
Bible

Advance your JavaScript
skills with the most
comprehensive resource
available

Conquer high-end
scripting challenges using
the latest techniques

Optimize scripts for
Internet Explorer 5.5
and Netscape Navigator6

G O L D E D I T I O N

Bible
GOODMAN

G O L D
E D I T I O N

CD-ROM
INSIDE!
Nearly 300 Ready-to-Run
Example Scripts and More
on CD-ROM!

The Ultimate Guide to JavaScript for Professionals

Featuring 15 bonus chapters with expanded coverage of data validation, debugging, plug-ins, security, and more,
plus nine chapters on ready-to-use applications, this monumental reference is truly the most comprehensive and
useful guide to JavaScript available today. Writing with his trademark clarity and verve, leading JavaScript
authority Danny Goodman covers everything from Cascading Style Sheets and Document Object Models to
XML data — and gives you all the tools you need to harness the full power of client-side JavaScript.

Hundreds of Example
Scripts on CD-ROM!

Shelving Category:
Web Development/JavaScript

Reader Level:
Beginning to Advanced

System Requirements:
PC running Windows 95 or later, Windows
NT 4 or later; Power Macintosh running
System 7.6 or later. See Appendix E for
details and complete system requirements. ISBN 0-7645-4718-6

$ 69.99 USA
$104.99 Canada
£ 55.99 UK incl. VAT

,!7IA7G4-fehbii!:p;Q;T;t;t

w w w . h u n g r y m i n d s . c o m

Encyclopedic coverage of
JavaScript and DOMs
• Master JavaScript and DOM concepts with Danny’s

exclusive interactive workbench: The Evaluator

• Learn state-of-the-art debugging and tracing tricks

• Apply the latest JavaScript 1.5 exception handling
and custom object techniques

• Implement cross-browser Dynamic HTML applications
for MSIE 5.5 and Navigator 6

• Embed a universal sound plug-in controller in your
pages

• Develop deployment strategies that best suit
your content goals and target audience

VISIBLE SPINE = 2.375

JavaScript
JavaScript

Turn in: .75 Board: 7.0625 Board: 7.0625 Turn in: .75

® JavaScriptJavaScript
The Definitive

JavaScript Guide
— Over 175,000
Copies in Print

.4375 .4375

*85555-ADAGGe
Danny Goodman

JavaScript pioneer and Consultant

®

With a foreword by Brendan Eich, creator of JavaScript

CD-ROM includes:
• A searchable e-version of the book

• Nearly 300 ready-to-run scripts from the book
• Printable version of the JavaScript and Browser

Object Quick Reference
• Plus the full version of WebSpice Objects, a

demo of BBEdit, and TextPad shareware

“I continue to use the book [JavaScript Bible]
on a daily basis and would be lost without it.”

—Mike Warner, Founder, Oak Place Publications

“Whether you are a professional or a beginner,
this is a great book to get.”

—Brant Mutch, Web Application Developer,
Wells Fargo Card Services, Inc.

Turn plain
pages into
interactive
applications

®

®

Features 15
bonus chapters

“I highly recommend Danny Goodman’s
JavaScript Bible.”

—Brendan Eich, creator of JavaScript

Ketabton.com

Praise for Danny Goodman’s JavaScript Bible
“JavaScript Bible is the definitive resource in JavaScript programming. I am never

more than three feet from my copy.”

— Steve Reich, CEO, PageCoders

“This book is a must-have for any Web developer or programmer.”

— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to

develop advanced Web sites. Mr. Goodman did an excellent job of organizing this

book and writing it so that even a beginning programmer can understand it.”

— Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”

— Dwayne King, Chief Technology Officer, White Horse

“JavaScript Bible is well worth the money spent!”

— Yen C.Y. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any Internet developer.”

— Uri Fremder, Senior Consultant, TopTier Software

“I love this book! I use it all the time, and it always delivers. It’s the only JavaScript

book I use!”

— Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”

— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I’d ever teach programming before reading your book [JavaScript
Bible]. It’s so simple to use — the Programming Fundamentals section brought it all

back! Thank you for such a wonderful book, and for breaking through my program-

ming block!”

— Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“I continue to get so much benefit from JavaScript Bible. What an amazing book! Danny

Goodman is the greatest!”

— Patrick Moss

“Danny Goodman is very good at leading the reader into the subject. JavaScript Bible
has everything we could possibly need.”

— Philip Gurdon

(c) ketabton.com: The Digital Library

“An excellent book that builds solidly from whatever level the reader is at. A book that

is both witty and educational.”

— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”

— Mike Warner, Founder, Oak Place Productions

“JavaScript Bible is by far the best JavaScript resource I’ve ever seen (and I’ve seen

quite a few).”

— Robert J. Mirro, Independent Consultant, RJM Consulting

(c) ketabton.com: The Digital Library

JavaScript® Bible,
Gold Edition

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript® Bible,
Gold Edition

Danny Goodman
With a foreword by Brendan Eich, creator of JavaScript

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

Indianapolis, IN ✦ Cleveland, OH ✦ New York, NY

(c) ketabton.com: The Digital Library

JavaScript® Bible, Gold Edition
Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Danny Goodman. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Control Number: 2001090713

ISBN: 0-7645-4718-6

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1P/RV/QW/QR/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by

Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for
Micronesia; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department; within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and resellers information,
including discounts, premium and bulk quantity sales
and foreign language translations please contact our
Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: JavaScript is a registered trademark or trademark of Sun Microsystems, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc. is not associated with any product
or vendor mentioned in this book.

is a trademark of Hungry Minds, Inc.

(c) ketabton.com: The Digital Library

About the Author
Danny Goodman is the author of numerous critically acclaimed and best-selling

books, including The Complete HyperCard Handbook, Danny Goodman’s AppleScript
Handbook, and Dynamic HTML: The Definitive Reference. He is a renowned authority

and expert teacher of computer scripting languages and is widely known for his

“JavaScript Apostle” articles at Netscape’s ViewSource online developer newsletter.

His writing style and pedagogy continue to earn praise from readers and teachers

around the world. To help keep his finger on the pulse of real-world programming

challenges, Goodman frequently lends his touch as consulting programmer and

designer to leading-edge World Wide Web and intranet sites from his home base in

the San Francisco area.

(c) ketabton.com: The Digital Library

Credits
Acquisitions Editor
Debra Williams Cauley

Project Editor
Neil Romanosky

Technical Editor
David Wall

Copy Editors
Jerelind Charles

Victoria Lee O’Malley

Proof Editor
Cordelia Heaney

Editorial Manager
Colleen Totz

Project Coordinators
Cindy Phipps

Regina Snyder

Graphics and Production Specialists
Sean Decker

John Greenough

LeAndra Johnson

Stephanie Johnson

Gabriele McCann

Jill Piscitelli

Heather Pope

Ron Terry

Erin Zeltner

Quality Control Technicians
Laura Albert

Joel Draper

Andy Hollandbeck

Susan Moritz

Permissions Editor
Laura Moss

Media Development Specialist
Greg Stephens

Media Development Coordinator
Marisa Pearman

Book Designer
Kurt Krames

Proofreading
TECHBOOKS Production Services

Indexer
Johnna VanHoose Dinse

Cover Illustrator
Kate Shaw

(c) ketabton.com: The Digital Library

Foreword

As JavaScript’s creator, I would like to say a few words about where JavaScript

has been, where it is going, and how the book you’re holding will help you to

make the most of the language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their

documents. This may seem obvious now, but in the spring of 1995 it was novel and

more than a little at odds with both the conventional wisdom (that HTML should

describe static document structure only) and the Next Big Thing (Java applets, which

were hyped as the one true way to enliven and extend Web pages). Once I got past

these contentions, JavaScript quickly shaped up along the following lines:

✦ “Java-lite” syntax. Although the “natural language” syntax of HyperTalk was fresh

in my mind after a friend lent me The Complete HyperCard Handbook by some fellow

named Goodman, the Next Big Thing weighed heavier, especially in light of another

goal: scripting Java applets. If the scripting language resembled Java, then those pro-

grammers who made the jump from JavaScript to Java would welcome similarities in

syntax. But insisting on Java’s class and type declarations, or on a semicolon after

each statement when a line ending would do, was out of the question — scripting for

most people is about writing short snippets of code, quickly and without fuss.

✦ Events for HTML elements. Buttons should have onClick event handlers.

Documents load and unload from windows, so windows should have onLoad and

onUnload handlers. Users and scripts submit forms: thus the onSubmit handler.

Although not initially as flexible as HyperCard’s messages (whose handlers inspired

the onEvent naming convention), JavaScript events let HTML authors take control

of user interaction from remote servers and respond quickly to user gestures and

browser actions. With the adoption of the W3C DOM Level 2 event handling recom-

mendations, JavaScript in modern browsers has fully flexible control over events.

✦ Objects without classes. The Self programming language proved the notion of

prototype-based inheritance. For JavaScript, I wanted a single prototype per object

(for simplicity and efficiency), based by default on the function called using the new

operator (for consonance with Java). To avoid distinguishing constructors from

methods from functions, all functions receive the object naming them as the prop-

erty that was called, in the this parameter. Although prototypes didn’t appear until

Navigator 3, they were prefigured in Version 2 by quoted text being treated as an

object (the String object prototype, to which users could attach methods).

✦ Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the

script speak HTML, as if the emitted text and markup were loaded in place of the

script itself. The possibilities went beyond automating current or last-modified

dates, to computing whole trees of tables where all the repeated structure was

rolled up in a scripted loop, while the varying contents to be tabulated came in min-

imal fashion from JavaScript objects forming a catalog or mini-database.

(c) ketabton.com: The Digital Library

x JavaScript Bible, Gold Edition

At first, I thought JavaScript would most often find use in validating input to HTML

forms. But before long, I was surprised to see how many Web designers devised

compelling applications by way of script-generated HTML and JavaScript objects. It

became clear from user demonstration and feedback that Web designers sought to

build significant applications quickly and effectively with just a few images, HTML,

and JavaScript. Eventually they demanded that the browser support what is now

known as “Dynamic HTML” (one fun link: http://www.javascript-games.org/).

As legions of Web authors embraced the authoring power of JavaScript, they, in turn,

demonstrated the crucial advantages of a scripting environment over old-school

application development. Not only were the HTML and JavaScript languages com-

paratively easy to use, but development did not require the programming expertise

needed to light all pixels and handle all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value

of a scripting language for HTML authors. By keeping the “pixel-lighting” bar low,

HTML with images has made Web designers out of millions of people. By keeping

the “event-handling” bar low, JavaScript has helped many thousands of those

designers become programmers. Perhaps the ultimate example of Web develop-

ment’s convergence with application development is the Mozilla browser, wherein

all of the user-interface and even some custom widgets and modular components

are implemented entirely using JavaScript, Cascading Style Sheets (CSS), custom

XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been

embedded in servers, authoring tools, browser plug-ins, and other kinds of browsers

(for such things as 3D graphical worlds). Its international standard, ECMA-262 (ISO

16262), has advanced to a Third Edition. But compared with languages such as Perl

and even Java, it is still relatively young. Work toward a Fourth Edition of the lan-

guage, supporting optional types, classes, and versioning facilities, progresses

within the ECMA technical committee (see the “JS2” proposal to the ECMA technical

committee documented at http://www.mozilla.org/js/language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal,

and patient community of developers; I owe them each a huge debt of thanks.

Those developers who took up the beta releases of Navigator 2 and disseminated

vital workarounds and feature requests by e-mail and net-news are the language’s

godparents. Developer support and feedback continue to make JavaScript the

eclectic, rambunctious success it is.

The book in your hands compiles thousands of those “developer miles” with the

insight of an expert guide and teacher. Danny didn’t know at the time how much inspi-

ration I found in his HyperCard book, but it was on my desk throughout the develop-

ment of JavaScript in 1995. His energy, compassion, and clear prose helped me keep the

goal of “a language for all” in mind. It is enormously gratifying to write the foreword to

the Gold edition of this book, which has earned so many “satisfied reader miles.”

I highly recommend Danny Goodman’s JavaScript Bible to anyone who wants to

learn JavaScript, and especially to those HTML authors who’ve so far written only a

few scripts or programs — you’re in for a lifetime of fun on the “scripting road” with

a trusty guide at your side.

— Brendan Eich
The Mozilla Organization (http://www.mozilla.org)

(c) ketabton.com: The Digital Library

Preface

For nearly 20 years, I have written the books I wished had already been written

to help me learn or use a new technology. Whenever possible, I like to get in at

the very beginning of a new authoring or programming environment, feel the grow-

ing pains, and share with readers the solutions to my struggles. This Gold edition of

the JavaScript Bible represents knowledge and experience accumulated over five

years of daily work in JavaScript and a constant monitoring of newsgroups for ques-

tions, problems, and challenges facing scripters at all levels. My goal is to help you

avoid the same frustration and head scratching I and others have experienced

through multiple generations of scriptable browsers.

While previous editions of this book focused on the then-predominant Netscape

Navigator browser, the swing of the browser market share pendulum currently

favors Microsoft Internet Explorer. At the same time, Netscape has accomplished

the admirable task of reinventing its own browser in light of rapidly advancing

industry standards. As a result of both of these trends, this massively revised and

expanded Gold edition treats both brands of browsers as equals as far as scripters

are concerned. You hear my praise and dismay at various scripting features of both

browser families. But empowering you to design and write good scripts is my pas-

sion, regardless of browser. Therefore, the book contains details about proprietary

and standard implementations to equip you to choose the development path that

best fits your content’s audience. If you detect any bias of mine throughout this

book, it is a desire, where possible, to write scripts that work on as many browsers

as possible.

Organization and Features of This Edition
Because of the greatly expanded range of vocabularies that scripts may use in the

latest browser versions, the biggest change to the structure of the book is in the ref-

erence portion. In this edition, you find a greater distinction between the document

object model and core JavaScript language reference sections. This new division

should help those readers who are primarily interested in only the JavaScript lan-

guage (for use in other applications) find what they need more quickly. Here are

some details about the book’s structure.

Part I
Part I of the book begins with a chapter that shows how JavaScript compares with

Java and discusses its role within the rest of the World Wide Web. The Web browser

and scripting world have undergone significant changes since JavaScript first

(c) ketabton.com: The Digital Library

xii JavaScript Bible, Gold Edition

arrived on the scene. That’s why Chapter 2 is devoted to addressing challenges fac-

ing scripters who must develop applications for both single- and cross-platform

browser audiences amid rapidly changing standards efforts. Chapter 3 provides the

first foray into JavaScript, where you get to write your first practical script.

Part II
All of Part II is handed over to a tutorial for newcomers to JavaScript. Nine lessons

provide you with a gradual path through browser internals, basic programming

skills, and genuine JavaScript scripting. With only a couple of clearly labeled items,

the lessons cover scripting topics that apply to all scriptable browsers. Exercises fol-

low at the end of each lesson to help reinforce what you just learned and challenge

you to use your new knowledge (you’ll find answers to the exercises in Appendix C).

The goal of the tutorial is to equip you with sufficient experience to start scripting

simple pages right away while making it easier for you to understand the in-depth

discussions and examples in the rest of the book. By the end of the final lesson,

you’ll know how to script multiple frame environments and even create the mouse-

rollover image swapping effect that is popular in a lot of Web pages these days.

You can find all of the Part II chapters on the CD-ROM that accompanies this
book.

Part III
Part III, the largest section of the book, provides in-depth coverage of the document

object models as implemented in browsers from the earliest days to today. In all ref-

erence chapters, a compatibility chart indicates the browser version that supports

each object and object feature. One chapter in particular, Chapter 15, contains ref-

erence material that is shared by most of the remaining chapters of Part III. To help

you refer back to Chapter 15 from other chapters, a dark tab along the outside edge

of the page shows you at a glance where the chapter is located. Additional naviga-

tion aids include guide words at the bottoms of most pages to indicate which object

and object feature is covered on the page.

Part IV
Reference information for the core JavaScript language fills Part IV. As with refer-

ence chapters of Part III, the JavaScript chapters display browser compatibility

charts for every JavaScript language term. Guide words at the bottoms of pages

help you find a particular term quickly.

Part V
In Part V, I get down to the business of deploying JavaScript. Here are the practical

aspects of JavaScript, such as Chapter 43’s coverage of client-side form data valida-

tion and Chapter 44’s coverage of blending Java applets and plug-ins into pages.

On the
CD-ROM

(c) ketabton.com: The Digital Library

xiiiPreface

Debugging scripts is the focus of Chapter 45, with tips on understanding error

messages, building your own debugging tools. Chapter 46 goes into great detail

about security issues for JavaScript-enabled applications. Dynamic HTML in a cross-

browser environment is the subject of Chapter 47, while Chapter 48 introduces you

to Microsoft’s behaviors mechanism for Windows.

The remaining nine chapters consist of full-fledged applications of JavaScript. These

applications are designed not necessarily as plug-and-play modules you can put into

your pages right away. Instead, their goal is to demonstrate many of the concepts

described earlier in the book by way of real-world examples. New for this edition are

some examples based on XML data islands in Internet Explorer for Windows.

Part VI
Finally, several appendixes at the end of the book provide helpful reference informa-

tion. These resources include a JavaScript and Browser Objects Quick Reference in

Appendix A, a list of JavaScript reserved words in Appendix B, answers to Part II’s

tutorial exercises in Appendix C, and Internet resources in Appendix D. In Appendix E,

you also find information on using the CD-ROM that comes with this book.

CD-ROM
The accompanying CD-ROM contains over 300 ready-to-run HTML documents that

serve as examples of most of the document object model and JavaScript vocabu-

lary words in Parts III and IV. You can run these examples with your JavaScript-

enabled browser, but be sure to use the index.html page in the listings folder as a

gateway to running the listings. This page shows you the browsers that are compat-

ible with each example listing. I could have provided you with humorous little sam-

ple code fragments out of context, but I think that seeing full-fledged HTML

documents (simple though they may be) for employing these concepts is impor-

tant. I intentionally omitted the script listings from the tutorial part (Part II) of this

book to encourage you to type the scripts. I believe you learn a lot, even by aping

listings from the book, as you get used to the rhythms of typing scripts in docu-

ments. You also find listings from Parts I and V on the CD-ROM.

The CD-ROM holds another valuable resource: dozens and dozens of Example sec-

tions for Parts III and IV, which are compiled in Appendix F. Many of these sections

reveal detailed descriptions of HTML listings that illustrate a particular object

model or language feature. Even more Example sections invite you to try out an

object model or language feature with the help of an interactive workbench, called

The Evaluator — a JavaScript Bible exclusive! You see instant results and quickly

learn how the feature works.

The Quick Reference from Appendix A is in .pdf format on the CD-ROM for you to

print out and assemble as a handy reference, if desired. Adobe Acrobat Reader is

also included on the CD-ROM so that you can read this .pdf file. Finally, the text of

the book is in a .pdf file format on the CD-ROM for easy searching.

(c) ketabton.com: The Digital Library

xiv JavaScript Bible, Gold Edition

Prerequisites to Learning JavaScript
Although this book doesn’t demand that you have a great deal of programming

experience behind you, the more Web pages you’ve created with HTML, the easier

you will find it to understand how JavaScript interacts with the familiar elements

you normally place in your pages. Occasionally, you will need to modify HTML tags

to take advantage of scripting. If you are familiar with those tags already, the

JavaScript enhancements will be simple to digest.

Forms and their elements (text fields, buttons, and selection lists) play an espe-

cially important role in much of typical JavaScript work. You should be familiar with

these elements and their HTML attributes. Fortunately, you won’t need to know

about server scripting or passing information from a form to a server. The focus

here is on client-side scripting, which operates independently of the server after

the JavaScript-enhanced HTML page is fully loaded into the browser.

The basic vocabulary of the current HTML standard should be part of your working

knowledge. When we get to using frames, for instance, the focus is on how to script

these elements, not on designing pages with them. Microsoft, Netscape, and other

online sources provide more detailed explanations of frames.

If you’ve never programmed before
To someone who learned HTML from a slim guidebook a few years ago, the size of

this book must be daunting. JavaScript may not be the easiest language in the

world to learn, but believe me, it’s a far cry from having to learn a full programming

language, such as Java or C. Unlike developing a full-fledged monolithic application

(such as the productivity programs you buy in the stores), JavaScript lets you

experiment by writing small snippets of program code to accomplish big things.

The JavaScript interpreter built into every scriptable browser does a great deal of

the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of

instructions for the computer to follow. We humans follow instructions all the time,

even if we don’t realize it. Traveling to a friend’s house is a sequence of small instruc-

tions: Go three blocks that way; turn left here; turn right there. Amid these instruc-

tions are some decisions that we have to make: If the stoplight is red, then stop; if the

light is green, then go; if the light is yellow, then floor it. Occasionally, we must repeat

some operations several times (kind of like having to go around the block until a

parking space opens up). A computer program not only contains the main sequence

of steps, but it also anticipates what decisions or repetitions may be needed to

accomplish the program’s goal (such as how to handle the various states of a stop-

light or what to do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a

programming language wants its words and numbers organized in these instruc-

tions. Such rules are called syntax, the same as in a living language. Because com-

puters generally are dumb electronic hulks, they aren’t very forgiving if you don’t

(c) ketabton.com: The Digital Library

xvPreface

communicate with them in the specific language they understand. When speaking

to another human, you can flub a sentence’s syntax and still have a good chance of

the other person’s understanding you fully. Not so with computer programming lan-

guages. If the syntax isn’t perfect (or at least within the language’s range of knowl-

edge that it can correct), the computer has the brazenness to tell you that you have

made a syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learn-

ing experiences. Even experienced programmers get them. Every syntax error you

get — and every resolution of that error made by rewriting the wayward

statement — adds to your knowledge of the language.

If you’ve done a little programming before
Programming experience in a procedural language, such as BASIC or Pascal, may

almost be a hindrance rather than a help to learning JavaScript. Although you may

have an appreciation for precision in syntax, the overall concept of how a program

fits into the world is probably radically different from how JavaScript works. Part of

this has to do with the typical tasks a script performs (carrying out a very specific

task in response to user action within a Web page), but a large part also has to do

with the nature of object-oriented programming.

In a typical procedural program, the programmer is responsible for everything that

appears on the screen and everything that happens under the hood. When the pro-

gram first runs, a great deal of code is dedicated to setting up the visual environ-

ment. Perhaps the screen contains several text entry fields or clickable buttons. To

determine which button a user clicks, the program examines the coordinates of the

click and compares those coordinates against a list of all button coordinates on the

screen. Program execution then branches out to perform the instructions reserved

for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is con-

sidered an object — something tangible. An object has properties, such as its label,

size, alignment, and so on. An object may also contain a script. At the same time, the

system software and browser, working together, can send a message to an object —

depending on what the user does — to trigger the script. For example, if a user clicks

in a text entry field, the system/browser tells the field that somebody has clicked

there (that is, has set the focus to that field), giving the field the task of deciding

what to do about it. That’s where the script comes in. The script is connected to the

field, and it contains the instructions that the field carries out after the user acti-

vates it. Another set of instructions may control what happens when the user types

an entry and tabs or clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They

contain a simple list of instructions that are carried out in order. But when dealing

with data from form elements, these instructions work with the object-based nature

of JavaScript. The form is an object; each radio button or text field is an object as

well. The script then acts on the properties of those objects to get some work done.

(c) ketabton.com: The Digital Library

xvi JavaScript Bible, Gold Edition

Making the transition from procedural to object-oriented programming may be the

most difficult challenge for you. When I was first introduced to object-oriented pro-

gramming a number of years ago, I didn’t get it at first. But when the concept

clicked — a long, pensive walk helped — so many light bulbs went on inside my

head that I thought I might glow in the dark. From then on, object orientation

seemed to be the only sensible way to program.

If you’ve programmed in C before
By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript

shares many syntactical characteristics with C. Programmers familiar with C will feel

right at home. Operator symbols, conditional structures, and repeat loops follow very

much in the C tradition. You will be less concerned about data types in JavaScript than

you are in C. In JavaScript, a variable is not restricted to any particular data type.

With so much of JavaScript’s syntax familiar to you, you will be able to concentrate

on document object model concepts, which may be entirely new to you. You will

still need a good grounding in HTML (especially form elements) to put your exper-

tise to work in JavaScript.

If you’ve programmed in Java before
Despite the similarity in their names, the two languages share only surface aspects:

loop and conditional constructions, C-like “dot” object references, curly braces for

grouping statements, several keywords, and a few other attributes. Variable decla-

rations, however, are quite different, because JavaScript is a loosely typed lan-

guage. A variable can contain an integer value in one statement and a string in the

next (though I’m not saying that this is good style). What Java refers to as methods,

JavaScript calls methods (when associated with a predefined object) or functions

(for scripter-defined actions). JavaScript methods and functions may return values

of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are

the object-oriented notions of classes, inheritance, instantiation, and message pass-

ing. These aspects are simply non-issues when scripting. At the same time, however,

JavaScript’s designers knew that you’d have some hard-to-break habits. For example,

although JavaScript does not require a semicolon at the end of each statement line,

if you type one in your JavaScript source code, the JavaScript interpreter won’t balk.

If you’ve written scripts (or macros) before
Experience with writing scripts in other authoring tools or macros in productivity

programs is helpful for grasping a number of JavaScript’s concepts. Perhaps the

most important concept is the idea of combining a handful of statements to perform

a specific task on some data. For example, you can write a macro in Microsoft Excel

that performs a data transformation on daily figures that come in from a corporate

financial report on another computer. The macro is built into the Macro menu, and

you run it by choosing that menu item whenever a new set of figures arrives.

(c) ketabton.com: The Digital Library

xviiPreface

More sophisticated scripting, such as that found in Toolbook or HyperCard, pre-

pares you for the object orientation of JavaScript. In those environments, screen

objects contain scripts that are executed when a user interacts with those objects.

A great deal of the scripting you will do in JavaScript matches that pattern exactly.

In fact, those environments resemble the scriptable browser environment in

another way: They provide a finite set of predefined objects that have fixed sets of

properties and behaviors. This predictability makes learning the entire environ-

ment and planning an application easier to accomplish.

Formatting and Naming Conventions
The script listings and words in this book are presented in a monospace font to

set them apart from the rest of the text. Because of restrictions in page width, lines

of script listings may, from time to time, break unnaturally. In such cases, the

remainder of the script appears in the following line, flush with the left margin of

the listing, just as they would appear in a text editor with word wrapping turned on.

If these line breaks cause you problems when you type a script listing into a docu-

ment yourself, I encourage you to access the corresponding listing on the CD-ROM

to see how it should look when you type it.

As soon as you reach Part III of this book, you won’t likely go for more than a page

before reading about an object model or language feature that requires a specific min-

imum version of one browser or another. To make it easier to spot in the text when a

particular browser and browser version is required, most browser references consist

of a two-letter abbreviation and a version number. For example, IE5 means Internet

Explorer 5 for any operating system; NN6 means Netscape Navigator 6 for any operat-

ing system. If a feature is introduced with a particular version of browser and is sup-

ported in subsequent versions, a plus symbol (+) follows the number. For example, a

feature marked IE4+ indicates that Internet Explorer 4 is required at a minimum, but

the feature is also available in IE5, IE5.5, and so on. Occasionally, a feature or some

highlighted behavior applies to only one operating system. For example, a feature

marked IE4+/Windows works only on Windows versions of Internet Explorer 4 or

later. As points of reference, the first scriptable browsers were NN2, IE3/Windows,

and IE3.01/Macintosh. Moreover, IE3 for Windows can be equipped with one of two

versions of the JScript .dll file. A reference to the earlier version is cited as IE3/J1,

while the later version is cited as IE3/J2. You will see this notation primarily in the

compatibility charts throughout the reference chapters.

Note, Tip, and Caution icons occasionally appear in
the book to flag important points.

On the CD-ROM icons point you to useful examples and code listings found on
this book’s companion CD-ROM.

On the
CD-ROM

CautionTipNote

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Acknowledgments

Before closing, I would like to acknowledge the contributions of many folks

who helped make this edition possible: Eric Krock, Tom Pixley, Vidur

Apparao, and especially the ever-patient, all-knowing Brendan Eich (Mozilla);

Martin Honnen (Netscape DevEdge Champion); Tantek Celik (Microsoft’s Macintosh

development group); Brenda McLaughlin, Walt Bruce, Michael Roney, Debra

Williams Cauley, Neil Romanosky, Eric Newman, Cordelia Heaney, Jerelind Charles,

and Victoria Lee O’Malley (Hungry Minds, Inc.); technical reviewer David Wall;

“cookie man” Bill Dortch (hIdaho Design); Red and his friends (Mars, Incorporated);

and fellow scripters and newsgroup kibitzers, who unwittingly advised me as to

where scripters were having trouble with the language. Above all, I want to thank

the many readers of the first three editions of this book (with both titles, Danny
Goodman’s JavaScript Handbook and JavaScript Bible) for investing in this ongoing

effort. I wish I had the space here to acknowledge by name so many who have sent

e-mail notes and suggestions: Your input has been most welcome and greatly appre-

ciated. Now it’s time to get down to the fun of learning JavaScript. Enjoy!

(c) ketabton.com: The Digital Library

Contents at a Glance
Foreword . ix

Preface. xi

Acknowledgments . xix

Part I: Getting Started with JavaScript 1
Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3

Chapter 2: Authoring Challenges Amid the Browser Wars 11

Chapter 3: Your First JavaScript Script . 19

Part II: JavaScript Tutorial — Summary 29
Chapter 4: Browser and Document Objects . CD-1

Chapter 5: Scripts and HTML Documents . CD-23

Chapter 6: Programming Fundamentals, Part I CD-35

Chapter 7: Programming Fundamentals, Part II CD-47

Chapter 8: Window and Document Objects . CD-61

Chapter 9: Forms and Form Elements . CD-75

Chapter 10: Strings, Math, and Dates . CD-89

Chapter 11: Scripting Frames and Multiple Windows CD-99

Chapter 12: Images and Dynamic HTML . CD-109

Part III: Document Objects Reference 35
Chapter 13: JavaScript Essentials . 37

Chapter 14: Document Object Model Essentials 61

Chapter 15: Generic HTML Element Objects . 105

Chapter 16: Window and Frame Objects . 217

Chapter 17: Location and History Objects . 321

Chapter 18: The Document and Body Objects . 339

Chapter 19: Body Text Objects . 409

Chapter 20: HTML Directive Objects . 473

Chapter 21: Link and Anchor Objects . 493

Chapter 22: Image, Area, and Map Objects . 505

Chapter 23: The Form and Related Objects . 527

Chapter 24: Button Objects . 549

Chapter 25: Text-Related Form Objects . 569

Chapter 26: Select, Option, and FileUpload Objects 589

Chapter 27: Table and List Objects . 613

Chapter 28: The Navigator and Other Environment Objects 665

Chapter 29: Event Objects . 711

Chapter 30: Style Sheet and Style Objects . 777

(c) ketabton.com: The Digital Library

Chapter 31: Positioned Objects . 855

Chapter 32: Embedded Objects . 901

Chapter 33: XML Objects . 919

Part IV: JavaScript Core Language Reference 925
Chapter 34: The String Object . 927

Chapter 35: The Math, Number, and Boolean Objects 951

Chapter 36: The Date Object . 967

Chapter 37: The Array Object . 987

Chapter 38: The Regular Expression and RegExp Objects 1007

Chapter 39: Control Structures and Exception Handling 1033

Chapter 40: JavaScript Operators . 1069

Chapter 41: Functions and Custom Objects . 1093

Chapter 42: Global Functions and Statements 1127

Part V: Putting JavaScript to Work . 1147
Chapter 43: Data-Entry Validation . 1149

Chapter 44: Scripting Java Applets and Plug-ins 1177

Chapter 45: Debugging Scripts . 1217

Chapter 46: Security and Netscape Signed Scripts 1239

Chapter 47: Cross-Browser Dynamic HTML Issues 1259

Chapter 48: Internet Explorer Behaviors . 1273

Chapter 49: Application: Tables and Calendars 1285

Chapter 50: Application: A Lookup Table . 1299

Chapter 51: Application: A “Poor Man’s” Order Form 1311

Chapter 52: Application: Outline-Style Table of Contents 1321

Chapter 53: Application: Calculations and Graphics 1355

Chapter 54: Application: Intelligent “Updated” Flags 1365

Chapter 55: Application: Decision Helper . 1375

Chapter 56: Application: Cross-Browser DHTML Map Puzzle 1399

Chapter 57: Application: Transforming XML Data Islands 1415

Part VI: Appendixes . 1431
Appendix A: JavaScript and Browser Object Quick Reference 1433

Appendix B: JavaScript Reserved Words . 1447

Appendix C: Answers to Tutorial Exercises . 1449

Appendix D: JavaScript and DOM Internet Resources 1465

Appendix E: What’s on the CD-ROM . 1469

Appendix F: Examples from Parts III and IV CD-117

Index . 1473

End User License Agreement . 1512

CD-ROM Installation Instructions . 1516

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Contents
Foreword . ix

Preface. xi

Acknowledgments . xix

Part I: Getting Started with JavaScript 1

Chapter 1: JavaScript’s Role in the World Wide Web and Beyond . . . 3
Competition on the Web . 4

Hypertext Markup Language (HTML) . 4

CGI Scripting . 5

Of Helpers and Plug-ins . 6

Java Applets . 7

JavaScript: A Language for All . 7

JavaScript: The Right Tool for the Right Job 9

Chapter 2: Authoring Challenges Amid the Browser Wars 11
Leapfrog . 12

Duck and Cover . 12

Compatibility Issues Today . 13

Developing a Scripting Strategy . 16

Chapter 3: Your First JavaScript Script 19
The Software Tools . 19

Setting Up Your Authoring Environment . 20

What Your First Script Will Do . 23

Entering Your First Script . 24

Examining the Script . 25

Have Some Fun . 27

Part II: JavaScript Tutorial — Summary 29

Chapter 4: Browser and Document Objects CD-1
Scripts Run the Show . CD-1

JavaScript in Action . CD-2

(c) ketabton.com: The Digital Library

xxiv JavaScript Bible, Gold Edition

The Document Object Model . CD-8

When a Document Loads . CD-11

Object References . CD-14

About the Dot Syntax . CD-17

What Defines an Object? . CD-18

Exercises . CD-21

Chapter 5: Scripts and HTML Documents CD-23
Where Scripts Go in Documents . CD-23

JavaScript Statements . CD-27

When Script Statements Execute . CD-28

Viewing Script Errors . CD-30

Scripting versus Programming . CD-32

Exercises . CD-33

Chapter 6: Programming Fundamentals, Part I CD-35
What Language Is This? . CD-35

Working with Information . CD-35

Variables . CD-36

Expressions and Evaluation . CD-38

Data Type Conversions . CD-40

Operators . CD-42

Exercises . CD-44

Chapter 7: Programming Fundamentals, Part II CD-47
Decisions and Loops . CD-47

Control Structures . CD-48

About Repeat Loops . CD-50

Functions . CD-51

About Curly Braces . CD-54

Arrays . CD-55

Exercises . CD-59

Chapter 8: Window and Document Objects CD-61
Document Objects . CD-61

The Window Object . CD-62

Window Properties and Methods . CD-65

The Location Object . CD-68

The History Object . CD-69

The Document Object . CD-69

The Link Object . CD-73

Exercises . CD-73

(c) ketabton.com: The Digital Library

xxvContents

Chapter 9: Forms and Form Elements CD-75
The FORM Object . CD-75

Form Controls as Objects . CD-77

The Button Object . CD-79

The Checkbox Object . CD-79

The Radio Object . CD-80

The SELECT Object . CD-82

Passing Form Data and Elements to Functions CD-83

Submitting and Prevalidating Forms . CD-85

Exercises . CD-87

Chapter 10: Strings, Math, and Dates CD-89
Core Language Objects . CD-89

String Objects . CD-90

The Math Object . CD-93

The Date Object . CD-94

Date Calculations . CD-96

Exercises . CD-97

Chapter 11: Scripting Frames and Multiple Windows CD-99
Frames: Parents and Children . CD-99

References among Family Members . CD-101

Frame Scripting Tips . CD-103

Controlling Multiple Frames — Navigation Bars CD-103

More about Window References . CD-106

Exercises . CD-107

Chapter 12: Images and Dynamic HTML CD-109
The Image Object . CD-109

More Dynamism in HTML . CD-115

Exercises . CD-116

Part III: Document Objects Reference 35

Chapter 13: JavaScript Essentials . 37
JavaScript Versions . 37

Core Language Standard — ECMAScript . 38

Embedding Scripts in HTML Documents . 38

Browser Version Detection . 44

Designing for Compatibility . 53

Language Essentials for Experienced Programmers 57

Onward to Object Models . 60

(c) ketabton.com: The Digital Library

xxvi JavaScript Bible, Gold Edition

Chapter 14: Document Object Model Essentials 61
The Object Model Hierarchy . 61

How Document Objects Are Born . 64

Object Properties . 64

Object Methods . 65

Object Event Handlers . 66

Object Model Smorgasbord . 68

Basic Object Model . 68

Basic Object Model Plus Images . 69

Navigator 4–Only Extensions . 69

Internet Explorer 4+ Extensions . 71

Internet Explorer 5+ Extensions . 75

The W3C DOM . 76

Mixing Object Models . 92

Simulating IE4+ Syntax in NN6 . 99

Where to Go from Here . 102

Chapter 15: Generic HTML Element Objects 105
Generic Objects . 106

Chapter 16: Window and Frame Objects 217
Window Terminology . 217

Frames . 218

Window Object . 225

FRAME Element Object . 299

FRAMESET Element Object . 305

IFRAME Element Object . 310

popup Object . 316

Chapter 17: Location and History Objects 321
Location Object . 321

History Object . 332

Chapter 18: The Document and Body Objects 339
Document Object . 340

BODY Element Object . 399

Chapter 19: Body Text Objects . 409
BLOCKQUOTE and Q Element Objects . 410

BR Element Object . 411

FONT Element Object . 412

H1...H6 Element Objects . 414

(c) ketabton.com: The Digital Library

xxviiContents

HR Element Object . 415

LABEL Element Object . 418

MARQUEE Element Object . 420

Methods . 424

Event Handlers . 424

Range Object . 425

selection Object . 441

Text and TextNode Objects . 445

TextRange Object . 448

TextRectangle Object . 470

Chapter 20: HTML Directive Objects 473
HTML Element Object . 473

HEAD Element Object . 474

BASE Element Object . 475

BASEFONT Element Object . 477

ISINDEX Element Object . 478

LINK Element Object . 479

META Element Object . 484

SCRIPT Element Object . 487

TITLE Element Object . 490

Chapter 21: Link and Anchor Objects 493
Anchor, Link, and A Element Objects . 493

Chapter 22: Image, Area, and Map Objects 505
Image and IMG Element Objects . 505

AREA Element Object . 520

MAP Element Object . 524

Chapter 23: The Form and Related Objects 527
The Form in the Object Hierarchy . 527

FORM Object . 528

FIELDSET and LEGEND Element Objects . 545

LABEL Element Object . 547

Chapter 24: Button Objects . 549
The BUTTON Element Object, and the Button, Submit,

and Reset Input Objects . 549

Checkbox Input Object . 555

Radio Input Object . 559

Image Input Object . 565

(c) ketabton.com: The Digital Library

xxviii JavaScript Bible, Gold Edition

Chapter 25: Text-Related Form Objects 569
Text Input Object . 570

Password Input Object . 582

Hidden Input Object . 582

TEXTAREA Element Object . 583

Chapter 26: Select, Option, and FileUpload Objects 589
SELECT Element Object . 589

OPTION Element Object . 607

OPTGROUP Element Object . 609

File Input Element Object . 610

Chapter 27: Table and List Objects . 613
The Table Object Family Hierarchy . 614

TABLE Element Object . 628

TBODY, TFOOT, and THEAD Element Objects 643

CAPTION Element Object . 645

COL and COLGROUP Element Objects . 646

TR Element Object . 648

TD and TH Element Objects . 652

OL Element Object . 656

UL Element Object . 659

LI Element Object . 660

DL, DT, and DD Element Objects . 662

DIR and MENU Element Objects . 663

Chapter 28: The Navigator and Other Environment Objects 665
clientInformation Object (IE4+) and navigator Object (All) 666

mimeType Object . 684

plugin Object . 688

Looking for MIME Types and Plug-ins . 691

screen Object . 698

userProfile Object . 703

Chapter 29: Event Objects . 711
Why “Events”? . 712

Event Propagation . 713

Referencing the event object . 732

event Object Compatibility . 734

Dueling Event Models . 735

Event Types . 738

NN4 event Object . 741

IE4+ event Object . 745

NN6+ event Object . 762

(c) ketabton.com: The Digital Library

xxixContents

Chapter 30: Style Sheet and Style Objects 777
Making Sense of the Object Names . 778

Imported Style Sheets . 779

Reading Style Properties . 780

STYLE Element Object . 780

styleSheet Object . 782

cssRule and rule Objects . 792

currentStyle, runtimeStyle, and style Objects 796

filter Object . 840

Chapter 31: Positioned Objects . 855
What Is a Layer? . 855

NN4 Layer Object . 856

Positioned Elements in the Modern DOM 874

Chapter 32: Embedded Objects . 901
APPLET Element Object . 902

OBJECT Element Object . 907

EMBED Element Object . 913

The Odd Case of the PARAM Element . 917

Chapter 33: XML Objects . 919
Elements and Nodes . 919

XML Element Object . 921

Part IV: JavaScript Core Language Reference 925

Chapter 34: The String Object . 927
String and Number Data Types . 927

String Object . 930

String Utility Functions . 945

URL String Encoding and Decoding . 949

Chapter 35: The Math, Number, and Boolean Objects 951
Numbers in JavaScript . 951

Math Object . 957

Number Object . 960

Boolean Object . 965

(c) ketabton.com: The Digital Library

xxx JavaScript Bible, Gold Edition

Chapter 36: The Date Object . 967
Time Zones and GMT . 967

The Date Object . 969

Validating Date Entries in Forms . 983

Chapter 37: The Array Object . 987
Structured Data . 987

Creating an Empty Array . 988

Populating an Array . 989

JavaScript 1.2 Array Creation Enhancements 991

Deleting Array Entries . 991

Parallel Arrays . 992

Multidimensional Arrays . 995

Array Object Properties . 996

Array Object Methods . 998

Chapter 38: The Regular Expression and RegExp Objects 1007
Regular Expressions and Patterns . 1007

Language Basics . 1009

Object Relationships . 1013

Using Regular Expressions . 1017

Regular Expression Object . 1023

RegExp Object . 1027

Chapter 39: Control Structures and Exception Handling 1033
If and If. . .Else Decisions . 1034

Conditional Expressions . 1038

Repeat (for) Loops . 1039

The while Loop . 1044

The do-while Loop . 1045

Looping through Properties (for-in) . 1046

The with Statement . 1047

Labeled Statements . 1048

The switch Statement . 1050

Exception Handling . 1053

Using try-catch-finally constructions . 1055

Throwing Exceptions . 1059

Error Object . 1063

Chapter 40: JavaScript Operators . 1069
Operator Categories . 1069

Comparison Operators . 1070

Equality of Disparate Data Types . 1072

Connubial Operators . 1073

Assignment Operators . 1076

(c) ketabton.com: The Digital Library

xxxiContents

Boolean Operators . 1078

Bitwise Operators . 1082

Object Operators . 1083

Miscellaneous Operators . 1087

Operator Precedence . 1089

Chapter 41: Functions and Custom Objects 1093
Function Object . 1093

Function Application Notes . 1102

Custom Objects . 1108

Object-Oriented Concepts . 1120

Object Object . 1123

Chapter 42: Global Functions and Statements 1127
Functions . 1128

Statements . 1137

IE/Windows Objects . 1140

Part V: Putting JavaScript to Work 1147

Chapter 43: Data-Entry Validation . 1149
Real-Time Versus Batch Validation . 1149

Designing Filters . 1151

Building a Library of Filter Functions . 1152

Combining Validation Functions . 1156

Date and Time Validation . 1158

Selecting Text Fields for Reentry . 1160

An “Industrial-Strength” Validation Solution 1161

Plan for Data Validation . 1176

Chapter 44: Scripting Java Applets and Plug-ins 1177
LiveConnect Overview . 1177

Why Control Java Applets? . 1178

A Little Java . 1179

Scripting Applets in Real Life . 1181

Applet-to-Script Communication . 1190

Scripting Plug-ins . 1197

Scripting Java Classes Directly . 1214

Chapter 45: Debugging Scripts . 1217
Syntax versus Runtime Errors . 1217

Error Message Notification . 1218

Error Message Details . 1219

(c) ketabton.com: The Digital Library

xxxii JavaScript Bible, Gold Edition

Sniffing Out Problems . 1226

A Simple Trace Utility . 1232

Browser Crashes . 1235

Preventing Problems . 1235

Testing Your Masterpiece . 1236

Chapter 46: Security and Netscape Signed Scripts 1239
Battening Down the Hatches . 1239

When Worlds Collide . 1240

The Java Sandbox . 1241

Security Policies . 1241

The Same Origin Policy . 1242

The Netscape Signed Script Policy . 1244

The Digital Certificate . 1246

Signing Scripts . 1247

Accessing Protected Properties and Methods 1251

Blending Privileges into Scripts . 1254

Example . 1254

Handling Privilege Manager Errors . 1255

Signed Script Miscellany . 1256

Chapter 47: Cross-Browser Dynamic HTML Issues 1259
What Is DHTML? . 1259

Striving for Compatibility . 1261

Working Around Incompatibilities . 1262

A DHTML API Example . 1269

Chapter 48: Internet Explorer Behaviors 1273
Style Sheets for Scripts . 1273

Embedding Behavior Components . 1274

Component Structure . 1275

Behavior Examples . 1277

For More Information . 1283

Chapter 49: Application: Tables and Calendars 1285
About the Calendars . 1285

Static Tables . 1286

Dynamic Tables . 1289

Hybrids . 1293

Dynamic HTML Tables . 1293

Further Thoughts . 1297

(c) ketabton.com: The Digital Library

xxxiiiContents

Chapter 50: Application: A Lookup Table 1299
A Serverless Database . 1299

The Database . 1300

The Implementation Plan . 1300

The Code . 1301

Further Thoughts . 1308

Chapter 51: Application: A “Poor Man’s” Order Form 1311
Defining the Task . 1311

The Form Design . 1312

Form HTML and Scripting . 1313

Further Thoughts . 1319

Chapter 52: Application: Outline-Style Table of Contents 1321
Design Challenges . 1321

The Implementation Plan . 1322

The Code . 1324

Cascading Style Sheet Version . 1336

A Futuristic (XML) Outline . 1343

Further Thoughts . 1353

Chapter 53: Application: Calculations and Graphics 1355
The Calculation . 1355

User Interface Ideas . 1356

The Code . 1357

Further Thoughts . 1363

Chapter 54: Application: Intelligent “Updated” Flags 1365
The Cookie Conundrum . 1365

Time’s Not on Your Side . 1366

The Application . 1367

The Code . 1369

Further Thoughts . 1373

Chapter 55: Application: Decision Helper 1375
The Application . 1375

The Design . 1376

The Files . 1377

The Code . 1378

Further Thoughts . 1397

(c) ketabton.com: The Digital Library

xxxiv JavaScript Bible, Gold Edition

Chapter 56: Application: Cross-Browser DHTML Map Puzzle . . . 1399
The Puzzle Design . 1399

Implementation Details . 1401

Lessons Learned . 1414

Chapter 57: Application: Transforming XML Data Islands 1415
Application Overview . 1416

Implementation Plan . 1418

The Code . 1418

Dreams of Other Views . 1428

What About NN6? . 1429

Part VI: Appendixes 1431

Appendix A: JavaScript and Browser Object Quick Reference . . . 1433

Appendix B: JavaScript Reserved Words 1447

Appendix C: Answers to Tutorial Exercises 1449
Chapter 4 Answers . 1449

Chapter 5 Answers . 1450

Chapter 6 Answers . 1451

Chapter 7 Answers . 1452

Chapter 8 Answers . 1456

Chapter 9 Answers . 1457

Chapter 10 Answers . 1461

Chapter 11 Answers . 1463

Chapter 12 Answers . 1463

Appendix D: JavaScript and DOM Internet Resources 1465
Support and Updates for this Book . 1465

Newsgroups . 1465

FAQs . 1466

Online Documentation . 1467

World Wide Web . 1467

Appendix E: What’s on the CD-ROM 1469
System Requirements . 1469

Disc Contents . 1469

(c) ketabton.com: The Digital Library

xxxvContents

Appendix F: Examples from Parts III and IV CD-117
Chapter 15 Examples . CD-117

Chapter 16 Examples . CD-253

Chapter 17 Examples . CD-336

Chapter 18 Examples . CD-354

Chapter 19 Examples . CD-397

Chapter 22 Examples . CD-453

Chapter 23 Examples . CD-471

Chapter 24 Examples . CD-479

Chapter 25 Examples . CD-492

Chapter 26 Examples . CD-503

Chapter 27 Examples . CD-514

Chapter 28 Examples . CD-531

Chapter 29 Examples . CD-543

Chapter 30 Examples . CD-566

Chapter 31 Examples . CD-572

Chapter 34 Examples . CD-600

Chapter 35 Examples . CD-614

Chapter 37 Examples . CD-616

Index. 1473

End User License Agreement . 1512

CD-ROM Installation Instructions . 1516

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Getting Started
with JavaScript

✦ ✦ ✦ ✦

In This Part

Chapter 1
JavaScript’s Role in
the World Wide Web
and Beyond

Chapter 2
Authoring Challenges
Amid the Browser
Wars

Chapter 3
Your First JavaScript
Script

✦ ✦ ✦ ✦

P A R T

II

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript’s
Role in the
World Wide Web
and Beyond

Many of the technologies that make the World Wide

Web possible have far exceeded their original visions.

Envisioned at the outset as a medium for publishing static

text and image content across a network, the Web is forever

being probed, pushed, and pulled by content authors. By tak-

ing for granted so much of the “dirty work” of establishing the

connection and conveying the bits between server and client

computers, content developers and programmers dream of

using that connection to generate new user experiences and

operating system-independent applications. A developer com-

munity essentially taking ownership of a technology and

molding it to do new and exciting things is not new. It’s the

enormous popularity of the Web and the accessibility of the

technologies to everyday folks who have intriguing ideas that

has led to an unprecedented explosion in turning the World

Wide Web from a bland publishing medium into a highly inter-

active, operating system-agnostic authoring platform.

The JavaScript language is a Web-enhancing technology.

When employed on the client computer, the language can help

turn a static page of content into an engaging, interactive, and

intelligent experience. Applications can be as subtle as wel-

coming a site’s visitor with the greeting “Good morning!”

when it is morning in the client computer’s time zone — even

though it is dinnertime where the server is located. Or appli-

cations can be much more obvious, such as delivering the

content of a slide show in one-page download while JavaScript

controls the sequence of hiding, showing, and “flying slide”

transitions while navigating through the presentation.

Of course, JavaScript is not the only technology that can

give life to drab Web content. Therefore, it is important to

understand where JavaScript fits within the array of

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How JavaScript
blends with other
Web-authoring
technologies

The history of
JavaScript

What kinds of jobs
you should and
should not entrust to
JavaScript

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

4 Part I ✦ Getting Started with JavaScript

standards, tools, and other technologies at your disposal. The alternative technolo-

gies described in this chapter are HTML, server programs, plug-ins, and Java

applets. In most cases, JavaScript can work side by side with these other technolo-

gies, even though the hype around some make them sound like one-stop shopping

places for all your interactive needs. That’s rarely the case. Finally, you learn about

the origins of JavaScript and what role it plays in today’s advanced Web browsers.

Competition on the Web
Web page publishers revel in logging as many visits to their sites as possible.

Regardless of the questionable accuracy of Web page hit counts, a site consistently

logging 10,000 dubious hits per week is clearly far more popular than one with 1,000

dubious hits per week. Even if the precise number is unknown, relative popularity is

a valuable measure.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing.

Competition for viewers is enormous. Not only is the Web like a ten million-channel

television, but the Web competes for viewers’ attention with all kinds of computer-

generated information. That includes anything that appears onscreen as interactive

multimedia.

Users of entertainment programs, multimedia encyclopedias, and other colorful,

engaging, and mouse finger-numbing actions are accustomed to high-quality

presentations. Frequently, these programs sport first-rate graphics, animation, live-

action video, and synchronized sound. In contrast, the lowest common denomina-

tor Web page has little in the way of razzle-dazzle. Even with the help of recent

advances in Dynamic HTML and style sheets, the layout of pictures and text is

highly constrained compared with the kinds of desktop publishing documents you

see all the time. Regardless of the quality of its content, a vanilla HTML document is

flat. At best, interaction is limited to whatever navigation the author offers in the

way of hypertext links or forms whose filled-in content magically disappears into

the Web site’s server.

With so many ways to spice up Web sites and pages, you can count on competi-

tors for your site’s visitors to do their darndest to make their sites more engaging

than yours. Unless you are the sole purveyor of information that is in high demand,

you continually must devise ways to keep your visitors coming back and entice new

ones. If you design an intranet, your competition is the drive for improved produc-

tivity by the colleagues who use the internal Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more

Web technologies to raise your pages above the noise. Let’s look at the major tech-

nologies you should know about.

Hypertext Markup Language (HTML)
As an outgrowth of SGML (Standard Generalized Markup Language), HTML is gen-

erally viewed as nothing more than a document formatting, or tagging, language.

The tags (inside <> delimiter characters) instruct a viewer program (the browser or,

more generically, the client) how to display chunks of text or images.

(c) ketabton.com: The Digital Library

5Chapter 1 ✦ JavaScript’s Role in the World Wide Web and Beyond

Relegating HTML to the category of a tagging language does disservice not only

to the effort that goes into fashioning a first-rate Web page, but also to the way

users interact with the pages. To my way of thinking, any collection of commands

and other syntax that directs the way users interact with digital information is pro-
gramming. With HTML, a Web page author controls the user experience with the

content just as the engineers who program Microsoft Excel craft the way users

interact with spreadsheet content and functions.

Recent enhancements to the published standards for HTML (HTML 4.0 and later)

endeavor to define more narrowly the purpose of HTML to assign context to con-

tent, leaving the appearance to a separate standard for style sheets. In other words,

it’s not HTML’s role to signify that some text is italic, but rather to signify why it is

italic. (For example, you tag a chunk of text that conveys emphasis regardless of

how the style sheet or browser sets the appearance of that emphasized text.)

The most interactivity that HTML lets authors play with is associated with

fill-in-the-blank forms. Browsers display text boxes, radio buttons, checkboxes, and

select lists in response to HTML tags for those types of form controls. But that’s as

far as HTML goes. Any processing of the choices or information entered into the

form by the user is the job of other technologies, such as programs on the server or

client-side scripts.

CGI Scripting
One way to enhance the interaction between user and content is to have the page

communicate with the Web server that houses the Web pages. Popular Web search

sites, such as Yahoo!, Google, and Lycos, enable users to type search criteria and

click a button or two to specify the way the search engine should treat the query.

E-commerce sites enable you to gather products in a virtual shopping cart and then

click a button to submit an order for processing. When you click the Submit or

Search buttons, your browser sends your entries from a form to the server. On the

server, a program known as a CGI (Common Gateway Interface) script formats the

data you enter and sends this information to a database or other program running

on the server. The CGI script then sends the results to your browser, sometimes in

the form of a new page or as information occupying other fields in the form.

Writing customized CGI scripts typically requires considerable programming

skill. Most CGI scripts are written in languages such as Perl, Java, and C or C++.

Very few servers are equipped to run server scripts written in JavaScript.

Whatever language you use, the job definitely requires the Web page author to

be in control of the server, including whatever back-end programs (such as

databases) are needed to supply results or massage the information coming from

the user. Even with the new, server-based Web site design tools available, CGI

scripting often is not a task that a content-oriented HTML author can do without

handing it off to a more experienced programmer.

As interesting and useful as CGI scripting is, it burdens the server with the job of

processing queries. A busy server may process hundreds of CGI scripts at a time,

while the client computers — the personal computers running the browsers — sit

idle as the browser’s logo icon dances its little animation. This wastes desktop pro-

cessing horsepower, especially if the process running on the server doesn’t need to

(c) ketabton.com: The Digital Library

6 Part I ✦ Getting Started with JavaScript

access big databases or other external computers. That’s why some people regard

browsing a basic Web page as little more than using a dumb terminal to access

some server content.

Of Helpers and Plug-ins
In the early days of the World Wide Web, a browser needed to present only a few

kinds of data before a user’s eyes. The power to render text (tagged with HTML)

and images (in popular formats such as GIF and JPEG) was built into browsers

intended for desktop operating systems. Not to be limited by those data types,

developers worked hard to extend browsers so that data in other formats could be

rendered on the client computer. It was unlikely, however, that a browser would

ever be built that could download and render, say, any of several sound file formats.

One way to solve the problem was to allow the browser, upon recognizing an

incoming file of a particular type, to launch a separate application on the client

machine to render the content. As long as this helper application was installed on

the client computer (and the association with the helper program set in the

browser’s preferences), the browser would launch the program and send the

incoming file to that program. Thus, you might have one helper application for a

MIDI sound file and another for a WAV sound file.

Beginning with Netscape Navigator 2, software plug-ins for browsers enabled

developers to extend the capabilities of the browser without having to modify the

browser. Unlike a helper application, a plug-in can enable external content to blend

into the document seamlessly.

The most common plug-ins are those that facilitate the playback of audio and

video from the server. Audio may include music tracks that play in the background

while visiting a page or live (streaming) audio, similar to a radio station. Video and

animation can operate in a space on the page when played through a plug-in that

knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common

sound file types. Developers of plug-ins for Internet Explorer for the Windows oper-

ating system commonly implement plug-ins as ActiveX controls — a distinction that

is important to the underpinnings of the operating system, but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A

popular helper application is the Adobe Acrobat Reader, which displays Acrobat

files that are formatted just as if they were being printed. But for interactivity,

developers today frequently rely on Macromedia Corporation’s Flash plug-in.

Created using the Macromedia Flash authoring environment, a Flash document can

have active clickable areas and draggable elements. Some authors even simulate

artistic video games and animated stories in Flash. A browser equipped with the

Flash plug-in displays the content in a rectangular area embedded within the

browser page.

One potential downside for authoring interactive content in Flash or similar

environments is that if the user does not have the plug-in installed, it can take some

time to download the plug-in (if the user even wants to bother). Moreover, once the

plug-in is installed, highly graphic and interactive content can take longer to down-

load to the client (especially on a dial-up connection) than some users are willing to

wait. This is one of those situations in which you must balance your creative

palette with the user’s desire for your interactive content.

(c) ketabton.com: The Digital Library

7Chapter 1 ✦ JavaScript’s Role in the World Wide Web and Beyond

Java Applets
When the interaction between user and Web page exceeds the capabilities of

HTML, experienced programmers may prefer to “roll their own” programs to handle

the special needs not available in existing plug-ins. The Java programming language

fills this need. Developed by Sun Microsystems, this language enables programmers

to write small applications (applets) that download to the browser as separate files.

An applet runs as the user needs it and then is automatically discarded from mem-

ory when the user moves elsewhere in the Web.

Animation, including animated text whose content can change over time, is a

popular application of the Java applet in an HTML page. Because applets can also

communicate with the Internet as they run (it is a very network-centric program-

ming language), they are also used for real-time, data-streaming applications that

display up-to-the-minute news, stock market, and sports data as this information

comes across the wires. Standard HTML content can surround all of this activity as

the Web page designer sees fit.

To play a Java applet, a browser company must license the technology from Sun

and build it into its browser (or link up with a Java engine that is part of the operat-

ing system). Netscape was the first third-party browser supplier to license and pro-

duce a browser capable of running Java applets (Navigator 2 under Windows 95 and

UNIX). Today, both Netscape Navigator and Microsoft Internet Explorer (IE) can

load and run Java applets on almost every operating system platform supported by

the browser.

Despite a flash of popularity in the early Java days, Java is used less and less for

browser applets. It is quite popular, however, on the server, where it is used fre-

quently to create small server application modules called servlets. On the client,

Java applets suffer the same problem as some plug-ins: the delay required to down-

load the file. Also, not every browser is equipped with the desired Java component,

causing potential compatibility conflicts.

JavaScript: A Language for All
The Java language is derived from C and C++, but it is a distinct language. Its

main audience is the experienced programmer. That leaves out many Web page

authors. I was dismayed at this situation when I first read about Java’s specifica-

tions. I would have preferred a language that casual programmers and scripters

who were comfortable with authoring tools such as Apple’s once-formidable

HyperCard and Microsoft’s Visual Basic could adopt quickly. As these accessible

development platforms have shown, nonprofessional authors can dream up many

creative applications, often for very specific tasks that no professional programmer

would have the inclination to work on. Personal needs often drive development in

the classroom, office, den, or garage. But Java was not going to be that kind of inclu-

sive language.

My spirits lifted several months later, in November 1995, when I heard of a script-

ing language project brewing at Netscape. Initially born under the name LiveScript,

this language was developed in parallel with Netscape’s Web server software. The

language was to serve two purposes with the same syntax. One purpose was as a

(c) ketabton.com: The Digital Library

8 Part I ✦ Getting Started with JavaScript

scripting language that Web server administrators could use to manage the server

and connect its pages to other services, such as back-end databases and search

engines for users looking up information. Extending the “Live” brand name further,

Netscape assigned the name LiveWire to the database connectivity usage of

JavaScript on the server.

On the client side — in HTML documents — authors could employ scripts written

in this new language to enhance Web pages in a number of ways. For example, an

author could use LiveScript to make sure that the information a user enters into a

form is of the proper type. Instead of forcing the server or database to do the data

validation (requiring data exchanges between the client browser and the server),

the user’s computer handles all the calculation work — putting some of that other-

wise wasted horsepower to work. In essence, LiveScript could provide HTML-level

interaction for the user.

As the intensity of industry interest in Java grew, Netscape saw another opportu-

nity for LiveScript: as a way for HTML documents (and their users) to communicate

with Java applets. For example, a user might make some preference selections from

checkboxes and pop-up selection lists located at the top of a Web page. Scrolling

down to the next screenful, the user sees text in the Java applet scrolling banner on

the page that is customized to the settings made above. In this case, the LiveScript

script sends the text that is to appear in the scrolling banner to the applet (and per-

haps a new color to use for the banner’s background and text). While this is hap-

pening, the server doesn’t have to worry a bit about it, and the user hasn’t had to

wait for communication between the browser and the server. As great an idea as

this was initially, this connectivity feature didn’t make it into Navigator 2 when

JavaScript first became available.

LiveScript becomes JavaScript
In early December 1995, just prior to the formal release of Navigator 2, Netscape

and Sun jointly announced that the scripting language thereafter would be known

as JavaScript. Though Netscape had several good marketing reasons for adopting

this name, the changeover may have contributed more confusion to both the Java

and HTML scripting worlds than anyone expected.

Before the announcement, the language was already related to Java in some

ways. Many of the basic syntax elements of the scripting language were reminiscent

of the C and C++ style of Java. For client-side scripting, the language was intended

for very different purposes than Java — essentially to function as a programming

language integrated into HTML documents rather than as a language for writing

applets that occupy a fixed rectangular area on the page (and that are oblivious to

anything else on the page). Instead of Java’s full-blown programming language

vocabulary (and conceptually more difficult to learn object-oriented approach),

JavaScript had a small vocabulary and a more easily digestible programming

model.

The true difficulty, it turned out, was making the distinction between Java and

JavaScript clear to the world. Many computer journalists made major blunders

when they said or implied that JavaScript provided a simpler way of building Java

applets. To this day, many programmers believe JavaScript is synonymous with the

Java language: They post Java queries to JavaScript-specific Internet newsgroups

and mailing lists.

(c) ketabton.com: The Digital Library

9Chapter 1 ✦ JavaScript’s Role in the World Wide Web and Beyond

The fact remains today that Java and JavaScript are more different than they are

similar. The two languages employ entirely different interpreter engines to execute

their lines of code. Whereas JavaScript support shipped in every platform-specific

version of Navigator 2 in February 1996, Java was not available for Windows 3.1

users until late in the life of Navigator 3. (Many squirrelly technical issues make it

difficult for this modern language to work in an “ancient” MS-DOS operating system.)

The Microsoft world
Although the JavaScript language originated at Netscape, Microsoft acknowl-

edged the potential power and popularity of the language by implementing it

(under the JScript name) in Internet Explorer 3. Even if Microsoft would rather that

the world use the VBScript (Visual Basic Script) language that it provides in the

Windows versions of IE, the fact that JavaScript is available on more browsers and

operating systems makes it the client-side scripter’s choice for anyone who must

design for a broad range of users.

In keeping with the competitive nature of the Web browser market, Netscape and

Microsoft continue to attract developers to their camps with different philosophies.

As this book is written, Netscape is waving the banner of support for published

Web standards; Microsoft, on the other hand, provides only partial standards

support but many proprietary extensions that are useful, especially when the

clients are running Win32 operating systems exclusively. If you develop pages for

an audience that uses both browser brands and multiple operating systems, this

creates challenges. I address these issues in the next chapter and in several techni-

cal sections in Parts III and IV.

JavaScript: The Right Tool for the Right Job
Knowing how to match an authoring tool to a solution-building task is an impor-

tant part of being a well-rounded Web page author. A Web page designer who

ignores JavaScript is akin to a plumber who bruises his knuckles by using pliers

instead of the wrench at the bottom of the toolbox.

By the same token, JavaScript won’t fulfill every dream. The more you under-

stand about JavaScript’s intentions and limitations, the more likely you will be to

turn to it immediately when it is the proper tool. In particular, look to JavaScript for

the following kinds of solutions:

✦ Getting your Web page to respond or react directly to user interaction with

form elements (input fields, text areas, buttons, radio buttons, checkboxes,

selection lists) and hypertext links — a class of application I call the

serverless CGI

✦ Distributing small collections of database-like information and providing a

friendly interface to that data

✦ Controlling multiple-frame navigation, plug-ins, or Java applets based on user

choices in the HTML document

✦ Preprocessing data on the client before submission to a server

✦ Changing content and styles in modern browsers dynamically and instantly in

response to user interaction

(c) ketabton.com: The Digital Library

10 Part I ✦ Getting Started with JavaScript

At the same time, understanding what JavaScript is not capable of doing is vital.

Scripters waste many hours looking for ways of carrying out tasks for which

JavaScript was not designed. Most of the limitations are designed to protect visitors

from invasions of privacy or unauthorized access to their desktop computers.

Therefore, unless a visitor uses a modern browser and explicitly gives you

permission to access protected parts of his or her computer, JavaScript cannot

surreptitiously perform any of the following actions:

✦ Setting or retrieving the browser’s preferences settings, main window

appearance features, action buttons, and printing

✦ Launching an application on the client computer

✦ Reading or writing files or directories on the client or server computer

✦ Capturing live data streams from the server for retransmission

✦ Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging

(if not “cool”) with the least amount of effort. This is particularly true when the task

is in the hands of people more comfortable with writing, graphic design, and page

layout than with hard-core programming. Not every Webmaster has legions of expe-

rienced programmers on hand to whip up some special, custom enhancement for

the site. Nor does every Web author have control over the Web server that physi-

cally houses the collection of HTML and graphics files. JavaScript brings program-

ming power within reach of anyone familiar with HTML, even when the server is a

black box at the other end of a telephone line.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Authoring
Challenges
Amid the
Browser Wars

If you are starting to learn JavaScript at this point in the

brief history of scriptable browsers, you have both a dis-

tinct advantage and disadvantage. The advantage is that you

have the wonderful capabilities of the latest browser offerings

from Netscape and Microsoft at your bidding. The disadvan-

tage is that you have not experienced the painful history of

authoring for older browser versions that were buggy and at

times incompatible with one another due to a lack of stan-

dards. You have yet to learn the anguish of carefully devising

a scripted application for the browser version you use only to

have site visitors sending you voluminous e-mail messages

about how the page triggers all kinds of script errors when

run on a different browser brand, generation, or operating

system platform.

Welcome to the real world of scripting Web pages in

JavaScript. Several dynamics are at work to help make an

author’s life difficult if the audience for the application uses

more than a single type of browser. This chapter introduces

you to these challenges before you type your first word of

JavaScript code. My fear is that the subjects I raise may dis-

suade you from progressing further into JavaScript and its

powers. But as a developer myself — and as someone who has

been using JavaScript since the earliest days of its public pre-

release availability — I dare not sugarcoat the issues facing

scripters today. Instead, I want to make sure you have an

appreciation of what lies ahead to assist you in learning the

language. I believe if you understand the big picture of the

browser-scripting world as it stands at the start of the year

2001, you will find it easier to target JavaScript usage in your

Web application development.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How leapfrogging
browser develop-
ments hurt Web
developers

Separating the core
JavaScript language
from document
objects

The importance of
developing a cross-
browser strategy

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

12 Part I ✦ Getting Started with JavaScript

Leapfrog
Browser compatibility has been an issue for authors since the earliest days of

rushing to the Web — long before JavaScript. Despite the fact that browser develop-

ers and other interested parties voiced their opinions during formative stages of

standards development, HTML authors could not produce a document that

appeared the same pixel by pixel on all client machines. It may have been one thing

to establish a set of standard tags for defining heading levels and line breaks, but it

was rare for the actual rendering of content inside those tags to look identical on

different brands of browsers.

Then, as the competitive world heated up — and Web browser development

transformed itself from a volunteer undertaking into profit-seeking businesses —

creative people defined new features and new tags that helped authors develop

more flexible and interesting looking pages. As happens a lot in any computer-

related industry, the pace of commercial development easily outpaced the studied

processing of standards. A browser maker would build a new HTML feature into a

browser and only then propose that feature to the relevant standards body. Web

authors were using these features (sometimes for prerelease browser versions)

before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive

engine on the client computer receiving the data — the HTML engine in a browser,

for example — authors face an immediate problem. Unlike a standalone computer

program that can extend and even invent functionality across a wide range and

have it run on everyone’s computer (at least for a given operating system), Web

content providers must rely on the functionality built into the browser. This led to

questions such as, “If not all browsers coming to my site support a particular HTML

feature, then should I apply newfangled HTML features for visitors only at the

bleeding edge?” and “If I do deploy the new features, what do I do for those with

older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with

these questions for many HTML features that we today take for granted. Tables and

frames come to mind. Eventually, the standards caught up with the proposed HTML

extensions — but not without a lot of author anguish along the way.

The same game continues today. But the field of players has shrunk to two pri-

mary players: Netscape and Microsoft. The independent Opera browser runs a

distant third in the browser race. For all of these companies, the stakes are higher

than ever before — market share, investor return on investment, and so on. Pick a

business buzzword, and you’ll find a reason behind the competition. What had

begun years ago as a friendly game of leapfrog (long before Microsoft even

acknowledged the Web) has become an out-and-out war.

Duck and Cover
Sometimes it is difficult to tell from week to week where the battles are being

fought. Marketing messages from the combatants turn on a dime. You can’t tell if

the message is proactive to stress a genuinely new corporate strategy or reactive to

match the opponent’s latest salvo. The combatants keep touting to each other:

“Anything you can do, we can do better!” Or, in a more recent salvo: “We support

Web standards!” and “We integrate seamlessly with the operating system!”

(c) ketabton.com: The Digital Library

13Chapter 2 ✦ Authoring Challenges Amid the Browser Wars

If it were a case of Netscape and Microsoft pitching their server and browser

software to customers for the creation of monolithic intranets, I could understand

and appreciate such efforts. The battle lines would be clearly drawn, and potential

customers would base their decisions on unemotional criteria — how well the solu-

tion fits the customer’s information distribution and connectivity goals. In fact, if

you develop for an organization-wide intranet, whose browser choice is dictated by

management, you are in luck because authoring for a single browser brand and

version is a piece of cake. But you are not in the majority.

As happens in war, civilian casualties mount when the big guns start shooting.

The battle lines have shifted dramatically in only a few years. The huge market

share territory once under Netscape’s command now lies in Microsoft hands (no

doubt aided by the millions of America Online users who receive IE as part of the

AOL software). While a fair amount of authoring common ground exists between

the latest versions of the two browsers, the newest features cause the biggest

problems for authors wishing to deploy on both browsers. Trying to determine

where the common denominator is may be the toughest part of the authoring job.

Compatibility Issues Today
Allow me to describe the current status of compatibility between Netscape

Navigator and Internet Explorer. The discussion in the next few sections intention-

ally does not get into specific scripting technology very deeply — some of you may

know very little about programming. In many chapters throughout Parts III and IV, I

offer scripting suggestions to accommodate both browsers.

Separating language from objects
Although early JavaScript authors initially treated client-side scripting as one

environment that permitted the programming of page elements, the scene has

changed as the browsers have matured. Today, a clear distinction exists between

specifications for the core JavaScript language and for the elements you script in a

document (for example, buttons and fields in a form).

On one level, this separation is a good thing. It means that one specification

exists for basic programming concepts and syntax that enables you to apply the

same language to environments that may not even exist today. You can think of the

core language as basic wiring. Once you know how electric wires work, you can

connect them to all kinds of electrical devices, including some that may not be

invented yet. Similarly, JavaScript today is used to wire together page elements in

an HTML document. Tomorrow, operating systems could use the core language to

enable users to wire together desktop applications that need to exchange informa-

tion automatically.

At the ends of today’s JavaScript wires are the elements on the page. In program-

ming jargon, these items are known as document objects. By keeping the specifica-

tions for document objects separate from the wires that connect them, you can use

other kinds of wires (other languages) to connect them. It’s like designing tele-

phones that can work with any kind of wire, including a type of wire that hasn’t

been invented yet. Today the devices can work with copper wire or fiber optic

cable. You get a good picture of this separation in Internet Explorer, whose set of

document objects can be scripted with JavaScript or VBScript. They’re the same

objects, just different wiring.

(c) ketabton.com: The Digital Library

14 Part I ✦ Getting Started with JavaScript

The separation of core language from document objects enables each concept to

have its own standards effort and development pace. But even with recommended

standards for each factor, each browser maker is free to extend the standards.

Furthermore, authors may have to expend more effort to devise one version of a

page or script that plays on both browsers unless the script adheres to a common

denominator (or uses some other branching techniques to let each browser run its

own way).

Core language standard
Keeping track of JavaScript language versions requires study of history and poli-

tics. History covers the three versions developed by Netscape; politics covers

Microsoft’s versions and the joint standards effort. The first version of JavaScript

(in Navigator 2) was Version 1.0, although that numbering was not part of the lan-

guage usage. JavaScript was JavaScript. Version numbering became an issue when

Navigator 3 was released. The version of JavaScript associated with that Navigator

version was JavaScript 1.1. As you will learn later in this book, the version number

is sometimes necessary in an attribute of the HTML tags that surround a script. The

Navigator 4.x generation increased the language version one more notch with

JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The

first version of Internet Explorer to include scripting was Internet Explorer 3. The

timing of Internet Explorer 3 was roughly coincidental to Navigator 3. But as

scripters soon discovered, Microsoft’s scripting effort was one generation behind.

Microsoft did not license the JavaScript name. As a result, the company called its

language JScript. Even so, the HTML tag attribute that requires naming the language

of the script inside the tags could be either JScript or JavaScript for Internet

Explorer. Internet Explorer 3 could understand a JavaScript script written for

Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting

newcomers were often confused because they expected the scripting languages to

be the same. Unfortunately for the scripters, there were language features in

JavaScript 1.1 that were not available in the older JavaScript version in Internet

Explorer 3. Microsoft improved JavaScript in IE3 with an upgrade to the .dll file that

gives IE its JavaScript syntax. However, it’s hard to know which .dll is installed in

any given visitor’s IE3. The situation smoothed out for Internet Explorer 4. Its core

language was essentially up to the level of JavaScript 1.2 in Navigator 4. Microsoft

still officially called the language JScript. Almost all language features that were new

in Navigator 4 (including the script tag attribute identifying JavaScript 1.2) were

understood when you loaded the scripts into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape,

Microsoft, and other concerned parties met to establish a core language standard.

The standards body is a Switzerland-based organization originally called the

European Computer Manufacturer’s Association and now known simply as ECMA

(commonly pronounced ECK-ma). In mid-1997, the first formal language specifica-

tion was agreed on and published (ECMA-262). Due to licensing issues with the

JavaScript name, the body created a new name for the language: ECMAScript.

(c) ketabton.com: The Digital Library

15Chapter 2 ✦ Authoring Challenges Amid the Browser Wars

With only minor and esoteric differences, this first version of ECMAScript was

essentially the same as JavaScript 1.1 found in Navigator 3. Both Navigator 4 and

Internet Explorer 4 supported the ECMAScript standard. Moreover, as happens so

often when commerce meets standards bodies, both browsers went beyond the

ECMAScript standard. Fortunately, the common denominator of this extended core

language is broad, lessening authoring headaches on this front.

IE5 advances to JavaScript version 1.3, while NN6 has the luxury of implementing

JavaScript 1.5. In the meantime, the ECMA standard has evolved to a new release

that incorporates features found in JavaScript 1.3 and 1.5.

While the core language tends to exhibit the most compatibility between IE and

NN, authors must pay attention to which language features are available in the

browsers visiting scripted pages. Older browser versions are not equipped to han-

dle newer JavaScript features. But you can sometimes script around these incom-

patibilities (as described throughout the language reference in Part IV).

Document object model
If NN and IE are close in core JavaScript language compatibility, nothing could be

further from the truth when it comes to the document objects. Internet Explorer 3

based its document object model (DOM) on that of Netscape Navigator 2, the same

browser level it used as a model for the core language. When Netscape added a

couple of new objects to the model in Navigator 3, the addition caused further

headaches for neophyte scripters who expected those objects to appear in Internet

Explorer 3. Probably the most commonly missed object in Internet Explorer 3 was

the image object, which lets scripts swap the image when a user rolls the cursor

atop a graphic — mouse rollovers, they’re commonly called.

In the Level 4 browsers, however, Internet Explorer’s document object model

jumped way ahead of the object model Netscape implemented in Navigator 4. The

two most revolutionary aspects of IE4 were the ability to script virtually every

element in an HTML document and the instant reflow of a page when the content

changed. This opened the way for HTML content to be genuinely dynamic without

requiring the browser to fetch a rearranged page from the server. NN4 implemented

only a small portion of this dynamism, without exposing all elements to scripts or

reflowing the page. Inline content could not change as it could in IE4. Suffice it to

say IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of

the World Wide Web Consortium (W3C). The hope among scripters was that once a

standard was in place, it would be easier to develop dynamic content for all

browsers that supported the standard.

Netscape took this wish to heart and designed an almost entirely new browser:

Navigator 6. It incorporates all of the W3C DOM Level 1 and a good chunk of Level

2. Even though Microsoft participated in the W3C DOM standards development, IE5

implements only some of the W3C DOM standard — in some cases, just enough to

allow cross-browser scripting that adheres to the standard. Of course, the standard

is not perfect either, and it brings to the DOM several brand-new concepts for

scripters. When you take these issues into account, and add to the mix the number

of older browsers still in use, scripting HTML objects is touchy business. It requires

a good knowledge of compatibility, as described in the object discussions through-

out this book.

(c) ketabton.com: The Digital Library

16 Part I ✦ Getting Started with JavaScript

Cascading Style Sheets
Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibil-

ity with a W3C recommendation called Cascading Style Sheets Level 1 (CSS1). This

specification customized content in an organized fashion throughout a document

(and thus minimized the HTML in each tag); it was also an effort to extend the

Web’s tradition of publishing static content. As implementations go, NN4 had a lot

of rough edges, especially when trying to mix style sheets and tables. But IE4 was

no angel, either, especially when comparing the results of style sheet assignments

as rendered in the Windows and Macintosh versions of the browser.

CSS Level 2 adds more style functionality to the standard, and both IE5 and NN6

support a good deal of Level 2. Rendering of styled content is more harmonious

between both browsers, largely thanks to more stringent guidelines about how

styles should render.

JavaScript plays a role in style sheets in IE4+ and NN6 because those browsers’

object models permit dynamic modification to styles associated with any content

on the page. Style sheet information is part of the object model and is therefore

accessible and modifiable from JavaScript.

Dynamic HTML
Perhaps the biggest improvements to the inner workings of the Level 4 browsers

from both Netscape and Microsoft revolve around a concept called Dynamic HTML
(DHTML). The ultimate goal of DHTML is to enable scripts in documents to control

the content, content position, and content appearance in response to user actions.

To that end, the W3C organization developed another standard for the precise posi-

tioning of HTML elements on a page as an extension of the CSS standards effort.

The CSS-Positioning recommendation was later blended into the CSS standard, and

both are now part of CSS Level 2. With positioning, you can define an exact location

on the page where an element should appear, whether the item should be visible,

and what stacking order it should take among all the items that might overlap it.

IE4+ adheres to the positioning standard syntax and makes positionable items

subject to script control. Navigator 4 followed the standard from a conceptual point

of view, but it implemented an alternative methodology involving an entirely new,

and eventually unsanctioned, tag for layers. Such positionable items were scriptable

in Navigator 4 as well, although a lot of the script syntax differed from that used in

Internet Explorer 4. Fortunately for DHTML authors, NN6, by its adherence to the

CSS standard, is more syntactically in line with DHTML style properties employed in

IE4+. Cross-browser scripting can be challenging, yet it is certainly possible if you

understand the limitations imposed by following a common denominator.

Developing a Scripting Strategy
Browsers representing the latest generation contain a hodgepodge of standards

and proprietary extensions. Even if you try to script to a common denominator

among today’s browsers, your code probably won’t take into account the earlier

versions of both the JavaScript core language and the browser document object

models.

(c) ketabton.com: The Digital Library

17Chapter 2 ✦ Authoring Challenges Amid the Browser Wars

The true challenge for authors these days is determining the audience for which

scripted pages are intended. You will learn techniques in Chapter 13 that enable

you to redirect users to different paths in your Web site based on their browser

capabilities. In Chapter 14, you will discover the alternatives you can take depend-

ing on the object model version(s) and specific features you need to support. Each

new browser generation not only brings with it new and exciting features you are

probably eager to employ in your pages, it also adds to the fragmentation of the

audience visiting a publicly accessible page. With each new browser upgrade, fewer

existing users are willing to download megabytes of browser merely to have the

latest and greatest browser version. For many pioneers — and certainly for most

nontechie users — there is an increasingly smaller imperative to upgrade browsers,

unless that browser comes via a new computer or operating system upgrade.

As you work your way through this book, know that the common denominator

you choose depends on where you draw the line for browser support. Even if you

wish to adhere to the absolutely lowest common denominator of scripting, I’ve got

you covered: The Part II tutorial focuses on language and object aspects that are

compatible with every version of JavaScript and every document object model.

At the same time, I think it is important for you to understand that the cool

application you see running on your latest, greatest browser may not translate to

Internet Explorer 3 or Navigator 2. Therefore, when you see a technique that you’d

like to emulate, be realistic in your expectations of adapting that trick for your

widest audience. Only a good working knowledge of each language term’s compati-

bility and an examination of the cool source code will reveal how well it will work

for your visitors.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Your First
JavaScript Script

In this chapter, you set up a productive script-writing and

previewing environment on your computer, and then you

write a simple script whose results you can see in your

JavaScript-compatible browser.

Because of differences in the way various personal comput-

ing operating systems behave, I present details of environ-

ments for two popular variants: Win32 operating systems

(Windows 95/98/NT/2000/ME) and the MacOS. For the most

part, your JavaScript authoring experience is the same regard-

less of the operating system platform you use — including

Linux or UNIX. Although there may be slight differences in

font designs depending on your browser and operating sys-

tem, the information remains the same. Most illustrations of

browser output in this book are made from the Win32 version

of Internet Explorer 5.x. If you run another browser or version,

don’t fret if every pixel doesn’t match with the illustrations in

this book.

The Software Tools
The best way to learn JavaScript is to type the HTML and

scripting code into documents in a text editor. Your choice of

editor is up to you, although I provide you with some guide-

lines for choosing a text editor in the next section.

Choosing a text editor
For the purposes of learning JavaScript in this book, avoid

WYSIWYG (What You See Is What You Get) Web page author-

ing tools, such as FrontPage and DreamWeaver, for now. These

tools certainly will come in handy afterward when you can

productively use those facilities for molding the bulk of your

content and layout. But the examples in this book focus more

on script content (which you must type in anyway), so there

isn’t much HTML that you have to type. Files for all complete

Web page listings (except for the tutorial chapters) also

appear on the companion CD-ROM.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to choose basic
JavaScript authoring
tools

How to set up your
authoring
environment

How to enter a
simple script to a
Web page

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

20 Part I ✦ Getting Started with JavaScript

An important factor to consider in your choice of editor is how easy it is to save

standard text files with an .html filename extension. In the case of Windows, any

program that not only saves the file as text by default but also enables you to set

the extension to .htm or .html prevents a great deal of problems. If you use

Microsoft Word, for example, the program tries to save files as binary Word files —

something that no Web browser can load. To save the file initially as a text or .html

extension file requires mucking around in the Save As dialog box. This requirement

is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that

includes the WordPad program or a more fully featured product such as the share-

ware editor called TextPad. For the MacOS, SimpleText is also fine — although the

lack of a search-and-replace function may get in the way when you start managing

your Web site pages. A favorite among Mac HTML authors and scripters is BBEdit

(Bare Bones Software), which includes a number of useful aids for scripters, such

as optional line numbers (which help in debugging JavaScript).

Choosing a browser
The other component that is required for learning JavaScript is the browser. You

don’t have to be connected to the Internet to test your scripts in the browser. You

can perform all testing offline. This means you can learn JavaScript and create cool,

scripted Web pages with a laptop computer — even on a boat in the middle of an

ocean.

The browser brand and version you use is up to you. Until you reach Chapter 12,

virtually everything you script will run in every scriptable browser. For page devel-

opment, however, you want a more modern browser, such as IE5.x or NN6. And to

derive the most benefit from the examples scattered throughout this book, you

should have the latest versions of IE and NN available for your primary operating

system.

Many example listings in this book demonstrate language or document object
model (DOM) features that work on only specific browsers and versions. Check
the compatibility listing for that language or DOM feature to make sure you use
the right browser to load the page.

Setting Up Your Authoring Environment
To make the job of testing your scripts easier, make sure that you have enough

free memory in your computer to let both your text editor and browser run simulta-

neously. You need to be able to switch quickly between editor and browser as you

experiment and repair any errors that may creep into your code. The typical work-

flow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.

2. Save the latest version to disk.

3. Switch to the browser.

Note

(c) ketabton.com: The Digital Library

21Chapter 3 ✦ Your First JavaScript Script

4. Do one of the following: If this is a new document, open the file via the

browser’s Open menu. If the document is already loaded, reload the file into

the browser.

Steps 2 through 4 are the key ones you will follow frequently. I call this three-step

sequence the save-switch-reload sequence. You will perform this sequence so often

as you script that the physical act quickly will become second nature to you. How

you arrange your application windows and effect the save-switch-reload sequence

varies according to your operating system.

Windows
You don’t have to have either the editor or browser window maximized (at full

screen) to take advantage of them. In fact, you may find them easier to work with if

you adjust the size and location of each window so both windows are as large as

possible while still enabling you to click a sliver of the other’s window. Or, you can

leave the taskbar visible so you can click the desired program’s button to switch to

its window (Figure 3-1). A monitor that displays more than 640 × 480 pixels cer-

tainly helps in offering more screen real estate for the windows and the taskbar.

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut

makes the job of the save-switch-reload steps outlined earlier a snap. If you run

Windows and also use a Windows-compatible text editor (which more than likely

has a Ctrl+S file-saving keyboard shortcut), you can effect the save-switch-reload

sequence from the keyboard all with the left hand: Ctrl+S (save the source file);

Alt+Tab (switch to the browser); Ctrl+R (reload the saved source file).

As long as you keep switching between the browser and text editor via Alt+Tab

task switching, either program is always just an Alt+Tab away.

Figure 3-1: Editor and browser window arrangement in Windows 98

(c) ketabton.com: The Digital Library

22 Part I ✦ Getting Started with JavaScript

MacOS
If you expand the windows of your text editor and browser to full screen, you

have to use the rather inconvenient Application menu (right-hand icon of the menu

bar) to switch between the programs. A better method is to adjust the size and

location of the windows of both programs so they overlap, while allowing a portion

of the inactive window to remain visible (Figure 3-2). That way, all you have to do is

click anywhere on the inactive window to bring its program to the front.

With this arrangement, the save-switch-reload sequence is a two-handed affair:

1. Press Ô-S (save the source file).

2. Click in the browser window.

3. Press Ô-R (reload the saved source file).

To return to editing the source file, click any exposed part of the text editor’s

window.

A useful utility called Program Switcher (http://www.kamprath.net/
claireware) puts the Alt+Tab program switching functionality on the Mac key-

board. It is more convenient than using the Application menu.

Figure 3-2: Editor and browser window arrangement on the
Macintosh screen

(c) ketabton.com: The Digital Library

23Chapter 3 ✦ Your First JavaScript Script

Reloading issues
For the most part, a simple page reload is enough to let you test a revised ver-

sion of a script right away. But sometimes the browser’s cache (with its default

settings) can preserve parts of the previous page’s attributes when you reload,

even though you have changed the source code. To perform a more thorough

reload, hold down the Shift key while clicking the browser’s Reload/Refresh button.

Alternatively, you can turn off the browser’s cache in the preferences area, but that

setting may negatively affect the overall performance of the browser during your

regular Web surfing.

What Your First Script Will Do
For the sake of simplicity, the kind of script you look at in the next section is the

kind that runs automatically when the browser loads the HTML page. Although all

scripting and browsing work done here is offline, the behavior of the page is identi-

cal if you place the source file on a server and someone accesses it via the Web.

Figure 3-3 shows the page as it appears in the browser after you’re finished. (The

exact wording differs slightly if you run your browser on an operating system plat-

form other than Win32 or if you use a browser other than Internet Explorer.) The

part of the page that is defined in regular HTML contains nothing more than an

<H1>-level header with a horizontal rule under it. If someone does not use a

JavaScript-equipped browser, all he or she sees is the header and horizontal rule

(unless that person has a truly outmoded browser, in which case some of the script

words appear in the page).

Figure 3-3: The finished page of your first JavaScript script

(c) ketabton.com: The Digital Library

24 Part I ✦ Getting Started with JavaScript

Below the rule, the script displays plain body text that combines static text with

information about the browser you use to load the document. The script writes a

stream of HTML information to the browser, including a tag to render a portion of

the information in boldface. Even though two lines of code are writing information

to the page, the result is rendered as one line — just as it is when all the text is

hard-coded in HTML.

Entering Your First Script
It’s time to start creating your first JavaScript script. Launch your text editor and

browser. If your browser offers to dial your Internet service provider (ISP) or begins

dialing automatically, cancel or quit the dialing operation. If the browser’s Stop

button is active, click it to halt any network searching it may try to do. You may

receive a dialog box message indicating that the URL for your browser’s home page

(usually the home page of the browser’s publisher — unless you’ve changed the set-

tings) is unavailable. That’s fine. You want the browser open, but you shouldn’t be

connected to your ISP. If you’re automatically connected via a local area network in

your office or school, that’s also fine. However, you don’t need the network connec-

tion for now. Next, follow these steps to enter and preview your first JavaScript

script:

1. Activate your text editor and create a new, blank document.

2. Type the script into the window exactly as shown in Listing 3-1.

Listing 3-1: Source Code for script1.htm

<HTML>
<HEAD>
<TITLE>My First Script</TITLE>
</HEAD>

<BODY>
<H1>Let’s Script...</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- hide from old browsers
document.write(“This browser is version “ + navigator.appVersion)
document.write(“ of ” + navigator.appName + “.”)
// end script hiding -->
</SCRIPT>
</BODY>
</HTML>

3. Save the document with the name script1.htm. (This is the lowest common

denominator filenaming convention for Windows 3.1 — feel free to use an

.html extension if your operating system allows it.)

4. Switch to your browser.

(c) ketabton.com: The Digital Library

25Chapter 3 ✦ Your First JavaScript Script

5. Choose Open (or Open File on some browsers) from the File menu and select

script1.htm. (On some browsers, you have to click a Browse button to reach

the File dialog box.)

If you typed all lines as directed, the document in the browser window should

look like the one in Figure 3-3 (with minor differences for your computer’s operating

system and browser version). If the browser indicates that a mistake exists some-

where as the document loads, don’t do anything about it for now. (Click the OK but-

ton if you see a script error dialog box.) Let’s first examine the details of the entire

document so you understand some of the finer points of what the script is doing.

Examining the Script
You do not need to memorize any of the commands or syntax discussed in this

section. Instead, relax and watch how the lines of the script become what you see

in the browser. In Listing 3-1, all of the lines up to the <SCRIPT> tag are very stan-

dard HTML. Your JavaScript-enhanced HTML documents should contain the same

style of opening tags you normally use.

The <SCRIPT> tag
Any time you include JavaScript verbiage in an HTML document, you must

enclose those lines inside a <SCRIPT>...</SCRIPT> tag pair. These tags alert the

browser program to begin interpreting all the text between these tags as a script.

Because other scripting languages (such as Microsoft’s VBScript) can take advan-

tage of these script tags, you must specify the precise name of the language in

which the enclosed code is written. Therefore, when the browser receives this sig-

nal that your script uses the JavaScript language, it employs its built-in JavaScript

interpreter to handle the code. You can find parallels to this setup in real life: If you

have a French interpreter at your side, you need to know that the person with

whom you’re conversing also knows French. If you encounter someone from Russia,

the French interpreter can’t help you. Similarly, if your browser has only a

JavaScript interpreter inside, it can’t understand code written in VBScript.

Now is a good time to instill an aspect of JavaScript that will be important to you

throughout all your scripting ventures: JavaScript is case-sensitive. Therefore, you

must enter any item in your script that uses a JavaScript word with the correct

uppercase and lowercase letters. Your HTML tags (including the <SCRIPT> tag) can

be in the case of your choice, but everything in JavaScript is case-sensitive. When a

line of JavaScript doesn’t work, look for the wrong case first. Always compare your

typed code against the listings printed in this book and against the various vocabu-

lary entries discussed throughout it.

A script for all browsers
The next line after the <SCRIPT> tag in Listing 3-1 appears to be the beginning of

an HTML comment tag. It is, but the JavaScript interpreter treats comment tags in a

special way. Although JavaScript dutifully ignores a line that begins with an HTML

comment start tag, it treats the next line as a full-fledged script line. In other words,

the browser begins interpreting the next line after a comment start tag. If you want

to put a comment inside JavaScript code, the comment must start with a double

slash (//). Such a comment may go near the end of a line (such as after a JavaScript

(c) ketabton.com: The Digital Library

26 Part I ✦ Getting Started with JavaScript

statement that is to be interpreted by the browser) or on its own line. In fact, the

latter case appears near the end of the script. The comment line starts with two

slashes.

Step back for a moment and notice that the entire script (including comments) is

contained inside a standard HTML comment tag (<!--comment-->). The value of

this containment is not clear until you see what happens to your scripted HTML

document in a non-JavaScript-compatible browser. Such a browser blows past the

<SCRIPT> tag as being an advanced tag it doesn’t understand. But it treats a line of

script as regular text to be displayed in the page. If you enclose script lines between

HTML comment tags, most older browsers don’t display the script lines. Still, some

old browsers can get tripped up and present some ugliness because they interpret

any > symbol (not the whole --> symbol) as an end-of-comment character. Figure

3-4 shows the results of your first script when viewed in a now obsolete version of

the America Online Web browser (version 2.5 for Windows).

Figure 3-4: If you enclose script lines between HTML comments,
the entire script is ignored by most, but not all, non-JavaScript
browsers. Here, an old America Online browser shows part of the
script anyway.

Remember, too, that some users don’t have access to modern browsers or

graphical browsers. (They use the Lynx text-oriented UNIX Web reader software or

Lynx-like browsers in handheld computers.) By embracing your script lines within

these comments, your Web pages don’t look completely broken in relatively mod-

ern, non-JavaScript browsers.

Notice that the comment lines that shield older browsers from your scripts go
inside the <SCRIPT>...</SCRIPT> tags. Do not put these comment lines above
the <SCRIPT> tag or below the </SCRIPT> tag and expect them to work.

One more issue about the script-hiding comment lines in this book. To save

space on the page, most examples do not have comment lines inserted in them. But

as you can see in the full-fledged application examples from Chapters 49 through

57, the comment lines are where they should be. For any pages you produce for

public consumption, always encase your script lines inside these comments.

Note

(c) ketabton.com: The Digital Library

27Chapter 3 ✦ Your First JavaScript Script

Displaying some text
Both script lines in Listing 3-1 use one of the possible actions a script can ask a

document to perform (document.write(), meaning display text in the current doc-

ument). You learn more about the document object in Chapter 18.

Whenever you ask an object (a document in this case) to perform a task for you,

the name of the task is always followed by a set of parentheses. In some cases —

the write() task, for example — JavaScript needs to know what information it

should act on. That information (called a parameter) goes inside parentheses after

the name of the task. Thus, if you want to write the name of the first U.S. president

to a document, the command to do so is

document.write(“George Washington”)

The line of text that the script writes starts with some static text (“This
browser is version”) and adds some evaluated text (the version of the browser)

to it. The writing continues with more static text that includes an HTML tag (“of
”), more evaluated text (the name of the browser application), and an HTML

closing tag and the sentence’s period (“.”). JavaScript uses the plus symbol

(+) to join (concatenate) text components into a larger, single string of text charac-

ters to be written by the document. Neither JavaScript nor the + symbol knows any-

thing about words and spaces, so the script is responsible for making sure that the

proper spaces are passed along as part of the parameters. Notice, therefore, that an

extra space exists after the word “version” in the first document.write() parame-

ter, and extra spaces exist on both sides of “of” in the second document.write()
parameter.

To fetch the information about the browser version and name for your parame-

ters, you call upon JavaScript to extract the corresponding properties from the

navigator object. You extract a property by appending the property name to the

object name (navigator in this case) and separating the two names with a period.

If you’re searching for some English to mentally assign to this scheme as you read

it, start from the right side and call the right item a property “of” the left side: the

appVersion property of the navigator object. This dot syntax looks a great deal

like the document.write() task, but a property name does not have parentheses

after it. In any case, the reference to the property in the script tells JavaScript to

insert the value of that property in the spot where the call is made. For your first

attempt at the script, JavaScript substitutes the internal information about the

browser as part of the text string that gets written to the document.

Have Some Fun
If you encounter an error in your first attempt at loading this document into your

browser, go back to the text editor and check the lines of the script section against

Listing 3-1, looking carefully at each line in light of the explanations. There may be a

single character out of place, a lowercase letter where an uppercase one belongs,

or a quote or parenthesis missing. Make necessary repairs, switch to your browser,

and click Reload.

