make sure that any two strings
to be joined have the proper word spacing as part of the strings —even if that
means adding a space:

firstName = "John"
lastName = "Doe"
fullName = firstName + " " + TastName

JavaScript uses the same plus operator for arithmetic addition. When both
operands are numbers, JavaScript knows to treat the expression as an arithmetic
addition rather than a string concatenation. The standard math operators for addi-
tion, subtraction, multiplication, and division (+, -, *, /) are built into JavaScript.

Comparison operators

Another category of operator helps you compare values in scripts —whether
two values are the same, for example. These kinds of comparisons return a value of
the Boolean type—true or false. Table 6-2 lists the comparison operators. The
operator that tests whether two items are equal consists of a pair of equal signs to
distinguish it from the single equal sign assignment operator.

Table 6-2 JavaScript Comparison Operators

Symbol Description

== Equals

= Does not equal

> Is greater than

>= Is greater than or equal to
< Is less than

<= Is less than or equal to

Where comparison operators come into greatest play is in the construction of
scripts that make decisions as they run. A cook does this in the kitchen all the time:
If the sauce is too watery, add a bit of flour. You see comparison operators in action
in the next chapter.

(c) ketabton.com: The Digital Library

CD-44 partil + JavaScript Tutorial

Exercises

1. Which of the following are valid variable declarations or initializations?
Explain why each one is or is not valid. If an item is invalid, how do you fix it
so that it is?

a.my_name = "Cindy"

b.var how many = 25

c.var zipCode = document.forml.zip.value

d.var laddress = document.nameForm.addressl.value

2. For each of the statements in the following sequence, write down how the
someVal expression evaluates after the statement executes in JavaScript.

var someVal = 2

someVal = someVal + 2
someVal = someVal * 10
someVal someVal + "20"
someVal "Robert"

3. Name the two JavaScript functions that convert strings to numbers. How do
you give the function a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-
digit number into the top two fields and click the Add button. Examine the
code and explain what is wrong with the script. How do you fix the script so
the proper sum is displayed in the output field?

Listing 6-1: What's Wrong with This Page?

<HTML>

<HEAD>

<TITLE>Sum Maker</TITLE>

{SCRIPT LANGUAGE="JavaScript">

<h--

function addIt() {
var valuel = document.adder.inputA.value
var value2 = document.adder.inputB.value
document.adder.output.value = valuel + value?

}

/] -=>

</SCRIPT>

<{/HEAD>

(c) ketabton.com: The Digital Library

Chapter 6 4+ Programming Fundamentals, Part1 (CD-45

<BODY>

<FORM NAME="adder">

CINPUT TYPE="text" NAME="inputA" VALUE="0" SIZE=4>

CINPUT TYPE="text" NAME="inputB" VALUE="0" SIZE=4>
<INPUT TYPE="button" VALUE="Add" onClick="addIt()">

<P> <IP>

<INPUT TYPE="text" NAME="output" SIZE=6>

</FORM>

</B0ODY>

</HTML>

5. What does the term concatenate mean in the context of JavaScript
programming?

+ o+ o+

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Programming
Fundamentals,
Part 1l

Your tour of programming fundamentals continues in this
chapter with subjects that have more intriguing possi-
bilities. For example, I show you how programs make deci-
sions and why a program must sometimes repeat statements
over and over. Before you're finished here, you will learn how
to use one of the most powerful information holders in the
JavaScript language: the array.

Decisions and Loops

Every waking hour of every day you make decisions of
some kind — most of the time you probably don’t even realize
it. Don’t think so? Well, look at the number of decisions you
make at the grocery store, from the moment you enter the
store to the moment you clear the checkout aisle.

No sooner do you enter the store than you are faced with a
decision. Based on the number and size of items you intend to
buy, do you pick up a hand-carried basket or attempt to extri-
cate a shopping cart from the metallic conga line near the
front of the store? That key decision may have impact later
when you see a special offer on an item that is too heavy to
put into the hand basket.

Next, you head for the food aisles. Before entering an aisle,
you compare the range of goods stocked in that aisle against
items on your shopping list. If an item you need is likely to be
found in this aisle, you turn into the aisle and start looking for
the item; otherwise, you skip the aisle and move to the head
of the next aisle.

Later, you reach the produce section in search of a juicy
tomato. Standing in front of the bin of tomatoes, you begin
inspecting them one by one — picking one up, feeling its firm-
ness, checking the color, looking for blemishes or signs of
pests. You discard one, pick up another, and continue this
process until one matches the criteria you set in your mind

CHAPTER

+ o+ 0+
In This Chapter

How control
structures make
decisions

How to define
functions

Where to initialize
variables efficiently

What those darned
curly braces are all
about

The basics of data
arrays

+ + 0+

(c) ketabton.com: The Digital Library

CD-48 Partll + JavaScript Tutorial

for an acceptable morsel. Your last stop in the store is the checkout aisle. “Paper or
plastic?” the clerk asks. One more decision to make. What you choose impacts how
you get the groceries from the car to the kitchen as well as your recycling habits.

In your trip to the store, you go through the same kinds of decisions and repeti-
tions that your JavaScript programs also encounter. If you understand these frame-
works in real life, you can now look into the JavaScript equivalents and the syntax
required to make them work.

Control Structures

In the vernacular of programming, the kinds of statements that make decisions
and loop around to repeat themselves are called control structures. A control struc-
ture directs the execution flow through a sequence of script statements based on
simple decisions and other factors.

An important part of a control structure is the condition. Just as you may travel
different routes to work depending on certain conditions (for example, nice
weather, nighttime, attending a soccer game), so, too, does a program sometimes
have to branch to an execution route if a certain condition exists. Each condition is
an expression that evaluates to true or false—one of those Boolean data types
mentioned in Chapter 6. The kinds of expressions commonly used for conditions
are expressions that include a comparison operator. You do the same in real life: If
it is true that the outdoor temperature is less than freezing, then you put on a coat
before going outside. In programming, however, the comparisons are strictly com-
parisons of number or string values.

JavaScript provides several kinds of control structures for different programming
situations. Three of the most common control structures you'll use are if construc-
tions, if...else constructions, and for loops.

Chapter 39 covers in great detail other common control structures you should
know, some of which were introduced only in Navigator 4 and Internet Explorer 4.
For this tutorial, however, you need to learn about the three common ones just
mentioned.

if constructions

The simplest program decision is to follow a special branch or path of the pro-
gram if a certain condition is true. Formal syntax for this construction follows.
Items in italics get replaced in a real script with expressions and statements that fit
the situation.

if (condition) {
statement[s] if true

}

Don’t worry about the curly braces yet. Instead, get a feel for the basic structure.
The keyword, i f, is a must. In the parentheses goes an expression that evaluates to
a Boolean value. This is the condition being tested as the program runs past this
point. If the condition evaluates to true, then one or more statements inside the
curly braces execute before continuing on with the next statement after the closing
brace. If the condition evaluates to false, then the statements inside the curly
brace are ignored and processing continues with the next statement after the clos-
ing brace.

(c) ketabton.com: The Digital Library

Chapter 7 4 Programming Fundamentals, Partl CD-49

The following example assumes that a variable, myAge, has had its value set
earlier in the script (exactly how is not important for this example). The condition
expression compares the value myAge against a numeric value of 18.

if (myAge < 18) {
alert("Sorry, you cannot vote.")

}

The data type of the value inside myAge must be a number so that the proper
comparison (via the < comparison operator) does the right thing. For all instances
of myAge less than 18, the nested statement inside the curly braces runs and
displays the alert to the user. After the user closes the alert dialog box, the script
continues with whatever statement follows the entire if construction.

if . .. else constructions

Not all program decisions are as simple as the one shown for the if construc-
tion. Rather than specifying one detour for a given condition, you might want the
program to follow either of two branches depending on that condition. It is a fine,
but important, distinction. In the plain i f construction, no special processing is
performed when the condition evaluates to false. But if processing must follow
one of two special paths, you need the if...else construction. The formal syntax
definition for an if. ..else construction is as follows:

if (condition) {
statement[s] 1f true
} else {
statement[s] if false
}

Everything you know about the condition for an if construction applies here.
The only difference is the e1se keyword, which provides an alternate path for exe-
cution to follow if the condition evaluates to false.

As an example, the following if...else construction determines how many
days are in February for a given year. To simplify the demo, the condition simply
tests whether the year divides equally by 4. (True testing for this value includes
special treatment of end-of-century dates, but I'm ignoring that for now.) The %
operator symbol is called the modulus operator (covered in more detail in Chapter
40). The result of an operation with this operator yields the remainder of division of
the two values. If the remainder is zero, then the first value divides evenly by the
second.

var febDays
var theYear = 1993
if (theYear % 4 == 0) {

febDays = 29
} else {
febDays = 28

}

The important point to see from this example is that by the end of the
if...else construction, the febDays variable is set to either 28 or 29. No other
value is possible. For years evenly divisible by 4, the first nested statement runs.
For all other cases, the second statement runs. Processing then picks up with the
next statement after the if...else construction.

(c) ketabton.com: The Digital Library

CD-50 Partll + JavaScript Tutorial

About Repeat Loops

Repeat loops in real life generally mean the repetition of a series of steps until
some condition is met, thus enabling you to break out of that loop. Such was the
case earlier in this chapter when you looked through a bushel of tomatoes for the
one that came closest to your ideal tomato. The same can be said for driving
around the block in a crowded neighborhood until a parking space opens up.

A repeat loop lets a script cycle through a sequence of statements until some
condition is met. For example, a JavaScript data validation routine might inspect
every character that you enter into a form text field to make sure that each one is a
number. Or if you have a collection of data stored in a list, the loop can check
whether an entered value is in that list. Once that condition is met, the script can
then break out of the loop and continue with the next statement after the loop
construction.

The most common repeat loop construction used in JavaScript is called the for
loop. It gets its name from the keyword that begins the construction. A for loop is a
powerful device because you can set it up to keep track of the number of times the
loop repeats itself. The formal syntax of the for loop is as follows:

for ([initial expression]; [condition]; [update expression]) {
statement[s] inside Toop
}

The square brackets mean that the item is optional. However, until you get to
know the for loop better, | recommend designing your loops to utilize all three
items inside the parentheses. The initial expression portion usually sets the starting
value of a counter. The condition —the same kind of condition you saw for if con-
structions — defines the condition that forces the loop to stop going around and
around. Finally, the update expression is a statement that executes each time all of
the statements nested inside the construction complete running.

A common implementation initializes a counting variable, i, increments the
value of i by one each time through the loop, and repeats the loop until the value of
i exceeds some maximum value, as in the following:

for (var i = startlValue; i <= maxValue; i++) {
statement[s] inside Toop
1

Placeholders startValue and maxValue represent any numeric values, includ-
ing explicit numbers or variables holding numbers. In the update expression is an
operator you have not seen yet. The ++ operator adds 1 to the value of i each time
the update expression runs at the end of the loop. If startValue is 1, the value of i
is 1 the first time through the loop, 2 the second time through, and so on.
Therefore, if maxVaTlue is 10, the loop repeats itself 10 times (in other words, as
long as 1 is less than or equal to 10). Generally speaking, the statements inside the
loop use the value of the counting variable in their execution. Later in this lesson, I
show how the variable can play a key role in the statements inside a loop. At the
same time, you see how to break out of a loop prematurely and why you may need
to do this in a script.

(c) ketabton.com: The Digital Library

Chapter 7 4 Programming Fundamentals, Partl CD-51

Functions

In Chapter 5, you saw a preview of the JavaScript function. A function is a defini-
tion of a set of deferred actions. Functions are invoked by event handlers or by
statements elsewhere in the script. Whenever possible, good functions are
designed for reuse in other documents. They can become building blocks you use
over and over again.

If you have programmed before, you can see parallels between JavaScript func-
tions and other languages’ subroutines. But unlike some languages that distinguish
between procedures (which carry out actions) and functions (which carry out
actions and return values), only one classification of routine exists for JavaScript. A
function is capable of returning a value to the statement that invoked it, but this is
not a requirement. However, when a function does return a value, the calling state-
ment treats the function call like any expression — plugging in the returned value
right where the function call is made. [will show some examples in a moment.

Formal syntax for a function is as follows:

function functionName ([parameterl]...[,parameterN]) {
statement[s]
}

Names you assign to functions have the same restrictions as names you assign
HTML elements and variables. You should devise a name that succinctly describes
what the function does. I tend to use multiword names with the interCap (internally
capitalized) format that start with a verb because functions are action items, even if
they do nothing more than get or set a value.