(c) ketabton.com: The Digital Library

28 Part I ✦ Getting Started with JavaScript

To see how dynamic the script in script1.htm is, go back into the text editor

and replace the word “browser” with “client software.” Save, switch, and reload

to see how the script changes the text in the document. Feel free to substitute

other text for the quoted text in the document.write() statement. Or, add

more text with additional document.write() statements. The parameters to

document.write() are HTML text, so you can even write “
” to make a line

break. Always be sure to save, switch, and reload to see the results of your

handiwork.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

JavaScript
Tutorial—
Summary

The JavaScript tutorial is intended for the newcomer who

has little or no programming experience. But even expe-

rienced programmers who have not worked in an object-

based environment will find many of the tutorial chapters

helpful in grasping basic concepts about the ways scripts

interact with HTML elements on a page. In fact, an experi-

enced programmer may have to “unlearn” some concepts

while making the transition to a looser, interpreted environ-

ment in contrast to the rigorous discipline required in other

environments.

That’s not to say that JavaScript is anything less than “real”

programming. As several chapters in this tutorial prove, the

JavaScript language provides the same fundamental program-

ming facilities that exist in most heavy-duty languages. At the

same time, however, the language is simplified and forgiving in

an attempt to attract a wider audience than may gravitate to

languages such as C, C++, or Java.

A significant challenge in molding a tutorial about client-

side JavaScript is accommodating the wide range of document

object models that are spread among numerous browser

brands, operating systems, and versions. Despite the large

number of object model permutations implemented in the

browsers that visit a public Web site, the earliest object

model, as implemented in the first scriptable browsers, serves

as a convenient and easily digestible common denominator

for learning the basics. Therefore, the tutorial focuses most of

its energy on the first-generation object model. Everything

you learn from the tutorial is immediately applicable to the

latest browsers. This knowledge also serves as an excellent

foundation for understanding newer object model concepts,

whether your development target is just one browser type for

a corporate intranet or any browser “out there” surfing the

Web. After you have been through the tutorial, Chapter 14’s

overview of the branches of the object model evolutionary

tree becomes crystal clear.

✦ ✦ ✦ ✦

In This Part

Nine Tutorial
Chapters

What Scripts Do in
Documents

Programming
Fundamentals

Introduction to
Document Objects

✦ ✦ ✦ ✦

P A R T

IIII

(c) ketabton.com: The Digital Library

30 Part II ✦ JavaScript Tutorial — Summary

The following sections provide brief summaries of the topics covered in the tuto-
rial chapters found on the CD-ROM in Acrobat format. Each of the chapters ends
with exercises, whose answers are also on the CD-ROM in Appendix C.

Chapter 4. Browser and Document Objects
One of the best ways to understand why JavaScript is so valuable on the client

computer is to see how scripts add life to otherwise flat HTML documents. Popular

categories of scripting implementations include interactive user interfaces, instan-

taneous form validation, small data collection lookups (the data is embedded in the

document for JavaScript to search through), multiple frame management, and, in

more recent browsers, dynamic designs that allow dragging elements around the

page. At the same time, it is important to recognize when JavaScript is not the pre-

ferred technology.

This chapter introduces the concept of a document object model (DOM). You can

visualize the object model as a kind of road map to the page elements that become

objects in the browser’s memory as the page loads into the browser. Figure II-1 is

a roadmap for a hypothetical Web page that contains one of each kind of element

recognized as an object in the lowest common denominator model. The containment

notion conveyed by the grey boxes reinforces the way script statements reference

objects, starting with the window object at the top of the hierarchy. For example,

to address a text box, you assemble a reference like this: window.document.
formName.textBoxName.

Figure II-1: Map of the lowest common denominator document object model

window

frame self top parent

history document location

link anchorform

text

textarea

password

radio

checkbox

button

reset

submit

select

option

On the
CD-ROM

(c) ketabton.com: The Digital Library

31Part II ✦ JavaScript Tutorial — Summary

After a discussion of how “dot syntax” works, the chapter ends with an introduc-

tion to the way objects distinguish themselves from each other by way of their

properties, methods, and event handlers. An object’s properties are like adjectives

that describe various characteristics of the object. Methods are like an object’s

verbs, which provide scripts with ways to ask objects to do something. Event han-

dlers denote the kinds of user and system actions (such as clicking on a button)

that trigger script statements to run. Once you know an object’s properties, meth-

ods, and event handlers, you know everything your scripts can do to make it

“dance.”

Chapter 5. Scripts and HTML Documents
This chapter helps you begin to see the physical relationships between blocks of

scripts and the rest of the tags in an HTML document. By and large, scripts go

inside a set of <SCRIPT> tags. These tags tell the HTML rendering engines of script-

able browsers to ignore the content between the start and end tags. Such script

blocks can occur inside the HEAD or BODY elements, or both, depending on what

your scripts have to do in the page. But non-scriptable browsers do not recognize

the <SCRIPT> tag and try to render the scripts. To avoid this possibility, surround

the content of <SCRIPT> tags with HTML comment symbols. Scriptable browsers

can still run the scripts, but most non-scriptable browsers skip over the com-

mented material.

Script statements — each line of script code is a statement — run either immedi-

ately or in deferred mode. An immediate script statement is one that runs while the

page loads into the browser. Such a statement might use scripting to generate part

of the page’s content dynamically (as the script in Chapter 3 does). Most scripts,

however, load into the browser’s memory and sit quietly until some user or system

action triggers those statements.

While you develop scripts — and especially while you learn JavaScript — script

errors are bound to occur. It is important to view the messages associated with an

error. In this chapter you learn the ways various browsers and browser generations

let you view error messages.

Chapter 6. Programming Fundamentals, Part I
For the next two chapters, you momentarily leave the browser world, and dive

into vital concepts that the JavaScript language shares with just about every pro-

gramming language. The terminology may be foreign at first (if you are a non-pro-

grammer), but you will use this knowledge virtually every day that you apply

JavaScript to your pages.

First is the simple idea that any piece of information — a string of text charac-

ters, a number, a special indicator of “true” or “false” — is a value. To simplify a

script statement’s interaction with values, you typically assign each value to a vari-
able. In the JavaScript world, a variable is simply a name (identifier) that makes it

easy to preserve a value in memory while other statements run.

One of the most important concepts to master is that a script statement usually

consists of one or more expressions — either a value or combination of values, such

(c) ketabton.com: The Digital Library

32 Part II ✦ JavaScript Tutorial — Summary

as 3 + 4. Each expression is said to evaluate to some value. The expression 3+4
evaluates to 7; if the value 3 is assigned to a variable named a, and 4 is assigned to

a variable named b, then the expression a+b also evaluates to 7.

To help you experiment with values, expressions, and expression evaluation,

Chapter 6 introduces you to a tool called Evaluator Jr., a simplified version of a

more powerful authoring and learning tool found in Chapter 13. You can type an

expression into one field on Evaluator Jr.’s page, and immediately see the value to

which it evaluates.

Every value is of some type, such as a number or string of text characters. While

so-called data typing is not as rigid in JavaScript as it is in other languages, it is

sometimes necessary to convert a value of one type to another. Thus, the chapter

demonstrates simple conversions between number and string values. You then

meet basic operators for simple arithmetic and comparisons.

Chapter 7. Programming Fundamentals,
Part II

The tour of programming fundamentals continues with ways to influence the

sequence that the browser follows to execute statements in a script. A few

approaches to these control structures allow a script to follow different paths based

on decisions (using the comparison operators shown in Chapter 6) or on criteria

for repetition (such as inspecting each character of a text string). You learn about

if constructions and simple repeat loops.

Next you learn how to gather a related sequence of script statements into a

group called a function. A function contains the statements of a deferred script.

Functions are most commonly invoked by user actions (from object model event

handlers), but they are also invoked by statements in other functions. You can also

hand off values from one function to another in the form of parameters to a function.

To round out the fundamentals discussion, this chapter introduces the very

important concept of arrays. An array is an organized list of values (visualize a one-

column spreadsheet). You can use arrays to keep a set of related values together,

very commonly as a way to facilitate looking for a value within a collection (with the

help of the repeat loops you learned earlier). Arrays also play a role in related

groups of objects in the document object model, as you learn in subsequent chapters.

Chapter 8. Window and Document Objects
Starting with Chapter 8, you come back to the browser objects, and begin to

apply your working knowledge of the core JavaScript language to understanding the

way scripts work with objects in a document. This chapter focuses on object high

up the hierarchy shown earlier in Figure II-1.

At the top of the hierarchy is the window object, which represents the window

created by the browser program. You can also use scripts to create subwindows.

For the tutorial, you learn about setting text in the window’s status bar, three types

of dialog boxes, and how to trigger scripts when a pages finishes loading all of its

content into the window.

(c) ketabton.com: The Digital Library

33Part II ✦ JavaScript Tutorial — Summary

The location and history objects are not quite as concrete as the window

object. The location object is the more important of the two, because it contains

information about the URL (and various pieces of the URL) of the page currently in

the window. For privacy and security reasons, scripts have very little access to the

browser’s history, but the history object provides limited script access to actions

that simulate the Back and Forward navigation buttons.

A pivotal object is the document. It is the master container of all content that

arrives with the page. Scripts reference elements on the page by way of the document
object, such that the term, document, becomes part of the reference to an element.

You can use one of the document object’s methods to generate content on the page

as it loads (as demonstrated in Chapter 3).

Chapter 9. Forms and Form Elements
Most interactive Web pages contain forms, which provide text boxes to fill in,

lists to choose from, and buttons to click. The form, itself, is an object. Many of its

properties reflect the attributes you typically assign to a form, such as METHOD,

ACTION, and TARGET. Thus, scripts can change the values of those attributes based

on other user settings in the form.

A form object is also a container. Nested inside are the form controls with which

users interact. In this chapter you meet the most common properties and event

handlers of text fields, buttons, radio buttons, checkboxes, and SELECT elements.

Because form control interaction so often triggers script execution, you learn how to

pass information from the form to a function invoked by a control’s event handler.

While you’re on the subject of forms, you see the basics of client-side validation

of data to assure that form settings or text in a desired format get submitted to the

server. Client-side validation is much faster and more user-friendly than having the

server return the form for the user to complete.

Chapter 10. Strings, Math, and Dates
In Chapter 10, you come back momentarily to the core JavaScript language to

learn about a few objects that many of your document object scripts use to manipu-

late form or other kinds of values. You see more and more how the core JavaScript

language and document object models work together to produce your applications.

A string object represents a sequence of text characters. Script statements often

need to assemble longer strings out of smaller components. Operators (introduced

back in Chapter 6) play a role. But a string object also has several methods avail-

able to simplify the copying of sections of a string or finding out if a longer string

contains a shorter one (for example, whether a text box for an e-mail address con-

tains an @ character).

The JavaScript Math object is a resource that is always available to any script

statement. Use the object’s properties to get copies of constant values, such as pi;

use its methods for operations such as getting the absolute value of a number or

raising a number to a power.

Calculations involving dates and times take advantage of a huge assortment of

methods associated with the Date object. With the help of this object, your scripts

(c) ketabton.com: The Digital Library

34 Part II ✦ JavaScript Tutorial — Summary

can grab a snapshot of the date and time of the client’s system clock or create a

date object for dates in the past or future. Want to display on your page how many

shopping days remain until next Christmas? That’s one application for Date object

calculations.

Chapter 11. Scripting Frames and Multiple
Windows

One of the strengths of a scriptable browser is that scripts facilitate the manage-

ment of multiple frames far better than server-based applications. For example, you

can script a link in one frame of a three-frame window to change the documents

loaded into the other two frames. Or you can use one static frame to preserve accu-

mulated data from pages that come and go from one of the other frames.

The trickiest part of managing frames is knowing how script statements refer to

other frames and elements in those other frames. In this chapter you learn the

three possible relationships among a parent (that is, the framesetting document)

and two or more child frames. Depending on which document contains the script

and which document contains the element to reference, the format of the reference

needs to be assembled properly.

Some of the same techniques apply to managing multiple windows. Not only are

multiple windows more difficult to manage from a user interface point of view,

scripting them also presents several challenges. In this lesson you begin to appreci-

ate the issues involved.

Chapter 12. Images and Dynamic HTML
In the final chapter of the tutorial, you travel beyond the confines of the lowest

common denominator to embrace concepts that work with a lot of browsers and

can greatly improve the user experience on your page.

At the core is the image object. The image object has a split personality. On one

side is the object represented in a page by its tag; on the other side is an

image object in memory that allows scripts to preload images invisibly into the

browser’s memory cache. Through these two mechanisms, scripts can pre-cache an

alternate version of, say, an iconic button so that when the user rolls the mouse

atop the normal version, a script instantly swaps the visible image with a preloaded

one. Here you learn how to implement simple mouse rollovers with pre-cached

images.

With even more advanced browsers, particularly those that reflow their content

automatically, scripts make pages far more dynamic. Not only can elements be

dragged around the page, but table rows can be added or deleted, and entire sec-

tions of pages can be inserted or removed. These are just the tip of the iceberg of

Dynamic HTML.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Browser and
Document
Objects

This chapter marks the first of nine tutorial chapters

(which compose Part II) tailored to Web authors who

have at least basic grounding in HTML concepts. In this chap-

ter, you see several practical applications of JavaScript and

begin to see how a JavaScript-enabled browser turns familiar

HTML elements into objects that your scripts control. Most of

what you learn throughout the tutorial can be applied to all

scriptable browsers (back to Navigator 2 and Internet

Explorer 3). I clearly label a handful of fancy features that

require recent browser versions.

Scripts Run the Show
If you have authored Web pages with HTML, you are famil-

iar with how HTML tags influence the way content is rendered

on a page when viewed in the browser. As the page loads, the

browser recognizes angle-bracketed tags as formatting

instructions. Instructions are read from the top of the docu-

ment downward, and elements defined in the HTML document

appear onscreen in the same order in which they appear in

the document’s source code. As an author, you do a little work

one time and up front — adding the tags to text content — and

the browser does a lot more work every time a visitor loads

the page into a browser.

Assume for a moment that one of the elements on the page

is a text input field inside a form. The user is supposed to

enter some text in the text field and then click the Submit

button to send that information back to the Web server. If that

information must be an Internet e-mail address, how do you

ensure the user includes the “@” symbol in the address?

One way is to have a Common Gateway Interface (CGI)

program on the server inspect the submitted form data after

the user clicks the Submit button and the form information is

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What client-side
scripts do

What happens when
a document loads

How the browser
creates objects

How scripts refer to
objects

How to find out what
is scriptable in an
object

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-2 Part II ✦ JavaScript Tutorial

transferred to the server. If the user omits or forgets the “@” symbol, the CGI pro-

gram serves the page back to the browser — but this time with an instruction to

include the symbol in the address. Nothing is wrong with this exchange, but it

means a significant delay for the user to find out that the address does not contain

the crucial symbol. Moreover, the Web server has to expend some of its resources

to perform the validation and communicate back to the visitor. If the Web site is a

busy one, the server may try to perform hundreds of these validations at any given

moment, probably slowing the response time to the user even more.

Now imagine that the document containing that text input field has some intelli-

gence built into it that makes sure the text field entry contains the “@” symbol

before ever submitting one bit (literally!) of data to the server. That kind of intelli-

gence would have to be embedded in the document in some fashion — downloaded

with the page’s content so it can stand ready to jump into action when called upon.

The browser must know how to run that embedded program. Some user action

must start the program, perhaps when the user clicks the Submit button. If the

program runs inside the browser and detects a lack of the “@” symbol, an alert

message should appear to bring the problem to the user’s attention. The same pro-

gram also should be capable of deciding if the actual submission can proceed or if

it should wait until a valid e-mail address is entered into the field.

This kind of pre-submission data entry validation is but one of the practical ways

JavaScript adds intelligence to an HTML document. Looking at this example, you

might recognize that a script must know how to look into what is typed in a text

field; a script must also know how to let a submission continue or how to abort the

submission. A browser capable of running JavaScript programs conveniently treats

elements such as the text field as objects. A JavaScript script controls the action and

behavior of objects — most of which you see on the screen in the browser window.

JavaScript in Action
By adding lines of JavaScript code to your HTML documents, you control

onscreen objects in whatever way your applications require. To give you an idea of

the scope of applications you can create with JavaScript, I show you several appli-

cations on the CD-ROM (in the folders for Chapters 49 through 57). I strongly sug-

gest you open the applications and play with them in your browser as they are

described in the next several pages.

Interactive user interfaces
HTML hyperlinks do a fine job, but they’re not necessarily the most engaging

way to present a table of contents for a large site or document. With a bit of

JavaScript, you can create an interactive, expandable table of contents listing that

displays the hierarchy of a large body of material (see Figure 4-1). Just like the text

listings (or tree views) in operating system file management windows, the expand-

able table of contents lets the user see as much or as little as possible while dis-

playing the big picture of the entire data collection.

(c) ketabton.com: The Digital Library

CD-3Chapter 4 ✦ Browser and Document Objects

Figure 4-1: An expandable table of contents

Click a gray widget icon to expand the items underneath. An endpoint item has

an orange and black widget icon. Items in the outline can be links to other pages or

descriptive information. You also maintain the same kind of font control over each

entry, as expected from HTML. While such outlines have been created with server

CGIs in the past, the response time between clicks is terribly slow. By placing all of

the smarts behind the outline inside the page, it downloads once and runs quickly

after each click.

As demonstrated in the detailed description of this outline in the application

Outline-Style Table of Contents (Chapter 52 on the CD-ROM), you can implement

the scriptable workings within straight HTML for Navigator 2 and 3 — although

limitations in page rendering require rewriting the page after each click. Internet

Explorer 4+ and Navigator 6+ automatically reflow the page in response to changes

of content, turning this outliner into a truly dynamic HTML application. Either way

you do it, the quick response and action on the screen makes for a more engaging

experience for Web surfers who are in a hurry to scout your site.

Small data lookup
A common application on the Web is having a CGI program present a page that

visitors use to access large databases on the server. Large data collections are best

left on the server where search engines and other technologies are the best fit. But

if your page acts as a front end to a small data collection lookup, you can consider

embedding that data collection in the document (out of view) and letting JavaScript

act as the intermediary between user and data.

(c) ketabton.com: The Digital Library

CD-4 Part II ✦ JavaScript Tutorial

I do just that in a Social Security prefix lookup system shown in Figure 4-2. I con-

vert a printed table of about 55 entries into a JavaScript list that occupies only a

few hundred bytes. When the visitor types the three-character prefix of his or her

Social Security number into the field and clicks the Search button, a script behind

the scenes compares that number against the 55 or so ranges in the table. When the

script finds a match, it displays the corresponding state of registration in a second

field.

If the application were stored on the server and the data stored in a server

database, each click of the Search button would mean a delay of many seconds as

the server processed the request, got the data from the database, and reformulated

the page with the result for the user. Built instead as a JavaScript application, once

the page downloads the first time, scripts perform all lookups instantaneously.

Forms validation
I’ve already used data entry form validation as an example of when JavaScript is a

good fit. In fact, the data entry field in the Social Security lookup page (see Figure

4-2) includes scripting to check the validity of the entered number. Just as a CGI

program for this task has to verify that the entry is a three-digit number, so, too,

must the JavaScript program verify the entered value. If a mistake appears in the

entry — perhaps a finger slips and hits a letter key — the visitor is advised of the

problem and directed to try another entry. The validation script even preselects the

text in the entry field for the visitor so that typing a new value replaces the old one.

Figure 4-2: Looking up data in a small table

(c) ketabton.com: The Digital Library

CD-5Chapter 4 ✦ Browser and Document Objects

Interactive data
JavaScript opens opportunities for turning static information into interactive

information. Figure 4-3 shows a graphical calculator for determining the value of an

electrical component (called a resistor) whose only markings are colored bars.

Figure 4-3: An interactive graphical calculator

The image in the bottom half of the page is composed of seven images in vertical

slices all bunched up against each other. Four slices display the colored bands,

while the remaining three slices contain the ends of the resistor and the spacer

between groups of bands. As the visitor selects a color from a pop-up list near the

top, the associated image slice changes to the selected color and the resistance

value is calculated and displayed.

Again, once the page is loaded, response time is instantaneous. Conversely, a

server-based version of this calculator would take many seconds between color

changes. Moreover, JavaScript provides the power to preload all possible images

into the browser cache while the main page loads. Therefore, with only a slight

extra delay to download all images with the page, no further delay occurs when a

visitor chooses a new color. Not only is the application practical (for its intended

audience), but it’s just plain fun to play with.

Multiple frames
While frames are the domain of HTML, they suddenly become more powerful

with some JavaScript behind them. The Decision Helper application shown in

Figure 4-4 takes this notion to the extreme.

(c) ketabton.com: The Digital Library

CD-6 Part II ✦ JavaScript Tutorial

Figure 4-4: The Decision Helper

The Decision Helper is a full-fledged application that includes four input screens

and one screen that displays the results of some fairly complex calculations based

on the input screens. Results are shown both in numbers and in a bar graph form,

as displayed in Figure 4-4.

Interaction among the three frames requires JavaScript. For example, suppose

the user clicks one of the directional arrows in the top-left frame. Not only does the

top-right frame change to another document, but the instructions document in the

bottom frame also shifts to the anchor point that parallels the content of the input

screen. Scripting behind the top-right frame documents uses various techniques to

preserve entry information as the user navigates through the sequence of input

pages. These are the same techniques you might use to build an online product

catalog and shopping cart — accumulating the customer’s selections from various

catalog pages and then bringing them together in the checkout order form.

Certainly you could fashion this application out of a CGI program on the server.

But the high level of interaction and calculation required would turn this now

speedy application into a glacially slow exchange of information between user and

server.

Dynamic HTML
Starting with the version 4 browsers from both Netscape and Microsoft, you can

modify more and more content on the page with the help of client-side scripts. In

Figure 4-5, for example, scripts in the page control the dragging of map pieces in the

puzzle. Highlighted colors change as you click the state maps, instruction panels fly

in from the edge of the screen, and another item appears when you place all the

states in their proper positions.

(c) ketabton.com: The Digital Library

CD-7Chapter 4 ✦ Browser and Document Objects

Figure 4-5: A map game in scriptable Dynamic HTML

The browser feature that makes this level of script control possible is Dynamic
HTML (DHTML). JavaScript becomes the vital connection between the user and

dynamically respositionable elements on the screen. Not even a program on the

server could help this application because you need immediate programmatic

control in the page to respond to user mouse motion and instantaneous changes to

screen elements.

When to use JavaScript
The preceding examples demonstrate a wide range of applications for JavaScript,

but by no means do they come close to exhausting JavaScript’s possibilities. When

faced with a Web application task, I look to client-side JavaScript for help with the

following requirements:

✦ Data entry validation: If form fields need to be filled out for processing on the

server, I let client-side scripts prequalify the data entered by the user.

✦ Serverless CGIs: I use this term to describe processes that, were it not for

JavaScript, would be programmed as CGIs on the server, yielding slow perfor-

mance because of the interactivity required between the program and user.

This includes tasks such as small data collection lookup, modification of

images, and generation of HTML in other frames and windows based on user

input.

(c) ketabton.com: The Digital Library

CD-8 Part II ✦ JavaScript Tutorial

✦ Dynamic HTML interactivity: It’s one thing to use DHTML’s capabilities to

precisely position elements on the page — you don’t need scripting for that.

But if you intend to make the content dance on the page, scripting makes that

happen.

✦ CGI prototyping: Sometimes you may want a CGI program to be at the root of

your application because it reduces the potential incompatibilities among

browser brands and versions. It may be easier to create a prototype of the CGI

in client-side JavaScript. Use this opportunity to polish the user interface

before implementing the application as a CGI.

✦ Offloading a busy server: If you have a highly trafficked Web site, it may be

beneficial to convert frequently used CGI processes to client-side JavaScript

scripts. Once a page is downloaded, the server is free to serve other visitors.

Not only does this lighten server load, but users also experience quicker

response to the application embedded in the page.

✦ Adding life to otherwise dead pages: HTML by itself is pretty “flat.” Adding a

blinking chunk of text doesn’t help much; animated GIF images more often

distract from, rather than contribute to, the user experience at your site. But

if you can dream up ways to add some interactive zip to your page, it may

engage the user and encourage a recommendation to friends or repeat visits.

✦ Creating “Web pages that think”: If you let your imagination soar, you may

develop new, intriguing ways to make your pages appear “smart.” For exam-

ple, in the application Intelligent “Updated” Flags (Chapter 54), you see how

(without a server CGI or database) an HTML page can “remember” when a vis-

itor last came to the page. Then any items that have been updated since the

last visit — regardless of the number of updates you’ve done to the page — are

flagged for that visitor. That’s the kind of subtle, thinking Web page that best

displays JavaScript’s powers.

The Document Object Model
Before you can truly start scripting, you should have a good feel for the kinds of

objects you will be scripting. A scriptable browser does a lot of the work of creating

software objects that generally represent the visible objects you see in an HTML

page in the browser window. Obvious objects include form controls (text boxes and

buttons) and (in recent browsers) images. However, there may be other objects

that aren’t so obvious by looking at a page, but which make perfect sense when you

consider the HTML tags used to generate a page’s content — frames of a frameset,

for example.

(c) ketabton.com: The Digital Library

CD-9Chapter 4 ✦ Browser and Document Objects

To help scripts control these objects — and to help authors see some method to

the madness of potentially dozens of objects on a page — the browser makers

define a document object model (DOM). A model is like a prototype or plan for the

organization of objects on a page.

Object models implemented in browsers have grown rapidly with each genera-

tion of browser. Moreover, Microsoft and Netscape have added their own touches

from time to time in a competitive features race. The lack of compatibility among

browser versions and brands can drive scripters to distraction, especially if (at the

outset) they learn the object model only of the latest version of only one brand —

unaware of limits in earlier browsers or those from other makers.

All is not lost, however. This tutorial focuses on the document object model that

you can find in every scriptable browser. Figure 4-6 shows a map of the lowest com-

mon denominator object model, which is safe to use on all browsers. At this stage

of the learning process, it is not important to memorize the model but rather to get

a general feel for what’s going on.

Figure 4-6: Lowest common denominator document object
model for all scriptable browsers

One misconception you must avoid at the outset is that the model shown in

Figure 4-6 is the model for every document that loads into the browser. On the

contrary — it represents an idealized version of a document that includes one of

every possible type of object that the browser knows. In a moment, I will show you

how the document object model stored in the browser at any given instant reflects

the HTML in the document. But for now, I want to impress an important aspect of

the structure of the idealized model: its hierarchy.

window
frame self top parent

text radio button select

link form anchor

password submit

textarea checkbox reset option

history document location

(c) ketabton.com: The Digital Library

CD-10 Part II ✦ JavaScript Tutorial

Containment hierarchy
Notice in Figure 4-6 that objects are grouped together in various levels desig-

nated by the density of the gray background. Objects are organized in a hierarchy,

not unlike the hierarchy of a company’s organization chart of job positions. At the

top is the president. Reporting to the president are several vice presidents. One of

the vice presidents manages a sales force that is divided into geographical regions.

Each region has a manager who reports to the vice president of sales; each region

then has several salespeople. If the president wants to communicate to a salesper-

son who handles a big account, the protocol dictates that the president should

route the message through the hierarchy — to the vice president of sales; to the

sales manager; to the salesperson. The hierarchy clearly defines each unit’s role

and relationship to the other units.

This hierarchical structure applies to the organization of objects in a document.

Allow me to highlight the key objects in Figure 4-6 and explain their relationships to

others.

✦ Window object: At the top of the hierarchy is the window. This object repre-

sents the content area of the browser window where HTML documents

appear. In a multiple-frame environment, each frame is also a window (but

don’t concern yourself with this just yet). Because all document action takes

place inside the window, it is the outermost element of the object hierarchy.

Its physical borders contain the document.

✦ Document object: Each HTML document that gets loaded into a window

becomes a document object. Its position in the object hierarchy is an impor-

tant one, as you can see in Figure 4-6. The document object contains most of

the other kinds of objects in the model. This makes perfect sense when you

think about it: The document contains the content that you are likely to

script.

Proprietary and Standard Object Models

Object model features that are proprietary to one browser version and/or brand are per-
fectly usable provided you know that your audience uses that brand or version exclusively
(for example, in a corporate environment where a browser version might be mandated for
all employees). If you develop in this kind of controlled environment, then be assured that
browser-specific features are covered in the reference portions of this book.

An industry standards effort (by the W3C) has begun specifying a common set of object
model features and syntax that provide more flexibility than the original implementations.
The biggest improvement is that every HTML element becomes an object that scripts can
manipulate (a feature also found in IE4’s object model). This DOM, built upon the original
object model you learn in this tutorial, is implemented in varying degrees of completion in
IE5+ and NN6+ (the latter offering a much more complete W3C DOM implementation).
The scripter’s dream is that one day W3C DOM–compatible browsers will be the majority of
the installed base, and creating cross-browser, highly dynamic pages will be easier than
today. In the meantime, you have lots of fundamentals to learn — knowledge that you’ll use
for many years to come.

(c) ketabton.com: The Digital Library

CD-11Chapter 4 ✦ Browser and Document Objects

✦ Form object: Users don’t see the beginning and ending of forms on a page, only

their elements. But a form is a distinct grouping of content inside an HTML

document. Everything that is inside the <FORM>...</FORM> tag set is part of

the form object. A document might have more than one pair of <FORM> tags if

dictated by the page design. If so, the map of the objects for that particular

document has two form objects instead of the one that appears in Figure 4-6.

✦ Form control elements: Just as your HTML defines form elements within the

confines of the <FORM>...</FORM> tag pair, so does a form object contain all

the elements defined for that object. Each one of those form elements — text

fields, buttons, radio buttons, checkboxes, and the like — is a separate object.

Unlike the one-of-everything model shown in Figure 4-6, the precise model for

any document depends on the HTML tags in the document.

When a Document Loads
Programming languages, such as JavaScript, are convenient intermediaries

between your mental image of how a program works and the true inner workings of

the computer. Inside the machine, every word of a program code listing influences

the storage and movement of bits (the legendary 1s and 0s of the computer’s

binary universe) from one RAM storage slot to another. Languages and object mod-

els are inside the computer (or, in the case of JavaScript, inside the browser’s area

of the computer) to make it easier for programmers to visualize how a program

works and what its results will be. The relationship reminds me a lot of knowing

how to drive an automobile from point A to point B without knowing exactly how an

internal combustion engine, steering linkages, and all that other internal “stuff”

works. By controlling high-level objects such as the ignition key, gearshift, gas

pedal, brake, and steering wheel, I can get the results I need.

Of course, programming is not exactly like driving a car with an automatic trans-

mission. Even scripting requires the equivalent of opening the hood and perhaps

knowing how to check the transmission fluid or change the oil. Therefore, now it’s

time to open the hood and watch what happens to the document object model as a

page loads into the browser.

A simple document
Figure 4-7 shows the HTML and corresponding object model for a very simple

document. When this page loads, the browser maintains in its memory a map of the

objects generated by the HTML tags in the document. The window object is always

there for every document. Every window object also contains an object called the

location object (it stores information about the URL of the document being

loaded). I’ll skip that object for now, but acknowledge its presence (as a dimmed

box in the diagram) because it is part of the model in the browser memory. Finally,

because a document has been loaded, the browser generates a document object in

its current map.

(c) ketabton.com: The Digital Library

CD-12 Part II ✦ JavaScript Tutorial

Figure 4-7: A simple document and object map

In IE4+ and the W3C DOM, every HTML element (such as the H1 element of
Figure 4-7) becomes an object contained by the document. But this tutorial
observes the original model, which turns only a handful (albeit an important
handful) of HTML elements into scriptable objects.

Add a form
Now, I modify the HTML file to include a blank <FORM> tag set and reload the

document. Figure 4-8 shows what happens to both the HTML (changes in boldface)

and the object map as constructed by the browser. Even though no content

appears in the form, the <FORM> tags are enough to tell the browser to create that

form object. Also note that the form object is contained by the document in the

hierarchy of objects in the current map. This mirrors the structure of the idealized

map shown in Figure 4-6.

Figure 4-8: Adding a form

Add a text input element
I modify and reload the HTML file again, this time including an <INPUT> tag that

defines the text field form element shown in Figure 4-9. As mentioned earlier, the

containment structure of the HTML (the <INPUT> tag goes inside a <FORM> tag set)

is reflected in the object map for the revised document. Therefore, the window con-

tains a document; the document contains a form; and the form contains a text input

element.

LocationWindow

Document

Form

<HTML>
<HEAD><TITLE>
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1>
<FORM>
</FORM>
</BODY>
</HTML>

Note

Window

Document

Location
<HTML>
<HEAD><TITLE>
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

CD-13Chapter 4 ✦ Browser and Document Objects

Figure 4-9: Adding a text input element to the form

Add a button element
The last modification I make to the file is to add a button input element to the

same form as the one that holds the text input element (see Figure 4-10). Notice

that the HTML for the button is contained by the same <FORM> tag set as the text

field. As a result, the object map hierarchy shows both the text field and button

contained by the same form object. If the map were a corporate organization chart,

the employees represented by the Text and Button boxes would be at the same

level reporting to the same boss.

Figure 4-10: Adding a button element to the same form

LocationWindow

Document

Form

Text

<HTML>
<HEAD><TITLE>
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1>
<FORM>
 <INPUT TYPE="text">
 <INPUT TYPE="button">
</FORM>
</BODY>
</HTML>

Button

LocationWindow

Document

Form

Text

<HTML>
<HEAD><TITLE>
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1>
<FORM>
 <INPUT TYPE="text">
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

CD-14 Part II ✦ JavaScript Tutorial

Now that you see how objects are created in memory in response to HTML tags,

the next step is to figure out how scripts can communicate with these objects. After

all, scripting is mostly about controlling these objects.

Object References
After a document is loaded into the browser, all of its objects are safely stored in

memory in the containment hierarchy structure specified by the browser’s docu-

ment object model. For a script to control one of those objects, there must be a way

to communicate with an object and find out something about it such as, “Hey, Mr.

Text Field, what did the user type?”

The JavaScript language uses the containment hierarchy structure to let scripts

get in touch with any object in a document. For a moment, pretend you are the

browser with a document loaded into your memory. You have this road map of

objects handy. If a script needs you to locate one of those objects, it would be a big

help if the script showed you what route to follow in the map to reach that object.

That is precisely what an object reference in a script does for the browser.

Object naming
The biggest aid in creating script references to objects is assigning names to

every scriptable object in your HTML. Scriptable browsers, such as modern ver-

sions of Navigator and Internet Explorer, acknowledge an optional tag attribute

called NAME. This attribute enables you to assign a unique name to each object.

Here are some examples of NAME attributes added to typical tags:

<FORM NAME=”dataEntry” METHOD=GET>

<INPUT TYPE=”text” NAME=”entry”>

<FRAME SRC=”info.html” NAME=”main”>

The only rules about object names (also called identifiers) are that they

✦ May not contain spaces

✦ Should not contain punctuation except for the underscore character

✦ Must be inside quotes when assigned to the NAME attribute

✦ Must not start with a numeric character

Think of assigning names the same as sticking nametags on everyone attending a

conference meeting. The name of the object, however, is only one part of the actual

reference that the browser needs to locate the object. For each object, the refer-

ence must include the steps along the object hierarchy from the top down to the

object — no matter how many levels of containment are involved. In other words,

the browser cannot pick out an object by name only. A reference includes the

names of each object along the path from the window to the object. In the

JavaScript language, each successive object name along the route is separated from

another by a period.

(c) ketabton.com: The Digital Library

CD-15Chapter 4 ✦ Browser and Document Objects

To demonstrate what real references look like within the context of an object

model you’ve already seen, I retrace the same model steps shown earlier but this

time I show the reference to each object as the document acquires more objects.

A simple document
I start with the model whose only objects are the window (and its location

object) and document from the simple HTML file. Figure 4-11 shows the object map

and references for the two main objects. Every document resides in a window, so to

reference the window object you start with window. Also fixed in this reference is

the document because there can be only one document per window (or frame).

Therefore, a reference to the document object is window.document.

Figure 4-11: References to the window and document

Add a form
Modifying the document to include the empty <FORM> tag generates the form

object in the map. If I do the job right, the <FORM> tag also includes a NAME
attribute. The reference to the form object, as shown in Figure 4-12, starts with the

window, wends through the document, and reaches the form, which I call by name:

window.document.formName (the italics meaning that in a real script, I would sub-

stitute the form’s name for formName).

LocationWindow

Document

window

window.document

NAME versus ID Attributes

The HTML 4.0 specification introduces a new way to assign an identifier to HTML elements:
the ID attribute. The ID attribute is helpful for some aspects of Cascading Style Sheets
(CSS) and Dynamic HTML. Even so, the NAME attribute is still required for common denom-
inator elements covered in this tutorial — FRAME, FORM, and INPUT elements, for example.
The newest browsers can access an element by name or ID, but authors typically use the ID
attribute for HTML element objects not shown in Figure 4-6. You can read more about the
ID attribute (and id property) in Chapter 15 after you finish the tutorial.

(c) ketabton.com: The Digital Library

CD-16 Part II ✦ JavaScript Tutorial

Figure 4-12: Reference to the form object

Add a text input element
As the hierarchy gets deeper, the object reference gets longer. In Figure 4-13, I

add a text input object to the form. The reference to this deeply nested object still

starts at the window level and works its way down to the name I assigned to the

object in its <INPUT> tag: window.document.formName.textName.

Figure 4-13: Reference to the text field object

Add a button element
When I add a button to the same form as the text object, the reference

stays the same length (see Figure 4-14). All that changes is the last part of

the reference where the button name goes in place of the text field name:

window.document.formName.buttonName.

LocationWindow

Document

Form

Text

window

window.document

window.document.formName

window.document.formName.textName

LocationWindow

Document

Form

window

window.document

window.document.formName

(c) ketabton.com: The Digital Library

CD-17Chapter 4 ✦ Browser and Document Objects

Figure 4-14: Reference to the button object

About the Dot Syntax
JavaScript uses the period to separate components of a hierarchical reference.

This convention is adopted from Java, which, in turn, based this formatting on the

C language. Every reference typically starts with the most global scope — the win-

dow for client-side JavaScript — and narrows focus with each “dot” (.) delimiter.

If you have not programmed before, don’t be put off by the dot syntax. You are

probably already using it, such as when you access Usenet newsgroups. The

methodology for organizing the thousands of newsgroups is to group them in a

hierarchy that makes it relatively easy to both find a newsgroup and visualize

where the newsgroup you’re currently reading is located in the scheme of things.

Newsgroup organization model
Let me briefly dissect a typical newsgroup address to help you understand dot

syntax: rec.sport.skating.inline. The first entry (at the left edge) defines the

basic group — recreation — among all the newsgroup categories. Other group cate-

gories, such as comp and alt, have their own sections and do not overlap with

what goes on in the rec section. Within the rec section are dozens of subsections,

one of which is sport. That name distinguishes all the sport-related groups from,

say, the automobile or music groups within recreational newsgroups.

Like most broad newsgroup categories, rec.sport has many subcategories,

with each one devoted to a particular sport. In this case, it is skating. Other sport

newsgroups include rec.sport.rugby and rec.sport.snowboarding. Even

within the rec.sport.skating category, a further subdivision exists to help

narrow the subject matter for participants. Therefore, a separate newsgroup just

for inline skaters exists, just as a group for roller-skating exists (rec.sport.
skating.roller). As a narrower definition is needed for a category, a new level is

formed by adding a dot and a word to differentiate that subgroup from the thou-

sands of newsgroups on the Net. When you ask your newsgroup software to view

messages in the rec.sport.skating.inline group, you’re giving it a map to

follow in the newsgroup hierarchy to go directly to a single newsgroup.

LocationWindow

Document

Form

Text Button

window

window.document

window.document.formName

window.document.formName.textName
window.document.formName.buttonName

(c) ketabton.com: The Digital Library

CD-18 Part II ✦ JavaScript Tutorial

Another benefit of this syntactical method is that names for subcategories can

be reused within other categories, if necessary. For example, with this naming

scheme, it is possible to have two similarly named subcategories in two separate

newsgroup classifications (such as rec.radio.scanners and alt.radio.
scanners). When you ask to visit one, the hierarchical address, starting with the

rec or alt classification, ensures you get to the desired place. Neither collection of

messages is automatically connected with the other (although subscribers fre-

quently cross-post to both newsgroups).

For complete newbies to the Net, this dot syntax can be intimidating. Because

the system was designed to run on UNIX servers (the UNIX operating system is

written in C), the application of a C-like syntax for newsgroup addressing is hardly

surprising.

What Defines an Object?
When an HTML tag defines an object in the source code, the browser creates a

slot for that object in memory as the page loads. But an object is far more complex

internally than, say, a mere number stored in memory. The purpose of an object is

to represent some “thing.” Because in JavaScript you deal with items that appear in

a browser window, an object may be an input text field, a button, or the whole

HTML document. Outside of the pared-down world of a JavaScript browser, an

object can also represent abstract entities, such as a calendar program’s appoint-

ment entry or a layer of graphical shapes in a drawing program.

Every object is unique in some way, even if two or more objects look identical to

you in the browser. Three very important facets of an object define what it is, what

it looks like, how it behaves, and how scripts control it. Those three facets are

properties, methods, and event handlers. They play such key roles in your future

JavaScript efforts that the Quick Reference in Appendix A summarizes the proper-

ties, methods, and event handlers for each object in the object models imple-

mented in various browser generations. You might want to take a quick peek at that

road map of the original object model if for no other reason than to gain an appreci-

ation for the size of the scripting vocabulary that this tutorial covers.

Properties
Any physical object you hold in your hand has a collection of characteristics

that defines it. A coin, for example, has shape, diameter, thickness, color, weight,

embossed images on each side, and any number of other attributes that distinguish

it from, say, a feather. Each of those features is called a property. Each property has

a value of some kind attached to it (even if the value is empty or null). For example,

the shape property of a coin might be “circle” — in this case, a text value. In con-

trast, the denomination property is most likely a numeric value.

You may not have known it, but if you’ve written HTML for use in a scriptable

browser, you have set object properties without writing one iota of JavaScript. Tag

attributes are the most common way to set an HTML object’s initial properties. The

presence of JavaScript often adds optional attributes whose initial values you can

set when the document loads. For example, the following HTML tag defines a

button object that assigns two property values:

<INPUT TYPE=”button” NAME=”clicker” VALUE=”Hit Me...”>

(c) ketabton.com: The Digital Library

CD-19Chapter 4 ✦ Browser and Document Objects

In JavaScript parlance, then, the name property holds the word “clicker,” while

the value property is the text that appears on the button label, “Hit Me. . . .” In

truth, a button has more properties than just these, but you don’t have to set every

property for every object. Most properties have default values that are automati-

cally assigned if nothing special is set in the HTML or later from a script.

The contents of some properties can change while a document is loaded and the

user interacts with the page. Consider the following text input tag:

<INPUT TYPE=”text” NAME=”entry” VALUE=”User Name?”>

The name property of this object is the word “entry.” When the page loads, the

text of the VALUE attribute setting is placed in the text field — the automatic behav-

ior of an HTML text field when the VALUE attribute is specified. But if a user enters

some other text into the text field, the value property changes — not in the HTML,

but in the memory copy of the object model that the browser maintains. Therefore,

if a script queries the text field about the content of the value property, the

browser yields the current setting of the property — which isn’t the one specified

by the HTML if a user changes the text.

To gain access to an object’s property, you use the same kind of dot syntax,

hierarchical addressing scheme you saw earlier for objects. A property is contained

by its object, so the reference to it consists of the reference to the object plus one

more extension naming the property. Therefore, for the button and text object tags

just shown, references to various properties are

document.formName.clicker.name
document.formName.clicker.value
document.formName.entry.value

You may wonder what happened to the window part of the reference. It turns out

that there can be only one document contained in a window, so references to

objects inside the document can omit the window portion and start the reference

with document. You cannot omit the document object, however, from the reference.

In IE4+, you can reference an element object by simply referring to the element’s ID
attribute if one is assigned. Even so, I strongly recommend spelling out references

so that your code is easier to read and understand long after you’ve written it.

Notice, too, that the button and text fields both have a property named value.

These properties represent very different attributes for each object. For the button,

the property determines the button label; for the text field, the property reflects the

current text in the field. You now see how the (sometimes lengthy) hierarchical

referencing scheme helps the browser locate exactly the object and property your

script needs. No two items in a document can have identical references even

though parts of these references may have the same component names.

Methods
If a property is like a descriptive adjective for an object, then a method is a verb.

A method is all about action related to the object. A method either does something

to the object or with the object that affects other parts of a script or document.

They are commands of a sort, but whose behaviors are tied to a particular object.

An object can have any number of methods associated with it (including none at

all). To set a method into motion (usually called invoking a method), a JavaScript

statement must include a reference to it — via its object with a pair of parentheses

after the method name — as in the following examples:

(c) ketabton.com: The Digital Library

CD-20 Part II ✦ JavaScript Tutorial

document.orderForm.submit()
document.orderForm.entry.select()

The first is a scripted way of clicking a Submit button to send a form (named

orderForm) to a server. The second selects the text inside a text field named entry
(which is contained by a form named orderForm).

Sometimes a method requires that you send additional information with it so

that it can do its job. Each chunk of information passed with the method is called a

parameter or argument (you can use the terms interchangeably). You saw examples

of passing a parameter in your first script in Chapter 3. Two script statements

invoked the write() method of the document object:

document.write(“This browser is version “ + navigator.appVersion)
document.write(“ of ” + navigator.appName + “.”)

As the page loaded into the browser, each document.write() method sent

whatever text was inside the parentheses to the current document. In both cases,

the content being sent as a parameter consisted of straight text (inside quotes) and

the values of two object properties: the appVersion and appName properties of the

navigator object. (The navigator object does not appear in the object hierarchy

diagram of Figure 4-6 because in early browsers this object exists outside of the

document object model.)

Some methods require more than one parameter. If so, the multiple parameters

are separated by commas. For example, Version 4 and later browsers support a

window object method that moves the window to a particular coordinate point on

the screen. A coordinate point is defined by two numbers that indicate the number

of pixels from the left and top edges of the screen where the top-left corner of the

window should be. To move the browser window to a spot 50 pixels from the left

and 100 pixels from the top, the method is

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you

can script, pay close attention to the range of methods defined for each object.

They reveal a lot about what an object is capable of doing under script control.

Event handlers
One last characteristic of a JavaScript object is the event handler. Events are

actions that take place in a document, usually as the result of user activity.

Common examples of user actions that trigger events include clicking a button or

typing a character into a text field. Some events, such as the act of loading a docu-

ment into the browser window or experiencing a network error while an image

loads, are not so obvious.

Almost every JavaScript object in a document receives events of one kind or

another — summarized for your convenience in the Quick Reference of Appendix A.

What determines whether the object does anything in response to the event is an

extra attribute you enter into the object’s HTML definition. The attribute consists of

the event name, an equal sign (just like any HTML attribute), followed by instruc-

tions about what to do when the particular event fires. Listing 4-1 shows a very

simple document that displays a single button with one event handler defined for it.

(c) ketabton.com: The Digital Library

CD-21Chapter 4 ✦ Browser and Document Objects

Listing 4-1: A Simple Button with an Event Handler

<HTML>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Click Me” onClick=”window.alert (‘Ouch!’)”>
</FORM>
</BODY>
</HTML>

The form definition contains what, for the most part, looks like a standard input

item. But notice the last attribute, onClick=”window.alert(‘Ouch!’)”. Button

objects, as you see in their complete descriptions in Chapter 24, react to mouse

clicks. When a user clicks the button, the browser sends a click event to the button.

In this button’s definition, the attribute says that whenever the button receives that

message, it should invoke one of the window object’s methods, alert(). The

alert() method displays a simple alert dialog box whose content is whatever text

is passed as a parameter to the method. Like most arguments to HTML attributes,

the attribute setting to the right of the equal sign goes inside quotes. If additional

quotes are necessary, as in the case of the text to be passed along with the event

handler, those inner quotes can be single quotes. In actuality, JavaScript doesn’t

distinguish between single or double quotes but does require that each set be of

the same type. Therefore, you can write the attribute this way:

onClick=’alert(“Ouch!”)’

Exercises
1. Which of the following applications are well suited to client-side JavaScript?

Why or why not?

a. Music jukebox

b. Web-site visit counter

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator

e. All of the above

f. None of the above

(c) ketabton.com: The Digital Library

CD-22 Part II ✦ JavaScript Tutorial

2. General Motors has separate divisions for its automobile brands: Chevrolet,

Pontiac, Buick, and Cadillac. Each brand has several models of automobile.

Following this hierarchy model, write the dot-syntax equivalent reference to

the following three vehicle models:

a. Chevrolet Malibu

b. Pontiac Firebird

c. Pontiac GrandAm

3. Which of the following object names are valid in JavaScript? For each one that

is invalid, explain why.

a. lastName

b. company_name

c. 1stLineAddress

d. zip code

e. today’s_date

4. An HTML document contains tags for one link and one form. The form con-

tains tags for three text boxes, one checkbox, a Submit button, and a Reset

button. Using the object hierarchy diagram from Figure 4-6 for reference, draw

a diagram of the object model that the browser would create in its memory

for these objects. Give names to the link, form, text fields, and checkbox, and

write the references to each of those objects.

5. Write the HTML tag for a button input element named “Hi,” whose visible label

reads “Howdy” and whose onClick event handler displays an alert dialog box

that says “Hello to you, too!”

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Scripts and
HTML
Documents

In this chapter’s tutorial, you begin to see how scripts are

embedded within HTML documents and what comprises a

script statement. You also see how script statements can run

when the document loads or in response to user action.

Finally, you find out where script error information is hiding.

Where Scripts Go in Documents
Chapter 4 did not thoroughly cover what scripts look like

or how you add them to an HTML document. That’s where

this lesson picks up the story.

The <SCRIPT> tag
To assist the browser in recognizing lines of code in an

HTML document as belonging to a script, you surround lines

of script code with a <SCRIPT>...</SCRIPT> tag set. This is

common usage in HTML where start and end tags encapsulate

content controlled by that tag, whether the tag set is for a

form or a paragraph.

Depending on the browser, the <SCRIPT> tag has a variety

of attributes you can set that govern the script. One attribute

shared by scriptable browsers is the LANGUAGE attribute. This

attribute is essential because each browser brand and version

accepts a different set of scripting languages. One setting that

all scriptable browsers accept is the JavaScript language, as in

<SCRIPT LANGUAGE=”JavaScript”>

Other possibilities include later versions of JavaScript

(version numbers are part of the language name), Microsoft’s

JScript variant, and the separate VBScript language. You don’t

need to specify any of these other languages unless your

script intends to take specific advantage of a particular

language version to the exclusion of all others. Until you learn

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Where to place
scripts in HTML
documents

What a JavaScript
statement is

What makes a script
run

Viewing script errors

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-24 Part II ✦ JavaScript Tutorial

the differences among the language versions, you can safely specify plain

JavaScript on all scriptable browsers.

Be sure to include the ending tag for the script. Lines of JavaScript code go

between the two tags:

<SCRIPT LANGUAGE=”JavaScript”>
one or more lines of JavaScript code here

</SCRIPT>

If you forget the closing script tag, the script may not run properly and the HTML

elsewhere in the page may look strange.

Although you don’t work with it in this tutorial, another attribute works with

more recent browsers to blend the contents of an external script file into the

current document. An SRC attribute (similar to the SRC attribute of an tag)

points to the file containing the script code. Such files must end with a .js exten-

sion. The tag set looks like the following:

<SCRIPT LANGUAGE=”JavaScript” SRC=”myscript.js”></SCRIPT>

All script lines are in the external file, so no script lines are included between the

start and end script tags in the document.

Tag positions
Where do these tags go within a document? The answer is, anywhere they’re

needed in the document. Sometimes it makes sense to include the tags nested

within the <HEAD>...</HEAD> tag set; other times it is essential that you drop the

script into a very specific location in the <BODY>...</BODY> section.

In the following four listings, I demonstrate — with the help of a skeletal HTML

document — some of the possibilities of <SCRIPT> tag placement. Later in this les-

son, you see why scripts may need to go in different places within a page depending

on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a

<SCRIPT> tag set in a document: in the <HEAD> tag section. Typically, the Head is a

place for tags that influence noncontent settings for the page — so-called HTML

“directive” elements, such as <META> tags and the document title. It turns out that

this is also a convenient place to plant scripts that are called on in response to user

action.

A Future Attribute

The HTML 4.0 specification does not endorse the popular LANGUAGE attribute for script tags.
Instead, it suggests the TYPE attribute, which requires a value in the form of a MIME
(Multipurpose Internet Mail Extensions) type descriptor:

TYPE=”text/javascript”

Only browsers with W3C DOM capabilities (such as IE5+ and NN6+) support the TYPE
attribute, but the LANGUAGE attribute continues to be supported and should be for some
time to come. All examples in this book use the compatible LANGUAGE attribute.

(c) ketabton.com: The Digital Library

CD-25Chapter 5 ✦ Scripts and HTML Documents

Listing 5-1: Scripts in the Head

<HTML>
<HEAD>
<TITLE>A Document</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

//script statement(s) here
...

</SCRIPT>
</HEAD>
<BODY>
</BODY>
</HTML>

On the other hand, if you need a script to run as the page loads so that the script

generates content in the page, the script goes in the <BODY> portion of the docu-

ment, as shown in Listing 5-2. If you check the code listing for your first script in

Chapter 3, you see that the script tags are in the Body because the script needs to

fetch information about the browser and write the results to the page as the page

loads.

Listing 5-2: A Script in the Body

<HTML>
<HEAD>
<TITLE>A Document</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>

//script statement(s) here
...

</SCRIPT>
</BODY>
</HTML>

It’s also good to know that you can place an unlimited number of <SCRIPT> tag

sets in a document. For example, Listing 5-3 shows a script in both the Head and

Body portions of a document. Perhaps this document needs the Body script to cre-

ate some dynamic content as the page loads, but the document also contains a but-

ton that needs a script to run later. That script is stored in the Head portion.

(c) ketabton.com: The Digital Library

CD-26 Part II ✦ JavaScript Tutorial

Listing 5-3: Scripts in the Head and Body

<HTML>
<HEAD>
<TITLE>A Document</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

//script statement(s) here
...

</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>

//script statement(s) here
...

</SCRIPT>
</BODY>
</HTML>

You also are not limited to one <SCRIPT> tag set in either the Head or Body. You

can include as many <SCRIPT> tag sets in a document as are needed to complete

your application. In Listing 5-4, for example, two <SCRIPT> tag sets are located in

the Body portion, with some other HTML between them.

Listing 5-4: Two Scripts in the Body

<HTML>
<HEAD>
<TITLE>A Document</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>

//script statement(s) here
...

</SCRIPT>
<MORE HTML>
<SCRIPT LANGUAGE=”JavaScript”>

//script statement(s) here
...

</SCRIPT>
</BODY>
</HTML>

Handling older browsers
Only browsers that include JavaScript in them know to interpret the lines of

code between the <SCRIPT>...</SCRIPT> tag pair as script statements and not

HTML text for display in the browser. This means that a pre-JavaScript browser not

only ignores the tags, but it also treats the JavaScript code as page content. As you

(c) ketabton.com: The Digital Library

CD-27Chapter 5 ✦ Scripts and HTML Documents

saw at the end of Chapter 3 in an illustration of your first script running on an old

browser, the results can be disastrous to a page.

You can reduce the risk of old browsers displaying the script lines by playing a

trick. The trick is to enclose the script lines between HTML comment symbols, as

shown in Listing 5-5. Most nonscriptable browsers completely ignore the content

between the <!-- and --> comment tags, whereas scriptable browsers ignore

those comment symbols when they appear inside a <SCRIPT> tag set.

Listing 5-5: Hiding Scripts from Most Old Browsers

<SCRIPT LANGUAGE=”JavaScript”>
<!--

//script statement(s) here
...

// -->
</SCRIPT>

The odd construction right before the ending script tag needs a brief explana-

tion. The two forward slashes are a JavaScript comment symbol. This symbol is

necessary because JavaScript otherwise tries to interpret the components of the

ending HTML symbol (-->). Therefore, the forward slashes tell JavaScript to skip

the line entirely; a nonscriptable browser simply treats those slash characters as

part of the entire HTML comment to be ignored.

Despite the fact that this technique is often called hiding scripts, it does not

disguise the scripts entirely. All client-side JavaScript scripts are part of the HTML

document and download to the browser just like all other HTML. Furthermore, you

can view them as part of the document’s source code. Do not be fooled into think-

ing that you can hide your scripts entirely from prying eyes.

JavaScript Statements
Virtually every line of code that sits between a <SCRIPT>...</SCRIPT> tag pair

is a JavaScript statement. To be compatible with habits of experienced program-

mers, JavaScript accepts a semicolon at the end of every statement. Fortunately for

newcomers, this semicolon is optional. The carriage return at the end of a state-

ment suffices for JavaScript to know the statement has ended.

A statement must be in the script for a purpose. Therefore, every statement does

“something” relevant to the script. The kinds of things that statements do are

✦ Define or initialize a variable

✦ Assign a value to a property or variable

✦ Change the value of a property or variable

✦ Invoke an object’s method

✦ Invoke a function routine

✦ Make a decision

If you don’t yet know what all of these mean, don’t worry — you will by the end

of this tutorial. The point I want to stress is that each statement contributes to the

scripts you write. The only statement that doesn’t perform any explicit action is the

(c) ketabton.com: The Digital Library

CD-28 Part II ✦ JavaScript Tutorial

comment. A pair of forward slashes (no space between them) is the most common

way to include a comment in a script. You add comments to a script for your bene-

fit. They usually explain in plain language what a statement or group of statements

does. The purpose of including comments is to remind you six months from now

how your script works.

When Script Statements Execute
Now that you know where scripts go in a document, it’s time to look at when

they run. Depending on what you need a script to do, you have four choices for

determining when a script runs:

✦ While a document loads

✦ Immediately after a document loads

✦ In response to user action

✦ When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

While a document loads — immediate execution
Your first script in Chapter 3 (reproduced in Listing 5-6) runs while the docu-

ment loads into the browser. For this application, it is essential that a script

inspects some properties of the navigator object and includes those property

values in the content being rendered for the page as it loads. It makes sense, there-

fore, to include the <SCRIPT> tags and statements in the Body portion of the docu-

ment. I call the kind of statements that run as the page loads immediate statements.

Listing 5-6: HTML Page with Immediate Script Statements

<HTML>
<HEAD>
<TITLE>My First Script</TITLE>
</HEAD>

<BODY>
<H1>Let’s Script...</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- hide from old browsers
document.write(“This browser is version “ + navigator.appVersion)
document.write(“ of ” + navigator.appName + “.”)
// end script hiding -->
</SCRIPT>
</BODY>
</HTML>

Deferred scripts
The other three ways that script statements run are grouped together as what

I called deferred scripts. To demonstrate these deferred script situations, I must

(c) ketabton.com: The Digital Library

CD-29Chapter 5 ✦ Scripts and HTML Documents

introduce you briefly to a concept covered in more depth in Chapter 7: the func-

tion. A function defines a block of script statements summoned to run some time

after those statements load into the browser. Functions are clearly visible inside a

<SCRIPT> tag because each function definition begins with the word function fol-

lowed by the function name (and parentheses). Once a function is loaded into the

browser (commonly in the Head portion so it loads early), it stands ready to run

whenever called upon.

One of the times a function is called upon to run is immediately after a page

loads. The Window object has an event handler called onLoad. Unlike most event

handlers, which are triggered in response to user action (for example, clicking a

button), the onLoad event handler fires the instant that all of the page’s compo-

nents (including images, Java applets, and embedded multimedia) are loaded into

the browser. The onLoad event handler goes in the <BODY> tag, as shown in Listing

5-7. Recall from Chapter 4 (Listing 4-1) that an event handler can run a script state-

ment directly. But if the event handler must run several script statements, it is usu-

ally more convenient to put those statements in a function definition and then have

the event handler invoke that function. That’s what happens in Listing 5-7: When

the page completes loading, the onLoad event handler triggers the done() function.

That function (simplified for this example) displays an alert dialog box.

Listing 5-7: Running a Script from the onLoad Event Handler

<HTML>
<HEAD>
<TITLE>An onLoad script</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function done() {

alert(“The page has finished loading.”)
}
// -->
</SCRIPT>
</HEAD>
<BODY onLoad=”done()”>
Here is some body text.
</BODY>
</HTML>

Don’t worry about the curly braces or other oddities in Listing 5-7 that cause you

concern at this point. Focus instead on the structure of the document and the flow.

The entire page loads without running any script statements, although the page

loads the done() function in memory so that it is ready to run at a moment’s

notice. After the document loads, the browser fires the onLoad event handler,

which causes the done() function to run. Then the user sees the alert dialog box.

Getting a script to execute in response to a user action is very similar to the

preceding example for running a deferred script right after the document loads.

Commonly, a script function is defined in the Head portion, and an event handler in,

say, a form element calls upon that function to run. Listing 5-8 includes a script that

runs when a user clicks a button.

(c) ketabton.com: The Digital Library

CD-30 Part II ✦ JavaScript Tutorial

Listing 5-8: Running a Script from User Action

<HTML>
<HEAD>
<TITLE>An onClick script</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function alertUser() {

alert(“Ouch!”)
}
// -->
</SCRIPT>
</HEAD>
<BODY>
Here is some body text.
<FORM>

<INPUT TYPE=”text” NAME=”entry”>
<INPUT TYPE=”button” NAME=”oneButton” VALUE=”Press Me!”

onClick=”alertUser()”>
</FORM>
</BODY>
</HTML>

Not every object must have an event handler defined for it in the HTML, as

shown in Listing 5-8 — only the ones for which scripting is needed. No script state-

ments execute in Listing 5-8 until the user clicks the button. The alertUser()
function is defined as the page loads, and it waits to run as long as the page remains

loaded in the browser. If it is never called upon to run, there’s no harm done.

The last scenario for when script statements run also involves functions. In this

case, a function is called upon to run by another script statement. Before you see

how that works, it helps to read through the next lesson (Chapter 6). Therefore, I

will hold off on this example until later in the tutorial.

Viewing Script Errors
In the early days of JavaScript in browsers, script errors displayed themselves in

very obvious dialog boxes. These boxes were certainly helpful for scripters who

wanted to debug their scripts. However, if a bug got through to a page served up to

a non-technical user, the error alert dialog boxes were not only disruptive, but also

scary. To prevent such dialog boxes from disturbing unsuspecting users, the

browser makers tried to diminish the visual impact of errors in the browser win-

dow. Unfortunately for scripters, it is often easy to overlook the fact that your

script contains an error because the error is not so obvious. Recent versions of IE

and NN have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog

boxes (got to Tools ➪ Internet Options ➪ Advanced ➪ Browsing and find the checkbox

entry that says “Display a notification about every script error”). Even with error

(c) ketabton.com: The Digital Library

CD-31Chapter 5 ✦ Scripts and HTML Documents

dialog boxes turned off, error indications are displayed subtly at the left edge of the

browser window’s status bar. An alert icon and message (“Error on page.”) appear in

the status bar. If you double-click the icon, the error dialog box appears (see Figure

5-1). Be sure to expand the dialog box by clicking the Show Details button. Unless you

turn on script error dialog boxes and keep them coming, you have to train yourself to

monitor the status bar when a page loads and after each script runs.

Figure 5-1: The expanded IE error dialog box

For NN 4.07 and later, the status bar is also your first indication of a script error.

A message appears in the status bar that instructs you to go to the location

javascript: to see the error details. Viewing the details of the error requires dif-

ferent steps, depending on the Navigator version. For NN 4.07 and all subsequent

4.x versions, choose File ➪ Open and enter

javascript:

For NN6, choose Tasks ➪ Tools ➪ JavaScript Console. The JavaScript console

window (a separate window from the Java console) opens to reveal the error mes-

sage details (see Figure 5-2). You can keep this window open all the time if you like.

Unless you clear the window, subsequent error messages are appended to the

bottom of the window.

Understanding error messages and doing something about them is a very large

subject, reserved for advanced discussion in Chapter 45. During this tutorial, how-

ever, you can use the error messages to see if you have perhaps mistyped a script

from a listing in the book.

(c) ketabton.com: The Digital Library

CD-32 Part II ✦ JavaScript Tutorial

Figure 5-2: The NN6 JavaScript Console window

Scripting versus Programming
You may get the impression that scripting is easier than programming. “Scripting”

simply sounds easier or more friendly than “programming.” In many respects, this is

true. One of my favorite analogies is the difference between a hobbyist who builds

model airplanes from scratch and a hobbyist who builds model airplanes from com-

mercial kits. The “from scratch” hobbyist carefully cuts and shapes each piece of

wood and metal according to very detailed plans before the model starts to take

shape. The commercial kit builder starts with many prefabricated parts and assem-

bles them into the finished product. When both builders are finished, you may not

be able to tell which airplane was built from scratch and which one came out of a

box of components. In the end, both builders used many of the same techniques to

complete the assembly, and each can take pride in the result.

As you’ve seen with the document object model, the browser gives scripters

many prefabricated components with which to work. Without the browser, you’d

have to be a pretty good programmer to develop from scratch your own application

that served up content and offered user interaction. In the end, both authors have

working applications that look equally professional.

Beyond the document object model, however, “real programming” nibbles its

way into the scripting world. That’s because scripts (and programs) work with

(c) ketabton.com: The Digital Library

CD-33Chapter 5 ✦ Scripts and HTML Documents

more than just objects. When I said earlier in this lesson that each statement of a

JavaScript script does something, that “something” involves data of some kind.

Data is the information associated with objects or other pieces of information that a

script pushes around from place to place with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are num-

bers; text (called strings); objects (both from the object model and others you can

create with scripts); and true and false (called Boolean values).

Each programming or scripting language determines numerous structures and

limits for each kind of data. Fortunately for newcomers to JavaScript, the universe

of knowledge necessary for working with data is smaller than in a language such as

Java. At the same time, what you learn about data in JavaScript is immediately

applicable to future learning you may undertake in any other programming lan-

guage — don’t believe for an instant that your efforts in learning scripting will be

wasted.

Because deep down scripting is programming, you need to have a basic knowl-

edge of fundamental programming concepts to consider yourself a good JavaScript

scripter. In the next two lessons, I set aside most discussion about the document

object model and focus on the programming principles that will serve you well in

JavaScript and future programming endeavors.

Exercises
1. Write the complete script tag set for a script whose lone statement is

document.write(“Hello, world.”)

2. Build an HTML document and include the answer to the previous question

such that the page executes the script as it loads. Open the document in your

browser.

3. Add a comment to the script in the previous answer that explains what the

script does.

4. Create an HTML document that displays an alert dialog box immediately after

the page loads and displays a different alert dialog box when the user clicks a

form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the

document, predict

a. What the page looks like

b. How users interact with the page

c. What the script does

Then type the listing into a text editor as shown (observe all capitalization

and punctuation). Do not type a carriage return after the “=” sign in the
upperMe function statement; let the line word-wrap as it does in the follow-
ing listing. It’s okay to use a carriage return between attribute name/value

pairs, as shown in the first <INPUT> tag. Save the document as an HTML file,

and load the file into your browser to see how well you did.

(c) ketabton.com: The Digital Library

CD-34 Part II ✦ JavaScript Tutorial

Listing 5-9: How Does This Page Work?

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function upperMe() {

document.converter.output.value =
document.converter.input.value.toUpperCase()
}
// -->
</SCRIPT>
</HEAD>

<BODY>
Enter lowercase letters for conversion to uppercase:

<FORM NAME=”converter”>

<INPUT TYPE=”text” NAME=”input” VALUE=”sample”
onChange=”upperMe()”>

<INPUT TYPE=”text” NAME=”output” VALUE=””>
</FORM>
</BODY>
</HTML>

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Programming
Fundamentals,
Part I

The tutorial breaks away from HTML and documents for a

while as you begin to learn programming fundamentals

that apply to practically every scripting and programming lan-

guage you will encounter. Here, you start learning about vari-

ables, expressions, data types, and operators — things that

might sound scary if you haven’t programmed before. Don’t

worry. With a little practice, you will become quite comfort-

able with these terms and concepts.

What Language Is This?
The language you’re studying is called JavaScript. But the

language has some other names that you may have heard.

JScript is Microsoft’s name for the language. By leaving out

the “ava,” the company doesn’t have to license the “Java”

name from its trademark owner: Sun Microsystems.

A standards body called ECMA (pronounced ECK-ma) now

governs the specifications for the language (no matter what

you call it). The document that provides all of the details

about the language is known as ECMA-262 (it’s the 262nd stan-

dard published by ECMA). Both JavaScript and JScript are

ECMA-262 compatible. Some earlier browser versions exhibit

very slight deviations from ECMA-262 (which came later than

the earliest browsers). The most serious discrepancies are

noted in the core language reference in Part IV of this book.

Working with Information
With rare exception, every JavaScript statement you write

does something with a hunk of information — data. Data may

be text information displayed on the screen by a JavaScript

statement or the on/off setting of a radio button in a form.

Each single piece of information in programming is also called

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What variables are
and how to use them

Why you must learn
how to evaluate
expressions

How to convert data
from one type to
another

How to use basic
operators

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-36 Part II ✦ JavaScript Tutorial

a value. Outside of programming, the term value usually connotes a number of

some kind; in the programming world, however, the term is not as restrictive. A

string of letters is a value. A number is a value. The setting of a check box (whether

it is checked or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s

formal data types, with examples of the values you will see displayed from time

to time.

Table 6-1 JavaScript Value (Data) Types

Type Example Description

String “Howdy” A series of characters inside quote marks

Number 4.5 Any number not inside quote marks

Boolean true A logical true or false

Null null Completely devoid of any value

Object A software “thing” that is defined by its properties and
methods (arrays are also objects)

Function A function definition

A language that contains these few data types simplifies programming tasks,

especially those involving what other languages consider to be incompatible types

of numbers (integers versus real or floating-point values). In some definitions of

syntax and parts of objects later in this book, I make specific reference to the type

of value accepted in placeholders. When a string is required, any text inside a set of

quotes suffices.

You will encounter situations, however, in which the value type may get in the

way of a smooth script step. For example, if a user enters a number into a form’s

text input field, the browser stores that number as a string value type. If the script

is to perform some arithmetic on that number, you must convert the string to a

number before you can apply the value to any math operations. You see examples

of this later in this lesson.

Variables
Cooking up a dish according to a recipe in the kitchen has one advantage over

cooking up some data in a program. In the kitchen, you follow recipe steps and

work with real things: carrots, milk, or a salmon fillet. A computer, on the other

hand, follows a list of instructions to work with data. Even if the data represents

something that looks real, such as the text entered into a form’s input field, once

the value gets into the program, you can no longer reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on

and off states) in your computer’s memory. More specifically, data in a JavaScript-

enhanced Web page occupies parts of the computer’s memory set aside for exclu-

sive use by the browser software. In the olden days, programmers had to know the

numeric address in memory (RAM) where a value was stored to retrieve a copy of it

(c) ketabton.com: The Digital Library

CD-37Chapter 6 ✦ Programming Fundamentals, Part I

for, say, some addition. Although the innards of a program have that level of

complexity, programming languages such as JavaScript shield you from it.

The most convenient way to work with data in a script is to first assign the data

to a variable. It’s usually easier to think of a variable as a basket that holds informa-

tion. How long the variable holds the information depends on a number of factors.

But the instant a Web page clears the window (or frame), any variables it knows

about are immediately discarded.

Creating a variable
You have a couple of ways to create a variable in JavaScript, but one covers you

properly in all cases. Use the var keyword, followed by the name you want to give

that variable. Therefore, to declare a new variable called myAge, the JavaScript

statement is

var myAge

That statement lets the browser know that you can use that variable later to

hold information or to modify any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most

common one by far is the equal sign. If I want to assign a value to the myAge vari-

able at the same time I declare it (a combined process known as initializing the
variable), I use that operator in the same statement as the var keyword:

var myAge = 45

On the other hand, if I declare a variable in one statement and later want to

assign a value to it, the sequence of statements is

var myAge
myAge = 45

Use the var keyword only for declaration or initialization — once for the life of

any variable name in a document.

A JavaScript variable can hold any value type. Unlike many other languages, you

don’t have to tell JavaScript during variable declaration what type of value the vari-

able will hold. In fact, the value type of a variable can change during the execution

of a program. (This flexibility drives experienced programmers crazy because

they’re accustomed to assigning both a data type and a value to a variable.)

Variable names
Choose the names you assign to variables with care. You’ll often find scripts that

use vague variable names, such as single letters. Other than a few specific times

where using letters is a common practice (for example, using i as a counting vari-

able in repeat loops in Chapter 7), I recommend using names that truly describe a

variable’s contents. This practice can help you follow the state of your data through

a long series of statements or jumps, especially for complex scripts.

A number of restrictions help instill good practice in assigning names. First, you

cannot use any reserved keyword as a variable name. That includes all keywords

currently used by the language and all others held in reserve for future versions of

JavaScript. The designers of JavaScript, however, cannot foresee every keyword

that the language may need in the future. By using the kind of single words that cur-

rently appear in the list of reserved keywords (see Appendix B), you always run a

risk of a future conflict.

(c) ketabton.com: The Digital Library

CD-38 Part II ✦ JavaScript Tutorial

To complicate matters, a variable name cannot contain space characters.

Therefore, one-word variable names are fine. Should your description really benefit

from more than one word, you can use one of two conventions to join multiple

words as one. One convention is to place an underscore character between the

words; the other is to start the combination word with a lowercase letter and capi-

talize the first letter of each subsequent word within the name — I refer to this as

the interCap format. Both of the following examples are valid variable names:

my_age
myAge

My preference is for the second version. I find it easier to type as I write

JavaScript code and easier to read later. In fact, because of the potential conflict

with future keywords, using multiword combinations for variable names is a good

idea. Multiword combinations are less likely to appear in the reserved word list.

Variable names have a couple of other important restrictions. Avoid all punctua-

tion symbols except for the underscore character. Also, the first character of a vari-

able name cannot be a numeral. If these restrictions sound familiar, it’s because

they’re identical to those for HTML element identifiers described in Chapter 5.

Expressions and Evaluation
Another concept closely related to the value and variable is expression evalua-

tion — perhaps the most important concept of learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of The
Beverly Hillbillies?

Then one day he was shootin’ at some food

And up through the ground came a-bubblin’ crude

Oil that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (“crude,” “oil,”

“black gold,” and “Texas tea”). They all mean oil. They’re all expressions for oil. Say

any one of them and other people know what you mean. In our minds, we evaluate
those expressions to mean one thing: oil.

In programming, a variable always evaluates to its contents, or value. For exam-

ple, after assigning a value to a variable, such as

var myAge = 45

anytime the variable is used in a statement, its value (45) is automatically

applied to whatever operation that statement calls. Therefore, if you’re 15 years my

junior, I can assign a value to a variable representing your age based on the evalu-

ated value of myAge:

var yourAge = myAge - 15

(c) ketabton.com: The Digital Library

CD-39Chapter 6 ✦ Programming Fundamentals, Part I

The variable, yourAge, evaluates to 30 the next time the script uses it. If the

myAge value changes later in the script, the change has no link to the yourAge vari-

able because myAge evaluated to 45 when it was used to assign a value to yourAge.

Expressions in script1.htm
You probably didn’t recognize it at the time, but you saw how expression

evaluation came in handy in your first script of Chapter 3. Recall the second

document.write() statement:

document.write(“ of “ + navigator.appName + “.”)

The document.write() method (remember, JavaScript uses the term method to

mean command) requires a parameter in parentheses: the text string to be dis-

played on the Web page. The parameter here consists of one expression that joins

three distinct strings:

“ of “
navigator.appName
“.”

The plus symbol is one of JavaScript’s ways of joining strings. Before JavaScript

can display this line, it must perform some quick evaluations. The first evaluation is

the value of the navigator.appName property. This property evaluates to a string

of the name of your browser. With that expression safely evaluated to a string,

JavaScript can finish the job of joining the three strings in the final evaluation. That

evaluated string expression is what ultimately appears on the Web page.

Expressions and variables
As one more demonstration of the flexibility that expression evaluation offers, this

section shows you a slightly different route to the document.write() statement.

Rather than join those strings as the direct parameter to the document.write()
method, I can gather the strings in a variable and then apply the variable to the

document.write() method. Here’s how that method looks, as I simultaneously

declare a new variable and assign it a value:

var textToWrite = “ of “ + navigator.appName + “.”
document.write(textToWrite)

This method works because the variable, textToWrite, evaluates to the com-

bined string. The document.write() method accepts that string value and does its

display job. As you read a script or try to work through a bug, pay special attention

to how each expression (variable, statement, object property) evaluates. I guaran-

tee that as you learn JavaScript (or any language), you will end up scratching your

head from time to time because you haven’t stopped to examine how expressions

evaluate when a particular kind of value is required in a script.

(c) ketabton.com: The Digital Library

CD-40 Part II ✦ JavaScript Tutorial

Data Type Conversions
I mentioned earlier that the type of data in an expression can trip up some script

operations if the expected components of the operation are not of the right type.

JavaScript tries its best to perform internal conversions to head off such problems,

but JavaScript cannot read your mind. If your intentions differ from the way

JavaScript treats the values, you won’t get the results you expect.

Testing Evaluation in Navigator

You can begin experimenting with the way JavaScript evaluates expressions with the help
of The Evaluator Jr. (seen in the following figure), an HTML page you can find on the com-
panion CD-ROM. (I introduce the Senior version in Chapter 13.) Enter any JavaScript expres-
sion into the top text box, and either press Enter/Return or click the Evaluate button.

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore,
you can assign values to variables, test comparison operators, and even do math here.
Using the age variable examples from earlier in this chapter, type each of the following
statements into the upper text box and observe how each expression evaluates in the
Results field. Be sure to observe case-sensitivity in your entries.

a = 45
a
b = a - 15
b
a - b
a > b

To start over, click the Refresh/Reload button.

(c) ketabton.com: The Digital Library

CD-41Chapter 6 ✦ Programming Fundamentals, Part I

A case in point is adding numbers that may be in the form of text strings. In a

simple arithmetic statement that adds two numbers together, you get the expected

result:

3 + 3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the

other value to a string — thus turning the plus sign’s action from arithmetic addi-

tion to joining strings. Therefore, in the statement

3 + “3” // result = “33”

the “string-ness” of the second value prevails over the entire operation. The first

value is automatically converted to a string, and the result joins the two strings. Try

this yourself in The Evaluator Jr.

If I take this progression one step further, look what happens when another num-

ber is added to the statement:

3 + 3 + “3” // result = “63”

This might seem totally illogical, but there is logic behind this result. The expres-

sion is evaluated from left to right. The first plus operation works on two numbers,

yielding a value of 6. But as the 6 is about to be added to the “3,” JavaScript lets the

“string-ness” of the “3” rule. The 6 is converted to a string, and two string values are

joined to yield “63.”

Most of your concern about data types will focus on performing math operations

like the ones here. However, some object methods also require one or more param-

eters of particular data types. While JavaScript provides numerous ways to convert

data from one type to another, it is appropriate at this stage of the tutorial to intro-

duce you to the two most common data conversions: string to number and number

to string.

Converting strings to numbers
As you saw in the last section, if a numeric value is stored as a string — as it is

when entered into a form text field — your scripts will have difficulty applying that

value to a math operation. The JavaScript language provides two built-in functions

to convert string representations of numbers to true numbers: parseInt() and

parseFloat().

There is a difference between integers and floating-point numbers in JavaScript.

Integers are always whole numbers, with no decimal point or numbers to the right

of a decimal. Floating-point numbers, on the other hand, can have fractional values

to the right of the decimal. By and large, JavaScript math operations don’t differen-

tiate between integers and floating-point numbers: A number is a number. The only

time you need to be cognizant of the difference is when a method parameter

requires an integer because it can’t handle fractional values. For example, parame-

ters to the scroll() method of a window require integer values of the number of

pixels vertically and horizontally you want to scroll the window. That’s because you

can’t scroll a window a fraction of a pixel on the screen.

To use either of these conversion functions, insert the string value you wish to

convert as a parameter to the function. For example, look at the results of two dif-

ferent string values when passed through the parseInt() function:

parseInt(“42”) // result = 42
parseInt(“42.33”) // result = 42

(c) ketabton.com: The Digital Library

CD-42 Part II ✦ JavaScript Tutorial

Even though the second expression passes the string version of a floating-point

number to the function, the value returned by the function is an integer. No round-

ing of the value occurs here (although other math functions can help with that if

necessary). The decimal and everything to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a

floating-point number as follows:

parseFloat(“42”) // result = 42
parseFloat(“42.33”) // result = 42.33

Because these two conversion functions evaluate to their results, you simply

insert the entire function wherever you need a string value converted to a number.

Therefore, modifying an earlier example in which one of three values was a string,

the complete expression can evaluate to the desired result:

3 + 3 + parseInt(“3”) // result = 9

Converting numbers to strings
You’ll have less need for converting a number to its string equivalent than the

other way around. As you saw in the previous section, JavaScript gravitates toward

strings when faced with an expression containing mixed data types. Even so, it is

good practice to perform data type conversions explicitly in your code to prevent

any potential ambiguity. The simplest way to convert a number to a string is to take

advantage of JavaScript’s string tendencies in addition operations. By adding an

empty string to a number, you convert the number to its string equivalent:

(“” + 2500) // result = “2500”
(“” + 2500).length // result = 4

In the second example, you can see the power of expression evaluation at work.

The parentheses force the conversion of the number to a string. A string is a

JavaScript object that has properties associated with it. One of those properties is

the length property, which evaluates to the number of characters in the string.

Therefore, the length of the string “2500” is 4. Note that the length value is a num-

ber, not a string.

Operators
You will use lots of operators in expressions. Earlier, you used the equal sign (=)

as an assignment operator to assign a value to a variable. In the preceding exam-

ples with strings, you used the plus symbol (+) to join two strings. An operator gen-

erally performs some kind of calculation (operation) or comparison with two values

(the value on each side of an operator is called an operand) to reach a third value.

In this lesson, I briefly describe two categories of operators — arithmetic and com-

parison. Chapter 40 covers many more operators, but once you understand the

basics here, the others are easier to grasp.

(c) ketabton.com: The Digital Library

CD-43Chapter 6 ✦ Programming Fundamentals, Part I

Arithmetic operators
It may seem odd to talk about text strings in the context of “arithmetic” opera-

tors, but you have already seen the special case of the plus (+) operator when one

or more of the operands is a string. The plus operator instructs JavaScript to con-
catenate (pronounced kon-KAT-en-eight), or join, two strings together precisely

where you place the operator. The string concatenation operator doesn’t know

about words and spaces, so the programmer must make sure that any two strings

to be joined have the proper word spacing as part of the strings — even if that

means adding a space:

firstName = “John”
lastName = “Doe”
fullName = firstName + “ “ + lastName

JavaScript uses the same plus operator for arithmetic addition. When both

operands are numbers, JavaScript knows to treat the expression as an arithmetic

addition rather than a string concatenation. The standard math operators for addi-

tion, subtraction, multiplication, and division (+, -, *, /) are built into JavaScript.

Comparison operators
Another category of operator helps you compare values in scripts — whether

two values are the same, for example. These kinds of comparisons return a value of

the Boolean type —true or false. Table 6-2 lists the comparison operators. The

operator that tests whether two items are equal consists of a pair of equal signs to

distinguish it from the single equal sign assignment operator.

Table 6-2 JavaScript Comparison Operators

Symbol Description

== Equals

!= Does not equal

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

Where comparison operators come into greatest play is in the construction of

scripts that make decisions as they run. A cook does this in the kitchen all the time:

If the sauce is too watery, add a bit of flour. You see comparison operators in action

in the next chapter.

(c) ketabton.com: The Digital Library

CD-44 Part II ✦ JavaScript Tutorial

Exercises
1. Which of the following are valid variable declarations or initializations?

Explain why each one is or is not valid. If an item is invalid, how do you fix it

so that it is?

a. my_name = “Cindy”

b. var how many = 25

c. var zipCode = document.form1.zip.value

d. var 1address = document.nameForm.address1.value

2. For each of the statements in the following sequence, write down how the

someVal expression evaluates after the statement executes in JavaScript.

var someVal = 2
someVal = someVal + 2
someVal = someVal * 10
someVal = someVal + “20”
someVal = “Robert”

3. Name the two JavaScript functions that convert strings to numbers. How do

you give the function a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-

digit number into the top two fields and click the Add button. Examine the

code and explain what is wrong with the script. How do you fix the script so

the proper sum is displayed in the output field?

Listing 6-1: What’s Wrong with This Page?

<HTML>
<HEAD>
<TITLE>Sum Maker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function addIt() {

var value1 = document.adder.inputA.value
var value2 = document.adder.inputB.value
document.adder.output.value = value1 + value2

}
// -->
</SCRIPT>
</HEAD>

(c) ketabton.com: The Digital Library

CD-45Chapter 6 ✦ Programming Fundamentals, Part I

<BODY>
<FORM NAME=”adder”>
<INPUT TYPE=”text” NAME=”inputA” VALUE=”0” SIZE=4>

<INPUT TYPE=”text” NAME=”inputB” VALUE=”0” SIZE=4>
<INPUT TYPE=”button” VALUE=”Add” onClick=”addIt()”>
<P>____________</P>
<INPUT TYPE=”text” NAME=”output” SIZE=6>

</FORM>
</BODY>
</HTML>

5. What does the term concatenate mean in the context of JavaScript

programming?

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Programming
Fundamentals,
Part II

Your tour of programming fundamentals continues in this

chapter with subjects that have more intriguing possi-

bilities. For example, I show you how programs make deci-

sions and why a program must sometimes repeat statements

over and over. Before you’re finished here, you will learn how

to use one of the most powerful information holders in the

JavaScript language: the array.

Decisions and Loops
Every waking hour of every day you make decisions of

some kind — most of the time you probably don’t even realize

it. Don’t think so? Well, look at the number of decisions you

make at the grocery store, from the moment you enter the

store to the moment you clear the checkout aisle.

No sooner do you enter the store than you are faced with a

decision. Based on the number and size of items you intend to

buy, do you pick up a hand-carried basket or attempt to extri-

cate a shopping cart from the metallic conga line near the

front of the store? That key decision may have impact later

when you see a special offer on an item that is too heavy to

put into the hand basket.

Next, you head for the food aisles. Before entering an aisle,

you compare the range of goods stocked in that aisle against

items on your shopping list. If an item you need is likely to be

found in this aisle, you turn into the aisle and start looking for

the item; otherwise, you skip the aisle and move to the head

of the next aisle.

Later, you reach the produce section in search of a juicy

tomato. Standing in front of the bin of tomatoes, you begin

inspecting them one by one — picking one up, feeling its firm-

ness, checking the color, looking for blemishes or signs of

pests. You discard one, pick up another, and continue this

process until one matches the criteria you set in your mind

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How control
structures make
decisions

How to define
functions

Where to initialize
variables efficiently

What those darned
curly braces are all
about

The basics of data
arrays

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-48 Part II ✦ JavaScript Tutorial

for an acceptable morsel. Your last stop in the store is the checkout aisle. “Paper or

plastic?” the clerk asks. One more decision to make. What you choose impacts how

you get the groceries from the car to the kitchen as well as your recycling habits.

In your trip to the store, you go through the same kinds of decisions and repeti-

tions that your JavaScript programs also encounter. If you understand these frame-

works in real life, you can now look into the JavaScript equivalents and the syntax

required to make them work.

Control Structures
In the vernacular of programming, the kinds of statements that make decisions

and loop around to repeat themselves are called control structures. A control struc-

ture directs the execution flow through a sequence of script statements based on

simple decisions and other factors.

An important part of a control structure is the condition. Just as you may travel

different routes to work depending on certain conditions (for example, nice

weather, nighttime, attending a soccer game), so, too, does a program sometimes

have to branch to an execution route if a certain condition exists. Each condition is

an expression that evaluates to true or false— one of those Boolean data types

mentioned in Chapter 6. The kinds of expressions commonly used for conditions

are expressions that include a comparison operator. You do the same in real life: If

it is true that the outdoor temperature is less than freezing, then you put on a coat

before going outside. In programming, however, the comparisons are strictly com-

parisons of number or string values.

JavaScript provides several kinds of control structures for different programming

situations. Three of the most common control structures you’ll use are if construc-

tions, if...else constructions, and for loops.

Chapter 39 covers in great detail other common control structures you should

know, some of which were introduced only in Navigator 4 and Internet Explorer 4.

For this tutorial, however, you need to learn about the three common ones just

mentioned.

if constructions
The simplest program decision is to follow a special branch or path of the pro-

gram if a certain condition is true. Formal syntax for this construction follows.

Items in italics get replaced in a real script with expressions and statements that fit

the situation.

if (condition) {
statement[s] if true

}

Don’t worry about the curly braces yet. Instead, get a feel for the basic structure.

The keyword, if, is a must. In the parentheses goes an expression that evaluates to

a Boolean value. This is the condition being tested as the program runs past this

point. If the condition evaluates to true, then one or more statements inside the

curly braces execute before continuing on with the next statement after the closing

brace. If the condition evaluates to false, then the statements inside the curly

brace are ignored and processing continues with the next statement after the clos-

ing brace.

(c) ketabton.com: The Digital Library

CD-49Chapter 7 ✦ Programming Fundamentals, Part II

The following example assumes that a variable, myAge, has had its value set

earlier in the script (exactly how is not important for this example). The condition

expression compares the value myAge against a numeric value of 18.

if (myAge < 18) {
alert(“Sorry, you cannot vote.”)

}

The data type of the value inside myAge must be a number so that the proper

comparison (via the < comparison operator) does the right thing. For all instances

of myAge less than 18, the nested statement inside the curly braces runs and

displays the alert to the user. After the user closes the alert dialog box, the script

continues with whatever statement follows the entire if construction.

if . . . else constructions
Not all program decisions are as simple as the one shown for the if construc-

tion. Rather than specifying one detour for a given condition, you might want the

program to follow either of two branches depending on that condition. It is a fine,

but important, distinction. In the plain if construction, no special processing is

performed when the condition evaluates to false. But if processing must follow

one of two special paths, you need the if...else construction. The formal syntax

definition for an if...else construction is as follows:

if (condition) {
statement[s] if true

} else {
statement[s] if false

}

Everything you know about the condition for an if construction applies here.

The only difference is the else keyword, which provides an alternate path for exe-

cution to follow if the condition evaluates to false.

As an example, the following if...else construction determines how many

days are in February for a given year. To simplify the demo, the condition simply

tests whether the year divides equally by 4. (True testing for this value includes

special treatment of end-of-century dates, but I’m ignoring that for now.) The %
operator symbol is called the modulus operator (covered in more detail in Chapter

40). The result of an operation with this operator yields the remainder of division of

the two values. If the remainder is zero, then the first value divides evenly by the

second.

var febDays
var theYear = 1993
if (theYear % 4 == 0) {

febDays = 29
} else {

febDays = 28
}

The important point to see from this example is that by the end of the

if...else construction, the febDays variable is set to either 28 or 29. No other

value is possible. For years evenly divisible by 4, the first nested statement runs.

For all other cases, the second statement runs. Processing then picks up with the

next statement after the if...else construction.

(c) ketabton.com: The Digital Library

CD-50 Part II ✦ JavaScript Tutorial

About Repeat Loops
Repeat loops in real life generally mean the repetition of a series of steps until

some condition is met, thus enabling you to break out of that loop. Such was the

case earlier in this chapter when you looked through a bushel of tomatoes for the

one that came closest to your ideal tomato. The same can be said for driving

around the block in a crowded neighborhood until a parking space opens up.

A repeat loop lets a script cycle through a sequence of statements until some

condition is met. For example, a JavaScript data validation routine might inspect

every character that you enter into a form text field to make sure that each one is a

number. Or if you have a collection of data stored in a list, the loop can check

whether an entered value is in that list. Once that condition is met, the script can

then break out of the loop and continue with the next statement after the loop

construction.

The most common repeat loop construction used in JavaScript is called the for
loop. It gets its name from the keyword that begins the construction. A for loop is a

powerful device because you can set it up to keep track of the number of times the

loop repeats itself. The formal syntax of the for loop is as follows:

for ([initial expression]; [condition]; [update expression]) {
statement[s] inside loop

}

The square brackets mean that the item is optional. However, until you get to

know the for loop better, I recommend designing your loops to utilize all three

items inside the parentheses. The initial expression portion usually sets the starting

value of a counter. The condition — the same kind of condition you saw for if con-

structions — defines the condition that forces the loop to stop going around and

around. Finally, the update expression is a statement that executes each time all of

the statements nested inside the construction complete running.

A common implementation initializes a counting variable, i, increments the

value of i by one each time through the loop, and repeats the loop until the value of

i exceeds some maximum value, as in the following:

for (var i = startValue; i <= maxValue; i++) {
statement[s] inside loop

}

Placeholders startValue and maxValue represent any numeric values, includ-

ing explicit numbers or variables holding numbers. In the update expression is an

operator you have not seen yet. The ++ operator adds 1 to the value of i each time

the update expression runs at the end of the loop. If startValue is 1, the value of i
is 1 the first time through the loop, 2 the second time through, and so on.

Therefore, if maxValue is 10, the loop repeats itself 10 times (in other words, as

long as i is less than or equal to 10). Generally speaking, the statements inside the

loop use the value of the counting variable in their execution. Later in this lesson, I

show how the variable can play a key role in the statements inside a loop. At the

same time, you see how to break out of a loop prematurely and why you may need

to do this in a script.

(c) ketabton.com: The Digital Library

CD-51Chapter 7 ✦ Programming Fundamentals, Part II

Functions
In Chapter 5, you saw a preview of the JavaScript function. A function is a defini-

tion of a set of deferred actions. Functions are invoked by event handlers or by

statements elsewhere in the script. Whenever possible, good functions are

designed for reuse in other documents. They can become building blocks you use

over and over again.

If you have programmed before, you can see parallels between JavaScript func-

tions and other languages’ subroutines. But unlike some languages that distinguish

between procedures (which carry out actions) and functions (which carry out

actions and return values), only one classification of routine exists for JavaScript. A

function is capable of returning a value to the statement that invoked it, but this is

not a requirement. However, when a function does return a value, the calling state-

ment treats the function call like any expression — plugging in the returned value

right where the function call is made. I will show some examples in a moment.

Formal syntax for a function is as follows:

function functionName ([parameter1]...[,parameterN]) {
statement[s]

}

Names you assign to functions have the same restrictions as names you assign

HTML elements and variables. You should devise a name that succinctly describes

what the function does. I tend to use multiword names with the interCap (internally

capitalized) format that start with a verb because functions are action items, even if

they do nothing more than get or set a value.

Another practice to keep in mind as you start to create functions is to keep the

focus of each function as narrow as possible. It is possible to generate functions

that are literally hundreds of lines long. Such functions are usually difficult to main-

tain and debug. Chances are that you can divide the long function into smaller,

more tightly focused segments.

Function parameters
In Chapter 5, you saw how an event handler invokes a function by calling the

function by name. Any call to a function, including one that comes from another

JavaScript statement, works the same way: a set of parentheses follows the function

name.

You also can define functions so they receive parameter values from the calling

statement. Listing 7-1 shows a simple document that has a button whose onClick
event handler calls a function while passing text data to the function. The text

string in the event handler call is in a nested string — a set of single quotes inside

the double quotes required for the entire event handler attribute.

(c) ketabton.com: The Digital Library

CD-52 Part II ✦ JavaScript Tutorial

Listing 7-1: Calling a Function from an Event Handler

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function showMsg(msg) {

alert(“The button sent: “ + msg)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>

<INPUT TYPE=”button” VALUE=”Click Me”
onClick=”showMsg (‘The button has been clicked!’)”>

</FORM>
</BODY>
</HTML>

Parameters (also known as arguments) provide a mechanism for “handing off” a

value from one statement to another by way of a function call. If no parameters

occur in the function definition, both the function definition and call to the function

have only empty sets of parentheses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the

variable names specified in the function definition’s parentheses. Consider the

following script segment:

function sayHiToFirst(a, b, c) {
alert(“Say hello, “ + a)

}
sayHiToFirst(“Gracie”, “George”, “Harry”)
sayHiToFirst(“Larry”, “Moe”, “Curly”)

After the function is defined in the script, the next statement calls that very func-

tion, passing three strings as parameters. The function definition automatically

assigns the strings to variables a, b, and c. Therefore, before the alert() state-

ment inside the function ever runs, a evaluates to “Gracie,” b evaluates to “George,”

and c evaluates to “Harry.” In the alert() statement, only the a value is used and

the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This

time through, different values are passed to the function and assigned to a, b, and

c. The alert dialog box reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not

use the var keyword to initialize them. They are automatically initialized whenever

the function is called.

(c) ketabton.com: The Digital Library

CD-53Chapter 7 ✦ Programming Fundamentals, Part II

Variable scope
Speaking of variables, it’s time to distinguish between variables that are defined

outside and those defined inside of functions. Variables defined outside of functions

are called global variables; those defined inside functions are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in

most other languages. For a JavaScript script, the “globe” of a global variable is the

current document loaded in a browser window or frame. Therefore, when you ini-

tialize a variable as a global variable, it means that all script statements in the page

(including those inside functions) have direct access to that variable value.

Statements can retrieve and modify global variables from anywhere in the page. In

programming terminology, this kind of variable is said to have global scope because

everything on the page can “see” it.

It is important to remember that the instant a page unloads itself, all global vari-

ables defined in that page are erased from memory. If you need a value to persist

from one page to another, you must use other techniques to store that value (for

example, as a global variable in a framesetting document, as described in Chapter

16; or in a cookie, as described in Chapter 18). While the var keyword is usually

optional for initializing global variables, I strongly recommend you use it for all

variable initializations to guard against future changes to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function.

You already saw how parameter variables are defined inside functions (without var
keyword initializations). But you can also define other variables with the var key-

word (absolutely required for local variables). The scope of a local variable is only

within the statements of the function. No other functions or statements outside of

functions have access to a local variable.

Local scope allows for the reuse of variable names within a document. For most

variables, I strongly discourage this practice because it leads to confusion and bugs

that are difficult to track down. At the same time, it is convenient to reuse certain

kinds of variable names, such as for loop counters. These are safe because they

are always reinitialized with a starting value whenever a for loop starts. You can-

not, however, nest a for loop inside another without specifying a different loop

counting variable.

To demonstrate the structure and behavior of global and local variables — and

show you why you shouldn’t reuse most variable names inside a document —

Listing 7-2 defines two global and two local variables. I intentionally use bad form

by initializing a local variable that has the same name as a global variable.

Listing 7-2: Global and Local Variable Scope Demonstration

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var aBoy = “Charlie Brown” // global
var hisDog = “Snoopy” // global
function demo() {

// using improper design to demonstrate a point
var hisDog = “Gromit” // local version of hisDog
var output = hisDog + “ does not belong to “ + aBoy + “.
”
document.write(output)

}

Continued

(c) ketabton.com: The Digital Library

CD-54 Part II ✦ JavaScript Tutorial

Listing 7-2 (continued)

</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
demo() // runs as document loads
document.write(hisDog + “ belongs to “ + aBoy + “.”)
</SCRIPT>
</BODY>
</HTML>

When the page loads, the script in the Head portion initializes the two global

variables (aBoy and hisDog) and defines the demo() function in memory. In the

Body, another script begins by invoking the function. Inside the function, a local

variable is initialized with the same name as one of the global variables —hisDog.

In JavaScript, such a local initialization overrides the global variable for all state-

ments inside the function. (But note that if the var keyword is left off of the local

initialization, the statement reassigns the value of the global version to “Gromit.”)

Another local variable, output, is merely a repository for accumulating the text

that is to be written to the screen. The accumulation begins by evaluating the local

version of the hisDog variable. Then it concatenates some hard-wired text (note

the extra spaces at the edges of the string segment). Next comes the evaluated

value of the aBoy global variable — any global not overridden by a local is available

for use inside the function. The expression is accumulating HTML to be written to

the page, so it ends with a period and a
 tag. The final statement of the func-

tion writes the content to the page.

After the function completes its task, the next statement in the Body script

writes another string to the page. Because this script statement is executing in

global space (that is, not inside any function), it accesses only global variables —

including those defined in another <SCRIPT> tag set in the document. By the time

the complete page finishes loading, it contains the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces
Despite the fact that you probably rarely — if ever — use curly braces ({ }) in

your writing, there is no mystery to their usage in JavaScript (and many other lan-

guages). Curly braces enclose blocks of statements that belong together. While they

do assist humans who are reading scripts in knowing what’s going on, curly braces

also help the browser to know which statements belong together. You always must

use curly braces in matched pairs.

You use curly braces most commonly in function definitions and control struc-

tures. In the function definition in Listing 7-2, curly braces enclose four statements

that make up the function definition (including the comment line). The closing

brace lets the browser know that whatever statement comes next is a statement

outside of the function definition.

(c) ketabton.com: The Digital Library

CD-55Chapter 7 ✦ Programming Fundamentals, Part II

Physical placement of curly braces is not critical (nor is the indentation style

you see in the code I provide). The following function definitions are treated identi-

cally by scriptable browsers:

function sayHiToFirst(a, b, c) {
alert(“Say hello, “ + a)

}

function sayHiToFirst(a, b, c)
{

alert(“Say hello, “ + a)
}

function sayHiToFirst(a, b, c) {alert(“Say hello, “ + a)}

Throughout this book, I use the style shown in the first example because I find

that it makes lengthy and complex scripts easier to read — especially scripts that

have many levels of nested control structures.

Arrays
The JavaScript array is one of the most useful data constructions you have

available to you. You can visualize the structure of a basic array as if it were a sin-

gle-column spreadsheet. Each row of the column holds a distinct piece of data, and

each row is numbered. Numbers assigned to rows are in strict numerical sequence,

starting with zero as the first row (programmers always start counting with zero).

This row number is called an index. To access an item in an array, you need to know

the name of the array and the index for the row. Because index values start with

zero, the total number of items of the array (as determined by the array’s length
property) is always one more than the highest index value of the array. More

advanced array concepts enable you to create the equivalent of an array with

multiple columns (described in Chapter 37). For this tutorial, I stay with the single-

column basic array.

Data elements inside JavaScript arrays can be any data type, including objects.

And, unlike a lot of other programming languages, different rows of the same

JavaScript array can contain different data types.

Creating an array
An array is stored in a variable, so when you create an array you assign the new

array object to the variable. (Yes, arrays are JavaScript objects, but they belong to

the core JavaScript language rather than the document object model.) A special

keyword —new— preceding a call to the JavaScript function that generates arrays

creates space in memory for the array. An optional parameter to the Array() func-

tion enables you to specify at the time of creation how many elements (rows) of

data eventually will occupy the array. JavaScript is very forgiving about this

because you can change the size of an array at any time. Therefore, if you omit a

parameter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, I create an array that holds the

names of the 50 states plus the District of Columbia (a total of 51). The first task is

to create that array and assign it to a variable of any name that helps me remember

what this collection of data is about:

(c) ketabton.com: The Digital Library

CD-56 Part II ✦ JavaScript Tutorial

var USStates = new Array(51)

At this point, the USStates array is sitting in memory like a 51-row table with no

data in it. To fill the rows, I must assign data to each row. Addressing each row of an

array requires a special way of indicating the index value of the row: square brack-

ets after the name of the array. The first row of the USStates array is addressed as

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a

simple assignment operator:

USStates[0] = “Alabama”

To fill in the rest of the rows, I include a statement for each row:

USStates[1] = “Alaska”
USStates[2] = “Arizona”
USStates[3] = “Arkansas”
...
USStates[50] = “Wyoming”

Therefore, if you want to include a table of information in a document from

which a script can look up information without accessing the server, you include

the data in the document in the form of an array creation sequence. When the state-

ments run as the document loads, by the time the document finishes loading into

the browser, the data collection array is built and ready to go. Despite what appears

to be the potential for a lot of statements in a document for such a data collection,

the amount of data that must download for typical array collections is small enough

not to severely impact page loading — even for dial-up users at 28.8 Kbps.

Accessing array data
The array index is the key to accessing an array element. The name of the array

and an index in square brackets evaluates to the content of that array location. For

example, after the USStates array is built, a script can display an alert with

Alaska’s name in it with the following statement:

alert(“The largest state is “ + USStates[1] + “.”)

Just as you can retrieve data from an indexed array element, so can you change

the element by reassigning a new value to any indexed element in the array.

Although I don’t dwell on it in this tutorial, you can also use string names as

index values instead of numbers. In essence, this enables you to create an array

that has named labels for each row of the array — a definite convenience for certain

circumstances. But whichever way you use to assign data to an array element, the

first time dictates the way you must access that element thereafter in the page’s

scripts.

Parallel arrays
Now I show you why the numeric index methodology works well in JavaScript.

To help with the demonstration, I generate another array that is parallel with the

USStates array. This new array is also 51 elements long, and it contains the year in

(c) ketabton.com: The Digital Library

CD-57Chapter 7 ✦ Programming Fundamentals, Part II

which the state in the corresponding row of USStates entered the Union. That

array construction looks like the following:
var stateEntered = new Array(51)
stateEntered [0] = 1819
stateEntered [1] = 1959
stateEntered [2] = 1912
stateEntered [3] = 1836
...
stateEntered [50] = 1890

In the browser’s memory, then, are two tables that you can visualize as looking

like the model in Figure 7-1. I can build more arrays that are parallel to these for

items such as the postal abbreviation and capital city. The important point is that

the zeroth element in each of these tables applies to Alabama, the first state in the

USStates array.

Figure 7-1: Visualization of two related parallel tables

If a Web page included these tables and a way for a user to look up the entry

date for a given state, the page would need a way to look through all of the

USStates entries to find the index value of the one that matches the user’s entry.

Then, that index value could be applied to the stateEntered array to find the

matching year.

For this demo, the page includes a text entry field in which the user types the

name of the state to look up. In a real application, this methodology is fraught with

peril unless the script performs some error checking in case the user makes a mis-

take. But for now, I assume that the user always types a valid state name. (Don’t

ever make this assumption in your Web site’s pages.) An event handler from either

the text field or a clickable button calls a function that looks up the state name,

"Alabama"

"Alaska"

"Arizona"

"Arkansas"

"Wyoming"

1819

1959

1912

1836

1890

[0]

[1]

[2]

[3]

[50]

stateEnteredUSStates

....
....

....

(c) ketabton.com: The Digital Library

CD-58 Part II ✦ JavaScript Tutorial

fetches the corresponding entry year, and displays an alert message with the infor-

mation. The function is as follows.

function getStateDate() {
var selectedState = document.entryForm.entry.value
for (var i = 0; i < USStates.length; i++) {

if (USStates[i] == selectedState) {
break

}
}
alert(“That state entered the Union in “ + stateEntered[i] + “.”)

}

In the first statement of the function, I grab the value of the text box and assign

the value to a variable, selectedState. This is mostly for convenience because I

can use the shorter variable name later in the script. In fact, the usage of that value

is inside a for loop, so the script is marginally more efficient because the browser

doesn’t have to evaluate that long reference to the text field each time through the

loop.

The key to this function is in the for loop. Here is where I combine the natural

behavior of incrementing a loop counter with the index values assigned to the two

arrays. Specifications for the loop indicate that the counter variable, i, is initialized

with a value of zero. The loop is directed to continue as long as the value of i is less

than the length of the USStates array. Remember that the length of an array is

always one more than the index value of the last item. Therefore, the last time the

loop runs is when i is 50, which is both less than the length of 51 and equal to the

index value of the last element. Each time after the loop runs, the counter incre-

ments by one.

Nested inside the for loop is an if construction. The condition it tests is the

value of an element of the array against the value typed in by the user. Each time

through the loop, the condition tests a different row of the array starting with row

zero. In other words, this if construction can be performed dozens of times before

a match is found, but each time the value of i is one larger than the previous try.

The equality comparison operator (==) is very strict when it comes to compar-

ing string values. Such comparisons respect the case of each letter. In our example,

the user must type the state name exactly as it is stored in the USStates array for

the match to be found. In Chapter 10, you learn about some helper methods that

eliminate case and sensitivity in string comparisons.

When a match is found, the statement nested inside the if construction runs.

The break statement is designed to help control structures bail out if the program

needs it. For this application, it is imperative that the for loop stop running when a

match for the state name is found. When the for loop breaks, the value of the i
counter is fixed at the row of the USStates array containing the entered state. I

need that index value to find the corresponding entry in the other array. Even

though the counting variable, i, is initialized in the for loop, it is still “alive” and in

the scope of the function for all statements after the initialization. That’s why I can

use it to extract the value of the row of the stateEntered array in the final state-

ment that displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript.

Study the code carefully and be sure you understand how it works. This way of

cycling through arrays plays a role not only in the kinds of arrays you create in

your code, but also with the arrays that browsers generate for the document object

model.

(c) ketabton.com: The Digital Library

CD-59Chapter 7 ✦ Programming Fundamentals, Part II

Document objects in arrays
If you look at the document object portions of the Quick Reference in Appendix

A, you can see that the properties of some objects are listed with square brackets

after them. These are, indeed, the same kind of square brackets you just saw for

array indexes. That’s because when a document loads, the browser creates arrays

of like objects in the document. For example, if your page includes two <FORM> tag

sets, then two forms appear in the document. The browser maintains an array of

form objects for that document. References to those forms are

document.forms[0]
document.forms[1]

Index values for document objects are assigned according to the loading order of

the objects. In the case of form objects, the order is dictated by the order of the

<FORM> tags in the document. This indexed array syntax is another way to refer-

ence forms in an object reference. You can still use a form’s name if you prefer —

and I heartily recommend using object names wherever possible because even if

you change the physical order of the objects in your HTML, references that use

names still work without modification. But if your page contains only one form, you

can use the reference types interchangeably, as in the following examples of equiva-

lent references to a text field’s value property in a form:

document.entryForm.entry.value
document.forms[0].entry.value

In examples throughout this book, you can see that I often use the array type of

reference to simple forms in simple documents. But in my production pages, I

almost always use named references.

Exercises
1. With your newly acquired knowledge of functions, event handlers, and control

structures, use the script fragments from this chapter to complete the page

that has the lookup table for all of the states and the years they entered into

the Union. If you do not have a reference book for the dates, then use different

year numbers starting with 1800 for each entry. In the page, create a text

entry field for the state and a button that triggers the lookup in the arrays.

2. Examine the following function definition. Can you spot any problems with the

definition? If so, how can you fix the problems?

function format(ohmage) {
var result
if ohmage >= 1e6 {

ohmage = ohmage / 1e5
result = ohmage + “ Mohms”

} else {
if (ohmage >= 1e3)

ohmage = ohmage / 1e2
result = ohmage + “ Kohms”

else
result = ohmage + “ ohms”

}
alert(result)

(c) ketabton.com: The Digital Library

CD-60 Part II ✦ JavaScript Tutorial

3. Devise your own syntax for the scenario of looking for a ripe tomato at the

grocery store, and write a for loop using that object and property syntax.

4. Modify Listing 7-2 so it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system,

create a Web page that enables users to enter a planet name and, at the click

of a button, have the distance and diameter appear either in an alert box or

(as extra credit) in separate fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles

Venus 67 million miles 7,700 miles

Earth 93 million miles 7,920 miles

Mars 141 million miles 4,200 miles

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Window and
Document
Objects

Now that you have exposure to programming fundamen-

tals, it is easier to demonstrate how to script objects in

documents. Starting with this lesson, the tutorial turns back

to the document object model, diving more deeply into each

of the objects you will place in many of your documents.

Document Objects
As a refresher, study the lowest common denominator

document object hierarchy in Figure 8-1. This chapter focuses

on objects at or near the top of the hierarchy: window,

location, history, and document. The goal is not only to

equip you with the basics so you can script simple tasks, but

also to prepare you for in-depth examinations of each object

and its properties, methods, and event handlers in Part III of

this book. I introduce only the basic properties, methods, and

event handlers for objects in this tutorial — you can find far

more in Part III. Examples in that part of the book assume you

know the programming fundamentals covered in previous

chapters.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What the window
object does

How to access key
window object
properties and
methods

How to trigger script
actions after a
document loads

The purposes of the
location and
history objects

How the document
object is created

How to access key
document object
properties and
methods

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-62 Part II ✦ JavaScript Tutorial

Figure 8-1: The lowest common denominator document
object model for all scriptable browsers

The Window Object
At the very top of the document object hierarchy is the window object. This

object gains that exalted spot in the object food chain because it is the master con-

tainer for all content you view in the Web browser. As long as a browser window is

open — even if no document is loaded in the window — the window object is

defined in the current model in memory.

In addition to the content part of the window where documents go, a window’s

sphere of influence includes the dimensions of the window and all of the “stuff” that

surrounds the content area. The area where scrollbars, toolbars, the status bar, and

(non-Macintosh) menu bar live is known as a window’s chrome. Not every browser

has full scripted control over the chrome of the main browser window, but you can

easily script the creation of additional windows sized the way you want and have

only the chrome elements you wish to display in that subwindow.

Although the discussion about frames comes in Chapter 11, I can safely say now

that each frame is also considered a window object. If you think about it, that makes

sense because each frame can hold a different document. When a script runs in one

of those documents, it regards the frame that holds the document as the window
object in its view of the object hierarchy.

As you learn in this chapter, the window object is a convenient place for the docu-

ment object model to attach methods that display modal dialog boxes and adjust

the text that displays in the status bar at the bottom of the browser window. A

window object method enables you to create a separate window that appears on the

screen. When you look at all of the properties, methods, and event handlers defined

window
frame self top parent

text radio button select

link form anchor

password submit

textarea checkbox reset option

history document location

(c) ketabton.com: The Digital Library

CD-63Chapter 8 ✦ Window and Document Objects

for the window object (see Chapter 16), it should be clear why they are attached to

window objects — visualize their scope and the scope of a browser window.

Accessing window properties and methods
You can word script references to properties and methods of the window object

in several ways, depending more on whim and style than on specific syntactical

requirements. The most logical and common way to compose such references

includes the window object in the reference:

window.propertyName
window.methodName([parameters])

A window object also has a synonym when the script doing the referencing

points to the window that houses the document. The synonym is self. Reference

syntax then becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to

reserve the use of self for more complex scripts that involve multiple frames and

windows. The self moniker more clearly denotes the current window holding the

script’s document. It makes the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always “there”

when a script runs, you could omit it from references to any objects inside that win-

dow. Therefore, the following syntax models assume properties and methods of the

current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more under-

standable if you omit the window object reference. The methods run just fine either

way.

Creating a window
A script does not create the main browser window. A user does that by virtue of

launching the browser or by opening a URL or file from the browser’s menus (if the

window is not already open). But a script can generate any number of subwindows

once the main window is open (and that window contains a document whose script

needs to open subwindows).

The method that generates a new window is window.open(). This method con-

tains up to three parameters that define window characteristics, such as the URL of

the document to load, its name for TARGET attribute reference purposes in HTML

tags, and physical appearance (size and chrome contingent). I don’t go into the

details of the parameters here (they’re covered in great depth in Chapter 16), but I

do want to expose you to an important concept involved with the window.open()
method.

(c) ketabton.com: The Digital Library

CD-64 Part II ✦ JavaScript Tutorial

Consider the following statement that opens a new window to a specific size and

with an HTML document from the same server directory that holds the current

page:

var subWindow = window.open(“define.html”,”def”,”HEIGHT=200,WIDTH=300”)

The important thing to note about this statement is that it is an assignment

statement. Something gets assigned to that variable subWindow. What is it? It turns

out that when the window.open() method runs, it not only opens up that new

window according to specifications set as parameters, but it also evaluates to a ref-

erence to that new window. In programming parlance, the method is said to return a
value — in this case, a genuine object reference. The value returned by the method

is assigned to the variable.

Your script can now use that variable as a valid reference to the second window.

If you need to access one of its properties or methods, you must use that reference

as part of the complete reference. For example, to close the subwindow from a

script in the main window, use this reference to the close() method for that

subwindow:

subWindow.close()

If you issue window.close(), self.close(), or just close() in the main win-

dow’s script, the method closes the main window and not the subwindow. To

address another window, then, you must include a reference to that window as part

of the complete reference. This has an impact on your code because you probably

want the variable holding the reference to the subwindow to be valid as long as the

main document is loaded into the browser. For that to happen, the variable has to

be initialized as a global variable, rather than inside a function (although you can

set its value inside a function). That way, one function can open the window while

another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and clos-

ing that window from the main window. To view this demonstration, shrink your

main browser window to less than full screen. Then when the new window is gener-

ated, reposition the windows so you can see the smaller, new window when the

main window is in front. (If you “lose” a window behind another, use the browser’s

Window menu to choose the hidden window.) The key point of Listing 8-1 is that the

newWindow variable is defined as a global variable so that both the

makeNewWindow() and closeNewWindow() functions have access to it. When a

variable is declared with no value assignment, its value is null. A null value is

interpreted to be the same as false in a condition, while the presence of any non-

zero value is the same as true in a condition. Therefore, in the closeNewWindow()
function, the condition tests whether the window has been created before issuing

the subwindow’s close() method. Then, to clean up, the function sets the

newWindow variable to null so that another click of the Close button doesn’t try to

close a nonexistent window.

(c) ketabton.com: The Digital Library

CD-65Chapter 8 ✦ Window and Document Objects

Listing 8-1: References to Window Objects

<HTML>
<HEAD>
<TITLE>Window Opener and Closer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newWindow
function makeNewWindow() {

newWindow = window.open(“”,””,”HEIGHT=300,WIDTH=300”)
}
function closeNewWindow() {

if (newWindow) {
newWindow.close()
newWindow = null

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Create New Window” onClick=”makeNewWindow()”>
<INPUT TYPE=”button” VALUE=”Close New Window” onClick=”closeNewWindow()”>
</FORM>
</BODY>
</HTML>

Window Properties and Methods
The one property and three methods for the window object described in this sec-

tion have an immediate impact on user interaction. They work with all scriptable

browsers. You can find extensive code examples in Part III for each property and

method. You can also experiment with the one-statement script examples by enter-

ing them in the top text box of The Evaluator Jr. (from Chapter 6).

window.status property
The status bar at the bottom of the browser window normally displays the URL

of a link when you roll the mouse pointer atop it. Other messages also appear in

that space during document loading, Java applet initialization, and the like.

However, you can use JavaScript to display your own messages in the status bar at

times that may be beneficial to your users. For example, rather than display the

URL of a link, you can display a friendlier, plain-language description of the page at

the other end of the link (or a combination of both to accommodate both newbies

and geeks).

(c) ketabton.com: The Digital Library

CD-66 Part II ✦ JavaScript Tutorial

You can assign the window.status property some other text at any time. To

change the status bar text of a link as the cursor hovers atop the link, you trigger

the action with an onMouseOver event handler of a link object. A peculiarity of the

onMouseOver event handler for setting the status bar is that an additional statement—

return true— must be part of the event handler. This is very rare in JavaScript,

but it is required here for your script to successfully override the

status bar.

Due to the simplicity of setting the window.status property, it is most common

for the script statements to run as inline scripts in the event handler definition.

This is handy for short scripts because you don’t have to specify a separate func-

tion or add <SCRIPT> tags to your page. You simply add the script statements to

the <A> tag:

<A HREF=”http://home.netscape.com” onMouseOver=
“window.status=’Visit the Netscape Home page (home.netscape.com)’; return true”>
Netscape

Look closely at the script statements assigned to the onMouseOver event han-

dler. The two statements are

window.status=’Visit the Netscape Home page (home.netscape.com)’
return true

When you run these as inline scripts, you must separate the two statements with

a semicolon. (The space after the semicolon is optional, but often improves read-

ability.) Equally important, the entire set of statements is surrounded by double

quotes (“...”). To nest the string being assigned to the window.status property

inside the double-quoted script, you surround the string with single quotes

(‘...’). You get a big payoff for a little bit of script when you set the status bar.

The downside is that scripting this property is how those awful status bar scrolling

banners are created. Yech!

window.alert() method
I have already used the alert() method many times so far in this tutorial. This

window method generates a dialog box that displays whatever text you pass as a

parameter (see Figure 8-2). A single OK button (whose label you cannot change)

enables the user to dismiss the alert.

The appearance of this and two other JavaScript dialog boxes (described next)

has changed since the first scriptable browsers. In older browser versions (as

shown in Figure 8-2), the browser inserted words clearly indicating that the dialog

box was a “JavaScript Alert.” Different browsers display different title bars whose

content cannot be altered by script. You can change only the other message content.

All three dialog box methods are good cases for using a window object’s methods

without the reference to the window. Even though the alert() method is techni-

cally a window object method, no special relationship exists between the dialog box

and the window that generates it. In production scripts, I usually use the shortcut

reference:

alert(“This is a JavaScript alert dialog.”)

(c) ketabton.com: The Digital Library

CD-67Chapter 8 ✦ Window and Document Objects

Figure 8-2: A JavaScript alert dialog box (old style)

window.confirm() method
The second style of dialog box presents two buttons (Cancel and OK in most

versions on most platforms) and is called a confirm dialog box (see Figure 8-3).

More importantly, this is one of those methods that returns a value: true if the user

clicks OK, false if the user clicks Cancel. You can use this dialog box and its

returned value as a way to have a user make a decision about how a script

progresses.

Figure 8-3: A JavaScript confirm
dialog box (IE5/Win32 style)

Because the method always returns a Boolean value, you can use the evaluated

value of the entire method as a condition statement in an if or if...else con-

struction. For example, in the following code fragment, the user is asked about

starting the application over. Doing so causes the default page of the site to load

into the browser.

if (confirm(“Are you sure you want to start over?”)) {
location.href = “index.html”

}

window.prompt() method
The final dialog box of the window object, the prompt dialog box (see Figure 8-4),

displays a message that you set and provides a text field for the user to enter a

response. Two buttons, Cancel and OK, enable the user to dismiss the dialog box

with two opposite expectations: canceling the entire operation or accepting the

input typed into the dialog box.

(c) ketabton.com: The Digital Library

CD-68 Part II ✦ JavaScript Tutorial

Figure 8-4: A JavaScript prompt dialog box
(IE5/Win32 style)

The window.prompt() method has two parameters. The first is the message

that acts as a prompt to the user. You can suggest a default answer in the text field

by including a string as the second parameter. If you don’t want any default answer

to appear, then include an empty string (two double quotes without any space

between them).

This method returns one value when the user clicks either button. A click of the

Cancel button returns a value of null, regardless of what the user types into the

field. A click of the OK button returns a string value of the typed entry. Your scripts

can use this information in conditions for if and if...else constructions. A value

of null is treated as false in a condition. It turns out that an empty string is also

treated as false. Therefore, a condition can easily test for the presence of real

characters typed into the field to simplify a condition test, as shown in the follow-

ing fragment:

var answer = prompt(“What is your name?”,””)
if (answer) {

alert(“Hello, “ + answer + “!”)
}

The only time the alert() method is called is when the user enters something

into the prompt dialog box and clicks the OK button.

onLoad event handler
The window object reacts to several system and user events, but the one you will

probably use most often is the event that fires as soon as everything in a page fin-

ishes loading. This event waits for images, Java applets, and data files for plug-ins

to download fully to the browser. It can be dangerous to script access to elements

of a document object while the page loads because if the object has not loaded yet

(perhaps due to a slow network connection or server), a script error results. The

advantage of using the onLoad event to invoke functions is that you are assured

that all document objects are in the browser’s document object model. All window

event handlers are placed inside the <BODY> tag. Even though you will come to

associate the <BODY> tag’s attributes with the document object’s properties, it is

the window object’s event handlers that go inside the tag.

The Location Object
Sometimes an object in the hierarchy represents something that doesn’t seem to

have the kind of physical presence that a window or a button does. That’s the case

with the location object. This object represents the URL loaded into the window.

(c) ketabton.com: The Digital Library

CD-69Chapter 8 ✦ Window and Document Objects

This differs from the document object (discussed later in this lesson) because the

document is the real content; the location is simply the URL.

Unless you are truly Web-savvy, you may not realize a URL consists of many

components that define the address and method of data transfer for a file. Pieces of

a URL include the protocol (such as http:) and the hostname (such as www.
giantco.com). You can access all of these items as properties of the location
object. For the most part, though, your scripts will be interested in only one

property: the href property, which defines the complete URL.

Setting the location.href property is the primary way your scripts navigate to

other pages:

location.href = “http://www.dannyg.com”

You can generally navigate to a page in your own Web site by specifying a rela-

tive URL (that is, relative to the currently loaded page) rather than the complete

URL with protocol and host information. For pages outside of the domain of the

current page, you need to specify the complete URL.

If the page to be loaded is in another window or frame, the window reference

must be part of the statement. For example, if your script opens a new window and

assigns its reference to a variable named newWindow, the statement that loads a

page into the subwindow is

newWindow.location.href = “http://www.dannyg.com”

The History Object
Another object that doesn’t have a physical presence on the page is the history

object. Each window maintains a list of recent pages that the browser has visited.

While the history object’s list contains the URLs of recently visited pages, those

URLs are not generally accessible by script due to privacy and security limits

imposed by browsers. But methods of the history object allow for navigating

backward and forward through the history relative to the currently loaded page.

You can find details in Chapter 17.

The Document Object
The document object holds the real content of the page. Properties and methods

of the document object generally affect the look and content of the document that

occupies the window. Only more recent browsers (IE4+ and NN6+) allow script

access to the text contents of a page once the document has loaded. However, as

you saw in your first script of Chapter 3, the document.write() method lets a

script dynamically create content as the page loads. A great many of the document
object’s properties are established by attributes of the <BODY> tag. Many other

properties are arrays of other objects in the document.

Accessing a document object’s properties and methods is straightforward, as

shown in the following syntax examples:

[window.]document.propertyName
[window.]document.methodName([parameters])

(c) ketabton.com: The Digital Library

CD-70 Part II ✦ JavaScript Tutorial

The window reference is optional when the script is accessing the document
object that contains the script. If you want a preview of the document object prop-

erties of the browser you’re using, enter document into the bottom text box of The

Evaluator Jr. and press Enter/Return. The object’s properties and current values

appear in the Results box.

document.forms[] property
One of the object types contained by a document is the FORM element object.

Because conceivably there can be more than one form in a document, forms are

stored as arrays in the document.forms[] property. As you recall from the discus-

sion of arrays in Chapter 7, an index number inside the square brackets points to

one of the elements in the array. To find out how many FORM objects are in the

current document, use

document.forms.length

To access the first form in a document, for example, the reference is

document.forms[0]

In general, however, I recommend that you access a form by way of a name you

assign to the form in its NAME attribute, as in

document.formName

Either methodology reaches the same object. When a script needs to reference

elements inside a form, the complete address to that object must include document
and form references.

document.title property
Not every property of a document object is set in a <BODY> tag attribute. If you

assign a title to the page in the <TITLE> tag set within the Head portion, that title

text is reflected by the document.title property. A document’s title is mostly a

cosmetic setting that gives a plain-language name of the page appearing in the

browser’s title bar, as well as the user’s history listing and bookmark of your page.

document.write() method
The document.write() method operates in both immediate scripts to create

content in a page as it loads and in deferred scripts that create new content in the

same or different window. The method requires one string parameter, which is the

HTML content to write to the window or frame. Such string parameters can be

variables or any other expressions that evaluate to a string. Very often, the written

content includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream is automatically

closed. After that, any document.write() method issued to the current page

opens a new stream that immediately erases the current page (along with any vari-

ables or other values in the original document). Therefore, if you wish to replace

the current page with script-generated HTML, you need to accumulate that HTML

in a variable and perform the writing with just one document.write() method.

You don’t have to explicitly clear a document and open a new data stream; one

document.write() call does it all.

One last piece of housekeeping advice about the document.write() method

involves its companion method, document.close(). Your script must close the

(c) ketabton.com: The Digital Library

CD-71Chapter 8 ✦ Window and Document Objects

output stream when it finishes writing its content to the window (either the same

window or another). After the last document.write() method in a deferred script,

be sure to include a document.close() method. Failure to do this may cause

images and forms not to appear. Also, any document.write() method invoked

later will only append to the page, rather than clear the existing content to write

anew. To demonstrate the document.write() method, I show two versions of the

same application. One writes to the same document that contains the script; the

other writes to a separate window. Type in each document in a new text editor

document, save it with an .html file name extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document,

including HTML tags for a new document title and color attribute for the <BODY>
tag. An operator in the listing that may be unfamiliar to you is +=. It appends a

string on its right side to whatever string is stored in the variable on its left side.

This operator is a convenient way to accumulate a long string across several

separate statements. With the content gathered in the newContent variable, one

document.write() statement blasts the entire new content to the same document,

obliterating all vestiges of the content of Listing 8-2. The document.close() state-

ment, however, is required to close the output stream properly. When you load this

document and click the button, notice that the document title in the browser’s title

bar changes accordingly. As you click back to the original and try the button again,

notice that the dynamically written second page loads much faster than even a

reload of the original document.

Listing 8-2: Using document.write() on the Current Window

<HTML>
<HEAD>
<TITLE>Writing to Same Doc</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function reWrite() {

// assemble content for new window
var newContent = “<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>”
newContent += “<BODY BGCOLOR=’aqua’><H1>This document is brand new.</H1>”
newContent += “Click the Back button to see original document.”
newContent += “</BODY></HTML>”
// write HTML to new window document
document.write(newContent)
document.close() // close layout stream

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Replace Content” onClick=”reWrite()”>
</FORM>
</BODY>
</HTML>

In Listing 8-3, the situation is a bit more complex because the script generates a

subwindow to which is written an entirely script-generated document. To keep the

reference to the new window alive across both functions, the newWindow variable is

declared as a global variable. As soon as the page loads, the onLoad event handler

(c) ketabton.com: The Digital Library

CD-72 Part II ✦ JavaScript Tutorial

invokes the makeNewWindow() function. This function generates a blank subwin-

dow. I added a property to the third parameter of the window.open() method that

instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite() method. The first task it performs

is to check the closed property of the subwindow. This property (which exists

only in newer browser versions) returns true if the referenced window is closed. If

that’s the case (if the user manually closed the window), the function invokes the

makeNewWindow() function again to reopen that window.

With the window open, new content is assembled as a string variable. As with

Listing 8-2, the content is written in one blast (although that isn’t necessary for a

separate window), followed by a close() method. But notice an important differ-

ence: both the write() and close() methods explicitly specify the subwindow.

Listing 8-3: Using document.write() on Another Window

<HTML>
<HEAD>
<TITLE>Writing to Subwindow</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newWindow
function makeNewWindow() {

newWindow = window.open(“”,””,”status,height=200,width=300”)
}

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {

makeNewWindow()
}
// bring subwindow to front
newWindow.focus()
// assemble content for new window
var newContent = “<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>”
newContent += “<BODY BGCOLOR=’coral’><H1>This document is brand new.</H1>”
newContent += “</BODY></HTML>”
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close layout stream

}
</SCRIPT>
</HEAD>
<BODY onLoad=”makeNewWindow()”>
<FORM>
<INPUT TYPE=”button” VALUE=”Write to Subwindow” onClick=”subWrite()”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

CD-73Chapter 8 ✦ Window and Document Objects

The Link Object
Belonging to the document object in the hierarchy is the link object. A link object

is the object model equivalent of an <A> tag when the tag includes an HREF attribute.

A document can have any number of links, so references to links (if necessary) are

usually made via the array index method:

document.links[n].propertyName

More commonly, though, links are not scripted. However, there is an important

JavaScript component to these objects. When you want to click a link to execute a

script rather than navigate directly to another URL, you can redirect the HREF
attribute to call a script function. The technique involves a pseudo-URL called the

javascript: URL. If you place the name of a function after the javascript: URL,

then a scriptable browser runs that function. So as not to mess with the minds of

users, the function should probably perform some navigation in the end. However,

the script can do other things as well, such as simultaneously changing the content

of two frames within a frameset.

The syntax for this construction in a link is as follows:

...

The void keyword prevents the link from trying to display any value that the

function may return. Remember this javascript: URL technique for all tags that

include HREF and SRC attributes: If an attribute accepts a URL, it can accept this

javascript: URL as well. This can come in handy as a way to script actions for

client-side image maps that don’t necessarily navigate anywhere, but which cause

something to happen on the page just the same.

The next logical step past the document level in the object hierarchy is the form.

That’s where you will spend the next lesson.

Exercises
1. Which of the following references are valid and which are not? Explain what is

wrong with the invalid references.

a. window.document.form[0]

b. self.entryForm.entryField.value

c. document.forms[2].name

d. entryForm.entryField.value

e. newWindow.document.write(“Howdy”)

2. Write the JavaScript statement that displays a message in the status bar wel-

coming visitors to your Web page.

(c) ketabton.com: The Digital Library

CD-74 Part II ✦ JavaScript Tutorial

3. Write the JavaScript statement that displays the same message to the docu-

ment as an <H1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads

(via a dialog box) and then welcomes the user by name in the body of the

page.

5. Create a page with any content you like, but one that automatically displays

a dialog box after the page loads to show the user the URL of the current

page.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Forms and Form
Elements

Most interactivity between a Web page and the user

takes place inside a form. That’s where a lot of the

interactive HTML stuff lives for every browser: text fields,

buttons, checkboxes, option lists, and so on. As you can tell

from the (by now) familiar basic object hierarchy diagram

(refer back to Figure 8-1), a form is always contained by a

document. Even so, the document object must be part of the

reference to the form and its elements.

The FORM Object
A FORM object can be referenced either by its position in

the array of forms contained by a document or by name

(if you assign an identifier to the NAME attribute inside the

<FORM> tag). If only one form appears in the document, it is

still a member of an array (a one-element array) and is

referenced as follows:

document.forms[0]

Notice that the array reference uses the plural version of

the word, followed by a set of square brackets containing the

index number of the element (zero is always first). But if you

assign a name to the form, simply plug the form’s name into

the reference:

document.formName

Form as object and container
In the simplified, compatible object model of this tutorial, a

form has a relatively small set of properties, methods, and

event handlers. Almost all of the properties are the same as

the attributes for forms. All scriptable versions of Navigator,

and most versions of Internet Explorer, allow scripts to change

these properties under script control, which gives your scripts

potentially significant power to direct the behavior of a form

submission in response to user selections on the page.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What the FORM
object represents

How to access key
FORM object
properties and
methods

How text, button, and
SELECT objects work

How to submit forms
from a script

How to pass
information from form
elements to functions

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-76 Part II ✦ JavaScript Tutorial

A form is contained by a document, and the form in turn contains any number of

elements (sometimes called form controls). All of those interactive elements that

enable users to enter information or make selections belong to the form object.

This relationship mirrors the HTML tag organization in which items such as

<INPUT> tags are nested between the <FORM> and </FORM> tag “bookends.”

Accessing form properties
Forms are created entirely from standard HTML tags in the page. You can set

attributes for NAME, TARGET, ACTION, METHOD, and ENCTYPE. Each of these is a prop-

erty of a FORM object, accessed by all lowercase versions of those words, as in

document.forms[0].action
document.formName.action

To change any of these properties, simply assign new values to them:

document.forms[0].action = “http://www.giantco.com/cgi/login.pl”

form.elements[] property
In addition to keeping track of each type of element inside a form, the browser

also maintains a list of all control elements within a form. This list is another array,

with items listed according to the order in which their HTML tags appear in the

source code. It is generally more efficient to create references to elements directly,

using their names. However, sometimes a script needs to look through all of the ele-

ments in a form. This is especially true if the content of a form changes with each

loading of the page because the number of text fields changes based on the user’s

browser type. (For example, a script on the page uses document.write() to add

an extra text box for information required only from Windows users.)

The following code fragment shows the form.elements[] property at work in a

for repeat loop that looks at every element in a form to set the contents of text

fields to an empty string. The script cannot simply barge through the form and set

every element’s content to an empty string because some elements may be but-

tons, which don’t have a value property that you can set to an empty string.

var form = window.document.forms[0]
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
form.elements[i].value = “”

}
}

In the first statement, I create a variable —form— that holds a reference to the

first form of the document. I do this so that when I make many references to form

elements later in the script, the typical length of each reference is much shorter

(and marginally faster). I can use the form variable as a shortcut to building refer-

ences to items more deeply nested in the form.

Next, I start looping through the items in the elements array for the form. Each

form element has a type property, which reveals what kind of form element it is:

(c) ketabton.com: The Digital Library

CD-77Chapter 9 ✦ Forms and Form Elements

text, button, radio, checkbox, and so on. I’m interested in finding elements whose

type is text. For each of those, I set the value property to an empty string.

I return to forms later in this chapter to show you how to submit a form without

a Submit button and how client-side form validation works.

Form Controls as Objects
Three kinds of HTML elements nested inside a <FORM> tag become scriptable

objects in all browser document object models. Most of the objects owe their exis-

tence to the <INPUT> tag in the page’s source code. Only the value assigned to the

TYPE attribute of an <INPUT> tag determines whether the element is a text box,

password entry field, hidden field, button, checkbox, or radio button. The other

two kinds of form controls, TEXTAREA and SELECT, have their own tags.

While form controls have several properties in common, some properties are

unique to a particular control type or related types. For example, only a SELECT

object offers a property that reveals which item in its list is currently selected. But

checkbox and radio buttons both have a property that indicates whether the con-

trol is currently set to “on.” Similarly, all text-oriented controls operate the same

way for reading and modifying their content.

Having a good grasp of the scriptable features of form control objects is impor-

tant to your success with JavaScript. In the next sections, you meet the most

important form control objects and see how scripts interact with them.

Text-related objects
Each of the four text-related HTML form elements — text, password, hidden, and

TEXTAREA — is an element in the document object hierarchy. All but the hidden

object display themselves in the page, enabling users to enter information. These

objects also display text information that changes in the course of using a page

(although Dynamic HTML in IE4+ and NN6+ also allows the scripted change of body

text in a document).

To make these objects scriptable in a page, you do nothing special to their

normal HTML tags — with the possible exception of assigning a NAME attribute. I

strongly recommend assigning unique names to every form control element if your

scripts will be getting or setting properties or invoking their methods. Besides, if

the form is actually submitted to a server program, the NAME attributes must be

assigned in order for the server to process the element’s data.

For the visible objects in this category, event handlers are triggered from many

user actions, such as giving a field focus (getting the text insertion pointer in the

field) and changing text (entering new text and leaving the field). Most of your text

field actions are triggered by the change of text (the onChange event handler). In IE

and NN version 4 browsers and later, event handlers fire in response to individual

keystrokes as well.

Without a doubt, the single most used property of a text-related element is the

value property. This property represents the current contents of the text element.

A script can retrieve and set its content at any time. Content of the value property

(c) ketabton.com: The Digital Library

CD-78 Part II ✦ JavaScript Tutorial

is always a string. This may require conversion to numbers (see Chapter 6) if text

fields are used to enter values for some math operations.

To demonstrate how a text field’s value property can be read and written,

Listing 9-1 provides a complete HTML page with a single-entry field. Its onChange
event handler invokes the upperMe() function, which converts the text to upper-

case. In the upperMe() function, the first statement assigns the text object refer-

ence to a more convenient variable: field. A lot goes on in the second statement of

the function. The right side of the assignment statement performs a couple of key

tasks. The reference to the value property of the object (field.value) evaluates

to whatever content is in the text field at that instant. That string is then handed

over to one of JavaScript’s string functions, toUpperCase(), which converts the

value to uppercase. The evaluated result of the right side statement is then

assigned to the second variable: upperCaseVersion. Nothing has changed yet in

the text box. That comes in the third statement where the value property of the

text box is assigned whatever the upperCaseVersion variable holds. The need for

the second statement is more for learning purposes, so you can see the process

more slowly. In practice, you can combine the actions of steps two and three into

one power-packed statement:

field.value = field.value.toUpperCase()

Listing 9-1: Getting and Setting a Text Object’s value Property

<HTML>
<HEAD>
<TITLE>Text Object value Property</TITLE>

Text Object Behavior

Many scripters look to JavaScript to solve what are perceived as shortcomings or behavioral
anomalies with text-related objects in forms. I want to single these out early in your script-
ing experience so that they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and
text alignment of a text object’s content. You can access changes through the element’s
style-related properties (Chapter 30).

Second, most browser forms practice a behavior that was recommended long ago as an
informal standard by Web pioneers. When a form contains only one text INPUT object, a
press of the Enter/Return key while the text object has focus automatically submits the form.
For two or more fields in browsers other than IE5/Mac, you need another way to submit the
form (for example, a Submit button). This one-field submission scheme works well in many
cases, such as the search page of most Web search sites. But if you are experimenting with
simple forms containing only one field, you can submit the form with a press of the
Enter/Return key. Submitting a form that has no other action or target specified means the
page performs an unconditional reload — wiping out any information entered into the form.
You can, however, cancel the submission through an onSubmit event handler in the form, as
shown later in this chapter. Also, starting with version 4 browsers, you can script the press of
the Enter/Return key in any text field to submit a form (see Chapter 29).

(c) ketabton.com: The Digital Library

CD-79Chapter 9 ✦ Forms and Form Elements

<SCRIPT LANGUAGE=”JavaScript”>
function upperMe() {

var field = document.forms[0].converter
var upperCaseVersion = field.value.toUpperCase()
field.value = upperCaseVersion

}
</SCRIPT>
</HEAD>
<BODY>
<FORM onSubmit=”return false”>
<INPUT TYPE=”text” NAME=”converter” VALUE=”sample” onChange=”upperMe()”>
</FORM>
</BODY>
</HTML>

Later in this chapter, I show you how to reduce even further the need for explicit

references in functions such as upperMe() in Listing 9-1. In the meantime, notice for

a moment the onSubmit event handler in the <FORM> tag. I delve more deeply into

this event handler later in this chapter, but I want to point out the construction that

prevents a single-field form from being submitted when you press the Enter key.

The Button Object
I have used the button INPUT element in many examples up to this point in the

tutorial. The button is one of the simplest objects to script. In the simplified object

model of this tutorial, the button object has only a few properties that are rarely

accessed or modified in day-to-day scripts. Like the text object, the visual aspects

of the button are governed not by HTML or scripts, but by the operating system

and browser that the page visitor uses. By far, the most useful event handler of the

button object is the onClick event handler. It fires whenever the user clicks the

button. Simple enough. No magic here.

The Checkbox Object
A checkbox is also a simple element of the FORM object, but some of the proper-

ties may not be intuitive entirely. Unlike the value property of a plain button object

(the text of the button label), the value property of a checkbox is any other text

you want associated with the object. This text does not appear on the page in any

fashion, but the property (initially set via the VALUE tag attribute) might be impor-

tant to a script that wants to know more about the purpose of the checkbox within

the form.

The key property of a checkbox object is whether or not the box is checked. The

checked property is a Boolean value: true if the box is checked, false if not.

When you see that a property is a Boolean value, it’s a clue that the value might be

usable in an if or if...else condition expression. In Listing 9-2, the value of the

checked property determines which alert box the user sees.

(c) ketabton.com: The Digital Library

CD-80 Part II ✦ JavaScript Tutorial

Listing 9-2: The Checkbox Object’s checked Property

<HTML>
<HEAD>
<TITLE>Checkbox Inspector</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function inspectBox() {

if (document.forms[0].checkThis.checked) {
alert(“The box is checked.”)

} else {
alert(“The box is not checked at the moment.”)

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”checkbox” NAME=”checkThis”>Check here

<INPUT TYPE=”button” VALUE=”Inspect Box” onClick=”inspectBox()”>
</FORM>
</BODY>
</HTML>

Checkboxes are generally used as preferences setters, rather than as action

inducers. While a checkbox object has an onClick event handler, a click of a check-

box should never do anything drastic, such as navigate to another page.

The Radio Object
Setting up a group of radio objects for scripting requires a bit more work. To let

the browser manage the highlighting and unhighlighting of a related group of but-

tons, you must assign the same name to each of the buttons in the group. You can

have multiple groups within a form, but each member of the same group must have

the same name.

Assigning the same name to a form element forces the browser to manage the

elements differently than if they each had a unique name. Instead, the browser

maintains an array list of objects with the same name. The name assigned to the

group becomes the name of the array. Some properties apply to the group as a

whole; other properties apply to individual buttons within the group and must be

addressed via array index references. For example, you can find out how many

buttons are in a group by reading the length property of the group:

document.forms[0].groupName.length

If you want to find out if a particular button is currently highlighted — via the

same checked property used for the checkbox — you must access the button ele-

ment individually:

document.forms[0].groupName[0].checked

(c) ketabton.com: The Digital Library

CD-81Chapter 9 ✦ Forms and Form Elements

Listing 9-3 demonstrates several aspects of the radio button object, including

how to look through a group of buttons to find out which one is checked and how

to use the VALUE attribute and corresponding property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s

VALUE attribute contains the full name of one of the Three Stooges. When the user

clicks the button, the onClick event handler invokes the fullName() function. In

that function, the first statement creates a shortcut reference to the form. Next, a

for repeat loop looks through all of the buttons in the stooges radio button group.

An if construction looks at the checked property of each button. When a button is

highlighted, the break statement bails out of the for loop, leaving the value of the

i loop counter at the number where the loop broke ranks. The alert dialog box then

uses a reference to the value property of the ith button so that the full name can be

displayed in the alert.

Listing 9-3: Scripting a Group of Radio Objects

<HTML>
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function fullName() {

var form = document.forms[0]
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) {
break

}
}
alert(“You chose “ + form.stooges[i].value + “.”)

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Select your favorite Stooge:
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard” CHECKED>Moe
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine” >Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard” >Curly

<INPUT TYPE=”button” NAME=”Viewer” VALUE=”View Full Name...”
onClick=”fullName()”>
</FORM>
</BODY>
</HTML>

As you learn about form elements in later chapters of this book, the browser’s

tendency to create arrays out of identically named objects of the same type (except

for Internet Explorer 3) can be a benefit to scripts that work with, say, columns of

fields in an HTML order form.

(c) ketabton.com: The Digital Library

CD-82 Part II ✦ JavaScript Tutorial

The SELECT Object
The most complex form element to script is the SELECT element object. As you

can see from the lowest common denominator object hierarchy diagram (Figures

4-6 or 8-1), the SELECT object is really a compound object: an object that contains

an array of OPTION objects. Moreover, you can establish this object in HTML to

display itself as either a pop-up list or a scrolling list — the latter configurable to

accept multiple selections by users. For the sake of simplicity at this stage, this

lesson focuses on deployment as a pop-up list that allows only single selections.

Some properties belong to the entire SELECT object; others belong to individual

options inside the SELECT object. If your goal is to determine which item the user

selects, you must use properties of both the SELECT and OPTION objects.

The most important property of the SELECT object itself is the selectedIndex
property, accessed as follows:

document.form[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index

counting schemes in JavaScript, the first item (the one at the top of the list) has an

index of zero. The selectedIndex value is critical for enabling you to access prop-

erties of the selected option. Two important properties of an option item are text
and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the SELECT object. It is

unusual for this information to be exposed as a FORM object property because in

the HTML that generates a SELECT object, the text is defined outside of the

<OPTION> tag. But inside the <OPTION> tag, you can set a VALUE attribute, which,

like the radio buttons shown earlier, enables you to associate some hidden string

information with each visible entry in the list.

To read the value or text property of a selected option most efficiently, you can

use the SELECT object’s selectedIndex property as an index value to the option.

References for this kind of operation get pretty long, so take the time to understand

what’s happening here. In the following function, the first statement creates a short-

cut reference to the SELECT object. The selectedIndex property of the SELECT

object is then substituted for the index value of the options array of that same

object:

function inspect() {
var list = document.forms[0].choices
var chosenItemText = list.options[list.selectedIndex].text

}

To bring a SELECT object to life, use the onChange event handler. As soon as a

user makes a new selection in the list, this event handler runs the script associated

with that event handler (except for Windows versions of Navigator 2, whose

onChange event handler doesn’t work for SELECT objects). Listing 9-4 shows a com-

mon application for a SELECT object. Its text entries describe places to go in and

out of a Web site, while the VALUE attributes hold the URLs for those locations.

(c) ketabton.com: The Digital Library

CD-83Chapter 9 ✦ Forms and Form Elements

When a user makes a selection in the list, the onChange event handler triggers a

script that extracts the value property of the selected option and assigns that

value to the location object to effect the navigation. Under JavaScript control, this

kind of navigation doesn’t need a separate Go button on the page.

Listing 9-4: Navigating with a SELECT Object

<HTML>
<HEAD>
<TITLE>Select Navigation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goThere() {

var list = document.forms[0].urlList
location = list.options[list.selectedIndex].value

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Choose a place to go:
<SELECT NAME=”urlList” onChange=”goThere()”>

<OPTION SELECTED VALUE=”index.html”>Home Page
<OPTION VALUE=”store.html”>Shop Our Store
<OPTION VALUE=”policies.html”>Shipping Policies
<OPTION VALUE=”http://www.yahoo.com”>Search the Web

</SELECT>
</FORM>
</BODY>
</HTML>

Internet Explorer and NN6 expose the value property of the selected option item
as the value property of the SELECT object. While this is certainly a logical and
convenient shortcut, for compatibility reasons you should use the long way shown
in Listing 9-4.

There is much more to the SELECT object, including the ability to change the

contents of a list in newer browsers. Chapter 26 covers the object in depth.

Passing Form Data and Elements to Functions
In all of the examples so far in this lesson, when an event handler invokes a func-

tion that works with form elements, the form or form element is explicitly refer-

enced in the function. But valuable shortcuts do exist for transferring information

about the form or form control directly to the function without dealing with those

typically long references that start with the window or document object level.

JavaScript features a keyword —this— that always refers to whatever object

contains the script in which the keyword is used. Thus, in an onChange event

Note

(c) ketabton.com: The Digital Library

CD-84 Part II ✦ JavaScript Tutorial

handler for a text field, you can pass a reference to the text object to the function

by inserting the this keyword as a parameter to the function:

<INPUT TYPE=”text” NAME=”entry” onChange=”upperMe(this)”>

At the receiving end, the function defines a parameter variable that turns that

reference into a variable that the rest of the function can use:

function upperMe(field) {
statement[s]
}

The name you assign to the function’s parameter variable is purely arbitrary, but

it is helpful to give it a name that expresses what the reference is. Importantly, this

reference is a “live” connection back to the object. Therefore, statements in the

script can get and set property values of the object at will.

For other functions, you may wish to receive a reference to the entire form,

rather than just the object calling the function. This is certainly true if the function

needs to access other elements of the same form. To pass the entire form, you

reference the form property of the INPUT object, still using the this keyword:
<INPUT TYPE=”button” VALUE=”Click Here” onClick=”inspect(this.form)”>

The function definition should then have a parameter variable ready to be

assigned to the form object reference. Again, you decide the name of the variable. I

tend to use the variable name form as a way to remind me exactly what kind of

object is referenced.

function inspect(form) {
statement[s]

}

Listing 9-5 demonstrates passing both an individual form element and the entire

form in the performance of two separate acts. This page makes believe it is con-

nected to a database of Beatles songs. When you click the Process Data button, it

passes the form object, which the processData() function uses to access the

group of radio buttons inside a for loop. Additional references using the passed

form object extract the value properties of the selected radio button and the text

field.

The text field has its own event handler, which passes just the text field to the

verifySong() function. Notice how short the reference is to reach the value
property of the song field inside the function.

Listing 9-5: Passing a Form Object and Form
Element to Functions

<HTML>
<HEAD>
<TITLE>Beatle Picker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break
}

}

(c) ketabton.com: The Digital Library

CD-85Chapter 9 ✦ Forms and Form Elements

// assign values to variables for convenience
var beatle = form.Beatles[i].value
var song = form.song.value
alert(“Checking whether “ + song + “ features “ + beatle + “...”)

}

function verifySong(entry) {
var song = entry.value
alert(“Checking whether “ + song + “ is a Beatles tune...”)

}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”return false”>
Choose your favorite Beatle:
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”John Lennon” CHECKED>John
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”Paul McCartney”>Paul
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”George Harrison”>George
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”Ringo Starr”>Ringo<P>

Enter the name of your favorite Beatles song:

<INPUT TYPE=”text” NAME=”song” VALUE = “Eleanor Rigby”
onChange=”verifySong(this)”><P>
<INPUT TYPE=”button” NAME=”process” VALUE=”Process Request...”
onClick=”processData(this.form)”>
</FORM>
</BODY>
</HTML>

Get to know the usage of the this keyword in passing form and form element
objects to functions. The technique not only saves you typing in your code, but it

also ensures accuracy in references to those objects.

Submitting and Prevalidating Forms
If you have worked with Web pages and forms before, you are familiar with how

simple it is to add a Submit-style button that sends the form to your server.

However, design goals for your page may rule out the use of ugly system-generated

buttons. If you’d rather display a pretty image, the link tag surrounding that image

should use the javascript: URL technique to invoke a script that submits the

form (the image type of INPUT element is not recognized prior to IE4 and NN6).

The scripted equivalent of submitting a form is the FORM object’s submit()
method. All you need in the statement is a reference to the form and this method:

document.forms[0].submit()

One limitation might inhibit your plans to secretly have a script send you an

e-mail message from every visitor who comes to your Web site. If the form’s ACTION
attribute is set to a mailTo: URL, JavaScript does not pass along the submit()
method to the form. See Chapter 23 for cautions about using the mailTo: URL as a

form’s action.

(c) ketabton.com: The Digital Library

CD-86 Part II ✦ JavaScript Tutorial

Before a form is submitted, you may wish to perform some last-second validation

of data in the form or in other scripting (for example, changing the form’s action
property based on user choices). You can do this in a function invoked by the

form’s onSubmit event handler. Specific validation routines are beyond the scope

of this tutorial (but are explained in substantial detail in Chapter 43), but I want to

show you how the onSubmit event handler works.

In all but the first generation of scriptable browsers from Microsoft (IE3) and

Netscape (NN2), you can let the results of a validation function cancel a submission

if the validation shows some incorrect data or empty fields. To control submission,

the onSubmit event handler must evaluate to return true (to allow submission to

continue) or returnfalse (to cancel submission). This is a bit tricky at first

because it involves more than just having the function called by the event handler

return true or false. The return keyword must be part of the final evaluation.

Listing 9-6 shows a page with a simple validation routine that ensures all fields

have something in them before allowing submission to continue. (The form has no

ACTION attribute, so this sample form doesn’t get sent to the server.) Notice how

the onSubmit event handler (which passes a reference to the FORM object as a

parameter — in this case the this keyword points to the FORM object because its

tag holds the event handler) includes the return keyword before the function

name. When the function returns its true or false value, the event handler

evaluates to the requisite return true or return false.

Listing 9-6: Last-Minute Checking Before Form Submission

<HTML>
<HEAD>
<TITLE>Validator</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkForm(form) {

for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].value == “”) {

alert(“Fill out ALL fields.”)
return false

}
}
return true

}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”return checkForm(this)”>
Please enter all requested information:

First Name:<INPUT TYPE=”text” NAME=”firstName”>

Last Name:<INPUT TYPE=”text” NAME=”lastName”>

Rank:<INPUT TYPE=”text” NAME=”rank”>

Serial Number:<INPUT TYPE=”text” NAME=”serialNumber”>

<INPUT TYPE=”submit”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

CD-87Chapter 9 ✦ Forms and Form Elements

One quirky bit of behavior involving the submit() method and onSubmit event

handler needs explanation. While you might think (and logically so, in my opinion)

that the submit() method would be the exact scripted equivalent of a click of a

real Submit button, it’s not. In Navigator, the submit() method does not cause the

form’s onSubmit event handler to fire at all. If you want to perform validation on a

form submitted via the submit() method, invoke the validation in the script func-

tion that ultimately calls the submit() method.

So much for the basics of forms and form elements. In the next chapter, you step

away from HTML for a moment to look at more advanced JavaScript core language

items: strings, math, and dates.

Exercises
1. Rework Listings 9-1, 9-2, 9-3, and 9-4 so that the script functions all receive the

most efficient form or form element references from the invoking event

handler.

2. Modify Listing 9-6 so that instead of the Submit button making the submis-

sion, the submission is performed from a hyperlink. Be sure to include the

form validation in the process.

3. In the following HTML tag, what kind of information do you think is being

passed with the event handler? Write a function that displays in an alert

dialog box the information being passed.

<INPUT TYPE=”text”NAME=”phone” onChange=”format(this.value)”>

4. A document contains two forms named specifications and accessories.

In the accessories form is a field named acc1. Write two different state-

ments that set the contents of that field to Leather Carrying Case.

5. Create a page that includes a SELECT object to change the background color

of the current page. The property that you need to set is document.bgColor,

and the three values you should offer as options are red, yellow, and green.

In the SELECT object, the colors should display as Stop, Caution, and Go.

Note: If you use a Macintosh or UNIX version of Navigator, you must employ

version 4 or later for this exercise.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Strings, Math,
and Dates

For most of the lessons in the tutorial so far, the objects at

the center of attention belong to the document object

model. But as indicated in Chapter 2, a clear dividing line

exists between the document object model and the JavaScript

language. The language has some of its own objects that are

independent of the document object model. These objects are

defined such that if a vendor wished to implement JavaScript

as the programming language for an entirely different kind of

product, the language would still use these core facilities for

handling text, advanced math (beyond simple arithmetic),

and dates. You can find formal specifications of these objects

in the ECMA-262 recommendation.

Core Language Objects
It is often difficult for newcomers to programming — or

even experienced programmers who have not worked in

object-oriented worlds before — to think about objects,

especially when attributed to “things” that don’t seem to have

a physical presence. For example, it doesn’t require lengthy

study to grasp the notion that a button on a page is an object.

It has several physical properties that make perfect sense. But

what about a string of characters? As you learn in this chap-

ter, in an object-based environment such as JavaScript, every-

thing that moves is treated as an object — each piece of data

from a Boolean value to a date. Each such object probably has

one or more properties that help define the content; such an

object may also have methods associated with it to define

what the object can do or what you can do to the object.

I call all objects that are not part of the document object

model core language objects. You can see the full complement

of them in the Quick Reference in Appendix A. In this chapter,

I focus on the String, Math, and Date objects.

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to modify strings
with common string
methods

When and how to
use the Math object

How to use the Date
object

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-90 Part II ✦ JavaScript Tutorial

String Objects
You have already used String objects many times in earlier lessons. A string is

any text inside a quote pair. A quote pair consists of either double quotes or single

quotes. This allows one string to nest inside another, as often happens in event han-

dlers. In the following example, the alert() method requires a quoted string as a

parameter, but the entire method call also must be inside quotes.

onClick=”alert(‘Hello, all’)”

JavaScript imposes no practical limit on the number of characters that a string

can hold. However, most older browsers have a limit of 255 characters in length for

a script statement. This limit is sometimes exceeded when a script includes a

lengthy string that is to become scripted content in a page. You need to divide such

lines into smaller chunks using techniques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic

assignment statement:

var myString = “Howdy”

This works perfectly well except in some exceedingly rare instances. Beginning

with Navigator 3 and Internet Explorer 4, you can also create a string object using

the more formal syntax that involves the new keyword and a constructor function

(that is, it “constructs” a new object):

var myString = new String(“Howdy”)

Whichever way you use to initialize a variable with a string, the variable receiv-

ing the assignment can respond to all String object methods.

Joining strings
Bringing two strings together as a single string is called concatenating strings, a

term you learned in Chapter 6. String concatenation requires one of two JavaScript

operators. Even in your first script in Chapter 3, you saw how the addition operator

(+) linked multiple strings together to produce the text dynamically written to the

loading Web page:

document.write(“ of ” + navigator.appName + “.”)

As valuable as that operator is, another operator can be even more scripter

friendly. This operator is helpful when you are assembling large strings in a single

variable. The strings may be so long or cumbersome that you need to divide the

building process into multiple statements. The pieces may be combinations of

string literals (strings inside quotes) or variable values. The clumsy way to do it

(perfectly doable in JavaScript) is to use the addition operator to append more text

to the existing chunk:

var msg = “Four score”
msg = msg + “ and seven”
msg = msg + “ years ago,”

But another operator, called the add-by-value operator, offers a handy shortcut.

The symbol for the operator is a plus and equal sign together (+=). This operator

means “append the stuff on the right of me to the end of the stuff on the left of me.”

Therefore, the preceding sequence is shortened as follows:

(c) ketabton.com: The Digital Library

CD-91Chapter 10 ✦ Strings, Math, and Dates

var msg = “Four score”
msg += “ and seven”
msg += “ years ago,”

You can also combine the operators if the need arises:

var msg = “Four score”
msg += “ and seven” + “ years ago”

I use the add-by-value operator a lot when accumulating HTML text to be written

to the current document or another window.

String methods
Of all the core JavaScript objects, the String object has the most diverse collec-

tion of methods associated with it. Many methods are designed to help scripts

extract segments of a string. Another group, rarely used in my experience, wraps a

string with one of several style-oriented tags (a scripted equivalent of tags for font

size, style, and the like).

To use a string method, the string being acted upon becomes part of the refer-

ence followed by the method name. All methods return a value of some kind. Most

of the time, the returned value is a converted version of the string object referred

to in the method call — but the original string is still intact. To capture the modified

version, you need to assign the results of the method to a variable:

var result = string.methodName()

The following sections introduce you to several important string methods avail-

able to all browser brands and versions.

Changing string case
Two methods convert a string to all uppercase or lowercase letters:

var result = string.toUpperCase()
var result = string.toLowerCase()

Not surprisingly, you must observe the case of each letter of the method names

if you want them to work. These methods come in handy when your scripts need to

compare strings that may not have the same case (for example, a string in a lookup

table compared with a string typed by a user). Because the methods don’t change

the original strings attached to the expressions, you can simply compare the evalu-

ated results of the methods:

var foundMatch = false
if (stringA.toUpperCase() == stringB.toUpperCase()) {

foundMatch = true
}

String searches
You can use the string.indexOf() method to determine if one string is con-

tained by another. Even within JavaScript’s own object data, this can be useful

information. For example, another property of the navigator object in Chapter 3

(navigator.userAgent) reveals a lot about the browser that loads the page. A

script can investigate the value of that property for the existence of, say, “Win” to

determine that the user has a Windows operating system. That short string might

(c) ketabton.com: The Digital Library

CD-92 Part II ✦ JavaScript Tutorial

be buried somewhere inside a long string, and all the script needs to know is

whether the short string is present in the longer one — wherever it might be.

The string.indexOf() method returns a number indicating the index value

(zero based) of the character in the larger string where the smaller string begins.

The key point about this method is that if no match occurs, the returned value is

-1. To find out whether the smaller string is inside, all you need to test is whether

the returned value is something other than -1.

Two strings are involved with this method: the shorter one and the longer one.

The longer string is the one that appears in the reference to the left of the method

name; the shorter string is inserted as a parameter to the indexOf() method. To

demonstrate the method in action, the following fragment looks to see if the user is

running Windows:

var isWindows = false
if (navigator.userAgent.indexOf(“Win”) != -1) {

isWindows = true
}

The operator in the if construction’s condition (!=) is the inequality operator.

You can read it as meaning “is not equal to.”

Extracting copies of characters and substrings
To extract a single character at a known position within a string, use the

charAt() method. The parameter of the method is an index number (zero based)

of the character to extract. When I say extract, I don’t mean delete, but rather grab a

snapshot of the character. The original string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a

variable, stringA, in another window that displays map images of different corpo-

rate buildings. When the window has a map of Building C in it, the stringA variable

contains “Building C.” The building letter is always at the tenth character position

of the string (or number 9 in a zero-based counting world), so the script can exam-

ine that one character to identify the map currently in that other window:

var stringA = “Building C”
var bldgLetter = stringA.charAt(9)

// result: bldgLetter = “C”

Another method —string.substring()— enables you to extract a contiguous

sequence of characters, provided you know the starting and ending positions of the

substring of which you want to grab a copy. Importantly, the character at the end-

ing position value is not part of the extraction: All applicable characters, up to but

not including that character, are part of the extraction. The string from which the

extraction is made appears to the left of the method name in the reference. Two

parameters specify the starting and ending index values (zero based) for the start

and end positions:

var stringA = “banana daiquiri”
var excerpt = stringA.substring(2,6)

// result: excerpt = “nana”

String manipulation in JavaScript is fairly cumbersome compared to some other

scripting languages. Higher-level notions of words, sentences, or paragraphs are

completely absent. Therefore, sometimes it takes a bit of scripting with string

methods to accomplish what seems like a simple goal. And yet you can put your

(c) ketabton.com: The Digital Library

CD-93Chapter 10 ✦ Strings, Math, and Dates

knowledge of expression evaluation to the test as you assemble expressions that

utilize heavily nested constructions. For example, the following fragment needs to

create a new string that consists of everything from the larger string except the first

word. Assuming the first word of other strings can be of any length, the second

statement utilizes the string.indexOf() method to look for the first space char-

acter and adds 1 to that value to serve as the starting index value for an outer

string.substring() method. For the second parameter, the length property of

the string provides a basis for the ending character’s index value (one more than

the actual character needed).

var stringA = “The United States of America”
var excerpt = stringA.substring(stringA.indexOf(“ “) + 1, stringA.length)

// result: excerpt = “United States of America”

Creating statements like this one is not something you are likely to enjoy over

and over again, so in Chapter 34 I show you how to create your own library of

string functions you can reuse in all of your scripts that need their string-handling

facilities. More powerful string matching facilities are built into NN4+ and IE4+ by

way of regular expressions (see Chapters 34 and 38).

The Math Object
JavaScript provides ample facilities for math — far more than most scripters who

don’t have a background in computer science and math will use in a lifetime. But

every genuine programming language needs these powers to accommodate clever

programmers who can make windows fly in circles on the screen.

The Math object contains all of these powers. This object is unlike most of the

other objects in JavaScript in that you don’t generate copies of the object to use.

Instead your scripts summon a single Math object’s properties and methods. (One

Math object actually occurs per window or frame, but this has no impact whatso-

ever on your scripts.) Programmers call this kind of fixed object a static object. That

Math object (with an uppercase M) is part of the reference to the property or

method. Properties of the Math object are constant values, such as pi and the

square root of two:

var piValue = Math.PI
var rootOfTwo = Math.SQRT2

Math object methods cover a wide range of trigonometric functions and other

math functions that work on numeric values already defined in your script. For

example, you can find which of two numbers is the larger:

var larger = Math.max(value1, value2)

Or you can raise one number to a power of ten:

var result = Math.pow(value1, 10)

More common, perhaps, is the method that rounds a value to the nearest integer

value:

var result = Math.round(value1)

Another common request of the Math object is a random number. Although the

feature was broken on Windows and Macintosh versions of Navigator 2, it works

in all other versions and brands since. The Math.random() method returns a

(c) ketabton.com: The Digital Library

CD-94 Part II ✦ JavaScript Tutorial

floating-point number between 0 and 1. If you design a script to act like a card

game, you need random integers between 1 and 52; for dice, the range is 1 to 6 per

die. To generate a random integer between zero and any top value, use the follow-

ing formula:

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math.floor() returns the integer part of any

floating-point number.) To generate random numbers between one and any higher

number, use this formula:

Math.floor(Math.random() * n) + 1

where n equals the top number of the range. For the dice game, the formula for

each die is

newDieValue = Math.floor(Math.random() * 6) + 1

To see this, enter the right-hand part of the preceding statement in the top text

box of The Evaluator Jr. and repeatedly press the Evaluate button.

One bit of help JavaScript doesn’t offer except in IE5.5 and NN6 is a way to spec-

ify a number-formatting scheme. Floating-point math can display more than a dozen

numbers to the right of the decimal. Moreover, results can be influenced by each

operating system’s platform-specific floating-point errors, especially in earlier ver-

sions of scriptable browsers. For browsers prior to IE5.5 and NN6 you must perform

any number formatting — for dollars and cents, for example — through your own

scripts. Chapter 35 provides an example.

The Date Object
Working with dates beyond simple tasks can be difficult business in JavaScript. A

lot of the difficulty comes with the fact that dates and times are calculated inter-

nally according to Greenwich Mean Time (GMT) — provided the visitor’s own inter-

nal PC clock and control panel are set accurately. As a result of this complexity,

better left for Chapter 36, this section of the tutorial touches on only the basics of

the JavaScript Date object.

A scriptable browser contains one global Date object (in truth, one Date object

per window) that is always present, ready to be called upon at any moment. The

Date object is another one of those static objects. When you wish to work with a

date, such as displaying today’s date, you need to invoke the Date object construc-

tor to obtain an instance of a Date object tied to a specific time and date. For exam-

ple, when you invoke the constructor without any parameters, as in

var today = new Date()

the Date object takes a snapshot of the PC’s internal clock and returns a date

object for that instant. Notice the distinction between the static Date object and a

date object instance, which contains an actual date value. The variable, today, con-

tains not a ticking clock, but a value that you can examine, tear apart, and reassem-

ble as needed for your script.

Internally, the value of a date object instance is the time, in milliseconds, from

zero o’clock on January 1, 1970, in the Greenwich Mean Time zone — the world

standard reference point for all time conversions. That’s how a date object contains

both date and time information.

(c) ketabton.com: The Digital Library

CD-95Chapter 10 ✦ Strings, Math, and Dates

You can also grab a snapshot of the Date object for a particular date and time in

the past or future by specifying that information as parameters to the Date object

constructor function:

var someDate = new Date(“Month dd, yyyy hh:mm:ss”)
var someDate = new Date(“Month dd, yyyy”)
var someDate = new Date(yy,mm,dd,hh,mm,ss)
var someDate = new Date(yy,mm,dd)
var someDate = new Date(GMT milliseconds from 1/1/1970)

If you attempt to view the contents of a raw date object, JavaScript converts the

value to the local time zone string as indicated by your PC’s control panel setting.

To see this in action, use The Evaluator Jr.’s top text box to enter the following:

new Date()

Your PC’s clock supplies the current date and time as the clock calculates them

(even though JavaScript still stores the date object’s millisecond count in the GMT

zone). You can, however, extract components of the date object via a series of

methods that you apply to a date object instance. Table 10-1 shows an abbreviated

listing of these properties and information about their values.

Table 10-1 Some Date Object Methods

Method Value Range Description

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.getYear() 70-... Specified year minus 1900; four-digit year
for 2000+

dateObj.getFullYear() 1970-... Four-digit year (Y2K-compliant); version
4+ browsers

dateObj.getMonth() 0-11 Month within the year (January = 0)

dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time

dateObj.getMinutes() 0-59 Minute of the specified hour

dateObj.getSeconds() 0-59 Second within the specified minute

dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year
for 2000+

dateObj.setMonth(val) 0-11 Month within the year (January = 0)

dateObj.setDate(val) 1-31 Date within the month

dateObj.setDay(val) 0-6 Day of week (Sunday = 0)

dateObj.setHours(val) 0-23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0-59 Minute of the specified hour

dateObj.setSeconds(val) 0-59 Second within the specified minute

(c) ketabton.com: The Digital Library

CD-96 Part II ✦ JavaScript Tutorial

Be careful about values whose ranges start with zero, especially the months. The
getMonth() and setMonth() method values are zero based, so the numbers
are one less than the month numbers you are accustomed to working with (for
example, January is 0, December is 11).

You may notice one difference about the methods that set values of a date

object. Rather than returning some new value, these methods actually modify the

value of the date object referenced in the call to the method.

Date Calculations
Performing calculations with dates requires working with the millisecond values

of the date objects. This is the surest way to add, subtract, or compare date values.

To demonstrate a few date object machinations, Listing 10-1 displays the current

date and time as the page loads. Another script calculates the date and time seven

days from the current date and time value.

Listing 10-1: Date Object Calculations

<HTML>
<HEAD>
<TITLE>Date Calculation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function nextWeek() {

var todayInMS = today.getTime()
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000)
return new Date(nextWeekInMS)

}
</SCRIPT>
</HEAD>

<BODY>
Today is:
<SCRIPT LANGUAGE=”JavaScript”>
var today = new Date()
document.write(today)
</SCRIPT>

Next week will be:
<SCRIPT LANGUAGE=”JavaScript”>
document.write(nextWeek())
</SCRIPT>
</BODY>
</HTML>

In the Body portion, the first script runs as the page loads, setting a global vari-

able (today) to the current date and time. The string equivalent is written to the

page. In the second Body script, the document.write() method invokes the

nextWeek() function to get a value to display. That function utilizes the today

Caution

(c) ketabton.com: The Digital Library

CD-97Chapter 10 ✦ Strings, Math, and Dates

global variable, copying its millisecond value to a new variable: todayInMS. To get

a date seven days from now, the next statement adds the number of milliseconds in

seven days (60 seconds times 60 minutes times 24 hours times seven days times

1000 milliseconds) to today’s millisecond value. The script now needs a new date

object calculated from the total milliseconds. This requires invoking the Date
object constructor with the milliseconds as a parameter. The returned value is a

date object, which is automatically converted to a string version for writing to the

page. Letting JavaScript create the new date with the accumulated number of mil-

liseconds is more accurate than trying to add 7 to the value returned by the date

object’s getDate() method. JavaScript automatically takes care of figuring out how

many days there are in a month as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in

your page. As later chapters demonstrate, however, the results may be worth the

effort.

Exercises
1. Create a Web page that has one form field for entry of the user’s e-mail

address and a Submit button. Include a pre-submission validation routine that

verifies that the text field has the @ symbol found in all e-mail addresses

before you allow submission of the form.

2. Given the string “Netscape Navigator,” fill in the blanks of the

myString.substring() method parameters here that yield the results

shown to the right of each method call:

var myString = “Netscape Navigator”
myString.substring(___,___) // result = “Net”
myString.substring(___,___) // result = “gator”
myString.substring(___,___) // result = “cape Nav”

3. Fill in the rest of the function in the listing that follows so that it looks through

every character of the entry field and counts how many times the letter “e”

appears in the field. (Hint: All that is missing is a for repeat loop.)

<HTML>
<HEAD>
<TITLE>Wheel o’ Fortuna</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function countE(form) {

var count = 0
var inputString = form.mainstring.value.toUpperCase()
missing code
alert(“The string has “ + count + “ instances of the letter e.”)

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>

(c) ketabton.com: The Digital Library

CD-98 Part II ✦ JavaScript Tutorial

Enter any string: <INPUT TYPE=”text” NAME=”mainstring”
SIZE=30>

<INPUT TYPE=”button” VALUE=”Count the Es”
onClick=”countE(this.form)”>
</FORM>
</BODY>
</HTML>

4. Create a page that has two fields and one button. The button should trigger a

function that generates two random numbers between 1 and 6, placing each

number in one of the fields. (Think of using this page as a substitute for rolling

a pair of dice in a board game.)

5. Create a page that displays the number of days between today and next

Christmas.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Scripting Frames
and Multiple
Windows

One of the cool aspects of JavaScript on the client is that

it allows user actions in one frame or window to influ-

ence what happens in other frames and windows. In this

section of the tutorial, you extend your existing knowledge

of object references to the realm of multiple frames and

windows.

Frames: Parents and Children
You probably noticed that at the top of the simplified

document object hierarchy diagram (refer to Figure 8-1) the

window object has some other object references associated

with it. In Chapter 8, you learned that self is synonymous

with window when the reference applies to the same window

that contains the script’s document. In this lesson, you learn

the roles of the other three object references —frame, top,

and parent.

Loading an ordinary HTML document into the browser cre-

ates a model in the browser that starts out with one window
object and the document it contains. (The document likely

contains other elements, but I’m not concerned with that stuff

yet.) The top rungs of the hierarchy model are as simple as

can be, as shown in Figure 11-1. This is where references begin

with window or self (or with document because the current

window is assumed).

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Relationships among
frames in the browser
window

How to access
objects and values in
other frames

How to control
navigation of multiple
frames

Communication skills
between separate
windows

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-100 Part II ✦ JavaScript Tutorial

Figure 11-1: Single-frame window
and document hierarchy

The instant a framesetting document loads into a browser, the browser starts

building a slightly different hierarchy model. The precise structure of that model

depends entirely on the structure of the frameset defined in that framesetting

document. Consider the following skeletal frameset definition:

<HTML>
<FRAMESET COLS=”50%,50%”>

<FRAME NAME=”leftFrame” SRC=”somedoc1.html”>
<FRAME NAME=”rightFrame” SRC=”somedoc2.html”>

</FRAMESET>
</HTML>

This HTML splits the browser window into two frames side by side, with a

different document loaded into each frame. The model is concerned only with

structure — it doesn’t care about the relative sizes of the frames or whether they’re

set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing

terminology from the object-oriented programming world, the framesetting docu-

ment loads into a parent window. Each of the frames defined in that parent window

document is a child frame. Figure 11-2 shows the hierarchical model of a two-frame

environment. This illustration reveals a lot of subtleties about the relationships

among framesets and their frames.

Figure 11-2: Two-frame window and
document hierarchy

Document

Top,
Parent

Child
Frame

Document

Child
Frame

<FRAMESET>

<FRAME> <FRAME>

Window

Document

(c) ketabton.com: The Digital Library

CD-101Chapter 11 ✦ Scripting Frames and Multiple Windows

It is often difficult at first to visualize the frameset as a window object in the hier-

archy. After all, with the exception of the URL showing in the Location/Address

field, you don’t see anything about the frameset in the browser. But that window

object exists in the object model. Notice, too, that in the diagram the framesetting

parent window has no document object showing. This may also seem odd because

the window obviously requires an HTML file containing the specifications for the

frameset. In truth, the parent window has a document object associated with it, but

it is omitted from the diagram to better portray the relationships among parent and

child windows. A frameset parent’s document cannot contain most of the typical

HTML objects such as forms and controls, so references to the parent’s document

are rarely, if ever, used.

If you add a script to the framesetting document that needs to access a property

or method of that window object, references are like any single-frame situation.

Think about the point of view of a script located in that window. Its immediate

universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of

these frames contains a document object whose content you see in the browser

window. And the structure is such that each document is entirely independent of

the other. It is as if each document lived in its own browser window. Indeed, that’s

why each child frame is also a window type of object. A frame has the same kinds of

properties and methods of the window object that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate

container is the parent window. When a parent window is at the very top of the

hierarchical model loaded in the browser, that window is also referred to as the

top object.

References among Family Members
Given the frame structure of Figure 11-2, it’s time to look at how a script in any

one of those windows can access objects, functions, or variables in the others. An

important point to remember about this facility is that if a script has access to an

object, function, or global variable in its own window, that same item can be

reached by a script from another frame in the hierarchy (provided both documents

come from the same Web server).

A script reference may need to take one of three possible routes in the two-

generation hierarchy described so far: parent to child; child to parent; or child to

child.

Each of the paths between these windows requires a different reference style.

Parent-to-child references
Probably the least common direction taken by references is when a script in the

parent document needs to access some element of one of its frames. The parent

contains two or more frames, which means the parent maintains an array of the

child frame objects. You can address a frame by array syntax or by the name you

assign to it with the NAME attribute inside the <FRAME> tag. In the following exam-

ples of reference syntax, I substitute a placeholder named ObjFuncVarName for

whatever object, function, or global variable you intend to access in the distant

window or frame. Remember that each visible frame contains a document object,

(c) ketabton.com: The Digital Library

CD-102 Part II ✦ JavaScript Tutorial

which is generally the container of elements you script — be sure references to the

element include document. With that in mind, a reference from a parent to one of its

child frames follows either of these models:

[window.]frames[n].ObjFuncVarName
[window.]frameName.ObjFuncVarName

Index values for frames are based on the order in which their <FRAME> tags

appear in the framesetting document. You will make your life easier, however, if you

assign recognizable names to each frame and use the frame’s name in the reference.

Note that some problems existed in early scriptable browsers when references to

other frames started with window. I recommend omitting window from all such

references.

Child-to-parent references
It is not uncommon to place scripts in the parent (in the Head portion) that

multiple child frames or multiple documents in a frame use as a kind of script

library. By loading in the frameset, these scripts load only once while the frameset

is visible. If other documents load into the frames over time, they can take advan-

tage of the parent’s scripts without having to load their own copies into the

browser.

From the child’s point of view, the next level up the hierarchy is called the

parent. Therefore, a reference from a child frame to items at the parent level is

simply

parent.ObjFuncVarName

If the item accessed in the parent is a function that returns a value, the returned

value transcends the parent/child borders down to the child without hesitation.

When the parent window is also at the very top of the object hierarchy currently

loaded into the browser, you can optionally refer to it as the top window, as in

top.ObjFuncVarName

Using the top reference can be hazardous if for some reason your Web page gets

displayed in some other Web site’s frameset. What is your top window is not the

master frameset’s top window. Therefore, I recommend using the parent reference

whenever possible (unless you want to blow away an unwanted framer of your

Web site).

Child-to-child references
The browser needs a bit more assistance when it comes to getting one child win-

dow to communicate with one of its siblings. One of the properties of any window

or frame is its parent (whose value is null for a single window). A reference must

use the parent property to work its way out of the current frame to a point that

both child frames have in common — the parent in this case. Once the reference is

at the parent level, the rest of the reference can carry on as if starting at the parent.

Thus, from one child to one of its siblings, you can use either of the following refer-

ence formats:

parent.frames[n].ObjFuncVarName
parent.frameName.ObjFuncVarName

(c) ketabton.com: The Digital Library

CD-103Chapter 11 ✦ Scripting Frames and Multiple Windows

A reference from the other sibling back to the first looks the same, but the

frames[] array index or frameName part of the reference differs. Of course, much

more complex frame hierarchies exist in HTML. Even so, the document object

model and referencing scheme provide a solution for the most deeply nested and

gnarled frame arrangement you can think of — following the same precepts you just

learned.

Frame Scripting Tips
One of the first mistakes that frame scripting newcomers make is writing immedi-

ate script statements that call upon other frames while the pages load. The prob-

lem here is that you cannot rely on the document loading sequence to follow the

frameset source code order. All you know for sure is that the parent document

begins loading first. Regardless of the order of <FRAME> tags, child frames can begin

loading at any time. Moreover, a frame’s loading time depends on other elements in

the document, such as images or Java applets.

Fortunately, you can use a certain technique to initiate a script once all of the

documents in the frameset are completely loaded. Just as the onLoad event handler

for a document fires when that document is fully loaded, a parent’s onLoad event

handler fires after the onLoad event handler in its child frames is fired. Therefore,

you can specify an onLoad event handler in the <FRAMESET> tag. That handler might

invoke a function in the framesetting document that then has the freedom to tap the

objects, functions, or variables of all frames throughout the object hierarchy.

Controlling Multiple Frames —
Navigation Bars

If you are enamored of frames as a way to help organize a complex Web page,

you may find yourself wanting to control the navigation of one or more frames from

a static navigation panel. Here, I demonstrate scripting concepts for such control

using an application called Decision Helper (which you can find in Chapter 54 on

the CD-ROM). The application consists of three frames (see Figure 11-3). The top-

left frame is one image that has four graphical buttons in it. The goal is to turn that

image into a client-side image map and script it so the pages change in the right-

hand and bottom frames. In the upper-right frame, the script loads an entirely dif-

ferent document along the sequence of five different documents that go in there. In

the bottom frame, the script navigates to one of five anchors to display the segment

of instructions that applies to the document loaded in the upper-right frame.

Listing 11-1 shows a slightly modified version of the actual file for the Decision

Helper application’s navigation frame. The listing contains a couple of new objects

and concepts not yet covered in this tutorial. But as you will see, they are exten-

sions to what you already know about JavaScript and objects. To help simplify the

discussion here, I remove the scripting and HTML for the top and bottom button of

the area map. In addition, I cover only the two navigation arrows.

(c) ketabton.com: The Digital Library

CD-104 Part II ✦ JavaScript Tutorial

Figure 11-3: The Decision Helper screen

Listing 11-1: A Graphical Navigation Bar

<HTML>
<HEAD>
<TITLE>Navigation Bar</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
function goNext() {

var currOffset = parseInt(parent.currTitle)
if (currOffset < 5) {

currOffset += 1
parent.entryForms.location.href = “dh” + currOffset + “.htm”
parent.instructions.location.hash = “help” + currOffset

} else {
alert(“This is the last form.”)

}
}
function goPrev() {

var currOffset = parseInt(parent.currTitle)
if (currOffset > 1) {

currOffset -= 1
parent.entryForms.location.href = “dh” + currOffset + “.htm”
parent.instructions.location.hash = “help” + currOffset

} else {
alert(“This is the first form.”)

}
}

(c) ketabton.com: The Digital Library

CD-105Chapter 11 ✦ Scripting Frames and Multiple Windows

// end -->
</SCRIPT>
</HEAD>
<BODY bgColor=”white”>
<MAP NAME=”navigation”>
<AREA SHAPE=”RECT” COORDS=”25,80,66,116” HREF=”javascript:goNext()”>
<AREA SHAPE=”RECT” COORDS=”24,125,67,161” HREF=”javascript:goPrev()”>
</MAP>

</BODY>
</HTML>

Look first at the HTML section for the Body portion. Almost everything there is

standard stuff for defining client-side image maps. The coordinates define rectan-

gles around each of the arrows in the larger image. The HREF attributes for the two

areas point to JavaScript functions defined in the Head portion of the document.

In the frameset that defines the Decision Helper application, names are assigned

to each frame. The upper-right frame is called entryForms; the bottom frame is

called instructions.

Knowing that navigation from page to page in the upper-right frame requires

knowledge of which page is currently loaded there, I build some other scripting into

both the parent document and each of the documents that loads into that frame. A

global variable called currTitle is defined in the parent document. Its value is an

integer indicating which page of the sequence (1 through 5) is currently loaded. An

onLoad event handler in each of the five documents (named dh1.htm, dh2.htm,

dh3.htm, dh4.htm, and dh5.htm) assigns its page number to that parent global vari-

able. This arrangement allows all frames in the frameset to share that value easily.

When a user clicks the right-facing arrow to move to the next page, the

goNext() function is called. The first statement gets the currTitle value from

the parent window and assigns it to a local variable: currOffset. An if...else
construction tests whether the current page number is less than five. If so, the

add-by-value operator adds one to the local variable so I can use that value in the

next two statements.

In those next two statements, I adjust the content of the two right frames. Using

the parent reference to gain access to both frames, I set the location.href prop-

erty of the top-right frame to the name of the file next in line (by concatenating the

number with the surrounding parts of the filename). The second statement sets the

location.hash property (which controls the anchor being navigated to) to the

corresponding anchor in the instructions frame (anchor names help1, help2,

help3, help4, and help5).

A click of the left-facing arrow reverses the process, subtracting 1 from the cur-

rent page number (using the subtract-by-value operator) and changing the same

frames accordingly.

The example shown in Listing 11-1 is one of many ways to script a navigation

frame in JavaScript. Whatever methodology you use, much interaction occurs

among the frames in the frameset.

(c) ketabton.com: The Digital Library

CD-106 Part II ✦ JavaScript Tutorial

More about Window References
In Chapter 8, you saw how to create a new window and communicate with it by

way of the window object reference returned from the window.open() method. In

this section, I show you how one of those subwindows can communicate with

objects, functions, and variables in the window or frame that creates the subwindow.

In scriptable browsers (except for Navigator 2), every window has a property

called opener. This property contains a reference to the window or frame that held

the script whose window.open() statement generated the subwindow. For the

main browser window and frames therein, this value is null. Because the opener
property is a valid window reference, you can use it to begin the reference to items

in the original window — just like a script in a child frame uses parent to access

items in the parent document. The parent-child terminology doesn’t apply to sub-

windows, however.

Listings 11-2 and 11-3 contain documents that work together in separate win-

dows. Listing 11-2 displays a button that opens a smaller window and loads Listing

11-3 into it. The main window document also contains a text field that gets filled in

when you enter text into a corresponding field in the subwindow.

In the main window document, the newWindow() function generates the new

window. Because no other statements in the document require the reference to the

new window just opened, the statement does not assign its returned value to any

variable. This is an acceptable practice in JavaScript if you don’t need the returned

value of a function or method.

Listing 11-2: A Main Window Document

<HTML>
<HEAD>
<TITLE>Main Document</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function newWindow() {

window.open(“subwind.htm”,”sub”,”HEIGHT=200,WIDTH=200”)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”New Window” onClick=”newWindow()”>

Text incoming from subwindow:
<INPUT TYPE=”Text” NAME=”entry”>
</FORM>
</BODY>
</HTML>

All of the action in the subwindow document comes in the onChange event han-

dler of the text field. It assigns the subwindow field’s own value to the value of the

field in the opener window’s document. Remember that the contents of each

(c) ketabton.com: The Digital Library

CD-107Chapter 11 ✦ Scripting Frames and Multiple Windows

window and frame belong to a document. So even after your reference targets a

specific window or frame, the reference must continue helping the browser find the

ultimate destination, which is generally some element of the document.

Listing 11-3: A Subwindow Document

<HTML>
<HEAD>
<TITLE>A SubDocument</TITLE>
</HEAD>
<BODY>
<FORM onSubmit=”return false”>
Enter text to be copied to the main window:
<INPUT TYPE=”text”
onChange=”opener.document.forms[0].entry.value = this.value”>
</FORM>
</BODY>
</HTML>

Just one more lesson to go before I let you explore all the details elsewhere in

the book. I use the final tutorial chapter to show you some fun things you can do

with your Web pages, such as changing images when the user rolls the mouse atop

a picture.

Exercises
Before answering the first three questions, study the structure of the following

frameset for a Web site that lists college courses:

<FRAMESET ROWS=”85%,15%”>
<FRAMESET COLS=”20%,80%”>

<FRAME NAME=”mechanics” SRC=”history101M.html”>
<FRAME NAME=”description” SRC=”history101D.html”>

</FRAMESET>
<FRAMESET COLS=”100%”>

<FRAME NAME=”navigation” SRC=”navigator.html”>
</FRAMESET>

</FRAMESET>
</HTML>

1. Whenever a document loads into the description frame, it has an onLoad
event handler that stores a course identifier in the framesetting document’s

global variable called currCourse. Write the onLoad event handler that sets

this value to “history101”.

2. Draw a block diagram that describes the hierarchy of the windows and frames

represented in the frameset definition.

3. Write the JavaScript statements located in the navigation frame that loads the

file “french201M.html” into the mechanics frame and the file “french201D.
html” into the description frame.

(c) ketabton.com: The Digital Library

CD-108 Part II ✦ JavaScript Tutorial

4. While a frameset is still loading, a JavaScript error message suddenly appears

saying that “window.document.navigation.form.selector is undefined.” What

do you think is happening in the application’s scripts, and how can you solve

the problem?

5. A script in a child frame of the main window uses window.open() to generate

a second window. How can a script in the second window access the location

object (URL) of the parent window in the main browser window?

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Images and
Dynamic HTML

The previous eight lessons have been intensive, covering a

lot of ground for both programming concepts and

JavaScript. Now it’s time to apply those fundamentals to the

learning of more advanced techniques. I cover two areas here.

First, I show you how to implement the ever-popular mouse
rollover in which images swap when the user rolls the cursor

around the screen. Then I introduce you to concepts sur-

rounding scripted control of Dynamic HTML in the version 4

and later browsers.

The Image Object
One of the objects contained by the document is the image

object. Unfortunately, this object is not available in all script-

able browsers. The earliest browsers that you can use this

technique with are NN3 and IE4. Therefore, everything you

learn here about the image object doesn’t apply to NN2 (all

versions) or IE3 (for Windows). Even so, I show you how to

insert rollover code in pages so that it doesn’t cause errors in

earlier browsers.

Because a document can have more than one image, image

object references for a document are stored in the object

model as an array belonging to the document object. You can

therefore reference an image by array index or image name.

Moreover, the array index can be a string version of the

image’s name. Thus, all of the following are valid references to

an image object:

document.images[n]
document.images[“imageName”]
document.imageName

Each of the tag’s attributes is accessible to

JavaScript as a property of the image object. No mouse-

related event handlers are affiliated with the image object

(until you get to IE4+ and NN6+). If you want to make an image

a clickable item in older browsers, surround it with a link

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache
images

How to swap images
for mouse rollovers

What you can do
with Dynamic HTML
and scripting

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-110 Part II ✦ JavaScript Tutorial

(and set the image’s border to zero) or attach a client-side image map to it. The

combination of a link and image is how you make a clickable image button (the

image type of form input element is not a scriptable object until IE4+ and NN6+).

Interchangeable images
The advantage of having a scriptable image object is that a script can change

the image occupying the rectangular space already occupied by an image. In IE4+

and NN6+, the images can even change size, with surrounding content reflowing

accordingly.

The script behind this kind of image change is simple enough. All it entails is

assigning a new URL to the image object’s src property. The size of the image on

the page is governed by the HEIGHT and WIDTH attributes set in the tag as

the page loads. The most common image rollovers use the same size image for each

of the rollover states. In NN3 and NN4, the image can’t change size on the page,

which causes a differently sized replacement image to scale to fit the original

dimensions.

Precaching images
Images often take several extra seconds to download from a Web server. If you

design your page so an image changes in response to user action, you usually want

the same fast response that users are accustomed to in multimedia programs.

Making the user wait many seconds for an image to change can severely detract

from enjoyment of the page.

JavaScript comes to the rescue by enabling scripts to load images into the

browser’s memory cache without displaying the image, a technique called pre-
caching images. The tactic that works best is to preload the image into the

browser’s image cache when the page initially loads. Users are less impatient for

those few extra seconds as the main page loads than waiting for an image to down-

load in response to some mouse action.

Precaching an image requires constructing an image object in memory. An image

object created in memory differs in some respects from the document image object

that you create with the tag. Memory-only objects are created by script, and

you don’t see them on the page at all. But their presence in the document code

forces the browser to load the images as the page loads. The object model provides

an Image object constructor function to create the memory type of image object as

follows:

var myImage = new Image(width, height)

Parameters to the constructor function are the pixel width and height of the

image. These dimensions should match the tag’s WIDTH and HEIGHT
attributes. Once the image object exists in memory, you can then assign a filename

or URL to the src property of that image object:

myImage.src = “someArt.gif”

When the browser encounters a statement assigning a URL to an image object’s

src property, the browser goes out and loads that image into the image cache. All

the user sees is some extra loading information in the status bar, as if another

(c) ketabton.com: The Digital Library

CD-111Chapter 12 ✦ Images and Dynamic HTML

image were in the page. By the time the entire page loads, all images generated in

this way are tucked away in the image cache. You can then assign your cached

image’s src property or the actual image URL to the src property of the document

image created with the tag:

document.images[0].src = myImage.src

The change to the image in the document is instantaneous.

Listing 12-1 is a simple listing for a page that has one tag and a select list

that enables you to replace the image in the document with any of four precached

images (including the original image specified for the tag). If you type this listing —

as I strongly recommend — you can obtain copies of the four image files from the

companion CD-ROM in the Chapter 12 directory of listings (you must still type the

HTML and code, however).

Listing 12-1: Precaching Images

<HTML>
<HEAD>
<TITLE>Image Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// pre-cache four images
image1 = new Image(120,90)
image1.src = “desk1.gif”
image2 = new Image(120,90)
image2.src = “desk2.gif”
image3 = new Image(120,90)
image3.src = “desk3.gif”
image4 = new Image(120,90)
image4.src = “desk4.gif”

// load an image chosen from select list
function loadCached(list) {

var img = list.options[list.selectedIndex].value
document.thumbnail.src = eval(img + “.src”)

}
</SCRIPT>
</HEAD>

<BODY >
<H2>Image Object</H2>

<FORM>
<SELECT NAME=”cached” onChange=”loadCached(this)”>
<OPTION VALUE=”image1”>Bands
<OPTION VALUE=”image2”>Clips
<OPTION VALUE=”image3”>Lamp
<OPTION VALUE=”image4”>Erasers
</SELECT>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

CD-112 Part II ✦ JavaScript Tutorial

As the page loads, it executes several statements immediately. These statements

create four new memory image objects and assign filenames to the objects’ src
properties. These images are loaded into the image cache as the page loads. Down

in the Body portion of the document, an tag stakes its turf on the page and

loads one of the images as a starting image.

A SELECT element lists user-friendly names for the pictures while housing the

names of image objects already precached in memory. When the user makes a

selection from the list, the loadCached() function extracts the selected item’s

value — which is a string version of the image object name. To convert a string

name to a reference to the object of that same name, use the eval() function (part

of the core JavaScript language). You need the src property of that object, so the

eval() function is applied to a string version of the reference to an image object’s

src property. The src property of the chosen image object is assigned to the src
property of the visible image object on the page, and the precached image appears

instantaneously.

Creating image rollovers
A favorite technique to add some pseudo-excitement to a page is to swap button

images as the user rolls the cursor atop them. The degree of change to the image is

largely a matter of taste. The effect can be subtle — a slight highlight or glow

around the edge of the original image — or drastic — a radical change of color.

Whatever your approach, the scripting is the same.

When several of these graphical buttons occur in a group, I tend to organize the

memory image objects as arrays and create naming and numbering schemes that

facilitate working with the arrays. Listing 12-2 shows such an arrangement for four

buttons that control a jukebox. The code in the listing is confined to the image-

swapping portion of the application. This is the most complex and lengthiest listing

of the tutorial, so it requires a bit of explanation as it goes along.

Listing 12-2: Image Rollovers

<HTML>
<HEAD>
<TITLE>Jukebox/Image Rollovers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

Only browsers capable of handling image objects should execute statements that

precache images. Therefore, the entire sequence is nested inside an if construc-

tion that tests for the presence of the document.images array. In older browsers,

the condition evaluates to “undefined,” which an if condition treats as false.

if (document.images) {

Image precaching starts by building two arrays of image objects. One array

stores information about the images depicting the graphical button’s “off” position;

the other is for images depicting their “on” position. These arrays use strings

(instead of integers) as index values. The string names correspond to the names

given to the visible image objects whose tags come later in the source code. The

code is clearer to read (for example, you know that the offImgArray[“play”]

(c) ketabton.com: The Digital Library

CD-113Chapter 12 ✦ Images and Dynamic HTML

entry has to do with the Play button image). Also, as you see later in this listing,

rollover images don’t conflict with other visible images on the page (a possibility if

you rely exclusively on numeric index values when referring to the visible images

for the swapping).