Another practice to keep in mind as you start to create functions is to keep the
focus of each function as narrow as possible. It is possible to generate functions
that are literally hundreds of lines long. Such functions are usually difficult to main-
tain and debug. Chances are that you can divide the long function into smaller,
more tightly focused segments.

Function parameters

In Chapter 5, you saw how an event handler invokes a function by calling the
function by name. Any call to a function, including one that comes from another
JavaScript statement, works the same way: a set of parentheses follows the function
name.

You also can define functions so they receive parameter values from the calling
statement. Listing 7-1 shows a simple document that has a button whose onC11ick
event handler calls a function while passing text data to the function. The text
string in the event handler call is in a nested string— a set of single quotes inside
the double quotes required for the entire event handler attribute.

(c) ketabton.com: The Digital Library

CD-52

Part Il 4+ JavaScript Tutorial

Listing 7-1: Calling a Function from an Event Handler

<HTML>
<HEAD>
<{SCRIPT LANGUAGE="JavaScript">
function showMsg(msg) {
alert("The button sent: " + msq)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Click Me"
onClick="showMsg ('The button has been clicked!')">
</FORM>
</B0ODY>
<IHTMLY

Parameters (also known as arguments) provide a mechanism for “handing off” a
value from one statement to another by way of a function call. If no parameters
occur in the function definition, both the function definition and call to the function
have only empty sets of parentheses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the
variable names specified in the function definition’s parentheses. Consider the
following script segment:

function sayHiToFirst(a, b, c) {
alert("Say hello, " + a)

}

sayHiToFirst("Gracie", "George", "Harry")

sayHiToFirst("Larry", "Moe", "Curly")

After the function is defined in the script, the next statement calls that very func-
tion, passing three strings as parameters. The function definition automatically
assigns the strings to variables a, b, and c. Therefore, before the alert () state-
ment inside the function ever runs, a evaluates to “Gracie,” b evaluates to “George,”
and c evaluates to “Harry.” In the aTert () statement, only the a value is used and
the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This
time through, different values are passed to the function and assigned to a, b, and
c. The alert dialog box reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not
use the var keyword to initialize them. They are automatically initialized whenever
the function is called.

(c) ketabton.com: The Digital Library

Chapter 7 4 Programming Fundamentals, Part CD-53

Variable scope

Speaking of variables, it’s time to distinguish between variables that are defined
outside and those defined inside of functions. Variables defined outside of functions
are called global variables; those defined inside functions are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in
most other languages. For a JavaScript script, the “globe” of a global variable is the
current document loaded in a browser window or frame. Therefore, when you ini-
tialize a variable as a global variable, it means that all script statements in the page
(including those inside functions) have direct access to that variable value.
Statements can retrieve and modify global variables from anywhere in the page. In
programming terminology, this kind of variable is said to have global scope because
everything on the page can “see” it.

It is important to remember that the instant a page unloads itself, all global vari-
ables defined in that page are erased from memory. If you need a value to persist
from one page to another, you must use other techniques to store that value (for
example, as a global variable in a framesetting document, as described in Chapter
16; or in a cookie, as described in Chapter 18). While the var keyword is usually
optional for initializing global variables, I strongly recommend you use it for all
variable initializations to guard against future changes to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function.
You already saw how parameter variables are defined inside functions (without var
keyword initializations). But you can also define other variables with the var key-
word (absolutely required for local variables). The scope of a local variable is only
within the statements of the function. No other functions or statements outside of
functions have access to a local variable.

Local scope allows for the reuse of variable names within a document. For most
variables, I strongly discourage this practice because it leads to confusion and bugs
that are difficult to track down. At the same time, it is convenient to reuse certain
kinds of variable names, such as for loop counters. These are safe because they
are always reinitialized with a starting value whenever a for loop starts. You can-
not, however, nest a for loop inside another without specifying a different loop
counting variable.

To demonstrate the structure and behavior of global and local variables —and
show you why you shouldn’t reuse most variable names inside a document —
Listing 7-2 defines two global and two local variables. I intentionally use bad form
by initializing a local variable that has the same name as a global variable.

Listing 7-2: Global and Local Variable Scope Demonstration

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
var aBoy = "Charlie Brown" // global
var hisDog = "Snoopy" // global
function demo() {
// using improper design to demonstrate a point
var hisDog = "Gromit" // Tocal version of hisDog
var output = hisDog + " does not belong to " + aBoy + ".
"
document.write(output)

Continued

(c) ketabton.com: The Digital Library

CD-54 part1l + JavaScript Tutorial

Listing 7-2 (continued)

</SCRIPT>

</HEAD>

<BODY>

{SCRIPT LANGUAGE="JavaScript">

demo() // runs as document loads
document.write(hisDog + " belongs to " + aBoy + ".")
</SCRIPT>

</BODY>

<IHTMLY

When the page loads, the script in the Head portion initializes the two global
variables (aBoy and hisDog) and defines the demo () function in memory. In the
Body, another script begins by invoking the function. Inside the function, a local
variable is initialized with the same name as one of the global variables—hisDog.
In JavaScript, such a local initialization overrides the global variable for all state-
ments inside the function. (But note that if the var keyword is left off of the local
initialization, the statement reassigns the value of the global version to “Gromit.”)

Another local variable, output, is merely a repository for accumulating the text
that is to be written to the screen. The accumulation begins by evaluating the local
version of the hisDog variable. Then it concatenates some hard-wired text (note
the extra spaces at the edges of the string segment). Next comes the evaluated
value of the aBoy global variable — any global not overridden by a local is available
for use inside the function. The expression is accumulating HTML to be written to
the page, so it ends with a period and a
 tag. The final statement of the func-
tion writes the content to the page.

After the function completes its task, the next statement in the Body script
writes another string to the page. Because this script statement is executing in
global space (that is, not inside any function), it accesses only global variables —
including those defined in another <SCRIPT> tag set in the document. By the time
the complete page finishes loading, it contains the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces

Despite the fact that you probably rarely — if ever — use curly braces ({ })in
your writing, there is no mystery to their usage in JavaScript (and many other lan-
guages). Curly braces enclose blocks of statements that belong together. While they
do assist humans who are reading scripts in knowing what’s going on, curly braces
also help the browser to know which statements belong together. You always must
use curly braces in matched pairs.

You use curly braces most commonly in function definitions and control struc-
tures. In the function definition in Listing 7-2, curly braces enclose four statements
that make up the function definition (including the comment line). The closing
brace lets the browser know that whatever statement comes next is a statement
outside of the function definition.

(c) ketabton.com: The Digital Library

Chapter 7 + Programming Fundamentals, Part CD-55

Physical placement of curly braces is not critical (nor is the indentation style
you see in the code I provide). The following function definitions are treated identi-
cally by scriptable browsers:

function sayHiToFirst(a, b, c) {
alert("Say hello, " + a)
}

function sayHiToFirst(a, b, ¢)
{

alert("Say hello, " + a)
}

function sayHiToFirst(a, b, c) f{alert("Say hello, " + a)}

Throughout this book, I use the style shown in the first example because I find
that it makes lengthy and complex scripts easier to read — especially scripts that
have many levels of nested control structures.

Arrays

The JavaScript array is one of the most useful data constructions you have
available to you. You can visualize the structure of a basic array as if it were a sin-
gle-column spreadsheet. Each row of the column holds a distinct piece of data, and
each row is numbered. Numbers assigned to rows are in strict numerical sequence,
starting with zero as the first row (programmers always start counting with zero).
This row number is called an index. To access an item in an array, you need to know
the name of the array and the index for the row. Because index values start with
zero, the total number of items of the array (as determined by the array’s Tength
property) is always one more than the highest index value of the array. More
advanced array concepts enable you to create the equivalent of an array with
multiple columns (described in Chapter 37). For this tutorial, I stay with the single-
column basic array.

Data elements inside JavaScript arrays can be any data type, including objects.
And, unlike a lot of other programming languages, different rows of the same
JavaScript array can contain different data types.

Creating an array

An array is stored in a variable, so when you create an array you assign the new
array object to the variable. (Yes, arrays are JavaScript objects, but they belong to
the core JavaScript language rather than the document object model.) A special
keyword — new — preceding a call to the JavaScript function that generates arrays
creates space in memory for the array. An optional parameter to the Array () func-
tion enables you to specify at the time of creation how many elements (rows) of
data eventually will occupy the array. JavaScript is very forgiving about this
because you can change the size of an array at any time. Therefore, if you omit a
parameter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, I create an array that holds the
names of the 50 states plus the District of Columbia (a total of 51). The first task is
to create that array and assign it to a variable of any name that helps me remember
what this collection of data is about:

(c) ketabton.com: The Digital Library

CD-56 Partll + JavaScript Tutorial

var USStates = new Array(51)

At this point, the USStates array is sitting in memory like a 51-row table with no
data in it. To fill the rows, I must assign data to each row. Addressing each row of an
array requires a special way of indicating the index value of the row: square brack-
ets after the name of the array. The first row of the USStates array is addressed as

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a
simple assignment operator:

USStates[0] = "Alabama"
To fill in the rest of the rows, I include a statement for each row:

USStates[1] = "Alaska"
USStates[2] "Arizona"
USStates[3] = "Arkansas"

USStates[50] = "Wyoming"

Therefore, if you want to include a table of information in a document from
which a script can look up information without accessing the server, you include
the data in the document in the form of an array creation sequence. When the state-
ments run as the document loads, by the time the document finishes loading into
the browser, the data collection array is built and ready to go. Despite what appears
to be the potential for a lot of statements in a document for such a data collection,
the amount of data that must download for typical array collections is small enough
not to severely impact page loading— even for dial-up users at 28.8 Kbps.

Accessing array data

The array index is the key to accessing an array element. The name of the array
and an index in square brackets evaluates to the content of that array location. For
example, after the USStates array is built, a script can display an alert with
Alaska’s name in it with the following statement:

alert("The largest state is " + USStates[1] + ".")

Just as you can retrieve data from an indexed array element, so can you change
the element by reassigning a new value to any indexed element in the array.

Although I don’t dwell on it in this tutorial, you can also use string names as
index values instead of numbers. In essence, this enables you to create an array
that has named labels for each row of the array — a definite convenience for certain
circumstances. But whichever way you use to assign data to an array element, the
first time dictates the way you must access that element thereafter in the page’s
scripts.

Parallel arrays

Now I show you why the numeric index methodology works well in JavaScript.
To help with the demonstration, | generate another array that is parallel with the
USStates array. This new array is also 51 elements long, and it contains the year in

(c) ketabton.com: The Digital Library

Chapter 7 + Programming Fundamentals, Parti CD-57

which the state in the corresponding row of USStates entered the Union. That
array construction looks like the following:
var statefEntered = new Array(51)

statekEntered [0] = 1819
stateEntered [1] = 1959
statekEntered [2] = 1912
statekEntered [3] = 1836

stateEntered [50] = 1890

In the browser’s memory, then, are two tables that you can visualize as looking
like the model in Figure 7-1. I can build more arrays that are parallel to these for
items such as the postal abbreviation and capital city. The important point is that
the zeroth element in each of these tables applies to Alabama, the first state in the
USStates array.

USStates stateEntered
‘Alabama” [0] 1819

"Alaska” [1] 1959

"Arizona" [2] 1912
"Arkansas” [3] 1836
"Wyoming" [50] 1890

Figure 7-1: Visualization of two related parallel tables

If a Web page included these tables and a way for a user to look up the entry
date for a given state, the page would need a way to look through all of the
USStates entries to find the index value of the one that matches the user’s entry.
Then, that index value could be applied to the stateEntered array to find the
matching year.

For this demo, the page includes a text entry field in which the user types the
name of the state to look up. In a real application, this methodology is fraught with
peril unless the script performs some error checking in case the user makes a mis-
take. But for now, I assume that the user always types a valid state name. (Don’t
ever make this assumption in your Web site’s pages.) An event handler from either
the text field or a clickable button calls a function that looks up the state name,

(c) ketabton.com: The Digital Library

CD-58 Part1l + JavaScript Tutorial

fetches the corresponding entry year, and displays an alert message with the infor-
mation. The function is as follows.

function getStateDate()

{
var selectedState = document.entryForm.entry.value

for (var i = 0; i < USStates.length; i++) {
if (USStates[i] == selectedState) {
break

}
}
alert("That state entered the Union in " + stateEntered[i] + ".")