After creating the array and assigning new blank image objects to the first four

elements of the array, I go through the array again, this time assigning file path-

names to the src property of each object stored in the array. These lines of code

execute as the page loads, so the images load into the image cache along the way.

// precache all ‘off’ button images
var offImgArray = new Array()
offImgArray[“play”] = new Image(75,33)
offImgArray[“stop”] = new Image(75,33)
offImgArray[“pause”] = new Image(75,33)
offImgArray[“rewind”] = new Image(86,33)

// off image array -- set ‘off’ image path for each button
offImgArray[“play”].src = “images/playoff.jpg”
offImgArray[“stop”].src = “images/stopoff.jpg”
offImgArray[“pause”].src = “images/pauseoff.jpg”
offImgArray[“rewind”].src = “images/rewindoff.jpg”

// precache all ‘on’ button images
var onImgArray = new Array()
onImgArray[“play”] = new Image(75,33)
onImgArray[“stop”] = new Image(75,33)
onImgArray[“pause”] = new Image(75,33)
onImgArray[“rewind”] = new Image(86,33)

// on image array -- set ‘on’ image path for each button
onImgArray[“play”].src = “images/playon.jpg”
onImgArray[“stop”].src = “images/stopon.jpg”
onImgArray[“pause”].src = “images/pauseon.jpg”
onImgArray[“rewind”].src = “images/rewindon.jpg”

}

As you can see in the following HTML, when the user rolls the mouse atop any of

the visible document image objects, the onMouseOver event handler (from the link

object surrounding the image in the document) invokes the imageOn() function,

passing the name of the particular image. The imageOn() function uses that name

to synchronize the document.images array entry (the visible image) with the entry

of the in-memory array of “on” images from the onImgArray array. The src prop-

erty of the array entry is assigned to the corresponding document image src
property.

// functions that swap images & status bar
function imageOn(imgName) {

if (document.images) {
document.images[imgName].src = onImgArray[imgName].src

}
}

The same goes for the onMouseOut event handler, which needs to turn the image

off by invoking the imageOff() function with the same index value.

(c) ketabton.com: The Digital Library

CD-114 Part II ✦ JavaScript Tutorial

function imageOff(imgName) {
if (document.images) {

document.images[imgName].src = offImgArray[imgName].src
}

}

Both the onMouseOver and onMouseOut event handlers set the status bar to

prevent the ugly javascript: URL from appearing there as the user rolls the

mouse atop the image. The onMouseOut event handler sets the status bar message

to an empty string.

function setMsg(msg) {
window.status = msg
return true

}

For this demonstration, I disable the functions that control the jukebox. But I

leave the empty function definitions here so they catch the calls made by the clicks

of the links associated with the images.

// controller functions (disabled)
function playIt() {
}
function stopIt() {
}
function pauseIt(){
}
function rewindIt() {
}
</SCRIPT>
</HEAD>

<BODY>
<CENTER>
<FORM>
Jukebox Controls

I surround each image in the document with a link because the link object has

the event handlers needed to respond to the mouse rolling over the area for com-

patibility back to NN3. Each link’s onMouseOver event handler calls the imageOn()
function, passing the name of the image object to be swapped. Because both the

onMouseOver and onMouseOut event handlers require a return true statement to

work, I combine the second function call (to setMsg()) with the return true
requirement. The setMsg() function always returns true and is combined with the

return keyword before the call to the setMsg() function. It’s just a trick to reduce

the amount of code in these event handlers.

If you are typing this listing to try it out, be sure to keep each entire <A> tag and its
attributes in one unbroken line; or insert a carriage return before any event han-
dler name.

Note

(c) ketabton.com: The Digital Library

CD-115Chapter 12 ✦ Images and Dynamic HTML

<A HREF=”javascript:playIt()”
onMouseOver=”imageOn(‘play’); return setMsg(‘Play the selected tune’)”
onMouseOut=”imageOff(‘play’); return setMsg(‘’)”>

<A HREF=”javascript:stopIt()”

onMouseOver=”imageOn(‘stop’); return setMsg(‘Stop the playing tune’)”
onMouseOut=”imageOff(‘stop’); return setMsg(‘’)”>

<A HREF=”javascript:pauseIt()”

onMouseOver=”imageOn(‘pause’); return setMsg(‘Pause the playing tune’)”
onMouseOut=”imageOff(‘pause’); return setMsg(‘’)”>

<A HREF=”javascript:rewindIt()”

onMouseOver=”imageOn(‘rewind’); return setMsg(‘Rewind tune’)”
onMouseOut=”imageOff(‘rewind’); return setMsg(‘’)”>

</FORM>
</CENTER>
</BODY>
</HTML>

You can see the results of this lengthy script in Figure 12-1. As the user rolls the

mouse atop one of the images, it changes from a light to dark color by swapping the

entire image. You can access the image files on the CD-ROM, and I encourage you to

enter this lengthy listing and see the magic for yourself.

Figure 12-1: Typical mouse rollover image swapping

More Dynamism in HTML
The image object swapping technique is but a preview of what the newest devel-

opments in Dynamic HTML are all about. In IE4+ and NN6+, you can script changes

to HTML element styles and content. Content can literally “dance” on the page.

(c) ketabton.com: The Digital Library

CD-116 Part II ✦ JavaScript Tutorial

Due to different approaches to document object models that Microsoft and

Netscape have taken over the years, it is only with adoption of the W3C DOM in the

IE5 and NN6 browsers that a lot of the same DHTML script code can run inter-

changeably on both IE and NN. (But even then, IE5 and IE5.5 do not support the

W3C DOM as fully as NN6 does.) If your audience uses IE exclusively, you also have

the option of using Microsoft’s proprietary object model for compatibility back to

IE4 (although with occasional compatibility problems accruing to the Macintosh

version of IE4).

In Chapter 14, I provide some suggestions on how to approach the diversity of

object models when developing content. Until W3C DOM-compatible browsers

represent the majority of browsers accessing your pages, you may have to weigh a

delicate balance between the gain to your Web site’s prestige with very cool DHTML

features and the pain in making those features work on a range of incompatible

browsers. But even if you sit on the DHTML sidelines for a while, there is plenty to

do with fully compatible scripting techniques demonstrated throughout this tutorial.

And so ends the final lesson of the JavaScript Bible, Fourth Edition tutorial. If you

have gone through every lesson and tried your hand at the exercises, you are now

ready to dive into the rest of the book to learn the fine details and many more fea-

tures of both the document object model and the JavaScript language. You can

work sequentially through the chapters of Parts III and IV, but before too long, you

should also take a peek at Chapter 45 to learn some debugging techniques that help

the learning process.

Exercises
1. Explain the difference between a document image object and the memory

type of image object.

2. Write the JavaScript statements needed to precache an image named

jane.jpg that later will be used to replace the document image defined by

the following HTML:

3. With the help of the code you wrote for Question 2, write the JavaScript state-

ment that replaces the document image with the memory image.

4. Backward-compatible document image objects do not have event handlers for

mouse events. How do you trigger scripts needed to swap images for mouse

rollovers?

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Document
Objects
Reference

✦ ✦ ✦ ✦
Chapter 13
JavaScript Essentials

Chapter 14
Document Object Model
Essentials

Chapter 15
Generic HTML Element
Objects

Chapter 16
Window and Frame Objects

Chapter 17
Location and History Objects

Chapter 18
The Document and Body
Objects

Chapter 19
Body Text Objects

Chapter 20
HTML Directive Objects

Chapter 21
Link and Anchor Objects

Chapter 22
Image, Area, and Map
Objects

Chapter 23
The Form and Related Objects

Chapter 24
Button Objects

Chapter 25
Text-Related Form Objects

Chapter 26
Select, Option, and
FileUpload Objects

Chapter 27
Table and List Objects

Chapter 28
The Navigator and Other
Environment Objects

Chapter 29
Event Objects

Chapter 30
Style Sheet and Style Objects

Chapter 31
Positioned Objects

Chapter 32
Embedded Objects

Chapter 33
XML Objects

✦ ✦ ✦ ✦

P A R T

IIIIII

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript
Essentials

Whenever JavaScript is discussed in the context of the

Web browser environment, it is sometimes difficult to

distinguish between JavaScript the scripting language and the

objects that you use the language to control. Even so, it’s

important to separate the language from the object model just

enough to help you make important design decisions when

considering JavaScript-enhanced pages. You may come to

appreciate the separation in the future if you use JavaScript for

other object models, such as server-side programming. All the

basics of the language are identical. Only the objects differ.

This chapter elaborates on many of the fundamental sub-

jects about the core JavaScript language raised throughout

the tutorial (Part II), particularly as they relate to deploying

scripts in a world in which visitors to your pages may use a

wide variety of browsers. Along the way, you receive addi-

tional insights into the language itself. You can find details

about the JavaScript core language syntax in Part IV.

JavaScript Versions
The JavaScript language has its own numbering system,

which is completely independent of the version numbers

assigned to browsers. The language’s creator, Netscape, by

and large controls the numbering system.

The first version, logically enough, was JavaScript 1.0. This

was the version implemented in Navigator 2 and the first

release of Internet Explorer 3. As the language evolved with

succeeding browser versions, the JavaScript version number

incremented in small steps. Internet Explorer 5, for example,

uses JavaScript 1.3, whereas Navigator 6 uses JavaScript 1.5.

Each successive generation employs additional language fea-

tures. For example, in JavaScript 1.0, arrays were not developed

fully, causing scripted arrays to not track the number of items

in the array. JavaScript 1.1 filled that hole by providing a con-

structor function for generating arrays and an inherent length

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to separate the
language from the
document object
model

Where scripts go in
your documents

JavaScript language
versions

Language highlights
for experienced
programmers

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

38 Part III ✦ Document Objects Reference

property for any generated array. Later in this chapter, you see how to direct a

browser to use a specific version of JavaScript for script execution if that makes

sense to your application.

In practice, however, the JavaScript version implemented in a browser is not

always a good predictor of core language features available for that browser. For

example, while JavaScript 1.2 (as implemented by Netscape in NN4) includes broad

support for regular expressions, not all of those features appear in Microsoft’s

JavaScript 1.2 implementation in IE4. By the same token, Microsoft implemented

try-catch error handling in its version of JavaScript 1.3 in IE5, but Netscape didn’t

include that feature until its NN6 implementation of JavaScript 1.5. Therefore, the

language version number is far less important than the browser version in deter-

mining which language features to use.

Core Language Standard — ECMAScript
Although Netscape first developed the JavaScript language, Microsoft incorpo-

rated the language in Internet Explorer 3. Because Microsoft did not want to license

the “Java” name from its trademark owner (Sun Microsystems), the language

became known in the IE environment as JScript. Except for some very esoteric

exceptions and the pace of newly introduced features, the two languages are essen-

tially identical. The levels of compatibility between browser brands for a compara-

ble generation are remarkably high for the core language (unlike the vast disparities

in object model implementations discussed in Chapter 14).

As mentioned in Chapter 2, standards efforts have been under way to create

industry-wide recommendations for browser makers to follow (to make developers’

lives easier). The core language was among the first components to achieve stan-

dard status. Through the European standards body called ECMA, a formal standard

for the language has been agreed to and published. The first specification for the

language, dubbed ECMAScript by the standards group, was roughly the same as

JavaScript 1.1 in Netscape Navigator 3. The standard defines how various data

types are treated, how operators work, what a particular data-specific syntax looks

like, and other language characteristics. A newer version (called version 3) adds

many enhancements to the core language (version 2 was version 1 with errata

fixed). You can view the current version of the ECMA-262 specification at http://
www.ecma.ch. If you are a student of programming languages, you will find the doc-

ument fascinating; if you simply want to script your pages, you will probably find

the minutia mind-boggling.

Both Netscape and Microsoft have pledged to make their browsers compliant

with the ECMA standard. The vast majority of the ECMAScript standard has

appeared in Navigator since version 3 and Internet Explorer since version 4. And, as

new features are added to the ECMA standard, they tend to find their way into

newer browsers as well.

Embedding Scripts in HTML Documents
Scriptable browsers offer several ways to include scripts or scripted elements in

your HTML documents. Not all approaches are available in all versions of every

browser, but you have sufficient flexibility starting with Navigator 3 and some ver-

sions of Internet Explorer 3.

(c) ketabton.com: The Digital Library

39Chapter 13 ✦ JavaScript Essentials

<SCRIPT> tags
The simplest and most compatible way to include script statements in an HTML

document is inside a <SCRIPT>. . .</SCRIPT> tag set that specifies the scripting

language via the LANGUAGE attribute. You can have any number of such tag sets in

your document. For example, you can define some functions in the Head section to

be called by event handlers in HTML tags within the Body section. Another tag set

can reside within the Body to write part of the content of the page as the page

loads. Place only script statements and comments between the start and end tags

of the tag set. Do not place any HTML tags inside unless they are part of a string

parameter to a document.write() statement that creates content for the page.

Every opening <SCRIPT> tag should specify the LANGUAGE attribute. Because the

<SCRIPT> tag is a generic tag indicating that the contained statements are to be

interpreted as executable script and not renderable HTML, the tag is designed to

accommodate any scripting language the browser knows.

Specifying the language version
All scriptable browsers (from Navigator 2 onward and Internet Explorer 3

onward) recognize the LANGUAGE=”JavaScript” attribute setting. However, more

recent browsers typically acknowledge additional versions of JavaScript or, in the

case of Internet Explorer, other languages such as VBScript. For example, the

JavaScript interpreter built into Navigator 3 knows the JavaScript 1.1 version of the

language; Navigator 4 and Internet Explorer 4 include the JavaScript 1.2 version. For

versions beyond the original JavaScript, you specify the language version by

appending the version number after the language name without any spaces, as in

<SCRIPT LANGUAGE=”JavaScript1.1”>...</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript1.2”>...</SCRIPT>

How you use these later-version attributes depends on the content of the scripts

and your intended audience. For example, while Navigator 6 is JavaScript 1.5-com-

patible, it works with all previous versions of the JavaScript LANGUAGE attribute as

well. Features of the language that are new in JavaScript 1.5 are executed if the

LANGUAGE attribute is set to only “JavaScript”. On rare occasions (detailed

where necessary in Part IV), the behavior of the language changes in a browser if

you specify a later language version (usually to force the script to adhere to the

ECMA specification when it varies from earlier implementations).

Writing scripts for a variety of browser versions requires a bit of care, especially

when the scripts may contain language features available only in newer browsers.

As demonstrated in an extensive discussion about browser detection later in this

chapter, there may be a need to include multiple versions of a script function, each

in its own <SCRIPT> tag with a different LANGUAGE attribute value.

The HTML 4.0 specification defines the <SCRIPT> tag, but does not endorse the
LANGUAGE attribute. In its place, HTML 4 recommends the TYPE attribute as a way
of specifying a MIME type for the tag’s content. Only IE5+ and NN6+ browsers rec-
ognize this attribute. Assign the attribute as TYPE=”text/javascript” (IE5+
also accepts text/ecmascript). JavaScript versions, however, are not taken into
account with this methodology. To be both backward compatible and forward
looking, you can specify both the LANGUAGE and TYPE attributes in your
<SCRIPT> tags because older browsers ignore the TYPE attribute.

Note

(c) ketabton.com: The Digital Library

40 Part III ✦ Document Objects Reference

<SCRIPT FOR> tags
Internet Explorer 4 (and later) offers a variation on the <SCRIPT> tag that binds

a <SCRIPT> tag’s statements to a specific object and event generated by that

object. In addition to the language specification, the tag’s attributes must include

FOR and EVENT attributes (not part of the HTML 4.0 specification). The value

assigned to the FOR attribute is a reference to the desired object. Most often, this is

simply the identifier assigned to the object’s ID attribute (IE4+ enables you to refer-

ence an object by either document.all.objectID or just objectID). The EVENT
attribute is the event handler name that you wish the script to respond to. For

example, if you design a script to perform some action upon a mouseDown event in a

paragraph whose ID is myParagraph, the script statements are enclosed in the fol-

lowing tag set:

<SCRIPT FOR=”myParagraph” EVENT=”onmousedown” LANGUAGE=”JavaScript”
TYPE=”text/javascript”>
...
</SCRIPT>

Statements inside the tag set execute only upon the firing of the event. No func-

tion definitions are required.

This way of binding an object’s event to a script means that there is no event

handler defined in the element’s tag. Therefore, it guarantees that only IE4 or later

can carry out the script when the event occurs. But the tag and attributes contain a

lot of source code overhead for each object’s script, so this is not a technique that

you should use for script statements that need to be called by multiple objects.

Also be aware that you cannot use this tag variation if non-IE or pre-IE4 browsers

load the page. In such browsers, script statements execute as the page loads, which

certainly causes script errors.

JavaScript versus JScript and VBScript
As previously explained, Internet Explorer’s version of JavaScript is called

JScript. As a result, Internet Explorer’s default script language is JScript. While

Internet Explorer acknowledges the LANGUAGE=”JavaScript” attribute, Netscape

Navigator ignores the LANGUAGE=”JScript” attribute. Therefore, if you write

scripts that must work in all scriptable browsers, you can specify one language

(“JavaScript”) and count on all browsers interpreting the code correctly (assum-

ing you take into account other browser compatibility issues).

An entirely different issue is Internet Explorer’s other scripting language,

VBScript. This language, a derivative of Visual Basic, works only in Win32 versions

of IE. You can mix scripts from both languages in the same document, but their tag

sets must be separate with the LANGUAGE attributes clearly specifying the language

for each <SCRIPT> tag.

Hiding script statements from older browsers
As more versions of scriptable browsers spread among the user community, the

installed base of older, nonscriptable browsers diminishes. However, public Web

sites can still attract a variety of browsers that date back to the World Wide Web

Stone Age (before A.D.1996). But even new devices, such as palm-sized computers,

typically employ compact browsers that don’t have built-in JavaScript interpreters.

(c) ketabton.com: The Digital Library

41Chapter 13 ✦ JavaScript Essentials

Nonscriptable browsers do not know about the <SCRIPT> tag. Normally,

browsers ignore tags they don’t understand. That’s fine when a tag is just one line

of HTML, but a <SCRIPT> tag sets off any number of script statement lines in a doc-

ument. Old browsers don’t know to expect a closing </SCRIPT> tag. Therefore,

their natural inclination is to render any lines they encounter after the opening

<SCRIPT> tag. Unfortunately, this places script statements squarely in the docu-

ment — surely to confuse anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most older browsers into

ignoring the script statements: surround the script statements — inside the

<SCRIPT> tag set — with HTML comment markers. An HTML comment begins with

the sequence <!-- and ends with -->. Therefore, you should embed these com-

ment sequences in your scripts according to the following format:

<SCRIPT LANGUAGE=”JavaScript”>
<!--
script statements here
//-->
</SCRIPT>

JavaScript interpreters also know to ignore a line that begins with the HTML

beginning comment sequence, but the interpreter needs a little help with the end-

ing sequence. The close of the HTML comment starts with a JavaScript comment

sequence (//). This tells JavaScript to ignore the line; but a nonscriptable browser

sees the ending HTML symbols and begins rendering the page with the next HTML

tag or other text in the document. An older browser doesn’t know what the

</SCRIPT> tag is, so the tag is ignored and rendering begins after that.

Even with this subterfuge, not all browsers handle HTML comment tags grace-

fully. Some older America Online browsers display the script statements no matter

what you do. Fortunately, these browsers are disappearing.

If you design your pages for public access, include these HTML comment lines in

all your <SCRIPT> tag sets. Make sure they go inside the tags, not outside. Also

note that most of the script examples in this book do not include these comments

for the sake of saving space in the listings.

Hiding scripts entirely?
It may be misleading to say that this HTML comment technique “hides” scripts

from older browsers. In truth, the comments hide the scripts from being rendered

by the browsers. The tags and script statements, however, are still downloaded to

the browser and appear in the source code when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page.

Client-side JavaScript must be downloaded with the page and is, therefore, visible

in the source view of pages. There are, of course, some tricks you can implement

that may disguise client-side scripts from prying eyes. The most easily imple-

mented technique is to let the downloaded page contain no visible elements, only

scripts that assemble the page that the visitor sees. Source code for such a page is

simply the HTML for the page. But that page is not interactive because no scripting

is attached unless it is written as part of the page — defeating the goal of hiding

scripts. Any scripted solution for disguising scripts is immediately defeatable by

the user turning off scripting temporarily before downloading the page. All of your

code is ready for source view.

(c) ketabton.com: The Digital Library

42 Part III ✦ Document Objects Reference

If you are worried about other scripters “stealing” your scripts, your best protec-

tion is to include a copyright notification in your page’s source code. Not only are

your scripts visible to the world, but so, too, are a thief’s scripts. This way you can

easily see when someone lifts your scripts verbatim.

Script libraries (.js files)
If you do a lot of scripting or script a lot of pages for a complex Web application,

you will certainly develop some functions and techniques that you can use for sev-

eral pages. Rather than duplicate the code in all of those pages (and go through the

nightmare of making changes to all copies for new features or bug fixes), you can

create reusable script library files and link them to your pages.

Such an external script file contains nothing but JavaScript code — no <SCRIPT>
tags, no HTML. The script file you create must be a text-only file, but its filename

must end with the two-character extension .js. To instruct the browser to load the

external file at a particular point in your regular HTML file, you add an SRC attribute

to the <SCRIPT> tag as follows:

<SCRIPT LANGUAGE=”JavaScript” SRC=”hotscript.js”></SCRIPT>

This kind of tag should go at the top of the document so it loads before any other

in-document <SCRIPT> tags load. If you load more than one external library, include

a series of these tag sets at the top of the document.

For complex pages and pages that link multiple external .js files, Navigator 3 and
4 sometimes do not execute immediate statements in the .js file as it loads. If
you encounter this problem, surround the statements in a function, and invoke the
function from a script statement in the main document.

Take notice of two features about this external script tag construction. First, the

<SCRIPT> . . . </SCRIPT> tag pair is required, even though nothing appears

between them. You can mix <SCRIPT> tag sets that specify external libraries with

in-document scripts in the same document. Second, avoid putting other script

statements between the start and end tags when the start tag contains an SRC
attribute.

How you reference the source file in the SRC attribute depends on its physical

location and your HTML coding style. In the preceding example, the .js file is

assumed to reside in the same directory as the HTML file containing the tag. But if

you want to refer to an absolute URL, the protocol for the file is http:// (just like

with an HTML file):

<SCRIPT LANGUAGE=”JavaScript” SRC=”http://www.cool.com/hotscript.js”>
</SCRIPT>

A very important prerequisite for using script libraries with your documents is

that your Web server software must know how to map files with the .js extension

to a MIME type of application/x-javascript. If you plan to deploy JavaScript in

this manner, be sure to test a sample on your Web server beforehand and arrange

for any necessary server adjustments.

Note

(c) ketabton.com: The Digital Library

43Chapter 13 ✦ JavaScript Essentials

When a user views the source of a page that links in an external script library,

code from the .js file does not appear in the window even though the browser

treats the loaded script as part of the current document. However, the name or URL

of the .js file is plainly visible (displayed exactly as it appears in your source

code). Anyone can then turn off JavaScript in the browser and open that file (using

the http:// protocol) to view the .js file’s source code. In other words, an exter-

nal JavaScript source file is no more hidden from view than JavaScript embedded

directly in an HTML file.

NN3 exhibits a bug if you specify an external .js library file in a tag that specifies
JavaScript 1.2 as the language. Unfortunately, NN3 ignores the language version
and loads the external file no matter what language you specify in that tag.
Therefore, if you don’t want those scripts to run in NN3, surround the scripts in the
external file in a version-checking if clause:

if (parseInt(navigator.appVersion) > 3) {
statements to run here

}

Library compatibility issues
On the Netscape Navigator side, the external library capability was introduced

with NN3. Therefore, the SRC attribute is ignored in NN2, and none of the external

scripts become part of the document.

The situation is more clouded on the Internet Explorer side. When IE3 shipped

for Windows, the external script library feature was not available. By most

accounts, IE version 3.02 included support for external libraries, but I heard reports

that this was not the case. I know that the version 3.02 installed on my Windows 95

computers loads external libraries from .js files. It may be a wise tactic to specify

a complete URL for the .js file because this is known to assist IE3 in locating the

script library file associated with an HTML file.

Navigator 3&4 JavaScript entities
A feature valid only for Navigator 3 and 4 is the JavaScript entity. The idea

behind this technique is to provide a way for the browser to use script expressions

to fill in the value for any HTML tag attribute. Entities are strings that allow special

characters or symbols to be embedded in HTML. They begin with an ampersand

symbol (&) and end with a semicolon (;). For example, the © entity is ren-

dered in browsers as a copyright symbol (©).

To assign a JavaScript expression to an entity, the entity still begins and ends like

all entities, but curly braces surround the expression. For example, consider a doc-

ument containing a function that returns the current day of the week:

function today() {
var days = new Array(“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,
“Friday”,”Saturday”)
var today = new Date()
return days[today.getDay()]

}

Tip

(c) ketabton.com: The Digital Library

44 Part III ✦ Document Objects Reference

You can assign this function to a JavaScript entity such that the label of a button

is created with the returned value of the function:

<INPUT TYPE=”button” VALUE=”&{today()};” onClick=”handleToday()”>

You can use expressions to fulfill only attribute assignments, not other parts

related to a tag, such as the text for a document title or link. Those items can be

generated dynamically via document.write() statements as the document loads.

The dynamic content capabilities of NN6 (and IE4+) provide ample substitutes

for JavaScript entities. At load time, a script can modify any element’s attribute

after the HTML creates the element, including those that impact its size or layout.

The only difference is that with the dynamic version, the user sees both the

“before” and “after” versions while the page loads.

Browser Version Detection
Without question, the biggest challenge facing many client-side scripters is how

to program an application that accommodates a wide variety of browser versions

and brands, each one of which can bring its own quirks and bugs. Happy is the

intranet developer who knows for a fact that the company has standardized its

computers with a particular brand and version of browser. But that is a rarity, espe-

cially in light of the concept of the extranet — private corporate networks and appli-

cations that open up for access to the company’s suppliers and customers.

Having dealt with this problem since the original scripted browser (NN2) had to

work alongside a hoard of nonscriptable browsers, I have identified several paths

that an application developer can follow. Unless you decide to be autocratic about

browser requirements for using your site, you must make compromises in desired

functionality or provide multiple paths in your Web site for two or more classes of

browsers. In this section, I give you several ideas about how to approach develop-

ment in an increasingly fragmented browser world.

Is JavaScript on?
Very often, the first decision an application must make is whether the client

accessing the site is JavaScript-enabled. Non-JavaScript-enabled browsers fall into

two categories: a) JavaScript-capable browsers that have JavaScript turned off in

the preferences; and b) browsers that have no built-in JavaScript interpreter.

Using the <NOSCRIPT> tag
Except for some of the earliest releases of NN2, all JavaScript-capable browsers

have a preferences setting to turn off JavaScript (and a separate one for Java). You

should know that even though JavaScript is turned on by default in most browsers,

many institutional deployments turn it off when the browser is installed on client

machines. The reasons behind this MIS deployment decision vary from scares

about Java security violations incorrectly associated with JavaScript, valid

JavaScript security concerns on some browser versions, and the fact that some fire-

walls try to filter JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <NOSCRIPT>. . .</NOSCRIPT>
tags to balance the <SCRIPT>. . .</SCRIPT> tag set. If one of these browsers has

JavaScript turned off, the <SCRIPT> tag is ignored but the <NOSCRIPT> tag is

observed. As with the <NOFRAMES> tag, you can use the body of a <NOSCRIPT> tag

(c) ketabton.com: The Digital Library

45Chapter 13 ✦ JavaScript Essentials

set to display HTML that lets users know JavaScript is turned off, and therefore the

full benefit of the page isn’t available unless they turn on JavaScript. Listing 13-1

shows a skeletal HTML page that uses these tags.

Listing 13-1: Employing the <NOSCRIPT> Tag

<HTML>
<HEAD>
<TITLE>Some Document</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

// script statements
</SCRIPT>
<NOSCRIPT>
Your browser has JavaScript turned off.

You will experience a more enjoyable time at this Web site if you turn
JavaScript on.
<HR>
</NOSCRIPT>
</HEAD>
<BODY>
<H2>The body of your document.</H2>
</BODY>
</HTML>

You can display any standard HTML within the <NOSCRIPT> tag set. An icon

image is a colorful way to draw the user’s attention to the special advice at the top

of the page. If your document is designed to create content dynamically in one or

more places in the document, you may have to include a <NOSCRIPT> tag set after

more than one <SCRIPT> tag set to let users know what they’re missing. Do not

include the HTML comment tags that you use in hiding JavaScript statements from

older browsers. Their presence inside the <NOSCRIPT> tags prevents the HTML

from rendering.

Other nonscriptable browsers
At this juncture, I must point out that newcomers to scripting frequently want to

know what script to write to detect whether JavaScript is turned on. Because

scripters are so ready to write a script to work around all situations, it takes some

thought to realize that a non-JavaScript browser cannot execute such a script: If no

JavaScript interpreter exists in the browser (or it is turned off), the script is

ignored. I suppose that the existence of a JavaScript-accessible method for Java

detection — the navigator.javaEnabled() method — promises a parallel method

for JavaScript. But logic fails to deliver on that unspoken promise.

Another desire is to have JavaScript substitute document content when the

browser is JavaScript-enabled. Only in IE4+ and NN6+ can a script replace regular

HTML with scripted content. If you develop content that must be backward compat-

ible with older browsers, remember that all HTML in a document appears in the

browser window, while scripted content can be additive only.

You can use this additive scripting to create unusual effects when displaying dif-

ferent links and (with a caveat) body text for scriptable and nonscriptable

browsers. Listing 13-2 shows a short document that uses HTML comment symbols

(c) ketabton.com: The Digital Library

46 Part III ✦ Document Objects Reference

to trick nonscriptable browsers into displaying a link to Netscape’s Web site and

two lines of text. A scriptable browser takes advantage of a behavior that allows

only the nearest <A> tag to be associated with a closing tag. Therefore, the

Netscape link isn’t rendered at all, but the link to my Web site is. For the body text,

the script assigns the same text color to a segment of HTML body text as the docu-

ment’s background. While the colored text is camouflaged in a scriptable browser

(and some other text written to the document), the “hidden” text remains invisible

in the document. HTML fans frown upon this kind of element spoofing, which will

likely run afoul of HTML validators. However, it can be fun to play with.

Listing 13-2: Rendering Different Content for Scriptable and
Nonscriptable Browsers

<HTML>
<BODY BGCOLOR=”#FFFFFF”>

<SCRIPT LANGUAGE=”JavaScript”>
<!--
document.writeln(“”)
//-->
</SCRIPT>
Where?
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
document.write(“Howdy from the script!”)
//-->
</SCRIPT>
If you can read this, JavaScript is not available.
<SCRIPT LANGUAGE=”JavaScript”>
<!--
document.write(“”)
//-->
</SCRIPT>

Here’s some stuff afterward.
</BODY>
</HTML>

Scripting for different browsers
The number of solutions for accommodating different client browsers is large

because the specific compatibility need might be as simple as letting a link navigate

to a scripted page for script-enabled browsers, as involved as setting up distinct

areas of your application for different browser classes, or any degree in between.

The first step in planning for compatibility is determining what your goals are for

various visitor classes.

(c) ketabton.com: The Digital Library

47Chapter 13 ✦ JavaScript Essentials

Establishing goals
Once you map out your application, you must then look at the implementation

details to see which browser is required for the most advanced aspect of the appli-

cation. For example, if the design calls for image swapping on mouse rollovers, that

feature requires NN3+ and IE4+. In implementing Dynamic HTML features, you have

potentially three different ways to implement tricks (such as movable elements or

changeable content) because the document object models require different script-

ing (and sometimes HTML) for NN4, IE4+, and the W3C DOM implemented in NN6

and IE5+.

In an ideal scenario, you have an appreciation for the kinds of browsers that

your visitors use. For example, if you want to implement some DHTML features, but

NN4 usage is only a small and decreasing percentage of hits, then you can probably

get by with designing for the IE4+ and NN6 document object models. Or you may

wish to forget the past and design your DHTML exclusively for W3C DOM-compati-

ble browsers. If your Web hosting service maintains a log of visitor activity to your

site, you can study the browsers listed among the hits to see which browsers your

visitors use.

After you determine the lowest common denominator for the optimum experi-

ence, you then must decide how gracefully you want to degrade the application for

visitors whose browsers do not meet the common denominator. For example, if you

plan a page or site that requires a W3C DOM-compatible browser for all the bells

and whistles, you can provide an escape path with content in a simple format that

every browser from Lynx to IE4 and NN4 can view. Or perhaps you can provide for

users of older scriptable browsers a third offering with limited scriptability that

works on all scriptable browsers.

Creating an application or site that has multiple paths for viewing the same con-

tent may sound good at the outset, but don’t forget that maintenance chores lie

ahead as the site evolves. Will you have the time, budget, and inclination to keep all

paths up to date? Despite whatever good intentions a designer of a new Web site

may have, in my experience the likelihood that a site will be maintained properly

diminishes rapidly with the complexity of the maintenance task.

Implementing a branching index page
If you decide to offer two or more paths into your application or content, one

place you can start visitors down their individual paths is at the default page for

your site. Numerous techniques are available that can redirect visitors to the appro-

priate perceived starting point of the site.

One design to avoid is placing the decision about the navigation path in the

hands of the visitor. Offering buttons or links that describe the browser require-

ments may work for users who are HTML and browser geeks, but average con-

sumers surfing the Web these days likely don’t have a clue about what level of HTML

their browsers support or whether they are JavaScript-enabled. It is incumbent upon

the index page designer to automate the navigation task as much as possible.

A branching index page has almost no content. It is not the “home page” per se of

the site, rather a gateway to the entire Web site. Its job is to redirect users to what

appears to be the home page for the site. Listing 13-3 shows what such a branching

index page looks like.

(c) ketabton.com: The Digital Library

48 Part III ✦ Document Objects Reference

Listing 13-3: A Branching Index Page

<HTML>
<HEAD>
<TITLE>GiantCo On The Web</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--

window.location.href = “home1.html”
//-->
</SCRIPT>
<META HTTP-EQUIV=”REFRESH”
CONTENT=”0; URL=http://www.giantco.com/home2.html”>

</HEAD>

<BODY>
<CENTER>

<IMG SRC=”images/giantcoLogo.gif” HEIGHT=60 WIDTH=120
BORDER=0 ALT=”Go To GiantCo Home Page”>
</CENTER>
</BODY>
</HTML>

Notice that the only visible content is an image surrounded by a standard link.

The <BODY> tag contains no background color or art. A single script statement is

located in the Head. A <META> tag is also in the Head to automate navigation for

some users. To see how a variety of browsers respond to this page, here are what

three different classes of browser do with Listing 13-3:

A JavaScript-enabled browser. Although the entire page may load momentarily

(at most, flashing the company logo for a brief moment), the browser executes the

script statement that loads home1.html into the window. In the meantime, the

image is preloaded into the browser’s memory cache. This image should be reused

in home1.html so the download time isn’t wasted on a one-time image. If your

pages require a specific browser brand or minimum version number, this is the

place to filter out browsers that don’t meet the criteria (which may include the

installation of a particular plug-in). Use the properties of the navigator object

(Chapter 28) to write a browser sniffer script that allows only those browsers meet-

ing your design minimum to navigate to the scripted home page. All other browsers

fall through to the next execution possibility.

A modern browser with JavaScript turned off or missing. Several modern

browsers recognize the special format of the <META> tag as one that loads a URL

into the current window after a stated number of seconds. In Listing 13-3, that inter-

val is zero seconds. The <META> tag is executed only if the browser ignores the

<SCRIPT> tag. Therefore, any scriptable browser that has JavaScript turned off or

any browser that knows <META> tags but no scripting follows the refresh command

for the <META> tag. If you utilize this tag, be very careful to observe the tricky

formatting of the CONTENT attribute value. A semicolon and the subattribute URL
follow the number of seconds. A complete URL for your nonscriptable home page

version is required for this subattribute. Importantly, the entire CONTENT attribute

value is inside one set of quotes.

(c) ketabton.com: The Digital Library

49Chapter 13 ✦ JavaScript Essentials

Older graphical browsers, PDA browsers, and Lynx. The last category includes

graphical browsers some call “brain-dead,” as well as intentionally stripped down

browsers. Lynx is designed to work in a text-only VT-100 terminal screen; personal

digital assistants (PDAs) such as the Palm handheld computer have browsers opti-

mized for usage through slow modems and viewing on small screens. If such

browsers do not understand the <META> tag for refreshing content, they land at this

page with no further automatic processing. But by creating an image that acts as a

link, the user will likely click (or tap) on it to continue. The link then leads to the

nonscriptable home page. Also note that the ALT attribute for the image is supplied.

This takes care of Lynx and PDA browsers (with image loading off) because these

browsers show the ALT attribute text in lieu of the image. Users click or tap on the

text to navigate to the URL referenced in the link tag.

I have a good reason to keep the background of the branching index page plain.

For those whose browsers automatically lead them to a content-filled home page,

the browser window flashes from a set background color to the browser’s default

background color before the new home page and its background color appear. By

keeping the initial content to only the company logo, less screen flashing and obvi-

ous navigation are visible to the user.

One link — alternate destinations
Another filtering technique is available directly from links. With the exceptions

of NN2 and IE3, a link can navigate to one destination via a link’s onClick event

handler and to another via the HREF attribute if the browser is not scriptable.

The trick is to include an extra return false statement in the onClick event

handler. This statement cancels the link action of the HREF attribute. For example, if

a nonscriptable browser should go to one version of a page at the click of a link and

the scriptable browser should go to another, the link tag is as follows:

<A HREF=”nonJSCatalog.html” onClick=”location.href=’JSCatalog.html’;return
false”>Product Catalog

Only nonscriptable browsers, NN2, and IE3 go to the nonJSCatalog.html page;

all others go to the JSCatalog.html page.

Multiple-level scripts
Each new JavaScript level brings more functionality to the language. You can use

the LANGUAGE attribute of the <SCRIPT> tag to provide road maps for the execution

of functions according to the power available in the browser. For example, consider

a button whose event handler invokes a function. You can write that function in

such a way that users of each JavaScript version get special treatment with regard

to unique features of that version. To make sure all scriptable browsers handle the

event handler gracefully, you can create multiple versions of the function, each

wrapped inside its own <SCRIPT> tag and specifying a particular language version.

Listing 13-4 shows the outline of a page that presents different versions of the

same event handler. For this technique to work properly, you must lay out the

<SCRIPT> tags in ascending order of JavaScript version. In other words, the last

function that the browser knows how to read (according to the LANGUAGE version)

is the one that gets executed. In Listing 13-4, for instance, NN3 (whose JavaScript

version is 1.1) gets only as far as the middle version and executes only that one.

(c) ketabton.com: The Digital Library

50 Part III ✦ Document Objects Reference

Listing 13-4: Multiple Script Versions

<HTML>
<HEAD>

<SCRIPT LANGUAGE=”JavaScript”>
<!--
function doIt() {

// statements for JavaScript 1.0 browsers
}
//-->
</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript1.1”>
<!--
function doIt() {

// statements for JavaScript 1.1 browsers
}
//-->
</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript1.2”>
<!--
function doIt() {

// statements for JavaScript 1.2 browsers
}
//-->
</SCRIPT>

</HEAD>
<BODY>
<FORM>

<INPUT TYPE=button VALUE=”Click Me” onClick=”doIt()”>
</FORM>
</BODY>
</HTML>

If you use this technique, you must define an event handler for the lowest com-

mon version to catch the oldest browsers. For example, failure to include a version

for JavaScript 1.0 in Listing 13-4 results in a script error for users of NN2 and IE3.

If you don’t want an older browser to execute a function (because the browser

doesn’t support the functionality required for the action), include a dummy function
(a function definition with no nested script statements) in the lower-version

<SCRIPT> tag to catch the event handlers of less-capable browsers.

Scripting event handlers as object properties
Along the same lines of Listing 13-4, you can define event handlers for objects

within separate language versions. This works for NN3+ and IE4+ because in those

browsers you can assign event handlers as properties of an object instead of by

way of tag attribute event handlers. For example, in Listing 13-5, a button is

assigned an event handler within the context of a JavaScript 1.1-level script. NN2

and IE3 users don’t have their button’s event handler set because the HTML tag

(c) ketabton.com: The Digital Library

51Chapter 13 ✦ JavaScript Essentials

doesn’t have an event handler. Even though the doIt() function is not restricted to

any JavaScript version, it is invoked only in browsers capable of JavaScript version

1.1 or later.

Listing 13-5: Event Handler Assignments

<<HTML>
<HEAD>

<SCRIPT LANGUAGE=”JavaScript”>
<!--
function doIt() {

// statements
}
//-->
</SCRIPT>

</HEAD>
<BODY>
<FORM>

<INPUT TYPE=button NAME=janeButton VALUE=”Click Me”>
<SCRIPT LANGUAGE=”JavaScript1.1”>
<!--

document.forms[0].janeButton.onclick=doIt
//-->
</SCRIPT>

</FORM>
</BODY>
</HTML>

Object detection
The final methodology for implementing browser version branching is known as

object detection. The principle is simple: If an object type exists in the browser’s

object model, then it is safe to execute script statements that work with that object.

Perhaps the best example of object detection is the way scripts can swap images

on a page in newer browsers without tripping up on older browsers that don’t

implement images as objects. In a typical image swap, onMouseOver and

onMouseOut event handlers (assigned to a link surrounding an image, to be back-

ward compatible) invoke functions that change the src property of the desired

image. Each of those functions is invoked for all scriptable browsers, but you want

them to run their statements only when images can be treated as objects.

Object models that implement images always include an array of image objects

belonging to the document object. The document.images array always exists, even

with a length of zero when no images are on the page. Therefore, if you wrap the

image swapping statements inside an if construction that lets browsers pass only if

the document.images array exists, older browsers simply skip over the statements:

function imageSwap(imgName, url) {
if (document.images) {

document.images[imgName].src = url
}

}

(c) ketabton.com: The Digital Library

52 Part III ✦ Document Objects Reference

Object detection works best when you know for sure how all browsers imple-

ment the object. In the case of document.images, the implementation across

browsers is identical, so it is a very safe branching condition. That’s not always the

case, and you should use this feature cautiously. For example, IE4 introduced a

document object array called document.all, which is used very frequently in

building references to HTML element objects. NN4, however, did not implement

that array, but instead had a document-level array object called layers, which was

not implemented in IE4. Unfortunately, many scripters used the existence of these

array objects as determinants for browser version. They set global variables signi-

fying a minimum version of IE4 and NN4 based on the existence of these array

objects. This is most dangerous because there is no way of knowing if a future ver-

sion of a browser may adopt the object of the other browser brand. What happens,

for instance, if the W3C DOM in a future version should adopt the document.all
array? If a future version of Navigator implements that array, the browser sniffing

code from the old page will treat Navigator as if it were Internet Explorer, and

scripts will likely break left and right.

This is why I recommend object detection not for browser version sniffing but

for object availability branching, as shown previously for images. Moreover, it is

safest to implement object detection only when all major browser brands (and the

W3C DOM recommendation) have adopted the object so that behavior is pre-

dictable wherever your page loads in the future.

Techniques for object detection include testing for the availability of an object’s

method. A reference to an object’s method returns a value, so such a reference can

be used in a conditional statement. For example, the following code fragment

demonstrates how a function can receive an argument containing the string ID of an

element and convert the string to a valid object reference for three different docu-

ment object models:

function myFunc(elemID) {
var obj
if (document.all) {

obj = document.all(elemID)
} else if (document.getElementById) {

obj = document.getElementById(elemID)
} else if (document.layers) {

obj = document.layers[elemID]
}
if (obj) {

// statements that work on the object
}

}

It no longer matters which browser brand, operating system, and version sup-

ports a particular way of changing an element ID to an object reference. Whichever

of the three document object properties or method is supported by the browser (or

the first one, if the browser supports more than one), that is the property or

method used to accomplish the conversion. If the browser supports none of them,

then no further statements execute.

If your script wants to check for the existence of an object’s property or method,

you may also have to check for the existence of the object beforehand if that object

is not part of all browers’ object models. An attempt to reference a property of a

non-existent object in a conditional expression generates a script error. To avoid

(c) ketabton.com: The Digital Library

53Chapter 13 ✦ JavaScript Essentials

the error, you can cascade the conditional tests with the help of the && operator.

The following fragment tests for the existence of both the document.body object

and the document.body.style property:

if (document.body && document.body.style) {
// statements that work on the body’s style property

}

If the test for document.body fails, JavaScript bypasses the second test.

One potential “gotcha” to using conditional expressions to test for the existence

of an object’s property is that even if the property exists but its value is zero or an

empty string, the conditional test reports that the property does not exist. To

workaround this potential problem, the conditional expression can examine the

data type of the value to ensure that the property genuinely exists. A non-existent

property for an object reports a data type of undefined. Use the typeof operator

(Chapter 40) to test for a valid property:

if (document.body && typeof document.body.scroll != “undefined”) {
// statements that work on the body’s scroll property

}

Object detection is the wave of the future, and I wholeheartedly recommend

designing your scripts to take advantage of it in lieu of branching on particular

browser name strings and version numbers. Scriptable features are gradually find-

ing their way into browsers embedded in a wide range of non-traditional computing

devices. These browsers may not go by the same names and numbering systems

that we know today, yet such browsers may be able to interpret your scripts. By

testing for browser functionality, your scripts will likely require less maintenance in

the future. You can see more object detection at work in Chapters 47 and 56.

Designing for Compatibility
Each new major release of a browser brings compatibility problems for page

authors. It’s not so much that old scripts break in the new versions (well-written

scripts rarely break in new versions with the rare exception of the jump from NN4 to

NN6). No, the problems center on the new features that attract designers when the

designers forget to accommodate visitors who have not advanced to the latest and

greatest browser version yet or who don’t share your browser brand preference.

Adding to these problems are numerous bugs, particularly in first-generation

browsers from both Netscape and Microsoft. Worse still, some of these bugs affect

only one operating system platform among the many supported by the browser.

Even if you have access to all the browsers for testing, the process of finding the

errors, tracking down the bugs, and implementing workarounds that won’t break

later browsers can be quite frustrating — even when you’ve scripted pages from the

earliest days and have a long memory for ancient bug reports.

Catering only to the lowest common denominator can more than double your

development time due to the expanded testing matrix necessary to ensure a good

working page in all operating systems and on all versions. Decide how important

the scripted functionality you employ in a page is for every user. If you want some

functionality that works only in a later browser, then you may have to be a bit auto-

cratic in defining the minimum browser for scripted access to your page — any

lesser browser gets shunted to a simpler presentation of your site’s data.

(c) ketabton.com: The Digital Library

54 Part III ✦ Document Objects Reference

Another possibility is to make a portion of the site accessible to most, if not all,

browsers, and restrict the scripting to only the occasional enhancement that non-

scriptable browser users won’t miss. Once the application reaches a certain point

in the navigation flow, then the user needs a more capable browser to get to the

really good stuff. This kind of design is a carefully planned strategy that lets the site

welcome all users up to a point, but then enables the application to shine for users

of, say, W3C DOM-compatible browsers.

The ideal page is one that displays useful content on any browser, but whose

scripting enhances the experience of the page visitor — perhaps by offering more

efficient site navigation or interactivity with the page’s content. That is certainly a

worthy goal to aspire to. But even if you can achieve this ideal on only some pages,

you will reduce the need for defining entirely separate, difficult-to-maintain paths

for browsers of varying capabilities.

Dealing with beta browsers
If you have crafted a skillfully scripted Web page or site, you may be concerned

when a prerelease (or beta) version of a browser available to the public causes

script errors or other compatibility problems to appear on your page. Do yourself a

favor — don’t overreact to bugs and errors that occur in prerelease browser ver-

sions. If your code is well written, it should work with any new generation of

browser. If the code doesn’t work correctly, consider the browser to be buggy.

Report the bug (preferably with a simplified test case script sample) to the browser

maker.

The exception to the “it’s a beta bug” rule arose in the transition from NN4 to

NN6. As you learn in Chapter 14, a conscious effort to eliminate a proprietary NN4

feature (the <LAYER> tag and corresponding scriptable object) caused many NN4

scripts to break on NN6 betas (and final release). Had scripters gone to report the

problem to the new browsers’ developer (Mozilla), they would have learned of the

policy change, and planned for the new implementation. It is extremely rare for a

browser to eliminate a popular feature so quickly, but it can happen.

It is often difficult to prevent yourself from getting caught up in browser makers’

enthusiasm for a new release. But remember that a prerelease version is not a ship-

ping version. Users who visit your page with prerelease browsers should know that

there may be bugs in the browser. That your code does not work with a prerelease

version is not a sin, nor is it worth losing sleep over. Just be sure to connect with

the browser’s maker either to find out if the problem will continue in the final

release or to report the bug so the problem doesn’t make it into the release version.

The Evaluator Sr.
In Chapter 6, you were introduced to a slimmed-down version of The Evaluator

Jr., which provides an interactive workbench to experiment with expression evalua-

tion and object inspection. At this point, you should meet The Evaluator Sr., a tool

you will use in many succeeding chapters to help you learn both core JavaScript

and DOM terminology.

(c) ketabton.com: The Digital Library

55Chapter 13 ✦ JavaScript Essentials

IE Browser Version Headaches

As described more fully in the discussion of the navigator object in Chapter 28, your
scripts can easily determine which browser is the one running the script. However, the
properties that reveal the version don’t always tell the whole story about Internet Explorer.
For one thing, the Windows and Macintosh versions of the same major browser version
(3.0x) implement slightly different object models. The Mac version includes the ever-popu-
lar image object for mouse rollover image swapping; the Windows version does not, and
any attempt to use such code in the Windows version results in script errors.

Next, the first release of Internet Explorer 3 for the Macintosh was not scriptable at all — the
JavaScript interpreter was left out. Macintosh version 3.01 was the first scriptable Mac ver-
sion. Even among minor generation releases of Internet Explorer 3 for Windows, Microsoft
implemented some new features here and there.

Probably the most troublesome problem is that an improved JavaScript interpreter (in the
JScript.dll file) underwent substantial improvements between version 1 and version 2
for Windows. Many copies of browser version 3.02 for Windows shipped with version 1 of
the .dll. Some users updated their browsers if they knew to download the new .dll from
Microsoft. Unfortunately, the interpreter version is not reflected in any navigator object
property. A nasty Catch-22 in this regard is that version 2 of the interpreter includes a new
property that enables you to examine the interpreter version, but testing for that property in
a browser that has version 1 of the interpreter installed results in an error message.

Due to the insecurity of knowing exactly what will and won’t work in a browser that identi-
fies itself as Internet Explorer 3.0x, you might decide to redirect all users of Internet Explorer
3 to pages in your application that include no scripting. But before you think I’m bashing
Internet Explorer 3, you should also consider doing the same redirection for Navigator 2
users due to the number of platform-specific bugs that littered that first round of JavaScript.
Object model and core language implementations in NN3+ and IE4+ are much more sta-
ble and reliable platforms on which to build scriptable applications (and you get genuine
array objects!). If you have an opportunity to study the access logs of your Web site, analyze
the proportion of different browser versions over several days before deciding where you
set your lowest common denominator for scripted access.

Even with IE5, browser detection remains a challenge. As you can see in detail in Chapter
28, the navigator.appVersion property for IE5 for Windows reports version 4 (the same
as IE4). You can still “sniff” for version 5 (you can find the designation MSIE 5 in the
navigator.userAgent property), but the process is not as straightforward as it could be —
especially if you need to look for any version greater than or equal to 5. The best advice is
to be vigilant when new browsers come on the scene or adopt object detection techniques
in your scripts.

(c) ketabton.com: The Digital Library

56 Part III ✦ Document Objects Reference

Figure 13-1 shows the top part of the page. Two important features differentiate

this full version from the Jr. version in Chapter 6.

Figure 13-1: The Evaluator Sr.

First, you can try some Netscape secure features if you have Code Base

Principles turned on for your browser (Chapter 46) and you check the Use Code

Base Security checkbox (NN4+ only). Second, the page has several HTML elements

preinstalled, which you can use to explore DOM properties and methods. As with

the smaller version, a set of 26 one-letter global variables (a through z) are initial-

ized and ready for you to assign values for extended evaluation sequences.

You should copy the file evaluator.html from the companion CD-ROM to a

local hard disk and set a bookmark for it in all of your test browsers. Feel free to

add your own elements to the bottom of the page to explore other objects. I

describe a version of The Evaluator for embedding in your projects as a debugging

tool in Chapter 45.

Compatibility ratings in reference chapters
With the proliferation of scriptable browser versions since Navigator 2, it is

important to know up front whether a particular language or object model object,

property, method, or event handler is supported in the lowest common denomina-

tor for which you are designing. Therefore, beginning with Chapter 15 of this refer-

ence part of the book, I include frequent compatibility charts, such as the following

example:

(c) ketabton.com: The Digital Library

57Chapter 13 ✦ JavaScript Essentials

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � (�) � � � �

The first four columns represent Navigator versions 2, 3, 4, and 6, respectively

(there was no release numbered 5). For Internet Explorer, two columns appear for

version 3. One, marked IE3/J1, represents the combination of Internet Explorer 3

and JScript.dll version 1; IE3/J2 represents Internet Explorer 3 and JScript.dll

version 2. Internet Explorer 4 and later come with their own JScript.dll versions, so

there is no sub-version listed. A checkmark means the feature is compatible with

the designated browser. You will also occasionally see one or more of the check-

marks surrounded in parentheses. This means some bug or partial implementation

for that browser is explained in the body text. Look to the feature’s text if there are

version issues related to operating system, especially for items that are new with

IE4 or later, where many features operate only in Windows.

I also recommend that you print the JavaScript and Browser Objects Quick

Reference file shown in Appendix A. The file is on the companion CD-ROM in

Adobe Acrobat format. This quick reference clearly shows each object’s properties,

methods, and event handlers, along with keys to the browser version in which each

language item is supported. You should find the printout to be valuable as a day-to-

day resource.

Language Essentials for Experienced
Programmers

In this section, experienced programmers can read the highlights about the core

JavaScript language in terms that may not make complete sense to those with lim-

ited or no scripting experience. This section is especially for you if you found the

tutorial of Part II rudimentary. Here, then, is the quick tour of the essential issues

surrounding the core JavaScript language.

JavaScript is a scripting language. The language is intended for use in an exist-

ing host environment (for example, a Web browser) that exposes objects whose

properties and behaviors are controllable via statements written in the language.

Scripts execute within the context of the host environment. The host environment

controls what, if any, external environmental objects may be addressed by language

statements running in the host environment. For security and privacy reasons, Web

browsers generally afford little or no direct access via JavaScript to browser prefer-

ences, the operating system, or other programs beyond the scope of the browser.

The exception to this rule is that modern browsers allow deeper client access (with

the user’s permission) through trust mechanisms such as signed scripts (Netscape)

or trusted ActiveX controls (Microsoft).

JavaScript is object-based. Although JavaScript exhibits many syntactic paral-

lels with the Java language, JavaScript is not as pervasively object-oriented as Java.

The core language includes several built-in static objects from which working

objects are generated. Objects are created via a call to a constructor function for

(c) ketabton.com: The Digital Library

58 Part III ✦ Document Objects Reference

any of the built-in objects plus the new operator. For example, the following expres-

sion generates a String object and returns a reference to that object:

new String(“Hello”)

Table 13-1 lists the built-in objects with which scripters come in contact.

Table 13-1 JavaScript Built-in Objects

Array1 Boolean Date Error2

EvalError2 Function1 Math Number1

Object1 RangeError2 ReferenceError2 RegExp3

String1 SyntaxError2 TypeError2 URIError2

1Although defined in ECMA Level 1, was first available in NN3 and IE3/J2

2Defined in ECMA Level 3; implemented in NN6

3Defined in ECMA Level 3; implemented fully in NN4, partially in IE4

JavaScript is loosely typed. Variables, arrays, and function return values are not

defined to be of any particular data type. In fact, an initialized variable can hold

different data type values in subsequent script statements (obviously not good

practice, but possible nonetheless). Similarly, an array may contain values of

multiple types. The range of built-in data types is intentionally limited:

Boolean (true or false)

Null

Number (double-precision 64-bit format IEEE 734 value)

Object (encompassing the Array object)

String

Undefined

The host environment defines global scope. Web browsers traditionally define a

browser window or frame to be the global context for script statements. When a

document unloads, all global variables defined by that document are destroyed.

JavaScript variables have either global or local scope. A global variable in a

Web browser is typically initialized in var statements that execute as the document

loads. All statements in that document can read or write that global variable. A

local variable is initialized inside a function (also with the var operator). Only

statements inside that function may access that local variable.

Scripts sometimes access JavaScript static object properties and methods.
Some static objects encourage direct access to their properties or methods. For

(c) ketabton.com: The Digital Library

59Chapter 13 ✦ JavaScript Essentials

example, all properties of the Math object act as constant values (for example,

Math.PI).

You can add properties or methods to working objects at will. To add a prop-

erty to an object, simply assign a value of any type to it. For example, to add an

author property to a string object named myText, use:

myText.author = “Jane”

Assign a function reference to an object property to give that object a new

method:

// function definition
function doSpecial(arg1) {

// statements
}
// assign function reference to method name
myObj.handleSpecial = doSpecial
...
// invoke method
myObj.handleSpecial(argValue)

Inside the function definition, the this keyword refers to the object that owns

the method.

JavaScript objects employ prototype-based inheritance. All object constructors

create working objects whose properties and methods inherit the properties and

methods defined for the prototype of that object. Starting with NN3 and IE3/J2,

scripts can add and delete custom properties and/or methods associated with the

static object’s prototype so that new working objects inherit the current state of

the prototype. Scripts can freely override prototype property values or assign dif-

ferent functions to prototype methods in a working object if desired without affect-

ing the static object prototype. But if inherited properties or methods are not

modified in the current working object, any changes to the static object’s prototype

are reflected in the working object. (The mechanism is that a reference to an

object’s property works its way up the prototype inheritance chain to find a match

to the property name.)

JavaScript includes a large set of operators. You can find most operators that

you are accustomed to working with in other languages.

JavaScript provides typical control structures. All versions of JavaScript offer

if, if-else, for, and while constructions. JavaScript 1.3 (NN4+ and IE4+) also

add do-while and switch constructions. Iteration constructions provide break
and continue statements to modify control structure execution.

JavaScript functions may or may not return a value. There is only one kind of

JavaScript function. A value is returned only if the function includes a return key-

word followed by the value to be returned. Return values can be of any data type.

JavaScript functions cannot be overloaded. A JavaScript function accepts zero

or more arguments, regardless of the number of parameter variables defined for the

function. All arguments are automatically assigned to the arguments array, which is

a property of a function object. Parameter variable data types are not predefined.

(c) ketabton.com: The Digital Library

60 Part III ✦ Document Objects Reference

Values are passed “by reference” and “by value.” An object passed to a

function is actually a reference to that object, offering full read/write access to

properties and methods of that object. But other types of values (including object

properties) are passed by value, with no reference chain to the original object.

Thus, the following nonsense fragment empties the text box when the onChange
event fires:

function emptyMe(arg1) {
arg1.value = “”

}
...
<INPUT TYPE=”text” VALUE=”Howdy” onChange=”emptyMe(this)”>

But in the following version, nothing happens to the text box:

function emptyMe(arg1) {
arg1 = “”

}
...
<INPUT TYPE=”text” VALUE=”Howdy” onChange=”emptyMe(this.value)”>

The local variable (arg1) simply changes from “Howdy” to an empty string.

Error trapping techniques depend on JavaScript version. There is no error

trapping in NN2 or IE3. Error trapping in NN3, NN4, and IE4 is event-driven in the

Web browser object model. JavaScript, as implemented in IE5 and NN6, supports

try-catch and throw statements, as well as built-in error objects that are not

dependent on the host environment.

Memory management is not under script control. The host environment man-

ages memory allocation, including garbage collection. Different browsers may han-

dle memory in different ways.

White space (other than a line terminator) is insignificant. Space and tab char-

acters may separate lexical units (for example, keywords, identifiers, and so on).

A line terminator is usually treated as a statement delimiter. Except in very

rare constructions, JavaScript parsers automatically insert the semicolon state-

ment delimiter whenever they encounter one or more line terminators (for exam-

ple, carriage returns or line feeds). A semicolon delimiter is required between two

statements on the same physical line of source code. Moreover, string literals may

not have carriage returns in their source code (but an escaped newline character

(\n) may be a part of the string).

Onward to Object Models
The core language is only a small part of what you work with while scripting Web

pages. The bulk of your job entails understanding the ins and outs of document

object models as implemented in several generations of browsers. That’s where the

next chapter picks up the “essentials” story.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Document
Object Model
Essentials

Without question, the biggest challenge facing client-

side Web scripters is the sometimes-baffling array of

document object models that have competed for our atten-

tion throughout the short history of scriptable browsers.

Netscape got the ball rolling in Navigator 2 with the first

object model. By the time the version 4 browsers came

around, the original object model had gained not only some

useful cross-browser features, but also a host of features that

were unique to only Navigator or Internet Explorer. The object

models were diverging, causing no end of headaches for page

authors whose scripts had to run on as many browsers as

possible. A ray of hope emerged from the standards process

of the World Wide Web Consortium (W3C) in the form of a

document object model (DOM) recommendation. The new

DOM brings forward much of the original object model, plus

new ways of addressing every object in a document. The goal

of this chapter is to put each of the object models into per-

spective and help you select the model(s) you intend to

support in your Web applications. But before we get to those

specifics, let’s examine the role of the object model in design-

ing scripted applications.

The Object Model Hierarchy
In the tutorial chapters of Part II, you were introduced to

the fundamental ideas behind a document object hierarchy in

scriptable browsers. In other object-oriented environments,

object hierarchy plays a much greater role than it does in

JavaScript-able browsers. (In JavaScript, you don’t have to

worry about related terms, such as classes, inheritance, and

instances.) Even so, you cannot ignore the hierarchy concept

because much of your code relies on your ability to write ref-

erences to objects that depend on their positions within the

hierarchy.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Object models versus
browser versions

Proprietary model
extensions

Structure of the W3C
DOM

Mixing object models
in a single document

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

62 Part III ✦ Document Objects Reference

Calling these objects “JavaScript objects” is not entirely correct. These are really

browser document objects: you just happen to use the JavaScript language to bring

them to life. Some scripters of Microsoft Internet Explorer use the VBScript lan-

guage to script the very same document objects. Technically speaking, JavaScript

objects apply to data types and other core language objects separate from the doc-

ument. The more you can keep document and core language objects separate in

your head, the more quickly you can deal with browser brand compatibility issues.

Hierarchy as road map
For the programmer, the primary role of the document object hierarchy is to pro-

vide scripts with a way to reference a particular object among all the objects that a

browser window can contain. The hierarchy acts as a road map the script can use

to know precisely which object to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high

school classroom. It’s getting hot and stuffy as the afternoon sun pours in through

the wall of windows on the west side of the room. You say to Tony, “Would you

please open a window?” and motion your head toward a particular window in the

room. In programming terms, you’ve issued a command to an object (whether or

not Tony appreciates the comparison). This human interaction has many advan-

tages over anything you can do in programming. First, by making eye contact with

Tony before you speak, he knows that he is the intended recipient of the command.

Second, your body language passes along some parameters with that command,

pointing ever so subtly to a particular window on a particular wall.

If, instead, you are in the principal’s office using the public address system, and

you broadcast the same command, “Would you please open a window?,” no one

knows what you mean. Issuing a command without directing it to an object is a

waste of time because every object thinks, “That can’t be meant for me.” To accom-

plish the same goal as your one-on-one command, the broadcast command has to

be something like, “Would Tony Jeffries in Room 312 please open the middle win-

dow on the west wall?”

Let’s convert this last command to JavaScript dot syntax form (see Chapter 4).

Recall from the tutorial that a reference to an object starts with the most global

point of view and narrows to the most specific point of view. From the point of view

of the principal’s office, the location hierarchy of the target object is

room312.Jeffries.Tony

You can also say that Tony’s knowledge about how to open a window is one of

Tony’s methods. The complete reference to Tony and his method then becomes

room312.Jeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which

window to open. In this case, the window you want is the middle window of the

west wall of Room 312. Or, from the hierarchical point of view of the principal’s

office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow() method.

Therefore, the entire command that comes over the PA system is

room312.Jeffries.Tony.openWindow(room312.westWall.middleWindow)

(c) ketabton.com: The Digital Library

63Chapter 14 ✦ Document Object Model Essentials

If, instead of barking out orders while sitting in the principal’s office, you attempt

the same task via radio from an orbiting space shuttle to all the inhabitants on

Earth, imagine how laborious your object hierarchy is. The complete reference to

Tony’s openWindow() method and the window that you want opened has to be

mighty long to distinguish the desired objects from the billions of objects within

the space shuttle’s view.

The point is that the smaller the scope of the object-oriented world you’re pro-

gramming, the more you can assume about the location of objects. For client-side

JavaScript, the scope is no wider than the browser itself. In other words, every

object that a JavaScript script can work with resides within the browser applica-

tion. With few exceptions, a script does not access anything about your computer

hardware, operating system, other applications, desktop, or any other stuff beyond

the browser program.

The browser document object road map
Figure 14-1 shows the lowest common denominator document object hierarchy

that is implemented in all scriptable browsers. Notice that the window object is the

topmost object in the entire scheme. Everything you script in JavaScript is in the

browser’s window.

Figure 14-1: The lowest common denominator browser document object hierarchy

Pay attention to the shading of the concentric rectangles. Every object in the

same shaded area is at the same level relative to the window object. When a line

from an object extends to the next darker shaded rectangle, that object contains all

the objects in darker areas. There exists, at most, one of these lines between levels.

The window object contains the document object; the document object contains a

form object; a form object contains many different kinds of form elements.

window
frame self top parent

history document location

text radio button select

textarea checkbox reset option

link form anchor

password submit

(c) ketabton.com: The Digital Library

64 Part III ✦ Document Objects Reference

Study Figure 14-1 to establish a mental model for the basic scriptable elements of

a Web page. Models of more recent browsers have more objects in their hierar-

chies, but the fundamental organization remains. After you script these objects

several times, the object hierarchy will become second nature to you — even if you

don’t necessarily remember every detail (property, method, and event handler) of

every object. At least you know where to look for information.

How Document Objects Are Born
Most of the objects that a browser creates for you are established when an

HTML document loads into the browser. The same kind of HTML code you use to

create links, anchors, and input elements tells a JavaScript-enhanced browser to

create those objects in memory. The objects are there whether or not your scripts

call them into action.

The only visible differences to the HTML code for defining those objects are the

one or more optional attributes specifically dedicated to JavaScript. By and large,

these attributes specify the event you want the user interface element to react to

and what JavaScript should do when the user takes that action. By relying on the

document’s HTML code to perform the object generation, you can spend more time

figuring out how to do things with those objects or have them do things for you.

Bear in mind that objects are created in their load order. And if you create a mul-

tiframe environment, a script in one frame cannot communicate with another

frame’s objects until both frames load. This trips up a lot of scripters who create

multiframe and multiwindow sites (more in Chapter 16).

Object Properties
A property generally defines a particular current setting of an object. The setting

may reflect a visible attribute of an object, such as the state of a checkbox (checked

or not); it may also contain information that is not so obvious, such as the action

and method of a submitted form.

Document objects have most of their initial properties assigned by the attribute

settings of the HTML tags that generate the objects. Thus, a property may be a

word (for example, a name) or a number (for example, a size). A property can also

be an array, such as an array of images contained by a document. If the HTML does

not include all attributes, the browser usually fills in a default value for both the

attribute and the corresponding JavaScript property.

When used in script statements, property names are case-sensitive. Therefore, if

you see a property name listed as bgColor, you must use it in a script statement

with that exact combination of lowercase and uppercase letters. But when you set

an initial value of a property by way of an HTML attribute, the attribute name (like

all of HTML) is not case-sensitive. Thus, <BODY BGCOLOR=”white”> and <body
bgcolor=”white”> both set the same bgColor property value.

Each property determines its own read/write status. Some properties are read-

only, whereas you can change others on the fly by assigning a new value to them.

For example, to put some new text into a text box object, you assign a string to the

object’s value property:

document.forms[0].phone.value = “555-1212”

(c) ketabton.com: The Digital Library

65Chapter 14 ✦ Document Object Model Essentials

Once an object contained by the document exists (that is, its HTML is loaded

into the document), you can also add one or more custom properties to that object.

This can be helpful if you wish to associate some additional data with an object for

later retrieval. To add such a property, simply specify it in the same statement that

assigns a value to it:

document.forms[0].phone.delimiter = “-”

Any property you set survives as long as the document remains loaded in the

window and scripts do not overwrite the object. Be aware, however, that reloading

the page usually destroys custom properties.

Object Methods
An object’s method is a command that a script can give to that object. Some meth-

ods return values, but that is not a prerequisite for a method. Also, not every object

has methods defined for it. In a majority of cases, invoking a method from a script

causes some action to take place. The resulting action may be obvious (such as resiz-

ing a window) or something more subtle (such as sorting an array in memory).

All methods have parentheses after them, and they always appear at the end of an

object’s reference. When a method accepts or requires parameters, the parameter

values go inside the parentheses (with multiple parameters separated by commas).

While an object has its methods predefined by the object model, you can also

assign one or more additional methods to an object that already exists (that is,

after its HTML is loaded into the document). To do this, a script in the document

(or in another window or frame accessible by the document) must define a

JavaScript function and then assign that function to a new property name of the

object. In the following example written to take advantage of Version 4 or later

A Note to Experienced Object-Oriented Programmers

Although the basic object model hierarchy appears to have a class/subclass relationship,
many of the traditional aspects of a true, object-oriented environment don’t apply to the
model. The original JavaScript document object hierarchy is a containment hierarchy, not
an inheritance hierarchy. No object inherits properties or methods of an object higher up
the chain. Nor is there any automatic message passing from object to object in any direc-
tion. Therefore, you cannot invoke a window’s method by sending a message to it via the
document or a form object. All object references must be explicit.

Predefined document objects are generated only when the HTML code containing their
definitions loads into the browser. You cannot modify many properties, methods, and event
handlers in early object models once you load the document into the browser. In Chapter
41, you learn how to create your own objects, but those objects do not present new visual
elements on the page that go beyond what HTML, Java applets, and plug-ins can portray.

Inheritance does play a role, as you will see later in this chapter, in the object model
defined by the W3C. The new hierarchy is of a more general nature to accommodate
requirements of XML as well as HTML. But the containment hierarchy for HTML objects, as
described in this section, is still valid in W3C DOM-compatible browsers.

(c) ketabton.com: The Digital Library

66 Part III ✦ Document Objects Reference

browser features, the fullScreen() function invokes one window object method

and adjusts two window object properties. By assigning the function reference to

the new window.maximize property, I define a maximize() method for the window
object. Thus, a button’s event handler can call that method directly.

// define the function
function fullScreen() {

this.moveTo(0,0)
this.outerWidth = screen.availWidth
this.outerHeight = screen.availHeight

}
// assign the function to a custom property
window.maximize = fullScreen
...
<!-- invoke the custom method -->
<INPUT TYPE=”button” VALUE=”Maximize Window” onClick=”window.maximize()”>

Object Event Handlers
An event handler specifies how an object reacts to an event that is triggered by a

user action (for example, a button click) or a browser action (for example, the com-

pletion of a document load). Going back to the earliest JavaScript-enabled browser,

event handlers were defined inside HTML tags as extra attributes. They included

the name of the attribute, followed by an equal sign (working as an assignment

operator) and a string containing the script statement(s) or function(s) to execute

when the event occurs (see Chapter 5). Event handlers also have other forms. In

NN3+ and IE4+, event handlers have corresponding methods for their objects and

every event handler is a property of its object.

Event handlers as methods
Consider a button object whose sole event handler is onClick. This means when-

ever the button receives a click event, the button triggers the JavaScript expression

or function call assigned to that event handler in the button’s HTML definition:

<INPUT TYPE=”button” NAME=”clicker” VALUE=”Click Me” onClick=”doIt()”>

Normally, that click event is the result of a user physically clicking the button in

the page. In NN3+ and IE4+, you can also trigger the event handler with a script by

calling the event handler as if it were a method of the object:

document.formName.clicker.onclick()

Notice that when summoning an event handler as a method, the method name is

all lowercase regardless of the case used in the event handler attribute within the

original HTML tag. This lowercase reference is a requirement.

Invoking an event handler this way is different from using a method to simulate

the physical action denoted by the event. For example, imagine a page containing

three simple text fields. One of those fields has an onFocus event handler defined

for it. Physically tabbing to or clicking in that field brings focus to the field and

thereby triggers its onFocus event handler. If the field does not have focus, a button

can invoke that field’s onFocus event handler by referencing it as a method:

document.formName.fieldName.onfocus()

(c) ketabton.com: The Digital Library

67Chapter 14 ✦ Document Object Model Essentials

This scripted action does not bring physical focus to the field. The field’s own

focus() method, however, does that under script control.

A byproduct of an event handler’s capability to act like a method is that you can

define the action of an event handler by defining a function with the event handler’s

name. For example, instead of specifying an onLoad event handler in a document’s

<BODY> tag, you can define a function like this:

function onload() {
statements

}

This capability is particularly helpful if you want event handler actions confined to

a script running in NN3, IE4, or later. Your scripts don’t require special traps for

Navigator 2 or Internet Explorer 3.

Event handlers as properties
Although event handlers are commonly defined in an object’s HTML tag, you also

have the power in NN3+ and IE4+ to assign or change an event handler just like you

assign or change the property of an object. The value of an event handler property

looks like a function definition. For example, given this HTML definition:

<INPUT TYPE=”text” NAME=”entry” onFocus=”doIt()”>

the value of the object’s onfocus (all lowercase) property is

function onfocus() {
doIt()

}

You can, however, assign an entirely different function to an event handler by

assigning a function reference to the property. Such references don’t include the

parentheses that are part of the function’s definition. (You see this again much later

in Chapter 41 when you assign functions to object properties.)

Using the same text field definition you just looked at, you can assign a different

function to the event handler because based on user input elsewhere in the docu-

ment you want the field to behave differently when it receives the focus. If you

define a function like this

function doSomethingElse() {
statements

}

you can then assign the function to the field with this assignment statement:

document.formName.entry.onfocus = doSomethingElse

Because the new function reference is written in JavaScript, you must observe

case for the function name. Although NN4 accepts interCap versions of the event

handler names, you are best served across all browsers by sticking with all lower-

case event handler names as properties.

Be aware, however, that as with several settable object properties that don’t mani-
fest themselves visually, any change you make to an event handler property disap-
pears with a document reload. Therefore, I advise you not to make such changes
except as part of a script that also invokes the event handler like a method: Any gap
in time leaves room for users to reload the page accidentally or intentionally.

Caution

(c) ketabton.com: The Digital Library

68 Part III ✦ Document Objects Reference

Because every event handler operates as both property and method, I don’t list

these properties and methods as part of each object’s definition in the next chap-

ters. You can be assured this feature works for every JavaScript object that has an

event handler starting with Navigator 3 and Internet Explorer 4.

Object Model Smorgasbord
A survey of the entire evolution of scriptable browsers from NN2 and IE3 through

IE5.5 and NN6 reveals six (yes, six!) distinct document object model families. Even if

your job entails developing content for just one current browser version, you may

be surprised that family members from more than one document object model

inhabit your authoring space.

Studying the evolution of the object model is extremely valuable for newcomers

to scripting. It is too easy to learn the latest object model gadgets in your current

browser, only to discover that your heroic scripting efforts are lost on earlier

browsers accessing your pages. Therefore, take a look at the six major object model

types and how they came into being. Table 14-1 lists the object model families (in

chronological order of their release) and the browser versions that support them.

Later in this chapter are some guidelines you can follow to help you choose the

object model(s) that best suit your users’ “appetites.”

Table 14-1 Object Model Families

Model Browser Support

Basic Object Model NN2, NN3, IE3/J1, IE3/J2, NN4, IE4, IE5, NN6, IE5.5

Basic Plus Images NN3, IE3.01 (Mac only), NN4, IE4, IE5, NN6, IE5.5

NN4 Extensions NN4

IE4 Extensions IE4, IE5, IE5.5 (some features in all versions require Win32 OS)

IE5 Extension IE5, IE5.5 (some features in all versions require Win32 OS)

W3C DOM (I and II) IE5 (partial), IE5.5 (partial), NN6 (most)

Basic Object Model
The first scriptable browser, Netscape Navigator 2, implemented a very basic

document object model. Figure 14-1 provides a visual guide to the objects that were

exposed to scripting. The hierarchical structure starts with the window and drills

inward toward the document, forms, and form elements. A document is a largely

immutable page on the screen. Only elements that are by nature interactive — links

and form elements such as text fields, buttons, and so on — are treated as objects

with properties, methods, and event handlers.

The heavy emphasis on form elements opened up numerous possibilities that

were radical ideas at the time. Because a script could inspect the values of form ele-

ments, forms could be pre-validated on the client. If the page included a script that

performed some calculations, data entry and calculated results were displayed via

editable text fields.

(c) ketabton.com: The Digital Library

69Chapter 14 ✦ Document Object Model Essentials

Additional objects that exist outside of the document —window, history, and

location objects — provide scriptable access to simple yet practical properties of

the browser that loads the page. The most global view of the environment is the

navigator object, which includes properties about the browser brand and version.

When Internet Explorer 3 arrived on the scene, the short life of Navigator 2 was

nearing its end. Even though NN3 was already widely available in prerelease form,

IE3 implemented the basic object model from NN2 (plus one window object prop-

erty from NN3). Therefore, despite the browser version number discrepancy, NN2

and IE3 are essentially the same with respect to their document object models. For

a brief moment in Internet Time, there was nearly complete harmony between

Microsoft and Netscape document object models — albeit at a very simple level.

Basic Object Model Plus Images
A very short time after IE3 was released, Netscape released Navigator 3 with an

object model that built upon the original version. A handful of existing objects —

especially the window object — gained new properties, methods, and/or event han-

dlers. Scripts could also communicate with Java applets as objects. But the biggest

new object on the scene was the Image object and the array of image objects

exposed to the document object.

Most of the properties for an NN3 image object gave read-only access to values

typically assigned to attributes in the tag. But you could modify one prop-

erty — the src property — after the page loaded. Scripts could swap out images

within the fixed image rectangle. Although these new image objects didn’t have

mouse-related event handlers, nesting an image inside a link (which had

onMouseOver and new onMouseOut event handlers) let scripts implement “image

rollovers” to liven up a page.

As more new scripters investigated the possibilities of adding JavaScript to their

pages, frustration ensued when the image swapping they implemented for NN3

failed to work in IE3. Although you could easily script around the lack of an image

object to prevent script errors in IE3 (see Chapter 12), the lack of this “cool” page

feature disappointed many. Had they also taken into account the installed base of

NN2 in the world, they would have been disappointed there, too. To confuse mat-

ters even more, the Macintosh version of IE 3.01 (the second release of the IE3/Mac

browser) implemented scriptable image objects.

Despite these rumblings of compatibility problems to come, the object model

implemented in Navigator 3 eventually became the baseline reference for future docu-

ment object models. With few exceptions, code written for this object model runs on

all browsers from NN3 and IE4 through the latest versions of both brands. Exceptions

primarily involve Java applet object support in non-Windows versions of IE4+.

Navigator 4–Only Extensions
The next browser released to the world was Netscape Navigator 4. Numerous

additions to the existing objects put more power into the hands of scripters. You

could move and resize browser windows within the context of script-detectable

screen object properties (for example, how big the user’s monitor screen was).

Two concepts that represented new thinking about the object model were an

enhanced event model and the layer object.

(c) ketabton.com: The Digital Library

70 Part III ✦ Document Objects Reference

Event Capture Model
Navigator 4 added many new events to the repertoire. Keyboard events and

more mouse events (onMouseDown and onMouseUp) allowed scripts to react to

more user actions on form elements and links. All of these events worked as they

did in previous object models in which event handlers were typically assigned as

attributes to an element’s tag (although you could also assign event handlers as

properties in script statements). To facilitate some of the Dynamic HTML potential

in the rest of the Navigator 4 object model, the event model was substantially

enhanced.

At the root of the system is the idea that when a user performs some physical

action on an event-aware object (for example, clicking a form button), the event

reaches that button from top down through the document object hierarchy. If you

have multiple objects that share the same event handler, it may be more convenient

to capture that event in just one place — the window or document object level —

rather than assigning the same event handler to all the elements. The default

behavior of Navigator 4 allowed the event to reach the target object, just as it

had in earlier browsers. But you could also turn on event capture in the window,

document, or layer object. Once captured, the event could be handled at the upper

level, preprocessed before being passed onto its original target, or redirected to

another object altogether.

To engage event capture in NN4, scripts must invoke the captureEvents()
method of the window, document, or layer object and pass as parameters constant

values that denote the specific events to be captured (constants of the Event
object). If you no longer need to capture an event, you can turn off event capture

via the releaseEvents() method.

Whether or not you capture events, the Navigator 4 event model produces an

event object (lowercase “e” to distinguish from the static Event object) for each

event. That object contains properties that reveal more information about the spe-

cific event, such as the keyboard character pressed for a keyboard event or the

position of a click event on the page. Any event handler can inspect event object

properties to learn more about the event and process the event accordingly.

Layers
Perhaps the most radical addition to the NN4 object model was a new object that

reflected an entirely new HTML element, the LAYER element. A layer is a container

that is capable of holding its own HTML document, yet it exists in a plane in front of

the main document. You can move, size, and hide a layer under script control. This

new element allowed, for the first time, overlapping elements in an HTML page.

To accommodate the layer object in the document object hierarchy, Netscape

defined a nesting hierarchy such that a layer was contained by a document. As the

result, the document object acquired a property (document.layers) that was an

array of layer objects in the document. This array exposed only the first level of

layer(s) in the current document object. References to a layer in the main docu-

ment started with any one of the following:

document.layerName
document.layers[n]
document.layers[layerName]

(c) ketabton.com: The Digital Library

71Chapter 14 ✦ Document Object Model Essentials

Each layer had its own document object because each layer could load an exter-

nal HTML document if desired. Thus, if a script needed access to, say, a form ele-

ment inside a layer, the reference would begin:

document.layerName.document.forms[0]....

If a layer contained yet another layer, the reference grew even longer:

document.outerLayerName.document.innerLayerName.document.forms[0]...

As a positionable element, a layer object had numerous properties and methods

that allowed scripts to move, hide, show, and change its stacking order.

Unfortunately for Netscape, the W3C did not agree to make the <LAYER> tag a

part of the HTML 4.0 specification. As such, it is an orphan element that exists only

in Navigator 4 (not implemented in NN6 or later). The same goes for the scripting of

the layer object and its nested references. Navigator 4 does, however, implement a

little bit of the HTML 4.0 and CSS specifications for positionable elements because

you can assign CSS style sheets (with the position and related attributes) to DIV
and SPAN elements in NN4. Navigator treats positioned DIV or SPAN elements as

near equivalents of layer objects for scripting purposes. This means, however, that

even if you can get the HTML to work the same across browsers (not always guar-

anteed due to occasionally different rendering characteristics of positioned DIV ele-

ments in NN4 and IE4), the scripting for NN4 must adhere to the layer syntax, which

differs from the IE4 CSS syntax.

Internet Explorer 4+ Extensions
Microsoft broke important new ground with the release of IE4, which came sev-

eral months after the release of NN4. The main improvements were in the exposure

of all HTML elements, scripted support of CSS, and a new event model. Some other

additions were available only on Windows 32-bit operating system platforms.

HTML element objects
The biggest change to the object model world was that every HTML element

became a scriptable object, while still supporting the original object model.

Microsoft invented the document.all array (also called a collection). This array

contains references to every element in the document, regardless of element nest-

ing. If you assign an identifier (name) to the ID attribute of an element, you can ref-

erence the element by the following syntax:

document.all.elementID

In most cases, you can also drop the document.all. part of the reference and

begin with only the element ID.

Every element object has an entirely new set of properties and methods that

give scripters a level of control over document content unlike anything seen before.

Table 14-2 shows the properties and methods that all HTML element objects have

in common in IE4 (properties followed by brackets are arrays).

(c) ketabton.com: The Digital Library

72 Part III ✦ Document Objects Reference

Table 14-2 IE4 HTML Element Features in Common

Properties Methods

all[] click()

children[] contains()

className getAttribute()

document insertAdjacentHTML()

filters[] insertAdjacentText()

id removeAttribute()

innerHTML scrollIntoView()

innerText setAttribute()

isTextEdit

lang

language

offsetHeight

offsetLeft

offsetParent

offsetTop

offsetWidth

outerHTML

outerText

parentElement

parentTextEdit

sourceIndex

style

tagName

title

You can find details for all of the items from Table 15-1 in Chapter 15. But several

groups of properties deserve special mention here.

Four properties (innerHTML, innerText, outerHTML, and outerText) provide

read/write access to the actual content within the body of a document. This means

that you no longer must use text boxes to display calculated output from scripts.

You can modify content inside paragraphs, table cells, or anywhere on the fly. The

browser’s rendering engine immediately reflows a document when the dimensions

of an element’s content change. That feature puts the “Dynamic” in “Dynamic

HTML.” To those of us who scripted the static pages of earlier browsers, this fea-

ture — now taken for granted — was nothing short of a revelation.

(c) ketabton.com: The Digital Library

73Chapter 14 ✦ Document Object Model Essentials

The series of “offset” properties are related to the position of an element on the

page. These properties are distinct from the kind of positioning performed by CSS.

Therefore, you can get the dimensions and location of any element on the page,

making it easier to move positionable content atop elements that are part of the

document and may appear in various locations due to the browser window’s cur-

rent size.

Finally, the style property is the gateway to CSS specifications defined for the

element. Importantly, the script can modify the numerous properties of the style
object. Therefore, you can modify font specifications, colors, borders, and the posi-

tioning properties after the page loads. The dynamic reflow of the page takes care

of any layout changes that the alteration requires (for example, adjusting to a big-

ger font size).

Element containment hierarchy
While IE4 still recognizes the element hierarchy of the original object model

(Figure 14-1), the document object model for IE4 does not extend this kind of hierar-

chy fully into other elements. If it did, it would mean that TD elements inside a table

might have to be addressed via its next outer TR or TABLE element (just as a form

control element must be addressed via its containing FORM element). See in Figure

14-2 how all HTML elements are grouped together under the document object. The

document.all array flattens the containment hierarchy as far as referencing object

goes. A reference to the most deeply nested TD element is still document.all.
cellID. The highlighted pathway from the window object is the predominant refer-

ence path used when working with the IE4 document object hierarchy.

Figure 14-2: The IE4 document object hierarchy

Element containment in IE4, however, is important for other reasons. Because an

element can inherit some style sheet attributes from an element that contains it,

you should devise a document’s HTML by embedding every piece of content inside

a container. Paragraph elements are text containers (with start and end tags), not

tall line breaks between text chunks. IE4 introduces the notion of a parent-child

window
frame self top parent

text radio button select

password submit

textarea checkbox reset option

link styleSheets applets form images plugins embeds all

navigator screen history document location event

[elements]

style

anchor

selection

(c) ketabton.com: The Digital Library

74 Part III ✦ Document Objects Reference

relationship between a container and elements nested within it. Also, the position

of an element may be calculated relative to the position of its next outermost posi-

tioning context.

The bottom line here is that element containment doesn’t have anything to do

with object references (like the original object model). It has everything to do with

the context of an element relative to the rest of the page’s content.

Cascading Style Sheets
By arriving a bit later to market with its version 4 browser than Netscape,

Microsoft benefited from having the CSS Level 1 specification more fully developed

before the browser’s release. Therefore, the implementation is far more complete

than that of NN4 (but it is not 100% compatible with the standard).

I should point out that the scriptability of style sheet properties is a bit at odds

with the first-generation CSS specification, which seemed to ignore the potential of

scripting styles with JavaScript. Many CSS attribute names are hyphenated words

(for example, text-align, z-index). But hyphens are not allowed in identifier

names in JavaScript. This necessitated conversion of the multiword CSS attribute

names to interCap JavaScript property names. Therefore, text-align becomes

textAlign and z-index becomes zIndex. You can access all of these properties

through an element’s style property:

document.all.elementID.style.stylePropertyName

One byproduct of the scriptability of style sheets in IE4 and later is what some

might call the phantom page syndrome. This occurs when the layout of a page is

handled after the primary HTML for the page has downloaded to the browser. As

the page loads, not all content may be visible, or it may be in a visual jumble. An

onLoad event handler in the page then triggers scripts to set styles and/or content

for the page. Elements jump around to get to their final resting places. This may be

disconcerting to some users who at first see a link to click; but by the time the cur-

sor reaches the click location, the page has reflowed, thereby moving the link to

somewhere else on the page.

Event bubbling
Just as Netscape invented an event model for NN4, so, too, did Microsoft invent

one for IE4. Unfortunately for cross-browser scripters, the two event models are

quite different. Instead of events trickling down the hierarchy to the target element,

an IE event starts at the target element and, unless instructed otherwise, “bubbles

up” through the element containment hierarchy to eventually reach the window
object. At any object along the way, an event handler can perform additional pro-

cessing on that event if desired. Therefore, if you want a single event handler to

process all click events for the page, assign the event handler to the body or win-
dow object so the events reach those objects (provided the event bubbling isn’t

cancelled by some other object along the containment hierarchy).

IE also has an event object (a property of the window object) that contains

details about the event, such as the keyboard key pressed for a keyboard event and

the location of a mouse event. Names for these properties are entirely different

from the event object properties of NN4.

(c) ketabton.com: The Digital Library

75Chapter 14 ✦ Document Object Model Essentials

Despite what seems like incompatible, if not completely opposite, event models

in NN4 and IE4, you can make a single set of scripts handle events in both browsers

(see Chapters 29 and 56 for examples). In fact, the two event models are made to

work together in the W3C DOM Level 2 specification, described later in this chapter.

Event binding of scripts
IE4 introduced an additional way of binding events to objects via a <SCRIPT> tag

that has two additional, non-W3C attributes: FOR and EVENT (see a syntax example

in Chapter 13). The value assigned to the FOR attribute is the ID of an element

object for which the script is intended; the value of the EVENT attribute is the name

of the event handler (for example, onclick) by which the script statements within

the tag are to be triggered.

Inside the tags are straight script statements, but when the browser sees the

special attributes, execution is deferred until the event fires for the designated

object. The instant the event fires for the object, the script statements inside the

tag execute. This special form of script tag takes the place of a function definition

assigned to the event handler by other means. This technique appears to have been

a “dry run” for what eventually became DHTML behaviors in IE5/Windows (see the

following section).

You can use this binding method only if you run the page inside IE4+. All other

browsers, including IE3, ignore the special attributes and treat the statements

inside the tags as statements to execute as the page loads.

Win32 features
For Internet Explorer users with 32-bit Windows operating systems, IE4 includes

some extra features in the object model that can enhance presentations. Filters are

style sheet additives that offer a variety of visual effects on body text. For example,

you can add a drop shadow or a glowing effect to text by simply applying filter

styles to the text. Although filters follow the CSS syntax, they are not a part of the

W3C specification.

Two special filters provide animation for transitions between hidden and visible

content. For example, you can create the equivalent of a slide presentation by plac-

ing the content of each slide in a positioned DIV element. As you hide one DIV and

show the other (under script control), the transition filter can perform a transition

such as a wipe or an expanding circle — very much like the transitions you specify

in PowerPoint or other presentation programs.

Internet Explorer 5+ Extensions
With the release of IE5, Microsoft built more onto the proprietary object model it

launched in IE4. Although the range of objects remained pretty much the same, the

number of properties, methods, and event handlers for the objects increased dra-

matically. Some of those additions were added to meet some of the specifications of

the W3C DOM (discussed in the next section), occasionally causing a bit of incom-

patibility with IE4. But Microsoft also pushed ahead with efforts for Windows users

only that may not necessarily become industry standards: DHTML behaviors and

HTML applications.

(c) ketabton.com: The Digital Library

76 Part III ✦ Document Objects Reference

A DHTML behavior is a chunk of script — saved as an external file — that defines

some action (usually a change of one or more style properties) that you can apply

to any kind of element. The goal is to create a reusable component that you can

load into any document whose elements require that behavior. The behavior file is

known as an HTML component, and the file has an .htc extension. Components are

XML documents whose XML tags specify events and event-handling routines for

whatever element is assigned that behavior. Script statements in .htc documents

are written inside <SCRIPT> tag sets just as in regular, scriptable HTML documents.

As an example of a DHTML behavior, you can define a behavior that turns an ele-

ment’s text to red whenever the cursor rolls atop it and reverts to black when the

cursor rolls out. When you assign the behavior to an element in the document (via

CSS-like rule syntax), the element picks up that behavior and responds to the user

accordingly. You can apply that same behavior to any element(s) you like in the

document. (Microsoft has submitted behaviors to the W3C for possible inclusion

into CSS Level 3.) You can see an example of a DHTML behavior in Chapter 15’s

description of the addBehavior() method and read an extended discussion in

Chapter 47.

HTML applications (HTAs in Microsoft parlance) are HTML files that include an

XML element known as the HTA:APPLICATION element. You can download an HTA

to IE5 from the server as if it were a Web page (although its file extension is .hta
rather than .htm or .html). A user can also install an HTA on a client machine so it

behaves very much like an application with a Desktop icon and significant control

over the look of the window. HTAs are granted greater security privileges on the

client so that this “application” can behave more like a regular program. In fact, you

can elect to turn off the system menu bar and use DHTML techniques to build your

own menu bar for the application. Implementation details of HTAs are beyond the

scope of this book, but you should be aware of their existence. More information is

available at http://msdn.microsoft.com.

The W3C DOM
Conflicting browser object models from Netscape and Microsoft made life diffi-

cult for developers. Scripters craved a standard that would serve as a common

denominator much like HTML and CSS standards did for content and styles. The

W3C took up the challenge of creating a document object model standard, the W3C

DOM.

The charter of the W3C DOM working group was to create a document object

model that could be applied to both HTML and XML documents. Because an XML

document can have tags of virtually any name (as defined by the Document Type

Definition), it has no intrinsic structure or fixed vocabulary of elements like an

HTML document does. As a result, the DOM specification had to accommodate the

known structure of HTML (as defined in the HTML 4.0 specification) as well as the

unknown structure of an XML document.

To make this work effectively, the working group divided the DOM specification

into two sections. The first, called the Core DOM, defines specifications for the basic

document structure that both HTML and XML documents share. This includes

notions of a document containing elements that have tag names and attributes; an

element is capable of containing zero or more other elements. The second part of

the DOM specification addresses the elements and other characteristics that apply

(c) ketabton.com: The Digital Library

77Chapter 14 ✦ Document Object Model Essentials

only to HTML. The HTML portion “inherits” all the features of the Core DOM, while

providing a measure of backward compatibility to object models already imple-

mented in legacy browsers and providing a framework for new features.

It is important for veteran scripters to recognize that the W3C DOM does not

specify all features from existing browser object models. Many features of the

Internet Explorer 4 (and later) object model are not part of the W3C DOM specifica-

tion. This means that if you are comfortable in the IE environment and wish to shift

your focus to writing for the W3C DOM spec, you have to change some practices as

highlighted in this chapter. Navigator 4 page authors lose the <LAYER> tag (which is

not part of HTML 4.0 and likely will never see the light of day in a standard) as well

as the layer object. In many respects, especially with regard to Dynamic HTML

applications, the W3C DOM is an entirely new DOM with new concepts that you

must grasp before you can successfully script in the environment.

By the same token, you should be aware that whereas NN6 goes to great lengths

to implement all of DOM Level 1 and most of Level 2, Microsoft (for whatever rea-

son) features only a partial implementation of the W3C DOM through IE5.5. This is

true even though Microsoft participated in the W3C DOM working group and had

more than ample time to put more of the W3C DOM into IE version 5.5.

DOM levels
Like most W3C specifications, one version is rarely enough. The job of the DOM

working group was too large to be swallowed whole in one sitting. Therefore, the

DOM is a continually evolving specification. The timeline of specification releases

rarely coincides with browser releases. Therefore, it is very common for any given

browser release to include only some of the most recent W3C version.

The first formal specification, DOM Level 1, was released well after NN4 and IE4

shipped. The HTML portion of Level 1 includes DOM Level 0. This is essentially the

object model as implemented in Navigator 3 (and for the most part in Internet

Explorer 3 plug image objects). Perhaps the most significant omission from Level 1 is

an event model (it ignores even the simple event model implemented in NN2 and IE3).

DOM Level 2 builds on the work of Level 1. In addition to several enhancements

of both the Core and HTML portions of Level 1, Level 2 adds significant new sec-

tions on the event model, ways of inspecting a document’s hierarchy, XML names-

paces, text ranges, style sheets, and style properties.

What stays the same
By adopting DOM Level 0 as the starting point of the HTML portion of the DOM,

the W3C provided a way for a lot of existing script code to work even in a W3C

DOM-compatible browser. Every object you see in the original object model starting

with the document object (Figure 14-1) plus the image object are in DOM Level 0.

Almost all of the same object properties and methods are also available.

More importantly, when you consider the changes to referencing other elements

in the W3C DOM (discussed in the next section), we’re lucky that the old ways of

referencing object such as forms, form elements, and images still work. Had the

working group been planning from a clean slate, it is unlikely that the document
object would have been given properties consisting of arrays of forms, links, and

images.

(c) ketabton.com: The Digital Library

78 Part III ✦ Document Objects Reference

The only potential problems you could encounter with your existing code have

to do with a handful of properties that used to belong to the document object. In

the new DOM, four style-related properties of the document object (alinkColor,

bgColor, linkColor, and vlinkColor) become properties of the body object (ref-

erenced as document.body). In addition, the three link color properties pick up

new names in the process (aLink, link, vLink). It appears, however, that for now,

IE5.x and NN6 maintain backward compatibility with the older document object

color properties.

Also, note that the DOM specification concerns itself only with the document

and its content. Objects such as window, navigator, and screen are not part of

the DOM specification through Level 2. Scripters are still at the mercy of browser

makers for compatibility in these areas, but the window object likely will be added

to the W3C DOM in the future.