In the first statement of the function, I grab the value of the text box and assign
the value to a variable, selectedState. This is mostly for convenience because I
can use the shorter variable name later in the script. In fact, the usage of that value
is inside a for loop, so the script is marginally more efficient because the browser
doesn’t have to evaluate that long reference to the text field each time through the
loop.

The key to this function is in the for loop. Here is where [combine the natural
behavior of incrementing a loop counter with the index values assigned to the two
arrays. Specifications for the loop indicate that the counter variable, i, is initialized
with a value of zero. The loop is directed to continue as long as the value of i is less
than the length of the USStates array. Remember that the length of an array is
always one more than the index value of the last item. Therefore, the last time the
loop runs is when i is 50, which is both less than the length of 51 and equal to the
index value of the last element. Each time after the loop runs, the counter incre-
ments by one.

Nested inside the for loop is an i f construction. The condition it tests is the
value of an element of the array against the value typed in by the user. Each time
through the loop, the condition tests a different row of the array starting with row
zero. In other words, this if construction can be performed dozens of times before
a match is found, but each time the value of i is one larger than the previous try.

The equality comparison operator (==) is very strict when it comes to compar-
ing string values. Such comparisons respect the case of each letter. In our example,
the user must type the state name exactly as it is stored in the USStates array for
the match to be found. In Chapter 10, you learn about some helper methods that
eliminate case and sensitivity in string comparisons.

When a match is found, the statement nested inside the i f construction runs.
The break statement is designed to help control structures bail out if the program
needs it. For this application, it is imperative that the for loop stop running when a
match for the state name is found. When the for loop breaks, the value of the i
counter is fixed at the row of the USStates array containing the entered state. |
need that index value to find the corresponding entry in the other array. Even
though the counting variable, 1, is initialized in the for loop, it is still “alive” and in
the scope of the function for all statements after the initialization. That’s why I can
use it to extract the value of the row of the stateEntered array in the final state-
ment that displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript.
Study the code carefully and be sure you understand how it works. This way of
cycling through arrays plays a role not only in the kinds of arrays you create in
your code, but also with the arrays that browsers generate for the document object
model.

(c) ketabton.com: The Digital Library

Chapter 7 + Programming Fundamentals, Part II

Document objects in arrays

If you look at the document object portions of the Quick Reference in Appendix
A, you can see that the properties of some objects are listed with square brackets
after them. These are, indeed, the same kind of square brackets you just saw for
array indexes. That’s because when a document loads, the browser creates arrays
of like objects in the document. For example, if your page includes two <FORM> tag
sets, then two forms appear in the document. The browser maintains an array of
form objects for that document. References to those forms are

document.forms[0]
document.forms[1]

Index values for document objects are assigned according to the loading order of
the objects. In the case of form objects, the order is dictated by the order of the
<FORM> tags in the document. This indexed array syntax is another way to refer-
ence forms in an object reference. You can still use a form’s name if you prefer —
and I heartily recommend using object names wherever possible because even if
you change the physical order of the objects in your HTML, references that use
names still work without modification. But if your page contains only one form, you
can use the reference types interchangeably, as in the following examples of equiva-
lent references to a text field’s value property in a form:

document.entryForm.entry.value
document.forms[0].entry.value

In examples throughout this book, you can see that I often use the array type of
reference to simple forms in simple documents. But in my production pages, |
almost always use named references.

Exercises

1. With your newly acquired knowledge of functions, event handlers, and control
structures, use the script fragments from this chapter to complete the page
that has the lookup table for all of the states and the years they entered into
the Union. If you do not have a reference book for the dates, then use different
year numbers starting with 1800 for each entry. In the page, create a text
entry field for the state and a button that triggers the lookup in the arrays.

2. Examine the following function definition. Can you spot any problems with the
definition? If so, how can you fix the problems?

function format(ohmage) {

var result
if ohmage >= le6 {
ohmage = ohmage / 1leb
result = ohmage + " Mohms"
} else {

if (ohmage >= 1e3)
ohmage = ohmage / le2
result ohmage + " Kohms"
else
result = ohmage + " ohms"

}
alert(result)

CD-59

(c) ketabton.com: The Digital Library

CD-60 Partl + JavaScript Tutorial

3. Devise your own syntax for the scenario of looking for a ripe tomato at the
grocery store, and write a for loop using that object and property syntax.

4. Modify Listing 7-2 so it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system,
create a Web page that enables users to enter a planet name and, at the click
of a button, have the distance and diameter appear either in an alert box or
(as extra credit) in separate fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles
Venus 67 million miles 7,700 miles
Earth 93 million miles 7,920 miles
Mars 141 million miles 4,200 miles

¢+ o+ 0+

(c) ketabton.com: The Digital Library

CHAPTER

Window and
Document L
Objects .

What the window

object does
How to access key
N ow that you have exposure to programming fundamen- window object
tals, it is easier to demonstrate how to script objects in properties and
documents. Starting with this lesson, the tutorial turns back methods
to the document object model, diving more deeply into each
of the objects you will place in many of your documents. How to trigger script

actions after a

Document Objects document loads

As a refresher, study the lowest common denominator The purposes of the
document object hierarchy in Figure 8-1. This chapter focuses Tocation and
on objects at or near the top of the hierarchy: window, history objects
location, history, and document. The goal is not only to
equip you with the basics so you can script simple tasks, but How the document
also to prepare you for in-depth examinations of each object object is created
and its properties, methods, and event handlers in Part III of
this book. I introduce only the basic properties, methods, and How to access key
event handlers for objects in this tutorial —you can find far document object
more in Part Ill. Examples in that part of the book assume you properties and
know the programming fundamentals covered in previous methods
chapters.

¢+ ¢+ 0+

(c) ketabton.com: The Digital Library

CD-62

Part Il 4+ JavaScript Tutorial

window

frame | self t0p| parent

| history | |document| | location |
|
| | |
| link | | form | | anchor |
[TT [T [1
text | | radio | | button | | select |
| textarea | |checkbox| | reset | | option |

|password|| submit |

Figure 8-1: The lowest common denominator document
object model for all scriptable browsers

The Window Object

At the very top of the document object hierarchy is the window object. This
object gains that exalted spot in the object food chain because it is the master con-
tainer for all content you view in the Web browser. As long as a browser window is
open—even if no document is loaded in the window —the window object is
defined in the current model in memory.

In addition to the content part of the window where documents go, a window’s
sphere of influence includes the dimensions of the window and all of the “stuff” that
surrounds the content area. The area where scrollbars, toolbars, the status bar, and
(non-Macintosh) menu bar live is known as a window’s chrome. Not every browser
has full scripted control over the chrome of the main browser window, but you can
easily script the creation of additional windows sized the way you want and have
only the chrome elements you wish to display in that subwindow.

Although the discussion about frames comes in Chapter 11, I can safely say now
that each frame is also considered a window object. If you think about it, that makes
sense because each frame can hold a different document. When a script runs in one
of those documents, it regards the frame that holds the document as the window
object in its view of the object hierarchy.

As you learn in this chapter, the window object is a convenient place for the docu-
ment object model to attach methods that display modal dialog boxes and adjust
the text that displays in the status bar at the bottom of the browser window. A
window object method enables you to create a separate window that appears on the
screen. When you look at all of the properties, methods, and event handlers defined

(c) ketabton.com: The Digital Library

Chapter 8 + Window and Document Objects (CD-63

for the window object (see Chapter 16), it should be clear why they are attached to
window objects —visualize their scope and the scope of a browser window.

Accessing window properties and methods

You can word script references to properties and methods of the window object
in several ways, depending more on whim and style than on specific syntactical
requirements. The most logical and common way to compose such references
includes the window object in the reference:

window.propertyName
window.methodName([parameters])

A window object also has a synonym when the script doing the referencing
points to the window that houses the document. The synonym is self. Reference
syntax then becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to
reserve the use of self for more complex scripts that involve multiple frames and
windows. The self moniker more clearly denotes the current window holding the
script’s document. It makes the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always “there”
when a script runs, you could omit it from references to any objects inside that win-
dow. Therefore, the following syntax models assume properties and methods of the
current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more under-
standable if you omit the window object reference. The methods run just fine either
way.

Creating a window

A script does not create the main browser window. A user does that by virtue of
launching the browser or by opening a URL or file from the browser’s menus (if the
window is not already open). But a script can generate any number of subwindows
once the main window is open (and that window contains a document whose script
needs to open subwindows).

The method that generates a new window is window.open (). This method con-
tains up to three parameters that define window characteristics, such as the URL of
the document to load, its name for TARGET attribute reference purposes in HTML
tags, and physical appearance (size and chrome contingent). I don’t go into the
details of the parameters here (they’re covered in great depth in Chapter 16), but I
do want to expose you to an important concept involved with the window.open()
method.

(c) ketabton.com: The Digital Library

CD-64 Partll + JavaScript Tutorial

Consider the following statement that opens a new window to a specific size and
with an HTML document from the same server directory that holds the current

page:
var subWindow = window.open("define.html","def","HEIGHT=200,WIDTH=300")

The important thing to note about this statement is that it is an assignment
statement. Something gets assigned to that variable subWindow. What is it? It turns
out that when the window.open() method runs, it not only opens up that new
window according to specifications set as parameters, but it also evaluates to a ref-
erence to that new window. In programming parlance, the method is said to return a
value —in this case, a genuine object reference. The value returned by the method
is assigned to the variable.

Your script can now use that variable as a valid reference to the second window.
If you need to access one of its properties or methods, you must use that reference
as part of the complete reference. For example, to close the subwindow from a
script in the main window, use this reference to the c1ose () method for that
subwindow:

subWindow.close()

If you issue window.close(), self.close(), orjust close() in the main win-
dow’s script, the method closes the main window and not the subwindow. To
address another window, then, you must include a reference to that window as part
of the complete reference. This has an impact on your code because you probably
want the variable holding the reference to the subwindow to be valid as long as the
main document is loaded into the browser. For that to happen, the variable has to
be initialized as a global variable, rather than inside a function (although you can
set its value inside a function). That way, one function can open the window while
another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and clos-
ing that window from the main window. To view this demonstration, shrink your
main browser window to less than full screen. Then when the new window is gener-
ated, reposition the windows so you can see the smaller, new window when the
main window is in front. (If you “lose” a window behind another, use the browser’s
Window menu to choose the hidden window.) The key point of Listing 8-1 is that the
newWindow variable is defined as a global variable so that both the
makeNewWindow() and closeNewWindow() functions have access to it. When a
variable is declared with no value assignment, its value is nul1. Anul1 value is
interpreted to be the same as false in a condition, while the presence of any non-
zero value is the same as true in a condition. Therefore, in the cToseNewWindow()
function, the condition tests whether the window has been created before issuing
the subwindow’s c1ose () method. Then, to clean up, the function sets the
newWindow variable to nul1 so that another click of the Close button doesn’t try to
close a nonexistent window.

(c) ketabton.com: The Digital Library

Chapter 8 + Window and Document Objects (CD-65

Listing 8-1: References to Window Objects

<HTML>
<HEAD>
<TITLE>Window Opener and Closer</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var newlWindow
function makeNewWindow() {
newWindow = window.open("","","HEIGHT=300,WIDTH=300")
}
function closeNewWindow() ({
if (newWindow) {
newWindow.close()
newWindow = null
1
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Create New Window" onClick="makeNewWindow()">
<INPUT TYPE="button" VALUE="Close New Window" onClick="closeNewWindow()">
</FORM>
</B0ODY>
</HTML>

Window Properties and Methods

The one property and three methods for the window object described in this sec-
tion have an immediate impact on user interaction. They work with all scriptable
browsers. You can find extensive code examples in Part Ill for each property and
method. You can also experiment with the one-statement script examples by enter-
ing them in the top text box of The Evaluator Jr. (from Chapter 6).

window.status property

The status bar at the bottom of the browser window normally displays the URL
of a link when you roll the mouse pointer atop it. Other messages also appear in
that space during document loading, Java applet initialization, and the like.
However, you can use JavaScript to display your own messages in the status bar at
times that may be beneficial to your users. For example, rather than display the
URL of a link, you can display a friendlier, plain-language description of the page at
the other end of the link (or a combination of both to accommodate both newbies
and geeks).

(c) ketabton.com: The Digital Library

CD-66 Partil + JavaScript Tutorial

You can assign the window.status property some other text at any time. To
change the status bar text of a link as the cursor hovers atop the link, you trigger
the action with an onMouseQOver event handler of a link object. A peculiarity of the
onMouseOver event handler for setting the status bar is that an additional statement —
return true—must be part of the event handler. This is very rare in JavaScript,
but it is required here for your script to successfully override the
status bar.

Due to the simplicity of setting the window.status property, it is most common
for the script statements to run as inline scripts in the event handler definition.
This is handy for short scripts because you don’t have to specify a separate func-
tion or add <SCRIPT> tags to your page. You simply add the script statements to

the <A> tag:

<A HREF="http://home.netscape.com" onMouseOver=

"window.status="'Visit the Netscape Home page (home.netscape.com)'; return true">
Netscape

Look closely at the script statements assigned to the onMouseOver event han-
dler. The two statements are

window.status="Visit the Netscape Home page (home.netscape.com)'
return true

When you run these as inline scripts, you must separate the two statements with
a semicolon. (The space after the semicolon is optional, but often improves read-
ability.) Equally important, the entire set of statements is surrounded by double
quotes ("..."). To nest the string being assigned to the window.status property
inside the double-quoted script, you surround the string with single quotes
("..."). You get a big payoff for a little bit of script when you set the status bar.
The downside is that scripting this property is how those awful status bar scrolling
banners are created. Yech!

window.alert() method

[have already used the alert () method many times so far in this tutorial. This
window method generates a dialog box that displays whatever text you pass as a
parameter (see Figure 8-2). A single OK button (whose label you cannot change)
enables the user to dismiss the alert.

The appearance of this and two other JavaScript dialog boxes (described next)
has changed since the first scriptable browsers. In older browser versions (as
shown in Figure 8-2), the browser inserted words clearly indicating that the dialog
box was a “JavaScript Alert.” Different browsers display different title bars whose
content cannot be altered by script. You can change only the other message content.

All three dialog box methods are good cases for using a window object’s methods
without the reference to the window. Even though the alert () method is techni-
cally a window object method, no special relationship exists between the dialog box
and the window that generates it. In production scripts, I usually use the shortcut
reference:

alert("This is a JavaScript alert dialog.")

(c) ketabton.com: The Digital Library

Chapter 8 + Window and Document Objects CD-67

[Jawa5 cript Application] <]

& You are running the Metscape brawser.

Figure 8-2: A JavaScript alert dialog box (old style)

window.confirm() method

The second style of dialog box presents two buttons (Cancel and OK in most
versions on most platforms) and is called a confirm dialog box (see Figure 8-3).
More importantly, this is one of those methods that returns a value: true if the user
clicks OK, false if the user clicks Cancel. You can use this dialog box and its
returned value as a way to have a user make a decision about how a script
progresses.

Microsoft Internet Explorer

@ Are you sure you want to empty the table?

Cancel |

Figure 8-3: A JavaScript confirm
dialog box (IE5/Win32 style)

Because the method always returns a Boolean value, you can use the evaluated
value of the entire method as a condition statement inan if or if...else con-
struction. For example, in the following code fragment, the user is asked about
starting the application over. Doing so causes the default page of the site to load
into the browser.

if (confirm("Are you sure you want to start over?")) {
location.href = "index.html"
}

window.prompt() method

The final dialog box of the window object, the prompt dialog box (see Figure 8-4),
displays a message that you set and provides a text field for the user to enter a
response. Two buttons, Cancel and OK, enable the user to dismiss the dialog box
with two opposite expectations: canceling the entire operation or accepting the
input typed into the dialog box.

(c) ketabton.com: The Digital Library

CD-68 Partil + JavaScript Tutorial

Explorer User Prompt [x]
JavaSeript Prampt:
Fill in table for haw mary factors?

Cancel |

[

Figure 8-4: A JavaScript prompt dialog box
(IE5/Win32 style)

The window.prompt () method has two parameters. The first is the message
that acts as a prompt to the user. You can suggest a default answer in the text field
by including a string as the second parameter. If you don’t want any default answer
to appear, then include an empty string (two double quotes without any space
between them).

This method returns one value when the user clicks either button. A click of the
Cancel button returns a value of nu11, regardless of what the user types into the
field. A click of the OK button returns a string value of the typed entry. Your scripts
can use this information in conditions for if and if. . .else constructions. A value
of null is treated as false in a condition. It turns out that an empty string is also
treated as false. Therefore, a condition can easily test for the presence of real
characters typed into the field to simplify a condition test, as shown in the follow-
ing fragment:

var answer = prompt("What is your name?","")
if (answer) {

alert("Hello, " + answer + "1")
}

The only time the alert () method is called is when the user enters something
into the prompt dialog box and clicks the OK button.

onLoad event handler

The window object reacts to several system and user events, but the one you will
probably use most often is the event that fires as soon as everything in a page fin-
ishes loading. This event waits for images, Java applets, and data files for plug-ins
to download fully to the browser. It can be dangerous to script access to elements
of a document object while the page loads because if the object has not loaded yet
(perhaps due to a slow network connection or server), a script error results. The
advantage of using the onlLoad event to invoke functions is that you are assured
that all document objects are in the browser’s document object model. All window
event handlers are placed inside the <BODY> tag. Even though you will come to
associate the <BODY> tag’s attributes with the document object’s properties, it is
the window object’s event handlers that go inside the tag.

The Location Object

Sometimes an object in the hierarchy represents something that doesn’t seem to
have the kind of physical presence that a window or a button does. That’s the case
with the Tocation object. This object represents the URL loaded into the window.

(c) ketabton.com: The Digital Library

Chapter 8 + Window and Document Objects (CD-69

This differs from the document object (discussed later in this lesson) because the
document is the real content; the location is simply the URL.

Unless you are truly Web-savvy, you may not realize a URL consists of many
components that define the address and method of data transfer for a file. Pieces of
a URL include the protocol (such as http:) and the hostname (such as www.
giantco.com). You can access all of these items as properties of the Tocation
object. For the most part, though, your scripts will be interested in only one
property: the href property, which defines the complete URL.

Setting the 1ocation.href property is the primary way your scripts navigate to
other pages:

location.href = "http://www.dannyg.com"

You can generally navigate to a page in your own Web site by specifying a rela-
tive URL (that is, relative to the currently loaded page) rather than the complete
URL with protocol and host information. For pages outside of the domain of the
current page, you need to specify the complete URL.

If the page to be loaded is in another window or frame, the window reference
must be part of the statement. For example, if your script opens a new window and
assigns its reference to a variable named newWindow, the statement that loads a
page into the subwindow is

newWindow.location.href = "http://www.dannyg.com"

The History Object

Another object that doesn’t have a physical presence on the page is the history
object. Each window maintains a list of recent pages that the browser has visited.
While the history object’s list contains the URLs of recently visited pages, those
URLs are not generally accessible by script due to privacy and security limits
imposed by browsers. But methods of the history object allow for navigating
backward and forward through the history relative to the currently loaded page.
You can find details in Chapter 17.

The Document Object

The document object holds the real content of the page. Properties and methods
of the document object generally affect the look and content of the document that
occupies the window. Only more recent browsers (IE4+ and NN6+) allow script
access to the text contents of a page once the document has loaded. However, as
you saw in your first script of Chapter 3, the document.write() method lets a
script dynamically create content as the page loads. A great many of the document
object’s properties are established by attributes of the <BODY> tag. Many other
properties are arrays of other objects in the document.

Accessing a document object’s properties and methods is straightforward, as
shown in the following syntax examples:

[window.]document.propertyName
[window. Jdocument.methodName([parameters])

(c) ketabton.com: The Digital Library

CD-70 Partil + JavaScript Tutorial

The window reference is optional when the script is accessing the document
object that contains the script. If you want a preview of the document object prop-
erties of the browser you're using, enter document into the bottom text box of The
Evaluator Jr. and press Enter/Return. The object’s properties and current values
appear in the Results box.

document.forms[] property

One of the object types contained by a document is the FORM element object.
Because conceivably there can be more than one form in a document, forms are
stored as arrays in the document . forms[] property. As you recall from the discus-
sion of arrays in Chapter 7, an index number inside the square brackets points to
one of the elements in the array. To find out how many FORM objects are in the
current document, use

document.forms.length
To access the first form in a document, for example, the reference is
document.forms[0]

In general, however, | recommend that you access a form by way of a name you
assign to the form in its NAME attribute, as in

document.formName

Either methodology reaches the same object. When a script needs to reference
elements inside a form, the complete address to that object must include document
and form references.

document.title property

Not every property of a document object is set in a <BODY> tag attribute. If you
assign a title to the page in the <TITLE> tag set within the Head portion, that title
text is reflected by the document.title property. A document’s title is mostly a
cosmetic setting that gives a plain-language name of the page appearing in the
browser’s title bar, as well as the user’s history listing and bookmark of your page.

document.write() method

The document.write() method operates in both immediate scripts to create
content in a page as it loads and in deferred scripts that create new content in the
same or different window. The method requires one string parameter, which is the
HTML content to write to the window or frame. Such string parameters can be
variables or any other expressions that evaluate to a string. Very often, the written
content includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream is automatically
closed. After that, any document.write() method issued to the current page
opens a new stream that immediately erases the current page (along with any vari-
ables or other values in the original document). Therefore, if you wish to replace
the current page with script-generated HTML, you need to accumulate that HTML
in a variable and perform the writing with just one document.write() method.
You don’t have to explicitly clear a document and open a new data stream; one
document.write() call does it all.

One last piece of housekeeping advice about the document.write() method
involves its companion method, document.close(). Your script must close the

(c) ketabton.com: The Digital Library

Chapter 8 + Window and Document Objects CD-71

output stream when it finishes writing its content to the window (either the same
window or another). After the last document.write() method in a deferred script,
be sure to include a document.close() method. Failure to do this may cause
images and forms not to appear. Also, any document.write() method invoked
later will only append to the page, rather than clear the existing content to write
anew. To demonstrate the document.write() method, I show two versions of the
same application. One writes to the same document that contains the script; the
other writes to a separate window. Type in each document in a new text editor
document, save it with an . htm] file name extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document,
including HTML tags for a new document title and color attribute for the <BODY>
tag. An operator in the listing that may be unfamiliar to you is +=. It appends a
string on its right side to whatever string is stored in the variable on its left side.
This operator is a convenient way to accumulate a long string across several
separate statements. With the content gathered in the newContent variable, one
document.write() statement blasts the entire new content to the same document,
obliterating all vestiges of the content of Listing 8-2. The document.close() state-
ment, however, is required to close the output stream properly. When you load this
document and click the button, notice that the document title in the browser’s title
bar changes accordingly. As you click back to the original and try the button again,
notice that the dynamically written second page loads much faster than even a
reload of the original document.

Listing 8-2: Using document.write() on the Current Window

<HTMLY

<HEAD>

<TITLE>Writing to Same Doc</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function reWrite() {
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"
newContent += "<BODY BGCOLOR="aqua'><H1>This document is brand new.</H1>"
newContent += "Click the Back button to see original document."
newContent += "</BODY></HTML>"
// write HTML to new window document
document.write(newContent)
document.close() // close layout stream

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE="Replace Content" onClick="reWrite()">

</FORM>

</BODY>

</HTML>

In Listing 8-3, the situation is a bit more complex because the script generates a
subwindow to which is written an entirely script-generated document. To keep the
reference to the new window alive across both functions, the newWindow variable is
declared as a global variable. As soon as the page loads, the onlLoad event handler

(c) ketabton.com: The Digital Library

CD-72

Part Il 4+ JavaScript Tutorial

invokes the makeNewWindow () function. This function generates a blank subwin-
dow. I added a property to the third parameter of the window.open () method that
instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite() method. The first task it performs
is to check the c1osed property of the subwindow. This property (which exists
only in newer browser versions) returns true if the referenced window is closed. If
that’s the case (if the user manually closed the window), the function invokes the
makeNewWindow() function again to reopen that window.

With the window open, new content is assembled as a string variable. As with
Listing 8-2, the content is written in one blast (although that isn’t necessary for a
separate window), followed by a c1ose () method. But notice an important differ-
ence: both the write() and close() methods explicitly specify the subwindow.