What isn’t available
As mentioned earlier, the W3C DOM is not simply a restatement of existing

browser specifications. Many convenience features of the IE and NN object models

do not appear in the W3C DOM. If you develop Dynamic HTML content in IE4+ or

NN4, you have to learn how to get along without some of these conveniences.

Navigator 4’s experiment with the <LAYER> tag was not successful in the W3C

process. As a result, both the tag and the scripting conventions surrounding it do

not exist in the W3C DOM. To some scripters’ relief, the document.layerName ref-

erencing scenario (even more complex with nested layers) disappears from the

object model entirely. A positioned element is treated as just another element that

has some special style sheet attributes that enable you to move it anywhere on the

page, stack it amid other positioned elements, and hide it from view.

Among popular IE4+ features missing from the W3C DOM are the document.all
collection of HTML elements and four element properties that facilitate dynamic

content: innerHTML, innerText, outerHTML, and outerText. A new W3C way pro-

vides for acquiring an array of all elements in a document, but generating HTML

content to replace existing content or be inserted in a document requires a tedious

sequence of statements (see the section “New DOM concepts” later in this chapter).

Netscape, however, has implemented the innerHTML property for HTML element

objects in NN6. If you have a lot of legacy IE4 code that uses the other missing prop-

erties that you want to use for NN6, see the section “Simulating IE4 Syntax in NN6”

later in this chapter.

“New” HTML practices
Exploitation of Dynamic HTML possibilities in both IE4+ and the W3C DOM relies

on some HTML practices that may be new to long-time HTML authors. At the core

of these practices (espoused by the HTML 4.0 specification) is making sure that all

content is within an HTML container of some kind. Therefore, instead of using the

<P> tag as a separator between blocks of running text, surround each paragraph of

the running text with a <P>...</P> tag set. If you don’t do it, the browser treats

each <P> tag as the beginning of a paragraph and ends the paragraph element just

before the next <P> tag or other block-level element.

(c) ketabton.com: The Digital Library

79Chapter 14 ✦ Document Object Model Essentials

While recent browsers continue to accept the omission of certain end tags (for

TD, TR, and LI elements, for instance), it is best to get in the habit of supplying

these end tags. If for no other reason, they help you visualize where an element’s

sphere of influence truly begins and ends.

Any element that you intend to script — whether to change its content or its

style — should have an identifier assigned to the element’s ID attribute. Form con-

trol elements still require NAME attributes if you submit the form content to a

server. But you can freely assign a different identifier to a control’s ID attribute.

Scripts can use either the ID or the document.formReference.elementName ref-

erence to reach a control object. Identifiers are essentially the same as the values

you assign to the NAME attributes of form and form input elements. Following the

same rules for the NAME attribute value, an ID identifier must be a single word (no

white space), it cannot begin with a numeral (to avoid conflicts in JavaScript), and

it should avoid punctuation symbols except for the underscore. While an element

can be accessed by numeric index within the context of some surrounding element

(such as the BODY), this is a risky practice when content is under construction.

Unique identifiers make it much easier for scripts to reference objects and are not

affected by changes in content order.

New DOM concepts
With the W3C DOM come several concepts that may be entirely new to you

unless you have worked extensively with the terminology of tree hierarchies.

Concepts that have the most impact on your scripting are new ways of referencing

elements and nodes.

Element referencing
Script references to objects in the DOM Level 0 are observed in the W3C DOM for

backward compatibility. Therefore, a form input element whose NAME attribute is

assigned the value userName is addressed just like it always is:

document.forms[0].userName

or

document.formName.userName

But because all elements of a document are exposed to the document object, you

can use the new document object method to access any element whose ID is

assigned. The method is document.getElementById(), and the sole parameter is

a string version of the identifier of the object whose reference you wish to get. To

help put this in context with what you may have used with the IE4 object model,

consider the following HTML paragraph tag:

<P ID=”myParagraph”>...</P>

In IE4+, you can reference this element with

var elem = document.all.myParagraph

IE4+ also enables you to omit the document.all. portion of the reference —

although for the sake of script readability (especially by others who want to study

the script), I recommend that you use the document.all. prefix.

(c) ketabton.com: The Digital Library

80 Part III ✦ Document Objects Reference

Although the document.all collection is not implemented in the W3C DOM, use

the new document object method (available in IE5+ and NN6+) that enables you to

access any element by its ID:

var elem = document.getElementById(“myParagraph”)

Unfortunately for scripters, this method is difficult to type (it is case-sensitive —

watch out for that ending lowercase “d”). But the W3C DOM includes another

document object method that enables you to simulate the document.all conve-

nience collection. See the section, “Simulating IE4 Syntax in NN6” later in this chapter.

A hierarchy of nodes
The issue surrounding containers (described earlier) comes into play for the

underlying architecture of the W3C DOM. Every element or freestanding chunk of

text in an HTML (or XML) document is an object that is contained by its next outer-

most container. Let’s look at a simple HTML document to see how this system

works. Listing 14-1 is formatted to show the containment hierarchy of elements and

string chunks.

Listing 14-1: A Simple HTML Document

<HTML>
<HEAD>

<TITLE>
A Simple Page

</TITLE>
</HEAD>
<BODY>

<P ID=”paragraph1”>
This is the
<EM ID=”emphasis1”>

one and only

paragraph on the page.

</P>
</BODY>

</HTML>

What you don’t see in the listing is a representation of the document object. The

document object exists automatically when this page loads into a browser.

Importantly, the document object encompasses everything you see in Listing 14-1.

Therefore, the document object has a single nested element: the HTML element.

The HTML element, in turn, has two nested elements: HEAD and BODY. The HEAD

element contains the TITLE element, while the TITLE element contains a chunk of

text. Down in the BODY element, the P element contains three pieces: a string

chunk, the EM element, and another string chunk.

(c) ketabton.com: The Digital Library

81Chapter 14 ✦ Document Object Model Essentials

According to W3C DOM terminology, each container, standalone element (such

as a BR element), or text chunk is known as a node — a fundamental building block

of the W3C DOM. Nodes have parent-child relationships when one container holds

another. As in real life, parent-child relationships extend only between adjacent

generations, so a node can have zero or more children. However, the number of

third-generation nodes further nested within the family tree does not influence the

number of children associated with a parent. Therefore, in Listing 14-1, the HTML

node has two child nodes, HEAD and BODY, which are siblings that share the same

parent. The BODY element has one child (P) even though that child contains three

children (two text nodes and an EM element node).

If you draw a hierarchical tree diagram of the document in Listing 14-1, it should

look like the illustration in Figure 14-3.

Figure 14-3: Tree diagram of nodes for the document in Listing 14-1

If the document’s source code contains a Document Type Definition (DTD) above
the <HTML> tag, the browser treats that DTD node as a sibling of the HTML ele-
ment node. In that case, the root document node contains two child nodes.

The W3C DOM (through Level 2) defines 12 different types of nodes, seven of

which have direct application in HTML documents. These seven types of nodes

appear in Table 14-3 (the rest apply to XML). Of the 12 types, the three most com-

mon are the document, element, and text fragment types. The latter two are imple-

mented in both IE5+ and NN6 (all are implemented in NN6).

Note

document
+--<HTML>
 +--<HEAD>
 | +--<TITLE>
 | +--"A Simple Page"
 +--<BODY>
 +--<P ID="paragraph1">
 +--"This is the "
 +--<EM ID="emphasis1">
 | +--"one and only"
 +--" paragraph on the page."

(c) ketabton.com: The Digital Library

82 Part III ✦ Document Objects Reference

Table 14-3 W3C DOM HTML-Related Node Types

Type Number nodeName nodeValue Description IE5+ NN6

Element 1 tag name null Any HTML or Yes Yes
XML tagged
element

Attribute 2 attribute attribute A name-value
name value attribute pair No Yes

in an element

Text 3 #text text content A text fragment Yes Yes
contained by
an element

Comment 8 #comment comment HTML No Yes
text comment

Document 9 #document null Root document No Yes
object

DocumentType 10 DOCTYPE null DTD No Yes
specification

Fragment 11 #document- null Series of one No Yes
fragment or more nodes

outside of the
document

Applying the node types of Table 14-3 to the node diagram in Figure 14-3, you can

see that the simple page consists of one document node, six element nodes, and

four text nodes.

Node properties
A node has many properties, most of which are references to other nodes related

to the current node. Table 14-4 lists all properties shared by all node types in DOM

Level 2.

Table 14-4 Node Object Properties (W3C DOM Level 2)

Property Value Description IE5/Win IE5/Mac NN6

nodeName String Varies with node Yes Yes Yes
type (see Table 14-3)

nodeValue String Varies with node Yes Yes Yes
type (see Table 14-3)

nodeType Integer Constant representing Some Yes Yes
each type

(c) ketabton.com: The Digital Library

83Chapter 14 ✦ Document Object Model Essentials

Property Value Description IE5/Win IE5/Mac NN6

parentNode Object Reference to next Yes Yes Yes
outermost container

childNodes Array All child nodes in Yes Yes Yes
source order

firstChild Object Reference to first Yes Yes Yes
child node

lastChild Object Reference to last Yes Yes Yes
child node

previous- Object Reference to sibling node Yes Yes Yes
Sibling up in source order

nextSibling Object Reference to sibling node Yes Yes Yes
next in source order

attributes NodeMap Array of attribute nodes No Yes Yes

ownerDocument Object Containing document No Yes Yes
object

namespaceURI String URI to namespace No No Yes
definition (element and
attribute nodes only)

prefix String Namespace prefix No No Yes
(element and attribute
nodes only)

localName String Applicable to namespace- No No Yes
affected nodes

You can find all of the properties shown in Table 14-4 that also show themselves
to be implemented in IE5 or NN6 in Chapter 15’s listing of properties that all
HTML element objects have in common. That’s because an HTML element, as a
type of node, inherits all of the properties of the prototypical node.

To help you see the meanings of the key node properties, Table 14-5 shows the

property values of several nodes in the simple page shown in Listing 14-1. For each

node column, find the node in Figure 14-3 and then follow the list of property values

for that node, comparing the values against the actual node structure in Figure 14-3.

Note

(c) ketabton.com: The Digital Library

84 Part III ✦ Document Objects Reference

Table 14-5 Properties of Selected Nodes for
a Simple HTML Document

Properties Nodes

document HTML P “one and only”

nodeType 9 1 1 3

nodeName #document HTML P #text

nodeValue null null null “one and only”

parentNode null document BODY EM

previousSibling null null null null

nextSibling null null null null

childNodes HTML HEAD “This is the “ (none)

BODY EM

“ paragraph on
the page.”

firstChild HTML HEAD “This is the “ null

lastChild HTML BODY “ paragraph on null
the page.”

The nodeType property is an integer that is helpful in scripts that iterate

through an unknown collection of nodes. Most content in an HTML document is of

type 1 (HTML element) or 3 (text fragment), with the outermost container, the doc-

ument, of type 9. A node’s nodeName property is either the name of the node’s tag

(for an HTML element) or a constant value (preceded by a # [hash mark] as shown

in Table 14-3). And, what may surprise some, the nodeValue property is null
except for the text fragment node type, in which case the value is the actual string

of text of the node. In other words, for HTML elements, the W3C DOM does not

expose a container’s HTML as a string.

It is doubtful that you will use all of the relationship-oriented properties of a

node, primarily because there is some overlap in how you can reach a particular

node from any other. The parentNode property is important because it is a refer-

ence to the current node’s immediate container. While the firstChild and

lastChild properties point directly to the first and last children inside a container,

most scripts generally use the childNodes property with array notation inside a

for loop to iterate through child nodes. If there are no child nodes, then the

childNodes array has a length of zero.

(c) ketabton.com: The Digital Library

85Chapter 14 ✦ Document Object Model Essentials

The IE5/Windows incomplete implementation of the W3C DOM does not treat the
document object as a node in the true sense. It has no nodeType property
defined for it, nor does the document node appear as the parent node of the
HTML node of a page. Even so, the document object remains the root of all refer-
ences in a page’s scripts.

Note

The Object-Oriented W3C DOM

If you are familiar with concepts of object-oriented (OO) programming, you will appreciate
the OO tendencies in the way the W3C defines the DOM. The Node object includes sets of
properties (Table 14-4) and methods (Table 14-6) that are inherited by every object based
on the Node. Most of the objects that inherit the Node’s behavior have their own properties
and/or methods that define their specific behaviors. The following figure shows (in W3C
DOM terminology) the inheritance tree from the Node root object. Most items are defined
in the Core DOM, while items shown in boldface are from the HTML DOM portion.

W3C DOM Node object inheritance tree

You can see from the preceding figure that individual HTML elements inherit properties and
methods from the generic HTML element, which inherits from the Core Element object,
which, in turn, inherits from the basic Node.

It isn’t important to know the Node object inheritance to script the DOM. But it does help
explain the ECMA Script Language Binding appendix of the W3C DOM recommendation, as
well as explain how a simple element object winds up with so many properties and meth-
ods associated with it.

Node
+--Document
| +--HTMLDocument
+--CharacterData
| +--Text
| | +--CDATASection
| +--Comment
+--Attr
+--Element
| +--HTMLElement
| +-- (Each specific HTML element)
+--DocumentType
+--DocumentFragment
+--Notation
+--Entity
+--Entity Reference
+--ProcessingInstruction

(c) ketabton.com: The Digital Library

86 Part III ✦ Document Objects Reference

Node methods
Actions that modify the HTML content of a node in the W3C DOM world primar-

ily involve the methods defined for the prototype Node. Table 14-6 shows the meth-

ods and their support in the W3C DOM-capable browsers.

Table 14-6 Node Object Methods (W3C DOM Level 2)

Method Description IE5 NN6

appendChild(newChild) Adds child node to end Yes Yes
of current node

cloneNode(deep) Grabs a copy of the Yes Yes
current node (optionally)
with children

hasChildNodes() Determines whether Yes Yes
current node has
children (Boolean)

insertBefore(new, ref) Inserts new child in front Yes Yes
of another child

removeChild(old) Deletes one child Yes Yes

replaceChild(new, old) Replaces an old child Yes Yes
with a new one

supports(feature, version) Determines whether the No Yes
node supports a particular
feature

The important methods for modifying content are appendChild(),

insertBefore(), removeChild(), and replaceChild(). Notice, however, that all

of these methods assume that the point of view for the action is from the parent of

the nodes being affected by the methods. For example, to delete an element (using

removeChild()), you don’t invoke that method on the element being removed, but

rather on its parent element. This leaves open the possibility for creating a library

of utility functions that obviate having to know too much about the precise contain-

ment hierarchy of an element. A simple function that lets a script appear to delete

an element actually does so from its parent:

function removeElement(elemID) {
var elem = document.getElementById(elemID)
elem.parentNode.removeChild(elem)

}

If this seems like a long way to go to accomplish the same result as setting the

outerHTML property of an IE4+ object to empty, you are right. While some of this

convolution makes sense for XML, unfortunately the W3C working group doesn’t

seem to have HTML scripters’ best interests in mind. All is not lost, however, as you

see later in this chapter.

(c) ketabton.com: The Digital Library

87Chapter 14 ✦ Document Object Model Essentials

Generating new node content
The final point about the node structure of the W3C DOM focuses on the simi-

larly gnarled way scripters must go about generating content they want to add or

replace on a page. For text-only changes (for example, the text inside a table cell),

there is both an easy and hard way to perform the task. For HTML changes, there is

only the hard way (plus a couple of handy workarounds discussed later). Let’s look

at the hard way first and then pick up the easy way for text changes.

To generate a new node in the DOM, you look to the variety of methods that are

defined for the Core DOM’s document object (and are therefore inherited by the

HTML document object). A node creation method is defined for nearly every node

type in the DOM. The two important ones for HTML documents are

createElement() and createTextNode(). The first generates an element with

whatever tag name (string) you pass as a parameter; the second generates a text

node with whatever text you pass.

When you first create a new element, it exists only in the browser’s memory and

not as part of the document containment hierarchy. Moreover, the result of the

createElement() method is a reference to an empty element except for the name

of the tag. For example, to create a new P element, use

var newElem = document.createElement(“P”)

The new element has no ID, attributes, or any content. To assign some attributes

to that element, you can use the setAttribute() method (a method of every ele-

ment object) or assign a value to the object’s corresponding property. For example,

to assign an identifier to the new element, use either

newElem.setAttribute(“id”, “newP”)

or

newElem.id = “newP”

Both ways are perfectly legal. Even though the element has an ID at this point, it

is not yet part of the document so you cannot retrieve it via the document.
getElementById() method.

To add some content to the paragraph, you next generate a text node as a sepa-

rate object:

var newText = document.createTextNode(“This is the second paragraph.”)

Again, this node is just sitting around in memory waiting for you to apply it as a

child of some other node. To make this text the content of the new paragraph, you

can append the node as a child of the paragraph element that is still in memory:

newElem.appendChild(newText)

If you were able to inspect the HTML that represents the new paragraph element,

it would look like the following:

<P ID=”newP”>This is the second paragraph.</P>

The new paragraph element is ready for insertion into a document. Using the

document shown in Listing 14-1, you can append it as a child of the BODY element:

document.body.appendChild(newElem)

(c) ketabton.com: The Digital Library

88 Part III ✦ Document Objects Reference

At last, the new element is part of the document containment hierarchy. You can

now reference it just like any other element in the document.

Replacing node content
The addition of the paragraph shown in the last section requires a change to a

portion of the text in the original paragraph (the first paragraph is no longer the

“one and only” paragraph on the page). As mentioned earlier, you can perform text

changes either via the replaceChild() method or by assigning new text to a text

node’s nodeValue property. Let’s see how each approach works to change the text

of the first paragraph’s EM element from “one and only” to “first.”

To use replaceChild(), a script must first generate a valid text node with the

new text:

var newText = document.createTextNode(“first “)

Because strings are dumb (in other words, they don’t know about words and

spaces), the new text node includes a space to accommodate the existing space lay-

out of the original text. The next step is to use the replaceChild() method. But

recall that the point of view for this method is the parent of the child being

replaced. The child here is the text node inside the EM element, so you must invoke

the replaceChild() method on the EM element. Also, the replaceChild()
method requires two parameters: the first is the new node; the second is a refer-

ence to the node to be replaced. Because the script statements get pretty long with

the getElementById() method, an intermediate step grabs a reference to the text

node inside the EM element:

var oldChild = document.getElementById(“emphasis1”).childNodes[0]

Now the script is ready to invoke the replaceChild() method on the EM ele-

ment, swapping the old text node with the new:

document.getElementById(“emphasis1”).replaceChild(newText, oldChild)

If you want to capture the old node before it disappears entirely, be aware that

the replaceChild() method returns a reference to the replaced node (which is

only in memory at this point, and not part of the document node hierarchy). You

can assign the method statement to a variable and use that old node somewhere

else, if needed.

This may seem like a long way to go; it is, especially if the HTML you are generat-

ing is complex. Fortunately, you can take a simpler approach for replacing text

nodes. All it requires is a reference to the text node being replaced. You can assign

that node’s nodeValue property its new string value:

document.getElementById(“emphasis1”).childNodes[0].nodeValue = “first “

When an element’s content is entirely text (for example, a table cell that already

has a text node in it), this is the most streamlined way to swap text on the fly using

W3C DOM syntax. This doesn’t work for the creation of the second paragraph text

earlier in this chapter because the text node did not exist yet. The

createTextNode() method had to explicitly create it.

Also remember that a text node does not have any inherent style associated with

it. The style of the containing HTML element governs the style of the text. If you

want to change not only the text node’s text but also how it looks, you have to mod-

ify the style property of the text node’s parent element. Browsers that perform

these kinds of content swaps and style changes automatically reflow the page to

accommodate changes in the size of the content.

(c) ketabton.com: The Digital Library

89Chapter 14 ✦ Document Object Model Essentials

To summarize, Listing 14-2 is a live version of the modifications made to the orig-

inal document shown in Listing 14-1. The new version includes a button and script

that makes the changes described throughout this discussion of nodes. Reload the

page to start over.

Listing 14-2: Adding/Replacing DOM Content

<HTML>
<HEAD>
<TITLE>A Simple Page</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function modify() {

var newElem = document.createElement(“P”)
newElem.id = “newP”
var newText = document.createTextNode(“This is the second paragraph.”)
newElem.appendChild(newText)
document.body.appendChild(newElem)
document.getElementById(“emphasis1”).childNodes[0].nodeValue = “first “

}
</SCRIPT>
</HEAD>
<BODY>
<BUTTON onClick=”modify()”>Add/Replace Text</BUTTON>
<P ID=”paragraph1”>This is the <EM ID=”emphasis1”>one and only paragraph on
the page.</P>
</BODY>
</HTML>

Chapter 15 details node properties and methods that are inherited by all HTML

elements. Most are implemented in both IE5 and NN6. Also look to the reference

material for the document object in Chapter 18 for other valuable W3C DOM

methods.

Although not part of the W3C DOM, the innerHTML property (originally devised

by Microsoft for IE4) is available in NN6 for the sake of convenience. To speed the

conversion of legacy IE4 dynamic content code that uses other popular IE conve-

niences to run in NN6, see the section “Simulating IE4 Syntax in NN6” later in this

chapter.

Static W3C DOM HTML objects
The NN6 DOM (but unfortunately not IE5.x) adheres to the core JavaScript

notion of prototype inheritance with respect to the object model. When a page

loads into NN6, the browser creates HTML objects based on the prototypes of each

object defined by the W3C DOM. For example, if you use The Evaluator (Chapter

13) to see what kind of object the myP paragraph object is (enter document.
getElementById(“myP”) into the top text box and click the Evaluate button), it

reports that the object is based on the HTMLParagraphElement object of the DOM.

Every “instance” of a P element object in the page inherits its default properties

and methods from HTMLParagraphElement (which, in turn, inherits from

HTMLElement, Element, and Node objects — all detailed in the JavaScript binding

appendix of the W3C DOM specification).

(c) ketabton.com: The Digital Library

90 Part III ✦ Document Objects Reference

You can use scripting to add properties to the prototypes of some of these static

objects. To do so, you must use new features added to NN6. Two new methods —

__defineGetter__() and __defineSetter__()— enable you to assign functions

to a custom property of an object.

These methods are Netscape-specific. To prevent their possible collision with
standardized implementations of these features in future implementations of
ECMAScript, the underscore characters on either side of the method name are
pairs of underscore characters.

The functions execute whenever the property is read (the function assigned via

the __defineGetter__() method) or modified (the function assigned via the

__defineSetter__() method). The common way to define these functions is in

the form of an anonymous function (Chapter 41). The formats for the two state-

ments that assign these behaviors to an object prototype are as follows:

object.prototype.__defineGetter__(“propName”, function([param1[,...[,paramN]]])
{

// statements
return returnValue

})
object.prototype.__defineSetter__(“propName”, function([param1[,...[,paramN]]])
{

// statements
return returnValue

})

The example in Listing 14-3 demonstrates how to add a read-only property to

every HTML element object in the current document. The property, called

childNodeDetail, returns an object; the object has two properties, one for the

number of element child nodes and one for the number of text child nodes. Note

that the script is wrapped inside a script tag that specifies JavaScript 1.5. Also note

that the this keyword in the function definition is a reference to the object for

which the property is calculated. And because the function runs each time a script

statement reads the property, any scripted changes to the content after the page

loads are reflected in the returned property value.

Listing 14-3: Adding a Read-Only Prototype Property to All
HTML Element Objects

<SCRIPT LANGUAGE=”JavaScript1.5”>
if (HTMLElement) {

HTMLElement.prototype.__defineGetter__(“childNodeDetail”, function() {
var result = {elementNodes:0, textNodes:0}
for (var i = 0; i < this.childNodes.length; i++) {

switch (this.childNodes[i].nodeType) {
case 1:

result.elementNodes++
break

case 3:
result.textNodes++
break

Note

(c) ketabton.com: The Digital Library

91Chapter 14 ✦ Document Object Model Essentials

}
}
return result

})
}
</SCRIPT>

To access the property, use it like any other property of the object. For example:

var BodyNodeDetail = document.body.childNodeDetail

The returned value in this example is an object, so you use regular JavaScript

syntax to access one of the property values:

var BodyElemNodesCount = document.body.childNodeDetail.elementNodes

Bidirectional event model
Despite the seemingly conflicting event models of NN4 (trickle down) and IE4

(bubble up), the W3C DOM event model (defined in Level 2) manages to employ

both models. This gives the scripter the choice of where along an event’s propaga-

tion path the event gets processed. To prevent conflicts with existing event model

terminology, the W3C model invents many new terms for properties and methods

for events. Some coding probably requires W3C DOM-specific handling in a page

aimed at multiple object models.

The W3C event model also introduces a new concept called the event listener. An

event listener is essentially a mechanism that instructs an object to respond to a

particular kind of event — very much like the way the event handler attributes of

HTML tags respond to events. But the DOM recommendation points out that it

prefers use of a more script-oriented way of assigning event listeners: the

addEventListener() method available for every node in the document hierarchy.

Through this method, you advise the browser whether to force an event to bubble

up the hierarchy (the default behavior that is also in effect if you use the HTML

attribute type of event handler) or to be captured at a higher level.

Functions invoked by the event listener receive a single parameter consisting of

the event object whose properties contain contextual details about the event

(details such as the position of a mouse click, character code of a keyboard key, or

a reference to the target object). For example, if a form includes a button whose job

is to invoke a calculation function, the W3C DOM prefers the following way of

assigning the event handler:

document.getElementById(“calcButton”).addEventListener(“click”, doCalc, false)

The addEventListener() method takes three parameters. The first parameter

is a string of the event to listen for; the second is a reference to the function to be

invoked when that event fires; and the third parameter is a Boolean value. When

you set this Boolean value to true, it turns on event capture whenever this event is

directed to this target. The function then takes its cue from the event object passed

as the parameter:

function doCalc(evt) {
// get shortcut reference to input button’s form
var form = evt.target.form

(c) ketabton.com: The Digital Library

92 Part III ✦ Document Objects Reference

var results = 0
// other statements to do the calculation //
form.result.value = results

}

To modify an event listener, you use the removeEventListener() method to get

rid of the old listener and then employ addEventListener() with different param-

eters to assign the new one.

Preventing an event from performing its default action is also a different proce-

dure in the W3C event model than in IE. In IE4 (as well as NN3 and NN4), you can

cancel the default action by allowing the event handler to evaluate to return
false. While this still works in IE5, Microsoft includes another property of the

window.event object, called returnValue. Setting that property to false any-

where in the function invoked by the event handler also kills the event before it

does its normal job. But the W3C event model uses a method of the event object,

preventDefault(), to keep the event from its normal task. You can invoke this

method anywhere in the function that executes when the event fires.

Unfortunately, IE5.x does not implement the W3C DOM event syntax, so using the

event listener terminology requires code branching for a cross-browser page. But

part of the burden is lifted because the HTML 4.0 way of binding events to elements

by way of attributes as well as assignment of events as object properties continues

to be supported in IE5.x and NN6. NN6 treats “old fashioned” event handler syntax

the same as adding an event listener.

Mixing Object Models
The more browsers that your audience uses, the more likely you will want to

make your pages work on as many browsers as possible. You’ve seen in this chap-

ter that scripts written for older browsers, such as Navigator 2 and Internet

Explorer 3, tend to work in even the latest browsers without modification. But aim-

ing at that compatibility target doesn’t let you take advantage of more advanced

features, in particular Dynamic HTML. You must balance the effort required to sup-

port as many as four classifications of browsers (non-DHTML, NN4, IE4/5, and W3C

DOM common denominator in IE5 and NN6) against the requirements of your audi-

ence. Moreover, those requirements can easily change over time. For example, the

share of the audience using non-DHTML and NN4 browsers will diminish over time,

while the installed base of browsers capable of using the Microsoft IE DOM (for

IE4+) and the W3C DOM (IE5+ and NN6+) will increase. If the percentage of visitors

using NN4 is not significant at this point, you may well decide to not worry about

implementing DHTML features for that browser and lump NN4 together with the

rest of the non-DHTML browsers.

For any given application or Web site, it is important to develop a strategy to

apply to the deployment of scripted features. But be aware that one strategy simply

cannot fit all situations. The primary considerations are the breadth of browser

versions reaching your site (many for public sites; perhaps only one for a tightly

controlled intranet) and the amount of DHTML you intend to implement.

In the rest of this section, you see three scenarios and strategies employed to

meet the developer’s requirements. Although they are labeled as three different lev-

els of aggressiveness, it is likely that you can apply individual techniques from each

of the levels in establishing a strategy of your own.

(c) ketabton.com: The Digital Library

93Chapter 14 ✦ Document Object Model Essentials

The conservative approach
In the first scenario, the content requires a modest level of data entry interaction

with a user via a form as well as image rollovers. Supported browsers encompass

the entire range of nonscriptable and scriptable browsers, with one version of each

page to serve all visitors.

If the form gathers information from the user for submission to a server CGI that

stores the data in a database or performs a search based on user-supplied criteria,

the obvious mode of entry is through traditional form elements. Scriptable

browsers can perform pre-submission validations to hasten the correction of any

improperly formatted fields. Event handlers attached to the text fields (onChange
event handlers) and an onSubmit event handler for the form itself can do the vali-

dation on the client. Nonscriptable browsers ignore the event handlers, and the

form is submitted as usual, relying on server-side validation of input data (and the

slow back-and-forth processing that this entails when there is an error or missing

field data).

For image rollovers, links surround the image elements. The onMouseOver and

onMouseOut event handlers for the links trigger functions that swap images. By

wrapping the statements in the event handler functions in if constructions that

test for the presence of the document.images array, first-generation scriptable

browsers that don’t implement images as objects perform no action:

function imageOn(imgName) {
if (document.images) {

document.images[imgName].src = onImages[imgName].src
}

}

The same goes for script statements in the Head that precache the swappable

images as the page loads:

if (document.images) {
var onImages = new Array()
onImages[“home”] = new Image(50,30)
onImages[“home”].src = “images/homeOn.gif”
...

}

This scenario can also provide added content on the page for scriptable browser

users by embedding scripts within the body that use document.write() to gener-

ate content as the page loads. For example, the page can begin with a time-sensitive

greeting (“Good Morning,” “Good Afternoon,” and so on), while nonscriptable

browser users see a standard greeting inside the <NOSCRIPT> tag pair.

Middle ground
The second scenario includes pages that employ style sheets. The goal again is

to support all browser users with the same HTML pages, but also provide users of

modern browsers with an enhanced experience. Where supported by the browser,

styles of objects change in response to user action (for example, links highlight

with a special font color and background during rollover). One of the design ele-

ments on the page is a form within a table. As users enter values into some text

boxes, calculated results appear at the bottom of the table, preferably as regular

content within a table cell (otherwise in another text box).

(c) ketabton.com: The Digital Library

94 Part III ✦ Document Objects Reference

This scenario requires browser version branching in several places to allow for

variations in browser treatment of the features and to avoid problems with older

scriptable browsers and nonscriptable browsers alike. You can (and should) per-

form some (if not all) of the branching via object detection, as you will see in a

moment. Table 14-7 highlights the major feature requirements for this scenario and

describes the browser support for each.

Table 14-7 Features and Support for a Typical
“Middle Ground” Scenario

Feature Support and Approach

Dynamic Styles IE4+ and NN6+ through the style property of any HTML element
object

Form Calculations Unless requiring Y2K date compliance or regular expression parsing
of input, should work with all scriptable browsers without any
branching required

Dynamic Content IE4+ and NN6+ support Dynamic HTML content within a cell, but
MS and W3C object models require different ways of changing a
table cell’s content. (Or you can use the nonstandard, but
convenient, innerHTML property of the cell.) For older scriptable
browsers, the cell should contain a text box to display the results; for
nonscriptable browsers, the cell should contain a button that
submits the form to a server CGI to process the calculation and
return a new page with the results.

Dynamic styles
For dynamic styles, both the IE4+ and W3C object models provide access to style

sheet settings via the style property of any HTML element. This simplifies matters

because you can wrap modifications to style properties inside if clauses that

check for the existence of the style property for the specified object:

function hilite(elem) {
if (elem.style) {

elem.style.fontWeight = “bold”
}

}

If the event handler that triggers the change can be localized to the affected ele-

ment (for example, an onMouseOver event handler for a SPAN element surrounding

some text), then the event doesn’t fire in browsers that don’t also support the

style property. (By good fortune, browsers that implement the style property

also expose all elements to the object model.) To compensate for the differences in

object references between the IE4+ and W3C models, you can pass the object as a

parameter to event handler functions:

(c) ketabton.com: The Digital Library

95Chapter 14 ✦ Document Object Model Essentials

<SPAN onMouseOver=”hilite(this)” onMouseOut=”revert(this)”
onClick=”go(‘...’)>...

This technique obviates the need to use browser version detection because the

functions invoked by the event handlers do not have to build DOM-specific refer-

ences to the objects to adjust the style.

Branching variables
If, for now, you continue to be more comfortable with browser version detection

than object detection, you can apply version detection for this “middle ground”

scenario by establishing branches for the IE4+ and W3C object models. Global vari-

ables that act as flags elsewhere in your page’s scripts are still the primary mecha-

nism. For this scenario, you can initialize two global variables as follows:

function getIEVersion() {
var ua = navigator.userAgent
var IEoffset = ua.indexOf(“MSIE “)
return parseFloat(ua.substring(IEoffset+5, ua.indexOf(“;”, Ieoffset)))

}
var isIE4 = ((navigator.appName.indexOf(“Microsoft”) == 0 &&

parseInt(getIEVersion()) >= 4))
var isW3C = (document.documentElement) ? true : false

Notice how the getIEVersion() function digs out the precise IE version from

deep within the navigator.userAgent property. Both global variables are Boolean

values. While each variable conveys valuable information on its own, the combina-

tion of the two reveals even more about the browser environment if necessary.

Figure 14-4 shows the truth table for using the AND (&&) operator in a conditional

clause with both values. For example, if you need a branch that works only in IE4,

the if clause is

if (isIE4 && !isW3C) {...}

Figure 14-4: Truth table for two browser version
variables with the AND operator

The overlap between MS and the W3C object models in IE5 means that you need

to determine for each branch which model to use when the script is running. This

governs the order of nested if conditions when they arise. If you trap for the W3C

version first, IE5 runs the branch containing the W3C DOM syntax.

isIE4 isIE4 && isW3C

true

true

false

false

isW3C

true

false

true

false

IE5+

IE4 Only

NN6+

Older browser

(c) ketabton.com: The Digital Library

96 Part III ✦ Document Objects Reference

Dynamic content
Once you have the branching variables in place, your scripts can use them for

executing functions invoked by event handlers as well as for scripts that run while

the page loads. The importance of the second type comes when you want a page to

display one kind of HTML for one class of browsers and other HTML for other

classes (or all of the rest). The design for the current scenario calls for a table cell

to display the results of a form’s calculation in HTML where capable. In lesser

scriptable browsers, the results should appear in a text box in the table.

Nonscriptable browsers should display a button to submit the form.

In the Body of the page, a script should take over and use document.write()
for the TD element that is to show the results. Buggy behavior in early versions of

Navigator require that at least the entire TD element be written dynamically,

instead of just the cell’s content. (In fact, I usually recommend writing the entire

table dynamically if a lot of users have older Navigators.) The structure of such a

form and table is as follows:

...
<FORM NAME=”calculator” ACTION=”http://xxx/cgi-bin/calculate.pl”
onSubmit=”return false”>
<TABLE>
...
<TR>

<TD>...</TD>
<SCRIPT LANGUAGE=”JavaScript”>
if (isIE4 || isW3C) {

document.write(“<TD ID=’result’>0</TD>”)
} else {

document.write(“<TD>”
document.write(“<INPUT TYPE=’text’ NAME=’result’ SIZE=’10’ VALUE=’0’>”)
document.write(“</TD>”)

}
</SCRIPT>
<NOSCRIPT>

<TD>Click ‘Submit’ for Results</TD>
</NOSCRIPT>

</TR>
</TABLE>
<NOSCRIPT>

<INPUT TYPE=”submit”>
</NOSCRIPT>
</FORM>
...

The preceding code assumes that other table cells contain text boxes whose

onChange event handlers trigger a calculation script. That calculation script must

also branch for the two classes of scriptable browser so that results are displayed

to fit the browser’s object model:

function calculate(form) {
var results
...
// statements here that perform math and stuff answer into ‘results’

variable //
...

(c) ketabton.com: The Digital Library

97Chapter 14 ✦ Document Object Model Essentials

if (isIE4) {
document.all.result.innerText = results

} else if (isW3C) {
document.getElementById(“result”).childNodes[0].nodeValue = results

} else {
document.calculator.result.value = results

}
}

Adding dynamic content for NN4 requires a little more planning. The technique

usually involves nesting an absolute-positioned DIV inside a relative-positioned

SPAN. Scripts can then use document.write() to create new content for the

deeply nested DIV element. Pulling this off successfully entails pretty complex refer-

ences through multiple layers and their documents, as described in Chapter 31. But

no matter what lengths you go to in an effort to employ dynamic content in NN4,

the new content does not automatically resize the table or cell to accommodate

larger or smaller chunks of text. Without automatic reflow of the page, as is found in

IE4+ and NN6+, writing to an NN4 positioned layer does not force other page con-

tent to move.

A radical approach
By “radical,” I mean that the page content is designed to employ extensive

DHTML features, including positioned (if not flying) elements on the page. Perhaps

some clicking and dragging of elements can add some fun to the page while you’re

at it.

Employing these kinds of features requires some extensive forethought about

your audience and the browsers they use. While some aspects of DHTML, such as

CSS, degrade gracefully in older browsers (the content is still presented, although

not in optimum font display perhaps), positioned elements do not degrade well at

all. The problem is that older browsers ignore the CSS attributes that control posi-

tioning, stacking order, and visibility. Therefore, when the page loads in a pre-ver-

sion 4 browser, all content is rendered in source code order. Elements that are

supposed to be positioned, hidden, or overlapped are drawn on the page in “old

fashioned” rendering.

To use element positioning for the greatest effect, your Web site should preexam-

ine the browser at some earlier page in the navigation sequence to reach the

DHTML-equipped page. Only browsers capable of your fancy features should be

allowed to pass onto the “cool” pages. All other browsers get diverted to another

page or pathway through your application so they can at least get the information

they came for, if not in the most lavish presentation. Techniques detailed in Chapter

13 demonstrate how to make a branching index page.

By filtering out non-DHTML-capable browsers, some of your job is easier — but not

all. On the plus side, you can ignore a lot of weirdness that accrues to scripting bugs

in earlier browsers. But you must still decide which of the three element positioning

models to follow: IE4+, NN4, or W3C. Chances are that you will want to support at

least two of the three unless you are in the luxurious position of designing for a single

browser platform (or have taken a stand that you will support only one DOM).

(c) ketabton.com: The Digital Library

98 Part III ✦ Document Objects Reference

Of the three models, NN4’s DOM is the trickiest one to deal with at the HTML

level. While it may be possible that your content design will look the same using

positioned DIV and SPAN elements in all DHTML-capable browsers, often the

appearance in NN4 is unacceptable. At that point, you will probably have to use

scripts in your Body to dynamically generate HTML, specifying the <LAYER> tag

for NN4 and positioned <DIV> elements for the rest.

Although IE4 and IE5.x can use the same basic Microsoft object model, not all
DHTML code renders the same on both generations of browsers. Microsoft made
some changes here and there to the way some style attributes are rendered so
that IE5.x comes into better compliance with the CSS recommendation.

Using script libraries
As long as you plan to use scripts to dynamically generate HTML for the page,

you might consider creating separate, external .js libraries for each of the object

models you want to support for the page. Scripts in each library contain code for

both the HTML accumulation (for use with document.write() in the main page)

and for processing user interaction. Assuming that only DHTML-capable browsers

reach the page, branching is required only at the beginning of the document where

an object model-specific library is loaded:

var isIE4 = ((navigator.appName.indexOf(“Microsoft”) == 0 &&
parseInt(navigator.appVersion) == 4))

var isW3C = (document.documentElement) ? true : false
if (isW3C) {

// give priority to W3C model for IE5.x
document.write(“<SCRIPT LANGUAGE=’JavaScript’ SRC=’page3_W3C.js’><” +

“\/SCRIPT>”)
} else if (isIE4) {

document.write(“<SCRIPT LANGUAGE=’JavaScript’ SRC=’page3_IE4.js’><” +
“\/SCRIPT>”)

} else {
document.write(“<SCRIPT LANGUAGE=’JavaScript’ SRC=’page3_generic.js’><” +

“\/SCRIPT>”)
}

Each of the statements that writes the <SCRIPT> tag includes a workaround that

is required on some browsers (NN4 especially) to facilitate using

document.write() to write script tags to the page.

Once these libraries are specified for the page, script statements anywhere later

in the page can invoke functions defined in each library to generate a particular

element or set of elements in the object model HTML optimized for the current

browser. Of course, it’s not necessary to have one library devoted to each object

model. You might find it more convenient for authoring and maintenance to keep

all the code in one library that has numerous internal branchings for browser ver-

sions. Branches in a library can use the version sniffing global variables defined in

the main HTML page’s scripts. Better still, a library can be entirely self-contained

by using object detection. You can see an example of such a DHTML library in

Chapter 48.

Note

(c) ketabton.com: The Digital Library

99Chapter 14 ✦ Document Object Model Essentials

Handling events
Thanks to the W3C DOM’s event model implementing a similar event bubbling

scheme as IE4+, you can apply that event propagation model to IE4+ and W3C DOM

browsers. There are differences in the details, however. IE’s approach does not pass

the event object as a parameter to a function invoked by an event handler. Instead,

the IE event object is a property of the window object. Therefore, your functions

have to look for the passed parameter and substitute the window.event object in

its place for IE:

function calculate(evt) {
evt = (evt) ? evt : window.event
// more statements to handle the event //

}

Additional branching is necessary to inspect many details of the event. For

example, IE calls the object receiving the event the srcElement, while the W3C

DOM calls it the target. Canceling the default behavior of the event (for example,

preventing a form’s submission if it fails client-side validation) is also different for

the models (although the “old-fashioned” way of letting HTML-type event handlers

evaluate to return false still works). You can find more event object details in

Chapter 29.

Simulating IE4+ Syntax in NN6
With so much IE4+ DHTML-related JavaScript code already in use, scripters are

certainly eager to leverage as much of their old code as possible in W3C DOM

browsers such as NN6. While NN6 helps a bit by implementing the IE innerHTML
property for HTML elements, this section shows you how a simple .js library can

provide NN6 with a few more common convenience properties of the IE4+ object

model. By linking this library into your pages, you can give NN6 the valuable HTML

element properties shown in Table 14-8.

Table 14-8 IE4+ HTML Element Property Simulation for NN6

Property Read Write Replaces in W3C DOM

all yes no getElementsByTagName(“*”)

innerText yes yes nodeValue property for text nodes; creating a
text fragment node and inserting it into existing
node structure

outerHTML no yes (No equivalent)

Scripts that make these simulations possible use the prototype inheritance

behavior of static objects described earlier in this chapter. Because they require

(c) ketabton.com: The Digital Library

100 Part III ✦ Document Objects Reference

NN6-specific features in that browser’s implementation of JavaScript 1.5, link the

.js library with the following tag:

<SCRIPT LANGUAGE=”JavaScript1.5” TYPE=”text/javascript”
SRC=”IE4Simulator.js”></SCRIPT>

All scripts that follow belong in the .js library. They’re divided into two groups

to allow for detailed discussion.

The all property simulator
Nearly every HTML element can be a container of other elements (with the

exception of a handful of leaf nodes, such as
). The all property in IE returns a

collection of references to all element objects nested inside the current object, no

matter how deeply nested the containment hierarchy is. That’s why the docu-
ment.all reference is such a convenient way to access any element in the entire

document that has an ID attribute.

As illustrated earlier in the sidebar figure, the Node static object is the object

from which all elements are derived. That object’s prototype is enhanced here

because you have to make sure that all nodes, especially the document node, can

acquire the all property. Listing 14-4a shows the segment of the library that

defines the all property for the Node object prototype.

Listing 14-4a: Simulator for the all Property

if (!document.all) {
Node.prototype.__defineGetter__(“all”, function() {

if (document.getElementsByTagName(“*”).length) {
switch (this.nodeType) {

case 9:
return document.getElementsByTagName(“*”)
break

case 1:
return this.getElementsByTagName(“*”)
break

}
}
return “”

})
Node.prototype.__defineSetter__(“all”, function() {})

}

This portion of the library exhibits a rare instance in which using object detec-

tion for document.all does the right thing now and in the future. The prototype

should not execute if the browser loading the page already has a document.all
property.

The anonymous function first establishes a branch in the code only for the

object model if it supports the wildcard parameter for the

document.getElementsByTagName() method. The function then performs slightly

different extractions depending on whether the node is the document (type 9) or an

element (type 1). If the all property should be queried for any other kind of node,

the returned value is an empty string. Each time the all property is accessed, the

anonymous function executes to pick up all elements nested inside the current

(c) ketabton.com: The Digital Library

101Chapter 14 ✦ Document Object Model Essentials

node. Therefore, the collection returned by the all property is always up to date,

even if the node structure of the current object changes after the document loads.

While this simulator code provides NN6 scripts with IE4-like syntax for referenc-

ing elements, the collection returned by the native document.all in IE and calcu-

lated document.all in NN6 may not always have an identical length — the

collections are derived slightly differently. The important thing to know, however, is

that by employing this prototype modifier in NN6, you have the ability to reference

elements by their IDs in the form document.all.elementID.

The content properties simulators
The remaining code of this library lets NN6 use the same innerText and

outerHTML properties as IE4 for modifying all element objects. Listing 14-4b con-

tains the NN6 JavaScript code that prepares the browser to set an element object’s

outerHTML property, as well as get and set the innerText properties. The code

again uses anonymous functions assigned to getter and setter behaviors of proto-

type properties. Because the properties here apply only to HTML elements, the static

object whose prototype is being modified is HTMLElement. All specific HTML element

objects inherit properties and methods from the HTMLElement object. All four proto-

type adjustment blocks are nested inside a condition that makes sure the static

HTMLElement object is exposed in the browser’s object model (which it is in NN6+).

All functions in Listing 14-4b use the W3C DOM Range object (Chapter 19). Two

of them use a Netscape-proprietary method of the Range object as a shortcut to

converting a string into a node hierarchy.

Listing 14-4b: Simulator for the innerText and outerHTML
Properties

if (HTMLElement) {
HTMLElement.prototype.__defineSetter__(“innerText”, function (txt) {

var rng = document.createRange()
rng.selectNodeContents(this)
rng.deleteContents()
var newText = document.createTextNode(txt)
this.appendChild(newText)
return txt

})
HTMLElement.prototype.__defineGetter__(“innerText”, function () {

var rng = document.createRange()
rng.selectNode(this)
return rng.toString()

})
HTMLElement.prototype.__defineSetter__(“outerHTML”, function (html) {

var rng = document.createRange()
rng.selectNode(this)
var newHTML = rng.createContextualFragment(html)
this.parentNode.replaceChild(newHTML,this)
return html

})
HTMLElement.prototype.__defineGetter__(“outerHTML”, function() {return ‘’})

}

(c) ketabton.com: The Digital Library

102 Part III ✦ Document Objects Reference

The getter function for the innerText property creates a range whose bound-

aries encompass the current object. Because a range includes only the text part of a

document, the adjustment of the range boundaries to the current node encom-

passes all text, including text nodes of nested elements. Returning the string ver-

sion of the range provides a copy of all text inside the current element.

For the setter action, the anonymous function defines one parameter variable,

which is the text to replace the text inside an element. With the help, again, of the

Range object, the range is cinched up to encompass the contents of the current

node. Those contents are deleted, and new text node is created out of the value

assigned to the property (in other words, passed as a parameter to the anonymous

function). With the current object no longer containing any nodes after the dele-

tion, the appendChild() method inserts the new text node as a child to the current

object.

Setting the outerHTML property starts out the same as setting the innerText,

but the new content — which arrives as a string assigned to the parameter

variable — is converted into a fully formed set of nested nodes via the

createContextualFragment() method. This method is invoked on any range

object, but it does not affect the range to which it is attached. The value returned

from the method is what’s important, containing a node whose content is already

set up as genuine DOM nodes. That’s why the returned value can be passed to the

replaceChild() method to replace the new content as HTML rather than plain

text. But because the outerHTML property applies to the entire current element, it

must use the roundabout way of replacing itself as a child of its parent. This pre-

vents the accidental modification of any siblings in the process.

Where to Go from Here
These past two chapters provided an overview of the core language and object

model issues that anyone designing pages that use JavaScript must confront. The

goal here is to stimulate your own thinking about how to embrace or discard levels

of compatibility with your pages as you balance your desire to generate “cool”

pages and serve your audience. From here on, the difficult choices are up to you.

To help you choose the objects, properties, methods, and event handlers that

best suit your requirements, the rest of the chapters in Part III and all of Part IV pro-

vide in-depth references to the document object model and core JavaScript lan-

guage features. Observe the compatibility ratings for each language term very

carefully to help you determine which features best suit your audience’s browsers.

Most example listings are complete HTML pages that you can load in various

browsers to see how they work. Many others invite you to explore how things work

via The Evaluator (Chapter 13). Play around with the files, making modifications to

build your own applications or expanding your working knowledge of JavaScript in

the browser environment.

(c) ketabton.com: The Digital Library

103Chapter 14 ✦ Document Object Model Essentials

The language and object models have grown in the handful of years they have

been in existence. The amount of language vocabulary has increased astronomi-

cally. It takes time to drink it all in and feel comfortable that you are aware of the

powers available to you. Don’t worry about memorizing the vocabulary. It’s more

important to acquaint yourself with the features, and then come back later when

you need the implementation details.

Be patient. Be persistent. The reward will come.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Generic HTML
Element Objects

The object model specifications implemented in Internet

Explorer 4+ and Netscape Navigator 6 both feature a

large set of scriptable objects that represent what we often

call “generic” HTML elements. Generic elements can be

divided into two groups. One group, such as the B and STRIKE

elements, define font styles to be applied to enclosed

sequences of text. The need for these elements (and the

objects that represent them) is receding as more browsers

accommodate style sheets. The second group of elements

assigns context to content within their start and end tags.

Examples of contextual elements include H1, BLOCKQUOTE,

and the ubiquitous P element. While browsers sometimes

have consistent visual ways of rendering contextual elements

by default (for example, the large, bold font of an <H1> tag),

the specific rendering is not the intended purpose of the tags.

No formal standard dictates that text within an EM element

must be italicized: the style simply has become the custom

since the very early days of browsers.

All of these generic elements share a large number of

scriptable properties, methods, and event handlers. The shar-

ing extends not only among generic elements, but also among

virtually every renderable element — even if it has additional,

element-specific properties, methods, and/or event handlers

that I cover in depth in other chapters of this reference.

Rather than repeat the details of these shared properties,

methods, and event handlers for each object throughout this

reference, I describe them in detail only in this chapter

(unless there is a special behavior, bug, or trick associated

with the item in some object described elsewhere). In suc-

ceeding reference chapters, each object description includes

a list of the object’s properties, methods, and event handlers,

but I do not list shared items over and over (making it hard to

find items that are unique to a particular element). Instead,

you see a pointer back to this chapter for the items in com-

mon with generic HTML element objects. A dark tab at the

bottom of this chapter’s pages should make it easy to find this

chapter in a hurry.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with HTML
element objects

Common properties
and methods

Event handlers of all
element objects

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

106 Part III ✦ Document Objects Reference

Generic Objects
Table 15-1 lists all of the objects that I treat in this reference as “generic” objects.

All of these objects share the properties, methods, and event handlers described in

succeeding sections and have no special items that require additional coverage

elsewhere in this book.

Table 15-1 Generic HTML Element Objects

Formatting Objects Contextual Objects

B ACRONYM

BIG ADDRESS

CENTER CITE

I CODE

NOBR DFN

RT DEL

RUBY DIV

S EM

SMALL INS

STRIKE KBD

SUB LISTING

SUP P

TT PLAINTEXT

U PRE

WBR SAMP

SPAN

STRONG

VAR

XMP

Properties Methods Event Handlers

accessKey addBehavior() onActivate

all addEventListener() onBeforeCopy

attributes appendChild() onBeforeCut

elementObject

(c) ketabton.com: The Digital Library

107Chapter 15 ✦ Generic HTML Element Objects

Properties Methods Event Handlers

behaviorUrns applyElement() onBeforeDeactivate

canHaveChildren attachEvent() onBeforeEditFocus

canHaveHTML blur() onBeforePaste

childNodes clearAttributes() onBlur

children click() onClick

className cloneNode() onContextMenu

clientHeight componentFromPoint() onControlSelect

clientLeft contains() onCopy

clientTop detachEvent() onCut

clientWidth dispatchEvent() onDblClick

contentEditable fireEvent() onDeactivate

currentStyle focus() onDrag

dataFld getAdjacentText() onDragEnd

dataFormatAs getAttribute() onDragEnter

dataSrc getAttributeNode() onDragLeave

dir getBoundingClientRect() onDragOver

disabled getClientRects() onDragStart

document getElementsByTagName() onDrop

filters getExpression() onFilterChange

firstChild hasChildNodes() onFocus

height insertAdjacentElement() onHelp

hideFocus insertAdjacentHTML() onKeyDown

id insertAdjacentText() onKeyPress

innerHTML insertBefore() onKeyUp

innerText item() onLoseCapture

isContentEditable mergeAttributes() onMouseDown

isDisabled normalize() onMouseEnter

isMultiLine releaseCapture() onMouseLeave

isTextEdit removeAttribute() onMouseMove

lang removeAttributeNode() onMouseOut

Continued

elementObject

(c) ketabton.com: The Digital Library

108 Part III ✦ Document Objects Reference

Table 15-1 (continued)

Properties Methods Event Handlers

language removeBehavior() onMouseOver

lastChild removeChild() onMouseUp

length removeEventListener() onPaste

localName removeExpression() onPropertyChange

namespaceURI removeNode() onReadyStateChange

nextSibling replaceAdjacentText() onResize

nodeName replaceChild() onResizeEnd

nodeType replaceNode() onResizeStart

nodeValue scrollIntoView() onSelectStart

offsetHeight setActive()

offsetLeft setAttribute()

offsetParent setAttributeNode()

offsetTop setCapture()

offsetWidth setExpression()

outerHTML supports()

outerText swapNode()

ownerDocument tags()

parentElement urns()

parentNode

parentTextEdit

prefix

previousSibling

readyState

recordNumber

runtimeStyle

scopeName

scrollHeight

scrollLeft

scrollTop

scrollWidth

elementObject

(c) ketabton.com: The Digital Library

109Chapter 15 ✦ Generic HTML Element Objects

Properties Methods Event Handlers

sourceIndex

style

tabIndex

tagName

tagUrn

title

uniqueID

Syntax
To access element properties or methods, use this:

(IE4+) [document.all.]objectID.property | method([parameters])
(IE5+/NN6) document.getElementById(objectID).property | method([parameters])

About these objects
All objects listed in Table 15-1 are DOM representations of HTML elements that

influence either the font style or the context of some HTML content. The large set

of properties, methods, and event handlers associated with these objects also

applies to virtually every other DOM object that represents an HTML element.

Discussions about object details in this chapter apply to dozens of other objects

described in succeeding chapters of this reference section.

Properties
accessKey

Value: One-Character String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

For many elements, you can specify a keyboard character (letter, numeral, or

punctuation symbol) that, when typed as an Alt+key combination (on the Win32 OS

platform) or Ctrl+key combination (on the MacOS), brings focus to that element. An

element that has focus is the one that is set to respond to keyboard activity. If the

newly focused element is out of view in the document’s current scroll position,

the document is scrolled to bring that focused element into view (also see the

scrollIntoView() method). The character you specify can be an uppercase or

lowercase value, but these values are not case-sensitive. If you assign the same

elementObject.accessKey

(c) ketabton.com: The Digital Library

110 Part III ✦ Document Objects Reference

letter to more than one element, the user can cycle through all elements associated

with that accessKey value.

For IE4, not all elements can receive focus in a meaningful way. For that browser

version, you should limit this property to elements that can actually receive focus,

such as form elements and links. One way to see what elements on a page can

receive focus is to repeatedly press the Tab key while the document is visible. In

the Windows platforms, either a dotted line around the element or a text insertion

pointer flashing inside a text entry element indicates the focus. Not all operating

system platforms provide focus to the same set of elements. IE4 for the Macintosh,

for example, does not give focus to button elements. For IE5.5, however, any ele-

ment can receive focus — even if no visible outline explicitly indicates this state.

Internet Explorer gives some added powers to the accessKey property in some

cases. For example, if you assign an accessKey value to a LABEL element object,

the focus is handed to the form element associated with that label. Also, when ele-

ments such as buttons have focus, pressing the spacebar acts the same as clicking

the element with a mouse.

Exercise some judgement in selecting characters for accessKey values. If you

assign a letter that is normally used to access one of the Windows version

browser’s built-in menus (for example, Alt+F for the File menu), that accessKey
setting overrides the browser’s normal behavior. To users who rely on keyboard

access to menus, your control over that key combination can be disconcerting.

Example (with Listing 15-1) on the CD-ROM

Related Item: srcollIntoView() method.

all
Value: Array of nested element objects. Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The all property is a collection (array) of every HTML element and (in IE5+)

XML tag within the scope of the current object. Items in this array appear in source-

code order, and the array is oblivious to element containment among the items. For

HTML element containers, the source-code order is dependent on the position of

the start tag for the element — end tags are not counted. But for XML tags, end tags

appear as separate entries in the array.

Every document.all collection contains objects for the HTML, HEAD, TITLE,

and BODY element objects even if the actual HTML source code omits the tags. The

object model creates these objects for every document that is loaded into a win-

dow or frame. While the document.all reference may be the most common usage,

On the
CD-ROM

elementObject.all

(c) ketabton.com: The Digital Library

111Chapter 15 ✦ Generic HTML Element Objects

the all property is available for any container element. For example, document.
forms[0].all exposes all elements defined within the first form of a page.

You can access any element that has an identifier assigned to its ID attribute by

that identifier in string form (as well as by index integer). Rather than use the per-

formance-costly eval() function to convert a string to an object reference, use the

string value of the name as an array index value:

var paragraph = document.all[“myP”]

Internet Explorer enables you to use either square brackets or parentheses for

single collection index values. Thus, the following two examples evaluate identically:

var paragraph = document.all[“myP”]
var paragraph = document.all(“myP”)

In the rare case that more than one element within the all collection has the

same ID, the syntax for the string index value returns a collection of just those iden-

tically named elements. But you can use a second argument (in parentheses) to sig-

nify the integer of the initial collection and thus single out a specific instance of that

named element:

var secondRadio = document.all(“group0”,1)

As a more readable alternative, you can use the item() method (described later

in this chapter) to access the same kinds of items within a collection:

var secondRadio = document.all.item(“group0”,1)

Also see the tags() method (later in this chapter) as a way to extract a set of

elements from an all collection that matches a specific tag name.

You can simulate the behavior of IE’s all property in NN6. See Chapter 14 for the

code you need to add to make that happen.

Example on the CD-ROM

Related Items: item(), tags() methods.

attributes
Value: Array of attribute object references. Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The attributes property consists of an array of attributes specified for an ele-

ment. In IE5, the attributes array contains an entry for every possible property

that the browser has defined for its elements — even if the attribute is not set

explicitly in the HTML tag. Also, any attributes that you add later via script facilities

On the
CD-ROM

elementObject.attributes

(c) ketabton.com: The Digital Library

112 Part III ✦ Document Objects Reference

such as the setAttribute() method are not reflected in the attributes array. In

other words, the IE5 attributes array is fixed, using default values for all proper-

ties except those that you explicitly set as attributes in the HTML tag.

NN6’s attributes property returns an array that is a named node map (in W3C

DOM terminology). NN6 does not implement all W3C DOM Level 2 methods for a

named node map, but you can use the getNamedItem(attrName) and

item(index) methods on the array returned from the attributes property to

access individual attribute objects via W3C DOM syntax.

IE5 and NN6 have different ideas about what an attribute object should be. Table

15-2 shows the variety of properties of an attribute object as defined by the two

object models. The larger set of properties in NN6 reveals its dependence on the

W3C DOM node inheritance model discussed in Chapter 14.

Table 15-2 Attribute Object Properties

Property IE5.x NN6 Description

attributes No Yes Array of nested attribute objects (null)

childNodes No Yes Child node array

firstChild No Yes First child node

lastChild No Yes Last child node

localName No Yes Name within current namespace

name No Yes Attribute name

nameSpaceURI No Yes XML namespace URI

nextSibling No Yes Next sibling node

nodeName Yes Yes Attribute name

nodeType No Yes Node type (2)

nodeValue Yes Yes Value assigned to attribute

ownerDocument No Yes document object reference

ownerElement No Yes Element node reference

parentNode No Yes Parent node reference

prefix No Yes XML namespace prefix

previousSibling No Yes Previous sibling node

specified Yes Yes Whether attribute is explicitly specified
(Boolean)

value No Yes Value assigned to attribute

The most helpful property of an attribute object is the Boolean specified prop-

erty. In IE, this lets you know whether the attribute is explicitly specified in the

elementObject.attributes

(c) ketabton.com: The Digital Library

113Chapter 15 ✦ Generic HTML Element Objects

element’s tag. Because NN6 returns only explicitly specified attributes in the

attributes array, the value in NN6 is always true.

Example on the CD-ROM

Related Items: mergeAttributes(), removeAttribute(), setAttribute()
methods.

behaviorUrns
Value: Array of behavior URN strings Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The behaviorUrns property is designed to provide a list of addresses, in the

form of URNs (Uniform Resource Names), of all behaviors assigned to the current

object. If there are no behaviors, the array has a length of zero. In practice, how-

ever, IE5 always returns an array of empty strings. Perhaps the potential exposure

of URNs by script was deemed to be a privacy risk.

Example on the CD-ROM

Related Item: urns() method.

canHaveChildren
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Useful in some dynamic content situations, the canHaveChildren property

(not implemented in IE5/Mac) reveals whether a particular element is capable of

containing a child (nested) element. Most elements that have start and end tags

(particularly the generic elements covered in this chapter) can contain nested

elements. In modern object models, a nested element is referred to as a child of its

parent container.

On the
CD-ROM

On the
CD-ROM

elementObject.canHaveChildren

(c) ketabton.com: The Digital Library

114 Part III ✦ Document Objects Reference

Example (with Listing 15-2) on the CD-ROM

Related Items: childNodes, firstChild, lastChild, parentElement,
parentNode properties; appendChild(), hasChildNodes(), removeChild()
methods.

canHaveHTML
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

While most HTML elements are containers of HTML content, not all are. The

canHaveHTML property lets scripts find out whether a particular object can accept

HTML content, such as for insertion or replacement by object methods. The value

for a P element, for example, is true. The value for a BR element is false.

Example on the CD-ROM

Related Items: appendChild(), insertAdjacentHTML(), insertBefore()
methods.

childNodes
Value: Array of node objects. Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The childNodes property consists of an array of node objects contained by

the current object. Note that child nodes consist of both element objects and text

nodes. Therefore, depending on the content of the current object, the number of

childNodes and children collections may differ.

On the
CD-ROM

On the
CD-ROM

elementObject.childNodes

(c) ketabton.com: The Digital Library

115Chapter 15 ✦ Generic HTML Element Objects

If you use the childNodes array in a for loop that iterates through a sequence of
HTML (or XML) elements, watch out for the possibility that the browser treats
source code whitespace (blank lines between elements and even simple carriage
returns between elements) as text nodes. This potential problem affects IE5/Mac
and NN6 (although later versions may repair the problem). If present, these extra
text nodes occur primarily surrounding block elements.

Most looping activity through the childNodes array aims to examine, count, or
modify element nodes within the collection. If that is your script’s goal, then test
each node returned by the childNodes array, and verify that the nodeType
property is 1 (element) before processing that node. Otherwise, skip over the
node. The skeletal structure of such a loop follows:

for (var i = 0; i < myElem.childNodes.length; i++) {
if (myElem.childNodes[i].nodeType == 1) {

statements to work on element node i
}

}

The presence of these “phantom” text nodes also impacts the nodes referenced by
the firstChild and lastChild properties, described later in this chapter.

Example (with Listing 15-3) on the CD-ROM

Related Items: nodeName, nodeType, nodeValue, parentNode properties;
cloneNode(), hasChildNodes(), removeNode(), replaceNode(),
swapNode() methods.

children
Value: Array of element objects. Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The children property consists of an array of element objects contained by the

current object. Unlike the childNodes property, children does not take into

account text nodes but rather focuses strictly on the HTML (and XML) element con-

tainment hierarchy from the point of view of the current object. Children exposed

to the current object are immediate children only. If you want to get all element

objects nested within the current object (regardless of how deeply nested they

are), use the all collection instead.

On the
CD-ROM

Caution

elementObject.children

(c) ketabton.com: The Digital Library

116 Part III ✦ Document Objects Reference

Example (with Listing 15-4) on the CD-ROM

Related Items: canHaveChildren, firstChild, lastChild, parentElement
properties; appendChild(), removeChild(), replaceChild() methods.

className
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A class name is an identifier that is assigned to the CLASS attribute of an element.

To associate a CSS rule with several elements in a document, assign the same iden-

tifier to the CLASS attributes of those elements, and use that identifier (preceded by

a period) as the CSS rule’s selector. An element’s className property enables the

application of different CSS rules to that element under script control.

Example (with Listing 15-5) on the CD-ROM

Related Items: rule, stylesheet objects (Chapter 30); id property.

clientHeight
clientWidth

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These two properties by and large reveal the pixel height and width of the con-

tent with an element whose style sheet rule includes height and width settings. In

theory, these measures do not take into account any margins, borders, or padding

that you add to an element by way of style sheets. In practice, however, different

combinations of borders, margins, and padding influence these values in unex-

pected ways. One of the more reliable applications of the clientHeight property

enables you to discover, for example, where the text of an overflowing element

ends.

On the
CD-ROM

On the
CD-ROM

elementObject.clientHeight

(c) ketabton.com: The Digital Library

117Chapter 15 ✦ Generic HTML Element Objects

For the document.body object, the clientHeight and clientWidth properties

return the inside height and width of the window or frame (plus or minus a couple of

pixels). These take the place of desirable, but nonexistent, window properties in IE.

Internet Explorer 5 expands the number of objects that employ these properties

to include virtually all objects that represent HTML elements. For IE4, these proper-

ties apply only to the following objects: BODY, BUTTON, CAPTION, DIV, EMBED,

FIELDSET, LEGEND, MARQUEE, TABLE, TD, TEXTAREA, TH, and TR.

Example (with Listing 15-6) on the CD-ROM

Related Items: offsetHeight, offsetWidth properties.

clientLeft
clientTop

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The purpose and names of the clientLeft and clientTop properties are confus-

ing at best. Unlike the clientHeight and clientWidth properties, which apply to the

content of an element, the clientLeft and clientTop properties return essentially no

more information than the thickness of a border around an element—provided the ele-

ment is positioned. If you do not specify a border or do not position the element, the

values are zero (although the document.body object can show a couple of pixels in

each direction without explicit settings). If you are trying to read the left and top coor-

dinate positions of an element, the offsetLeft and offsetTop properties are more

valuable in IE/Windows; as shown in Listing 15-6, however, the clientTop property

returns a suitable value in IE/Mac. Virtually all elements have the clientLeft and

clientTop properties in IE5+; in IE4, the properties apply only to the BODY, BUTTON,

CAPTION, EMBED, FIELDSET, LEGEND, MARQUEE, and TEXTAREA objects.

Related Items: offsetLeft, offsetTop properties.

contentEditable
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

On the
CD-ROM

elementObject.contentEditable

(c) ketabton.com: The Digital Library

118 Part III ✦ Document Objects Reference

IE5.5 introduces the concept of editable HTML content on a page. Element

tags can include a CONTENTEDITABLE attribute, whose value is echoed via the

contentEditable property of the element. The default value for this property is

inherit, which means that the property inherits whatever setting this property

has in the hierarchy of HTML containers outward to the body. If you set the

contentEditable property to true, then that element and all nested elements set

to inherit the value become editable; conversely, a setting of false turns off the

option to edit the content.

Example (with Listing 15-7) on the CD-ROM

Related Item: isContentEditable property.

currentStyle
Value: style object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Every element has style attributes applied to it, even if those attributes are the

browser’s default settings. Because an element’s style object reflects only those

properties whose corresponding attributes are explicitly set via CSS statements,

you cannot use the style property of an element object to view default style set-

tings applied to an element. That’s where the currentStyle property comes in.

This property returns a read-only style object that contains values for every

possible style property applicable to the element. If a style property is explicitly

set via CSS statement or script adjustment, the current reading for that property is

also available here. Thus, a script can inquire about any property to determine if it

should change to meet some scripted design goal. For example, if you surround

some text with an tag, the browser by default turns that text into an italic font

style. This setting is not reflected in the element’s style object (fontStyle prop-

erty) because the italic setting was not set via CSS; in contrast, the element
object’s currentStyle.fontStyle property reveals the true, current fontStyle
property of the element as italic.

To change a style property setting, access it via the element’s style object.

Example on the CD-ROM

Related Items: runtimeStyle, style objects (Chapter 30).

On the
CD-ROM

On the
CD-ROM

elementObject.currentStyle

(c) ketabton.com: The Digital Library

119Chapter 15 ✦ Generic HTML Element Objects

dataFld
dataFormatAs
dataSrc

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The dataFld, dataFormatAs, and dataSrc properties (along with more element-

specific properties such as dataPageSize and recordNumber) are part of the

Internet Explorer data-binding facilities based on ActiveX controls. The Win32 ver-

sions of IE4 and later have several ActiveX objects built into the browsers that facili-

tate the direct communication between a Web page and a data source. Data sources

include text files, XML data, HTML data, and external databases. Data binding is a

very large topic, much of which extends more to discussions about Microsoft Data

Source Objects (DSOs), ODBC, and JDBC — subjects well beyond the scope of this

book. But data binding is a powerful tool and can be of use even if you are not a

database guru. Therefore, this discussion of the three primary properties —

dataFld, dataFormatAs, and dataSrc— briefly covers data binding through

Microsoft’s Tabular Data Control DSO. This allows any page to access, sort, display,

and filter (but not update) data downloaded into a Web page from an external text

file (commonly comma- or tab-delimited data).

You can load data from an external text file into a document with the help of

the Tabular Data Control (TDC). You retrieve the data by specifying the TDC object

within an <OBJECT> tag set and specifying additional parameters such as the URL of

the text file and field delimiter characters. The OBJECT element can go anywhere

within the BODY of your document. (I tend to put it at the bottom of the code so

that all normal page rendering happens before the control loads.) Retrieving the

data simply brings it into the browser and does not, on its own, render the data on

the page.

If you haven’t worked with embedded objects in IE, the CLASSID attribute value

might seem a bit strange. The most perplexing part to some is the long value of

numeric data signifying the Globally Unique Identifier (GUID) for the object. You

must enter this value exactly as shown in the following example for the proper

ActiveX TDC to run. The HTML syntax for this object is as follows:

<OBJECT ID=”objName” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”URL”>
[additional optional parameters]

</OBJECT>

Table 15-3 lists the parameters available for the TDC. Only the DataURL param-

eter is required; others — such as FieldDelim, UseHeader, RowDelim, and

EscapeChar— may be helpful depending on the nature of the data source.

elementObject.dataFld

(c) ketabton.com: The Digital Library

120 Part III ✦ Document Objects Reference

Table 15-3 Tabular Data Control Parameters

Parameter Description

CharSet Character set of the data source file. Default is latin1.

DataURL URL of data source file (relative or absolute).

EscapeChar Character used to “escape” delimiter characters that are part of the
data. Default is empty. A common value is “\”.

FieldDelim Delimiter character between fields within a record. Default is comma
(,). For a Tab character, use a value of 	.

Language ISO language code of source data. Default is en-us.

TextQualifier Optional character surrounding a field’s data. Default is empty.

RowDelim Delimiter character between records. Default is newline (NL).

UseHeader Set to true if the first row of data in the file contains field names.
Default is false.

The value you assign to the OBJECT element’s ID attribute is the identifier that

your scripts use to communicate with the data after the page and data completely

load. You can therefore have as many uniquely named TDCs loaded in your page as

there are data source files you want to access at once.

The initial binding of the data to HTML elements usually comes when you assign

values to the DATASRC and DATAFLD attributes of the elements. The DATASRC
attribute points to the DSO identifier (matching the ID attribute of the OBJECT ele-

ment, preceded with a hash symbol), while the DATAFLD attribute points to the

name of the field whose data should be extracted. When you use data binding with

an interactive element such as a table, multiple records are displayed in consecu-

tive rows of the table (more about this in a moment).

Adjust the dataSrc and dataFld properties if you want the same HTML element

(other than a table) to change the data that it displays. These properties apply to a

subset of HTML elements that can be associated with external data: A, APPLET,

BODY, BUTTON, DIV, FRAME, IFRAME, IMG, INPUT (most types), LABEL, MARQUEE,

OBJECT, PARAM, SELECT, SPAN, and TEXTAREA objects.

In some cases, your data source may store chunks of HTML-formatted text for

rendering inside an element. Unless directed otherwise, the browser renders a data

source field as plain text — even if the content contains HTML formatting tags. But

if you want the HTML to be observed during rendering, you can set the

dataFormatAs property (or, more likely, the DATAFORMATAS attribute of the tag) to

HTML. The default value is text.

Example (with Listings 15-8 and 15-9) on the CD-ROMOn the
CD-ROM

elementObject.dataFld

(c) ketabton.com: The Digital Library

121Chapter 15 ✦ Generic HTML Element Objects

Related Items: recordNumber, TABLE.dataPageSize properties.

dir
Value: “ltr” | “rtl” Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The dir property (based on the DIR attribute of virtually every text-oriented

HTML element) controls whether an element’s text is rendered left-to-right (the

default) or right-to-left. Depending on the default language and character set of the

IE5 browser running a page, selecting a value other than the default may require the

user to install Microsoft’s Uniscribe add-in component. By and large, this property

(and HTML attribute) is necessary only when you need to override the default

directionality of a language’s character set as defined by the Unicode standard.

Example on the CD-ROM

Related Item: lang property.

disabled
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � �

While some elements have a disabled property in IE4, IE5, and NN6, this prop-

erty is associated with every HTML element in IE5.5. Disabling an HTML element

(like form elements) usually gives the element a “dimmed” look, indicating that it is

not active. A disabled element does not receive any events. It also cannot receive

focus, either manually or by script (although disabled text fields in IE4/Mac errantly

manage to receive focus). But a user can still select and copy a disabled body text

element.

If you disable a form control element, the element’s data is not submitted to the
server with the rest of the form elements. If you need to keep a form control
“locked down,” but still submit it to the server, use the FORM element’s onSubmit
event handler to enable the form control right before the form is submitted.

Note

On the
CD-ROM

elementObject.disabled

(c) ketabton.com: The Digital Library

122 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: isDisabled property.

document
Value: document object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

In the context of HTML element objects as exposed in IE4+, the document prop-

erty is a reference to the document that contains the object. While it is unlikely that

you will need to use this property, document may come in handy for complex scripts

and script libraries that handle objects in a generic fashion and do not know the

reference path to the document containing a particular object. You might need a ref-

erence to the document to inspect it for related objects. The W3C version of this

property (implemented in IE5/Mac but not in IE5.5/Windows) is ownerDocument.

Example on the CD-ROM

Related Item: ownerDocument property.

filters
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Filters are IE-specific style sheet add-ons that offer a greater variety of font ren-

dering (such as drop shadows) and transitions between hidden and visible ele-

ments. Each filter specification is a filter object. The filters property contains

an array of filter objects defined for the current element. You can apply filters to

the following set of elements: BODY, BUTTON, IMG, INPUT, LI, MARQUEE, OL,

TABLE, TD, TEXTAREA, TH, UL, and positioned DIV and SPAN elements. See Chapter

30 for details about style sheet filters.

Related Item: filter object.

On the
CD-ROM

On the
CD-ROM

elementObject.filters

(c) ketabton.com: The Digital Library

123Chapter 15 ✦ Generic HTML Element Objects

firstChild
lastChild

Value: Node object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

W3C DOM-based document object models are built around an architecture

known as a node map. Each object defined by HTML is a node in the map. A node

has relationships with other nodes in the document — relationships described in

family terms of parents, siblings, and children.

A child node is an element that is contained by another element. The container is

the parent of such a child. Just as an HTML element can contain any number of child

elements, so can a parent object have zero or more children. A list of those children

(returned as an array) can be read from an object by way of its childNodes
property:

var nodeArray = document.getElementById(“elementID”).childNodes

While you can use this array (and its length property) to get a reference to the

first or last child node, the firstChild and lastChild properties offer shortcuts

to those positions. These are helpful when you wish to insert a new child before or

after all of the others and you need a reference point for the IE

insertAdjacentElement() method or other method that adds elements to the

document’s node list.

See the discussion of the childNodes property earlier in this chapter about the
presence of “phantom” nodes in some browser versions. The problem may influ-
ence your use of the firstChild and lastChild properties.

Example (with Listing 15-10) on the CD-ROM

Related Items: nextSibling, parentElement, parentNode, previousSibling
properties; appendChild(), hasChildNodes(), removeChild(), removeNode(),

replaceChild(), replaceNode() methods.

On the
CD-ROM

Caution

elementObject.firstChild

(c) ketabton.com: The Digital Library

124 Part III ✦ Document Objects Reference

height
width

Value: Integer or Percentage String Read/Write and Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The height and width properties described here are not the identically named

properties that belong to an element’s style. Rather, these properties reflect the

values normally assigned to HEIGHT and WIDTH attributes of elements such as IMG,

APPLET, and TABLE, and so on. As such, these properties are accessed directly

from the object (for example, document.all.myTable.width in IE4+) rather than

through the style object (for example, document.all.myDIV.style.width).

Only elements for which the HTML 4.x standard provides HEIGHT and WIDTH
attributes have the corresponding properties.

Values for these properties are either integer pixel values (numbers or strings)

or percentage values (strings only). If you need to perform some math on an exist-

ing percentage value, use the parseInt() function to extract the numeric value for

use with math calculations. If an element’s HEIGHT and WIDTH attributes are set as

percentage values, you can use the clientHeight and clientWidth properties in

IE4+ to get the rendered pixel dimensions.

Property values are read/write for the image object in most recent browser ver-

sions because you can resize an image object in IE4+ and NN6 after the page loads.

Properties are read/write for some other objects (such as the TABLE object) — but

not necessarily all others that support these properties.

Support for these properties in NN4 is limited to the IMAGE object. In that

browser, both properties are read-only.

In general, you cannot set the value of these properties to something less than is

required to render the element. This is particularly true of a table. If you attempt to

set the height value to less than the amount of pixels required to display the table

as defined by its style settings, your changes have no effect (even though the prop-

erty value retains its artificially low value). For other objects, however, you can set

the size to anything you like and the browser scales the content accordingly

(images, for example). If you want to see only a segment of an element (in other

words, to crop the element), use a style sheet to set the element’s clipping region.

Example on the CD-ROM

Related Items: clientHeight, clientWidth properties; style.height,

style.width properties.

On the
CD-ROM

elementObject.height

(c) ketabton.com: The Digital Library

125Chapter 15 ✦ Generic HTML Element Objects

hideFocus
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

In IE for Windows, button types of form controls and links display a dotted rect-

angle around some part of the element whenever that element has focus. If you set

the TABINDEX attribute or tabIndex property of any other kinds of elements in

IE5+, they, too, display that dotted line when given focus. You can still let an ele-

ment receive focus, but hide that dotted line, by setting the hideFocus property of

the element object to true (default value is false).

Hiding focus does not disable the element. In fact, if the element about to receive

focus is scrolled out of view, the page scrolls to bring the element into view. Form

controls that respond to keyboard action (for example, pressing the spacebar to

check or uncheck a checkbox control) also continue to work as normal. For some

designers, the focus rectangle harms the design goals of the page. The hideFocus
property gives them more control over the appearance while maintaining consis-

tency of operation with other pages. There is no corresponding HTML attribute for

a tag, so you can use an onLoad event handler in the page to set the hideFocus
property of desired objects after the page loads.

Example on the CD-ROM

Related Items: tabIndex property; srcollIntoView() method.

id
Value: String (See text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The id property returns the identifier assigned to an element’s ID attribute in

the HTML code. A script cannot modify the ID of an existing element nor assign an

ID to an element that lacks one. But if a script creates a new element object, an

identifier may be assigned to it by way of the id property.

On the
CD-ROM

elementObject.id

(c) ketabton.com: The Digital Library

126 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: className property.

innerHTML
innerText

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � �

One way that Internet Explorer exposes the contents of an element is through

the innerHTML and innerText properties. (Navigator 6 offers only the innerHTML
property.) All content defined by these “inner” properties consists of document

data that is contained by an element’s start and end tags, but not including the tags

themselves (see outerText and outerHTML properties). Setting these inner proper-

ties is a common way to modify a portion of a page’s content after the page loads.

The innerHTML property contains not only the text content for an element as

seen on the page, but also every bit of HTML tagging that is associated with that

content. (If there are no tags in the content, the text is rendered as is.) For example,

consider the following bit of HTML source code:

<P ID=”paragraph1”>”How are you?” he asked.</P>

The value of the paragraph object’s innerHTML property (document.all.
paragraph1.innerHTML) is:

“How are you?” he asked.

The browser interprets any HTML tags that you include in a string you assign to

an element’s innerHTML property as tags. This also means that you can introduce

entirely new nested elements (or child nodes in the modern terminology) by assign-

ing a slew of HTML content to an element’s innerHTML property. The document’s

object model adjusts itself to the newly inserted content.

In contrast, the innerText property knows only about the text content of an

element container. In the example you just saw, the value of the paragraph’s

innerText property (document.all.paragraph1.innerText) is:

“How are you?” he asked.

It’s important to remember that if you assign a string to the innerText property

of an element and that string contains HTML tags, the tags and their angle brackets

appear in the rendered page and are not interpreted as live tags.

Do not modify the innerHTML property to adjust the HTML for FRAMESET, HTML,

HEAD, TITLE, or table-related objects. You should modify table constructions

through the various table-related methods that create or delete rows, columns, and

On the
CD-ROM

elementObject.innerHTML

(c) ketabton.com: The Digital Library

127Chapter 15 ✦ Generic HTML Element Objects

cells (see Chapter 27). It is safe, however, to modify the contents of a cell by setting

its innerHTML or innerText properties.

When the HTML you insert includes a <SCRIPT> tag, be sure to include the

DEFER attribute to the opening tag. This even goes for scripts that contain function

definitions, which you might consider to be deferred automatically.

If your audience includes Internet Explorer 4 for the Macintosh, know that sev-

eral elements do not support these properties. Be sure to test your page thoroughly

on this platform combination. Also, if you want to have the convenience of the

innerText property in Navigator 6, see Chapter 14 for instructions on how to add

that property to all elements. Alternatively, you can use the NN6-compatible

innerHTML property to assign new text content to an element, even though the

content contains no HTML tags.

Example (with Listing 15-11) on the CD-ROM

Related Items: outerHTML, outerText properties; replaceNode() method.

isContentEditable
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The isContentEditable property returns a Boolean value indicating whether a

particular element object is set to be editable (see the preceding discussion of the

contentEditable property). This property is helpful because if a parent element’s

contentEditable property is set to true, a nested element’s contentEditable
property likely is set to its default value inherit. But because its parent is

editable, the isContentEditable property of the nested element returns true.

Example on the CD-ROM

Related Item: contentEditable property.

isDisabled
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

On the
CD-ROM

On the
CD-ROM

elementObject.isDisabled

(c) ketabton.com: The Digital Library

128 Part III ✦ Document Objects Reference

The isDisabled property returns a Boolean value that indicates whether a par-

ticular element object is set to be disabled (see the preceding discussion of the

disabled property). This property is helpful; if a parent element’s disabled prop-

erty is set to true, then a nested element’s disabled property likely is set to its

default value of false. But because its parent is disabled, the isDisabled property

of the nested element returns true. In other words, the isDisabled property

returns the actual disabled status of an element regardless of its disabled property.

Example on the CD-ROM

Related Item: disabled property.

isMultiLine
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The isMultiLine property returns a Boolean value that reveals whether the ele-

ment object is capable of occupying or displaying more than one line of text.

Importantly, this value does not reveal whether the element actually occupies mul-

tiple lines; rather, it indicates the potential of doing so. For example, a text INPUT

element cannot wrap to multiple lines, so its isMultiLine property is false.

However, a BUTTON element can display multiple lines of text for its label, so it

reports true for the isMultiLine property.

Example on the CD-ROM

isTextEdit
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The isTextEdit property reveals whether an object can have an IE/Windows

TextRange object created with its content. (See the TextRange object in Chapter

19.) You can create TextRange objects only from a limited selection of objects in

IE4+ for Windows: BODY, BUTTON, certain form elements (text, password, hidden,

On the
CD-ROM

On the
CD-ROM

elementObject.isTextEdit

(c) ketabton.com: The Digital Library

129Chapter 15 ✦ Generic HTML Element Objects

button, reset, and submit types), and TEXTAREA. This property always returns

false in IE5/Mac.

Example on the CD-ROM

Related Items: createRange() method; TextRange object (Chapter 19).

lang
Value: ISO language code string Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The lang property governs the written language system used to render an

element’s text content when overriding the default browser’s language system.

The default value for this property is an empty string unless the corresponding

LANG attribute is assigned a value in the element’s tag. Modifying the property

value by script control does not appear to have any effect in the current browser

implementations.

Example on the CD-ROM

language
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE4+’s architecture allows for multiple scripting engines to work with the

browser. Two engines are included with the basic Windows version browser: JScript

(compatible with JavaScript) and Visual Basic Scripting Edition (VBScript). The

default scripting engine is JScript. But if you wish to use VBScript or some other

scripting language in statements that are embedded within event handler attributes

of a tag, you can specifically direct the browser to apply the desired scripting

engine to those script statements by way of the LANGUAGE attribute of the tag. The

language property provides scripted access to that property. Unless you intend to

modify the event handler HTML code and replace it with a statement in VBScript

On the
CD-ROM

On the
CD-ROM

elementObject.language

(c) ketabton.com: The Digital Library

130 Part III ✦ Document Objects Reference

(or any other non-JScript-compatible language installed with your browser), you do

not need to modify this property (or read it, for that matter).

Valid values include JScript, javascript, vbscript, and vbs. Third-party

scripting engines have their own identifier for use with this value. Because the

LANGUAGE attribute is also used in the <SCRIPT> tag, Internet Explorer 5 observes

LANGUAGE=”XML” as well.

Example on the CD-ROM

Related Item: SCRIPT element object.

lastChild
(See firstchild)

length
Value: Integer Read-Only and Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The length property returns the number of items in an array or collection of

objects. Its most common application is as a boundary condition in a for loop.

While arrays and collections commonly use integer values as index values (always

starting with zero), the length value is the actual number of items in the group.

Therefore, to iterate through all items of the group, the condition expression should

include a less-than (<) symbol rather than a less-than-or-equal (<=) symbol, as in

the following:

for (var i = 0; i < someArray.length; i++) {...}

For decrementing through an array (in other words, starting from the last item in

the array and working toward the first), the initial expression must initialize the

counting variable as the length minus one:

for (var i = someArray.length - 1; i >= 0; i--) {...}

For most arrays and collections, the length property is read-only and governed

solely by the number of items in the group. But in more recent versions of the

browsers, you can assign values to some object arrays (areas, options, and the

SELECT object) to create placeholders for data assignments. See discussions of the

AREA, SELECT, and OPTION element objects for details. A plain JavaScript array can

also have its length property value modified by script to either trim items from the

end of the array or reserve space for additional assignments. See Chapter 37 for

more about the Array object.

On the
CD-ROM

elementObjectCollection.length

(c) ketabton.com: The Digital Library

131Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Items: AREA, SELECT, OPTION, and Array objects.

localName
namespaceURI
prefix

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The three properties, localName, namespaceURI, and prefix, apply to any

node in an XML document that associates a Namespace URI with an XML tag.

Although NN6 exposes all three properties for all element (and node) objects, the

properties do not return the desired values. Future versions of NN6 should remedy

the situation. In the meantime, this description provides a preview of what values

these three properties will represent.

Consider the following XML content:

<x xmlns:bk=’http://bigbooks.org/schema’>
<bk:title>To Kill a Mockingbird</bk:title>

</x>

The element whose tag is <bk:title> is associated with the Namespace URI

defined for the block, and the element’s namespaceURI property would return the

string http://bigbooks.org/schema. The tag name consists of a prefix (before

the colon) and the local name (after the colon). In the above example, the prefix
property for the element defined by the <bk:title> tag would be bk, while the

localName property would return title. The localName property of any node

returns the same value as its nodeName property value, such as #text for a text

node.

For more information about XML Namespaces, visit http://www.w3.org/TR/
REC-xml-names.

Related Items: scopeName, tagUrn properties.

On the
CD-ROM

elementObject.localName

(c) ketabton.com: The Digital Library

132 Part III ✦ Document Objects Reference

nextSibling
previousSibling

Value: Object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

A sibling element is one that is at the same nested level as another element. For

example, the following P element has two child nodes (the EM and SPAN elements).

Those two child nodes are siblings of each other.

<P>MegaCorp is the source of the hottest
gizmos.</P>

Sibling order is determined solely by the source code order of the elements.

Therefore, in the previous example, the EM element has no previousSibling
property. Meanwhile, the SPAN element has no nextSibling property (meaning

that these properties return null). These properties provide another way to iterate

through all elements at the same level.

Example on the CD-ROM

Related Items: firstChild, lastChild, childNodes properties;

hasChildNodes(), insertAdjacentElement() methods.

nodeName
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

For HTML and XML elements, the name of a node is the same as the tag name.

The nodeName property is provided for the sake of consistency with the node archi-

tecture specified by the formal W3C DOM standard. The value, just like the tagName
property, is an all-uppercase string of the tag name (even if the HTML source code

is written with lowercase tags).

Some nodes, such as the text content of an element, do not have a tag. The

nodeName property for such a node is a special value: #text. Another kind of node

is an attribute of an element. For an attribute, the nodeName is the name of the

attribute. See Chapter 14 for more about Node object properties.

On the
CD-ROM

elementObject.nodeName

(c) ketabton.com: The Digital Library

133Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Item: tagName property.

nodeType
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The W3C DOM specification identifies a series of constant values that denote cat-

egories of nodes. Not all of these values are implemented in the W3C DOM-capable

browsers, although NN6 includes more than the two supplied by IE5. Table 15-4 lists

the nodeType values implemented in recent browsers.

Table 15-4 nodeType Property Values

Value Description IE5/5.5 Nav6 & IE5/Mac

1 Element node � �

2 Attribute node �

3 Text (#text) node � �

8 Comment node �

9 Document node �

The nodeType value is automatically assigned to an element, whether the ele-

ment exists in the document’s HTML source code or it is generated on the fly via a

script. For example, if you create a new element through any of the ways available

by script (for example, by assigning a string encased in HTML tags to the innerHTML
property or by explicitly invoking the document.createElement() method), the

new element assumes a nodeType of 1.

NN6 goes one step further in supporting the W3C DOM specification by imple-

menting a set of Node object property constants for each of the nodeType values.

Table 15-5 lists the entire set as defined in the DOM Level 2 specification (not all of

which are implemented in NN6). Substituting these constants for nodeType integers

can improve readability of a script. For example, instead of

if (myElem.nodeType == 1) {...}

it is much easier to see what’s going on with

if (myElem.nodeType == Node.ELEMENT_NODE) {...}

On the
CD-ROM

elementObject.nodeType

(c) ketabton.com: The Digital Library

134 Part III ✦ Document Objects Reference

Table 15-5 W3C DOM nodeType Constants

Reference nodeType Value

Node.ELEMENT_NODE 1

Node.ATTRIBUTE_NODE 2

Node.TEXT_NODE 3

Node.CDATA_SECTION_NODE 4

Node.ENTITY_REFERENCE_NODE 5

Node.ENTITY_NODE 6

Node.PROCESSING_INSTRUCTION_NODE 7

Node.COMMENT_NODE 8

Node.DOCUMENT_NODE 9

Node.DOCUMENT_TYPE_NODE 10

Node.DOCUMENT_FRAGMENT_NODE 11

Node.NOTATION_NODE 12

Example on the CD-ROM

Related Item: nodeName property.

nodeValue
Value: Number, string, or null Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Of the node types implemented in the W3C DOM-capable browsers, only the text

and attribute types have readable values. An element’s node value returns a null
value.

For a text node, the nodeValue property consists of the actual text for that node.

Such a node cannot contain any further nested elements, so the nodeValue property

offers another way of reading and modifying what Internet Explorer implements as an

element’s innerText property.

For an attribute node, the nodeValue property consists of the value assigned to

that attribute. According to the W3C DOM standard, attribute values should be

On the
CD-ROM

elementObject.nodeValue

(c) ketabton.com: The Digital Library

135Chapter 15 ✦ Generic HTML Element Objects

reflected as strings. IE5/Windows, however, returns values of type Number when the

value is all numeric characters. Even if you assign a string version of a number to

such a nodeValue property, it is converted to a Number type internally. NN6 and

IE5/Mac return nodeValue values as strings in all cases (and convert numeric

assignments to strings).

Example on the CD-ROM

Related Items: attributes, innerText, nodeType properties.

offsetHeight
offsetWidth

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

It is nearly impossible to reconcile the actual behavior of these properties with

the descriptions provided by Microsoft for Internet Explorer. The genuine complex-

ity comes when an element has one or more of the following style features

attached: borders, margins, and padding. The property values, especially

offsetWidth, are heavily influenced by the height and width attributes assigned

to an element’s style sheet rule. The permutations of elements and their styles plus

the vastly roving range of resulting values make it difficult to recommend the

offsetHeight and offsetWidth properties unless you manage to find the magic

combination that works for your page layout. Differences abound in these proper-

ties’ treatment across operating system versions of IE.

One advantage that offsetHeight and offsetWidth have over clientHeight
and clientWidth is that the offset properties have values even when you do not

set dimensions for the element in the HTML tag attributes. That’s because these

values are set in relation to the element’s parent element — most often the BODY

element.

Be aware that for a normal element whose height and width are not specified,

the offsetHeight is determined by the actual height of the content after all text

flows. But the offsetWidth always extends the full width (plus or minus borders,

margins, and padding) of the containing element. Therefore, the offsetWidth
property does not reveal the rendered width of text content that is narrower than

the full parent element width. (Through IE5, no property reveals this information.)

To find out the actual width of text within a full-width, block-level element, wrap the

text within an inline element (such as a SPAN) and inspect the offsetWidth prop-

erty of the SPAN.

Although the offsetHeight and offsetWidth properties are not part of the

W3C DOM specification, Netscape has implemented these properties in NN6

On the
CD-ROM

elementObject.offsetHeight

(c) ketabton.com: The Digital Library

136 Part III ✦ Document Objects Reference

because they are convenient for some scriptable Dynamic HTML tasks. Through

these two properties, a script can read the height and width of any block-level or

inline element. As with IE, the NN6 offsetWidth of a text-oriented block-level ele-

ment is the width of the element’s container. For example, a P element consisting of

only a few words may report an offsetWidth of many hundreds of pixels because

the paragraph’s block extends the full width of the BODY element that represents

the containing parent of the P element.

Example on the CD-ROM

Related Items: clientHeight, clientWidth properties.

offsetLeft
offsetTop

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The offsetLeft and offsetTop properties can suffer from the same version

vagaries that afflict offsetHeight and offsetWidth properties when borders,

margins, and padding are associated with an element. However, the offsetLeft
and offsetTop properties are valuable in providing pixel coordinates of an element

within the positioning context of the parent element — even when the elements are

not positioned explicitly.

The offsetLeft and offsetTop properties for positioned elements in
IE/Macintosh do not return the same values as the style.left and style.top
properties of the same element. See Listing 31-17 for an example of how to cor-
rect these discrepancies without having to hard-wire the precise pixel differences
in your code.

The element used as a coordinate context for these properties is whatever ele-

ment the offsetParent property returns. This means that to determine the pre-

cise position of any element, you may have to add some code that iterates through

the offsetParent hierarchy until that property returns null.

Although the offsetLeft and offsetTop properties are not part of the W3C

DOM specification, Netscape has implemented these properties in NN6 because they

are convenient for some scriptable Dynamic HTML tasks. Through these two proper-

ties, a script can read the pixel coordinates of any block-level or inline element.

Measurements are made relative to the BODY element, but this may change in the

future. See the discussion later in this chapter about the offsetParent property.

Note

On the
CD-ROM

elementObject.offsetLeft

(c) ketabton.com: The Digital Library

137Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Items: clientLeft, clientTop, offsetParent properties.

offsetParent
Value: Object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The offsetParent property returns a reference to the object that acts as a posi-

tioning context for the current element. Values for the offsetLeft and offsetTop
properties are measured relative to the top-left corner of the offsetParent object.

The returned object is usually, but not always, the next outermost block-level

container. For most document elements, the offsetParent object is the docu-
ment.body object (with exceptions for some elements in some browsers).

Table cells, for example, have different offsetParent elements in different

browsers:

Browser TD offsetParent

IE4/Windows TR

IE5+/Windows TABLE

IE/Mac TABLE

NN6 BODY

Positioned elements also have different results among browsers. In IE, a first-

level positioned element’s offsetParent element is the BODY; the offsetParent
of a nested positioned element (for example, one absolute-positioned DIV inside

another) is the next outer container (in other words, the positioning context of the

inner element).

The situation for NN6, however, is not as straightforward as it could be. The

offsetParent for any unpositioned element on the page is the BODY element. But

the offsetParent property for a positioned element (or any element nested inside

a positioned element) returns null. Even so, the offsetLeft and offsetTop
properties of a positioned element (and its contents) treat the BODY element as the

positioning context. This approach complicates the calculation of the position of an

element inside a positioned element relative to its container. Future versions of NN6

will likely bring the behavior of the offsetParent property in line with the IE

behavior. See Chapter 31 for more details on browser-specific treatment of position-

able elements.

On the
CD-ROM

elementObject.offsetParent

(c) ketabton.com: The Digital Library

138 Part III ✦ Document Objects Reference

Example (with Listing 15-12) on the CD-ROM

Related Items: offsetLeft, offsetTop, offsetHeight, offsetWidth properties.

outerHTML
outerText

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

One way that Internet Explorer exposes an entire element to scripting is by way

of the outerHTML and outerText properties. The primary distinction between

these two properties is that outerHTML includes the element’s start and end tags

whereas outerText includes only rendered text that belongs to the element

(including text from any nested elements).

The outerHTML property contains not only the text content for an element as

seen on the page, but also every bit of HTML tagging associated with that content.

For example, consider the following bit of HTML source code:

<P ID=”paragraph1”>”How are you?” he asked.</P>

The value of the P object’s outerHTML property (document.all.paragraph1.
outerHTML) is exactly the same as that of the source code.