Listing 8-3: Using document.write() on Another Window

<HTML>
<HEAD>
KTITLEDWriting to Subwindow</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {
newWindow = window.open("","","status,height=200,width=300")
1

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {
makeNewWindow()
}
// bring subwindow to front
newWindow. focus()
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"
newContent += "<BODY BGCOLOR='coral'><H1>This document is brand new.</H1>"
newContent += "</BODY></HTML>"
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close Tayout stream
}
</SCRIPT>
</HEAD>
<BODY onLoad="makeNewWindow()">
<FORM>
<INPUT TYPE="button" VALUE="Write to Subwindow" onClick="subWrite()">
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

Chapter 8 + Window and Document Objects (CD-73

The Link Object

Belonging to the document object in the hierarchy is the link object. A link object
is the object model equivalent of an <A> tag when the tag includes an HREF attribute.
A document can have any number of links, so references to links (if necessary) are
usually made via the array index method:

document.links[n].propertyName

More commonly, though, links are not scripted. However, there is an important
JavaScript component to these objects. When you want to click a link to execute a
script rather than navigate directly to another URL, you can redirect the HREF
attribute to call a script function. The technique involves a pseudo-URL called the
javascript: URL. If you place the name of a function after the javascript: URL,
then a scriptable browser runs that function. So as not to mess with the minds of
users, the function should probably perform some navigation in the end. However,
the script can do other things as well, such as simultaneously changing the content
of two frames within a frameset.

The syntax for this construction in a link is as follows:

...

The void keyword prevents the link from trying to display any value that the
function may return. Remember this javascript: URL technique for all tags that
include HREF and SRC attributes: If an attribute accepts a URL, it can accept this
javascript: URL as well. This can come in handy as a way to script actions for
client-side image maps that don’t necessarily navigate anywhere, but which cause
something to happen on the page just the same.

The next logical step past the document level in the object hierarchy is the form.
That’s where you will spend the next lesson.

Exercises

1. Which of the following references are valid and which are not? Explain what is
wrong with the invalid references.

a.window.document.form[0]

b. self.entryForm.entryField.value
c. document.forms[2].name

d. entryForm.entryField.value

e. newWindow.document.write("Howdy")

2. Write the JavaScript statement that displays a message in the status bar wel-
coming visitors to your Web page.

(c) ketabton.com: The Digital Library

CD-74 Partil + avaScript Tutorial

3. Write the JavaScript statement that displays the same message to the docu-
ment as an <H1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads
(via a dialog box) and then welcomes the user by name in the body of the
page.

5. Create a page with any content you like, but one that automatically displays
a dialog box after the page loads to show the user the URL of the current
page.

+ o+

(c) ketabton.com: The Digital Library

CHAPTER

Forms and Form
Elements

Most interactivity between a Web page and the user
takes place inside a form. That’s where a lot of the
interactive HTML stuff lives for every browser: text fields,
buttons, checkboxes, option lists, and so on. As you can tell
from the (by now) familiar basic object hierarchy diagram
(refer back to Figure 8-1), a form is always contained by a
document. Even so, the document object must be part of the
reference to the form and its elements.

The FORM Object

A FORM object can be referenced either by its position in
the array of forms contained by a document or by name
(if you assign an identifier to the NAME attribute inside the
<FORM> tag). If only one form appears in the document, it is
still a member of an array (a one-element array) and is
referenced as follows:

document.forms[0]

Notice that the array reference uses the plural version of
the word, followed by a set of square brackets containing the
index number of the element (zero is always first). But if you
assign a name to the form, simply plug the form’s name into
the reference:

document. formName

Form as object and container

In the simplified, compatible object model of this tutorial, a
form has a relatively small set of properties, methods, and
event handlers. Almost all of the properties are the same as
the attributes for forms. All scriptable versions of Navigator,
and most versions of Internet Explorer, allow scripts to change
these properties under script control, which gives your scripts
potentially significant power to direct the behavior of a form
submission in response to user selections on the page.

+ ¢+
In This Chapter

What the FORM

object represents

How to access key
FORM object
properties and
methods

How text, button, and
SELECT objects work

How to submit forms
from a script

How to pass
information from form

elements to functions

¢ + o+

(c) ketabton.com: The Digital Library

CD-76 Partll + JavaScript Tutorial

A form is contained by a document, and the form in turn contains any number of
elements (sometimes called form controls). All of those interactive elements that
enable users to enter information or make selections belong to the form object.
This relationship mirrors the HTML tag organization in which items such as
<INPUT> tags are nested between the <FORM> and </FORM> tag “bookends.”

Accessing form properties

Forms are created entirely from standard HTML tags in the page. You can set
attributes for NAME, TARGET, ACTION, METHOD, and ENCTYPE. Each of these is a prop-
erty of a FORM object, accessed by all lowercase versions of those words, as in

document.forms[0].action
document.formName.action

To change any of these properties, simply assign new values to them:

document.forms[0].action = "http://www.giantco.com/cgi/login.pl"

form.elements[] property

In addition to keeping track of each type of element inside a form, the browser
also maintains a list of all control elements within a form. This list is another array,
with items listed according to the order in which their HTML tags appear in the
source code. It is generally more efficient to create references to elements directly,
using their names. However, sometimes a script needs to look through all of the ele-
ments in a form. This is especially true if the content of a form changes with each
loading of the page because the number of text fields changes based on the user’s
browser type. (For example, a script on the page uses document.write() to add
an extra text box for information required only from Windows users.)

The following code fragment shows the form.elements[] property at work in a
for repeat loop that looks at every element in a form to set the contents of text
fields to an empty string. The script cannot simply barge through the form and set
every element’s content to an empty string because some elements may be but-
tons, which don’t have a value property that you can set to an empty string.

var form = window.document.forms[0]
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == "text") {
form.elements[i].value = ""
}

In the first statement, I create a variable — form—that holds a reference to the
first form of the document. I do this so that when I make many references to form
elements later in the script, the typical length of each reference is much shorter
(and marginally faster). I can use the form variable as a shortcut to building refer-
ences to items more deeply nested in the form.

Next, [start looping through the items in the elements array for the form. Each
form element has a type property, which reveals what kind of form element it is:

(c) ketabton.com: The Digital Library

Chapter 9 + Forms and Form Elements CD-77

text, button, radio, checkbox, and so on. I'm interested in finding elements whose
type is text. For each of those, [set the value property to an empty string.

[return to forms later in this chapter to show you how to submit a form without
a Submit button and how client-side form validation works.

Form Controls as Objects

Three kinds of HTML elements nested inside a <FORM> tag become scriptable
objects in all browser document object models. Most of the objects owe their exis-
tence to the <INPUT> tag in the page’s source code. Only the value assigned to the
TYPE attribute of an <INPUT> tag determines whether the element is a text box,
password entry field, hidden field, button, checkbox, or radio button. The other
two kinds of form controls, TEXTAREA and SELECT, have their own tags.

While form controls have several properties in common, some properties are
unique to a particular control type or related types. For example, only a SELECT
object offers a property that reveals which item in its list is currently selected. But
checkbox and radio buttons both have a property that indicates whether the con-
trol is currently set to “on.” Similarly, all text-oriented controls operate the same
way for reading and modifying their content.

Having a good grasp of the scriptable features of form control objects is impor-
tant to your success with JavaScript. In the next sections, you meet the most
important form control objects and see how scripts interact with them.

Text-related objects

Each of the four text-related HTML form elements — text, password, hidden, and
TEXTAREA —is an element in the document object hierarchy. All but the hidden
object display themselves in the page, enabling users to enter information. These
objects also display text information that changes in the course of using a page
(although Dynamic HTML in IE4+ and NN6+ also allows the scripted change of body
text in a document).

To make these objects scriptable in a page, you do nothing special to their
normal HTML tags — with the possible exception of assigning a NAME attribute. I
strongly recommend assigning unique names to every form control element if your
scripts will be getting or setting properties or invoking their methods. Besides, if
the form is actually submitted to a server program, the NAME attributes must be
assigned in order for the server to process the element’s data.

For the visible objects in this category, event handlers are triggered from many
user actions, such as giving a field focus (getting the text insertion pointer in the
field) and changing text (entering new text and leaving the field). Most of your text
field actions are triggered by the change of text (the onChange event handler). In IE
and NN version 4 browsers and later, event handlers fire in response to individual
keystrokes as well.

Without a doubt, the single most used property of a text-related element is the
value property. This property represents the current contents of the text element.
A script can retrieve and set its content at any time. Content of the value property

(c) ketabton.com: The Digital Library

CD-78 Partll + JavaScript Tutorial

Many scripters look to JavaScript to solve what are perceived as shortcomings or behavioral
anomalies with text-related objects in forms. | want to single these out early in your script-
ing experience so that they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and
text alignment of a text object’s content. You can access changes through the element’s
style-related properties (Chapter 30).

Second, most browser forms practice a behavior that was recommended long ago as an
informal standard by Web pioneers. When a form contains only one text INPUT object, a
press of the Enter/Return key while the text object has focus automatically submits the form.
For two or more fields in browsers other than IE5/Mac, you need another way to submit the
form (for example, a Submit button). This one-field submission scheme works well in many
cases, such as the search page of most Web search sites. But if you are experimenting with
simple forms containing only one field, you can submit the form with a press of the
Enter/Return key. Submitting a form that has no other action or target specified means the
page performs an unconditional reload —wiping out any information entered into the form.
You can, however, cancel the submission through an onSubmit event handler in the form, as
shown later in this chapter. Also, starting with version 4 browsers, you can script the press of
the Enter/Return key in any text field to submit a form (see Chapter 29).

is always a string. This may require conversion to numbers (see Chapter 6) if text
fields are used to enter values for some math operations.

To demonstrate how a text field’s value property can be read and written,
Listing 9-1 provides a complete HTML page with a single-entry field. Its onChange
event handler invokes the upperMe () function, which converts the text to upper-
case. In the upperMe () function, the first statement assigns the text object refer-
ence to a more convenient variable: field. A lot goes on in the second statement of
the function. The right side of the assignment statement performs a couple of key
tasks. The reference to the value property of the object (field.value) evaluates
to whatever content is in the text field at that instant. That string is then handed
over to one of JavaScript’s string functions, toUpperCase (), which converts the
value to uppercase. The evaluated result of the right side statement is then
assigned to the second variable: upperCaseVersion. Nothing has changed yet in
the text box. That comes in the third statement where the value property of the
text box is assigned whatever the upperCaseVersion variable holds. The need for
the second statement is more for learning purposes, so you can see the process
more slowly. In practice, you can combine the actions of steps two and three into
one power-packed statement:

field.value = field.value.toUpperCase()

Listing 9-1: Getting and Setting a Text Object’s value Property

<HTML>
<HEAD>
KTITLE>Text Object value Property</TITLE>

(c) ketabton.com: The Digital Library

Chapter 9 + Forms and Form Elements CD-79

{SCRIPT LANGUAGE="JavaScript">
function upperMe() {
var field = document.forms[0].converter
var upperCaseVersion = field.value.toUpperCase()
field.value = upperCaseVersion
}
</SCRIPT>
</HEAD>
<BODY>
<FORM onSubmit="return false">
<INPUT TYPE="text" NAME="converter" VALUE="sample" onChange="upperMe()">
</FORM>
</BODY>
<THTML

Later in this chapter, [show you how to reduce even further the need for explicit
references in functions such as upperMe() in Listing 9-1. In the meantime, notice for
a moment the onSubmit event handler in the <FORM> tag. | delve more deeply into
this event handler later in this chapter, but [want to point out the construction that
prevents a single-field form from being submitted when you press the Enter key.

The Button Object

[have used the button INPUT element in many examples up to this point in the
tutorial. The button is one of the simplest objects to script. In the simplified object
model of this tutorial, the button object has only a few properties that are rarely
accessed or modified in day-to-day scripts. Like the text object, the visual aspects
of the button are governed not by HTML or scripts, but by the operating system
and browser that the page visitor uses. By far, the most useful event handler of the
button object is the onC11ck event handler. It fires whenever the user clicks the
button. Simple enough. No magic here.

The Checkbox Object

A checkbox is also a simple element of the FORM object, but some of the proper-
ties may not be intuitive entirely. Unlike the value property of a plain button object
(the text of the button label), the value property of a checkbox is any other text
you want associated with the object. This text does not appear on the page in any
fashion, but the property (initially set via the VALUE tag attribute) might be impor-
tant to a script that wants to know more about the purpose of the checkbox within
the form.

The key property of a checkbox object is whether or not the box is checked. The
checked property is a Boolean value: true if the box is checked, false if not.
When you see that a property is a Boolean value, it’s a clue that the value might be
usableinan if or if...else condition expression. In Listing 9-2, the value of the
checked property determines which alert box the user sees.

(c) ketabton.com: The Digital Library

CD-80 Partll + JavaScript Tutorial

Listing 9-2: The Checkbox Object’s checked Property

<HTML>
<HEAD>
<TITLE>Checkbox Inspector</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function inspectBox() {
if (document.forms[0].checkThis.checked) {
alert("The box is checked.")
} else {
alert("The box is not checked at the moment.")
1
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
CINPUT TYPE="checkbox" NAME="checkThis">Check here

<INPUT TYPE="button" VALUE="Inspect Box" onClick="inspectBox()">
</FORM>
</BODY>
</HTMLD

Checkboxes are generally used as preferences setters, rather than as action
inducers. While a checkbox object has an onC11ick event handler, a click of a check-
box should never do anything drastic, such as navigate to another page.

The Radio Object

Setting up a group of radio objects for scripting requires a bit more work. To let
the browser manage the highlighting and unhighlighting of a related group of but-
tons, you must assign the same name to each of the buttons in the group. You can
have multiple groups within a form, but each member of the same group must have
the same name.

Assigning the same name to a form element forces the browser to manage the
elements differently than if they each had a unique name. Instead, the browser
maintains an array list of objects with the same name. The name assigned to the
group becomes the name of the array. Some properties apply to the group as a
whole; other properties apply to individual buttons within the group and must be
addressed via array index references. For example, you can find out how many
buttons are in a group by reading the 1ength property of the group:

document.forms[0].groupName.length

If you want to find out if a particular button is currently highlighted — via the
same checked property used for the checkbox— you must access the button ele-
ment individually:

document.forms[0].groupName[0].checked

(c) ketabton.com: The Digital Library

Chapter 9 + Forms and Form Elements CD-81

Listing 9-3 demonstrates several aspects of the radio button object, including
how to look through a group of buttons to find out which one is checked and how
to use the VALUE attribute and corresponding property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s
VALUE attribute contains the full name of one of the Three Stooges. When the user
clicks the button, the onC11ck event handler invokes the ful1Name () function. In
that function, the first statement creates a shortcut reference to the form. Next, a
for repeat loop looks through all of the buttons in the stooges radio button group.
An if construction looks at the checked property of each button. When a button is
highlighted, the break statement bails out of the for loop, leaving the value of the
i loop counter at the number where the loop broke ranks. The alert dialog box then
uses a reference to the value property of the ith button so that the full name can be
displayed in the alert.

Listing 9-3: Scripting a Group of Radio Objects

<HTMLY
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function fullName() {
var form = document.forms[0]
for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {
break
}
}

alert("You chose

+ form.stooges[i].value + ".")
}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<{B>Select your favorite Stooge:

<INPUT TYPE="radio" NAME="stooges" VALUE="Moe Howard" CHECKED>Moe
CINPUT TYPE="radio" NAME="stooges" VALUE="Larry Fine" >Larry
<INPUT TYPE="radio" NAME="stooges" VALUE="Curly Howard" >Curly

<INPUT TYPE="button" NAME="Viewer" VALUE="View Full Name..."
onClick="fullName()">

</FORM>

</BODY>

</HTML>

As you learn about form elements in later chapters of this book, the browser’s
tendency to create arrays out of identically named objects of the same type (except
for Internet Explorer 3) can be a benefit to scripts that work with, say, columns of
fields in an HTML order form.

(c) ketabton.com: The Digital Library

CD-82

Part Il + JavaScript Tutorial

The SELECT Object

The most complex form element to script is the SELECT element object. As you
can see from the lowest common denominator object hierarchy diagram (Figures
4-6 or 8-1), the SELECT object is really a compound object: an object that contains
an array of OPTION objects. Moreover, you can establish this object in HTML to
display itself as either a pop-up list or a scrolling list —the latter configurable to
accept multiple selections by users. For the sake of simplicity at this stage, this
lesson focuses on deployment as a pop-up list that allows only single selections.

Some properties belong to the entire SELECT object; others belong to individual
options inside the SELECT object. If your goal is to determine which item the user
selects, you must use properties of both the SELECT and OPTION objects.

The most important property of the SELECT object itself is the selectedIndex
property, accessed as follows:

document.form[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index
counting schemes in JavaScript, the first item (the one at the top of the list) has an
index of zero. The selectedIndex value is critical for enabling you to access prop-
erties of the selected option. Two important properties of an option item are text
and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the SELECT object. It is
unusual for this information to be exposed as a FORM object property because in
the HTML that generates a SELECT object, the text is defined outside of the
<OPTION> tag. But inside the <OPTION> tag, you can set a VALUE attribute, which,
like the radio buttons shown earlier, enables you to associate some hidden string
information with each visible entry in the list.

To read the value or text property of a selected option most efficiently, you can
use the SELECT object’s selectedIndex property as an index value to the option.
References for this kind of operation get pretty long, so take the time to understand
what’s happening here. In the following function, the first statement creates a short-
cut reference to the SELECT object. The selectedIndex property of the SELECT
object is then substituted for the index value of the options array of that same
object:

function inspect() {
var Tist = document.forms[0].choices
var chosenltemText = Tist.options[list.selectedIndex].text

To bring a SELECT object to life, use the onChange event handler. As soon as a
user makes a new selection in the list, this event handler runs the script associated
with that event handler (except for Windows versions of Navigator 2, whose
onChange event handler doesn’t work for SELECT objects). Listing 9-4 shows a com-
mon application for a SELECT object. Its text entries describe places to go in and
out of a Web site, while the VALUE attributes hold the URLs for those locations.

(c) ketabton.com: The Digital Library

'Note

Chapter 9 + Forms and Form Elements

When a user makes a selection in the list, the onChange event handler triggers a
script that extracts the value property of the selected option and assigns that
value to the Tocation object to effect the navigation. Under JavaScript control, this
kind of navigation doesn’t need a separate Go button on the page.

Listing 9-4: Navigating with a SELECT Object

<HTML>
<HEAD>
<TITLE>Select Navigation</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function goThere() ({
var 1list = document.forms[0].urllist
location = list.options[list.selectedIndex].value
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

Choose a place to go:

<SELECT NAME="urlList" onChange="goThere()">
<OPTION SELECTED VALUE="index.html">Home Page
<OPTION VALUE="store.html">Shop Our Store
<OPTION VALUE="policies.htm1">Shipping Policies
<OPTION VALUE="http://www.yahoo.com">Search the Web

</SELECT>

</FORM>

</BODY>

</HTML>

Internet Explorer and NN6 expose the value property of the selected option item

~— as the value property of the SELECT object. While this is certainly a logical and

convenient shortcut, for compatibility reasons you should use the long way shown
in Listing 9-4.

There is much more to the SELECT object, including the ability to change the
contents of a list in newer browsers. Chapter 26 covers the object in depth.

Passing Form Data and Elements to Functions

In all of the examples so far in this lesson, when an event handler invokes a func-
tion that works with form elements, the form or form element is explicitly refer-
enced in the function. But valuable shortcuts do exist for transferring information
about the form or form control directly to the function without dealing with those
typically long references that start with the window or document object level.

JavaScript features a keyword — this —that always refers to whatever object
contains the script in which the keyword is used. Thus, in an onChange event

CD-83

(c) ketabton.com: The Digital Library

CD-84 Partil + JavaScript Tutorial

handler for a text field, you can pass a reference to the text object to the function
by inserting the this keyword as a parameter to the function:

<INPUT TYPE="text" NAME="entry" onChange="upperMe(this)">

At the receiving end, the function defines a parameter variable that turns that
reference into a variable that the rest of the function can use:

function upperMe(field) {
statement[s]
}

The name you assign to the function’s parameter variable is purely arbitrary, but
it is helpful to give it a name that expresses what the reference is. Importantly, this
reference is a “live” connection back to the object. Therefore, statements in the
script can get and set property values of the object at will.

For other functions, you may wish to receive a reference to the entire form,
rather than just the object calling the function. This is certainly true if the function
needs to access other elements of the same form. To pass the entire form, you
reference the form property of the INPUT object, still using the this keyword:
CINPUT TYPE="button" VALUE="Click Here" onClick="inspect(this.form)">

The function definition should then have a parameter variable ready to be
assigned to the form object reference. Again, you decide the name of the variable. I
tend to use the variable name form as a way to remind me exactly what kind of
object is referenced.

function inspect(form) {
statement[s]

}

Listing 9-5 demonstrates passing both an individual form element and the entire
form in the performance of two separate acts. This page makes believe it is con-
nected to a database of Beatles songs. When you click the Process Data button, it
passes the form object, which the processData() function uses to access the
group of radio buttons inside a for loop. Additional references using the passed
form object extract the value properties of the selected radio button and the text
field.

The text field has its own event handler, which passes just the text field to the
verifySong() function. Notice how short the reference is to reach the value
property of the song field inside the function.

Listing 9-5: Passing a Form Object and Form
Element to Functions

<HTML>

<HEAD>

<TITLE>Beatle Picker</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {
break

}

(c) ketabton.com: The Digital Library

Chapter 9 + Forms and Form Elements (CD-85

// assign values to variables for convenience

var beatle = form.Beatles[i].value

var song = form.song.value

alert("Checking whether " + song + " features " + beatle + "...")
}

function verifySong(entry) {
var song = entry.value
alert("Checking whether " + song + " is a Beatles tune...")
}
</SCRIPT>
</HEAD>

<BODY>

<FORM onSubmit="return false">
Choose your favorite Beatle:
<INPUT TYPE="radio" NAME="Beat
<INPUT TYPE="radio" NAME="Beat
<INPUT TYPE="radio" NAME="Beat
<INPUT TYPE="radio" NAME="Beat

es" VALUE="John Lennon" CHECKED>John
es" VALUE="Paul McCartney">Paul

es" VALUE="George Harrison">George
es" VALUE="Ringo Starr">Ringo<P>

Enter the name of your favorite Beatles song:

<INPUT TYPE="text" NAME="song" VALUE = "ETeanor Rigby"
onChange="verifySong(this)"><P>

<INPUT TYPE="button" NAME="process" VALUE="Process Request..."
onClick="processData(this.form)">

</FORM>

</BODY>

</HTML>

Get to know the usage of the this keyword in passing form and form element
objects to functions. The technique not only saves you typing in your code, but it
also ensures accuracy in references to those objects.

Submitting and Prevalidating Forms

If you have worked with Web pages and forms before, you are familiar with how
simple it is to add a Submit-style button that sends the form to your server.
However, design goals for your page may rule out the use of ugly system-generated
buttons. If you'd rather display a pretty image, the link tag surrounding that image
should use the javascript: URL technique to invoke a script that submits the
form (the image type of INPUT element is not recognized prior to IE4 and NN6).

The scripted equivalent of submitting a form is the FORM object’s submit ()
method. All you need in the statement is a reference to the form and this method:

document.forms[0].submit()

One limitation might inhibit your plans to secretly have a script send you an
e-mail message from every visitor who comes to your Web site. If the form’s ACTION
attribute is set toamailTo: URL, JavaScript does not pass along the submit()
method to the form. See Chapter 23 for cautions about using the mailTo: URL as a
form’s action.

(c) ketabton.com: The Digital Library

CD-86 Partll + JavaScript Tutorial

Before a form is submitted, you may wish to perform some last-second validation
of data in the form or in other scripting (for example, changing the form’s action
property based on user choices). You can do this in a function invoked by the
form’s onSubmit event handler. Specific validation routines are beyond the scope
of this tutorial (but are explained in substantial detail in Chapter 43), but [want to
show you how the onSubmit event handler works.

In all but the first generation of scriptable browsers from Microsoft (IE3) and
Netscape (NN2), you can let the results of a validation function cancel a submission
if the validation shows some incorrect data or empty fields. To control submission,
the onSubmit event handler must evaluate to return true (to allow submission to
continue) or returnfalse (to cancel submission). This is a bit tricky at first
because it involves more than just having the function called by the event handler
return true or false. The return keyword must be part of the final evaluation

Listing 9-6 shows a page with a simple validation routine that ensures all fields
have something in them before allowing submission to continue. (The form has no
ACTION attribute, so this sample form doesn’t get sent to the server.) Notice how
the onSubmit event handler (which passes a reference to the FORM object as a
parameter —in this case the this keyword points to the FORM object because its
tag holds the event handler) includes the return keyword before the function
name. When the function returns its true or false value, the event handler
evaluates to the requisite return true or return false.