The browser interprets any HTML tags in a string that you assign to an element’s

outerHTML property. This means that you can delete (set the property to an empty

string) or replace an entire tag with this property. The document’s object model

adjusts itself to whatever adjustments you make to the HTML in this manner.

In contrast, the outerText property knows only about the text content of an ele-

ment container. In the preceding example, the value of the paragraph’s outerText
property (document.all.paragraph1.innerText) is:

“How are you?” he asked.

If this looks familiar, it’s because in most cases the innerText and outerText
properties of an existing element return the exact same strings.

If your audience includes Internet Explorer 4 for the Macintosh, be aware that

several elements do not support these properties. In addition, IE5/Mac is downright

buggy when you try to assign new content to either property. Be sure to test your

page thoroughly on these platform combinations. Also see Chapter 14 for some

code to add to a page that simulates the outerHTML property for writing in NN6.

Example (with Listing 15-13) on the CD-ROMOn the
CD-ROM

On the
CD-ROM

elementObject.outerHTML

(c) ketabton.com: The Digital Library

139Chapter 15 ✦ Generic HTML Element Objects

Related Items: innerHTML, innerText properties; replaceNode() method.

ownerDocument
Value: document object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The ownerDocument property belongs to any element or node in the W3C and

NN6 DOM. The property’s value is a reference to the document node that ultimately

contains the element or node. If a script encounters a reference to an element or

node (perhaps it has been passed as a parameter to a function), the object’s

ownerDocument property provides a way to build references to other objects in the

same document or to access properties and methods of the document objects. IE’s

version of this property is simply document.

Example on the CD-ROM

Related Item: document object.

parentElement
Value: Element object reference or null Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The parentElement property returns a reference to the next outermost HTML

element from the current element. This parent–child relationship of elements is

often, but not always, the same as a parent–child node relationship (see

parentNode property later in this chapter). The difference is that the

parentElement property deals only with HTML elements as reflected as document

objects, whereas a node is not necessarily an HTML element (for example, an

attribute or text chunk).

There is also a distinction between parentElement and offsetParent proper-

ties. The latter returns an element that may be many generations removed from a

given element but is the immediate parent with regard to positioning context. For

example, a TD element’s parentElement property is most likely its enclosing TR
element, but (in IE5 at least) a TD element’s offsetParent property is its TABLE

element.

A script can “walk” the element hierarchy outward from an element with the help

of the parentElement property. The top of the parent chain is the HTML element.

Its parentElement property returns null.

On the
CD-ROM

elementObject.parentElement

(c) ketabton.com: The Digital Library

140 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: offsetParent, parentNode properties.

parentNode
Value: Node object reference or null Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The parentNode property returns a reference to the next outermost node that is

reflected as an object belonging to the document. For a standard element object,

the parentNode property is the same as IE’s parentElement because both objects

happen to have a direct parent–child node relationship as well as a parent–child

element relationship.

Other kinds of content, however, can be nodes. This includes text fragments

within an element. A text fragment’s parentNode property is the next outermost

node or element that encompasses that fragment. A text node object in IE does not

have a parentElement property.

Example on the CD-ROM

Related Items: childNodes, nodeName, nodeType, nodeValue, parentElement
properties.

parentTextEdit
Value: Element object reference or null Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Only a handful of objects in IE’s object model are capable of creating text ranges

(see the TextRange object in Chapter 19). To find an object’s next outermost con-

tainer capable of generating a text range, use the parentTextEdit property. If an

element is in the hierarchy, that element’s object reference is returned. Otherwise

(for example, document.body.parentTextEdit), the value is null. IE5/Mac

through version 5 does not implement text ranges or associated properties and

methods.

On the
CD-ROM

On the
CD-ROM

elementObject.parentTextEdit

(c) ketabton.com: The Digital Library

141Chapter 15 ✦ Generic HTML Element Objects

Example (with Listing 15-14) on the CD-ROM

Related Items: isTextEdit property; TextRange object (Chapter 19).

previousSibling
(See nextSibling)

readyState
Value: String (integer for OBJECT object) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

A script can query an element to find out if it has loaded all ancillary data (for

example, external image files or other media files) before other statements act on

that object or its data. The readyState property lets you know the loading status

of an element.

Table 15-6 lists the possible values and their meanings.

Table 15-6 readyState Property Values

HTML Value OBJECT Value Description

complete 4 Element and data fully loaded

interactive 3 Data may not be loaded fully, but user can interact
with element

loaded 2 Data is loaded, but object may be starting up

loading 1 Data is loading

uninitialized 0 Object has not started loading data yet

For most HTML elements, this property always returns complete. Most of the

other states are used by elements such as IMG, EMBED, and OBJECT, which load

external data and even start other processes (such as ActiveX controls) to work.

In IE4, the readyState property was limited to the following objects: document,

EMBED, IMG, LINK, OBJECT, SCRIPT, and STYLE. For IE5+, this property is available

to essentially every element.

One word of caution: Do not expect the readyState property to reveal if an

object exists yet in the document (for example, uninitialized). If the object does

not exist, it cannot have a readyState property — the result is a script error for an

On the
CD-ROM

elementObject.readyState

(c) ketabton.com: The Digital Library

142 Part III ✦ Document Objects Reference

undefined object. If you want to run a script only after every element and its data

are fully loaded, trigger the function by way of the onLoad event handler for the

BODY element or the onReadyStateChange event handler for the object (and

check that the readyState property is complete).

Example on the CD-ROM

Related Items: onReadyStateChange event handler.

recordNumber
Value: Integer or null Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Virtually every object has a recordNumber property, but it applies only to ele-

ments used in Internet Explorer (for Windows) data binding to represent repeated

data. For example, if you display 30 records from an external data store in a table,

the TR element in the table is represented only once in the HTML. However, the

browser repeats the table row (and its component cells) to accommodate all 30

rows of data. If you click a row, you can use the recordNumber property of the TR

object to see which record was clicked. A common application of this facility is in

data binding situations that allow for updating records. For example, script a table

so that clicking on an uneditable row of data displays that record’s data in editable

text boxes elsewhere on the page. If an object is not bound to a data source, or it is

a non-repeating object bound to a data source, the recordNumber property is null.

Example (with Listing 15-15) on the CD-ROM

Related Items: dataFld, dataSrc properties; TABLE, TR objects (Chapter 27).

runtimeStyle
Value: style object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

You can determine the browser default settings for style sheet attributes with

the help of the runtimeStyle property. The style object that this property

On the
CD-ROM

On the
CD-ROM

elementObject.runtimeStyle

(c) ketabton.com: The Digital Library

143Chapter 15 ✦ Generic HTML Element Objects

returns contains all style attributes and the default settings at the time the page

loads. This property does not reflect values assigned to elements by style sheets in

the document or by scripts. The default values returned by this property differ

from the values returned by the currentStyle property. The latter includes data

about values that are not assigned explicitly by style sheets, yet are influenced by

the default behavior of the browser’s rendering engine. In contrast, the

runtimeStyle property shows unassigned style values as empty or zero.

To change a style property setting, access it via the element’s style object.

Example on the CD-ROM

Related Items: currentStyle property; style object (Chapter 30).

scopeName
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The scopeName property is associated primarily with XML that is embedded

within a document. When you include XML, you can specify one or more XML

Namespaces that define the “owner” of a custom tag name, thus aiming toward pre-

venting conflicts of identical custom tags from different sources in a document.

(See Chapter 33 for more about XML objects.)

The XML Namespace is assigned (in IE5+) as an attribute of the <HTML> tag that

surrounds the entire document:

<HTML XMLNS:Fred=’http://www.someURL.com’>

After that, the Namespace value precedes all custom tags linked to that

Namespace:

<Fred:FIRST_Name ID=”fredFirstName”/>

To find out the Namespace “owner” of an element, you can read the scopeName
property of that element. For the preceding example, the scopeName returns Fred.

For regular HTML elements, the returned value is always HTML. The scopeName
property is available only in Win32 and UNIX flavors of IE5. The comparable prop-

erty in the W3C DOM is localName.

Example on the CD-ROM

Related Item: tagUrn property.

On the
CD-ROM

On the
CD-ROM

elementObject.scopeName

(c) ketabton.com: The Digital Library

144 Part III ✦ Document Objects Reference

scrollHeight
scrollWidth

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The scrollHeight and scrollWidth properties contain the pixel measures of

an object, regardless of how much of the object is visible on the page. Therefore, if

the browser window displays a vertical scrollbar, and the body extends below the

bottom of the viewable space in the window, the scrollHeight takes into account

the entire height of the body as if you were to scroll downward and see the entire

element. For most elements that don’t have their own scrollbars, the

scrollHeight and scrollWidth properties have the same values as the

clientHeight and clientWidth properties.

A few compatibility cautions are necessary, however. While these properties are

available for virtually every element in IE5+, they are available for only the BODY,

BUTTON, CAPTION, DIV, FIELDSET, LEGEND, MARQUEE, and TEXTAREA objects in

IE4 for Windows. Moreover, IE for the Macintosh yields the viewable height and

width of the BODY element, rather than its true scrolling height and width. The

values are accurate, however, for other content elements.

Example on the CD-ROM

Related Items: clientHeight , clientWidth properties; window.scroll()
method.

scrollLeft
scrollTop

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

If an element is scrollable (in other words, it has its own scrollbars), you can find

out how far the element is scrolled in the horizontal and vertical direction via the

scrollLeft and scrollTop properties. These values are pixels. For non-scrollable

elements, these values are always zero — even if they are contained by elements

that are scrollable. For example, if you scroll a browser window (or frame in a

On the
CD-ROM

elementObject.scrollLeft

(c) ketabton.com: The Digital Library

145Chapter 15 ✦ Generic HTML Element Objects

multiframe environment) vertically, the scrollTop property of the body object is

whatever the pixel distance is between the top of the object (now out of view) and

the first visible row of pixels of the element. But the scrollTop value of a table that

is in the document remains at zero.

These properties are available only to the BODY, BUTTON, CAPTION, DIV, FIELD-

SET, LEGEND, MARQUEE, SPAN, and TEXTAREA objects in IE4. For IE5+, the proper-

ties are available to virtually every element.

NN treats scrolling of a BODY element from the point of view of the window. If

you want to find out the scrolled offset of the current page in NN4+, use window.
scrollX and window.scrollY.

Example on the CD-ROM

Related Items: clientLeft, clientTop properties; window.scroll() method.

sourceIndex
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The sourceIndex property returns the numeric index (zero-based) of the object

within the document.all collection. This property is useful if a script needs to

access an adjacent object on a page. For example, the following function receives

an object reference as a parameter and returns a reference to the object that is next

in the source code object order:

function getNextObject(obj) {
return document.all[(obj.sourceIndex + 1)]

}

Or if you know only the ID of an object and want to retrieve a reference to the

next object in source code order, you can use the following version:

function getNextObject(objName) {
var index = document.all[objName].sourceIndex
return document.all[(index + 1)]

}

Example on the CD-ROM

Related Item: item() method.

On the
CD-ROM

On the
CD-ROM

elementObject.sourceIndex

(c) ketabton.com: The Digital Library

146 Part III ✦ Document Objects Reference

style
Value: style object reference Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The style property is the gateway to an element’s style sheet settings. The

property’s value is a style object whose properties enable you to read and write

the style sheet settings for the element. While scripts do not usually manipulate the

style object as a whole, it is quite common in a Dynamic HTML page for scripts to

get or set multiple properties of the style object to effect animation, visibility, and

all appearance parameters of the element.

Changing properties of the style object may affect the layout of the page. For

example, setting the font size of an element to a larger value forces the paragraph

to reflow to accommodate the enlarged text. This page reflow is available in IE4+

and NN6. Because NN4 cannot reflow content, severe limitations are placed on

changing content after the page loads.

You can find significant differences in the breadth of properties of the style
object in IE compared with NN. See Chapter 30 for more details on the style
object.

Example on the CD-ROM

Related Items: currentStyle, runtimeStyle properties; style object (Chapter 30).

tabIndex
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The tabIndex property controls where in the tabbing sequence the current

object receives focus. This property obviously applies only to elements that can

receive focus. IE5+ permits giving focus to more elements than IE4 or NN6; but for

all browsers compatible with this property, the primary elements for which you

may want to control focus (namely form input elements) are covered. IE4/Mac does

not give focus to elements other than those that accept text input.

The default value of the tabIndex property is 0 (although it is -1 in NN6). A value

of 0 (or -1 in NN6) means that elements receive focus in the normal tabbing order

on the page, following source code order from the first focusable element. In general,

On the
CD-ROM

elementObject.tabIndex

(c) ketabton.com: The Digital Library

147Chapter 15 ✦ Generic HTML Element Objects

the browsers treat form elements as focusable elements by default. Nonform ele-

ments usually don’t receive focus unless you specifically set their tabIndex proper-

ties (or TABINDEX tag attributes). If you set the tabIndex property of one form

element to 1, then that element is first in the tabbing order. Meanwhile, the rest fall

into source code tabbing order on successive presses of the Tab key. If you set two

elements to, say, 1, then the tabbing proceeds in source code order for those two

elements and then onto the rest of the elements in source code order starting with

the top of the page.

In Internet Explorer, you can remove an element from tabbing order entirely by

setting its tabIndex property to -1. Users can still click those elements to make

changes to form element settings, but tabbing bypasses the element.

Example (with Listing 15-16) on the CD-ROM

Related Items: blur(), focus() methods.

tagName
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The tagName property returns a string of the HTML or (in IE5+ and NN6) XML tag

name belonging to the object. All tagName values are returned in all uppercase

characters, even if the source code is written in all lowercase or a mixture. This

consistency makes it easier to perform string comparisons. For example, you can

create a generic function that contains a switch statement to execute actions for

some tags and not others. The skeleton of such a function looks like the following:

function processObj(objRef) {
switch (objRef.tagName) {

case “TR”:
[statements to deal with table row object]
break

case “TD”:
[statements to deal with table cell object]
break

case “COLGROUP”:
[statements to deal with column group object]
break

default:
[statements to deal with all other object types]

}
}

On the
CD-ROM

elementObject.tagName

(c) ketabton.com: The Digital Library

148 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: nodeName property; getElementsByTagName() method.

tagUrn
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The tagUrn property is associated primarily with XML that is embedded within

a document. When you include XML, you can specify one or more XML Namespaces

that define the “owner” of a custom tag name — thus preventing conflicts of identi-

cal custom tags from different sources in a document. (See Chapter 33 for more

about XML objects.) A Namespace definition can include a Uniform Resource Name

(URN) that lets a page link to a destination on the network that further defines such

Namespace aspects as a behavior associated with a custom XML element.

The XML Namespace is assigned (in IE5+) as an attribute of the <HTML> tag that

surrounds the entire document.

<HTML XMLNS:Fred=”http://www.giantco.com/xmllib/”>

After that, the namespace value precedes all custom tags linked to that

Namespace:

<Fred:FIRST_Name ID=”fredFirstName”/>

To find out the URN of the namespace “owner” of an element, you can read the

tagUrn property of that element. For the preceding example, the tagURN property

returns www.giantco.com/xmllib. For regular HTML elements, the returned value

is always null. The corresponding property in the W3C DOM and NN6 is

namespaceURI.

Example on the CD-ROM

Related Item: scopeName property.

title
Value: String Read/Write

On the
CD-ROM

On the
CD-ROM

elementObject.title

(c) ketabton.com: The Digital Library

149Chapter 15 ✦ Generic HTML Element Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The W3C standard states that you should use the title property (and TITLE
attribute) in an “advisory” role. The main browsers interpret that role as text

assigned to tooltips that pop up momentarily while the cursor rests atop an ele-

ment. The advantage of having this property available for writing is that your

scripts can modify an element’s tooltip text in response to other user interaction on

the page.

A tooltip can provide brief help about the behavior of icons or links on the page.

It can also convey a summary of key facts from the destination of a link, thus

enabling a visitor to see vital information without having to navigate to the other

page. For example, Microsoft’s Web authoring documentation online (http://
msdn.microsoft.com) uses the tooltips in listings of scriptable properties to dis-

play a list of elements for which the property is available. While this information

also appears on the destination of the link for each property, you can see at a

glance, for instance, which instance of the two listings for the same property name

apply to the object in which you’re interested. The browser governs tooltip font

and color characteristics, which are not changeable via scripting.

As with setting the status bar, I don’t recommend using tooltips for conveying

mission-critical information to the user. Not all users are patient enough to let the

pointer pause for the tooltip to appear. On the other hand, a user may be more

likely to notice a tooltip once it appears rather than a status bar message (even

though the latter appears instantaneously).

Example (with Listing 15-17) on the CD-ROM

Related Item: window.status property.

uniqueID
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

You can let the IE5+/Windows browser generate an identifier (id property) for a

dynamically generated element on the page with the aid of the uniqueID property.

You should use this feature with care because the ID it generates at any given time

may differ from the ID generated the next time the element is created in the page.

Therefore, you should use the uniqueID property when your scripts require an

unknown element to have an id property but the algorithms are not expecting any

specific identifier.

On the
CD-ROM

elementObject.uniqueID

(c) ketabton.com: The Digital Library

150 Part III ✦ Document Objects Reference

To guarantee that an element gets only one ID assigned to it while the object

exists in memory, assign the value via the uniqueID property of that same object —

not some other object. Once you retrieve the uniqueID property of an object, the

property’s value stays the same no matter how often you access the property again.

In general, you assign the value returned by the uniqueID property to the object’s

id property for other kinds of processing. (For example, the parameter of a

getElementById() method requires the value assigned to the id property of an

object.)

Example (with Listing 15-18) on the CD-ROM

Related Items: id property; getElementById() method.

Methods
addBehavior(“URL”)

Returns: Integer ID.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The addBehavior() method imports an external Internet Explorer behavior and

attaches it to the current object, thereby extending the properties and/or methods

of that object. See Chapter 48 for details on IE behaviors (new in IE5 for Windows).

The sole parameter of the addBehavior() method is a URL pointer to the

behavior component’s code. This component may be in an external file (with an

.htc extension), in which case the parameter can be a relative or absolute URL. IE

also includes a library of built-in (default) behaviors, whose URLs are in the follow-

ing format:

#default#behaviorName

Here, behaviorName is one of the default behaviors (see Chapter 48). If the

behavior is imported into the document via the OBJECT tag, the addBehavior()
method parameter is the ID of that element in the following format:

#objectID

When you add a behavior, the loading of the external code occurs asyn-

chronously. This means that even though the method returns a value instantly, the

behavior is not necessarily ready to work. Only when the behavior is fully loaded

can it respond to events or allow access to its properties and methods. Behaviors

loaded from external files observe domain security rules. The behavior component

and the HTML page that loads it must come from the same server and domain; they

also must load via the same protocol (for example, http://, https://, and

file:// are mutually exclusive, mismatched protocols).

On the
CD-ROM

elementObject.addBehavior()

(c) ketabton.com: The Digital Library

151Chapter 15 ✦ Generic HTML Element Objects

Example (with Listings 15-19a and 15-19b) on the CD-ROM

Related Items: readyState property; removeBehavior() method; behaviors

(Chapter 48).

addEventListener(“eventType”,
listenerFunc, useCapture)
removeEventListener(“eventType”,
listenerFunc, useCapture)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The W3C DOM’s event mechanism accommodates both event bubbling and trick-

ling (see Chapter 29). While the new mechanism supports the long-standing notion

of binding an event to an element by way of HTML attributes (for example, the old

onClick event handler), it encourages binding events by registering an event lis-

tener with an element. (In browsers that support the W3C event model, other ways

of binding events — such as event handler attributes — are internally converted to

registered events.)

To tell the DOM that an element should “listen” for a particular kind of event, use

the addEventListener() method on the element object. The method requires

three parameters. The first is a string version of the event type for which the ele-

ment should listen. Event type strings do not include the well-used “on” prefix of

event handlers. Instead, the names consist only of the event and are usually in all

lowercase (except for some special system-wide events preceded by DOM). Table

15-7 shows all the events recognized by the W3C DOM specification (although NN6

may not implement them all).

Table 15-7 W3C DOM Event Listener Types

abort error

blur focus

change load

click mousedown

DOMActivate mousemove

Continued

On the
CD-ROM

elementObject.addEventListener()

(c) ketabton.com: The Digital Library

152 Part III ✦ Document Objects Reference

Table 15-7 (continued)

DOMAttrModified mouseout

DOMCharacterDataModified mouseover

DOMFocusIn mouseup

DOMFocusOut reset

DOMNodeInserted resize

DOMNodeInsertedIntoDocument scroll

DOMNodeRemoved select

DOMNodeRemovedFromDocument submit

DOMSubtreeModified unload

Note that the event types specified in the DOM Level 2 are more limited than the

wide range of events defined in IE4+. Also, the W3C temporarily tabled the issue of

keyboard events until DOM Level 3. Fortunately, Netscape implements keyboard

events in a fashion that likely will appear as part of the W3C DOM.

The second parameter of the addEventListener() method is a reference to

the JavaScript function to be invoked. This is the same form used to assign a func-

tion to an event property of an object (for example, objReference.onclick =
someFunction), and it should not be a quoted string. This approach also means

that you cannot specify parameters in the function call. Therefore, functions that

need to reference forms or form control elements must build their own references

(with the help of the event object’s property that says which object is the event’s

target).

By default, the W3C DOM event model has events bubble upward through the

element container hierarchy starting with the target object of the event (for exam-

ple, the button being clicked). However, if you specify true for the third parameter

of the addEventListener() method, event capture is enabled for this particular

event type whenever the current object is the event target. This means that any

other event type targeted at the current object bubbles upward unless it, too, has

an event listener associated with the object and the third parameter is set to true.

NN6 does not always set event capture for an element, even when you specify
true as the third parameter of addEventListener(). For the most part, you
can make do with event bubbling by adding an event listener to a container higher
up the element hierarchy. Because event capture is a part of the W3C DOM event
model, this feature will likely be implemented in a future version of NN.

Using the addEventListener() method requires that the object to which it is

attached already exist. Therefore, you most likely will use the method inside an

initialization function triggered by the onLoad event handler for the page. (The

document object can use addEventListener() for the load event immediately

because the document object exists early in the loading process.)

Caution

elementObject.addEventListener()

(c) ketabton.com: The Digital Library

153Chapter 15 ✦ Generic HTML Element Objects

A script can also eliminate an event listener that was previously added by script.

The removeEventListener() method takes the same parameters as

addEventListener(), which means that you can turn off one listener without dis-

turbing others. In fact, because you can add two listeners for the same event and

listener function (one set to capture and one not — a rare occurrence, indeed), the

three parameters of the removeEventListener() enable you to specify precisely

which listener to remove from an object.

Unlike the event capture mechanism of NN4, the W3C DOM event model does not

have a “global” capture mechanism for an event type regardless of target. And with

respect to IE5, the addEventListener() method is closely analogous to the IE5

attachEvent() method. Also, event capture in IE5 is enabled via the

setCapture() method. Both the W3C and IE5 event models use their separate syn-

taxes to bind objects to event handling functions, so the actual functions may be

capable of serving both models with browser version branching required only for

event binding. See Chapter 29 for more about event handling with these two event

models.

Example (with Listing 15-20) on the CD-ROM

Related Items: attachEvent(), detachEvent(), dispatchEvent(),

fireEvent(), removeEventListener() methods.

appendChild(nodeObject)
Returns: Node object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Using the W3C DOM parent, node, and child terminology, you can create cross-

browser code (for IE5+ and NN6) that modifies HTML content on the page. The

appendChild() method inserts an element or text node (defined by other code

that comes before it) as the new, last child of the current element.

Aside from the more obvious application of adding a new child element to the

end of a sequence of child nodes, the appendChild() method is also practical for

building element objects and their content before appending, replacing, or inserting

the element into an existing document. The document.createElement() method

generates a reference to an element of whatever tag name you assign as that

method’s parameter. But this does nothing to populate the element’s attributes or

its content. While IE4+ offers nonstandard innerText and innerHTML shortcut

properties to assign content to an element (and NN6 provides innerHTML), the

DOM standard recommends adding child nodes to the new element (for more

details, see Chapter 14). For example, if you wish to create a B element and its

content, you first create the element and then append a text node, as in the follow-

ing sequence:

On the
CD-ROM

elementObject.appendChild()

(c) ketabton.com: The Digital Library

154 Part III ✦ Document Objects Reference

var newB = document.createElement(“B”)
newB.appendChild(document.createTextNode(“Important!”))

At this point, you can append or insert the newB element. It appears with its

content ready to go.

The appendChild() method returns a reference to the appended node object.

This reference differs from the object that is passed as the method’s parameter

because the returned value represents the object as part of the document rather

than as a freestanding object in memory.

Example (with Listing 15-21) on the CD-ROM

Related Items: removeChild(), replaceChild() methods; nodes and children

(Chapter 14).

applyElement(elementObject[, type])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The applyElement() method (not implemented in IE5/Mac) enables you to

insert a new element as the parent or child of the current object. An important

feature of this method is that the new object is wrapped around the current object

(if the new element is to become the parent) or the current object’s content (if the

new element is to become a child). When the new element becomes a child, all pre-

vious children are nested further by one generation to become immediate children

of the new element. You can imagine how the resulting action of this method affects

the containment hierarchy of the current element, so you must be careful in how

you use the applyElement() method.

One parameter, a reference to the object to be applied, is required. This object

may be generated from constructions such as document.createElement() or

from one of the child or node methods that returns an object. The second parame-

ter is optional, and it must be one of the following values:

Parameter Value Description

outside New element becomes the parent of the current object

inside New element becomes the immediate child of the current object

If you omit the second parameter, the default value (outside) is assumed.

On the
CD-ROM

elementObject.applyElement()

(c) ketabton.com: The Digital Library

155Chapter 15 ✦ Generic HTML Element Objects

Example (with Listing 15-22) on the CD-ROM

Related Items: insertBefore(), appendChild(), insertAdjacentElement()
methods.

attachEvent(“eventName”, functionRef)
detachEvent(“eventName”, functionRef)

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The attachEvent() method is used primarily within code that specifies IE

behaviors (see Chapter 48). But you can also use it in regular scripting as yet

another way to bind an event handler to an object. The following example charac-

terizes the more typical approach to assigning an event handler:

myObject.onmousedown = setHilite

The version with attachEvent() is as follows:

myObject.attachEvent(“onmousedown”, setHilite)

Both parameters are required. The first parameter is a string version (case-

insensitive) of the event name. The second is a reference to the function to be

invoked when the event fires for this object. A function reference is an unquoted,

case-sensitive identifier for the function without any parentheses (which also

means that you cannot pass parameters in this function call).

There is a subtle benefit to using attachEvent() over the event property bind-

ing approach. When you use attachEvent(), the method returns a Boolean value

of true if the event binding succeeds. IE triggers a script error if the function refer-

ence fails, so don’t rely on a returned value of false to catch these kinds of errors.

Also, there is no validation that the object recognizes the event name.

If you have used attachEvent() to bind an event handler to an object’s event,

you can disconnect that binding with the detachEvent() method. The parameters

are the same as for attachEvent(). The detachEvent() method cannot unbind

events whose associations are established via tag attributes or event property

settings.

The W3C DOM event model provides functionality similar to these IE-only meth-

ods: addEventListener() and removeEventListener().

Example on the CD-ROMOn the
CD-ROM

On the
CD-ROM

elementObject.attachEvent()

(c) ketabton.com: The Digital Library

156 Part III ✦ Document Objects Reference

Related Items: addEventListener(), detachEvent(), dispatchEvent(),

fireEvent(), removeEventListener() methods; Event binding (Chapter 14).

blur()
focus()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The blur() method removes focus from an element, while the focus() method

gives focus to an element. Even though the blur() and focus() methods have

been around since the earliest scriptable browsers, not every focusable object has

enjoyed these methods since the beginning. Browsers prior to IE4 and NN6 limited

these methods primarily to the window object and form control elements.

Windows
For window objects, the blur() method (NN3+, IE4+) pushes the referenced win-

dow to the back of all other open windows. If other browser suite windows (such as

e-mail or news reader windows) are open, the window receiving the blur() method

is placed behind these windows as well.

The window.blur() method does not adjust the stacking order of the current
window in NN6. But a script in a window can invoke the focus() method of
another window to bring that other window to the front (provided a scriptable
linkage, such as the window.opener property, exists between the two windows).

The minute you create another window for a user in your Web site environment,

you must pay attention to window layer management. With browser windows so

easily activated by the slightest mouse click, a user can lose a smaller window

behind a larger one in a snap. Most inexperienced users don’t think to check the

Windows taskbar or browser menu bar (if the browser is so equipped) to see if a

smaller window is still open and then activate it. If that subwindow is important to

your site design, then you should present a button or other device in each window

that enables users to safely switch among windows. The window.focus() method

brings the referenced window to the front of all the windows.

Rather than supply a separate button on your page to bring a hidden window

forward, you should build your window-opening functions in such a way that if the

window is already open, the function automatically brings that window forward

(as shown in Listing 15-23). This removes the burden of window management from

your visitors.

The key to success with this method is making sure that your references to the

desired windows are correct. Therefore, be prepared to use the window.opener
property to refer to the main window if a subwindow needs to bring the main

window back into focus.

Caution

elementObject.blur()

(c) ketabton.com: The Digital Library

157Chapter 15 ✦ Generic HTML Element Objects

Form elements
The blur() and focus() methods apply primarily to text-oriented form con-

trols: text input, SELECT, and TEXTAREA elements.

Just as a camera lens blurs when it goes out of focus, a text object “blurs” when

it loses focus — when someone clicks or tabs out of the field. Under script control,

blur() deselects whatever may be selected in the field, and the text insertion

pointer leaves the field. The pointer does not proceed to the next field in tabbing

order, as it does if you perform a blur by tabbing out of the field manually.

For a text object, having focus means that the text insertion pointer is flashing in

that text object’s field. Giving a field focus is like opening it up for human editing.

Setting the focus of a text field or TEXTAREA does not, by itself, enable you to

place the cursor at any specified location in the field. The cursor usually appears at

the beginning of the text. To prepare a field for entry to remove the existing text,

use both the focus() and select() methods in series. Be aware, however, that the

focus() method does not work reliably in Navigator 3 for UNIX clients: While the

select() method selects the text in the designated field, focus is not handed to

the field.

One other caveat about using focus() and select() together to preselect the

content of a text field for immediate editing: Many versions of Internet Explorer fail

to achieve the desired results due to an internal timing problem. You can work

around this problem (and remain compatible with Navigator) by initiating the

focus and selection actions through a setTimeout() method. See Chapter 43 on

data validation for an example.

A common design requirement is to position the insertion pointer at the end of a

text field or TEXTAREA so that a user can begin appending text to existing content

immediately. This is possible in IE4+ with the help of the TextRange object. The fol-

lowing script fragment moves the text insertion pointer to the end of a TEXTAREA

element whose ID is myTextarea:

var range = document.all.myTextarea.createTextRange()
range.move(“textedit”)
range.select()

You should be very careful in combining blur() or focus() methods with

onBlur and onFocus event handlers — especially if the event handlers display alert

boxes. Many combinations of these events and methods can cause an infinite loop

in which it is impossible to dismiss the alert dialog box completely. On the other

hand, there is a useful combination for older browsers that don’t offer a disabled
property for text boxes. The following text field event handler can prevent users

from entering text in a text field:

onFocus = “this.blur()”

Some operating systems and browsers enable you to give focus to elements such

as buttons (including radio and checkbox buttons) and hypertext links (encom-

passing both A and AREA elements). Typically, once such an element has focus, you

can accomplish the equivalent of a mouse click on the element by pressing the

spacebar on the keyboard. This is helpful for accessibility to those who have diffi-

culty using a mouse.

elementObject.blur()

(c) ketabton.com: The Digital Library

158 Part III ✦ Document Objects Reference

An unfortunate side effect of button focus in Win32 environments is that the

focus highlight (a dotted rectangle) remains around the button after a user clicks it

and until another object gets focus. You can eliminate this artifact for browsers and

objects that implement the onMouseUp event handler by including the following

event handler in your buttons:

onMouseUp = “this.blur()”

IE5.5 recognizes the often undesirable effect of that dotted rectangle and lets

scripts set the hideFocus property of an element to true to keep that rectangle

hidden while still giving the element focus. It is a tradeoff for the user, however,

because there is no visual feedback about which element has focus.

Other elements
For other kinds of elements that support the focus() method, you can bring an

element into view in lieu of the scrollIntoView() method. Link (A) and AREA ele-

ments in Windows versions of IE display the dotted rectangle around them after a

user brings focus to them. To eliminate that artifact, use the same

onMouseUp = “this.blur()”

event handler as (or IE5.5 hideFocus property) just described for form controls.

Microsoft increased the breadth of objects that support the blur() and focus()
methods in IE5.

Example (with Listing 15-23) on the CD-ROM

Related Items: window.open(), document.formObject.textObject.select()
methods.

clearAttributes()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The clearAttributes() method removes all attributes from an element except

the NAME and ID values. Thus, styles and event handlers are removed, as are cus-

tom attributes assigned in either the HTML source code or later by script. You

should know that the clearAttributes() method does not alter the length of the

element’s attributes collection because the collection always contains all possi-

ble attributes for an element. (See the attributes property for elements earlier in

this chapter.)

This method is handy if you wish to construct an entirely new set of attributes

for an element and prefer to start out with a blank slate. Be aware, however, that

On the
CD-ROM

elementObject.clearAttributes()

(c) ketabton.com: The Digital Library

159Chapter 15 ✦ Generic HTML Element Objects

unless your scripts immediately assign new attributes to the element, the

appearance of the element reverts to its completely unadorned form until you

assign new attributes. This means that even positioned elements find their way

back to their source code order until you assign a new positioning style. If you sim-

ply want to change the value of one or more attributes of an element, it is faster to

use the setAttribute() method or adjust the corresponding property.

To accomplish a result in NN6 that simulates that of IE5’s clearAttributes(),

you must iterate through all attributes of an element and remove those attributes

(via the removeAttribute() method) whose names are other than ID and NAME.

Example on the CD-ROM

Related Items: attributes property; getAttribute(), setAttribute(),

removeAttribute(), mergeAttributes(), and setAttributeNode() methods.

click()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The click() method lets a script perform nearly the same action as clicking an

element. While this method was available in one form or another since the begin-

ning of scripting, it was available only on INPUT elements that act as buttons (input

type button, reset, submit, radio, and checkbox). Most element objects received the

method in IE4 and NN6.

The behavior of the click() method has also changed over time. Prior to NN4

and IE4, the click() method invoked on a button did not trigger the onClick
event handler for the object. This has significant impact if you expect the onClick
event handler of a button to function even if a script performs the “click.” For ear-

lier browser versions, you have to invoke the event handler statements directly.

Also, just because a script is “clicking” a button, not all buttons in all platforms

change their appearance in response. For example, NN4 on the Mac does not

change the state of a checkbox when clicked remotely. (Win32 versions of version 4

browsers do change state.)

If you want to script the action of “clicking” a button, you can safely invoke the

resulting event handler function directly. And if the element is a radio button or

checkbox, handle the change of state directly (for example, set the checked prop-

erty of a checkbox) rather than expect the browser to take care of it for you.

Example on the CD-ROMOn the
CD-ROM

On the
CD-ROM

elementObject.click()

(c) ketabton.com: The Digital Library

160 Part III ✦ Document Objects Reference

Related Item: onClick event handler.

cloneNode(deepBoolean)
Returns: Node object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The cloneNode() method makes an exact copy of the current node object. This

copy does not have a parent node or other relationship with any element once the

copy exists (of course, the original node remains in place). The clone also does not

become part of the document’s object model unless you explicitly insert or append

the node somewhere on the page. The copy includes all element attributes, includ-

ing the ID attribute. Because the value returned by the cloneNode() method is a

genuine Node object, you can operate on it with any Node object methods while it is

still in the non-document object state.

The Boolean parameter of the cloneNode() method controls whether the copy

of the node includes all child nodes (true) or just the node itself (false). For

example, if you clone a paragraph element by itself, the clone consists only of the

raw element (equivalent of the tag pair, including attributes in the start tag) and

none of its content. But including child nodes makes sure that all content within

that paragraph element is part of the copy. This parameter is optional in IE5

(defaulting to false), but it is required in NN6 and the W3C DOM.

Example on the CD-ROM

Related Items: Node object (Chapter 14); appendChild(), removeChild(),

removeNode(), replaceChild(), and replaceNode() methods.

componentFromPoint(x,y)
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The componentFromPoint() method assists in some event-related tasks. You

can use it for a kind of collision detection (in other words, to determine whether an

event occurs inside or outside of a particular element). If the element has scroll-

bars, the method can provide additional information about the event such as

precisely which component of the scrollbar the user activates. The method is not

implemented in IE5/Mac.

On the
CD-ROM

elementObject.componentFromPoint()

(c) ketabton.com: The Digital Library

161Chapter 15 ✦ Generic HTML Element Objects

A key aspect of this method is that you invoke it on any element that you want to

use as the point of reference. For example, if you want to find out if a mouseup event

occurs in an element whose ID is myTable, invoke the method as follows:

var result = document.all.myTable.componentFromPoint(event.clientX,
event.clientY)

Parameters passed to the method are x and y coordinates. These coordinates do

not have to come from an event, but the most likely scenario links this method with

an event of some kind. Mouse events (other than click) work best.

The value returned by the method is a string that provides details about where

the coordinate point is with respect to the current element. If the coordinate point is

inside the element’s rectangle, the returned value is an empty string. Conversely, if

the point is completely outside of the element, the returned value is the string “out-
side”. For scrollbar pieces, the list of possible returned values is quite lengthy (as

shown in Table 15-8). Microsoft defines additional values representing pieces of ele-

ment resizing handles when the browser is set to what the company calls DHTML

authoring mode in Windows. This mode involves a special ActiveX control that is

outside the scope of this book. Table 15-8 lists these extra values just the same.

Table 15-8 Returned Values for componentFromPoint()

Returned String Element Component at Coordinate Point

scrollbarDown Scrollbar down arrow

scrollbarHThumb Scrollbar thumb on horizontal bar

scrollbarLeft Scrollbar left arrow

scrollbarPageDown Scrollbar page-down region

scrollbarPageLeft Scrollbar page-left region

scrollbarPageRight Scrollbar page-right region

scrollbarPageUp Scrollbar page-up region

scrollbarRight Scrollbar right arrow

scrollbarUp Scrollbar up arrow

scrollbarVThumb Scrollbar thumb on vertical bar

handleBottom Resize handle at bottom

handleBottomLeft Resize handle at bottom left

handleBottomRight Resize handle at bottom right

handleLeft Resize handle at left

handleRight Resize handle at right

handleTop Resize handle at top

handleTopLeft Resize handle at top left

handleTopRight Resize handle at top right

elementObject.componentFromPoint()

(c) ketabton.com: The Digital Library

162 Part III ✦ Document Objects Reference

You do not have to use this method for most collision or event detection, how-

ever. The event object’s srcElement property returns a reference to whatever

object receives the event.

Example (with Listing 15-24) on the CD-ROM

Related Item: event object.

contains(elementObjectReference)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The contains() method reports whether the current object contains another

known object within its HTML containment hierarchy. Note that this is not geo-

graphical collision detection of overlapping elements, but rather the determination

of whether one element is nested somewhere within another.

The scope of the contains() method extends as deeply within the current

object’s hierarchy as is necessary to locate the object. In essence, the contains()
method examines all of the elements that are part of an element’s all array.

Therefore, you can use this method as a shortcut replacement for a for loop that

examines each nested element of a container for the existence of a specific element.

The parameter to the contains() method is a reference to an object. If you have

only the element’s ID as a string to go by, you can use the document.all.item()
method to generate a valid reference to the nested element. If the parameter is a

reference to an element that has the same ID as another within the scope of the

method, a script error results because a reference to such an element returns an

array of elements rather than a valid object reference.

An element always contains itself.

Example on the CD-ROM

Related Items: item(), document.getElementById() methods.

On the
CD-ROM

Note

On the
CD-ROM

elementObject.contains()

(c) ketabton.com: The Digital Library

163Chapter 15 ✦ Generic HTML Element Objects

detachEvent()
See attachEvent().

dispatchEvent(eventObject)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The dispatchEvent() method allows a script to fire an event aimed at any

object capable of supporting that event. This is the W3C event model way of gener-

alizing mechanisms that earlier browsers sometimes mimic with object methods

such as click() and focus().

The process of generating one of these events is similar to the way a script gen-

erates a new node and inserts that node somewhere in the document object model.

For events, however, the object that is created is an Event object, which is gener-

ated via the document.createEvent() method. An event generated in this manner

is simply a specification about an event. Use properties of an event object to supply

specifics about the event, such as its coordinates or mouse button. Then dispatch

the event to a target object by invoking that target object’s dispatchEvent()
method and passing the newly created Event object as the sole parameter.

Interpreting the meaning of the Boolean value that the dispatchEvent() method

returns is not straightforward. The browser follows the dispatched event through

whatever event propagation is in effect for that object and event type (either bub-

bling or capture). If any of the event listener functions that are triggered by this

dispatched event invoke the preventDefault() method, the dispatchEvent()
method returns false to indicate that the event did not trigger the native action of

the object; otherwise, the method returns true. Notice that this returned value indi-

cates nothing about propagation type or how many event listeners run as a result of

dispatching this event.

While the dispatchEvent() method is implemented in NN6, the browser does
not yet provide a way to generate new events from scratch. And if you attempt to
redirect an existing event to another object via the dispatchEvent() method,
the browser is prone to crashing.

Example (with Listing 15-25) on the CD-ROM

Related Item: fireEvent() method.

On the
CD-ROM

Caution

elementObject.dispatchEvent()

(c) ketabton.com: The Digital Library

164 Part III ✦ Document Objects Reference

fireEvent(“eventType”[, eventObjectRef])
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

While some objects have methods that emulate physical events (for example,

the click() and focus() methods), IE5.5 generalizes the mechanism by letting a

script direct any valid event to any object. The fireEvent() method is the vehicle.

One required parameter is the event type, formatted as a string. IE event types

are coded just like the property names for event handlers (for example, onclick,

onmouseover, and so on).

A second, optional parameter is a reference to an existing event object. This

object can be an event that some user or system action triggers (meaning that the

fireEvent() method is in a function invoked by an event handler). The existing

event can also be an object created by the IE5.5 document.createEventObject()
method. In either case, the purpose of providing an existing event object is to set

the properties of the event object that the fireEvent() method creates. The

event type is defined by the method’s first parameter, but if you have other proper-

ties to set (for example, coordinates or a keyboard key code), then those properties

are picked up from the existing object. Here is an example of a sequence that cre-

ates a new mousedown event, stuffs some values into its properties, and then fires

the event at an element on the page:

var newEvent = document.createEventObject()
newEvent.clientX = 100
newEvent.clientY = 30
newEvent.cancelBubble = false
newEvent.button = 1
document.all.myElement.fireEvent(“onmousedown”, newEvent)

Events generated by the fireEvent() method are just like regular IE window.
event objects, and they have several important event object properties that the

browser presets. Importantly, cancelBubble is set to false and returnValue is

set to true— just like a regular user- or system-induced event. This means that if

you want to prevent event bubbling and/or prevent the default action of the event’s

source element, then the event handler functions must set these event object prop-

erties just like normal event handling in IE.

The fireEvent() method returns a Boolean value that the returnValue
property of the event determines. If the returnValue property is set to false
during event handling, then the fireEvent() method returns false. Under normal

processing, the method returns true.

Although the W3C DOM Level 2 event model includes the dispatchEvent()
method to accommodate script-generated events (and Event object methods to

create event objects), Microsoft has so far elected to ignore the standard recom-

mendation. While there is some similarity between the basic operations of

elementObject.fireEvent()

(c) ketabton.com: The Digital Library

165Chapter 15 ✦ Generic HTML Element Objects

fireEvent() and dispatchEvent(), the two methods diverge significantly in

advanced applications (for example, the way events can propagate and the W3C

notion of an Event object).

Example (with Listing 15-26) on the CD-ROM

Related Item: dispatchEvent() method.

focus()
See blur().

getAdjacentText(“position”)
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The getAdjacentText() method enables you to extract plain text components

of an element object (in other words, without any HTML tag information). This

method is not implemented in IE5/Mac. The sole parameter is one of four case-

insensitive string constant values that indicate from where, in relation to the

current object, the text should be extracted. The values are:

Parameter Value Description

beforeBegin Text immediately in front of the element’s tag, back to the
preceding tag

afterBegin Text that begins inside the element tag, up to the next tag
(whether it be a nested element or the element’s end tag)

beforeEnd Text immediately in front of the element’s end tag, back to the
preceding tag (whether it be a nested element or the
element’s start tag)

afterEnd Text immediately following the element’s end tag, forward
until the next tag

If the current object has no nested elements, then the afterBegin and

beforeEnd versions both return the same as the object’s innerText property.

When the current object is encased immediately within another element (for exam-

ple, a TD element inside a TR element), there is no text before the element’s begin-

ning or after the element’s end so these values are returned as empty strings.

On the
CD-ROM

elementObject.getAdjacentText()

(c) ketabton.com: The Digital Library

166 Part III ✦ Document Objects Reference

The strings returned from this method are roughly equivalent to values of text

fragment nodes in the W3C DOM, but IE5 treats these data pieces only as string

data types rather than as text node types. Cross-browser DOM equivalents for the

four versions are:

document.getElementById(“objName”).previousSibling.nodeValue
document.getElementById(“objName”).firstChild.nodeValue
document.getElementById(“objName”).lastChild.nodeValue
document.getElementById(“objName”).nextSibling.nodeValue

Example on the CD-ROM

Related Items: childNodes, data, firstChild, lastChild, nextSibling,

nodeValue, and previousSibling properties.

getAttribute(“attributeName”[,
caseSensitivity])

Returns: See text.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The getAttribute() method returns the value assigned to a specific attribute

of the current object. You can use this method as an alternative to retrieving prop-

erties of an object, particularly when your script presents you with the attribute

name as a string (in contrast to a fully formed reference to an object and its

property). Thus, the following example statements yield the same data:

var mult = document.all.mySelect.multiple
var mult = document.all.mySelect.getAttribute(“multiple”)

Returned value types from getAttribute() are either strings (including

attribute values assigned as unquoted numeric values) or Booleans (for example,

the multiple property of a SELECT element object).

The W3C DOM Level 2 standard recommends getAttribute() and
setAttribute() for reading and writing element object attribute values, rather
than reading and writing those values by way of their corresponding properties.
While using these methods is certainly advisable for XML elements, the same DOM
standard sends conflicting signals by defining all kinds of properties for HTML ele-
ment objects. Browsers, of course, will support access via properties well into the
future, so don’t feel obligated to change your ways.

Note

On the
CD-ROM

elementObject.getAttribute()

(c) ketabton.com: The Digital Library

167Chapter 15 ✦ Generic HTML Element Objects

All browsers that support the getAttribute() method require one parameter,

which is a string of the attribute name. By default, this parameter is not case-sensi-

tive. Note that this has impact on custom attributes that you might assign to HTML

or XML elements in your documents. Attribute names are automatically converted

to lowercase when they are turned into properties of the object. Therefore, you

must avoid reusing attribute names, even if you use different case letters in the

source code assignments.

IE includes an optional extension to the method in the form of a second parame-

ter that enables you to be more specific about the case-sensitivity of the first

parameter. The default value of the second parameter is false, which means that

the first parameter is not case-sensitive. A value of true makes the first parameter

case-sensitive. This matters only if you use setAttribute() to add a parameter to

an existing object and in the IE version of that method insists on case-sensitivity.

The default behavior of setAttribute() respects the case of the attribute name.

See also the discussion of the setAttribute() method later in this chapter with

regard to setAttribute()’s influence over the IE attributes property.

Example on the CD-ROM

Related Items: attributes property; document.createAttribute(),

setAttribute() methods.

getAttributeNode(“attributeName”)
Returns: Attribute node object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

In the W3C DOM, an attribute is an object that inherits all the properties of a

Node object (see Chapter 14). As its name implies, an attribute object represents a

name–value pair of an attribute that is explicitly defined inside an element’s tag.

The ability to treat attributes as node objects is far more important when working

with XML than HTML, but it is helpful to understand attribute nodes within the con-

text of the W3C DOM object-oriented view of a document. Importantly, attribute

nodes specifically are not recognized as nodes of a document hierarchy. Therefore,

an attribute node is not a child node of the element that defines the attribute.

But the “nodeness” of attributes comes into play when comparing the contents

of an object’s attributes property in the IE and W3C DOM worlds. In IE5+, the

attributes property returns an array of all attributes for an element (whether or

not the attributes are explicitly included in the tag). But the W3C attributes prop-

erty builds on the DOM’s formal structure by returning an object known (internally)

as a named node map. Like an array, the named node map has a length property

(facilitating for loop interation through the map), plus several methods that allow

On the
CD-ROM

elementObject.getAttributeNode()

(c) ketabton.com: The Digital Library

168 Part III ✦ Document Objects Reference

for inserting, removing, reading, or writing attribute name–value pairs within the

node map. To a script, the value of the attributes property can behave the same

in both IE5 and the W3C DOM provided that scripts don’t have to dig too deeply

into the nature of each object model’s idea of what an attribute object is.

In IE5, an attribute object is a relatively simple object consisting of nodeName,

nodeValue, and specified properties. In the W3C DOM, an attribute object is

something more substantial, primarily because it inherits all the properties of the

Node object. Table 5-9 compares the properties of an attribute object in NN6 and IE5.

Table 15-9 Attribute Object Properties in NN6 and IE5

NN6 IE5

attributes

childNodes

firstChild

lastChild

name

nextSibling

nodeName nodeName

nodeType

nodeValue nodeValue

ownerDocument

parentNode

previousSibling

specified specified

value

Admittedly, the three properties implemented in IE5 are the most important, but

the shortcut approach negates the object-oriented system of the W3C DOM.

All of this is a long way to explain the W3C DOM getAttributeNode() method,

which returns a W3C DOM attribute object. The sole parameter of the method is a

case-insensitive string version of the attribute’s name. You can then use any of the

properties shown in Table 15-9 to get or set attribute values. Of course, HTML

attributes are generally exposed as properties of HTML elements, so it is usually

easier to read or write the object’s properties directly.

Example on the CD-ROMOn the
CD-ROM

elementObject.getAttributeNode()

(c) ketabton.com: The Digital Library

169Chapter 15 ✦ Generic HTML Element Objects

Related Items: attributes property; getAttribute(),

removeAttributeNode(), setAttributeNode() methods.

getBoundingClientRect()
Returns: TextRectangle object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

IE5+ assigns to every content-holding element a rectangle that describes the

space that the element occupies on the page. This rectangle is called a bounding
rectangle, and it is expressed in the IE5/Windows object model as a TextRectangle
object (even when the content is an image or some other kind of object). A

TextRectangle object has four properties (top, left, bottom, and right) that are

the pixel coordinates that define the rectangle. The getBoundingClientRect()
method returns a TextRectangle object that describes the bounding rectangle of

the current object. You can access an individual measure of an object’s bounding

rectangle, as in the following example:

var parTop = document.all.myP.getBoundingClientRect().top

For elements that consist of text, such as paragraphs, the dimensions of individual

TextRectangles for each line of text in the element influence the dimensions of the

bounding rectangle. For example, if a paragraph contains two lines, and the second

line extends only halfway across the width of the first line, the width of the second

line’s TextRectangle object is only as wide as the actual text in the second line. But

because the first line extends close to the right margin, the width of the encompass-

ing bounding rectangle is governed by that wider, first line TextRectangle.

Therefore, an element’s bounding rectangle is as wide as its widest line and as tall as

the sum of the height of all TextRectangle objects in the paragraph.

Another method, getClientRects(), enables you to obtain a collection of line-

by-line TextRectangle objects for an element. Neither method is implemented in

IE5/Mac.

Example (with Listing 15-27) on the CD-ROM

Related Items: getClientRects() method; TextRectangle object (Chapter 19).

getClientRects()
Returns: Array of TextRectangle objects.

On the
CD-ROM

elementObject.getClientRects()

(c) ketabton.com: The Digital Library

170 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The getClientRects() method returns an array of all TextRectangle objects

that fall within the current object the moment the method is invoked. Each

TextRectangle object has its own top, left, bottom, and right coordinate prop-

erties. You can then, for example, loop through all objects in this array to calculate

the pixel width of each line. If you want to find out the aggregate height and/or max-

imum width of the entire collection, you can use the getBoundingClientRect()
method as a shortcut. This method is not implemented in IE5/Mac.

Example on the CD-ROM

Related Items: getBoundingClientRect() method; TextRectangle object

(Chapter 19).

getElementsByTagName(“tagName”)
Returns: Array of element objects.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The getElementsByTagName() method returns an array of all elements of the

current object whose tags match the tag name supplied as the sole parameter to the

method. The tag name parameter must be in the form of a string and is case-insensi-

tive. The group of elements returned in the array includes only those elements that

are within the containment scope of the current object. Therefore, if you have two

table objects in a document and you invoke the getElementsByTagName(“td”)
method on one of them, the list of returned table cell elements is confined to those

cells within the current table object. The current element is not included in the

returned array.

The W3C DOM (but not implemented in IE5.x/Windows) accepts a wildcard char-

acter (“*”) as a parameter to the getElementsByTagName() method. The resulting

array of elements is similar to what IE4+ returns via the document.all collection.

See Chapter 14 for ideas on simulating document.all in NN6 using this technique.

Internet Explorer provides additional alternate syntax for this method: the

tags() method of the all collection. This alternate syntax also works in IE4 (see

the all property earlier in this chapter).

On the
CD-ROM

elementObject.getElementsByTagName()

(c) ketabton.com: The Digital Library

171Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Items: getElementById(), tags() methods.

getExpression(“attributeName”)
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The getExpression() method (not implemented in IE5/Mac) returns the text of

the expression that was assigned to an element’s attribute via the setExpression()
method. The returned value is not the value of the expression, but rather the expres-

sion itself. If you want to find out the current value of the expression (assuming that

the variables used are within the scope of your script), you can use the eval() func-

tion on the call to getExpression(). This action converts the string to a JavaScript

expression and returns the evaluated result.

One parameter, a string version of the attribute name, is required.

Example on the CD-ROM

Related Items: document.recalc(), removeExpression(), setExpression()
methods.

hasChildNodes()
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The hasChildNodes() method returns true if the current object has child

nodes nested within; it returns false otherwise. A child node is not necessarily the

same as a child element, so the following two expressions return true when the

current object has at least one child node:

document.getElementById(“myObject”).hasChildNodes()
document.getElementById(“myObject”).childNodes.length > 0

On the
CD-ROM

On the
CD-ROM

elementObject.hasChildNodes()

(c) ketabton.com: The Digital Library

172 Part III ✦ Document Objects Reference

You cannot use the second expression interchangeably with the following state-

ment (which uses the IE-only children property):

document.getElementById(“myObject”).children.length > 0

You generally use the hasChildNodes() method in a conditional expression to

make sure such nodes exist before performing operations on them:

if (document.getElementById(“myObject”).hasChildNodes() {
statements that apply to child nodes

}

Example on the CD-ROM

Related Items: childNodes property; appendChild(), removeChild(),

replaceChild() methods.

insertAdjacentElement(“location”,
elementObject)

Returns: Object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The insertAdjacentElement() method (not implemented in IE5/Mac) inserts

an element object (coming from a variety of sources) in a specific position relative

to the current object. Both parameters are required. The first must be one of four

possible case-insensitive locations for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content

beforeEnd Before the end tag, but after all other nested content

afterEnd After the end tag

These locations are relative to the current object. The element type of the cur-

rent object (a block-level or inline element) has great bearing on how the inserted

element is rendered. For example, suppose you create a B element (using docu-
ment.createElement()) and assign some inner text to it. You then use

insertAdjacentElement() in an effort to insert this B element before some text

in a P element. Because a P element is a block-level element, the location

On the
CD-ROM

elementObject.insertAdjacentElement()

(c) ketabton.com: The Digital Library

173Chapter 15 ✦ Generic HTML Element Objects

beforeBegin places the new B element before the start tag of the P element. This

means, however, that the bold text appears in a text line above the start of the P

element because a <P> tag begins a new block at the left margin of its container

(unless instructed otherwise by style sheets). The resulting HTML looks like the

following:

The new element.<P>The original paragraph element.</P>

To make the new B element a part of the P element — but in front of the existing

P element’s content — use the afterBegin location. The resulting HTML looks like

the following:

<P>The new element.The original paragraph element.</P>

To complete the demonstration of the four location types, the following is the

result of the beforeEnd location:

<P>The original paragraph element. The new element.</P>

and this is the result of the afterEnd location:

<P>The original paragraph element.</P>The new element.

The object to be inserted is a reference to an element object. The object refer-

ence can come from any expression that evaluates to an element object or, more

likely, from the result of the document.createElement() method. Bear in mind

that the object generated by document.createElement() initially has no content,

and all attribute values are set to default values. Moreover, the object is passed to

insertAdjacentElement() by reference, which means that there is only one

instance of that object. If you attempt to insert that object in two places with two

statements, the object is moved from the first location to the second. If you need to

copy an existing object so that the original is not moved or otherwise disturbed by

this method, use the cloneNode() method to specify the true parameter to cap-

ture all nested content of the node.

Do not use this method to insert new table elements into a table. Instead, use the

many table-specific insertion methods that better treat rows, columns, and cells of

a table (see Chapter 27). And if you wish to insert an element that surrounds the

current element or wraps all of the content of the current element, use the

applyElement() method.

Example on the CD-ROM

Related Items: document.createElement(), applyElement() methods.

insertAdjacentHTML(“location”, “HTMLtext”)
insertAdjacentText(“location”, “text”)

Returns: Nothing.

On the
CD-ROM

elementObject.insertAdjacentHTML()

(c) ketabton.com: The Digital Library

174 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These two methods insert HTML or straight text at a location relative to the

current element. They are intended for use after a page loads, rather than inserting

content while the page loads (in which case you can use document.write() wher-

ever you need evaluated content to appear on the page).

The first parameter must be one of four possible case-insensitive locations for

the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content

beforeEnd Before the end tag, but after all other nested content

afterEnd After the end tag

These locations yield the same results as described in the

insertAdjacentElement() function discussed earlier.

Whether you use insertAdjacentHTML() or insertAdjacentText() depends

on the nature of your content and what you want the browser to do with it. If the

content contains HTML tags that you want the browser to interpret and render as if

it were part of the page source code, then use the insertAdjacentHTML() method.

All tags become objects in the document’s object model. But if you want only to

display some text (including HTML tags in their “raw” form), use

insertAdjacentText(). The rendering engine does not interpret any tags

included in the string passed as the second parameter. Instead, these tags are dis-

played as characters on the page. This distinction is identical to the one between

the innerHTML and innerText properties.

The difference between insertAdjacentHTML() and

insertAdjacentElement() is the nature of the content that you insert. The for-

mer enables you to accumulate the HTML as a string, while the latter requires the

creation of an element object. Also, the two methods in this section work with IE4+

(including Mac versions), whereas insertAdjacentElement() requires the newer

object model of IE5 and later.

If the HTML you pass as the second parameter of insertAdjacentHTML()
contains <SCRIPT> tags, you must set the DEFER attribute in the opening tag. This

prevents script statements from executing as you insert them.

For inserting new elements into an existing table, use the variety of table object

methods for managing rows, columns, and cells (see Chapter 27).

elementObject.insertAdjacentHTML()

(c) ketabton.com: The Digital Library

175Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Items: innerText, innerHTML, outerText, outerHTML properties;

insertAdjacentElement(), replaceAdjacentText() methods.

insertBefore(newChildNodeObject[,
referenceChildNode])

Returns: Node object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The insertBefore() method is the W3C DOM syntax for inserting a new child

node into an existing element. Node references for both parameters must be valid

Node objects (including those that document.createElement() generates).

The behavior of this method might seem counter-intuitive at times. If you include

the second parameter (a reference to an existing child node of the current ele-

ment), the new child node is inserted before that existing one. But if you omit the

second parameter (or its value is null), the new child node is inserted as the last

child of the current element — in which case, the method acts the same as the

appendChild() method. The true power of this method is summoned when you

specify that second parameter; from the point of view of a parent element, you can

drop a new child into any spot among its existing children.

Bear in mind that the insertBefore() method works from a parent element.

Internet Explorer provides additional methods, such as

insertAdjacentElement(), to operate from the perspective of what will become a

child element.

Example (with Listing 15-28) on the CD-ROM

Related Items: appendChild(), replaceChild(), removeChild(),

insertAdjacentElement() methods.

item(index | “index” [, subIndex])
Returns: Object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

On the
CD-ROM

On the
CD-ROM

elementObjectCollection.item()

(c) ketabton.com: The Digital Library

176 Part III ✦ Document Objects Reference

The item() method works with most objects that are themselves collections of

other objects. In the W3C DOM framework, these kinds of objects are known as

named node lists (for objects such as nodes and attributes) or HTML collections
(for objects such as elements of a form). While the W3C DOM defines the item()
method, it does so with a single numeric parameter that is the index value of the

desired object within the collection. NN6 implements this version. If you know the

index number of the item, you can use JavaScript array syntax instead. The follow-

ing two statements return the same object reference:

document.getElementById(“myTable”).childNodes.item(2)
document.getElementById(“myTable”).childNodes[2]

And for IE’s all object, the index value for a given element is the same as the

element’s sourceIndex property.

IE4+ extends the possibilities by also allowing a string of the ID of an object within

the collection. (Integer values are required for the attributes, rules, and

TextRectangle objects, however.) Additionally, if the collection has more than one

object with the same ID (never a good idea except when necessary), a second

numeric parameter enables you to select which identically named group you want

(using zero-based index values within that subgroup). This obviously does not apply

to collections, such as attributes and rules, which have no ID associated with them.

The method returns a reference to the object specified by the parameters.

Example on the CD-ROM

Related Items: All object element properties that return collections (arrays) of

other objects.

mergeAttributes(“sourceObject”)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The mergeAttributes() method (not implemented in IE5/Mac) is a convenient

way to propagate attributes in newly created elements without painstakingly adding

attributes one at a time. Once you have an object whose attributes can function as a

prototype for other elements, those attributes (except for the ID attribute) can be

applied to a newly created element instantaneously.

Example (with Listing 15-29) on the CD-ROMOn the
CD-ROM

On the
CD-ROM

elementObject.mergeAttributes()

(c) ketabton.com: The Digital Library

177Chapter 15 ✦ Generic HTML Element Objects

Related Items: clearAttributes(), cloneNode(), removeAttributes()
methods.

normalize()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

In the course of appending, inserting, removing, and replacing child nodes of an

element, it is conceivable that two text nodes can end up adjacent to each other.

While this typically has no effect on the rendering of the content, some XML-centric

applications that rely heavily on the document node hierarchy to interpret content

properly may not like having two text nodes sitting next to each other. The “proper”

form of a node hierarchy is for a single text node to be bounded by other node

types. The normalize() method sweeps through the child nodes of the current

node object and combines adjacent text nodes into a single text node. The effect

obviously impacts the number of child nodes of an element, but it also cleanses the

nested node hierarchy.

Example on the CD-ROM

Related Items: document.createTextNode(), appendChild(), insertBefore(),

removeChild(), replaceChild() methods.

releaseCapture()
setCapture(containerBoolean)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

You can instruct a single object on an IE5+/Windows page to capture all mouse

events (onmousedown, onmouseup, onmousemove, onmouseout, onmouseover,

onclick, and ondblclick) via the IE-specific setCapture() method. This type of

event capture is somewhat similar to event capture mechanisms of NN4 and NN6

(which are quite different in and of themselves). However, the syntax is entirely

different, as is the overall approach to the code that handles events (see Chapter 29

on the Event object).

On the
CD-ROM

elementObject.releaseCapture()

(c) ketabton.com: The Digital Library

178 Part III ✦ Document Objects Reference

A primary scenario for IE mouse event capture is when some content appears on

the page that you wish to leave as the center of user focus — items such as pull-

down menus, context menus, or simulated modal window areas. When such items

appear on the screen, you want the effect of blocking all mouse events except those

that apply to the menu or currently visible pseudowindow. When the region disap-

pears, mouse events can be released so that individual elements (such as buttons

and links elsewhere on the page) respond to mouse events.

Event capture does not block the events. Instead, the events are redirected to

the object set to capture all mouse events. Events bubble up from that point unless

explicitly cancelled (see Chapter 29). For example, consider a document that has a

<BODY> tag containing an onClick event handler that governs the entire document

at all times. If you turn on event capture for a DIV somewhere in the document, the

click event first goes to the DIV. That DIV might have an onClick event handler that

looks to process click events when they occur in some of its child elements. If the

event handler for the DIV does not also cancel the bubbling of that click event, the

BODY element’s onClick event handler eventually receives and processes the

event, even though the DIV initially captured the event.

Deciding which object should capture events is an important design issue to

confront. With event capture engaged, all mouse events (no matter where they

occur) get funneled to the object set to capture the events. Therefore, if you design

an application whose entire interface consists of clicking and dragging positionable

elements, you can set one of those elements (or even the document object) to

perform the capturing. For pop-up regions, however, it is generally more logical

and convenient for your coding to assign the capture mechanism to the primary

container of the pop-up content (usually a positioned DIV).

The setCapture() method has one optional Boolean parameter. The parameter

controls whether mouse events on child elements within the capturing object are

under control of the event capture mechanism. The default value (true) means that

all mouse events targeted at elements within the current object go to the current

object rather than to the original target — the most likely way you will use

setCapture() for things such as pop-up and context menus. But if you specify

false as the parameter, then mouse events occurring in child elements of the cap-

turing container receive their events directly. From there, regular event bubbling

upward from the target ensues (see Chapter 29).

You may encounter odd behavior when the region you set up to capture mouse

events contains form elements such as text input fields and SELECT lists. Because

these elements require mouse events to gain focus for interaction, the event cap-

ture mechanism inhibits access to these items. To work around this behavior, you

can examine the click event’s srcElement property to see if the click was on one of

these elements and script the focus of that element (or instruct the user to press

the Tab key until the element gets focus manually).

Once an object is set to capture events, your other code must define which

events actually do something; and decide whether events should bubble up beyond

the capturing element. You need to worry about bubbling only if your design

includes mouse event handlers in elements higher up the element containment

hierarchy. You may not wish for those event handlers to fire while event capture is

on; in this case, you need to cancel the bubbling of those events in the capturing

object.

elementObject.releaseCapture()

(c) ketabton.com: The Digital Library

179Chapter 15 ✦ Generic HTML Element Objects

If your application design requires that the pop-up area be hidden and event han-

dling be returned to normal (such as after the user makes a pop-up menu selec-

tion), use the releaseCapture() method in conjunction with hiding the container.

Because event capture can be engaged for only one element at a time, you can

release capture by invoking the releaseCapture() method from the container or

from the document object.

Event capture is automatically disengaged when the user performs any of the

following actions:

✦ Gives focus to any other window

✦ Displays any system modal dialog window (for example, alert window)

✦ Scrolls the page

✦ Opens a browser context menu (by right-clicking)

✦ Tabs to give focus to the Address field in the browser window

Therefore, you may want to set the document object’s onLoseCapture event

handler to hide any container that your script displays in concert with event

capture.

Also be aware that even though mouse events may be captured to prevent

mouse access to the rest of the page, keyboard events are not captured. Thus,

using the event capture mechanism to simulate modal windows is not foolproof: a

user can tab to any form element or link in the page and press the spacebar or

Enter key to activate that element.

Event capture, as defined in the W3C DOM, operates differently from IE event

capture. In the W3C DOM, you can instruct the browser to substitute event capture

of any kind of event for the normal event bubbling behavior. For example, you can

attach an event listener to the BODY element in such a way that it sees all click

events aimed at elements contained by the BODY element before the events reach

their target elements. (See Chapters 14 and 29 for more on the W3C DOM event

model and how to integrate it into cross-browser applications.)

Example (with Listing 15-30) on the CD-ROM

Related Items: addEventListener(), dispatchEvent(), fireEvent(),

removeEventListener() methods; onlosecapture event; Event object

(Chapter 29).

removeAttribute(“attributeName”[,
caseSensitivity])

Returns: Boolean (IE); Nothing (NN).

On the
CD-ROM

elementObject.removeAttribute()

(c) ketabton.com: The Digital Library

180 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

If you create an attribute with the setAttribute() method, you can eliminate

that attribute from the element object via the removeAttribute() method. The

required parameter is the name of the attribute. IE4+ permits you to set and remove

attributes such that the attribute names are case-sensitive. The default behavior of

removeAttribute() in IE (the second parameter is a Boolean value) is false.

Therefore, if you supply a value of true for the case-sensitivity parameter in

setAttribute(), you should set the parameter to true in removeAttribute() to

ensure a proper balance between created and removed attributes.

The NN6 (and W3C) version of the removeAttribute() method has a single

parameter (a case-insensitive attribute name) and returns no value. The returned

value in IE is true if the removal succeeds and false if it doesn’t succeed (or the

attribute is one that you set in some other manner).

Example on the CD-ROM

Related Items: attributes property; document.createAttribute(),

getAttribute(), and setAttribute() methods.

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

Returns: Attribute object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

As discussed in the coverage of the getAttributeNode() method earlier in this

chapter, the W3C DOM treats a name–value attribute pair as an attribute object. An

attribute object is a distinct node within a named node map — a collection of

attribute objects belonging to an element. Understanding named node maps and

attribute objects is more useful in an XML environment where attributes cannot

only contain valuable data, but are not exposed to the document object model as

properties you can access via script. Instead of accessing an object’s properties,

you work with the actual attributes.

If you want to insert an attribute in the formal W3C methodology, you can use

document.createAttribute() to generate a new attribute object. Subsequent

script statements assign values to the nodeName and nodeValue properties to give

the attribute its traditional name–value pair. You can then insert that new attribute

On the
CD-ROM

elementObject.removeAttributeNode()

(c) ketabton.com: The Digital Library

181Chapter 15 ✦ Generic HTML Element Objects

object into the attribute list of an object via the setAttributeNode() method. The

sole parameter is an attribute object, and the return value is a reference to the

newly inserted attribute object.

To remove an attribute node from an element using this syntax, employ the

removeAttributeNode() method. Again, the sole parameter is an attribute object.

If your script knows only the attribute’s name, you can use getAttributeNode()
to obtain a valid reference to the attribute object. The removeAttributeNode()
method returns a reference to the removed attribute object. That object remains in

the browser’s memory, but it is not part of the document hierarchy. By capturing

this removed attribute object in a variable, you have the flexibility to modify and

assign it to another object elsewhere in the document.

A bug in NN6 prevents the setAttributeNode() method from returning a ref-
erence to an attribute when the attribute being set is not specified in the ele-
ment’s tag. The new attribute succeeds in becoming part of the element, but your
script does not automatically receive a reference to it. This behavior may disrupt a
design plan to create an attribute node via document.createAttribute(),
insert the new attribute temporarily via setAttributeNode(), and use
the reference returned by setAttributeNode() as the parameter to
removeAttributeNode() later.

In practice, you may rarely, if ever, need to address attributes as nodes. Other

methods — notably getAttribute(), removeAttribute(), and

setAttribute()— do the job when your scripts have only the name (as a string)

of an attribute belonging to an element.

Example on the CD-ROM

Related Items: attributes property; document.createAttribute(),

getAttribute(), getAttributeNode(), setAttribute() methods.

removeBehavior(ID)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The removeBehavior() method detaches a behavior from an object. It assumes

that the behavior was added to the object via the addBehavior() method. The

return value of the addBehavior() method is a unique identifier for that particular

behavior. This identifier is the required parameter for the removeBehavior()
method. Thus, you can add two behaviors to an object and remove just one of them

if so desired. If the removal succeeds, the removeBehavior() method returns

true; otherwise, it returns false.

On the
CD-ROM

Caution

elementObject.removeBehavior()

(c) ketabton.com: The Digital Library

182 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: addBehavior() method.

removeChild(nodeObject)
Returns: Node object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The removeChild() method erases a child element from the current element.

Content associated with the child element is no longer visible on the page, and the

object is no longer part of the document object hierarchy.

As destructive as that sounds, the specifications for the deleted object are not

lost to the ether necessarily. The removeChild() method returns a reference to the

removed node. By assigning this value to a variable, you can hold onto that object

specification for insertion later in the session. You are free to use this value as a

parameter to such methods as appendChild(), replaceChild(), swapNode(),

and insertBefore().

Remember that removeChild() is invoked from the point of view of a parent

element. If you simply want to remove an element, you can do so more directly

(in IE5+) with the removeNode() method.

Example on the CD-ROM

Related Items: appendChild(), replaceChild(), removeNode() methods.

removeEventListener()
See addEventListener().

removeExpression(“propertyName”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

If you assign an expression to an object property (including an object’s style
object) via the setExpression() method, you can remove it under script control

On the
CD-ROM

On the
CD-ROM

elementObject.removeExpression()

(c) ketabton.com: The Digital Library

183Chapter 15 ✦ Generic HTML Element Objects

with the removeExpression() method. The sole parameter is the name of the

property in string form. Property names are case-sensitive.

The method returns true if the removal succeeds; otherwise, false is returned.

Be aware that removing an expression does not alter the value that is currently

assigned to the property. In other words, you can use setExpression() to set a

property’s value and then remove the expression so that no further changes are

made when the document recalculates expressions. If this is your goal, however,

you are probably better served by simply setting the property directly via scripting.

Example on the CD-ROM

Related Items: document.recalc(), getExpression(), setExpression()
methods.

removeNode(removeChildrenFlag)
Returns: Node object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

You can use the removeNode() method to delete the current node from an

element hierarchy in IE5+. The sole parameter is a Boolean value that directs the

method to remove only itself (without its child nodes) or the node and all of its

children (value of true). Exercise care with this method when you use a default

parameter value of false: If the node has child nodes (for example, you attempt to

remove a TABLE but not its child nodes), IE5 can crash on you. However, you can

safely remove the node and all of its children.

The method returns a reference to the node object removed. This removed object

is no longer accessible to the document object model. But the returned value con-

tains all properties of the object as it existed before you removed it (including prop-

erties such as outerHTML and explicitly set style sheet rules). Thus, you can use this

value as a parameter to insert the node elsewhere in the document.

While the W3C and Navigator 6 DOM do not have a removeNode() method, the

cross-browser method whose behavior most closely resembles removeNode() is

the removeChild() method. The scope of the removeChild() method is one level

up the object hierarchy from the object you use for the removeNode() method.

Example on the CD-ROM

Related Items: Node object; appendChild(), cloneChild(), removeChild(),

replaceChild(), replaceNode() methods.

On the
CD-ROM

On the
CD-ROM

elementObject.removeNode()

(c) ketabton.com: The Digital Library

184 Part III ✦ Document Objects Reference

replaceAdjacentText(“location”, “text”)
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The replaceAdjacentText() method (not implemented in IE5/Mac) enables

you to replace one chunk of document text with another in a specific position

relative to the current object. Be aware that this method works only for plain text

and not HTML tags. The returned value is the string of the text that you replace.

Both parameters are required. The first must be one of four possible case-

insensitive locations for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content

beforeEnd Before the end tag, but after all other nested content

afterEnd After the end tag

This method is best used with inline (rather than block) elements when specify-

ing the beforeBegin and afterEnd parameters. For example, if you attempt to use

replaceAdjacentText() with beforeBegin on the second of two consecutive

paragraph elements, the replacement text is inserted into the end of the first

paragraph. You can think of the replaceAdjacentText() method in terms of text

fragment nodes (even though IE5 does not fully support this W3C DOM feature).

The method replaces the text fragment node (given any one of the four position

parameters) with new text. Replacing the text of a simple element with either the

afterBegin or beforeEnd locations is the same as assigning that text to the

object’s innerText property.

Example on the CD-ROM

Related Items: innerText, outerText properties; getAdjacentText(),

insertAdjacentHTML(), insertAdjacentText() methods.

replaceChild(newNodeObject, oldNodeObject)
Returns: Node object reference.

On the
CD-ROM

elementObject.replaceChild()

(c) ketabton.com: The Digital Library

185Chapter 15 ✦ Generic HTML Element Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The replaceChild() method enables you to swap an existing child node object

for a new node object. Parameters for the replaceChild() method are node

object references, and they must be in the order of the new object followed by the

object you want to replace. The old object must be an immediate child node of the

parent used to invoke the method, and the new object must also be a “legal” child

element within the document containment hierarchy.

The method returns a reference to the child object that you replaced with the

new object. This reference can be used as a parameter to any of the node-oriented

insertion or replacement methods.

Remember that replaceChild() is invoked from the point of view of a parent

element. If you simply want to change an element, you can do so more directly with

the swapNode() method (or, in IE5, the replaceNode() method).

Example on the CD-ROM

Related Items: appendChild(), removeChild(), replaceNode(), swapNode()
methods.

replaceNode(newNodeObject)
Returns: Node object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The replaceNode() method (not implemented in IE5/Mac) is related to the

replaceChild() method, but you invoke this method on the actual node you want

to replace (instead of the object’s parent). The sole parameter is a reference to a

valid node object, which you can generate via the document.createElement()
method or copy from an existing node. The value returned from the method is a

reference to the object that you replace. Thus, you can preserve a copy of the

replaced node by storing the results in a variable for use later.

If the node you replace contains other nodes, the replaceNode() method

removes all contained nodes of the original from the document. Therefore, if you

want to change a wrapper node but want to maintain the original children, your

script must capture the children and put them back into the new node as shown in

the following example.

On the
CD-ROM

elementObject.replaceNode()

(c) ketabton.com: The Digital Library

186 Part III ✦ Document Objects Reference

Example (with Listing 15-31) on the CD-ROM

Related Items: removeChild(), removeNode(), replaceChild(), swapNode()
methods.

scrollIntoView(topAlignFlag)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The scrollIntoView() method scrolls the page (vertically and/or horizontally

as needed) such that the current object is visible within the window or frame that

contains it. A single parameter, a Boolean value, controls the location of the ele-

ment within the viewable space. A value of true (the default) causes the element to

be displayed so that its top is aligned with the top of the window or frame (pro-

vided the document beneath it is long enough to allow this amount of scrolling).

But a value of false causes the bottom of the element to align with the bottom of

the viewable area. In most cases, you want the former so that the beginning of a

page section is at the top of the viewable area. But if you don’t want a user to see

content below a certain element when you jump to the new view, then use the

false parameter.

For form elements, you must use the typical form element reference (document.
formName.elementName.scrollIntoView()) unless you also specify an ID

attribute for the element (document.all.elementID.scrollIntoView()).

Example on the CD-ROM

Related Items: window.scroll(), window.scrollBy(), window.scrollTo()
methods.

setActive()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The setActive() method lets a script designate an element object as the active

element. However, unlike the focus() method, the window does not scroll the

On the
CD-ROM

On the
CD-ROM

elementObject.setActive()

(c) ketabton.com: The Digital Library

187Chapter 15 ✦ Generic HTML Element Objects

active element into view. Any onFocus event handler defined for the element fires

when setActive() is invoked, without the browser giving the element focus.

Example on the CD-ROM

Related Item: focus() method.

setAttribute(“attributeName”, value[,
caseSensitivity])

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The setAttribute() method assigns a new value to an existing attribute of the

current object or inserts an entirely new attribute name–value pair among the

attributes of the current object. This method represents an alternative syntax to

setting a property of the object directly.

The W3C DOM Level 2 standard recommends getAttribute() and
setAttribute() for reading and writing element object attribute values, rather
than reading and writing those values by way of their corresponding properties.
While using these methods is certainly advisable for XML elements, the same DOM
standard sends conflicting signals by defining all kinds of properties for HTML ele-
ment objects. Browsers, of course, will support access via properties well into the
future, so don’t feel obligated to change your ways.

The first two parameters of setAttribute() are required. The first is the name

of the attribute. The default behavior of this method respects the case of the

attribute name. Therefore, if you use setAttribute() to adjust the value of an

existing attribute in default mode, the first parameter must match the case of the

attribute as known by the object model for the current document. Remember that

all names of all attributes assigned as inline source code attributes are automati-

cally converted to lowercase letters.

A value you assign to the attribute is the second parameter. For cross-browser

compatibility, the value should be either a string or Boolean data type.

IE provides an optional third parameter to control the case-sensitivity issue for

the attribute name. The default value (true) has a different impact on your object

depending on whether you use setAttribute() to assign a new attribute or

reassign an existing one. In the former case, the third parameter as true means

that the attribute name assigned to the object observes the case of the first param-

eter. In the latter case, the third parameter as true means that the attribute isn’t

Note

On the
CD-ROM

elementObject.setAttribute()

(c) ketabton.com: The Digital Library

188 Part III ✦ Document Objects Reference

reassigned unless the first parameter matches the case of the attribute currently

associated with the object. Instead, a new attribute with a different case sequence

is created.

Attempting to manage the case-sensitivity of newly created attributes is fraught

with peril, especially if you try to reuse names but with different case sequences. I

strongly recommend using default case-sensitivity controls for setAttribute()
and getAttribute().

IE4+ imposes some limitations on the action resulting from the setAttribute()
method. Any attribute you add via setAttribute() does not become part of the

attributes collection associated with the element. While you can extract the

value of such a newly added attribute via getAttribute(), you cannot access the

new attribute from the attributes collection. Thus, after creating a new attribute

as follows:

document.all.myTable.setAttribute(“currYear”, (new Date()).getFullYear())

you can access that attribute value through either of the following two statements:

var tableYear = document.all.myTable.getAttribute(“curryear”)
var tableYear = document.all.myTable.currYear

However, you cannot access the attribute value with the following statement:

var tableYear = document.all.myTable.attributes[“currYear”]

See also the W3C DOM facilities for treating attributes as node objects in the dis-

cussions of the getAttributeNode() and removeAttributeNode() methods ear-

lier in this chapter.

Example on the CD-ROM

Related Items: attributes property; document.createAttribute(),

getAttribute(), getAttributeNode(), removeAttribute(),

removeAttributeNode(), setAttributeNode() methods.

setAttributeNode()
See removeAttributeNode().

setCapture(containerBoolean)
See releaseCapture().

setExpression(“propertyName”,
“expression”,”language”)

Returns: Nothing.

On the
CD-ROM

elementObject.setExpression()

(c) ketabton.com: The Digital Library

189Chapter 15 ✦ Generic HTML Element Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Use the setExpression() method (not implemented in IE5/Mac) to assign the

result of an executable expression to the value of an element object property. This

method can assign values to both HTML element objects and style objects that

belong to them.

The setExpression() method is a scripted way of assigning expressions to

attributes. But you can also assign expressions directly to style sheet definitions in

the HTML tag of an element using the expression() syntax, as in the following

example:

<P STYLE=”width:expression(document.body.style.width * 0.75)”>

The setExpression() method requires three parameters. The first parameter is

the name of the property (in string form) to which you assign the expression.

Property names are case-sensitive. The second parameter is a string form of the

expression to be evaluated to supply a value for the property. Expressions can refer

to global variables or properties of other objects in the same document (provided

the property is anything other than an array). An expression may also contain math

operators.

Pay close attention to the data type of the evaluated value of the expression. The

value must be a valid data type for the property. For example, the URL of the body

background image must be a string. But for numeric values, you can generally use

number and string types interchangeably because the values are converted to the

proper type for the property. Even for expressions that evaluate to numbers,

encase the expression inside quotes. It may not be necessary in all cases, but if you

get into the habit of using quotes, you’ll have fewer problems for strings or complex

expressions that require them.

You are not limited to using JavaScript as the language for the expression

because you also specify the scripting language of the expression in the third

parameter. Acceptable parameter values for the language are

JScript
VBScript
JavaScript

For all intents and purposes, JScript and JavaScript are the same. Both languages

are ECMA-262 compatible.

One reason to use setExpression() for dynamic properties is to let the prop-

erty always respond to the current conditions on the page. For example, if you set a

property that is dependent on the current width of the body, then you want a recal-

culation that is applied to the property if the user resizes the window. The browser

automatically responds to many events and updates any dynamic properties. In

essence, the browser recalculates the expressions and applies the new values to

the property. Keyboard events, in particular, trigger this kind of automatic recalcu-

lation for you. But if your scripts perform actions on their own (in other words, not

elementObject.setExpression()

(c) ketabton.com: The Digital Library

190 Part III ✦ Document Objects Reference

triggered by events), then your scripts need to force the recalculation of the expres-

sions. The document.recalc() method takes care of this, but you must invoke it

to force the recalculation of dynamic properties in these cases.

Example (with Figure 15-1 and Listing 15-32) on the CD-ROM

Related Items: document.recalc(), removeExpression(), setExpression()
methods.

swapNode(otherNodeObject)
Returns: Node object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The swapNode() method (not implemented in IE5/Mac) exchanges the positions

of two nodes within an element hierarchy. Contents of both nodes are preserved in

their entirety during the exchange. The single parameter must be a valid node

object (perhaps created with document.createElement() or copied from an exist-

ing node). A return value is a reference to the object whose swapNode() method

was invoked.

Example on the CD-ROM

Related Items: removeChild(), removeNode(), replaceChild(), replaceNode()
methods.

tags(“tagName”)
Returns: Array of element objects.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The tags() method does not belong to every element, but it is a method of

every collection of objects (such as all, forms, and elements). The method is

On the
CD-ROM

On the
CD-ROM

elementObjectCollection.tags()

(c) ketabton.com: The Digital Library

191Chapter 15 ✦ Generic HTML Element Objects

best thought of as a kind of filter for the elements that belong to the current collec-

tion. For example, to get an array of all P elements inside a document, use this

expression:

document.all.tags(“P”)

You must pass a parameter string consisting of the tag name you wish to extract

from the collection. The tag name is case-insensitive.

The return value is an array of references to the objects within the current

collection whose tags match the parameter. If there are no matches, the returned

array has a length of zero. If you need cross-browser compatibility, use the

getElementsByTagName() method described earlier in this chapter.

Example on the CD-ROM

Related Item: getElementsByTagName() method.

urns(“behaviorURN”)
Returns: Array of element objects.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The urns() method does not belong to every element, but it is a method of

every collection of objects. You must pass a parameter string consisting of the URN

(Uniform Resource Name) of a behavior resource (most typically .htc for IE5)

assigned to one or more elements of the collection. The parameter does not include

the extension of the filename. If there is no matching behavior URN for the specified

parameter, the urns() method returns an array of zero length. This method is

related to the behaviorUrns property, which contains an array of behavior URNs

assigned to a single element object.

Neither the behaviorUrns property nor the urns() method appear to be work-
ing as described by Microsoft. Perhaps the potential exposure of URNs by script
was deemed a privacy risk. As proven thus far with IE5 for Win32, the urns()
method always returns an array of zero length.

Example on the CD-ROM

Related Item: behaviorUrns property.

On the
CD-ROM

Note

On the
CD-ROM

elementObjectCollection.urns()

(c) ketabton.com: The Digital Library

192 Part III ✦ Document Objects Reference

Event handlers
onActivate
onBeforeDeactivate
onDeactivate

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The onActivate and onDeactivate event handlers are new with IE5.5. But in

some circumstances, they are very similar to the onFocus and onBlur event han-

dlers, respectively. If an element receives focus, the onActivate event fires for that

element just before the onFocus event fires; conversely, just prior to the element

losing focus, events fire in the sequence: onBeforeDeactivate, onDeactivate,

onBlur. Only elements that, by their nature, can accept focus (for example, links

and form input controls) or that have a TABINDEX attribute set can become the

active element (and therefore fire these events).

IE5.5 maintains the original onFocus and onBlur event handlers. But because

the behaviors are so close to those of the onActivate and onDeactivate events, I

don’t recommend mixing the old and new event handler names in your coding

style. If you script exclusively for IE5.5+, then you can use the new terminology

throughout.

Example on the CD-ROM

Related Items: onBlur, onFocus event handlers.

onBeforeCopy

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onBeforeCopy event handler (not implemented in IE5/Mac) fires before the

actual copy action takes place whenever the user initiates a content copy action via

the Edit menu (including the Ctrl+C keyboard shortcut) or the right-click context

menu. If the user accesses the Copy command via the Edit or context menu, the

onBeforeCopy event fires before either menu displays. In practice, the event may

fire twice even though you expect it only once. Just because the onBeforeCopy
event fires, it does not guarantee that a user will complete the copy operation (for

example, the context menu may close before the user makes a selection).

Unlike paste-related events, the onBeforeCopy event handler does not work with

form input elements. Just about any other HTML element is fair game, however.

On the
CD-ROM

elementObject.onBeforeCopy

(c) ketabton.com: The Digital Library

193Chapter 15 ✦ Generic HTML Element Objects

Example (with Listing 15-33) on the CD-ROM

Related Items: onBeforeCut, onCopy event handlers.

onBeforeCut

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onBeforeCut event handler fires before the actual cut action takes place

whenever the user initiates a content cut via the Edit menu (including the Ctrl+X

keyboard shortcut) or the right-click context menu. If the user accesses the Cut

command via the Edit or context menu, the onBeforeCut event fires before either

menu displays. In practice, the event may fire twice even though you expect it only

once. Just because the onBeforeCut event fires, it does not guarantee that a user

will complete the cut operation (for example, the context menu may close before

the user makes a selection). If you add the onBeforeCut event handler to an HTML

element, the context menu usually disables the Cut menu item. But assigning a

JavaScript call to this event handler brings the Cut menu item to life.

Example on the CD-ROM

Related Items: onBeforeCopy, onCut event handlers.

onBeforeDeactivate
See: onActivate event handler.

onBeforeEditFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onBeforeEditFocus event handler (not implemented in IE5/Mac) is trig-

gered whenever you edit an element on a page in an environment such as

Microsoft’s DHTML Editing ActiveX control or with the editable page content fea-

ture of IE5.5. This discussion focuses on the latter scenario because it is entirely

within the scope of client-side JavaScript. The onBeforeEditFocus event fires just

before the element receives its focus. (There may be no onscreen feedback that

editing is turned on unless you script it yourself.) The event fires each time a user

clicks the element, even if the element just received edit focus elsewhere in the

same element.

On the
CD-ROM

On the
CD-ROM

elementObject.onBeforeEditFocus

(c) ketabton.com: The Digital Library

194 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: document.designMode, contentEditable, isContentEditable
properties.

onBeforePaste

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Like onBeforeCopy and onBeforeCut, the onBeforePaste event (not imple-

mented in IE5/Mac) occurs just prior to the display of either the context or menu

bar Edit menu when the current object is selected (or has a selection within it). The

primary value of this event comes when you use scripts to control the copy and

paste process of a complex object. Such an object may have multiple kinds of data

associated with it, but your script captures only one of the data types. Or, you may

want to put some related data about the copied item (for example, the id property

of the element) into the clipboard. By using the onBeforePaste event handler to

set the event.returnValue property to false, you guarantee that the pasted item

is enabled in the context or Edit menu (provided the clipboard is holding some

content). A handler invoked by onPaste should then apply the specific data subset

from the clipboard to the currently selected item.

Example on the CD-ROM

Related Items: onCopy, onCut, onPaste event handlers.

onBlur

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The onBlur event fires when an element that has focus is about to lose focus

because some other element is about to receive focus. For example, a text input

element fires the onBlur event when a user tabs from that element to the next one

inside a form. The onBlur event of the first element fires before the onFocus event

of the next element.

The availability of the onBlur event has expanded with succeeding generations

of script-capable browsers. In the earlier versions, blur and focus were largely con-

fined to text-oriented input elements (including the SELECT element). These are

safe to use with all scriptable browser versions. The window object received the

On the
CD-ROM

On the
CD-ROM

elementObject.onBlur

(c) ketabton.com: The Digital Library

195Chapter 15 ✦ Generic HTML Element Objects

onBlur event handler starting with NN3 and IE4. IE4 also extended the event han-

dler to more form elements, predominantly on the Windows operating system

because that OS has a user interface clue (the dotted rectangle) when items such as

buttons and links receive focus (so that you may act upon them by pressing the

keyboard’s spacebar). For IE5, the onBlur event handler is available to virtually

every HTML element. For most of those elements, however, blur and focus are not

possible unless you assign a value to the TABINDEX attribute of the element’s tag.

For example, if you assign TABINDEX=1 inside a <P> tag, the user can bring focus to

that paragraph (highlighted with the dotted rectangle in Windows) by clicking the

paragraph or pressing the Tab key until that item receives focus in sequence.

If you plan to use the onBlur event handler on window or text-oriented input

elements, be aware that there might be some unexpected and undesirable conse-

quences of scripting for the event. For example, in IE, a window object that has

focus loses focus (and triggers the onBlur event) if the user brings focus to any

element on the page (or even clicks a blank area on the page). Similarly, the interac-

tion between onBlur, onFocus, and the alert() dialog box can be problematic

with text input elements. This is why I generally recommend using the onChange
event handler to trigger form validation routines. If you should employ both the

onBlur and onChange event handler for the same element, the onChange event

fires before onBlur. For more details about using this event handler for data valida-

tion, see Chapter 43.

IE5.5 adds the onDeactivate event handler, which fires immediately before the

onBlur event handler. Both the onBlur and onDeactivate events can be blocked

if the onBeforeDeactivate event handler function sets event.returnValue to

false.

Example (with Listing 15-34) on the CD-ROM

Related Items: blur(), focus() methods; onDeactivate, onBeforeDeactivate,

onFocus, onActivate event handlers.

onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The onClick event fires when a user presses down (with the primary mouse

button) and releases the button with the pointer atop the element (both the down

and up strokes must be within the rectangle of the same element). The event also

fires with non-mouse click equivalents in operating systems such as Windows 95

and later. For example, you can use the keyboard to give focus to a clickable object

and then press the spacebar or Enter key to perform the same action as clicking the

element. In IE, if the element object supports the click() method, the onClick
event fires with the invocation of that method (notice that this does not apply to

Navigator).

On the
CD-ROM

elementObject.onClick

(c) ketabton.com: The Digital Library

196 Part III ✦ Document Objects Reference

The availability of the onClick event has expanded with succeeding generations

of script-capable browsers. In the earlier versions, the event was limited primarily

to button style input elements (including checkbox and radio input elements) and

links (A elements with HREF attributes assigned to them). You can safely use this

event handler for elements that date back to the earliest scriptable browsers. In

Navigator 4, the AREA element gained the onClick event (and window, document,

and layer objects could capture onClick events, as described in Chapter 29). In

IE4+, virtually every element that you can see on a page can have an onClick event

handler defined for it and thereby respond to user clicks.

Beginning with version 4 browsers, scripters could access more mouse-related

events. It is important to know the sequence of these incremental events as a user

clicks or double-clicks an element. The other related events are onMouseDown,

onMouseUp, and onDoubleClick. The onMouseDown event fires when the user

makes contact with the mouse switch on the downstroke of a click action. Next

comes the onMouseUp event (when the contact breaks). Only then does the

onClick event fire — provided that the onMouseDown and onMouseUp events have

fired in the same object. See the discussions on the onMouseDown and onMouseUp
events later in this chapter for examples of their usage.

Interaction with the onDblClick event is simple: the onClick event fires first

(after the first click), followed by the onDblClick event (after the second click).

See the discussion of the onDblClick event handler later in this chapter for more

about the interaction of these two event handlers.

When used with objects that have intrinsic actions when users click them

(namely links and areas), the onClick event handler can perform all of the action —

including navigating to the destination normally assigned to the HREF attribute of

the element. For example, to be compatible with all scriptable browsers, you can

make an image clickable if you surround its tag with an <A> link tag. This lets the

onClick event of that tag substitute for the missing onClick event handler of ear-

lier tags. If you assign an onClick event handler without special protection,

the event handler will execute and the intrinsic action of the element will be carried

out. Therefore, you need to block the intrinsic action. To accomplish this, the event

handler must evaluate to the statement return false. You can do this in two ways.

The first is to append a return false statement to the script statement assigned to

the event handler:

<IMG...>

As an alternative, you can let the function invoked by the event handler supply

the false part of the return false statement, as shown in the following

sequence:

function yourFunction() {
[statements that do something here]
return false

}
...
<IMG...>

Either methdology is acceptable. A third option is to not use the onClick event

handler at all, but assign a javascript: pseudo-URL to the HREF attribute (see the

link object in Chapter 21).

elementObject.onClick

(c) ketabton.com: The Digital Library

197Chapter 15 ✦ Generic HTML Element Objects

The event model in IE5+ provides one more way to prevent the intrinsic action of

an object from firing when a user clicks it. If the onClick event handler function

sets the returnValue property of the event object to false, the intrinsic action is

cancelled. Simply include the following statement in the function invoked by the

event handler:

event.returnValue = false

The event model of the W3C DOM has a different approach to cancelling the

default action. In the event handler function for an event, invoke the eventObj.
cancelDefault() method.

A common mistake made by scripting beginners is to use a submit type input

button as a button intended to perform some script action rather than submitting a

form. The typical scenario is an INPUT element of type submit assigned an

onClick event handler to perform some local action. The submit input button has

an intrinsic behavior, just like links and areas. While you can block the intrinsic

behavior, as just described, you should use an INPUT element of type button.

If you are experiencing difficulty with an implementation of the onClick event

handler (such as trying to find out which mouse button was used for the click), it

may be that the operating system or default browser behavior is getting in the way

of your scripting. But you can usually get what you need via the onMouseDown
event handler. (The onMouseUp event may not fire when you use the secondary

mouse button to click an object.) Use the onClick event handler whenever

possible to capture user clicks because this event behaves most like users are

accustomed to in their daily computing work. But fall back on onMouseDown in an

emergency.

Example (with Listing 15-35) on the CD-ROM

Related Items: click() method; onContextMenu, onDblClick, onMouseDown,

onMouseUp event handlers.

onContextMenu

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onContextMenu event (not implemented in IE5/Mac) fires when the user

clicks an object with the secondary (usually the right-hand) mouse button. The

only click-related events that fire with the secondary button are onMouseDown and

onContextMenu.

To block the intrinsic application menu display of the onContextMenu event, use

any of the three event cancellation methodologies available in IE5+ (as just

described in the onClick event handler description: two variations of evaluating

the event handler to return false; assigning false to the event.returnValue

On the
CD-ROM

elementObject.onContextMenu

(c) ketabton.com: The Digital Library

198 Part III ✦ Document Objects Reference

property). It is not uncommon to wish to block the context menu from appearing so

that users are somewhat inhibited from downloading copies of images or viewing

the source code of a frame. Be aware, however, that if a user turns Active Scripting

off in IE5+, the event handler cannot prevent the context menu from appearing.

Another possibility for this event is to trigger the display of a custom context

menu constructed with other DHTML facilities. In this case, you must also disable

the intrinsic context menu so that both menus do not display at the same time.

Example on the CD-ROM

Related Items: releaseCapture(), setCapture() methods.

onControlSelect

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The onControlSelect event should fire just before a user makes a selection on

what Microsoft calls a control selection. Microsoft is less than clear in explaining

what a control selection is, but it appears to have something to do with a user edit

mode. I have not been able to have this event fire naturally in IE5.5. If I receive fur-

ther details, they will appear at the JavaScript Bible Support Center

(http://www.dannyg.com).