Listing 9-6: Last-Minute Checking Before Form Submission

<HTML>
<HEAD>
<TITLE>Validator</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function checkForm(form) {
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].value == "") {
alert("Fill out ALL fields.")
return false
}
}
return true
}
</SCRIPT>
</HEAD>

<BODY>

<FORM onSubmit="return checkForm(this)">

Please enter all requested information:

First Name:<INPUT TYPE="text" NAME="firstName">

Last Name:<INPUT TYPE="text" NAME="TastName">

Rank:<INPUT TYPE="text" NAME="rank">

Serial Number:<INPUT TYPE="text" NAME="serialNumber">

<INPUT TYPE="submit">
</FORM>
</BODY>
</HTMLY>

(c) ketabton.com: The Digital Library

Chapter 9 + Forms and Form Elements

One quirky bit of behavior involving the submit () method and onSubmit event
handler needs explanation. While you might think (and logically so, in my opinion)
that the submit () method would be the exact scripted equivalent of a click of a
real Submit button, it’s not. In Navigator, the submit () method does not cause the
form’s onSubmit event handler to fire at all. If you want to perform validation on a
form submitted via the submit () method, invoke the validation in the script func-
tion that ultimately calls the submit () method.

So much for the basics of forms and form elements. In the next chapter, you step
away from HTML for a moment to look at more advanced JavaScript core language
items: strings, math, and dates.

Exercises

1.

Rework Listings 9-1, 9-2, 9-3, and 9-4 so that the script functions all receive the
most efficient form or form element references from the invoking event
handler.

. Modify Listing 9-6 so that instead of the Submit button making the submis-

sion, the submission is performed from a hyperlink. Be sure to include the
form validation in the process.

. In the following HTML tag, what kind of information do you think is being

passed with the event handler? Write a function that displays in an alert
dialog box the information being passed.

<INPUT TYPE="text"NAME="phone" onChange="format(this.value)">

. A document contains two forms named specifications and accessories.

In the accessories form is a field named accl. Write two different state-
ments that set the contents of that field to Leather Carrying Case.

. Create a page that includes a SELECT object to change the background color

of the current page. The property that you need to set is document.bgColor,
and the three values you should offer as options are red, yellow, and green.
In the SELECT object, the colors should display as Stop, Caution, and Go.
Note: If you use a Macintosh or UNIX version of Navigator, you must employ
version 4 or later for this exercise.

+ o+ 0+

CD-87

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

CHAPTER

Strings, Math,
and Dates

¢+ 4+

In This Chapter

How to modify strings
with common string

For most of the lessons in the tutorial so far, the objects at
methods

the center of attention belong to the document object
model. But as indicated in Chapter 2, a clear dividing line
exists between the document object model and the JavaScript When and how fo
language. The language has some of its own objects that are
independent of the document object model. These objects are
defined such that if a vendor wished to implement JavaScript
as the programming language for an entirely different kind of
product, the language would still use these core facilities for
handling text, advanced math (beyond simple arithmetic),
and dates. You can find formal specifications of these objects + + + +
in the ECMA-262 recommendation.

use the Math object

How to use the Date
object

Core Language Objects

It is often difficult for newcomers to programming — or
even experienced programmers who have not worked in
object-oriented worlds before —to think about objects,
especially when attributed to “things” that don’t seem to have
a physical presence. For example, it doesn’t require lengthy
study to grasp the notion that a button on a page is an object.
It has several physical properties that make perfect sense. But
what about a string of characters? As you learn in this chap-
ter, in an object-based environment such as JavaScript, every-
thing that moves is treated as an object —each piece of data
from a Boolean value to a date. Each such object probably has
one or more properties that help define the content; such an
object may also have methods associated with it to define
what the object can do or what you can do to the object.

I call all objects that are not part of the document object
model core language objects. You can see the full complement
of them in the Quick Reference in Appendix A. In this chapter,
[focus on the String, Math, and Date objects.

(c) ketabton.com: The Digital Library

CD-90 Partl + JavaScript Tutorial

String Objects

You have already used String objects many times in earlier lessons. A string is
any text inside a quote pair. A quote pair consists of either double quotes or single
quotes. This allows one string to nest inside another, as often happens in event han-
dlers. In the following example, the alert () method requires a quoted string as a
parameter, but the entire method call also must be inside quotes.

onClick="alert('Hello, all")"

JavaScript imposes no practical limit on the number of characters that a string
can hold. However, most older browsers have a limit of 255 characters in length for
a script statement. This limit is sometimes exceeded when a script includes a
lengthy string that is to become scripted content in a page. You need to divide such
lines into smaller chunks using techniques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic
assignment statement:

var myString = "Howdy"

This works perfectly well except in some exceedingly rare instances. Beginning
with Navigator 3 and Internet Explorer 4, you can also create a string object using
the more formal syntax that involves the new keyword and a constructor function
(that is, it “constructs” a new object):

var myString = new String("Howdy")

Whichever way you use to initialize a variable with a string, the variable receiv-
ing the assignment can respond to all String object methods.

Joining strings

Bringing two strings together as a single string is called concatenating strings, a
term you learned in Chapter 6. String concatenation requires one of two JavaScript
operators. Even in your first script in Chapter 3, you saw how the addition operator
(+) linked multiple strings together to produce the text dynamically written to the
loading Web page:

document.write(" of " + navigator.appName + ".")

As valuable as that operator is, another operator can be even more scripter
friendly. This operator is helpful when you are assembling large strings in a single
variable. The strings may be so long or cumbersome that you need to divide the
building process into multiple statements. The pieces may be combinations of
string literals (strings inside quotes) or variable values. The clumsy way to do it
(perfectly doable in JavaScript) is to use the addition operator to append more text
to the existing chunk:

var msg = "Four score"
msg = msg + " and seven"
msg = msg + " years ago,"

But another operator, called the add-by-value operator, offers a handy shortcut.
The symbol for the operator is a plus and equal sign together (+=). This operator
means “append the stuff on the right of me to the end of the stuff on the left of me.”
Therefore, the preceding sequence is shortened as follows:

(c) ketabton.com: The Digital Library

Chapter 10 4 Strings, Math, and Dates (CD-91

var msg = "Four score"
msg += " and seven"
msg += " years ago,"

You can also combine the operators if the need arises:

var msg = "Four score"
msg += " and seven" + " years ago"

I use the add-by-value operator a lot when accumulating HTML text to be written
to the current document or another window.

String methods

Of all the core JavaScript objects, the String object has the most diverse collec-
tion of methods associated with it. Many methods are designed to help scripts
extract segments of a string. Another group, rarely used in my experience, wraps a
string with one of several style-oriented tags (a scripted equivalent of tags for font
size, style, and the like).

To use a string method, the string being acted upon becomes part of the refer-
ence followed by the method name. All methods return a value of some kind. Most
of the time, the returned value is a converted version of the string object referred
to in the method call —but the original string is still intact. To capture the modified
version, you need to assign the results of the method to a variable:

var result = string.methodName()

The following sections introduce you to several important string methods avail-
able to all browser brands and versions.

Changing string case
Two methods convert a string to all uppercase or lowercase letters:

var result = string.toUpperCase()
var result = string.tolLowerCase()

Not surprisingly, you must observe the case of each letter of the method names
if you want them to work. These methods come in handy when your scripts need to
compare strings that may not have the same case (for example, a string in a lookup
table compared with a string typed by a user). Because the methods don’t change
the original strings attached to the expressions, you can simply compare the evalu-
ated results of the methods:

var foundMatch = false

if (stringA.toUpperCase() == stringB.toUpperCase()) {
foundMatch = true

}

String searches

You can use the string.index0f () method to determine if one string is con-
tained by another. Even within JavaScript’s own object data, this can be useful
information. For example, another property of the navigator object in Chapter 3
(navigator.userAgent) reveals a lot about the browser that loads the page. A
script can investigate the value of that property for the existence of, say, “Win” to
determine that the user has a Windows operating system. That short string might

(c) ketabton.com: The Digital Library

CD-92

Part Il + JavaScript Tutorial

be buried somewhere inside a long string, and all the script needs to know is
whether the short string is present in the longer one — wherever it might be.

The string.index0f () method returns a number indicating the index value
(zero based) of the character in the larger string where the smaller string begins.
The key point about this method is that if no match occurs, the returned value is
- 1. To find out whether the smaller string is inside, all you need to test is whether
the returned value is something other than -1.

Two strings are involved with this method: the shorter one and the longer one.
The longer string is the one that appears in the reference to the left of the method
name; the shorter string is inserted as a parameter to the index0f () method. To
demonstrate the method in action, the following fragment looks to see if the user is
running Windows:

var isWindows = false
if (navigator.userAgent.indexOf("Win") != -1) {
isWindows = true

}

The operator in the i f construction’s condition (!=) is the inequality operator.
You can read it as meaning “is not equal to.”

Extracting copies of characters and substrings

To extract a single character at a known position within a string, use the
charAt () method. The parameter of the method is an index number (zero based)
of the character to extract. When I say extract, I don’t mean delete, but rather grab a
snapshot of the character. The original string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a
variable, stringA, in another window that displays map images of different corpo-
rate buildings. When the window has a map of Building C in it, the stringA variable
contains “Building C.” The building letter is always at the tenth character position
of the string (or number 9 in a zero-based counting world), so the script can exam-
ine that one character to identify the map currently in that other window:

var stringA = "Building C"
var bldgletter = stringA.charAt(9)
// result: bldgletter = "C"

Another method—string.substring()—enables you to extract a contiguous
sequence of characters, provided you know the starting and ending positions of the
substring of which you want to grab a copy. Importantly, the character at the end-
ing position value is not part of the extraction: All applicable characters, up to but
not including that character, are part of the extraction. The string from which the
extraction is made appears to the left of the method name in the reference. Two
parameters specify the starting and ending index values (zero based) for the start
and end positions:

var stringA = "banana daiquiri"
var excerpt = stringA.substring(2,6)
// result: excerpt = "nana"

String manipulation in JavaScript is fairly cumbersome compared to some other
scripting languages. Higher-level notions of words, sentences, or paragraphs are
completely absent. Therefore, sometimes it takes a bit of scripting with string
methods to accomplish what seems like a simple goal. And yet you can put your

(c) ketabton.com: The Digital Library

Chapter 10 4 Strings, Math, and Dates (C[D-93

knowledge of expression evaluation to the test as you assemble expressions that
utilize heavily nested constructions. For example, the following fragment needs to
create a new string that consists of everything from the larger string except the first
word. Assuming the first word of other strings can be of any length, the second
statement utilizes the string.index0f () method to look for the first space char-
acter and adds 1 to that value to serve as the starting index value for an outer
string.substring() method. For the second parameter, the 1ength property of
the string provides a basis for the ending character’s index value (one more than
the actual character needed).

var stringA = "The United States of America"
var excerpt = stringA.substring(stringA.index0f(" ") + 1, stringA.length)
// result: excerpt = "United States of America"

Creating statements like this one is not something you are likely to enjoy over
and over again, so in Chapter 34 [show you how to create your own library of
string functions you can reuse in all of your scripts that need their string-handling
facilities. More powerful string matching facilities are built into NN4+ and IE4+ by
way of regular expressions (see Chapters 34 and 38).

The Math Object

JavaScript provides ample facilities for math — far more than most scripters who
don’t have a background in computer science and math will use in a lifetime. But
every genuine programming language needs these powers to accommodate clever
programmers who can make windows fly in circles on the screen.

The Math object contains all of these powers. This object is unlike most of the
other objects in JavaScript in that you don’t generate copies of the object to use.
Instead your scripts summon a single Math object’s properties and methods. (One
Math object actually occurs per window or frame, but this has no impact whatso-
ever on your scripts.) Programmers call this kind of fixed object a static object. That
Math object (with an uppercase M) is part of the reference to the property or
method. Properties of the Math object are constant values, such as pi and the
square root of two:

var piValue = Math.PI
var rootOfTwo = Math.SQRT2

Math object methods cover a wide range of trigonometric functions and other
math functions that work on numeric values already defined in your script. For
example, you can find which of two numbers is the larger:

var larger = Math.max(valuel, value?)
Or you can raise one number to a power of ten:
var result = Math.pow(valuel, 10)

More common, perhaps, is the method that rounds a value to the nearest integer
value:

var result = Math.round(valuel)

Another common request of the Math object is a random number. Although the
feature was broken on Windows and Macintosh versions of Navigator 2, it works
in all other versions and brands since. The Math.random() method returns a

(c) ketabton.com: The Digital Library

CD-94 partil + JavaScript Tutorial

floating-point number between 0 and 1. If you design a script to act like a card
game, you need random integers between 1 and 52; for dice, the range is 1 to 6 per
die. To generate a random integer between zero and any top value, use the follow-
ing formula:

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math.floor () returns the integer part of any
floating-point number.) To generate random numbers between one and any higher
number, use this formula:

Math.floor(Math.random() * n) + 1

where n equals the top number of the range. For the dice game, the formula for
each die is

newDieValue = Math.floor(Math.random() * 6) + 1

To see this, enter the right-hand part of the preceding statement in the top text
box of The Evaluator Jr. and repeatedly press the Evaluate button.