Related Items: onResizeEnd, onResizeStart event handlers.

onCopy
onCut

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onCopy and onCut events (not implemented in IE5/Mac) fire immediately

after the user or script initiates a copy or cut edit action on the current object.

Each event is preceded by its associated “before” event, which fires before any Edit

or context menu appears (or before the copy or cut action, if initiated by keyboard

shortcut).

Use these event handlers to provide edit functionality to elements that don’t nor-

mally allow copying or cutting. In such circumstances, you need to enable the Copy

or Cut menu items in the context or Edit menu by setting the event.returnValue
for the onBeforeCopy or onBeforeCut event handlers to false. Then your onCopy
or onCut event handlers must manually stuff a value into the clipboard by way of

the setData() method of the clipboardData object. If you use the setData()

On the
CD-ROM

elementObject.onCopy

(c) ketabton.com: The Digital Library

199Chapter 15 ✦ Generic HTML Element Objects

method in your onCopy or onCut event handler, you must also set the event.
returnValue property to false in the handler function to avoid the default copy

or cut action from wiping out your clipboard contents.

Because you are in charge of what data is stored in the clipboard, you are not

limited to a direct copy of the data. For example, you might wish to store the value

of the src property of an image object so that the user can paste it elsewhere on

the page.

In the case of the onCut event handler, your script is also responsible for cutting

the element or selected content from the page. To eliminate all of the content of an

element, you can set the element’s innerHTML or innerText property to an empty

string. For a selection, use the selection.createRange() method to generate a

TextRange object whose contents you can manipulate through the TextRange
object’s methods.

Example (with Listing 15-36) on the CD-ROM

Related Items: onBeforeCopy, onBeforeCut, onBeforePaste, and onPaste event

handlers.

onDblClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The onDblClick event fires after the second click of a double-click sequence.

The timing between clicks depends on the client’s mouse control panel settings.

The onClick event also fires, but only after the first of the two clicks.

NN4 implements the onDblClick event handler only for link objects (but not at

all on the Macintosh version of NN4). IE4 introduced the event to virtually every

HTML element.

In general, it is rarely a good design to have an element perform one task when

the mouse is single-clicked and a different task if double-clicked. With the event

sequence employed in modern browsers, this isn’t practical anyway (the onClick
event always fires, even when the user double-clicks). But it is not uncommon to

have the mouse down action perform some helper action. You see this in most icon-

based file systems: if you click a file icon, it is highlighted at mouse down to select

the item; you can double-click the item to launch it. In either case, one event’s

action does not impede the other nor confuse the user.

Example on the CD-ROM

Related Items: onClick, onMouseDown, onMouseUp event handlers.

On the
CD-ROM

On the
CD-ROM

elementObject.onDblClick

(c) ketabton.com: The Digital Library

200 Part III ✦ Document Objects Reference

onDrag

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onDrag event fires after the onDragStart event and continues firing

repeatedly while the user drags a selection or object on the screen. Unlike the

onMouseMove event, which fires only as the cursor moves on the screen, the

onDrag event continues to fire even when the cursor is stationary. In the IE5+

environment, users can drag objects to other browser windows or other applica-

tions. The event fires while the dragging extends beyond the browser window.

Because the event fires regardless of what is underneath the dragged object, you

can use it in a game or training environment in which the user has only a fixed

amount of time to complete a dragging operation (for example, matching similar

pairs of objects). If future versions of the browser accommodate downloadable

cursors, the onDrag event could cycle the cursor through a series of cursor

versions to resemble an animated cursor.

Understanding the sequence of drag-related events during a user drag operation

can be helpful if your scripts need to micromanage the actions (usually not neces-

sary for basic drag-and-drop operations). Consider the drag-and-drop operation

shown in Figure 15-2.

Figure 15-2: A typical drag-and-drop operation

blank1 TableA1 B1 B2 B3

elementObject.onDrag

(c) ketabton.com: The Digital Library

201Chapter 15 ✦ Generic HTML Element Objects

It helps to imagine that the cells of the table with draggable content are named

like spreadsheet cells: “truck” is cell A1; “round” is B1; “doll” is A2; and so on.

During the drag operation, many objects are the targets of a variety of drag-related

events. Table 15-10 lists the event sequence and the event targets.

Table 15-10 Events and Their Targets During a Typical
Drag-and-Drop Operation

Event Target Discussion

onDragStart cell A1 The very first event that fires during a drag-and-drop operation.

onDrag cell A1 Fires continually on this target throughout the entire
operation. Other events get interspersed, however.

onDragEnter cell A1 Even though the cursor hasn’t moved from cell A1 yet, the
onDragEnter event fires upon first movement within the
source element.

onDragOver cell A1 Fires continually on whatever element the cursor rests on at
that instant. If the user simply holds the mouse button down
and does not move the cursor during a drag, the onDrag
and onDragOver events fire continually, alternating
between the two.

(repetition) cell A1 onDrag and onDragOver events fire alternately while the
cursor remains atop cell A1.

onDragEnter TABLE The TABLE element, represented by the border and/or cell
padding, receives the onDragEnter event when the cursor
touches its space.

onDragLeave cell A1 Notice that the onDragLeave event fires after the
onDragEnter event fires on another element.

onDrag cell A1 Still firing away.

onDragOver TABLE The source element for this event shifts to the TABLE
because that’s what the cursor is “over” at this instant. If the
cursor doesn’t move from this spot, the onDrag (cell A1)
and onDragOver (TABLE) events continue to fire in turn.

onDragEnter cell B1 The drag is progressing from the TABLE border space to cell B1.

onDragLeave TABLE

onDrag cell A1 The onDrag event continues to fire on the cell A1 object.

onDragOver cell B1 The cursor is atop cell B1 now, so the onDragOver event
fires for that object. Fires multiple times (depending on the
speed of the computer and the user’s drag action),
alternating with the previous onDrag event.

Continued

elementObject.onDrag

(c) ketabton.com: The Digital Library

202 Part III ✦ Document Objects Reference

Table 15-10 (continued)

Event Target Discussion

[More of the same as the cursor progresses from cell B1 through the TABLE border again to
cell B2, the TABLE again, cell B3, and the outermost edge of the TABLE.]

onDragEnter BODY Dragging is free of the TABLE and is floating free on the bare
BODY element.

onDragLeave TABLE Yes, you just left the TABLE.

onDrag cell A1 Still alive and receiving this event.

onDragOver BODY That’s where the cursor is now. Fires multiple times
(depending on the speed of the computer and the user’s
drag action), alternating with the previous onDrag event.

onDragEnter blank1 The cursor reaches the SPAN element whose ID is blank1,
where the empty underline is.

onDragLeave BODY Just left the BODY for the blank.

onDrag cell A1 Still kicking.

onDragOver blank1 That’s where the cursor is now. Fires multiple times
(depending on the speed of the computer and the user’s
drag action), alternating with the previous onDrag event.

onDrop blank1 The SPAN element gets the notification of a recent drop.

onDragEnd cell A1 The original source element gets the final word that dragging
is complete. This event fires even if the drag does not
succeed because the drag does not end on a drop target.

In practice, some of the events shown in Table 15-10 may not fire. Much has to

do with how many event handlers you trap that need to execute scripts along the

way. The other major factor is the physical speed at which the user performs the

drag-and-drop operation (which interacts with the CPU processing speed). The

kinds of events that are most likely to be skipped are the onDragEnter and

onDragLeave events, and perhaps some onDragOver events if the user flies over

an object before its onDragOver event has a chance to fire.

Despite this uncertainty about drag-related event reliability, you can count on

several important ones to fire all the time. The onDragStart, onDrop (if over a

drop target), and onDragEnd events — as well some interstitial onDrag events —

will definitely fire in the course of dragging on the screen. All but onDrop direct

their events to the source element, while onDrop fires on the target.

Example (with Listing 15-37) on the CD-ROMOn the
CD-ROM

elementObject.onDrag

(c) ketabton.com: The Digital Library

203Chapter 15 ✦ Generic HTML Element Objects

Related Items: event.dataTransfer object; onDragEnd, onDragEnter,

onDragLeave, onDragOver, onDragStart, onDrop event handlers.

onDragEnter
onDragLeave

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

These events (not implemented in IE5/Mac) fire during a drag operation. When

the cursor enters the rectangular space of an element on the page, the onDragEnter
event fires on that element. Immediately thereafter, the onDragLeave event fires on

the element from which the cursor came. While this may seem to occur out of

sequence from the physical action, the events always fire in this order. Depending on

the speed of the client computer’s CPU and the speed of the user’s dragging action,

one or the other of these events may not fire — especially if the physical action out-

strips the computer’s capability to fire the events in time. See the discussion of the

onDrag event handler earlier in this chapter for more details on the sequence of

drag-related events.

Example (with Listing 15-38) on the CD-ROM

Related Items: onDrag, onDragEnd, onDragOver, onDragStart, onDrop event

handlers.

onDragOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onDragOver event (not implemented in IE5/Mac) fires continually while a

dragged cursor is atop an element. In the course of dragging from one point on the

page to another, the onDragOver event target changes with the element beneath

the cursor. If no other drag-related events are firing (the mouse button is still down

in the drag operation, but the cursor is not moving), the onDrag and onDragOver
events fire continually, alternating between the two.

You should have the onDragOver event handler of a drop target element set the

event.returnValue property to false. See the discussion of the onDrag event

handler earlier in this chapter for more details on the sequence of drag-related

events.

On the
CD-ROM

elementObject.onDragOver

(c) ketabton.com: The Digital Library

204 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: event.dataTransfer object; onDrag, onDragEnd, onDragEnter,

onDragLeave, onDragStart, onDrop event handlers.

onDragStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onDragStart event handler is the first event to fire in the long sequence of

events that occur in a typical drag-and-drop operation by the user. This event han-

dler is associated with the element that is the source element of the drag operation.

Typically, the onDragStart event handler sets the dataTransfer.effectAllowed
property in IE5 for Windows, packages the data being passed along with the drag

(via the dataTransfer.setData() method), and overrides default behavior by

setting the event.returnValue property to false. See the discussion of the

onDrag event handler earlier in this chapter for more details on the sequence of

drag-related events.

Example on the CD-ROM

Related Items: event.dataTransfer object; onDrag, onDragEnd, onDragEnter,

onDragLeave, onDragOver, onDrop event handlers.

onDrop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onDrop event (not implemented in IE5/Mac) fires on the drop target element

as soon as the user releases the mouse button at the end of a drag-and-drop opera-

tion. Microsoft recommends that you denote a drop target by applying the

onDragEnter, onDragOver, and onDrop event handlers to the target element. In

each of those event handlers, you should set the dataTransfer.dropEffect to

the transfer effect you wish to portray in the drag-and-drop operation (signified by

a different cursor for each type). These settings should match the dataTransfer.
effectAllowed property that is usually set in the onDragStart event handler.

Each of the three drop-related handlers should also override the default event

behavior by setting the event.returnValue property to false. See the discussion

of the onDrag event handler earlier in this chapter for more details on the sequence

of drag-related events.

On the
CD-ROM

On the
CD-ROM

elementObject.onDrop

(c) ketabton.com: The Digital Library

205Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Items: event.dataTransfer object; onDrag, onDragEnd, onDragEnter,

onDragLeave, onDragOver, onDragStart event handlers.

onFilterChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onFilterChange event (not implemented in IE5/Mac) fires whenever an

object’s visual filter switches to a new state or a transition completes (a transition

may be extended over time). Only objects that accommodate filters and transitions

in IE (primarily block elements and form controls) receive the event.

A common usage of the onFilterChange event is to trigger the next transition

within a sequence of transition activities. This may include an infinite loop transi-

tion, for which the object receiving the event toggles between two transition states.

If you don’t want to get into a loop of that kind, place the different sets of content

into their own positionable elements and use the onFilterChange event handler in

one to trigger the transition in the other.

Example (with Listing 15-39) on the CD-ROM

Related Item: filter object.

onFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The onFocus event fires when an element receives focus, usually following some

other object losing focus. (The element losing focus receives the onBlur event

before the current object receives the onFocus event.) For example, a text input

element fires the onFocus event when a user tabs to that element while navigating

through a form via the keyboard. Clicking an element also gives that element focus,

as does making the browser the frontmost application on the client desktop.

The availability of the onFocus event has expanded with succeeding generations

of script-capable browsers. In earlier versions, blur and focus were largely confined

to text-oriented input elements (including the SELECT element). The window object

received the onFocus event handler starting with NN3 and IE4. IE4 also extended

On the
CD-ROM

On the
CD-ROM

elementObject.onFocus

(c) ketabton.com: The Digital Library

206 Part III ✦ Document Objects Reference

the event handler to more form elements, predominantly on the Windows operating

system because that OS has a user interface clue (the dotted rectangle) when items

such as buttons and links receive focus (so that users may act upon them by press-

ing the keyboard’s spacebar). For IE5, the onFocus event handler is available to vir-

tually every HTML element. For most of those elements, however, you cannot use

blur and focus unless you assign a value to the TABINDEX attribute of the element’s

tag. For example, if you assign TABINDEX=1 inside a <P> tag, the user can bring

focus to that paragraph (highlighted with the dotted rectangle in Windows) by

clicking the paragraph or pressing the Tab key until that item receives focus in

sequence.

If you plan to use the onFocus event handler on window or text-oriented input

elements, be aware that there might be some unexpected and undesirable conse-

quences of scripting for the event. For example, in IE5 (but not IE4), some object

almost always has focus. In most cases, the window has focus but loses it when the

user clicks an element wired to receive focus. Clicking anywhere on an unwired

element brings focus back to the window object. Similarly, the interaction between

onBlur, onFocus, and the alert dialog box can be problematic with text input

elements.

IE5.5 adds the onActivate event handler, which fires immediately before the

onFocus event handler. You can use one or the other, but there is little need to

include both event handlers for the same object unless you temporarily wish to

block an item from receiving focus. To prevent an object from receiving focus in

IE5.5, include an event.returnValue=false statement in the onActivate event

handler for the same object. In older browsers, you can usually get away with

assigning onFocus=”this.blur()” as an event handler for elements such as form

controls. However, this is not a foolproof way to prevent a user from changing a

control’s setting. Unfortunately, there are few reliable alternatives.

Example on the CD-ROM

Related Items: onActivate, onBlur, onDeactivate event handlers.

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onHelp event handler fires in Windows whenever an element of the docu-

ment has focus and the user presses the F1 function key on a Windows PC. As of

IE5/Mac, the event fires only on the window (in other words, event handler speci-

fied in the <BODY> tag) and does so via the dedicated Help key on a Mac keyboard.

Browser Help menu choices do not activate this event. To prevent the browser’s

Help window from appearing, the event handler must evaluate to return false
(for IE4+) or set the event.returnValue property to false (IE5+). Because the

On the
CD-ROM

elementObject.onHelp

(c) ketabton.com: The Digital Library

207Chapter 15 ✦ Generic HTML Element Objects

event handler can be associated with individual elements of a document in the

Windows version, you can create a context-sensitive help system. However, if the

focus is in the Address field of the browser window, you cannot intercept the event.

Instead, the browser’s Help window appears.

Example (with Listing 15-40) on the CD-ROM

Related Items: window.showHelp(), window.showModalDialog() methods.

onKeyDown
onKeyPress
onKeyUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

When someone presses and releases a keyboard key, a sequence of three events

fires in quick succession. The onKeyDown event fires when the key makes its first

contact. This is followed immediately by the onKeyPress event. When contact is

broken by the key release, the onKeyUp event fires. If you hold a character key

down until it begins auto-repeating, the onKeyDown and onKeyPress events fire

with each repetition of the character.

The sequence of events can be crucial in some keyboard event handling.

Consider the scenario that wants the focus of a series of text fields to advance

automatically after the user enters a fixed number of characters (for example, date,

month, and two-digit year). By the time the onKeyUp event fires, the character

associated with the key press action is already added to the field and you can

accurately determine the length of text in the field, as shown in this simple

example:

<HTML>
<HEAD>
<SCRIPT Language=”JavaScript”>
function jumpNext(fromFld, toFld) {

if (fromFld.value.length == 2) {
document.forms[0].elements[toFld].focus()
document.forms[0].elements[toFld].select()

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Month: <INPUT Name=”month” Type=”text” Size=”3” VALUE=””

onKeyUp=”jumpNext(this, day)” maxLength=”2”>

On the
CD-ROM

elementObject.onKeyDown

(c) ketabton.com: The Digital Library

208 Part III ✦ Document Objects Reference

Day: <INPUT Name=”day” Type=”text” Size=”3” VALUE=””
onKeyUp =”jumpNext(this, year)” maxLength=”2”>

Year: <INPUT Name=”year” Type=”text” Size=”3” VALUE=””
onKeyUp =”jumpNext(this, month)” maxLength=”2”>

</FORM>
</BODY>
</HTML>

These three events do not fire for all keys of the typical PC keyboard on all

browser versions that support keyboard events. The only keys that you can rely on

supporting the events in all browsers shown in the preceding compatibility chart

are the alphanumeric keys represented by ASCII values. This includes keys such as

the spacebar and Enter (Return on the Mac), but it excludes all function keys, arrow

keys, and other navigation keys. Modifier keys, such as Shift, Ctrl (PC), Alt (PC),

Command (Mac), and Option (Mac), generate some events on their own (depending

on browser and version). However, functions invoked by other key events can

always inspect the pressed states of these modifier keys.

Scripting keyboard events almost always entails examining which key is pressed

so that some processing or validation can be performed on that key press. This is

where the situation gets very complex if you are writing for cross-browser imple-

mentation. In some cases, even writing just for Internet Explorer gets tricky

because non-alphanumeric keys generate only the onKeyDown and onKeyUp events.

In fact, to fully comprehend keyboard events, you need to make a distinction

between key codes and character codes. Every PC keyboard key has a key code asso-

ciated with it. This key code is always the same regardless of what other keys you

press at the same time. Only the alphanumeric keys (letters, numbers, spacebar,

and so on), however, generate character codes. The code represents the typed

character produced by that key. The value might change if you press a modifier key.

For example, if you type the “A” key by itself, it generates a lowercase “a” character

(character code 97); if you also hold down the Shift key, that same key produces an

uppercase “A” character (character code 65). The key code for that key (65 for

Western language keyboards) remains the same no matter what.

That brings us, then, to where these different codes are made available to

scripts. In all cases, the code information is conveyed as one or two properties of

the browser’s event object. IE’s event object has only one such property —

keyCode. It contains key codes for onKeyDown and onKeyUp events, but character

codes for onKeyPress events. The NN6 event object, on the other hand, contains

two separate properties: charCode and keyCode. You can find more details and

examples about these event object properties in Chapter 29.

The bottom-line script consideration is to use either onKeyDown or onKeyUp event

handlers when you want to look for non-alphanumeric key events (for example, func-

tion keys, arrow and page navigation keys, and so on). To process characters as they

appear in text boxes, use the onKeyPress event handler. You can experiment with

these events and codes in Listing 15-41 as well as in examples from Chapter 29.

Common keyboard event tasks
IE4+ (but not NN) enables you to modify the character that a user who is editing

a text box enters. The onKeyPress event handler can modify the event.keyCode
property and allow the event to continue (in other words, don’t evaluate to return
false or set the event.returnValue property to false). The following IE

elementObject.onKeyDown

(c) ketabton.com: The Digital Library

209Chapter 15 ✦ Generic HTML Element Objects

function (invoked by an onKeyPress event handler) makes sure text entered into a

text field is all uppercase, even if you type it as lowercase:

function assureUpper() {
if (event.charCode >= 97 && event.charCode <= 122) {

event.charCode = event.charCode - 32
}

}

Doing this might confuse (or frustrate) users, so think carefully before imple-

menting such a plan.

To prevent a keyboard key press from becoming a typed character in a text field,

the onKeyPress event handler prevents the default action of the event. For exam-

ple, the following (NN4+, IE4+) HTML page shows how to inspect a text field’s entry

for numbers only:

<HTML>
<HEAD>
<TITLE>Keyboard Capture</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkIt(evt) {

var charCode = (evt.which) ? evt.which : event.keyCode
if (charCode > 31 && (charCode < 48 || charCode > 57)) {

alert(“Please make sure entries are numbers only.”)
return false

}
return true

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter any positive integer: <INPUT TYPE=”text” NAME=”numeric”

onKeyPress=”return checkIt(event)”>
</FORM>
</BODY>
</HTML>

Whenever a user enters a non-number, the user receives a warning and the char-

acter is not appended to the text box’s text.

Keyboard events also enable you to script the submission of a form when a user

presses the Enter (Return on the Mac) key within a text box. The ASCII value of the

Enter/Return key is 13. Therefore, you can examine each key press in a text box and

submit the form whenever value 13 arrives, as shown in the following function,

which works in IE4+ and NN4+:

function checkForEnter(evt) {
evt = (evt) ? evt : event
var charCode = (evt.which) ? evt.which : evt.keyCode
if (charCode == 13) {

document.forms[0].submit()
return false

}
return true

}
elementObject.onKeyDown

(c) ketabton.com: The Digital Library

210 Part III ✦ Document Objects Reference

By assigning the checkForEnter() function to each field’s onKeyPress event

handler, you suddenly add some extra power to a typical HTML form.

You can intercept Ctrl+keyboard combinations (letters only) in HTML pages

most effectively in Internet Explorer, but only if the browser itself does not use the

combination. In other words, you cannot redirect Ctrl+key combinations that the

browser uses for its own control. The onKeyPress keyCode value for Ctrl+combina-

tions ranges from 1 through 26 for letters A through Z (except for those used by the

browser, in which case no keyboard event fires).

Example (with Listing 15-41) on the CD-ROM

Related Item: String.fromCharCode() method.

onLoseCapture

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onLoseCapture event handler fires whenever an object that has event

capture turned on no longer has that capture. Event capture is automatically

disengaged when the user performs any of the following actions:

✦ Gives focus to any other window

✦ Displays any system modal dialog box (for example, alert window)

✦ Scrolls the page

✦ Opens a browser context menu (right-clicking)

✦ Tabs to give focus to the Address field in the browser window

A function associated with the onLoseCapture event handler should perform

any cleanup of the environment due to an object no longer capturing mouse events.

Example on the CD-ROM

Related Items: releaseCapture(), setCapture() methods.

On the
CD-ROM

On the
CD-ROM

elementObject.onLoseCapture

(c) ketabton.com: The Digital Library

211Chapter 15 ✦ Generic HTML Element Objects

onMouseDown
onMouseUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The onMouseDown event handler fires when the user presses any button of a

mouse. The onMouseUp event handler fires when the user releases the mouse but-

ton, provided the object receiving the event also received an onMouseDown event.

When a user performs a typical click of the mouse button atop an object, mouse

events occur in the following sequence: onMouseDown, onMouseUp, onClick. But if

the user presses the mouse atop an object and then slides the cursor away from the

object, only the onMouseDown event fires. In NN4, these two mouse events were

limited to button, radio button, checkbox, link, and area objects.

These events enable authors and designers to add more application-like behav-

ior to images that act as action or icon buttons. If you notice the way most buttons

work, the appearance of the button changes while you press the mouse button and

reverts to its original style when you release the mouse button (or you drag the

cursor out of the button). These events enable you to emulate that behavior.

The event object created with every mouse button action has a property that

reveals which mouse button the user pressed. NN4’s event model calls that prop-

erty the which property. IE4+ and NN6 call it the button property (but with differ-

ent values for the buttons). It is most reliable to test for the mouse button number

on either the onMouseDown or onMouseUp event, rather than on onClick. The

onClick event object does not always contain the button information.

Example (with Listing 15-42) on the CD-ROM

Related Item: onClick event handler.

onMouseEnter
onMouseLeave

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Two event handlers that are new with IE5.5 are onMouseEnter and

onMouseLeave. Both event handlers operate just like the onMouseOver and

onMouseOut event handlers, respectively. Microsoft simply offers an alternate ter-

minology. The old and new events continue to fire in IE5.5. The old ones fire just

before the new ones for each act of moving the cursor atop, and exiting from atop,

the object. If you are scripting exclusively for IE5.5+, then you should use the new

terminology; otherwise, stay with the older versions.

On the
CD-ROM

elementObject.onMouseEnter

(c) ketabton.com: The Digital Library

212 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: onMouseOver, onMouseOut event handlers.

onMouseMove

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � �

The onMouseMove event handler fires whenever the cursor is atop the current

object and the mouse is moved, even by a single pixel. You do not have to press the

mouse button for the event to fire, although the event is most commonly used in

element dragging — especially in NN, where no onDrag event handler is available.

Even though the granularity of this event can be at the pixel level, you should

not use the number of event firings as a measurement device. Depending on the

speed of cursor motion and the performance of the client computer, the event may

not fire at every pixel location.

In NN4, you cannot assign the onMouseMove event handler to any object by way

of tag attributes. But you can use the NN4 event capturing mechanism to instruct

(via scripting) a window, document, or layer object to capture mouseMove events.

This allows for NN4 scripts to produce positioned element (layer) dragging. In IE4+

and NN6+, however, you can assign the onMouseMove event handler to any element

(although you can drag only with positioned elements). When designing a page that

encourages users to drag multiple items on a page, it is most common to assign the

onMouseMove event handler to the document object and let all such events bubble

up to the document for processing.

Example (with Listing 15-43) on the CD-ROM

Related Items: onDrag, onMouseDown, onMouseUp event handlers.

onMouseOut
onMouseOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The onMouseOver event fires for an object whenever the cursor rolls into the

rectangular space of the object on the screen (one event per entry into the

object — except for a bug in NN4/Windows, which causes the onMouseOver event

On the
CD-ROM

On the
CD-ROM

elementObject.onMouseOut

(c) ketabton.com: The Digital Library

213Chapter 15 ✦ Generic HTML Element Objects

to fire with mouse movement). The onMouseOut event handler fires when you move

the cursor outside the object’s rectangle. These events most commonly display

explanatory text about an object in the window’s status bar and effect image swap-

ping (so-called mouse rollovers). Use the onMouseOver event handler to change the

state to a highlighted version; use the onMouseOut event handler to restore the

image or status bar to its normal setting.

While these two events have been in object models of scriptable browsers since

the beginning, they were not available to most objects in earlier browsers. The

onMouseOver event was available only to the link object until the version 4

browsers. Even then, NN4 still restricted this event to link, area, and layer objects.

The onMouseOut event handler first surfaced for link and area objects in Navigator

3. IE4+ and NN6+ provide support for these events on every element that occupies

space on the screen. IE5.5 includes an additional pair of event handlers —

onMouseEnter and onMouseLeave— that duplicate the onMouseOver and

onMouseOut events but with different terminology. The old event handlers fire just

before the new versions.

The onMouseOut event handler commonly fails to fire if the event is associated
with an element that is near a frame or window edge and the user moves the
cursor quickly outside of the current frame.

Example (with Listing 15-44) on the CD-ROM

Related Items: onMouseEnter, onMouseLeave, onMouseMove event handlers.

onPaste

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onPaste event (not implemented in IE5/Mac) fires immediately after the

user or script initiates a paste edit action on the current object. The event is pre-

ceded by the onBeforePaste event, which fires prior to any edit or context menu

that appears (or before the paste action if initiated by keyboard shortcut).

Use this event handler to provide edit functionality to elements that don’t

normally allow pasting. In such circumstances, you need to enable the Paste menu

item in the context or Edit menu by setting the event.returnValue for the

onBeforePaste event handler to false. Then your onPaste event handler must

manually retrieve data from the clipboard (by way of the getData() method of the

clipboardData object) and handle the insertion into the current object.

Because you are in charge of what data is stored in the clipboard, you are not

limited to a direct copy of the data. For example, you might wish to store the value

of the src property of an image object so that you can paste it elsewhere on the

page.

On the
CD-ROM

Note

elementObject.onPaste

(c) ketabton.com: The Digital Library

214 Part III ✦ Document Objects Reference

Example (with Listing 15-45) on the CD-ROM

Related Items: onCopy, onCut, onBeforePaste event handlers.

onPropertyChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onPropertyChange event fires in Windows versions of IE5+ whenever a

script modifies an object’s property. This includes changes to the properties of an

object’s style. Changing properties by way of the setAttribute() method also

triggers this event.

A script can inspect the nature of the property change because the

event.propertyName property contains the name (as a string) of the property that

was just changed. In the case of a change to an object’s style object, the event.
propertyName value begins with “style.” as in style.backgroundcolor.

You can use this event handler to localize any object-specific post-processing of

changes to an object’s properties. Rather than include the post-processing state-

ments inside the function that makes the changes, you can make that function

generalized (perhaps to modify properties of multiple objects).

Example (with Listing 15-46) on the CD-ROM

Related Items: style property; setAttribute() method.

onReadyStateChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onReadyStateChange event handler fires whenever the ready state of an

object changes. See details about these states in the discussion of the readyState
property earlier in this chapter (and notice the limits for IE4). The change of state

does not guarantee that an object is, in fact, ready for script statements to access

its properties. Always check the readyState property of the object in any script

that the onReadyStateChange event handler invokes.

This event fires for objects that are capable of loading data: APPLET, document,

FRAME, FRAMESET, IFRAME, IMG, LINK, OBJECT, SCRIPT, and XML objects. The

event doesn’t fire for other types of objects unless a Microsoft DHTML behavior is

associated with the object. The onReadyStateChange event does not bubble, nor

can you cancel it.

On the
CD-ROM

On the
CD-ROM

elementObject.onReadyStateChange

(c) ketabton.com: The Digital Library

215Chapter 15 ✦ Generic HTML Element Objects

Example on the CD-ROM

Related Item: readyState property.

onResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The onResize event handler fires whenever an object is resized in response to a

variety of user or scripted actions. In NN4+, the onResize event handler is avail-

able only for the window object; IE4 includes this event handler for the APPLET,

AREA, BUTTON, DIV, FIELDSET, FRAMESET, IMG, MARQUEE, SELECT, TABLE, TD,

TH, and window objects. Virtually every content-containing element in IE5+ has this

event handler, provided the object has dimensional style attributes (for example,

height, width, or position) assigned to it.

Window resizing presents potentially serious problems in NN4, especially when

the page contains positioned elements. Unlike IE4+ and NN6, the NN4 rendering

engine typically fails to redraw a resized page properly. A reload of the page usually

fixes the problems. You can use the onResize event handler in NN4 to repair the

damage:

window.onresize = restorePage
function restorePage() {

history.go(0)
}

But there is one additional complication in NN4 for Windows when the content of

a window or frame requires scrollbars. The application of the scrollbars forces

another resize event. In concert with the preceding code, the page gets in an infinite

loop of reloading the page. To guard against this, your script must compare the

innerWidth and innerHeight of the window before and after the resize event:

var Nav4 = ((navigator.appName == “Netscape”)&&
(parseInt(navigator.appVersion) == 4))
window.onresize = restorePage
if (Nav4) {

var startWidth = window.innerWidth
var startHeight = window.innerHeight

}
function restorePage() {

if (Nav4) {
if (startWidth != window.innerWidth||

startHeight != window.innerHeight) {
history.go(0)

}
}

}

On the
CD-ROM

elementObject.onResize

(c) ketabton.com: The Digital Library

216 Part III ✦ Document Objects Reference

In IE4+ and NN6, the onResize event does not bubble. Resizing the browser

window or frame does not cause the window’s onLoad event handler to fire.

Example on the CD-ROM

Related Item: window.resize() method.

onResizeEnd
onResizeStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The onResizeEnd and onResizeStart event handlers fire only on a resizable

object in Windows edit mode. As mentioned in the discussion of the

onControlSelect event handler, an authoritative description or example is not

available yet.

Related Item: onControlSelect event handler.

onSelectStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onSelectStart event handler fires when a user begins to select content on

the page. Selected content can be inline text, images, or text within an editable text

field. If the user selects more than one object, the event fires in the first object

affected by the selection.

Example (with Listing 15-47) on the CD-ROM

Related Item: onSelect event handler for a variety of objects

✦ ✦ ✦

On the
CD-ROM

On the
CD-ROM

elementObject.onSelectStart

(c) ketabton.com: The Digital Library

Window and
Frame Objects

Aquick look at the basic document object model diagram

in Chapter 14 (Figure 14-1) reveals that the window
object is the outermost, most global container of all docu-

ment-related objects that you script with JavaScript. All HTML

and JavaScript activity takes place inside a window. That win-

dow may be a standard Windows, Mac, or Xwindows applica-

tion-style window, complete with scrollbars, toolbars, and

other “chrome;” you can also generate windows that have

only some of a typical window’s chrome. A frame is also a

window, even though a frame doesn’t have many accou-

trements beyond scrollbars. The window object is where

everything begins in JavaScript references to object. IE4+ and

NN6 treat the frameset as a special kind of window object, so

that it is also covered in this chapter.

Of all the objects associated with browser scripting, the

window and window-related objects have by far the most

object-specific terminology associated with them. This

necessitates a rather long chapter to keep the discussion in

one place. Use the running footers as a navigational aid

through this substantial collection of information.

Window Terminology
The window object is often a source of confusion when you

first learn about the document object model. A number of syn-

onyms for window objects muck up the works: top, self,

parent, and frame. Aggravating the situation is that these

terms are also properties of a window object. Under some con-

ditions, a window is its own parent, but if you define a frame-

set with two frames, you have only one parent among a total

of three window objects. It doesn’t take long before the whole

subject can make your head hurt.

If you do not use frames in your Web applications, all of

these headaches never appear. But if frames are part of your

design plan, you should get to know how frames affect the

object model.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Scripting
communication
among multiple
frames

Creating and
managing new
windows

Controlling the size,
position, and
appearance of the
browser window

Details of Window,
FRAME, FRAMESET,
and IFRAME objects

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

218 Part III ✦ Document Objects Reference

Frames
The application of frames has become a religious issue among Web designers:

some swear by them, while others swear at them. I believe there can be compelling

reasons to use frames at times. For example, if you have a document that requires

considerable scrolling to get through, you may want to maintain a static set of

navigation controls visible at all times. By placing those controls — be they links or

image maps — in a separate frame, you have made the controls available for

immediate access, regardless of the scrolled condition of the main document.

Creating frames
The task of defining frames in a document remains the same whether or not

you’re using JavaScript. The simplest framesetting document consists of tags that

are devoted to setting up the frameset, as follows:

<HTML>
<HEAD>
<TITLE>My Frameset</TITLE>
</HEAD>
<FRAMESET>

<FRAME NAME=”Frame1” SRC=”document1.html”>
<FRAME NAME=”Frame2” SRC=”document2.html”>

</FRAMESET>
</HTML>

The preceding HTML document, which the user never sees, defines the frameset

for the entire browser window. Each frame must have a URL reference (specified by

the SRC attribute) for a document to load into that frame. For scripting purposes,

assigning a name to each frame with the NAME attribute greatly simplifies scripting

frame content.

The frame object model
Perhaps the key to successful frame scripting is understanding that the object

model in the browser’s memory at any given instant is determined by the HTML

tags in the currently loaded documents. All canned object model graphics, such as

Figure 16-1 in this book, do not reflect the precise object model for your document

or document set.

Figure 16-1: The simplest
window–document relationship

Window

Document

(c) ketabton.com: The Digital Library

219Chapter 16 ✦ Window and Frame Objects

For a single, frameless document, the object model starts with just one window
object, which contains one document, as shown in Figure 16-1. In this simple struc-

ture, the window object is the starting point for all references to any loaded object.

Because the window is always there — it must be there for a document to load

into — a reference to any object in the document can omit a reference to the

current window.

In a simple two-framed frameset model (Figure 16-2), the browser treats the con-

tainer of the initial, framesetting document as the parent window. The only visible

evidence that the document exists is that the framesetting document’s title appears

in the browser window title bar.

Figure 16-2: The parent and frames are
part of the object model.

Each <FRAME> tag inside the <FRAMESET> tag set creates another window object

into which a document is loaded. Each of those frames, then, has a document
object associated with it. From the point of view of a given document, it has a single

window container, just as in the model shown in Figure 16-1. And although the

parent object is not visible to the user, it remains in the object model in memory.

The presence of the parent often makes it a convenient repository for variable data

that need to be shared by multiple child frames or must persist between loading of

different documents inside a child frame.

In even more complex arrangements, as shown in Figure 16-3, a child frame itself

may load a framesetting document. In this situation, the differentiation between the

parent and top objects starts to come into focus. The top window is the only one

in common with all frames in Figure 16-3. As you see in a moment, when frames

need to communicate with other frames (and their documents), you must fashion

references to the distant object via the window object that they all have in common.

Top
Parent

Top
Parent

Document Document

Top
Parent

<FRAMESET>

<FRAME> <FRAME>

(c) ketabton.com: The Digital Library

220 Part III ✦ Document Objects Reference

Figure 16-3: Three generations of window objects

Referencing frames
The purpose of an object reference is to help JavaScript locate the desired object

in the object model currently held in memory. A reference is a road map for the

browser to follow, so that it can track down, say, the value of a particular text field

in a particular document. Therefore, when you construct a reference, think about

where the script appears in the object model and how the reference can help the

browser determine where it should go to find the distant object. In a two-generation

scenario, such as the one shown in Figure 16-2, three intergenerational references

are possible:

✦ Parent-to-child

✦ Child-to-parent

✦ Child-to-child

Assuming that you need to access an object, function, or variable in the relative’s

frame, the following are the corresponding reference structures:

✦ frameName.objFuncVarName

✦ parent.objFuncVarName

✦ parent.frameName.objFuncVarName

The rule is this: Whenever a reference must point to another frame, begin the ref-

erence with the window object that the two destinations have in common. To

demonstrate that rule on the complex model in Figure 16-3, if the left-hand child

frame’s document needs to reference the document at the bottom right of the map,

the reference structure is

top.frameName.frameName.document. ...

Follow the map from the top window object down through two frames to the final

document. JavaScript has to take this route, so your reference must help it along.

Top
Parent

Child
Frame

Document
Child

Frame
Child

Frame

Document

Child Frame
Parent

<FRAMESET>

<FRAME>

<FRAME> <FRAME>

<FRAMESET>
<FRAME>

Document

(c) ketabton.com: The Digital Library

221Chapter 16 ✦ Window and Frame Objects

Top versus parent
After seeing the previous object maps and reference examples, you may be

wondering, Why not use top as the leading object in all trans-frame references?

From an object model point of view, you’ll have no problem doing that: A parent in

a two-generation scenario is also the top window. What you can’t count on, how-

ever, is your framesetting document always being the top window object in some-

one’s browser. Take the instance where a Web site loads other Web sites into one of

its frames. At that instant, the top window object belongs to someone else. If you

always specify top in references intended just for your parent window, your refer-

ences won’t work and will probably lead to script errors for the user. My advice,

then, is to use parent in references whenever you mean one generation above the

current document.

Preventing framing
You can use your knowledge of top and parent references to prevent your

pages from being displayed inside another Web site’s frameset. Your top-level

document must check whether it is loaded into its own top or parent window. When

a document is in its own top window, a reference to the top property of the current

window is equal to a reference to the current window (the window synonym self
seems most grammatically fitting here). If the two values are not equal, you can

script your document to reload itself as a top-level document. When it is critical

that your document be a top-level document, include the script in Listing 16-1 in the

head portion of your document:

Listing 16-1: Prevention from Getting “Framed”

<SCRIPT LANGUAGE=”JavaScript”>
if (top != self) {

top.location = location
}
</SCRIPT>

Your document may appear momentarily inside the other site’s frameset, but

then the slate is wiped clean, and your top-level document rules the browser

window.

Ensuring framing
When you design a Web application around a frameset, you may want to make

sure that a page always loads the complete frameset. Consider the possibility that a

visitor adds only one of your frames to a bookmarks list. On the next visit, only the

bookmarked page appears in the browser, without your frameset, which may con-

tain valuable navigation aids to the site.

A script can make sure that a page always loads into its frameset by comparing

the URLs of the top and self windows. If the URLs are the same, it means that the

page needs to load the frameset. Listing 16-2 shows the simplest version of this

(c) ketabton.com: The Digital Library

222 Part III ✦ Document Objects Reference

technique, which loads a fixed frameset. The listing includes a workaround for an

NN4-specific behavior that prevents printing a frame. (NN4 for Windows and Unix

reloads a page into a separate hidden window for printing and runs any immediate

scripts in the process). For a more complete implementation that passes a parame-

ter to the frameset so that it opens a specific page in one of the frames, see the

location.search property in Chapter 17.

Listing 16-2: Forcing a Frameset to Load

<SCRIPT LANGUAGE=”JavaScript”>
var isNav4 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) == 4)
if (top.location.href == window.location.href) {

if (isNav4) {
if (window.innerWidth != 0) {

top.location.href = “myFrameset.html”
}

} else {
top.location.href = “ myFrameset.html”

}
}
</SCRIPT>

Switching from frames to frameless
Some sites load themselves in a frameset by default and offer users the option of

getting rid of the frames. Only IE4+ and NN6+ let you modify a frameset’s cols or

rows properties on the fly to simulate adding or removing frames from the current

view (see the FRAMESET element object later in this chapter). In other browsers,

you cannot dynamically change the makeup of a frameset after it has loaded, but

you can load the content page of the frameset into the main window. Simply include

a button or link whose action loads that document into the top window object:

top.location.href = “mainBody.html”

A switch back to the frame version entails nothing more complicated than load-

ing the framesetting document.

Inheritance versus containment
Scripters who have experience in object-oriented programming environments

probably expect frames to inherit properties, methods, functions, and variables

defined in a parent object. That’s not the case with scriptable browsers. You can,

however, still access those parent items when you make a call to the item with a

complete reference to the parent. For example, if you want to define a deferred

function in the framesetting parent document that all frames can share, the scripts

in the frames refer to that function with this reference:
parent.myFunc()

You can pass arguments to such functions and expect returned values.

(c) ketabton.com: The Digital Library

223Chapter 16 ✦ Window and Frame Objects

Frame synchronization
A pesky problem for some scripters’ plans is that including immediate scripts in

the framesetting document is dangerous — if not crash-prone in Navigator 2. Such

scripts tend to rely on the presence of documents in the frames being created by

this framesetting document. But if the frames have not yet been created and their

documents have not yet loaded, the immediate scripts will likely crash and burn.

One way to guard against this problem is to trigger all such scripts from the

frameset’s onLoad event handler. In theory, this handler won’t trigger until all

documents have successfully loaded into the child frames defined by the frameset.

Unfortunately, IE4+ for Windows has a nasty bug that fires the onLoad event han-

dler in the frameset even if the loading has been interrupted by the browser’s Stop

button or pressing the Esc key. At the same time, be careful with onLoad event han-

dlers in the documents going into a frameset’s frames. If one of those scripts relies

on the presence of a document in another frame (one of its brothers or sisters),

you’re doomed to eventual failure. Anything coming from a slow network or server

to a slow modem can get in the way of other documents loading into frames in the

ideal order.

One way to work around these problems is to create a Boolean variable in the

parent document to act as a flag for the successful loading of subsidiary frames.

When a document loads into a frame, its onLoad event handler can set that flag to

true to indicate that the document has loaded. Any script that relies on a page

being loaded should use an if construction to test the value of that flag before

proceeding.

Despite the horrible IE4+/Windows bug described above, it is best to construct

the code so that the parent’s onLoad event handler triggers all the scripts that you

want to run after loading. Depending on other frames is a tricky business, but the

farther the installed base of Web browsers gets from Navigator 2, the less the asso-

ciated risk. For example, beginning with Navigator 3, if a user resizes a window, the

document does not reload itself, as it used to in Navigator 2. Even so, you still

should test your pages thoroughly for any residual effects that may accrue if some-

one resizes a window or clicks Reload.

Blank frames
Often, you may find it desirable to create a frame in a frameset but not put any

document in it until the user has interacted with various controls or other user

interface elements in other frames. Navigator and recent IE versions have a some-

what empty document in one of its internal URLs (about:blank). But with

Navigator 2 Bug: Parent Variables

Some bugs in Navigator 2 cause problems when accessing variables in a parent window
from one of its children. If a document in one of the child frames unloads, a parent variable
value that depends on that frame may get scrambled or disappear. Using a temporary doc-
ument.cookie for global variable values may be a better solution. For Navigator 3, you
should declare parent variables that are updated from child frames as first-class string
objects (with the new String() constructor) as described in Chapter 34.

(c) ketabton.com: The Digital Library

224 Part III ✦ Document Objects Reference

Navigator 2 and 3 on the Macintosh, an Easter egg–style message appears in that

window when it displays. This URL is also not guaranteed to be available on all

browsers. If you need a blank frame, let your framesetting document write a generic

HTML document to the frame directly from the SRC attribute for the frame, as

shown in the skeletal code in Listing 16-3. Loading an “empty” HTML document

requires no additional transactions.

Listing 16-3: Creating a Blank Frame

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function blank() {

return “<HTML></HTML>”
}
//-->
</SCRIPT>
</HEAD>
<FRAMESET>

<FRAME NAME=”Frame1” SRC=”someURL.html”>
<FRAME NAME=”Frame2” SRC=”javascript:parent.blank()”>

</FRAMESET>
</HTML>

Viewing frame source code
Studying other scripters’ work is a major learning tool for JavaScript (or any pro-

gramming language). With most scriptable browsers you can easily view the source

code for any frame, including those frames whose content is generated entirely or

in part by JavaScript. Click the desired frame to activate it (a subtle border may

appear just inside the frame on some browser versions, but don’t be alarmed if the

border doesn’t appear). Then select Frame Source (or equivalent) from the View

menu (or right-click submenu). You can also print or save a selected frame.

Frames versus FRAME element objects
With the expansion of object models that expose every HTML element to script-

ing (IE4+, NN6), a terminology conflict comes into play. Everything that you have

read about frames thus far in the chapter refers to the original object model, where

a frame is just another kind of window, with a slightly different referencing

approach. That still holds true, even in the latest browsers.

But when the object model also exposes HTML elements, then the notion of the

FRAME element object is somewhat distinct from the frame object of the original

model. The FRAME element object represents an object whose properties are

dominated by the attributes you set inside the <FRAME> tag. This provides access

to settings, such as the frame border and scrollability — the kinds of properties that

are not exposed to the original frame object.

(c) ketabton.com: The Digital Library

225Chapter 16 ✦ Window and Frame Objects

References to the frame and FRAME element objects are also different. You’ve

seen plenty of examples of how to reference an old-fashioned frame earlier in this

chapter. But access to a FRAME element object is either via the element’s ID
attribute or through the child node relationship of the enclosing FRAMESET ele-

ment (you cannot use the parentNode property to back your way out of the cur-

rent document to the FRAME element that encloses the document). The way I

prefer is to assign an ID attribute to <FRAME> tags and access the FRAME element

object by way of the document object that lives in the parent (or top) of the frame-

set hierarchy. Therefore, to access the frameBorder property of a FRAME element

object from a script living in any frame of a frameset, the syntax is

parent.document.all.frame1ID.frameBorder

or, for IE5+ and NN6+

parent.document.getElementById(“frame1ID”).frameBorder

There is no access to the document contained by a frame when the reference

goes through the FRAME element object.

Window Object

Properties Methods Event Handlers

appCore alert() onAbort††

clientInformation attachEvent()† onAfterPrint

clipboardData back() onBeforePrint

closed blur()† onBeforeUnload

Components captureEvents() onBlur†

controllers clearInterval() onChange††

crypto clearTimeout() onClick††

defaultStatus close() onClose††

dialogArguments confirm() onDragDrop

dialogHeight createPopup() onError

dialogLeft detachEvent()† onFocus†

dialogTop disableExternalCapture() onHelp

dialogWidth enableExternalCapture() onKeyDown††

directories execScript() onKeyPress††

document find() onKeyUp††

event fireEvent()† onLoad

external focus()† onMouseDown††

Continued

windowObject

(c) ketabton.com: The Digital Library

226 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

frameElement forward() onMouseMove††

frames GetAttention() onMouseOut††

history handleEvent() onMouseOver††

innerHeight home() onMouseUp††

innerWidth moveBy() onMove

length moveTo() onReset††

loading navigate() onResize

location open() onScroll

locationbar print() onSelect††

menubar prompt() onSubmit††

name releaseEvents() onUnload

navigator resizeBy()

offscreenBuffering resizeTo()

opener routeEvent()

outerHeight scroll()

outerWidth scrollBy()

pageXOffset scrollTo()

pageYOffset setActive()†

parent setCursor()

personalbar setInterval()

pkcs11 setTimeout()

prompter showHelp()

returnValue showModalDialog()

screen showModelessDialog()

screenLeft sizeToContent()

screenTop stop()

screenX

screenY

scrollbars

scrollX

scrollY

self

windowObject

226226 Part III ✦ Document Objects Reference

(c) ketabton.com: The Digital Library

227Chapter 16 ✦ Window and Frame Objects

Properties Methods Event Handlers

sidebar

status

statusbar

toolbar

top

window

†See Chapter 15.

††To handle captured or bubbled events of other objects in IE4+ and NN6

Syntax
Creating a window:

var windowObject = window.open([parameters])

Accessing window properties or methods:

window.property | method([parameters])

self.property | method([parameters])

windowObject.property | method([parameters])

About this object
The window object has the unique position of being at the top of the object

hierarchy, encompassing even the almighty document object. This exalted position

gives the window object a number of properties and behaviors unlike those of any

other object.

Chief among its unique characteristics is that because everything takes place in

a window, you can usually omit the window object from object references. You’ve

seen this behavior in previous chapters when I invoked document methods, such

as document.write(). The complete reference is window.document.write(). But

because the activity was taking place in the window that held the document run-

ning the script, that window was assumed to be part of the reference. For single-

frame windows, this concept is simple enough to grasp.

As previously stated, among the list of properties for the window object is one

called self. This property is synonymous with the window object itself (which is

why it shows up in hierarchy diagrams as an object). Having a property of an object

that is the same name as the object may sound confusing, but this situation is not

that uncommon in object-oriented environments. I discuss the reasons why you

may want to use the self property as the window’s object reference in the self
property description that follows.

As indicated earlier in the syntax definition, you don’t always have to specifically

create a window object in JavaScript code. After you start your browser, it usually

windowObject

(c) ketabton.com: The Digital Library

228 Part III ✦ Document Objects Reference

opens a window. That window is a valid window object, even if the window is blank.

Therefore, after a user loads your page into the browser, the window object part of

that document is automatically created for your script to access as it pleases.

One conceptual trap to avoid is believing that a window object’s event handler or

custom property assignments outlive the document whose scripts make the assign-

ments. Except for some obvious physical properties of a window, each new docu-

ment that loads into the window starts with a clean slate of window properties and

event handlers.

Your script’s control over an existing (already open) window’s user interface

elements varies widely with the browser and browser version for which your appli-

cation is intended. Before the version 4 browsers, the only change you can make to

an open window is to the status line at the bottom of the browser window. With

IE4+ and NN4+, however, you can control such properties as the size, location, and

(with signed scripts in Navigator) the presence of “chrome” elements (toolbars and

scrollbars, for example) on the fly. Many of these properties can be changed

beyond specific safe limits only if you cryptographically sign the scripts (see

Chapter 46) and/or the user grants permission for your scripts to make those

modifications.

Window properties are far more flexible on all browsers when your scripts gener-

ate a new window (with the window.open() method): You can influence the size,

toolbar, or other view options of a window. Recent browser versions provide even

more options for new windows, including the position of the window and whether

the window should even display a title bar. Again, if an option can conceivably be

used to deceive a user (for example, silently hiding one window that monitors

activity in another window), signed scripts and/or user permission are necessary.

The window object is also the level at which a script asks the browser to display

any of three styles of dialog boxes (a plain alert dialog box, an OK/Cancel confirma-

tion dialog box, or a prompt for user text entry). Although dialog boxes are

extremely helpful for cobbling together debugging tools for your own use (Chapter

45), they can be very disruptive to visitors who navigate through Web sites.

Because most JavaScript dialog boxes are modal (that is, you cannot do anything

else in the browser — or anything at all on a Macintosh — until you dismiss the

dialog box), use them sparingly, if at all. Remember that some users may create

macros on their computers to visit sites unattended. Should such an automated

access of your site encounter a modal dialog box, it is trapped on your page until a

human intervenes.

All dialog boxes generated by JavaScript identify themselves as being generated

by JavaScript (less egregiously so in version 4 browsers and later). This is primarily

a security feature to prevent deceitful scripts from creating system- or application-

style dialog boxes that convince visitors to enter private information. It should also

discourage dialog box usage in Web page design. And that’s good, because dialog

boxes tend to annoy users.

With the exception of the IE-specific modal and modeless dialog boxes (see the

window.showModalDialog() and window.showModeless() methods), JavaScript

dialog boxes are not particularly flexible in letting you fill them with text or graphic

elements beyond the basics. In fact, you can’t even change the text of the dialog box

buttons or add a button. With DHTML-capable browsers, you can use positioned DIV

or IFRAME elements to simulate dialog box behavior in a cross-browser way.

windowObject

228 Part III ✦ Document Objects Reference

(c) ketabton.com: The Digital Library

229Chapter 16 ✦ Window and Frame Objects

Properties
appCore
Components
controllers
prompter
sidebar

Values: See Text Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Navigator 6 provides scriptable access to numerous services that are part of the

xpconnect package (“xp” stands for “cross-platform”). These services allow scripts

to work with COM objects and the mozilla.org XUL (XML-based User Interface

Language) facilities — lengthy subjects that extend well beyond the scope of this

book. You can begin to explore this subject within the context of Navigator 6 and

scripting at http://www.mozilla.org/scriptable/.

clientInformation
Value: navigator object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

In an effort to provide scriptable access to browser-level properties while avoid-

ing reference to the Navigator browser brand, Microsoft provides the

clientInformation property. Its value is identical to that of the navigator
object — an object name that is also available in IE. Use the navigator object for

cross-browser applications. (See Chapter 28.)

Related Items: navigator object.

clipboardData
Value: Object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

windowObject.clipboardData

(c) ketabton.com: The Digital Library

230 Part III ✦ Document Objects Reference

Use the clipboardData object (not implemented in IE5/Mac) to transfer data

for such actions as cutting, copying, and pasting under script control. The object

contains data of one or more data types associated with a transfer operation. Use

this property only when editing processes via the Edit menu (or keyboard equiva-

lents) or context menu controlled by script — typically in concert with edit-related

event handlers.

Working with the clipboardData object requires knowing about its three meth-

ods shown in Table 16-1. Familiarity with the edit-related event handlers (“before”

and “after” versions of cut, copy, and paste) is also helpful (see Chapter 15).

Table 16-1 window.clipboardData Object Methods

Method Returns Description

clearData([format]) Nothing Removes data from the clipboard. If no
format parameter is supplied, all data is
cleared. Data formats can be one or more of
the following strings: Text, URL, File,
HTML, Image.

getData(format) String Retrieves data of the specified format from
the clipboard. The format is one of the
following strings: Text, URL, File, HTML,
Image. The clipboard is not emptied when
you get the data, so that the data can be
retrieved in several sequential operations.

setData(format, data) Boolean Stores string data in the clipboard. The
format is one of the following strings: Text,
URL, File, HTML, Image. For non-text data
formats, the data must be a string that
specifies the path or URL to the content.
Returns true if the transfer to the clipboard
is successful.

You cannot use the clipboardData object to transfer data between pages that

originate from different domains or arrive via different protocols (http versus

https).

Example on the CD-ROM

Related Items: event.dataTransfer property; onBeforeCopy, onBeforeCut,

onBeforePaste, onCopy, onCut, onPaste event handlers.

On the
CD-ROM

windowObject.clipboardData

(c) ketabton.com: The Digital Library

231Chapter 16 ✦ Window and Frame Objects

closed
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

When you create a subwindow with the window.open() method, you may need

to access object properties from that subwindow, such as setting the value of a text

field. Access to the subwindow is via the window object reference that is returned

by the window.open() method, as in the following code fragment:

var newWind = window.open(“someURL.html”,”subWind”)
...
newWind.document.entryForm.ZIP.value = “00000”

In this example, the newWind variable is not linked “live” to the window, but is

only a reference to that window. If the user should close the window, the newWind
variable still contains the reference to the now missing window. Thus, any script

reference to an object in that missing window will likely cause a script error. What

you need to know before accessing items in a subwindow is whether the window is

still open.

The closed property returns true if the window object has been closed either

by script or by the user. Any time you have a script statement that can be triggered

after the user has an opportunity to close the window, test for the closed property

before executing that statement.

As a workaround for Navigator 2, any property of a closed window reference

returns a null value. Thus, you can test whether, say, the parent property of the

new window is null: If so, the window has already closed. Internet Explorer 3, on

the other hand, triggers a scripting error if you attempt to access a property of a

closed window — you have no error-free way to detect whether a window is open or

closed in Internet Explorer 3.

Example (with Listing 16-4) on the CD-ROM

Related Items: window.open(), window.close() methods.

Components
See appCore.

controllers
See appCore.

On the
CD-ROM

windowObject.controllers

(c) ketabton.com: The Digital Library

232 Part III ✦ Document Objects Reference

crypto
pkcs11

Values: Object References Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The crypto and pkcs11 properties return references to browser objects that are

relevant to internal public-key cryptography mechanisms. These subjects are

beyond the scope of this book, but you can read more about Netscape’s efforts on

this front at http://www.mozilla.org/projects/security/.

defaultStatus
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

After a document is loaded into a window or frame, the statusbar’s message field

can display a string that is visible any time the mouse pointer is not atop an object

that takes precedence over the statusbar (such as a link object or an image map).

The window.defaultStatus property is normally an empty string, but you can set

this property at any time. Any setting of this property will be temporarily overrid-

den when a user moves the mouse pointer atop a link object (see window.status
property for information about customizing this temporary statusbar message).

Probably the most common time to set the window.defaultStatus property is

when a document loads into a window. You can do this as an immediate script

statement that executes from the Head or Body portion of the document or as part

of a document’s onLoad event handler.

The defaultStatus property does not work well in Navigator 2 or Internet
Explorer 3, and experiences problems in Navigator 3, especially on the Macintosh
(where the property doesn’t change even after loading a different document into
the window). Many users simply don’t notice the statusbar change during Web
surfing, so don’t put mission-critical information in the statusbar.

Example (with Listing 16-5) on the CD-ROM

Related Items: window.status property.

On the
CD-ROM

Tip

windowObject.defaultStatus

(c) ketabton.com: The Digital Library

233Chapter 16 ✦ Window and Frame Objects

dialogArguments
Value: Varies Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The dialogArguments property is available only in a window that is generated

by the IE-specific showModalDialog() or showModelessDialog() methods. Those

methods allow a parameter to be passed to the dialog box window, and the

dialogArguments property lets scripts inside the dialog box window’s scripts to

access that parameter value. The value can be in the form of a string, number, or

JavaScript array (convenient for passing multiple values).

Example on the CD-ROM

Related Items: window.showModalDialog(), window.showModelessDialog()
methods.

dialogHeight
dialogWidth

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Scripts in a document located inside an IE-specific modal or modeless dialog

box (generated by showModalDialog() or showModelessDialog()) can read or

modify the height and width of the dialog box window via the dialogHeight and

dialogWidth properties. Scripts can access these properties from the main

window only for modeless dialog boxes, which remain visible while the user can

control the main window contents.

Values for these properties are strings and include the unit of measure, the

pixel (px).

Example on the CD-ROM

Related Items: window.dialogLeft, window.dialogTop properties.

On the
CD-ROM

On the
CD-ROM

windowObject.dialogHeight

(c) ketabton.com: The Digital Library

234 Part III ✦ Document Objects Reference

dialogLeft
dialogTop

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Scripts in a document located inside an IE-specific modal or modeless dialog box

(generated by showModalDialog() or showModelessDialog()) can read or mod-

ify the left and top coordinates of the dialog box window via the dialogLeft and

dialogTop properties. Scripts can access these properties from the main window

only for modeless dialog boxes, which remain visible while the user can control the

main window contents.

Values for these properties are strings and include the unit of measure, the pixel

(px). If you attempt to change these values so that any part of the dialog box win-

dow would be outside the video monitor, the browser overrides the settings to keep

the entire window visible.

Example on the CD-ROM

Related Items: window.dialogHeight, window.dialogTopWidth properties.

directories
locationbar
menubar
personalbar
scrollbars
statusbar
toolbar

Value: Object Read/Write (with signed scripts)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Beyond the rectangle of the content region of a window (where your documents

appear), the Netscape browser window displays an amalgam of bars and other fea-

tures known collectively as chrome. All browsers can elect to remove these chrome

On the
CD-ROM

windowObject.directories

(c) ketabton.com: The Digital Library

235Chapter 16 ✦ Window and Frame Objects

items when creating a new window (as part of the third parameter of the

window.open() method), but until signed scripts were available in Navigator 4,

these items could not be turned on and off in the main browser window or any

existing window.

Navigator 4 promotes these elements to first-class objects contained by the

window object. Navigator 6 adds one more feature, called the directories bar — a

frame-like device that can be opened or hidden from the left edge of the browser

window. At the same time, however, NN6 no longer permits hiding and showing the

browser window’s scrollbars. Figure 16-4 points out where each of the six bars

appears in a fully chromed Navigator 4 window. The only element that is not part of

this scheme is the window’s title bar. You can create a new window without a title

bar (with a signed script), but you cannot hide and show the title bar on an existing

window.

Figure 16-4: Window chrome items

Chrome objects have but one property: visible. Reading this Boolean value

(possible without signed scripts) lets you inspect the visitor’s browser window for

the elements currently engaged. There is no intermediate setting or property for

the expanded/collapsed state of the toolbar, locationbar, and personalbar in NN4.

Changing the visibility of these items on the fly alters the relationship between

the inner and outer dimensions of the browser window. If you must carefully size a

window to display content, you should adjust the chrome elements before sizing

the window. Before you start changing chrome visibility before the eyes of your

page visitors, weigh the decision carefully. Experienced users have fine-tuned the

look of their browser windows to just the way they like them. If you mess with that

Menubar

Personalbar StatusbarLocationbarToolbar Scrollbar

windowObject.directories

(c) ketabton.com: The Digital Library

236 Part III ✦ Document Objects Reference

look, you may anger your visitors. Fortunately, changes you make to a chrome ele-

ment’s visibility are not stored to the user’s preferences. However, the changes you

make survive an unloading of the page. If you change the settings, be sure you first

save the initial settings and restore them with an onUnload event handler.

The Macintosh menu bar is not part of the browser’s window chrome. Therefore,
its visibility cannot be adjusted from a script.

Example (with Listing 16-6) on the CD-ROM

Related Items: window.open() method.

document
Value: Object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

I list the document property here primarily for completeness. Each window
object contains a single document object (although in Navigator 4, a window may

also contain layers, each of which has a document object, as described in Chapter

31). The value of the document property is the document object, which is not a

displayable value. Instead, you use the document property as you build references

to properties and methods of the document and to other objects contained by the

document, such as a form and its elements. To load a different document into a win-

dow, use the location object (see Chapter 17). The document object is described

in detail in Chapter 18.

Related Items: document object.

event
Value: Object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Only IE4+ treats the event object as a property of the window object. Navigator

4+ and the W3C DOM pass an instance of the Event object as an argument to event

handler functions. The connection with the window object in IE is relatively incon-

sequential, because all action involving the event object occurs in event handler

functions. The only difference is that the object can be treated as a more global

On the
CD-ROM

Tip

windowObject.event

(c) ketabton.com: The Digital Library

237Chapter 16 ✦ Window and Frame Objects

object when one event handler function invokes another. Instead of having to pass

the event object parameter to the next function, IE functions can access the event
object directly (with or without the window. prefix in the reference).

For complete details about the event object in all browsers, see Chapter 29.

Related Items: event object.

external
Value: Object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The external property (not implemented in IE5/Mac) is useful only when the

browser window is a component in another application. The property provides a

gateway between the current browser window and the application that acts as a

host to the browser window component.

With IE4+ acting as a component to the host operating system, the external
property can be used to access several methods that influence behaviors outside of

the browser. Perhaps the three most useful methods to regular Web page scripters

are AddDesktopComponent(), AddFavorite(), and NavigateAndFind(). The first

two methods display the same kind of alert dialog box that users get after making

these choices from the browser or desktop menus, so that you won’t be able to

sneak your Web site onto desktops or Favorites listings without the visitor’s

approval. Table 16-2 describes the parameters for these three methods.

Table 16-2 Popular window.external Object Methods

Method Description

AddDesktopComponent(“URL”, Adds a Web site or image to the Active Desktop
“type”[, left, top, (if turned on in the user’s copy of Windows). The
width, height]) type parameter value is either website or

image. Dimensional parameters (optional) are all
integer values.

AddFavorite(“URL”[, “title”]) Adds the specified URL to the user’s Favorites list.
The optional title string parameter is how the URL
should be listed in the menu (if missing, the URL
appears in the list).

NavigateAndFind(“URL”,
“findString”, “target”) Navigates to the URL in the first parameter and

opens the page in the target frame (an empty
string opens in the current frame). The
findString is text to be searched for on that
page and highlighted when the page loads.

windowObject.external

(c) ketabton.com: The Digital Library

238 Part III ✦ Document Objects Reference

To learn more about the external object and how to extend the MS object

model, visit http://msdn.microsoft.com.workshop/browser/overview/
Overview.asp#Extending_the_Dynami.

Example on the CD-ROM

frameElement
Values: FRAME or IFRAME Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If the current window exists as a result of a <FRAME> or <IFRAME> tag, the win-

dow’s frameElement property returns a reference to the hosting element. As is

made clear in the discussion later in this chapter about the FRAME element object,

a reference to a FRAME or IFRAME element object provides access to the properties

that echo the attributes of the HTML element object. For a window that is not part

of a frameset, the frameElement property returns null.

The convenience of this property becomes apparent when a single document is

loaded into multiple framesets. A script in the document can still refer to the con-

taining FRAME element, even when the ID of the element changes from one frame-

set to another. The FRAMESET element is also accessible via the parentElement
property of the frameElement property:

var frameSetObj = self.frameElement.parentElement

A reference to the FRAMESET element opens possibilities of adjusting frame sizes.

Related Items: FRAME, IFRAME objects.

frames
Value: Array Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

In a multiframe window, the top or parent window contains any number of

separate frames, each of which acts as a full-fledged window object. The frames
property (note the plural use of the word as a property name) plays a role when a

statement must reference an object located in a different frame. For example, if a

On the
CD-ROM

windowObject.frames

(c) ketabton.com: The Digital Library

239Chapter 16 ✦ Window and Frame Objects

button in one frame is scripted to load a document in another frame, the button’s

event handler must be able to tell JavaScript precisely where to display the new

HTML document. The frames property assists in that task.

To use the frames property to communicate from one frame to another, it

should be part of a reference that begins with the parent or top property. This lets

JavaScript make the proper journey through the hierarchy of all currently loaded

objects to reach the desired object. To find out how many frames are currently

active in a window, use this expression:

parent.frames.length

This expression returns a number indicating how many frames the parent win-

dow defines. This value does not, however, count further nested frames, should a

third generation of frame be defined in the environment. In other words, no single

property exists that you can use to determine the total number of frames in the

browser window if multiple generations of frames are present.

The browser stores information about all visible frames in a numbered (indexed)

array, with the first frame (that is, the topmost <FRAME> tag defined in the frameset-

ting document) as number 0:

parent.frames[0]

Therefore, if the window shows three frames (whose indexes are frames[0],

frames[1], and frames[2], respectively), the reference for retrieving the title
property of the document in the second frame is

parent.frames[1].document.title

This reference is a road map that starts at the parent window and extends to the

second frame’s document and its title property. Other than the number of frames

defined in a parent window and each frame’s name (top.frames[i].name), no

other values from the frame definitions are directly available from the frame object

via scripting until you get to IE4 and NN6 (see the FRAME element object later in

this chapter). In these browsers, individual FRAME element objects have several

properties that reveal <FRAME> tag attributes.

Using index values for frame references is not always the safest tactic, however,

because your frameset design may change over time, in which case the index val-

ues will also change. Instead, you should take advantage of the NAME attribute of the

<FRAME> tag, and assign a unique, descriptive name to each frame. A value you

assign to the NAME attribute is also the name that you use for TARGET attributes of

links to force a linked page to load in a frame other than the one containing the link.

You can use a frame’s name as an alternative to the indexed reference. For example,

in Listing 16-7, two frames are assigned distinctive names. To access the title of a

document in the JustAKid2 frame, the complete object reference is

parent.JustAKid2.document.title

with the frame name (case-sensitive) substituting for the frames[1] array refer-

ence. Or, in keeping with JavaScript flexibility, you can use the object name in the

array index position:

parent.frames[“JustAKid2”].document.title

windowObject.frames

(c) ketabton.com: The Digital Library

240 Part III ✦ Document Objects Reference

The supreme advantage to using frame names in references is that no matter

how the frameset structure may change over time, a reference to a named frame

will always find that frame, although its index value (that is, position in the frame-

set) may change.

Example (with Figure 16-5 and Listings 16-7 and 16-8) on the CD-ROM

Related Items: frame, frameset objects; window.parent, window.top properties.

history
Value: Object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

See the discussion of the history object in Chapter 17.

innerHeight
innerWidth
outerHeight
outerWidth

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Navigator 4+ lets scripts adjust the height and width of any window, including

the main browser window by setting properties (NN4+ and IE4+ have methods that

also resize the browser window). This adjustment can be helpful when your page

shows itself best with the browser window sized to a particular height and width.

Rather than relying on the user to size the browser window for optimum viewing of

your page, you can dictate the size of the window (although the user can always

manually resize the main window). And because you can examine the operating

system of the visitor via the navigator object (see Chapter 28), you can size a

window to adjust for the differences in font and form element rendering on different

platforms.

Netscape provides two different points of reference for measuring the height and

width of a window: inner and outer. Both are measured in pixels. The inner mea-

surements are that of the active document area of a window (sometimes known as a

On the
CD-ROM

windowObject.innerHeight

(c) ketabton.com: The Digital Library

241Chapter 16 ✦ Window and Frame Objects

window’s content region). If the optimum display of your document depends on the

document display area being a certain number of pixels high and/or wide, the

innerHeight and innerWidth properties are the ones to set.

In contrast, the outer measurements are of the outside boundary of the entire

window, including whatever chrome is showing in the window: scrollbars, status-

bar, and so on. Setting the outerHeight and outerWidth is generally done in con-

cert with a reading of screen object properties (Chapter 28). Perhaps the most

common usage of the outer properties is to set the browser window to fill the

available screen area of the visitor’s monitor.

A more efficient way of modifying both outer dimensions of a window is with the

window.resizeTo() method, which is also available in IE4+. The method takes

pixel width and height (as integer values) as parameters, thus accomplishing a

window resizing in one statement. Be aware that resizing a window does not adjust

the location of a window. Therefore, just because you set the outer dimensions of a

window to the available space returned by the screen object doesn’t mean that the

window will suddenly fill the available space on the monitor. Application of the

window.moveTo() method is necessary to ensure the top-left corner of the window

is at screen coordinates 0,0.

Despite the freedom that these properties afford the page author, Netscape has

built in a minimum size limitation for scripts that are not cryptographically signed.

You cannot set these properties such that the outer height and width of the

window is smaller than 100 pixels on a side. This limitation is to prevent an

unsigned script from setting up a small or nearly invisible window that monitors

activity in other windows. With signed scripts, however, windows can be made

smaller than 100 × 100 pixels with the user’s permission. IE4+ maintains a smaller

minimum size to prevent resizing a window to zero size.

Example (with Listing 16-9) on the CD-ROM

Related Items: window.resizeTo(), window.moveTo() methods; screen object;

navigator object.

loading
Value: Boolean Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

This NN4-specific property allows you to query whether the window is still load-

ing content. The property returns true if the page is still loading and false if the

page has completed loading all of its content.

On the
CD-ROM

windowObject.loading

(c) ketabton.com: The Digital Library

242 Part III ✦ Document Objects Reference

location
Value: Object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

See the discussion of the location object in Chapter 17.

locationbar
See directories.

name
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

All window objects can have names assigned to them. Names are particularly

useful for working with frames, because a good naming scheme for a multiframe

environment can help you determine precisely which frame you’re working with in

references coming from other frames.

The main browser window, however, has no name attached to it by default. Its

value is an empty string. There aren’t many reasons to assign a name to the win-

dow, because JavaScript and HTML provide plenty of other ways to refer to the

window object (the top property, the _top constant for TARGET attributes, and the

opener property from subwindows).

If you want to attach a name to the main window, you can do so by setting the

window.name property at any time. But be aware that because this is one window

property whose life extends beyond the loading and unloading of any given docu-

ment, chances are that your scripts would use the reference in only one document

or frameset. Unless you restore the default empty string, your programmed window

name will be present for any other document that loads later. My suggestion in this

regard is to assign a name in a window’s or frameset’s onLoad event handler, and

then reset it to empty in a corresponding onUnload event handler:

<BODY onLoad=”self.name = ‘Main’” onUnload=”self.name = ‘’”>

You can see an example of this application in Listing 16-16, where setting a par-

ent window name is helpful for learning the relationships among parent and child

windows.

Related Items: top property; window.open(), window.sizeToContent()methods.

windowObject.name

(c) ketabton.com: The Digital Library

243Chapter 16 ✦ Window and Frame Objects

navigator
Value: Object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Although the navigator object appears as a property of the window object only

in the most recent browsers, the navigator object has been around since the very

beginning (see Chapter 28). In previous browsers, the navigator object was refer-

enced as a standalone object. And because you can omit any reference to the

window object for a window object’s properties, you can use the same window-less

reference syntax for compatibility across all scriptable browsers (at least for the

navigator object properties that exist across all browsers). That’s the way I

recommend referring to the navigator object.

Example on the CD-ROM

Related Items: navigator object.

offscreenBuffering
Value: Boolean or String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Internet Explorer 4+ (for Win32 platforms) by default initially renders a page in a

buffer (a chunk of memory) before it is blasted to the video screen. You can control

this behavior explicitly by modifying the window.offscreenBuffering property.

The default value of the property is the string auto. You can also assign Boolean

true or false to the property to override IE’s normal automatic handling of this

behavior.

Example on the CD-ROM

onerror
Value: Function Read/Writ

On the
CD-ROM

On the
CD-ROM

windowObject.onerror

(c) ketabton.com: The Digital Library

244 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The onerror property is an exception to the rule of this book to not describe

event handlers as properties within object reference sections. The reason is that

the onError event brings along some special properties that are useful to control

by setting the event handler property in scripts.

Recent browsers (IE5+ and NN4+) are designed to prevent script errors from being

intrusive if a user encounters a script error while loading or interacting with a page.

Even so, even the subtle hints about problems (messages or icons in the statusbar)

can be confusing for users who have no idea what JavaScript is. JavaScript lets you

turn off the display of script error windows or messages as someone executes a

script on your page. The question is: When should you turn off these messages?

Script errors generally mean that something is wrong with your script. The error

may be the result of a coding mistake or, conceivably, a bug in JavaScript (perhaps

on a platform version of the browser that you haven’t been able to test). If such

errors occur, often the script won’t continue to do what you intended. Hiding the

script error from yourself during development would be foolhardy, because you’d

never know whether unseen errors are lurking in your code. It can be equally dan-

gerous to turn off error dialog boxes for users who may believe that the page is

operating normally, when, in fact, it’s not. Some data values may not be calculated

or displayed correctly.

That said, I can see some limited instances of when you may want to keep such

dialog box windows from appearing. For example, if you know for a fact that a plat-

form-specific bug trips the error message without harming the execution of the

script, you may want to prevent that error alert dialog box from appearing in the

files posted to your Web site. You should do this only after extensive testing to

ensure that the script ultimately behaves correctly, even with the bug or error.

IE fires the onError event handler only for runtime errors. This means that if you
have a syntactical error in your script that trips the browser as the page loads, the
onError event doesn’t fire, and you cannot trap that error message. Moreover, if
the user has the IE script debugger installed, any code you use to prevent browser
error messages from appearing will not work.

When the browser starts, the window.onerror property is <undefined>. In this

state, all errors are reported via the normal JavaScript error window or message. To

turn off error alerts, set the window.onerror property to invoke a function that

does absolutely nothing:

function doNothing() {return true}
window.onerror = doNothing

To restore the error messages, reload the page.

You can, however, also assign a custom function to the window.onerror prop-

erty. This function then handles errors in a more friendly way under your script

control. Whenever error messages are turned on (the default behavior), a script

Note

windowObject.onerror

(c) ketabton.com: The Digital Library

245Chapter 16 ✦ Window and Frame Objects

error (or Java applet or class exception) invokes the function assigned to the

onerror property, passing three parameters:

✦ Error message

✦ URL of document causing the error

✦ Line number of the error

You can essentially trap for all errors and handle them with your own interface

(or no user notification at all). The last statement of this function must be return
true if you do not want the JavaScript script error message to appear.

NN6 does not pass error-related parameters to a function invoked by onError. This
may be an attempt to lure scripters to the more modern try-catch error trapping
mechanism (see Chapter 39). But it means that NN6 cannot take complete advan-
tage of older error reporting code, including that shown in Listing 16-10.

If you are using LiveConnect to communicate with a Java applet or (in NN3+) to

call up Java class methods directly from your scripts, you can use the same scheme

to handle any exception that Java may throw. A Java exception is not necessarily a

mistake kind of error: Some methods assume that the Java code will trap for excep-

tions to handle special cases (for example, reacting to a user’s denial of access

when prompted by a signed script dialog box). See Chapter 44 for an example of

trapping for a specific Java exception. Also, see Chapter 39 for JavaScript exception

handling introduced for W3C DOM-compatible browsers.

Example (with Figure 16-6 and Listing 16-10) on the CD-ROM

Related Items: location.reload() method; JavaScript exception handling

(Chapter 39); debugging scripts (Chapter 45).

opener
Value: Window object reference Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � �

Many scripters make the mistake of thinking that a new browser window created

with the window.open() method has a child–parent relationship similar to the one

that frames have with their parents. That’s not the case at all. New browser win-

dows, once created, have a very slim link to the window from whence they came:

via the opener property. The purpose of the opener property is to provide scripts

in the new window with valid references back to the original window. For example,

the original window may contain some variable values or general-purpose functions

that a new window at this Web site wants to use. The original window may also

On the
CD-ROM

Note

windowObject.opener

(c) ketabton.com: The Digital Library

246 Part III ✦ Document Objects Reference

have form elements whose settings are either of value to the new window or get set

by user interaction in the new window.

Because the value of the opener property is a reference to a genuine window
object, you can begin references with the property name. Or, you may use the more

complete window.opener or self.opener reference. But the reference must then

include some object or property of that original window, such as a window method

or a reference to something contained by that window’s document.

Although this property was new for Navigator 3 (and was one of the rare

Navigator 3 features to be included in Internet Explorer 3), you can make your

scripts backward compatible to Navigator 2. For every new window you create,

make sure it has an opener property as follows:

var newWind = window.open()
if (newWind.opener == null) {

newWind.opener = self
}

For Navigator 2, this step adds the opener property to the window object refer-

ence. Then, no matter which version of JavaScript-enabled Navigator the user has,

the opener property in the new window’s scripts points to the desired original

window.

If a subwindow opens yet another subwindow, the chain is still valid, albeit one

step longer. The third window can reach the main window with a reference that

begins:

opener.opener....

It’s a good idea for the third window to store in a global variable the value of

opener.opener while the page loads. Thus, if the user closes the second window,

the variable can be used to start a reference to the main window.

When a script that generates a new window is within a frame, the opener prop-

erty of the subwindow points to that frame. Therefore, if the subwindow needs to

communicate with the main window’s parent or another frame in the main window,

you have to very carefully build a reference to that distant object. For example, if

the subwindow needs to get the checked property of a checkbox in a sister frame

of the one that created the subwindow, the reference is

opener.parent.sisterFrameName.document.formName.checkboxName.checked

It is a long way to go, indeed, but building such a reference is always a case of

mapping out the path from where the script is to where the destination is, step-by-

step.

Example (with Figure 16-7 and Listings 16-11 and 16-12) on the CD-ROM

Related Items: window.open(), window.focus() methods.

On the
CD-ROM

windowObject.opener

(c) ketabton.com: The Digital Library

247Chapter 16 ✦ Window and Frame Objects

outerHeight
outerWidth

See innerHeight and innerWidth, earlier.

pageXOffset
pageYOffset

Value: Integer Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The top-left corner of the content (inner) region of the browser window is an

important geographical point for scrolling documents. When a document is scrolled

all the way to the top and flush left in the window (or when a document is small

enough to fill the browser window without displaying scrollbars), the document’s

location is said to be 0,0, meaning zero pixels from the top and zero pixels from the

left. If you were to scroll the document, some other coordinate point of the docu-

ment would be under that top-left corner. That measure is called the page offset,

and the pageXOffset and pageYOffset properties let you read the pixel value of

the document at the inner window’s top-left corner: pageXOffset is the horizontal

offset, and pageYOffset is the vertical offset.

The value of these measures becomes clear if you design navigation buttons in

your pages to carefully control paging of content being displayed in the window. For

example, you might have a two-frame page in which one of the frames features navi-

gation controls, while the other displays the primary content. The navigation con-

trols take the place of scrollbars, which, for aesthetic reasons, are turned off in the

display frame. Scripts connected to the simulated scrolling buttons can determine

the pageYOffset value of the document, and then use the window.scrollTo()
method to position the document precisely to the next logical division in the docu-

ment for viewing.

IE4+ has corresponding values as body object properties: body.scrollLeft and

body.scrollTop (see Chapter 18).

Example (with Listing 16-13) on the CD-ROM

Related Items: window.innerHeight, window.innerWidth, body.scrollLeft,

body.scrollTop properties; window.scrollBy(), window.scrollTo() methods.

On the
CD-ROM

windowObject.pageXOffset

(c) ketabton.com: The Digital Library

248 Part III ✦ Document Objects Reference

parent
Value: Window object reference Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The parent property (and the top property that follows later in this section)

comes into play primarily when a document is to be displayed as part of a multi-

frame window. The HTML documents that users see in the frames of a multiframe

browser window are distinct from the document that specifies the frameset for the

entire window. That document, though still in the browser’s memory (and appear-

ing as the URL in the location field of the browser), is not otherwise visible to the

user (except in the Source View).

If scripts in your visible documents need to reference objects or properties of

the frameset window, you can reference those frameset window items with the

parent property (do not, however, expand the reference by preceding it with the

window object, as in window.parent.propertyName, as this causes problems in

early browsers). In a way, the parent property seems to violate the object hierar-

chy because, from a single frame’s document, the property points to a level seem-

ingly higher in precedence. If you didn’t specify the parent property or instead

specified the self property from one of these framed documents, the object refer-

ence is to the frame only, rather than to the outermost framesetting window object.

A nontraditional but perfectly legal way to use the parent object is as a means

of storing temporary variables. Thus, you could set up a holding area for individual

variable values or even an array of data. These values can then be shared among all

documents loaded into the frames, including when documents change inside the

frames. You have to be careful, however, when storing data in the parent on the fly

(that is in response to user action in the frames). Variables can revert to their

default values (that is, the values set by the parent’s own script) if the user resizes

the window in early browsers.

A child window can also call a function defined in the parent window. The refer-

ence for such a function is

parent.functionName([parameters])

At first glance, it may seem as though the parent and top properties point to

the same framesetting window object. In an environment consisting of one frameset

window and its immediate children, that’s true. But if one of the child windows was,

itself, another framesetting window, then you wind up with three generations of

windows. From the point of view of the “youngest” child (for example, a window

defined by the second frameset), the parent property points to its immediate par-

ent, whereas the top property points to the first framesetting window in this chain.

On the other hand, a new window created via the window.open() method has

no parent–child relationship to the original window. The new window’s top and

parent point to that new window. You can read more about these relationships in

the “Frames” section earlier in this chapter.

windowObject.parent

(c) ketabton.com: The Digital Library

249Chapter 16 ✦ Window and Frame Objects

Example (with Figure 16-8 and Listings 16-14 and 16-15) on the CD-ROM

Related Items: window.frames, window.self, window.top properties.

personalbar
See directories.

returnValue
Value: Any data type Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Scripts use the returnValue property in a document that loads into the IE-spe-

cific modal dialog box. A modal dialog box is generated via the showModalDialog()
method, which returns whatever data has been assigned to the returnValue prop-

erty of the dialog box window before it closes. This is possible because script pro-

cessing in the main window freezes while the modal dialog box is visible. As the

dialog box closes, a value can be returned to the main window’s script right where

the modal dialog box was invoked, and the main window’s script resumes executing

statements.

Example on the CD-ROM

Related Items: showModalDialog() method.

screen
Value: screen Object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Although the screen object appears as a property of the window object only in

the most recent browsers, the screen object is also available in NN4 (see Chapter

28), but as a standalone object. Because you can omit any reference to the window
object for a window object’s properties, the same window-less reference syntax can

be used for compatibility across all browsers that support the screen object.

That’s the way I recommend referring to the screen object.

On the
CD-ROM

On the
CD-ROM

windowObject.screen

(c) ketabton.com: The Digital Library

250 Part III ✦ Document Objects Reference

Example
See Chapter 28 for examples of using the screen object to determine the video

monitor characteristics of the computer running the browser.

Related Items: screen object.

screenLeft
screenTop

Value: Integer Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

IE5+ (but not IE5/Mac) provides the screenLeft and screenTop properties of

the window object to let you read the pixel position (relative to the top-left 0,0 coor-

dinate of the video monitor) of what Microsoft calls the client area of the browser

window. The client area excludes most window chrome, such as the title bar,

address bar, and the window sizing bar. Therefore, when the IE5 browser window is

maximized (meaning that no sizing bars are exposed), the screenLeft property of

the window is 0, while the screenTop property varies depending on the combina-

tion of toolbars the user has elected to display. For non-maximized windows, if the

window has been positioned so that the top and/or left part of the client area are

out of view, their property values will be negative integers.

These two properties are read-only. You can position the browser window via the

window.moveTo() and window.moveBy() methods, but these methods position

the top-left corner of the entire browser window, not the client area. IE browsers,

through version 5.5, do not provide properties for the position of the entire

browser window.

Example on the CD-ROM

Related Items: window.moveTo(), window.moveBy() methods.

screenX
screenY

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

On the
CD-ROM

windowObject.screenX

(c) ketabton.com: The Digital Library

251Chapter 16 ✦ Window and Frame Objects

NN6 provides the screenX and screenY properties to read the position of the

outer boundary of the browser window relative to the top-left coordinates (0,0) of

the video monitor. The browser window includes the four-pixel wide window sizing

bars that surround Win32 windows. Therefore, when the NN6/Win32 browser win-

dow is maximized, the values for both screenX and screenY are -4. Netscape does

not provide the equivalent measures of the browser window client area as found in

the screenLeft and screenTop properties of IE5. You can, however, find out if var-

ious toolbars are visible in the browser window (see window.directories).

Both properties can be changed by script to alter the location of the window, but

the window.moveTo() and window.moveBy() methods are more convenient,

because only one statement is needed to handle both coordinates.

Example on the CD-ROM

Related Items: window.moveTo(), window.moveBy() methods.

scrollbars
See directories.

scrollX
scrollY

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 scrollX and scrollY properties let you determine the horizontal and

vertical scrolling of a window. Scrolling is possible only if the window displays

scrollbars along the desired axis. Values are pixel integers.

While the IE DOM does not provide similar properties for the window, the same

information can be derived from the body.scrollLeft and body.scrollTop
properties.

Example on the CD-ROM

Related Items: body.scrollLeft, body.scrollTop properties.

On the
CD-ROM

On the
CD-ROM

windowObject.scrollX

(c) ketabton.com: The Digital Library

252 Part III ✦ Document Objects Reference

self
Value: Window object reference Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Just as the window object reference is optional, so too is the self property when

the object reference points to the same window as the one containing the reference.

In what may seem to be an unusual construction, the self property represents the

same object as the window. For instance, to obtain the title of the document in a

single-frame window, you can use any of the following three constructions:

window.document.title
self.document.title
document.title

Although self is a property of a window, you should not combine the references

within a single-frame window script (for example, don’t begin a reference with

window.self, which has been known to cause numerous scripting problems).

Specifying the self property, though optional for single-frame windows, can help

make an object reference crystal clear to someone reading your code (and to you,

for that matter). Multiple-frame windows are where you need to pay particular

attention to this property.

JavaScript is pretty smart about references to a statement’s own window.

Therefore, you can generally omit the self part of a reference to a same-window

document element. But when you intend to display a document in a multiframe

window, complete references (including the self prefix) to an object make it much

easier on anyone who reads or debugs your code to track who is doing what to

whom. You are free to retrieve the self property of any window. The value that

comes back is a window object reference.

Example (with Listing 16-16) on the CD-ROM

Related Items: window.frames, window.parent, window.top properties.

sidebar
See appCore.

status
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

On the
CD-ROM

windowObject.status

(c) ketabton.com: The Digital Library

253Chapter 16 ✦ Window and Frame Objects

At the bottom of the browser window is a statusbar. Part of that bar includes an

area that normally discloses the document loading progress or the URL of a link

that the mouse is pointing to at any given instant. You can control the temporary

content of that field by assigning a text string to the window object’s status prop-

erty (Figure 16-9). You should adjust the status property only in response to

events that have a temporary effect, such as a link or image map area object’s

onMouseOver event handler. When the status property is set in this situation, it

overrides any other setting in the statusbar. If the user then moves the mouse

pointer away from the object that changes the statusbar, the bar returns to its

default setting (which may be empty on some pages).

Figure 16-9: The statusbar can be set to display a custom
message when the pointer rolls over a link.

Use this window property as a friendlier alternative to displaying the URL of a

link as a user rolls the mouse around the page. For example, if you’d rather use the

statusbar to explain the nature of the destination of a link, put that text into the

statusbar in response to the onMouseOver event handler. But be aware that experi-

enced Web surfers like to see URLs down there. Therefore, consider creating a

hybrid message for the statusbar that includes both a friendly description followed

by the URL in parentheses. In multiframe environments, you can set the window.
status property without having to worry about referencing the individual frame.

Example (with Listings 16-17, 16-18, and 16-19) on the CD-ROM

Related Items: window.defaultStatus property; onMouseOver, onMouseOut
event handlers; link object.

statusbar
toolbar

See locationbar.

On the
CD-ROM

windowObject.statusbar

(c) ketabton.com: The Digital Library

254 Part III ✦ Document Objects Reference

top
Value: Window object refererence Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The window object’s top property refers to the topmost window in the docu-

ment object hierarchy. For a single-frame window, the reference is to the same

object as the window itself (including the self and parent properties), so do not

include window as part of the reference. In a multiframe window, the top window is

the one that defines the first frameset (in case of nested framesets). Users don’t

ever really see the top window in a multiframe environment, but the browser stores

it as an object in its memory. The reason is that the top window has the road map

to the other frames (if one frame should need to reference an object in a different

frame), and its children frames can call upon it. Such a reference looks like

top.functionName([parameters])

For more about the distinction between the top and parent properties, see the

in-depth discussion about scripting frames at the beginning of this chapter. See also

the example of the parent property for listings that demonstrate the values of the

top property.

Related Items: window.frames, window.self, window.parent properties.

window
Value: Window object Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Listing the window property as a separate property may be more confusing than

helpful. The window property is the same object as the window object. You do not

need to use a reference that begins with window.window. Although the window
object is assumed for many references, you can use window as part of a reference to

items in the same window or frame as the script statement that makes that refer-

ence. You should not, however, use window as a part of a reference involving items

higher up in the hierarchy (top or parent).

windowObject.window

(c) ketabton.com: The Digital Library

255Chapter 16 ✦ Window and Frame Objects

Methods
alert(“message”)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

An alert dialog box is a modal window that presents a message to the user with a

single OK button to dismiss the dialog box. As long as the alert dialog box is show-

ing, no other application or window can be made active. The user must dismiss the

dialog box before proceeding with any more work in the browser.

The single parameter to the alert() method can be a value of any data type,

including representations of some unusual data types whose values you don’t

normally work with in JavaScript (such as complete objects). This makes the alert

dialog box a handy tool for debugging JavaScript scripts. Anytime you want to mon-

itor the value of an expression, use that expression as the parameter to a tempo-

rary alert() method in your code. The script proceeds to that point and then

stops to show you the value. (See Chapter 45 for more tips on debugging scripts.)

What is often disturbing to application designers is that all JavaScript-created

modal dialog boxes (via the alert(), confirm(), and prompt() methods) identify

themselves as being generated by JavaScript or the browser. The look is particu-

larly annoying in browsers before NN4 and IE4, because the wording appears

directly in the dialog box’s content area, rather than in the title bar of the dialog

box. The purpose of this identification is to act as a security precaution against

unscrupulous scripters who might try to spoof system or browser alert dialog

boxes, inviting a user to reveal passwords or other private information. These iden-

tifying words cannot be overwritten or eliminated by your scripts. You can simulate

a modal dialog box window in a cross-browser fashion (see an article at http://
developer.netscape.com/viewsource/goodman_modal/goodman_modal.html),

but it is not as robust as a genuine modal window, which you can create in IE4+ via

the window.showModalDialog() method.

Because the alert() method is of a global nature (that is, no particular frame in

a multiframe environment derives any benefit from laying claim to the alert dialog

box), a common practice is to omit all window object references from the statement

that calls the method. Restrict the use of alert dialog boxes in your HTML docu-

ments and site designs. The modality of the windows is disruptive to the flow of a

user’s navigation around your pages. Communicate with users via forms or by writ-

ing to separate document window frames.

Example (with Figure 16-10 and Listing 16-20) on the CD-ROM

Related Items: window.confirm(), window.prompt() methods.

On the
CD-ROM

windowObject.alert()

(c) ketabton.com: The Digital Library

256 Part III ✦ Document Objects Reference

back()
forward()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The purpose of the window.back() and window.forward() methods in NN4 is

to offer a scripted version of the global back and forward navigation buttons, while

allowing the history object to control navigation strictly within a particular win-

dow or frame — as it should. These window methods did not catch on in IE (and the

window object is out of the scope of the W3C DOM Level 2), so you are better off

staying with the history object’s methods for navigating through browser history.

For more information about version compatibility and the back and forward naviga-

tion, see the history object in Chapter 17.

Example on the CD-ROM

Related Items: history.back(), history.forward(), history.go() methods.

captureEvents(eventTypeList)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

In Navigator 4, an event filters down from the window object and eventually

reaches its intended target. For example, if you click a button, the click event first

reaches the window object; then it goes to the document object; and eventually (in

a split second) it reaches the button, where an onClick event handler is ready to

act on that click.

The NN4 “trickle-down” event propagation mechanism allows window, docu-

ment, and layer objects to intercept events and process them prior to reaching

their intended targets (or preventing them from reaching their destinations

entirely). But for one of these outer containers to grab an event, your script must

instruct it to capture the type of event your application is interested in preprocess-

ing. If you want the window object to intercept all events of a particular type, use

the window.captureEvents() method to turn that facility on.

On the
CD-ROM

windowObject.captureEvents()

(c) ketabton.com: The Digital Library

257Chapter 16 ✦ Window and Frame Objects

NN6 (and future browsers that implement the W3C DOM event model) has both a
trickle-down and bubble-up event model combination. The syntax for using event
capture in NN6 is quite different from that in NN4. The discussions of the
captureEvents(), releaseEvents(), handleEvent(), and routeEvent()
methods of the window, document, and layer objects apply only to Navigator 4. If
your DHTML page design does not need to support NN4, you can skip these
discussions.

The window.captureEvents() method takes one or more event types as

parameters. An event type is a constant value built inside the Navigator 4 Event
object. One event type exists for every kind of event handler you see in all of the

Navigator 4 document objects. The syntax is the event object name (Event) and the

event name in all uppercase letters. For example, if you want the window to inter-

cept all click events, the statement is

window.captureEvents(Event.CLICK)

For multiple events, add them as parameters, separated by the pipe (|) character:

window.captureEvents(Event.MOUSEDOWN | Event.KEYPRESS)

After an event type is captured by the window object, a function must be ready to

deal with the event. For example, perhaps the function looks through all Event.
MOUSEDOWN events and looks to see if the right mouse button was the one that trig-

gered the event and what form element (if any) is the intended target. The goal is to

perhaps display a pop-up menu (as a separate layer) for a right-click. If the click

comes from the left mouse button, the event is routed to its intended target.

To associate a function with a particular event type captured by a window object,

assign a function to the event. For example, to assign a custom doClickEvent()
function to click events captured by the window object, use the following statement:

window.onclick=doClickEvent

Note that the function name is assigned only as a reference name (no quotes or

parentheses), not like an event handler within a tag. The function itself is like any

function, but it has the added benefit of automatically receiving an instance of the

Event object as a parameter. To turn off event capture for one or more event types,

use the window.releaseEvent() method.

Capturing events at the window, document, or layer level in NN4 does not always
work the way you might like. This is especially true if your page contains tables. For
example, capturing mouse events has no effect in the Windows version of NN4
unless the cursor is atop a cell border. Event capture works most reliably when a
scriptable object has an event handler defined for it (even if it is an empty string)
and the element is the target of the event (for example, you are about to type into
a text field). For all other elements, events may simply not be captured at the doc-
ument or window level.

Note

Note

windowObject.captureEvents()

(c) ketabton.com: The Digital Library

258 Part III ✦ Document Objects Reference

Example (with Listing 16-21) on the CD-ROM

Related Items: window.disableExternalCapture(),

window.enableExternalCapture(), window.handleEvent(),

window.releaseEvents(), window.routeEvent() methods.

clearInterval(intervalIDnumber)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Use the window.clearInterval() method to turn off an interval loop action

started with the window.setInterval() method. The parameter is the ID number

returned by the setInterval() method. A common application for the JavaScript

interval mechanism is animation of an object on a page. If you have multiple inter-

vals running, each has its own ID value in memory. You can turn off any interval by

its ID value. As soon as an interval loop stops, your script cannot resume that inter-

val: It must start a new one, which generates a new ID value.

Example on the CD-ROM

Related Items: window.setInterval(), window.setTimeout(),

window.clearTimeout() methods.

clearTimeout(timeoutIDnumber)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Use the window.clearTimeout() method in concert with the window.
setTimeout() method, as described later in this chapter, when you want your

script to cancel a timer that is waiting to run its expression. The parameter for this

method is the ID number that the window.setTimeout() method returns when the

timer starts ticking. The clearTimeout() method cancels the specified timeout. A

good practice is to check your code for instances where user action may negate the

need for a running timer — and to stop that timer before it goes off.