One bit of help JavaScript doesn’t offer except in IE5.5 and NN6 is a way to spec-
ify a number-formatting scheme. Floating-point math can display more than a dozen
numbers to the right of the decimal. Moreover, results can be influenced by each
operating system’s platform-specific floating-point errors, especially in earlier ver-
sions of scriptable browsers. For browsers prior to IE5.5 and NN6 you must perform
any number formatting — for dollars and cents, for example —through your own
scripts. Chapter 35 provides an example.

The Date Object

Working with dates beyond simple tasks can be difficult business in JavaScript. A
lot of the difficulty comes with the fact that dates and times are calculated inter-
nally according to Greenwich Mean Time (GMT)— provided the visitor’s own inter-
nal PC clock and control panel are set accurately. As a result of this complexity,
better left for Chapter 36, this section of the tutorial touches on only the basics of
the JavaScript Date object.

A scriptable browser contains one global Date object (in truth, one Date object
per window) that is always present, ready to be called upon at any moment. The
Date object is another one of those static objects. When you wish to work with a
date, such as displaying today’s date, you need to invoke the Date object construc-
tor to obtain an instance of a Date object tied to a specific time and date. For exam-
ple, when you invoke the constructor without any parameters, as in

var today = new Date()

the Date object takes a snapshot of the PC’s internal clock and returns a date
object for that instant. Notice the distinction between the static Date object and a
date object instance, which contains an actual date value. The variable, today, con-
tains not a ticking clock, but a value that you can examine, tear apart, and reassem-
ble as needed for your script.

Internally, the value of a date object instance is the time, in milliseconds, from
zero o’clock on January 1, 1970, in the Greenwich Mean Time zone —the world
standard reference point for all time conversions. That’s how a date object contains
both date and time information.

(c) ketabton.com: The Digital Library

Chapter 10 4+ Strings, Math, and Dates

You can also grab a snapshot of the Date object for a particular date and time in
the past or future by specifying that information as parameters to the Date object
constructor function:

var someDate = new Date("Month dd, yyyy hh:mm:ss")

var someDate = new Date("Month dd, yyyy")

var someDate = new Date(yy,mm,dd,hh,mm,ss)

var someDate = new Date(yy,mm,dd)

var someDate = new Date(GMT milliseconds from 1/1/1970)

If you attempt to view the contents of a raw date object, JavaScript converts the
value to the local time zone string as indicated by your PC’s control panel setting.
To see this in action, use The Evaluator Jr.’s top text box to enter the following:

new Date()

Your PC’s clock supplies the current date and time as the clock calculates them
(even though JavaScript still stores the date object’s millisecond count in the GMT
zone). You can, however, extract components of the date object via a series of
methods that you apply to a date object instance. Table 10-1 shows an abbreviated
listing of these properties and information about their values.

Table 10-1 Some Date Object Methods

Method Value Range Description
dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT
dateObj.getYear() 70-... Specified year minus 1900; four-digit year
for 2000+
dateObj.getFullYear() 1970-... Four-digit year (Y2K-compliant); version
4+ browsers
dateObj.getMonth() 0-11 Month within the year (January = 0)
dateObj.getDate() 1-31 Date within the month
dateObj.getDay() 0-6 Day of week (Sunday = 0)
dateObj.getHours() 0-23 Hour of the day in 24-hour time
dateObj.getMinutes() 0-59 Minute of the specified hour
dateObj.getSeconds() 0-59 Second within the specified minute
dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT
dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year
for 2000+
dateObj.setMonth(val) 0-11 Month within the year (January = 0)
dateObj.setDate(val) 1-31 Date within the month
dateObj.setDay(val) 0-6 Day of week (Sunday = 0)
dateObj.setHours(val) 0-23 Hour of the day in 24-hour time
date0Obj.setMinutes(val) 0-59 Minute of the specified hour

dateObj.setSeconds(val) 0-59 Second within the specified minute

CD-95

(c) ketabton.com: The Digital Library

CD-96 Partll + JavaScript Tutorial

Caution Be careful about values whose ranges start with zero, especially the months. The
getMonth() and setMonth() method values are zero based, so the numbers
are one less than the month numbers you are accustomed to working with (for
example, January is 0, December is 11).

You may notice one difference about the methods that set values of a date
object. Rather than returning some new value, these methods actually modify the
value of the date object referenced in the call to the method.

Date Calculations

Performing calculations with dates requires working with the millisecond values
of the date objects. This is the surest way to add, subtract, or compare date values.
To demonstrate a few date object machinations, Listing 10-1 displays the current
date and time as the page loads. Another script calculates the date and time seven
days from the current date and time value.

Listing 10-1: Date Object Calculations

<HTML>

<HEAD>

<TITLE>Date Calculation</TITLE>

{SCRIPT LANGUAGE="JavaScript">

function nextWeek() {
var todayInMS = today.getTime()
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000)
return new Date(nextWeekInMS)

}

</SCRIPT>

</HEAD>

<BODY>

Today is:

{SCRIPT LANGUAGE="JavaScript">
var today = new Date()
document.write(today)
</SCRIPT>

Next week will be:

{SCRIPT LANGUAGE="JavaScript">
document.write(nextWeek())
</SCRIPT>

</B0ODY>

</HTML>

In the Body portion, the first script runs as the page loads, setting a global vari-
able (today) to the current date and time. The string equivalent is written to the
page. In the second Body script, the document.write() method invokes the
nextWeek () function to get a value to display. That function utilizes the today

(c) ketabton.com: The Digital Library

Chapter 10 4 Strings, Math, and Dates (CD-97

global variable, copying its millisecond value to a new variable: today InMS. To get
a date seven days from now, the next statement adds the number of milliseconds in
seven days (60 seconds times 60 minutes times 24 hours times seven days times
1000 milliseconds) to today’s millisecond value. The script now needs a new date
object calculated from the total milliseconds. This requires invoking the Date
object constructor with the milliseconds as a parameter. The returned value is a
date object, which is automatically converted to a string version for writing to the
page. Letting JavaScript create the new date with the accumulated number of mil-
liseconds is more accurate than trying to add 7 to the value returned by the date
object’s getDate () method. JavaScript automatically takes care of figuring out how
many days there are in a month as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in
your page. As later chapters demonstrate, however, the results may be worth the
effort.

Exercises

1. Create a Web page that has one form field for entry of the user’s e-mail
address and a Submit button. Include a pre-submission validation routine that
verifies that the text field has the @ symbol found in all e-mail addresses
before you allow submission of the form.

2. Given the string "Netscape Navigator," fill in the blanks of the
myString.substring() method parameters here that yield the results
shown to the right of each method call:

var myString = "Netscape Navigator"
myString.substring(___,) // result = "Net"
myString.substring(___,_) // result = "gator"
myString.substring(.) // result = "cape Nav"

3. Fill in the rest of the function in the listing that follows so that it looks through
every character of the entry field and counts how many times the letter “e”
appears in the field. (Hint: All that is missing is a for repeat loop.)

<HTMLS
<HEAD>
<TITLE>Wheel o' Fortuna</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function countE(form) ({
var count = 0
var inputString = form.mainstring.value.toUpperCase()
missing code
alert("The string has " + count + " instances of the letter e.")

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>

(c) ketabton.com: The Digital Library

CD-98 Partll + JavaScript Tutorial

Enter any string: <INPUT TYPE="text" NAME="mainstring"
SIZE=30>

<INPUT TYPE="button" VALUE="Count the Es"
onClick="countE(this.form)">

</FORM>

</BODY>

</HTML>

4. Create a page that has two fields and one button. The button should trigger a
function that generates two random numbers between 1 and 6, placing each
number in one of the fields. (Think of using this page as a substitute for rolling
a pair of dice in a board game.)

5. Create a page that displays the number of days between today and next
Christmas.

+ 0+ 0+

(c) ketabton.com: The Digital Library

CHAPTER

Scripting Frames
and Multiple L
Windows -

Relationships among
frames in the browser

window
OHe of the cool aspects of JavaScript on the client is that How to access
it allows user actions in one frame or window to influ- objects and values in
ence what happens in other frames and windows. In this other frames
section of the tutorial, you extend your existing knowledge
of object references to the realm of multiple frames and How to control
windows. navigation of multiple
frames
L]
nu
Frames: Parents and Children Commi i
You probably noticed that at the top of the simplified bgtween separate
document object hierarchy diagram (refer to Figure 8-1) the windows
window object has some other object references associated
with it. In Chapter 8, you learned that self is synonymous +* 4+

with window when the reference applies to the same window
that contains the script’s document. In this lesson, you learn
the roles of the other three object references — frame, top,
and parent.

Loading an ordinary HTML document into the browser cre-
ates a model in the browser that starts out with one window
object and the document it contains. (The document likely
contains other elements, but I'm not concerned with that stuff
yet.) The top rungs of the hierarchy model are as simple as
can be, as shown in Figure 11-1. This is where references begin
with window or self (or with document because the current
window is assumed).

(c) ketabton.com: The Digital Library

CD-100 Partil + JavaScript Tutorial

Figure 11-1: Single-frame window
and document hierarchy

Window

Document

The instant a framesetting document loads into a browser, the browser starts
building a slightly different hierarchy model. The precise structure of that model
depends entirely on the structure of the frameset defined in that framesetting
document. Consider the following skeletal frameset definition:

<HTML>
<FRAMESET COLS="50%,50%">
<FRAME NAME="TleftFrame" SRC="somedocl.html">
<{FRAME NAME="rightFrame" SRC="somedoc2.html">
</FRAMESET>
</HTML>

This HTML splits the browser window into two frames side by side, with a
different document loaded into each frame. The model is concerned only with
structure —it doesn’t care about the relative sizes of the frames or whether they’re
set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing
terminology from the object-oriented programming world, the framesetting docu-
ment loads into a parent window. Each of the frames defined in that parent window
document is a child frame. Figure 11-2 shows the hierarchical model of a two-frame
environment. This illustration reveals a lot of subtleties about the relationships
among framesets and their frames.

<FRAMESET>
Top,
Parent
<FRAME> <FRAME>
Child Child
Frame Frame
Document Document

Figure 11-2: Two-frame window and
document hierarchy

(c) ketabton.com: The Digital Library

Chapter 11 4 Scripting Frames and Multiple Windows CD-101

It is often difficult at first to visualize the frameset as a window object in the hier-
archy. After all, with the exception of the URL showing in the Location/Address
field, you don’t see anything about the frameset in the browser. But that window
object exists in the object model. Notice, too, that in the diagram the framesetting
parent window has no document object showing. This may also seem odd because
the window obviously requires an HTML file containing the specifications for the
frameset. In truth, the parent window has a document object associated with it, but
it is omitted from the diagram to better portray the relationships among parent and
child windows. A frameset parent’s document cannot contain most of the typical
HTML objects such as forms and controls, so references to the parent’s document
are rarely, if ever, used.

If you add a script to the framesetting document that needs to access a property
or method of that window object, references are like any single-frame situation.
Think about the point of view of a script located in that window. Its immediate
universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of
these frames contains a document object whose content you see in the browser
window. And the structure is such that each document is entirely independent of
the other. It is as if each document lived in its own browser window. Indeed, that’s
why each child frame is also a window type of object. A frame has the same kinds of
properties and methods of the window object that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate
container is the parent window. When a parent window is at the very top of the
hierarchical model loaded in the browser, that window is also referred to as the
top object.

References among Family Members

Given the frame structure of Figure 11-2, it’s time to look at how a script in any
one of those windows can access objects, functions, or variables in the others. An
important point to remember about this facility is that if a script has access to an
object, function, or global variable in its own window, that same item can be
reached by a script from another frame in the hierarchy (provided both documents
come from the same Web server).

A script reference may need to take one of three possible routes in the two-
generation hierarchy described so far: parent to child; child to parent; or child to
child.

Each of the paths between these windows requires a different reference style.

Parent-to-child references

Probably the least common direction taken by references is when a script in the
parent document needs to access some element of one of its frames. The parent
contains two or more frames, which means the parent maintains an array of the
child frame objects. You can address a frame by array syntax or by the name you
assign to it with the NAME attribute inside the <FRAME> tag. In the following exam-
ples of reference syntax, | substitute a placeholder named 0