On the
CD-ROM

On the
CD-ROM

windowObject.clearTimeout()

(c) ketabton.com: The Digital Library

259Chapter 16 ✦ Window and Frame Objects

Example (with Figure 16-11 and Listing 16-22) on the CD-ROM

Related Items: window.setTimeout() method.

close()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The window.close() method closes the browser window referenced by the

window object. Most likely, you will use this method to close subwindows created

from a main document window. If the call to close the window comes from a win-

dow other than the new subwindow, the original window object must maintain a

record of the subwindow object. You accomplish this by storing the value returned

from the window.open() method in a global variable that will be available to other

objects later (for example, a variable not initialized inside a function). If, on the

other hand, an object inside the new subwindow calls the window.close()
method, the window or self reference is sufficient.

Be sure to include a window as part of the reference to this method. Failure to do

so may cause JavaScript to regard the statement as a document.close() method,

which has different behavior (see Chapter 18). Only the window.close() method

can close the window via a script. Closing a window, of course, forces the window

to trigger an onUnload event handler before the window disappears from view; but

after you’ve initiated the window.close() method, you cannot stop it from com-

pleting its task. Moreover, onUnload event handlers that attempt to execute time-

consuming processes (such as submitting a form in the closing window) may not

complete because the window can easily close before the process completes — a

behavior that has no workaround (with the exception of the onBeforeUnload
event handler in IE4+).

While I’m on the subject of closing windows, a special case exists when a subwin-

dow tries to close the main window (via a statement such as

self.opener.close()) when the main window has more than one entry in its ses-

sion history. As a safety precaution against scripts closing windows they did not

create, NN3+ and IE4+ ask the user whether he or she wants the main window to

close (via a browser-generated dialog box). This security precaution cannot be

overridden except in NN4+ via a signed script when the user grants permission to

control the browser (Chapter 46).

Example on the CD-ROM

Related Items: window.open(), document.close() methods.

On the
CD-ROM

On the
CD-ROM

windowObject.close()

(c) ketabton.com: The Digital Library

260 Part III ✦ Document Objects Reference

confirm(“message”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A confirm dialog box presents a message in a modal dialog box along with OK

and Cancel buttons. Such a dialog box can be used to ask a question of the user,

usually prior to a script performing actions that will not be undoable. Querying a

user about proceeding with typical Web navigation in response to user interaction

on a form element is generally a disruptive waste of the user’s time and attention.

But for operations that may reveal a user’s identity or send form data to a server, a

JavaScript confirm dialog box may make a great deal of sense. Users can also

accidentally click buttons, so you should provide avenues for backing out of an

operation before it executes.

Because this dialog box returns a Boolean value (OK = true; Cancel = false),

you can use this method as a comparison expression or as an assignment expres-

sion. In a comparison expression, you nest the method within any other statement

where a Boolean value is required. For example:

if (confirm(“Are you sure?”)) {
alert(“OK”)

} else {
alert(“Not OK”)

}

Here, the returned value of the confirm dialog box provides the desired Boolean

value type for the if...else construction (Chapter 39).

This method can also appear on the right side of an assignment expression, as in

var adult = confirm(“You certify that you are over 18 years old?”)
if (adult) {

//statements for adults
} else {

//statements for children
}

You cannot specify other alert icons or labels for the two buttons in JavaScript

confirm dialog box windows.

Be careful how you word the question in the confirm dialog box. In Navigator 2
and 3, the buttons are labeled OK and Cancel in Windows browsers; the Mac ver-
sions, however, label the buttons Yes and No. If your visitors may be using older
Mac Navigators, be sure your questions are logically answered with both sets of
button labels.

Tip

windowObject.confirm()

(c) ketabton.com: The Digital Library

261Chapter 16 ✦ Window and Frame Objects

Example (with Figure 16-12 and Listing 16-23) on the CD-ROM

Related Items: window.alert(), window.prompt(), form.submit() methods.

createPopup()
Returns: Popup Object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

An IE pop-up window is a chrome-less rectangular space that overlaps the cur-

rent window. Unlike the dialog boxes generated by the showModalDialog() and

showModelessDialog() methods, the pop-up window’s entire content must be

explicitly controlled by script. That also goes for the size and location of the win-

dow. Generating the window via the createPopup() method simply creates the

object in memory without displaying it. You can then use the reference to the

pop-up window that is returned by the method to position the window, populate its

content, and make it visible. See details in the description of the popup object later

in this chapter.

Example on the CD-ROM

Related Items: popup object.

disableExternalCapture()
enableExternalCapture()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

NN4 security restrictions prevent one frame from monitoring events in another

frame (when a different domain is in that second frame) unless the user has granted

permission to a signed script. Controlling this cross-frame access requires two spe-

cial window object methods: enableExternalCapture() and

disableExternalCapture().

Putting these methods to work is a little trickier than manipulating the regular

window.captureEvents() method. You have to turn on external capture in the

On the
CD-ROM

On the
CD-ROM

windowObject.disableExternalCapture()

(c) ketabton.com: The Digital Library

262 Part III ✦ Document Objects Reference

frame doing the capture, but then set captureEvents() and the event handler in

the frame whose events you want to capture. Moreover, when a new document

loads into the second frame, you must set the captureEvents() and event handler

for that frame again. See Chapter 46 for details about signed scripts.

Example on the CD-ROM

Related Items: window.captureEvents() method; event object; signed scripts

(Chapter 46).

execScript(“exprList”[, language])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific window.execScript() method executes one or more script

statements that are passed as string expressions. The first parameter is a string

version of one or more script statements (multiple statements must be separated

by semicolons). The second, optional parameter is the language interpreter the

browser should use to execute the script statement. Acceptable values for the lan-

guage are JavaScript, JScript, VBS, and VBScript. The default value is JScript,

so you can omit the second parameter when supplying expressions in JavaScript.

Unlike the JavaScript core language eval() function (which also executes string

versions of JavaScript statements), the execScript() method returns no values.

Even so, the method operates within the global variable space of the window hold-

ing the current document. For example, if a document’s script declares a global

variable as follows

var myVar

the execScript() method can read or write to that variable:

window.execScript(“myVar = 10; myVar += 5”)

After the above statement runs, the global variable myVar has a value of 15.

Example on the CD-ROM

Related Items: eval() function.

On the
CD-ROM

On the
CD-ROM

windowObject.execScript()

(c) ketabton.com: The Digital Library

263Chapter 16 ✦ Window and Frame Objects

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])

Returns: Boolean value for nondialog searches.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN4-specific window.find() method mimics the powers of the browser’s

Find dialog box, accessible from the Find button in the toolbar.

If you specify no parameters, the browser’s Find dialog box appears, just as if the

user had clicked the Find button in the toolbar. With no parameters, this function

does not return a value.

You can specify a search string as a parameter to the function. The search is

based on simple string matching and is not in any way connected with the regular

expression kind of search (see Chapter 38). If the search finds a match, the browser

scrolls to that matching word and highlights the word, just as if using the browser’s

own Find dialog box. The function also returns a Boolean true after a match is

found. If no match is found in the document or no more matches occur in the cur-

rent search direction (the default direction is from top to bottom), the function

returns false.

Two optional Boolean parameters to the scripted find action let you specify

whether the search should be case-sensitive and whether the search direction

should be upward from the bottom of the document. These choices are identical

to the ones that appear in the NN4’s Find dialog box. Default behavior is case-

insensitive and searches from top to bottom. If you specify any one of these two

optional parameters, you must specify both of them.

IE4+ also has a text search facility, but it is implemented in an entirely different

way (using the TextRange object described in Chapter 19). The visual behavior

also differs in that it does not highlight and scroll to a matching string in the text.

Example on the CD-ROM

Related Items: TextRange, Range objects (Chapter 19).

forward()
See window.blur().

On the
CD-ROM

windowObject.forward()

(c) ketabton.com: The Digital Library

264 Part III ✦ Document Objects Reference

GetAttention()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

While the window.GetAttention() method is intended for use more by pro-

grammers of NN6 user interface themes than by scripters, the object model never-

theless exposes the method to scripters. The purpose of the method is to alert the

user that the browser needs attention when the browser is not the frontmost appli-

cation on the desktop. Each operating system has a different way of signalling this

attention to users. Windows flashes the Taskbar rectangle for the browser window

needing attention; the MacOS beeps and places a bullet next to the application’s

name in the Application menu. If the browser window is already the frontmost win-

dow on the desktop, then no signals flash or beep.

It is highly unlikely that you would design a script that runs long enough for the

user to need to switch to another application. But you might have some scripted

mechanism (using the setTimeout() method described later in this chapter) that

signals the user if the page has no activity for a set number of minutes.

Example on the CD-ROM

handleEvent(event)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

When you explicitly capture events in the NN4 window, document, or layer object

(by invoking the captureEvents() method for that object), you can control where

the events go after their initial capture. To let an event continue to its original target

(for example, a button that was clicked by a user), you use the routeEvent()
method. But if you want to redirect an event (or class of events) to a particular event

handler elsewhere in the document, use the handleEvent() method.

Every NN4 object that has event handlers associated with it also has a

handleEvent() method. Thus, if you are capturing click events in a window, you

can redirect the events to, say, a particular button or link on the page because both

of those objects know what to do with click events. Consider the following code

excerpt:

On the
CD-ROM

windowObject.handleEvent()

(c) ketabton.com: The Digital Library

265Chapter 16 ✦ Window and Frame Objects

<SCRIPT LANGUAGE=”JavaScript”>
// function to run when window captures a click event
function doClicks(evt) {

// send all clicks to the first link in the document
document.links[0].handleEvent(evt)

}
// set window to capture click events
window.captureEvents(Event.CLICK)
// assign doClick() function to click events captured by window
window.onclick = doClicks
</SCRIPT>

The window is set up to capture all click events and invoke the doClicks()
function each time the user clicks a clickable item in the window. In the

doClicks() function is a single statement that instructs the first link in the

document to handle the click event being passed as a parameter. The link must

have an onClick event handler defined for this to be meaningful. Because an event

object is passed along automatically, the link’s event handler can examine event

properties (for example, location of the click) and perhaps alter some of the link’s

properties before letting it perform its linking task. The preceding example is really

showing how to use handleEvent() with a link object, rather than a window
object. There is little opportunity for other objects to capture events that normally

go to the window, but this method is part of every event-aware object in NN4.

The corresponding method in the W3C event model’s capture mechanism is

dispatchEvent(), and the IE5+ equivalent is fireEvent().

Example
See Chapter 29 for details and in-depth examples of working with event objects.

Related Items: window.captureEvents(), window.releaseEvents(),

window.routeEvent() methods; event object.

home()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Like many of the window methods new to Navigator 4, the window.home()
method provides an NN-specific scripted way of replicating the action of a toolbar

button: the Home button. The action navigates the browser to whatever URL is set

in the browser preferences for home page location. You cannot control the default

home page of a visitor’s browser.

Related Items: window.back(), window.forward() methods; window.toolbar
property.

windowObject.home()

(c) ketabton.com: The Digital Library

266 Part III ✦ Document Objects Reference

moveBy(deltaX,deltaY)
moveTo(x,y)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

In IE4+ and NN4+, JavaScript can adjust the location of a browser window on the

screen. This applies to the main window or any subwindow generated by script.

Netscape regards the possibility of a window moved out of screen view as a poten-

tial security hole, so signed scripts are needed in NN4+ to move a window off

screen.

You can move a window to an absolute position on the screen or adjust it along

the horizontal and/or vertical axis by any number of pixels, irrespective of the abso-

lute pixel position. The coordinate space for the x (horizontal) and y (vertical) posi-

tion is the entire screen, with the top-left corner representing 0,0. The point of the

window you set with the moveBy() and moveTo() methods is the very top-left cor-

ner of the outer edge of the browser window. Therefore, when you move the window

to point 0,0, that sets the window flush with the top-left corner of the screen. This

may not be the equivalent of a truly maximized window for all browsers and operat-

ing systems, however, because a maximized window’s coordinates may be negative

by a handful of pixels.

If you try to adjust the position of the window in NN4 such that any edge falls

beyond the screen area, the window remains at the edge of the screen — unless you

are using a signed script and have the user’s permission to adjust the window par-

tially or completely off screen. Moving the only visible browser window entirely off

screen is dangerous because the user has no way to get it back into view without

quitting and relaunching the browser.

The difference between the moveTo() and moveBy() methods is that one is an

absolute move, while the other is relative with respect to the current window

position. Parameters you specify for moveTo() are the precise horizontal and verti-

cal pixel counts on the screen where you want the upper-left corner of the window

to appear. In contrast, the parameters for moveBy() indicate how far to adjust the

window location in either direction. If you want to move the window 25 pixels to the

right, you must still include both parameters, but the y value will be zero:

window.moveBy(25,0)

To move to the left, the first parameter must be a negative number.

Example (with Listing 16-24) on the CD-ROM

Related Items: window.outerHeight, window.outerWidth properties;

window.resizeBy(), window.resizeTo() methods.

On the
CD-ROM

windowObject.moveBy()

(c) ketabton.com: The Digital Library

267Chapter 16 ✦ Window and Frame Objects

navigate(“URL”)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The window.navigate() method is an IE-specific method that lets you load a

new document into a window or frame. This method’s action is the same as assign-

ing a URL to the location.href property — a property that is available on all

scriptable NN and IE browsers. If your audience is entirely IE-based, then this

method is safe. Otherwise, I recommend the location.href property as the best

navigation approach.

Example on the CD-ROM

Related Items: location object.

open(“URL”, “windowName” [,
“windowFeatures”][,replaceFlag])

Returns: A window object representing the newly created window; null if method

fails.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

With the window.open() method, a script provides a Web site designer with an

immense range of options for the way a second or third Web browser window looks

on the user’s computer screen. Moreover, most of this control can work with all

JavaScript-enabled browsers without the need for signed scripts. Because the inter-

face elements of a new window are easier to envision, I cover those aspects of the

window.open() method parameters first.

Setting new window features
The optional windowFeatures parameter is one string, consisting of a comma-

separated list of assignment expressions (behaving something like HTML tag

attributes). Important: For the best browser compatibility, do not put spaces after

the commas. If you omit the third parameter, JavaScript creates the same type of

new window you get from the New Web Browser menu choice in the File menu. But

you can control which window elements appear in the new window with the third

parameter. Remember this important rule: If you specify even one of the method’s

original set of third parameter values, all other features are turned off unless the

parameters specify the features to be switched on. Table 16-3 lists the attributes

On the
CD-ROM

windowObject.open()

(c) ketabton.com: The Digital Library

268 Part III ✦ Document Objects Reference

that you can control for a newly created window in all browsers. Except where

noted, all Boolean values default to yes if you do not specify the third parameter.

Table 16-3 window.open() Method Attributes
Controllable via Script

Attribute Browsers Description

alwaysLowered3 NN4+ (Boolean) Always behind other browser windows

alwaysRaised3 NN4+ (Boolean) Always in front of other browser windows

channelmode IE4+ (Boolean) Theater mode with channel band
(default is no)

copyhistory NN2+, IE3+ (Boolean) Duplicates Go menu history for new
window

dependent NN4+ (Boolean) Subwindow closes if the opener
window closes

directories NN2+, IE3+ (Boolean) “What’s New” and other buttons
in the row

fullscreen IE4+ (Boolean) No title bar or menus (default is no)

height NN2+, IE3+ (Integer) Content region height in pixels

hotkeys NN4+ (Boolean) If true, disables menu shortcuts
(except Quit and Security Info) when menubar is
turned off

innerHeight4 NN4+ (Integer) Content region height; same as old
height property

innerWidth4 NN4+ (Integer) Content region width; same as old
width property

left IE4+ (Integer) Horizontal position of top-left corner on
screen

location NN2+, IE3+ (Boolean) Field displaying the current URL

menubar1 NN2+, IE3+ (Boolean) Menubar at top of window

outerHeight4 NN4+ (Integer) Visible window height

outerWidth4 NN4+ (Integer) Visible window width

resizable2 NN2+, IE3+ (Boolean) Interface elements that allow resizing
by dragging

screenX4 NN4+ (Integer) Horizontal position of top-left corner on
screen

screenY4 NN4+ (Integer) Vertical position of top-left corner on
screen

scrollbars NN2+, IE3+ (Boolean) Displays scrollbars if document is larger
than window

windowObject.open()

(c) ketabton.com: The Digital Library

269Chapter 16 ✦ Window and Frame Objects

Attribute Browsers Description

status NN2+, IE3+ (Boolean) Statusbar at bottom of window

titlebar3 NN4+ (Boolean) Title bar and all other border elements

title IE5 (Boolean) Title bar

toolbar NN2+, IE3+ (Boolean) “Back,” “Forward,” and other buttons in
the row

top IE4+ (Integer) Horizontal position of top-left corner on
screen

width NN2+, IE3+ (Integer) Content region width in pixels

z-lock3 NN4+ (Boolean) Window layer is fixed below browser
windows

1 Not on Macintosh because the menubar is not in the browser window; when off in NN4/Mac,
displays an abbreviated Mac menubar.

2 Macintosh windows are always resizable.

3 Requires a signed script.

4 Requires a signed script to size or position a window beyond safe threshold.

Boolean values are handled a bit differently than you might expect. The value for

true can be either yes, 1, or just the feature name by itself; for false, use a value

of no or 0. If you omit any Boolean attributes, they are rendered as false.

Therefore, if you want to create a new window that shows only the toolbar and

statusbar and is resizable, the method looks like this:

window.open(“newURL”,”NewWindow”, “toolbar,status,resizable”)

A new window that does not specify the height and width is set to the default

size of the browser window that the browser creates from a File menu’s New Web

Browser command. In other words, a new window does not automatically inherit

the size of the window making the window.open() method call. A new window

created via a script is positioned somewhat arbitrarily, unless you use the window

positioning attributes available in NN4+ and IE4+. Notice that the position attributes

are different for each browser (screenX and screenY for NN; left and top for IE).

You can include both sets of attributes in a single parameter string because the

browser ignores attributes it doesn’t recognize.

Netscape-only signed scripts
Many NN-specific attributes are deemed to be security risks and thus require

signed scripts and the user’s permission before they are recognized. If the user fails

to grant permission, the secure parameter is ignored.

A couple of these attributes have different behaviors on different operating

system platforms, due to the way the systems manage their application windows.

For example, the alwaysLowered, alwaysRaised, and z-locked styles can exist in

layers that range behind Navigator’s own windows in the Windows platform; on the

Mac, however, such windows are confined to the levels occupied by Navigator. The

difference is that Windows allows windows from multiple applications to interleave

each other, while the Mac keeps each application’s windows in contiguous layers.

windowObject.open()

(c) ketabton.com: The Digital Library

270 Part III ✦ Document Objects Reference

To apply signed scripts to opening a new window with the secure window fea-

tures, you must enable UniversalBrowserWrite privileges as you do for other

signed scripts (see Chapter 46). A code fragment that generates an alwaysRaised
style window follows:

<SCRIPT LANGUAGE=”JavaScript” ARCHIVE=”myJar.jar” ID=”1”>
function newRaisedWindow() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
var newWindow = window.open(“”,””,”HEIGHT=100,WIDTH=300,alwaysRaised”)
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
var newContent = “<HTML><BODY> “On top of spaghetti!””
newContent += “<FORM><CENTER><INPUT TYPE=’button’ VALUE=’OK’”
newContent += “onClick=’self.close()’></CENTER></FORM></BODY></HTML>”
newWindow.document.write(newContent)
newWindow.document.close()

}
</SCRIPT>

You can experiment with the look and behavior of new windows with any combi-

nation of attributes with the help of the script in Listing 16-25. This page presents a

table of all NN-specific new window Boolean attributes and creates a new 300×300

pixel window based on your choices. This page assumes that if you are using NN4,

you have codebase principals turned on for signed scripts (see Chapter 46).

Be careful with turning off the title bar and hotkeys. With the title bar off, the

content appears to float in space, because absolutely no borders are displayed.

With hotkeys still turned on, you can use Ctrl+W to close this borderless window

(except on the Mac, for which the hotkeys are always disabled with the title bar off).

This is how you can turn a computer into a kiosk by sizing a window to the screen’s

dimensions and setting the window options to “titlebar=no,hotkeys=no,
alwaysRaised=yes”.

Listing 16-25: New Window Laboratory

<HTML>
<HEAD>
<TITLE>window.open() Options</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav4 = (navigator.appName == “Netscape” &&
navigator.appVersion.charAt(0) >= 4) ? true : false

function makeNewWind(form) {
if (isNav4) {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
}
var attr = “HEIGHT=300,WIDTH=300”
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “checkbox”) {
attr += “,” + form.elements[i].name + “=”
attr += (form.elements[i].checked) ? “yes” : “no”

}
}
var newWind = window.open(“bofright.htm”,”subwindow”,attr)
if (isNav4) {

windowObject.open()

(c) ketabton.com: The Digital Library

271Chapter 16 ✦ Window and Frame Objects

netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Select new window options:
<TABLE BORDER=2>
<TR>

<TD COLSPAN=2 BGCOLOR=”yellow” ALIGN=”middle”>All Browsers Features:</TD>
</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”toolbar”>toolbar</TD>
<TD><INPUT TYPE=”checkbox” NAME=”location”>location</TD>

</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”directories”>directories</TD>
<TD><INPUT TYPE=”checkbox” NAME=”status”>status</TD>

</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”menubar”>menubar</TD>
<TD><INPUT TYPE=”checkbox” NAME=”scrollbars”>scrollbars</TD>

</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”resizable”>resizable</TD>
<TD><INPUT TYPE=”checkbox” NAME=”copyhistory”>copyhistory</TD>

</TR>
<TR>

<TD COLSPAN=2 BGCOLOR=”yellow” ALIGN=”middle”>Communicator Features:</TD>
</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”alwaysLowered”>alwaysLowered</TD>
<TD><INPUT TYPE=”checkbox” NAME=”alwaysRaised”>alwaysRaised</TD>

</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”dependent”>dependent</TD>
<TD><INPUT TYPE=”checkbox” NAME=”hotkeys” CHECKED>hotkeys</TD>

</TR>
<TR>

<TD><INPUT TYPE=”checkbox” NAME=”titlebar” CHECKED>titlebar</TD>
<TD><INPUT TYPE=”checkbox” NAME=”z-lock”>z-lock</TD>

</TR>
<TR>

<TD COLSPAN=2 ALIGN=”middle”><INPUT TYPE=”button” NAME=”forAll”
VALUE=”Make New Window” onClick=”makeNewWind(this.form)”></TD>

</TR>
</TABLE>

</FORM>
</BODY>
</HTML>

windowObject.open()

(c) ketabton.com: The Digital Library

272 Part III ✦ Document Objects Reference

Specifying a window name
Getting back to the other parameters of window.open(), the second parameter is

the name for the new window. Don’t confuse this parameter with the document’s title,

which would normally be set by whatever HTML text determines the content of the

window. A window name must be the same style of one-word identifier that you use

for other object names and variables. This name is also an entirely different entity

than the window object that the open() method returns. You don’t use the name in

your scripts. At most, the name can be used for TARGET attributes of links and forms.

Loading content into a new window
A script generally populates a window with one of two kinds of information:

✦ An existing HTML document whose URL is known beforehand

✦ An HTML page created on the fly

To create a new window that displays an existing HTML document, supply the

URL as the first parameter of the window.open() method. If your page is having dif-

ficulty loading a URL into a new page (except as noted in the sidebar “A Navigator 2

Bug Workaround”), try specifying the complete URL of the target document

(instead of just the filename).

Leaving the first parameter as an empty string forces the window to open with a

blank document, ready to have HTML written to it by your script (or loaded sepa-

rately by another statement that sets that window’s location to a specific URL). If

you plan to write the content of the window on the fly, assemble your HTML con-

tent as one long string value and then use the document.write() method to post

that content to the new window. If you plan to append no further writing to the

page, also include a document.close() method at the end to tell the browser that

you’re finished with the layout (so that the Layout:Complete or Done message

appears in the statusbar, if your new window has one).

A call to the window.open() method returns a reference to the new window’s

object if the window opens successfully. This value is vitally important if your

script needs to address elements of that new window (such as when writing to its

document).

To allow other functions in your script to reference the subwindow, you should

assign the result of a window.open() method to a global variable. Before writing to

the new window the first time, test the variable to make sure that it is not a null
value — the window may have failed to open because of low memory, for instance.

If everything is okay, you can use that variable as the beginning of a reference to

any property or object within the new window. For example:

var newWindow
...
function createNewWindow() {

newWindow = window.open(“”,””)
if (newWindow != null) {

newWindow.document.write(“<HTML><HEAD><TITLE>Hi!</TITLE></HEAD>”)
}

}

That global variable reference continues to be available for another function that

perhaps closes the subwindow (via the close() method).

windowObject.open()

(c) ketabton.com: The Digital Library

273Chapter 16 ✦ Window and Frame Objects

When scripts in the subwindow need to communicate with objects and scripts in

the originating window, you must make sure that the subwindow has an opener
property if the level of JavaScript in the visitor’s browser doesn’t automatically

supply one. See the discussion about the window.opener property earlier in this

chapter.

Invoking multiple window.open() methods with the same window name parameter

(the second parameter) does not create additional copies of that window in Netscape

browsers (although it does in Internet Explorer). JavaScript prevents you from creat-

ing two windows with the same name. Also be aware that a window.open() method

does not bring an existing window of that name to the front of the window layers: Use

window.focus() for that.

windowObject.open()

A Navigator 2 Bug Workaround

If you’re concerned about backward compatibility with Navigator 2, you should be aware of
a bug in the Macintosh and UNIX flavors of the browser. In those versions, if you include a
URL as a parameter to window.open(), Navigator opens the window but does not load the
URL. A second call to the window.open() method is required. Moreover, the second
parameter must be an empty string if you add any third-parameter settings. Here is a sam-
ple listing you can adapt for your own usage:

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// workaround for window.open() bug on X and Mac platforms
function makeNewWindow() {

var newWindow =

window.open(“http://www.dannyg.com”,””,”status,height=200,width=300”)
if (parseInt(navigator.appVersion) == 2 && navigator.appName ==

“Netscape”) {
newWindow =

window.open(“http://www.dannyg.com”,””,”status,height=200,width=300”)
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”newOne” VALUE=”Create New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

This workaround can also be used without penalty in Windows versions of Navigator.

(c) ketabton.com: The Digital Library

274 Part III ✦ Document Objects Reference

Internet Explorer idiosyncracies
Creating subwindows in IE can be complicated at times by undesirable behavior

by the browser. One of the most common problems occurs when you attempt to

use document.write() to put content into a newly created window. IE, including

some of the latest versions, fails to complete the window opening job before the

script statement that uses document.write() executes. This causes a script error

because the reference to the subwindow is not yet valid. To work around this, you

should put the HTML assembly and document.write() statements in a separate

function that gets invoked via a setTimeout() method after the window is created.

You can see an example of this in Listing 16-26.

Another problem that affects IE is the occasional security violation (“access

denied”) warning when a script attempts to access a subwindow. This problem goes

away when the page that includes the script for opening and accessing the subwin-

dow is served from an http server, rather than accessed from a local hard disk.

Finally, an all-too common bug in Windows 95/98 allows the Registry to become

mildly corrupted in some key areas that IE needs for opening and referencing new

windows. The most common symptom of the problem is a script error on the state-

ment that invokes window.open(), but other indications include error messages

that the document.write() method is not supported in the subwindow or that the

“RPC server” is not available. The problem cannot be fixed by JavaScript but

requires human intervention on the affected PC. Here are the steps to repair the

problem:

1. Click Start and then click Run.

2. In the Open box, type the following line: regsvr32 actxprxy.dll

3. Click OK and then click OK again after you receive the following message:

DllRegisterServer in actxprxy.dll succeeded.

4. Click Start and then click Run.

5. In the Open box, type the following line: regsvr32 shdocvw.dll

6. Click OK and then click OK again after you receive the following message:

DllRegisterServer in shdocvw.dll succeeded.

7. Shut down and restart your computer.

The corruption is reported to be caused by application installers and unin-

stallers that don’t clean up after themselves the way they should. The fact that this

problem is rather common in IE4 under both Windows 95 and 98 might make you

gun-shy about utilizing multiple windows in your application.

Example (with Listing 16-26) on the CD-ROM

Related Items: window.close(), window.blur(), window.focus() methods;

window.closed property.

On the
CD-ROM

windowObject.open()

(c) ketabton.com: The Digital Library

275Chapter 16 ✦ Window and Frame Objects

print()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The print() method provides a scripted way of sending the window or a frame

from a frameset to the printer. In all cases, the Print dialog box appears for the user

to make the typical printer choices when printing manually. This prevents a rogue

print() command from tying up a printer without the user’s permission.

The precise behavior of the print() method varies a bit with the different ways

NN and IE (not to mention operating systems) handle printing. In NN4+ (except for

the Windows OS), you can print all frames of a frameset in one print() command

when it is invoked for the framesetting (parent) document. NN4 for Windows, how-

ever, does not print the entire frameset at once. You can write a script that iterates

through all frames and prints them with delays to let the content be sent to the

print spooler:

function printFrames(n) {
parent.frames[n++].print()
if (n < parent.frames.length) {

setTimeout(“printFrames(“ + n + “)”,5000)
}

}

Invoke this function as printFrames(0), and the function does the rest.

In IE5, the print dialog box gives the user the choice of printing just one frame or

all of the frames. Make sure that the print() method is invoked for the desired

frame when you want only that frame to print. The browser defaults to printing just

that frame.

IE5 introduces some print-specific event handlers that are triggered by scripted

printing as well as manual printing. The events begin to fire after the user has

accepted the Print dialog box. An onBeforePrint event handler can be used to

show content that might be hidden from view but should appear in the printout.

After the content has been sent to the print spooler, the onAfterPrint event can

restore the page.

Example (with Listings 16-27 and 16-28) on the CD-ROM

NN4 printing anomalies
The Windows and Unix versions of NN4 handle printing in a way that can cause

the page to not print what the user sees because before the page prints, it is loaded

into a hidden window. Any immediate scripts in the page run again, but any user-

induced, scripted content modifications will most likely not be a part of the page.

On the
CD-ROM

windowObject.print()

(c) ketabton.com: The Digital Library

276 Part III ✦ Document Objects Reference

While there is no known workaround for resurrecting modified content, your

script can at least know if the page is being loaded into one of these hidden win-

dows: The NN-specific window.outerHeight and window.outerWidth properties

are zero. If you don’t want an immediate script statement to run before being

printed, use an if construction to let the nested statement(s) run only if either of

those dimension properties is greater than zero.

Printing in IE4
While the window.print() method is not available in IE4, it is possible to script

printing in the Win32 OS platforms via the built-in browser object. To use this

ActiveX object, you must first include the following HTML somewhere in your

document (at the end of the BODY is fine):

<OBJECT ID=”IEControl” WIDTH=0 HEIGHT=0
CLASSID=”clsid:8856F961-340A-11D0-A96B-00C04FD705A2”>
</OBJECT>

The long CLASSID attribute must be copied exactly. This HTML adds an object to

the document object model that can be scripted. The object has several commands

available, one of which provides printing services. The commands are numbered,

and the one for printing is the following:

IEControl.ExecWB(6, 1)

If the user cancels the Print dialog box, a script error may appear, so be sure to

trap for errors (see the window.onerror property earlier in this chapter). If you

change the second parameter to 2, the Print dialog box does not appear, but that

isn’t a very user-friendly way to treat printing.

Related Items: window.back(), window.forward(), window.home(),

window.find() methods.

prompt(“message”, “defaultReply”)
Returns: String of text entered by user or null.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The third kind of dialog box that JavaScript can display includes a message from

the script author, a field for user entry, and two buttons (OK and Cancel, or Yes and

No on Mac versions of Navigator 2 and 3). The script writer can supply a prewritten

answer so that a user confronted with a prompt dialog box can click OK (or press

Enter) to accept that answer without further typing. Supplying both parameters to

the window.prompt() method is important. Even if you don’t want to supply a

default answer, enter an empty string as the second parameter:
prompt(“What is your postal code?”,””)

If you omit the second parameter, JavaScript inserts the string undefined into

the dialog box’s field. This string is disconcerting to most Web page visitors.

windowObject.prompt()

(c) ketabton.com: The Digital Library

277Chapter 16 ✦ Window and Frame Objects

The value returned by this method is a string in the dialog box’s field when the

user clicks the OK button. If you’re asking the user to enter a number, remember

that the value returned by this method is a string. You may need to perform data-

type conversion with the parseInt() or parseFloat() functions (see Chapter 42)

to use the returned values in math calculations.

When the user clicks the prompt dialog box’s OK button without entering any

text into a blank field, the returned value is an empty string (“”). Clicking on the

Cancel button, however, makes the method return a null value. Therefore, the

scripter must test for the type of returned value to make sure that the user entered

some data that can be processed later in the script, as in

var entry = prompt(“Enter a number between 1 and 10:”,””)
if (entry != null) {

//statements to execute with the value
}

This script excerpt assigns the results of the prompt dialog box to a variable and

executes the nested statements if the returned value of the dialog box is not null

(if the user clicked the OK button). The rest of the statements then include data

validation to make sure that the entry is a number within the desired range (see

Chapter 43).

It may be tempting to use the prompt dialog box as a handy user input device.

But, as with the other JavaScript dialog boxes, the modality of the prompt dialog

box is disruptive to the user’s flow through a document and can also trap auto-

mated macros that some users activate to capture Web sites. In forms, HTML fields

are better user interface elements for attracting user text entry. Perhaps the safest

way to use a prompt dialog box is to have it appear when a user clicks a button ele-

ment on a page — and then only if the information you require of the user can be

provided in a single prompt dialog box. Presenting a sequence of prompt dialog

boxes is downright annoying to users.

Example (with Figure 16-13 and Listing 16-29) on the CD-ROM

Related Items: window.alert(), window.confirm() method.

releaseEvents(eventTypeList)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If your scripts have enabled NN4-specific event capture for the window object

(or document or layer, for that matter), you can turn off that capture with the

releaseEvents() method. This method does not inhibit events from reaching

On the
CD-ROM

windowObject.releaseEvents()

(c) ketabton.com: The Digital Library

278 Part III ✦ Document Objects Reference

their intended target. In fact, by releasing capture from a higher object, released

events don’t bother stopping at those higher objects anymore. Parameters for the

releaseEvents() method are one or more event types. Each event type is its own

entity, so if your window captures three event types at one point, you can release

some or all of those event types as the visitor interacts with your page. For exam-

ple, if the page loads and captures three types of events, as in

window.captureEvents(Event.CLICK | Event.KEYPRESS | Event.CHANGE)

you can later turn off window event capture for all but the click event:

window.releaseEvents(Event.KEYPRESS | Event.CHANGE)

The window still captures and processes click events, but keyPress and

change events go directly to their target objects.

A new mechanism (removing an event listener) is implemented in NN6 based on

the W3C event model. See Chapters 14 and 29 for more information.

Related Items: window.captureEvents(), window.routeEvent() methods.

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Starting with NN4 and IE4, scripts can control the size of the current browser

window on the fly. While you can set the individual inner and (in NN) outer width

and height properties of a window, the resizeBy() and resizeTo() methods let

you adjust both axis measurements in one statement. In both instances, all adjust-

ments affect the lower-right corner of the window: To move the top-left corner, use

the window.moveBy() or window.moveTo() methods.

Each resize method requires a different kind of parameter. The resizeBy()
method adjusts the window by a certain number of pixels along one or both axes.

Therefore, it is not concerned with the specific size of the window beforehand —

only by how much each axis is to change. For example, to increase the current

window size by 100 pixels horizontally and 50 pixels vertically, the statement is

window.resizeBy(100, 50)

Both parameters are required, but if you only want to adjust the size in one

direction, set the other to zero. You may also shrink the window by using negative

values for either or both parameters.

You find a greater need for the resizeTo() method, especially when you know

that on a particular platform the window needs adjustment to a specific width and

height to best accommodate that platform’s display of form elements. Parameters

for the resizeTo() method are the actual pixel width and height of the outer

dimension of the window — the same as NN’s window.outerWidth and

window.outerHeight properties.

windowObject.resizeBy()

(c) ketabton.com: The Digital Library

279Chapter 16 ✦ Window and Frame Objects

To resize the window such that it occupies all screen real estate (except for the

Windows Taskbar and Macintosh menubar), use the screen object properties that

calculate the available screen space:

window.resizeBy(screen.availWidth, screen.availHeight)

This action, however, is not precisely the same in Windows as maximizing the

window. To achieve that same effect, you must move the window to coordinates

-4, -4 and add eight to the two parameters of resizeBy():

window.moveTo(-4,-4)
window.resizeTo(screen.availWidth + 8, screen.availHeight + 8)

This hides the window’s own four-pixel wide border, as occurs during OS-

induced window maximizing. See also the screen object discussion (Chapter 28)

for more OS-specific details.

In practice, NN4 does not give reliable results setting a window’s size via the

resizeTo() method. On some platforms, the dimensions are applied to the inner

width and height, rather than outer. If a specific outer size is necessary, use the NN-

specific window.outerHeight and window.outerWidth properties instead.

Navigator imposes some security restrictions for maximum and minimum size

for a window. For both methods, you are limited to the viewable area of the screen

and visible minimums unless the page uses signed scripts (see Chapter 46). With

signed scripts and the user’s permission, for example, you can adjust windows

beyond the available screen borders.

Example (with Listing 16-30) on the CD-ROM

Related Items: window.outerHeight, window.outerWidth properties;

window.moveTo(), window.sizeToContent() methods.

routeEvent(event)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If you turn on NN4-specific event capturing in the window, document, or layer

object (via their respective captureEvents() methods), the handlers you assign

to those events really capture those events, preventing them from ever reaching

their intended targets. For some page designs, this is intentional, as it allows the

higher-level object to handle all events of a particular type. But if your goal is to

perform some preprocessing of events before they reach their destination, you

need a way to pass that event along its regular path. That’s what the routeEvent()
method is for.

On the
CD-ROM

windowObject.routeEvent()

(c) ketabton.com: The Digital Library

280 Part III ✦ Document Objects Reference

Perhaps a more common reason for capturing events at the window (or similar)

level is to look for special cases, such as when someone Ctrl+clicks on an element.

In this case, even though the window event handler receives all click events, it

performs further processing only when the event.modifiers property indicates

the Ctrl key is also pressed and the eventObj.target property reveals the item

being clicked is a link rather than a button. All other instances of the click event

are routed on their way to their destinations. The event object knows where it’s

going, so that your routeEvent() method doesn’t have to worry about that.

The parameter for the routeEvent() method is the event object that is passed

to the function that processes the high-level event, as shown here:

function flashRed(evt) {
[statements that filter specific events to flash background color red]
routeEvent(evt)

}

The event object, evt, comes into the function while passing unmodified to the

object that was clicked.

In the W3C DOM event model (as implemented in NN6), a captured event

continues onward to the target after event handlers higher up the containment

chain finish their work.

Example on the CD-ROM

Related Items: window.captureEvents(), window.releaseEvents(),

window.handleEvent() methods; event object (Chapter 29).

scroll(horizontalCoord, verticalCoord)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The window.scroll() method was introduced in NN3 and has been imple-

mented in all scriptable browsers since then. But in the meantime, the method has

been replaced by the window.scrollTo() method, which is in more syntactic

alliance with many other window methods. Use the window.scroll() method only

if your audience is still using NN3; for an audience of NN4+ and IE4+, use the

window.scrollTo() method instead.

The window.scroll() method takes two parameters, the horizontal (x) and ver-

tical (y) coordinates of the document that is to be positioned at the top-left corner

of the window or frame. You must realize that the window and document have two

similar, but independent, coordinate schemes. From the window’s point of view, the

top-left pixel (of the content area) is point 0,0. All documents also have a 0,0 point:

the very top-left of the document. The window’s 0,0 point doesn’t move, but the

On the
CD-ROM

windowObject.scroll()

(c) ketabton.com: The Digital Library

281Chapter 16 ✦ Window and Frame Objects

document’s 0,0 point can move — via manual or scripted scrolling. Although

scroll() is a window method, it seems to behave more like a document method,

as the document appears to reposition itself within the window. Conversely, you

can also think of the window moving to bring its 0,0 point to the designated coordi-

nate of the document.

Although you can set values beyond the maximum size of the document or to

negative values, the results vary from platform to platform. For the moment, the

best usage of the window.scroll() method is as a means of adjusting the scroll to

the very top of a document (window.scroll(0,0)) when you want the user to be

at a base location in the document. For vertical scrolling within a text-heavy docu-

ment, an HTML anchor may be a better alternative for now (though it doesn’t read-

just horizontal scrolling).

Example (with Listings 16-31, 16-32, and 16-33) on the CD-ROM

Related Items: window.scrollBy(), window.scrollTo() methods.

scrollBy(deltaX,deltaY)
scrollTo(x,y)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

NN4+ and IE4+ provide a related pair of window scrolling methods. The win-
dow.scrollTo() method is the new version of the window.scroll() method. The

two work identically to position a specific coordinate point of a document at the

top-left corner of the inner window region.

In contrast, the window.scrollBy() method allows for relative positioning of

the document. Parameter values indicate by how many pixels the document should

scroll in the window (horizontally and vertically). Negative numbers are allowed if

you want to scroll to the left and/or upward. The scrollBy() method comes in

handy if you elect to hide the scrollbars of a window or frame and offer other types

of scrolling controls for your users. For example, to scroll down one entire screen of

a long document, you can use the window.innerHeight (in NN) or

document.body.clientHeight (in IE) properties to determine what the offset

from the current position would be:

// assign IE body clientHeight to window.innerHeight
if (document.body && document.body.clientHeight) {

window.innerHeight = document.body.clientHeight
}
window.scrollBy(0, window.innerHeight)

On the
CD-ROM

windowObject.scrollBy()

(c) ketabton.com: The Digital Library

282 Part III ✦ Document Objects Reference

To scroll upward, use a negative value for the second parameter:

window.scrollBy(0, -window.innerHeight)

Scrolling the document in the Macintosh exhibits some buggy behavior. At times

it appears as though you are allowed to scroll well beyond the document edges. In

truth, the document has stopped at the border, but the window or frame may not

have refreshed properly.

The window scroll methods are not the ones to use to produce the scrolling

effect of a positioned element. That kind of animation is accomplished by adjusting

style position properties (see Chapter 31).

Example (with Listings 16-34 and 16-35) on the CD-ROM

Related Items: window.pageXOffset, window.pageYOffset properties;

window.scroll() method.

setCursor(“cursorType”)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 window.setCursor() method is an alternative to the cursor style

sheet attribute. In the meantime, NN6 user interface theme authors have been using

it, and you can experiment with it, too.

The method requires one parameter, a string name of one of the accepted cursor

types. Recognized cursor types are as follows:

On the
CD-ROM

windowObject.setCursor()

Unwanted User Scrolling

Many Windows-compatible personal computers ship with a mouse that includes a scroll
wheel that is activated by pressing down on the wheel and spinning the wheel. Be aware
that even if your page design loads into frames or new windows that intentionally lack
scrollbars, the page will be scrollable via this wheel if the document or its background
image are larger than the window or frame. Users may not even be aware that they have
scrolled the page (because there are no scrollbar visual clues). If this affects your design,
you may need to build in a routine (via setTimeout()) that periodically sets the scroll of
the window to 0,0.

(c) ketabton.com: The Digital Library

283Chapter 16 ✦ Window and Frame Objects

alias auto cell

context-menu copy count-down

count-up count-up-down crosshair

default e-resize grab

grabbing help move

n-resize ne-resize nw-resize

pointer s-resize se-resize

spinning sw-resize text

w-resize wait

Each operating system provides its own suite of cursor designs, but not all oper-

ating systems provide a unique cursor design for each type. Also be aware that set-

ting the cursor via this method does not lock the cursor. If the user rolls the cursor

atop form controls (especially text boxes), the cursor reverts to its “auto” setting.

Example on the CD-ROM

Related Item: style.cursor property (Chapter 30).

setInterval(“expr”, msecDelay [, language])
setInterval(funcRef, msecDelay [, funcarg1,
..., funcargn])

Returns: Interval ID integer.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

It is important to understand the distinction between the setInterval() and

setTimeout() methods. Before the setInterval() method was part of

JavaScript, authors replicated the behavior with setTimeout(), but the task often

required reworking scripts a bit.

Use setInterval() when your script needs to call a function or execute some

expression repeatedly with a fixed time delay between calls to that function or

expression. The delay is not at all like a wait state in some languages: Other pro-

cessing does not halt while the delay is in effect. Typical applications include ani-

mation by moving an object around the page under controlled speed (instead of

letting the JavaScript interpreter whiz the object through its path at CPU-dependent

speeds). In a kiosk application, you can use setInterval() to advance “slides”

On the
CD-ROM

windowObject.setInterval()

(c) ketabton.com: The Digital Library

284 Part III ✦ Document Objects Reference

that appear in other frames or as layers, perhaps changing the view every ten sec-

onds. Clock displays and countdown timers would also be suitable usage of this

method (even though you see examples in this book that use the old-fashioned

setTimeout() way to perform timer and clock functions).

In contrast, setTimeout() is best suited for those times when you need to carry

out a function or expression one time in the future — even if that future is only a

second or two away. See the discussion of the setTimeout() method later in this

chapter for details on this application.

While the primary functionality of the setInterval() method is the same in

both NN and IE, each browser offers some extra possibilities depending on the way

you use parameters to the method. For simple invocations of this method, the same

parameters work in all browsers that support the method. First, I address the

parameters that all browsers have in common.

The first parameter of the setInterval() method is the name of the function or

expression to run after the interval elapses. This item must be a quoted string. If

the parameter is a function, no function arguments are allowed inside the function’s

parentheses unless the arguments are literal strings (but see the section “Passing

Function Parameters”).

The second parameter of this method is the number of milliseconds (1,000 per

second) that JavaScript should use as the interval between invocations of the func-

tion or expression. Even though the measure is in extremely small units, don’t rely

on 100 percent accuracy of the intervals. Various other internal processing delays

may throw off the timing just a bit.

Just as with setTimeout(), setInterval() returns an integer value that is the

ID for the interval process. That ID value lets you turn off the process with the

clearInterval() method. That method takes the ID value as its sole parameter.

This mechanism allows for the setting of multiple interval processes running, while

giving your scripts the power to stop individual processes at any time without

interrupting the others.

IE4+ uses the optional third parameter to specify the scripting language of the

statement or function being invoked in the first parameter. As long as you are

scripting exclusively in JavaScript (the same as JScript), there is no need to include

this parameter.

Passing function parameters
NN4+ provides a mechanism for easily passing evaluated parameters to a func-

tion invoked by setInterval(). To use this mechanism, the first parameter of

setInterval() must not be a string, but rather a reference to the function (no

trailing parentheses). The second parameter remains the amount of delay. But

beginning with the third parameter, you can include evaluated function arguments

as a comma-delimited list:

intervalID = setInterval(cycleAnimation, 500, “figure1”)

The function definition receives those parameters in the same form as any function.

function cycleAnimation(elemID) {...}

For use with a wider range of browsers, you can also cobble together the ability

to pass parameters to a function invoked by setInterval(). Because the call to

the other function is a string expression, you can use computed values as part of

windowObject.setInterval()

(c) ketabton.com: The Digital Library

285Chapter 16 ✦ Window and Frame Objects

the strings via string concatenation. For example, if a function uses event handling

to find the element that a user clicked (to initiate some animation sequence), that

element’s ID, referenced by a variable, can be passed to the function invoked by

setInterval():

function findAndCycle() {
var elemID
// statements here that examine the event info
// and extract the ID of the clicked element,
// assigning that ID to the elemID variable
intervalID = setInterval(“cycleAnimation(“ + elemID + “)”, 500)

}

If you need to pass ever-changing parameters with each invocation of the func-

tion from setInterval(), look instead to using setTimeout() at the end of a func-

tion to invoke that very same function again.

Example (with Listings 16-36 and 16-37) on the CD-ROM

Related Items: window.clearInterval(), window.setTimeout() methods.

setTimeout(“expr”, msecDelay [, language])
setTimeout(functionRef, msecDelay
[, funcarg1, ..., funcargn])

Returns: ID value for use with window.clearTimeout() method.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The name of this method may be misleading, especially if you have done other

kinds of programming involving timeouts. In JavaScript, a timeout is an amount of

time (in milliseconds) before a stated expression evaluates. A timeout is not a wait

or script delay, but rather a way to tell JavaScript to hold off executing a statement

or function for a desired amount of time. Other statements following the one con-

taining setTimeout() execute immediately.

Say that you have a Web page designed to enable users to interact with a variety

of buttons or fields within a time limit (this is a Web page running at a free-standing

kiosk). You can turn on the timeout of the window so that if no interaction occurs

with specific buttons or fields lower in the document after, say, two minutes

(120,000 milliseconds), the window reverts to the top of the document or to a help

screen. To tell the window to switch off the timeout after a user does navigate

within the allotted time, you need to have any button that the user interacts with

call the other side of a setTimeout() method — the clearTimeout() method — to

cancel the current timer. (The clearTimeout() method is explained earlier in this

On the
CD-ROM

windowObject.setTimeout()

(c) ketabton.com: The Digital Library

286 Part III ✦ Document Objects Reference

chapter.) Multiple timers can run concurrently and are completely independent of

each other.

While the primary functionality of the setTimeout() method is the same in both

NN and IE, each browser offers some extra possibilities depending on the way you

use parameters to the method. For simple invocations of this method, the same

parameters work in all browsers that support the method. I first address the

parameters that all browsers have in common.

The expression that comprises the first parameter of the method

window.setTimeout() is a quoted string that can contain either a call to any func-

tion or method or a standalone JavaScript statement. The expression evaluates

after the time limit expires.

Understanding that this timeout does not halt script execution is very important.

In fact, if you use a setTimeout() method in the middle of a script, the succeeding

statements in the script execute immediately; after the delay time, the expression in

the setTimeout() method executes. Therefore, I’ve found that the best way to

design a timeout in a script is to plug it in as the last statement of a function: Let all

other statements execute and then let the setTimeout() method appear to halt

further execution until the timer goes off. In truth, however, although the timeout is

“holding,” the user is not prevented from performing other tasks. And after a time-

out timer is ticking, you cannot adjust its time. Instead, clear the timeout and start

a new one.

If you need to use setTimeout() as a delay inside a function, break the function

into two parts, using the setTimeout() method as a bridge between the two func-

tions. You can see an example of this in Listing 16-26, where IE needs a little delay to

finish opening a new window before content can be written for it. If it weren’t for

the required delay, the HTML assembly and writing would have been accomplished

in the same function that opens the new window.

It is not uncommon for a setTimeout() method to invoke the very function in

which it lives. For example, if you have written a Java applet to perform some extra

work for your page and you need to connect to it via LiveConnect, your scripts must

wait for the applet to load and carry out its initializations. While an onLoad event

handler in the document ensures that the applet object is visible to scripts, it doesn’t

know whether the applet has finished its initializations. A JavaScript function that

inspects the applet for a clue might need to poll the applet every 500 milliseconds

until the applet sets some internal value indicating all is ready, as shown here:

var t
function autoReport() {

if (!document.myApplet.done) {
t = setTimeout(“autoReport()”,500)

} else {
clearTimeout(t)
// more statements using applet data //

}
}

windowObject.setTimeout()

(c) ketabton.com: The Digital Library

287Chapter 16 ✦ Window and Frame Objects

JavaScript provides no built-in equivalent for a wait command. The worst alter-

native is to devise a looping function of your own to trap script execution for a

fixed amount of time. In NN3+, you can also use LiveConnect (see Chapter 44) to

invoke a Java method that freezes the browser’s thread for a fixed amount of time.

Unfortunately, both of these practices prevent other processes from being carried

out, so you should consider reworking your code to rely on a setTimeout()
method instead.

NN4+ provides a mechanism for passing parameters to functions invoked by

setTimeout(). See the section “Passing Parameters” in the discussion of

window.setInterval() for details on this and passing parameters in other

browser versions.

As a note to experienced programmers, neither setInterval() nor

setTimeout() spawn new threads in which to run their invoked scripts. When the

timer expires and invokes a function, the process gets at the end of the queue of

any pending script processing in the JavaScript execution thread.

Example (with Listing 16-38) on the CD-ROM

Related Items: window.clearTimeout(), window.setInterval(),

window.clearInterval() methods.

showHelp(“URL”,[“contextID”])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific showHelp() method (not implemented in IE5/Mac) lets a script

open a Winhelp window with a particular .hlp file. This method is specific to the

Win32 operating systems.

If your Winhelp file has context identifiers specified in various places, you can

pass the ID as an optional second parameter. This lets the call to showHelp() navi-

gate to a particular area of the .hlp file that applies to a specific element on the

page.

Example
See the Microsoft Visual Studio authoring environment for details on building

Winhelp files.

On the
CD-ROM

windowObject.showHelp()

(c) ketabton.com: The Digital Library

288 Part III ✦ Document Objects Reference

showModalDialog(“URL”[, arguments]
[, features])
showModelessDialog(“URL”[, arguments]
[, features])

Returns: returnValue (modal) or window object (modeless).

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � �

IE4+ provides methods for opening a modal dialog box window, which always

stays in front of the main browser window while making the main window inaccessi-

ble to the user. In IE5 (but not IE5/Mac), Microsoft added the modeless type of dialog

box, which also stays in front, but allows user access to whatever can be seen in the

main window. You can load any HTML page or image that you like into the dialog box

window, by providing a URL as the first parameter. Optional parameters let you pass

data to a dialog box and give you considerable control over the look of the window.

Unfortunately, these types of dialog box windows are not available in Navigator. At

best, you can simulate modal and modeless dialog box windows, but the job is not

for beginners (see http://developer.netscape.com/viewsource/
goodman_modal/goodman_modal.html for one example).

The windows generated by both methods are (almost) full-fledged window
objects with some extra properties that are useful for what these windows are

intended to do. Perhaps the most important property is the

window.dialogArgument property. This property lets a script read the data that is

passed to the window via the second parameter of both showModalDialog() and

showModelessDialog(). Passed data can be in any valid JavaScript data type,

including objects and arrays.

Displaying a modal dialog box has some ramifications for scripts. In particular,

script execution in the main window halts at the statement that invokes the

showModalDialog() method as long as the modal dialog box remains visible.

Scripts are free to run in the dialog box window during this time. The instant the

user closes the dialog box, execution resumes in the main window. A call to show a

modeless dialog box, on the other hand, does not halt processing because scripts

in the main page or dialog box window are allowed to communicate “live” with the

other window.

Retrieving dialog data
To send data back to the main window’s script from a modal dialog box window,

a script in the dialog box window can set the window.returnValue property to

any JavaScript value. It is this value that gets assigned to the variable receiving the

returned value from the setModelDialog() method, as shown in the following

example:

var specifications = window.showModalDialog(“preferences.html”)

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

289Chapter 16 ✦ Window and Frame Objects

The makeup and content of the returned data is in the hands of your scripts. No

data is automatically returned for you.

Because a modeless dialog box coexists with your live main page window, return-

ing data is not as straightforward as for a modal dialog box. The second parameter

of the showModelessDialog() method takes on a special task that isn’t exactly the

same as passing parameters to the dialog box. Instead, if you define a global vari-

able or a function in the main window’s script, pass a reference to that variable or

function as the second parameter to display the modeless dialog box. A script in

the modeless dialog box can then point to that reference as the way to send data

back to the main window before the dialog box closes (or when a user clicks some-

thing, such as an Apply button). This mechanism even allows for passing data back

to a function in the main window. For example, say that the main window has a

function defined as the following:

function receivePrefsDialogData(a, b, c) {
// statements to process incoming values //

}

Then pass a reference to this function when opening the window:

dlog = showModelessDialog(“prefs.html”, receivePrefsDialogData)

A script statement in the dialog box window’s document can pick up that refer-

ence so that other statements can use it, such as a function for an Apply button’s

onClick event handler:

var returnFunc = window.dialogArguments
...
function apply(form) {

returnFunc(form.color.value, form.style.value, form.size.value)
}

While this approach seems to block ways of getting parameters to the dialog box

when it opens, you can always reference the dialog box in the main window’s script

and set form or variable values directly:

dlog = showModelessDialog(“prefs.html”, receivePrefsDialogData)
dlog.document.forms[0].userName.value = GetCookie(“userName”)

Be aware that a dialog box window opened with either of these methods does

not maintain a connection to the originating window via the opener property. The

opener property for both dialog box types is undefined.

Dialog window features
Both methods provide an optional third property that lets you specify visible

features of the dialog box window. Omitting the property sets all features to their

default values. All parameters are to be contained by a single string, and each

parameter’s name-value pair is in the form of CSS attribute:value syntax. Table

16-4 lists all of the window features available for the two window styles. If you are

designing for compatibility with IE4, you are restricted to the modal dialog box and

a subset of features, as noted in the table. All values listed as Boolean take only the

following four values: yes, no, 1, 0.

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

290 Part III ✦ Document Objects Reference

Table 16-4 IE Dialog Box Window Features

Feature Type Default Description

center Boolean yes Whether to center dialog box
(overridden by dialogLeft
and/or dialogTop).

dialogHeight Length varies Outer height of the dialog box
window. IE4 default length unit is
em; IE5 is pixel (px).

dialogLeft Integer varies Pixel offset of dialog box from left
edge of screen.

dialogTop Integer varies Pixel offset of dialog box from top
edge of screen.

dialogWidth Length varies Outer width of the dialog box
window. IE4 default length unit is
em; IE5 is pixel (px).

help Boolean yes Display Help icon in title bar.

resizable Boolean no Dialog box is resizable (IE5+
only).

status Boolean varies Display statusbar at window
bottom (IE5+ only). Default is
yes for untrusted dialog box; no
for trusted dialog box.

The CSS-type of syntax for these features lets you string multiple features

together by separating each pair with a semicolon within the string. For example:

var dlogData = showModalDialog(“prefs.html”, defaultData,
“dialogHeight:300px; dialogWidth:460px; help:no”)

Although not explicitly listed as one of the window features, scroll bars are nor-

mally displayed in the window if the content exceeds the size assigned or available

to the dialog box. If you don’t want scroll bars to appear, have your dialog box docu-

ment’s script set the document.body.scroll property to false as the page opens.

Dialog cautions
A potential user problem to watch for is that typically a dialog box window does

not open until the HTML file for the dialog box has loaded. Therefore, if there is

substantial delay before a complex document loads, the user does not see any

action indicating that something is happening. You may want to experiment with

setting the cursor style sheet property and restoring it when the dialog box’s

document loads.

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

291Chapter 16 ✦ Window and Frame Objects

One of the reasons I call a dialog box window an (almost) window object is that

some normal behavior is not available in IE4. For example, if you load a frameset

into the dialog box window, scripts in documents within the frames cannot refer

back to the parent document to access variables or parent window methods. Thus,

a button in a frame of an IE4 modal dialog box cannot issue parent.close() to

close the dialog box. This anomaly is repaired in IE5.

Example (with Listings 16-39 through 16-42) on the CD-ROM

Related Items: window.open() method.

sizeToContent()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 window.sizeToContent() method can be a valuable aid in making

sure that a window (especially a subwindow) is sized for the optimum display of

the window’s content. But you must also be cautious with this method, or it will do

more harm than good.

Invoking the sizeToContent() method resizes the window so that all content is

visible. Concerns about variations in OS-specific rendering become a thing of the

past. Naturally, you should perform this action only on a window whose content at

the most occupies a space smaller than the smallest video monitor running your

code (typically 640 × 480 pixels, but conceivably much smaller for future versions

of the browser used on handheld computers).

You can get the user in trouble, however, if you invoke the method twice on the

same window that contains the resizing script. This action can cause the window to

expand to a size that may exceed the pixel size of the user’s video monitor.

Successive invocations fail to cinch up the window’s size to its content again.

Multiple invocations are safe, however, on subwindows when the resizing script

statement is in the main window.

Example on the CD-ROM

Related Item: window.resizeTo() method.

On the
CD-ROM

On the
CD-ROM

windowObject.sizeToContent()

(c) ketabton.com: The Digital Library

292 Part III ✦ Document Objects Reference

stop()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The Navigator-specific stop() method offers a scripted equivalent of clicking

the Stop button in the toolbar. Availability of this method allows you to create your

own toolbar on your page and hide the toolbar (in the main window with signed

scripts or in a subwindow). For example, if you have an image representing the Stop

button in your page, you can surround it with a link whose action stops loading, as

in the following:

A script cannot stop its own document from loading, but it can stop loading of

another frame or window. Similarly, if the current document dynamically loads a

new image or a multimedia MIME type file as a separate action, the stop() method

can halt that process. Even though the stop() method is a window method, it is

not tied to any specific window or frame: Stop means stop.

Related Items: window.back(), window.find(), window.forward(),

window.home(), window.print() methods.

Event handlers
onAfterPrint
onBeforePrint

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Each of these event handlers (not implemented in IE5/Mac) fires after the user has

clicked the OK button in IE’s Print dialog box. This goes for printing that is invoked

manually (via menus and browser shortcut buttons) and the window.print()
method.

Although printing is usually WYSIWYG, it is conceivable that you may want the

printed version of a document to display more or less of the document than is

showing at that instant. For example, you may have a special copyright notice that

you want printed at the end of a page whenever it goes to the printer. In that case,

the element with that content can have its display style sheet property set to

none when the page loads. Before the document is sent to the printer, a script

needs to adjust that style property to display the element as a block item; after

printing, have your script revert the setting to none.

windowObject.onAfterPrint

(c) ketabton.com: The Digital Library

293Chapter 16 ✦ Window and Frame Objects

Immediately after the user clicks the OK button in the Print dialog box, the

onBeforePrint event handler fires. As soon as the page(s) is sent to the printer or

spooler, the onAfterPrint event handler fires.

Example on the CD-ROM

onBeforeUnload

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Any user or scripted action that normally forces the current page to be unloaded

or replaced causes the onBeforeUnload event handler to fire (not implemented in

IE5/Mac). Unlike the onUnload event handler, however, onBeforeUnload is a bit

better behaved when it comes to allowing complex scripts to finish before the

actual unloading takes place. Moreover, you can assign a string value to the event.
returnValue property in the event handler function. That string becomes part of a

message in an alert window that gives the user a chance to stay on the page. If the

user agrees to stay, the page does not unload, and any action that caused the

potential replacement is cancelled.

Example (with Listing 16-43) on the CD-ROM

Related Items: onUnload event handler.

onDragDrop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

With closer integration between the computer desktop and browsers these days,

it is increasingly possible that shortcuts (or aliases) to Web URLs can be repre-

sented on our desktops and other kinds of documents. With NN4, you can script

awareness of dragging and dropping of such items onto the browser window. The

window’s dragDrop event fires whenever a user drops a file or other URL-filled

object onto the window.

You can add an onDragDrop event handler to the <BODY> tag of your document

and pass along the event object that has some juicy tidbits about the drop: the

object on which the item was dropped and the URL of the item. The function called

by the event handler receives the event object information and can process it from

On the
CD-ROM

On the
CD-ROM

windowObject.onDragDrop

(c) ketabton.com: The Digital Library

294 Part III ✦ Document Objects Reference

there. Because this event is a window event, you don’t have to turn on

window.captureEvents() to get the window to feel the effect of the event.

The juiciest tidbit of the event, the URL of the dropped item, can be retrieved

only with a signed script and the user’s permission (see Chapter 46). Listing 16-44

shows a simple document that reveals the URL and screen location, as derived from

the event object passed with the dragDrop event. You must have codebase princi-

pals turned on to get the full advantage of this listing, and it works best with

Windows.

Listing 16-44: Analyzing a dragDrop Event

<HTML>
<HEAD>
<TITLE>DragDrop Event</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function reportDrag(e) {

var msg = “You dropped the file:\n”
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”)
msg += e.data
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserRead”)
msg += “\nonto the window object at screen location (“
msg += e.screenX + “,” + e.screenY + “).”
alert(msg)
return false

}
</SCRIPT>
</HEAD>
<BODY onDragDrop=”return reportDrag(event)”>
Drag and Drop a file onto this window
</BODY>
</HTML>

The dragDrop event is the only one that uses the data property of the NN4

event object. That property contains the URL. The target property reveals only

the window object, but you can access the event object’s screenX and screenY
properties to get the location of the mouse release.

Related Items: event object (Chapter 29).

onError

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

See the discussion of the window.onerror property earlier in this chapter.

windowObject.onError

(c) ketabton.com: The Digital Library

295Chapter 16 ✦ Window and Frame Objects

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The generic onHelp event handler is discussed in Chapter 15, but it also fires

when the user activates the context-sensitive help within a modal or modeless dia-

log box. In the latter case, a user can click the Help icon in the dialog box’s title bar,

at which time the cursor changes to a question mark. The user can then click on

any element in the window. At that second click, the onHelp event handler fires,

and the event object contains information about the element clicked (the

event.srcElement is a reference to the specific element), allowing a script to

supply help about that element.

To prevent the brower’s built-in help window from appearing, the event handler

must evaluate to return false (IE4+) or set the event.returnValue property to

false (IE5).

Example
The following script fragment can be embedded in the IE5-only modeless dialog

box code in Listing 16-44 to provide context-sensitive help within the dialog box.

Help messages for only two of the form elements are shown here, but in a real appli-

cation you add messages for the rest.

function showHelp() {
switch (event.srcElement.name) {

case “bgColor” :
alert(“Choose a color for the main window\’s background.”)
break

case “name” :
alert(“Enter your first name for a friendly greeting.”)
break

default :
alert(“Make preference settings for the main page styles.”)

}
event.returnValue = false

}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction

cases are based on the name properties of the form elements. For other kinds of

pages, the id properties may be more appropriate.

Related Items: event object (Chapter 29); switch construction (Chapter 39).

windowObject.onHelp

(c) ketabton.com: The Digital Library

296 Part III ✦ Document Objects Reference

onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The onLoad event handler fires in the current window at the end of the docu-

ment loading process (after all text and image elements have been transferred from

the source file server to the browser, and after all plug-ins and Java applets have

loaded and started running). At that point, the browser’s memory contains all the

objects and script components in the document that the browser can possibly

know about.

The onLoad handler is an attribute of a <BODY> tag for a single-frame document

or of the <FRAMESET> tag for the top window of a multiple-frame document. When

the handler is an attribute of a <FRAMESET> tag, the event triggers only after all

frames defined by that frameset have completely loaded.

Use either of the following scenarios to insert an onLoad handler into a document:

<HTML>
<HEAD>
</HEAD>
<BODY [other attributes] onLoad=”statementOrFunction”>
[body content]
</BODY>
</HTML>
<HTML>

<HEAD>
</HEAD>
<FRAMESET [other attributes] onLoad=”statementOrFunction”>

<FRAME>frame specifications</FRAME>
</FRAMESET>
</HTML>

This handler has a special capability when part of a frameset definition: The han-

dler won’t fire until the onLoad event handlers of all child frames in the frameset

have fired. Therefore, if some initialization scripts depend on components existing

in other frames, trigger them from the frameset’s onLoad event handler. This brings

up a good general rule of thumb for writing JavaScript: Scripts that execute during a

document’s loading should contribute to the process of generating the document

and its objects. To act immediately on those objects, design additional functions

that are called by the onLoad event handler for that window.

The type of operations suited for an onLoad event handler are those that can run

quickly and without user intervention. Users shouldn’t be penalized by having to

wait for considerable post-loading activity to finish before they can interact with

your pages. At no time should you present a modal dialog box as part of an onLoad
handler. Users who design macros on their machines to visit sites unattended may

get hung up on a page that automatically displays an alert, confirm, or prompt dia-

log box. On the other hand, an operation such as setting the

window.defaultStatus property is a perfect candidate for an onLoad event han-

dler, as are initializing event handlers as properties of element objects in the page.

windowObject.onload

(c) ketabton.com: The Digital Library

297Chapter 16 ✦ Window and Frame Objects

Related Items: onUnload event handler; window.defaultStatus property.

onMove

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If a user drags an NN4 window around the screen, the action triggers a move
event for the window object. When you assign a function to the event (for example,

window.onmove = handleMoves), the function receives an event object whose

screenX and screenY properties reveal the coordinate point (relative to the entire

screen) of the top-left corner of the window after the move.

Related Items: event object (Chapter 29).

onResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

If a user resizes a window, the action causes the onResize event handler to fire

for the window object. When you assign a function to the event (for example,

window.onresize = handleResizes), the NN event object conveys width and

height properties that reveal the outer width and height of the entire window. A

window resize should not reload the document such that an onLoad event handler

fires (although some early Navigator versions did fire the extra event).

windowObject.onResize

onLoad Bugs and Anomalies

The onLoad event has changed its behavior over the life of JavaScript in Navigator. In
Navigator 2, the onLoad event handler fired whenever the user resized the window. Many
developers considered this a bug because the running of such scripts destroyed data that
were carefully gathered since the document originally loaded. From Navigator 3 onward
(and including IE3+), a window resize does not trigger a load event.

Two onLoad bugs haunt Navigator 3 when used in conjunction with framesets. The first bug
affects only Windows versions. The problem is that the frameset’s onLoad event handler is
not necessarily the last one to fire among all the frames. It is possible that one frame’s
onLoad event may still not have processed before the frameset’s onLoad event handler
goes. This can cause serious problems if your frameset’s onLoad event handler relies on
that final frame being fully loaded.

The second bug affects all versions of NN3, but at least a workaround exists. If a frame con-
tains a Java applet, the frameset’s onLoad event handler will fire before the applet has fully
loaded and started. But if you place an onLoad event handler in the applet’s document
(even a dummy onLoad=”” in the <BODY> tag), the frameset’s onLoad event handler
behaves properly.

(c) ketabton.com: The Digital Library

298 Part III ✦ Document Objects Reference

Note: Resizing the Navigator 4 browser window, especially if that window con-

tains positioned elements (as DIV or LAYER elements) causes serious problems not

only for the content, but also for scripts in the page. Content can get jumbled, and

scripts may disappear. Your only hope is to use an onResize event handler to

reload the page and get back to a known point. For some ideas on handling this

problem, see the article at http://developer.netscape.com/viewsource/
goodman_resize/goodman_resize.html. One point not covered in the article is

that the Windows version of NN4 issues a resize event when scroll bars appear in

a window. This resize event can make any reload-on-resize strategy turn into an

infinite loop. To guard against this, you have to inspect the window.innerWidth
and window.innerHeight properties to see if the window has really changed (the

property values don’t change when the scrollbars appear). Here is an example of

script statements that go in the Head script of a page that has to worry about this

problem in NN4:

var Nav4 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) == 4)
if (Nav4) {

var loadWidth = window.innerWidth
var loadHeight = window.innerHeight

}

function restore() {
if (loadWidth != window.innerWidth || loadHeight != window.innerHeight) {

history.go(0)
}

}
if (Nav4) window.onresize = restore

Related Items: event object (Chapter 29).

onUnload

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

An unload event reaches the current window just before a document is cleared

from view. The most common ways windows are cleared are when new HTML docu-

ments are loaded into them or when a script begins writing new HTML on the fly for

the window or frame.

Limit the extent of the onUnload event handler to quick operations that do not

inhibit the transition from one document to another. Do not invoke any methods

that display dialog boxes. You specify onUnload event handlers in the same places

in an HTML document as the onLoad handlers: as a <BODY> tag attribute for a sin-

gle-frame window or as a <FRAMESET> tag attribute for a multiframe window. Both

onLoad and onUnload event handlers can appear in the same <BODY> or <FRAME-
SET> tag without causing problems. The onUnload event handler merely stays

windowObject.onUnload

(c) ketabton.com: The Digital Library

299Chapter 16 ✦ Window and Frame Objects

safely tucked away in the browser’s memory, waiting for the unload event to arrive

for processing as the document gets ready to clear the window.

Let me pass along one caution about the onUnload event handler. Even though

the event fires before the document goes away, don’t burden the event handler with

time-consuming tasks, such as generating new objects or submitting a form. The

document will probably go away before the function completes, leaving the func-

tion looking for objects and values that no longer exist. The best defense is to keep

your onUnload event handler processing to a minimum.

Related Items: onLoad event handler.

FRAME Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

borderColor

contentDocument

Document

frameBorder

height

longDesc

marginHeight

marginWidth

noResize

scrolling

src

width

Syntax
Accessing properties or methods of a FRAME element object from a FRAMESET:

(IE4+) document.all.frameID. property | method([parameters])
(IE5+/NN6) document.getElementById(“frameID”). property | method([parameters])

Accessing properties of methods of a FRAME element from a frame document:

(IE4+) parent.document.all.frameID. property | method([parameters])
(IE5+/NN6) parent.document.getElementById(“frameID”). property |

method([parameters])

FRAME

(c) ketabton.com: The Digital Library

300 Part III ✦ Document Objects Reference

About this object
As noted in the opening section of this chapter, a FRAME element object is dis-

tinct from the frame object that acts as a window object in a document hierarchy.

The FRAME element object is available to scripts only when all HTML elements are

exposed in the object model, as in IE4+ and NN6.

Because the FRAME element object is an HTML element, it shares the properties,

methods, and event handlers of all HTML elements, as described in Chapter 15. By

and large, you access the FRAME element object to set or modify an attribute value

in the <FRAME> tag. If so, you simplify matters if you assign an identifier to the ID
attribute of the tag. Your tag still needs a NAME attribute if your scripts refer to

frames through the original object model (a parent.frameName reference). While

there is no law against using the same identifier for both NAME and ID attributes,

using different names to prevent potential conflict with references in browsers that

recognize both attributes is best.

To modify the dimensions of a frame, you must go the FRAMESET element object

that defines the COLS and ROWS attributes for the frameset. These properties can be

modified on the fly in IE4+ and NN6.

Properties
borderColor

Value: Hexadecimal triplet or color name string Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

If a frame displays a border (as determined by the FRAMEBORDER attribute of the

FRAME element or BORDER attribute of the FRAMESET element), it can have a color

set separately from the rest of the frames. The initial color (if different from the rest

of the frameset) is usually set by the BORDERCOLOR attribute of the <FRAME> tag.

After that, scripts can modify settings as needed.

Modifying a single frame’s border can be risky at times, depending on your color

combinations. In practice, different browers appear to follow different rules when it

comes to negotiating conflicts or defining just how far a single frame’s border

extends into the border space. Moreover, IE5/Windows exhibits some strange col-

oration behavior when applying a border color to a single frame. Color changes to

individual frame borders do not always render. Verify your designs on as many

browsers and operating system variations as you can to test your combinations.

Example on the CD-ROM

Related Items: FRAME.frameBorder, FRAMESET.frameBorder properties.

On the
CD-ROM

FRAME.borderColor

(c) ketabton.com: The Digital Library

301Chapter 16 ✦ Window and Frame Objects

contentDocument
Value: document object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The contentDocument property of a FRAME element object is nothing more

than a reference to the document contained by that frame. This property bridges

the gap between the FRAME element object and the frame object. Both of these

objects contain the same document object, but from a scripting point of view, refer-

ences most typically use the frame object to reach the document inside a frame,

while the FRAME element is used to access properties equated with the FRAME

tag’s attributes. But if your script finds that it has a reference to the FRAME element

object, you can use the contentDocument property to get a valid reference to the

document, and therefore any other content of the frame.

Example on the CD-ROM

Related Items: document object.

Document
Value: document object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Because IE4 for Windows implements frames as what are known as ActiveX Web

Browser objects, there are times when the properties of the Web Brower object can

fill in when the regular object model has a gap. Such is the case when trying to gain

access to the document object contained by a FRAME element object. Recall (from

Chapter 15) that the document property of an HTML element refers to the document

that contains the current object. In the case of a FRAME element, that would be the

framesetting document. But to jump across the normal element node hierarchy from

the FRAME element to the document it contains, you can use the Document (upper-

case “D”) property.Even though IE5 no longer uses the Web Browser object for

frames, the Document property continues to be available.

Example on the CD-ROM

Related Items: window.document property.

On the
CD-ROM

On the
CD-ROM

FRAME.Document

(c) ketabton.com: The Digital Library

302 Part III ✦ Document Objects Reference

frameBorder
Value: yes | no | 1 | 0 as strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The frameBorder property offers scripted access to a FRAME element object’s

FRAMEBORDER attribute setting. IE4+ does not respond well to modifying this prop-

erty after the page has loaded.

Values for the frameBorder property are strings that substitute for Boolean

values. Values yes or 1 mean that the border is (supposed to be) turned on; no or 0
turn off the border.

Example on the CD-ROM

Related Items: FRAMESET.frameBorder properties.

height
width

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE4+ lets you retrieve the height and width of a FRAME element object. These

values are not necessarily the same as the document.body.clientHeight and

document.body.clientWidth, because the frame dimensions include chrome

associated with the frame, such as scrollbars. These values are read-only. If you

need to modify the dimensions of a frame, do so via the FRAMESET element object’s

rows and/or cols properties. Reading integer values for a frame’s height and width

properties is much easier than trying to parse the rows and cols string properties.

Example on the CD-ROM

Related Items: FRAMESET object.

On the
CD-ROM

On the
CD-ROM

FRAME.height

(c) ketabton.com: The Digital Library

303Chapter 16 ✦ Window and Frame Objects

longDesc
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The longDesc property is the scripted equivalent of the LONGDESC attribute of

the <FRAME> tag. This HTML 4.0 attribute is intended to provide browsers with a

URL to a document that contains a long description of the element. Future browsers

can use this feature to provide information about the frame for visually impaired

site visitors.

marginHeight
marginWidth

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Browsers tend to automatically insert content within a frame by adding a margin

between the content and the edge of the frame. These values are represented by

the marginHeight (top and bottom edges) and marginWidth (left and right edges)

properties. Although the properties are not read-only, changing the values after the

frameset has loaded does not alter the appearance of the document in the frame. If

you need to alter the margin(s) of a document inside a frame, adjust the document.
body.style margin properties.

Also be aware that although the default values of these properties are empty

(meaning when no MARGINHEIGHT or MARGINWIDTH attributes are set for the

<FRAME> tag), margins are built into the page. The precise pixel count of those

margins varies with operating system.

Related Items: style object (Chapter 30).

noResize
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Web designers commonly fix their framesets so that users cannot resize the

frames (by dragging any divider border between frames). The noResize property

FRAME.noResize

(c) ketabton.com: The Digital Library

304 Part III ✦ Document Objects Reference

lets you read and adjust that behavior of a frame after the page has loaded. For

example, during some part of the interaction with a user on a page, you may allow

the user to modify the frame size manually while in a certain mode. Or you may

grant the user one chance to resize the frame. When the onResize event handler

fires, a script sets the noResize property of the FRAME element to false. If you

turn off resizing for a frame, all edges of the frame become non-resizable, regardless

of the noResize value setting of adjacent frames. Turning off resizability has no

effect on the ability of scripts to alter the sizes of frames via the FRAMESET element

object’s cols or rows properties.

Example on the CD-ROM

Related Items: FRAMESET.cols, FRAMESET.rows properties.

scrolling
Value: yes | no | 1 | 0 as strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The scrolling property lets scripts turn scrollbars on and off inside a single

frame of a frameset. By default, scrolling is turned on unless overridden by the

SCROLL attribute of the <FRAME> tag.

Values for the scrolling property are strings that substitute for Boolean values.

Values yes or 1 mean that scrollbars are visible (provided there is more content

than can be viewed without scrolling); no or 0 hide scrollbars in the frame. IE4+

also recognizes (and sets as default) the auto value.

This property is partially broken in IE5.5/Windows. While the object records
changes to the property, the frame’s appearance does not change. NN6 has the
same problem, plus some others, such as the property not returning a value
unless the SCROLLING attribute is specified in the FRAME element’s tag.

Example (with Listing 16-45) on the CD-ROMOn the
CD-ROM

Note

On the
CD-ROM

FRAME.scrolling

(c) ketabton.com: The Digital Library

305Chapter 16 ✦ Window and Frame Objects

src
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The src property of a FRAME element object offers an additional way of navigat-

ing to a different page within a frame (meaning other than assigning a new URL to

the location.href property of the frame object). For backward compatibility with

older browsers, however, continue using location.href for scripted navigation.

Remember that the src property belongs to the FRAME element object, not the

window object it represents. Therefore, references to the src property must be via

the element’s ID and/or node hierarchy.

Example on the CD-ROM

Related Items: location.href property.

FRAMESET Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

border

borderColor

cols

frameBorder

frameSpacing

rows

Syntax
Accessing properties or methods of a FRAMESET element object from a FRAMESET:

(IE4+) document.all.framesetID. property | method([parameters])
(IE5+/NN6) document.getElementById(“framesetID”). property |

method([parameters])

On the
CD-ROM

FRAMESET

(c) ketabton.com: The Digital Library

306 Part III ✦ Document Objects Reference

Accessing properties of methods of a FRAMESET element from a frame document:

(IE4+) parent.document.all.framesetID. property | method([parameters])
(IE5+/NN6) parent.document.getElementById(“framesetID”). property |

method([parameters])

About this object
The FRAMESET element object is the script-accessible equivalent of the element

generated via the <FRAMESET> tag. This element is different from the parent (win-

dow-type) object from the original object model. A FRAMESET element object has

properties and methods that impact the HTML element; in contrast, the window
object referenced from documents inside frames via the parent or top window

references contains a document and all the content that goes along with it.

When framesets are nested in one another, a node parent–child relationship

exists between containing and contained framesets. For example, consider the

following skeletal nested frameset structure:

<FRAMESET ID=”outerFrameset” COLS=”30%, 70%”>
<FRAME ID=”frame1”>
<FRAMESET ID=”innerFrameset” ROWS=”50%,50%”>

<FRAME ID=”frame2”>
<FRAME ID=”frame3”>

</FRAMESET>
</FRAMESET>

When writing scripts for documents that go inside any of the frames of this

structure, references to the framesetting window and frames are a flatter hierarchy

than the HTML signifies. A script in any frame references the framesetting window

via the parent reference; a script in any frame references another frame via the

parent.frameName reference. In other words, the window objects of the frameset

defined in a document are all siblings and share the same parent.

Such is not the case when viewing the above structure from the perspective of

W3C node terminology. Parent–child relationships are governed by the nesting of

HTML elements, irrespective of whatever windows get generated by the browser.

Therefore, frame frame2 has only one sibling, frame3. Both of those share one

parent, innerFrameset. Both innerFrameset and frame1 are children of

outerFrameset. If your script were sitting on a reference to frame2, and you

wanted to change the cols property of outerFrameset, you would have to

traverse two generations of nodes:

frame2Ref.parentNode.parentNode.cols = “40%,60%”

What might confuse matters ever more in practice is that a script belonging to one

of the frames must use window object terminology to jump out of the current window
object to the frameset that generated the frame window for the document. In other

words, there is no immediate way to jump directly from a document to the FRAME

element object that defines the frame in which the document resides. The docu-

ment’s script accesses the node hierarchy of its frameset via the parent.document
reference. But this reference is to the document object that contains the entire frame-

set structure. Fortunately, the W3C DOM provides the getElementById() method to

FRAMESET

(c) ketabton.com: The Digital Library

307Chapter 16 ✦ Window and Frame Objects

extract a reference to any node nested within the document. Thus, a document inside

one of the frames can access the FRAME element object just as if it were any element

in a typical document (which it is):

parent.document.getElementById(“frame2”)

No reference to the containing FRAMESET element object is necessary. Or, to

make that column width change from a script inside one of the frame windows, the

statement would be:

parent.document.getElementById(“outerFrame”).cols = “40%,60%”

The inner frameset is equally accessible by the same syntax.

Properties
border

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The border property of a FRAMESET element object lets you read the thickness

(in pixels) of the borders between frames of a frameset. If you do not specify a BOR-
DER attribute in the frameset’s tag, the property is empty, rather than reflecting the

actual border thickness applied by default.

Example on the CD-ROM

Related Items: FRAMESET.frameBorder property.

borderColor
Value: Hexadecimal triplet or color name string Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The borderColor property lets you read the value of the color assigned to the

BORDERCOLOR attribute of the frameset’s tag. Although the property is read/write,

changing the color by script does not alter the border colors rendered in the

browser window. Attribute values set as color names are returned as hexadecimal

triplets when you read the property value.

On the
CD-ROM

FRAMESET.borderColor

(c) ketabton.com: The Digital Library

308 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: FRAME.borderColor, FRAMESET.frameBorder properties.

cols
rows

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The cols and rows properties of a FRAMESET element object let you read and

modify the sizes of frames after the frameset has loaded. These two properties are

defined in the W3C DOM. Values for both properties are strings, which may include

percent symbols or asterisks. Therefore if you are trying to increase or decrease

the size of a frame column or row gradually, you must parse the string for the nec-

essary original values before performing any math on them (or, in IE4+, use the

FRAME element object’s height and width properties to gauge the current frame

size in pixels).

IE4+ lets you completely modify the frameset by adjusting these properties. This

includes adding or removing columns or rows to the frameset grid. Because a

change in the frameset structure could impact scripts by changing the size of the

frames array associated with the parent window or unloading documents that con-

tain needed data, be sure to test your scripts with both states of your frameset. If

you want to remove a frame from a frameset view, you might be safer to specify the

size of zero for that particular row or column in the frameset. Of course a size of

zero still leaves a one-pixel frame, but it is essentially invisible if borders are not

turned on and the one-pixel frame shares the same background color as the other

frames. Another positive by-product of this technique is that you can restore the

other frame with its document state identical from when it was hidden.

When you have nested framesets defined in a single document, be sure to refer-

ence the desired FRAMESET element object. One object may be specifying the

columns, while another (nested) one specifies the rows for the grid. Assign a

unique ID to each FRAMESET element so that references can be reliably directed to

the proper object.

Example (with Listings 16-46, 16-47, and 16-48) on the CD-ROM

Related Items: FRAME object.

On the
CD-ROM

On the
CD-ROM

FRAMESET.cols

(c) ketabton.com: The Digital Library

309Chapter 16 ✦ Window and Frame Objects

frameBorder
Value: yes | no | 1 | 0 as strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The frameBorder property offers scripted access to a FRAMESET element

object’s FRAMEBORDER attribute setting. IE4+ does not respond well to modifying

this property after the page has loaded.

Values for the frameBorder property are strings that substitute for Boolean

values. Values yes or 1 mean that the border is (supposed to be) turned on; no or 0
turn off the border.

Example on the CD-ROM

Related Items: FRAME.frameBorder properties.

frameSpacing
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The frameSpacing property of a FRAMESET element object lets you read the

spacing (in pixels) between frames of a frameset. If you do not specify a FRAMES-
PACING attribute in the frameset’s tag, the property is empty, rather than reflecting

the actual border thickness applied by default (usually 2).

Example on the CD-ROM

Related Items: FRAMESET.border property.

On the
CD-ROM

On the
CD-ROM

FRAMESET.frameSpacing

(c) ketabton.com: The Digital Library

310 Part III ✦ Document Objects Reference

IFRAME Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

contentDocument

Document

frameBorder

frameSpacing

hspace

longDesc

marginHeight

marginWidth

scrolling

src

vspace

Syntax
Accessing properties or methods of an IFRAME element object from a containing

document:

(IE4+) document.all.iframeID. property | method([parameters])
(IE4+/NN6) window.frames[“iframeName”]. property | method([parameters])
(IE5+/NN6) document.getElementById(“iframeID”). property | method([parameters])

Accessing properties of methods of an IFRAME element from a document inside

the IFRAME element:

(IE4+) parent.document.all.iframeID. property | method([parameters])
(IE5+/NN6) parent.document.getElementById(“iframeID”). property |

method([parameters])

About this object
An IFRAME element (IE4+ and NN6) allows HTML content from a separate source

to be loaded within the body of another document. In some respects, the NN4

LAYER element was a precursor to the IFRAME concept, but unlike the LAYER, an

IFRAME element is not inherently positionable. It is positionable, the same way as

any other HTML element, by assigning positioning attributes to a style sheet associ-

ated with the IFRAME. Without explicit positioning, an IFRAME element appears in

IFRAME

(c) ketabton.com: The Digital Library

311Chapter 16 ✦ Window and Frame Objects

the body of a document in normal source code order of elements. Unlike a frame of

a frameset, you can place an IFRAME arbitrarily in the middle of any document. If

the FRAME changes size under script control, the surrounding content moves out

of the way or cinches up.

What truly separates the IFRAME apart from other HTML elements is its ability

to load and display external HTML files and, with the help of scripts, have different

pages loaded into the IFRAME without disturbing the rest of the content of the main

document. Pages loaded into the IFRAME can also have scripts and any other fea-

tures that you may like to put into an HTML document (including XML).

The IFRAME element has a rich set of attributes that let the HTML author control

the look, size (HEIGHT and WIDTH), and, to some degree, behavior of the frame.

Most of those are accessible to scripts as properties of an IFRAME element object.

It is important to bear in mind that an IFRAME element is in many respects like a

FRAME element, especially when it comes to window kinds of relationships. If you

plant an IFRAME element in a document of the main window, that element shows up

in the main window’s object model as a frame, accessible via common frames termi-

nology:

window.frames[i]
window.frames[frameName]

Within that IFRAME frame object is a document and all its contents. All refer-

ences to the document objects inside the IFRAME must flow through the “portal” of

the IFRAME frame.

Conversely, scripts in the document living inside an IFRAME can communicate

with the main document via the parent reference. Of course, you cannot replace

the content of the main window with another HTML document (using

location.href, for instance) without destroying the IFRAME that was in the origi-

nal document.

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The align property governs how an IFRAME element aligns itself with respect to

surrounding content on the page. Two of the possible values (left and right)

position the IFRAME along the left and right edge (respectively) of the IFRAME’s

containing element (usually the BODY). Just as with an image, when an IFRAME is

floated along the left and right edges of a container, other content wraps around the

element. Table 16-5 shows all possible values and their meanings.

IFRAME.align

(c) ketabton.com: The Digital Library

312 Part III ✦ Document Objects Reference

Table 16-5 Values of the align Property

Value Description

absbottom Aligns the bottom of the IFRAME with the imaginary line that
extends along character descenders of surrounding text.

absmiddle Aligns the middle of the IFRAME with the center point between
the surrounding text’s top and absbottom.

baseline Aligns the bottom of the IFRAME with the baseline of
surrounding text.

bottom Same as baseline in IE.

left Aligns the IFRAME flush with left edge of the containing element.

middle Aligns the imaginary vertical centerline of surrounding text with
the same for the IFRAME element.

right Aligns the IFRAME flush with the right edge of the containing
element.

texttop Aligns the top of the IFRAME element with the imaginary line
that extends along the tallest ascender of surrounding text.

top Aligns the top of the IFRAME element with the surrounding
element’s top.

As your script changes the value of the align property, the page automatically

reflows the content to suit the new alignment.

Example on the CD-ROM

Related Items: IFRAME.hspace, IFRAME.vspace properties.

contentDocument
Value: document object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The contentDocument property of an IFRAME element object is nothing more

than a reference to the document contained by that frame. If your script finds that

it has a reference to an IFRAME element object, you can use the contentDocument
property to get a valid reference to the document, and therefore any other content

of the frame.

On the
CD-ROM

IFRAME.contentDocument

(c) ketabton.com: The Digital Library

313Chapter 16 ✦ Window and Frame Objects

Example on the CD-ROM

Related Items: document object.

Document
Value: document object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

See the FRAME.Document property for details on this property of the ActiveX

Web Browser object. You find less need for this property with an IFRAME element,

because you can use the window object behavior of IFRAMEs to transcend the doc-

ument object hierarchies of the main window and the IFRAME window.

Related Items: FRAME.Document property.

frameBorder
Value: yes | no | 1 | 0 as strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The frameBorder property offers scripted access to an IFRAME element object’s

FRAMEBORDER attribute setting. IE4+ does not respond well to modifying this prop-

erty after the page has loaded.

Values for the frameBorder property are strings that substitute for Boolean val-

ues. Values yes or 1 mean that the border is (supposed to be) turned on; no or 0
turn off the border.

Example on the CD-ROM

Related Items: FRAME.frameBorder properties.

On the
CD-ROM

On the
CD-ROM

IFRAME.frameBorder

(c) ketabton.com: The Digital Library

314 Part III ✦ Document Objects Reference

frameSpacing
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The frameSpacing property is included in IE5 for backward compatibility to

IE4’s erroneous inclusion of this property for an IFRAME element. Do not use it.

hspace
vspace

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These IE-specific properties allow for margins to be set around an IFRAME ele-

ment. In general, hspace and vspace properties (and their HTML attributes) have

been replaced by CSS margins and padding. These properties and their attributes

are not recognized by any W3C standard (including HTML 4.0).

Values for these properties are integers representing the number of pixels of

padding between the element and surrounding content. The hspace value assigns

the same number of pixels to the left and right sides of the element; the vspace
value is applied to both the top and bottom edges. Scripted changes to these values

have no effect in IE5/Windows.

Example on the CD-ROM

Related Items: style.padding property.

longDesc
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The longDesc property is the scripted equivalent of the LONGDESC attribute of

the <IFRAME> tag. This HTML 4.0 attribute is intended to provide browsers with a

URL to a document that contains a long description of the element. Future browsers

On the
CD-ROM

IFRAME.longDesc

(c) ketabton.com: The Digital Library

315Chapter 16 ✦ Window and Frame Objects

can use this feature to provide information about the frame for visually impaired

site visitors.

marginHeight
marginWidth

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Browsers tend to automatically insert content within a frame by adding a margin

between the content and the edge of the frame. These values are represented by

the marginHeight (top and bottom edges) and marginWidth (left and right edges)

properties. Although the properties are not read-only, changing the values after the

frameset has loaded does not alter the appearance of the document in the frame. If

you need to alter the margin(s) of a document inside a frame, adjust the docu-
ment.body.style margin properties.

Also be aware that although the default values of these properties are empty

(that is, when no MARGINHEIGHT or MARGINWIDTH attributes are set for the

<IFRAME> tag), margins are built into the page. The precise pixel count of those

margins varies with different operating systems.

Related Items: style object (Chapter 30).

scrolling
Value: yes | no | 1 | 0 as strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The scrolling property lets scripts turn scrollbars on and off inside an IFRAME

element. By default, scrolling is turned on unless overridden by the SCROLL
attribute of the <IFRAME> tag.

Values for the scrolling property are strings that substitute for Boolean values.

Values yes or 1 mean that scrollbars are visible (provided there is more content

than can be viewed without scrolling); no or 0 hide scrollbars in the frame. IE4+

also recognizes (and sets as default) the auto value.

Example on the CD-ROM

Related Items: FRAME.scrolling property.

On the
CD-ROM

IFRAME.scrolling

(c) ketabton.com: The Digital Library

316 Part III ✦ Document Objects Reference

src
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The src property of an IFRAME element object offers an additional way of navi-

gating to a different page within an inline frame (that is, other than assigning a new

URL to the location.href property of the frame object). Remember that the src
property belongs to the IFRAME element object, not the window object it repre-

sents. Therefore, references to the src property must be via the element’s ID

and/or node hierarchy.

Example on the CD-ROM

Related Items: location.href property.

popup Object

Properties Methods Event Handlers

document hide()

isOpen show()

Syntax
Creating a popup object:

var popupObj = window.createPopup()

Accessing properties or methods of a popup object from a document in the win-

dow that created the pop-up:

popupObj.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

On the
CD-ROM

popup

(c) ketabton.com: The Digital Library

317Chapter 16 ✦ Window and Frame Objects

About this object
A popup object is a chrome-less window space, which overlaps the window

whose document generates the pop-up. A pop-up also appears in front of any dialog

boxes. Unlike the dialog box windows generated via IE’s showModalDialog() and

showModelessDialog() methods, your scripts must not only create the window,

but also put content into it, and then define where on the screen and how big it will

be.

Because the pop-up window has no chrome (that is, title bar, resize handles, and

so forth), you should populate its content with a border and/or background color

so that it stands out from the main window’s content. The following statements

reflect a typical sequence of creating, populating, and showing a popup object:

var popup = window.createPopup()
var popupBody = popup.document.body
popupBody.style.border = “solid 2px black”
popupBody.style.padding = “5px”
popupBody.innerHTML = “<P>Here is some text in a popup window</P>”
popup.show(200,100, 200, 50, document.body)

The pop-up window that IE creates is, in fact, a window, but only from the point

of view of the document that it contains. In other words, while the number of prop-

erties and methods for the popup object is small, the parentWindow property of

the document inside the pop-up points to a genuine window property. Even so, be

aware that this pop-up does not appear as a distinct window among windows listed

in the Windows Taskbar. If a user clicks outside of the pop-up or switches to

another application, the pop-up disappears, and you must reinvoke the show()
method by script (complete with dimension and position parameters) to force the

pop-up to reappear.

When you assign content to a pop-up, you are also responsible for making sure

that the content fits the size of the pop-up you specify. If the content runs past the

rectangular space (body text word wraps within the pop-up’s rectangle), no scroll-

bars appear.

Properties
document

Value: document object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Use the document property as a gateway to the content of a pop-up window. This

property is the only access point available from the script that creates the pop-up

to the pop-up itself. The most common application of this property is to set docu-

ment properties governing the content of the pop-up window. For example, to give

the pop-up a border (because the pop-up itself has no window chrome), the script

popupObject.document

(c) ketabton.com: The Digital Library

318 Part III ✦ Document Objects Reference

that creates the window can assign values to the style property of the document

in the pop-up window, as follows:
myPopup.document.body.style.border = “solid 3px gray”

Beware that the document object of a pop-up window may not implement the full

flexibility you know about primary window document objects. For example, you are

not allowed to assign a URL to the document.URL property in a pop-up window.

Example on the CD-ROM

Related Items: document object.

isOpen
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

While a pop-up window is visible, its isOpen property returns true; otherwise

the property returns false. Because any user action in the browser causes the

pop-up to hide itself, the property is useful only for script statements that are run-

ning on their own after the pop-up is made visible.

Example on the CD-ROM

Related Items: popup.show() method.

Methods
hide()
show(left, top, width, height[,
positioningElementRef])

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

On the
CD-ROM

On the
CD-ROM

popupObject.hide()

(c) ketabton.com: The Digital Library

319Chapter 16 ✦ Window and Frame Objects

After you have created a popup object with the window.createPopup() method

and populated it with content, you must explicitly show the window via the show()
method. If the window is hidden because a user clicked the main browser window

somewhere, the show() method (and all its parameters) must be invoked again. To

have a script hide the window, invoke the hide() method for the popup object.

The first four parameters of the show() method are required and define the pixel

location and size of the pop-up window. By default, the coordinate space for the

left and top parameters is the video display. Thus, a left and top setting of zero

places the pop-up in the upper-left corner of the video screen. But you can also

define a different coordinate space by adding an optional fifth parameter. This

parameter must be a reference to an element on the page. To confine the coordi-

nate space to the content region of the browser window, specify the

document.body object as the positioning element reference.

Example (with Listing 16-49) on the CD-ROM

Related Items: popup.isOpen property, window.createPopup() method.

✦ ✦ ✦

On the
CD-ROM

popupObject.hide()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Location and
History Objects

Not all objects in the document object model are

“things” you can see in the content area of the browser

window. Each browser window or frame maintains a bunch of

other information about the page you are currently visiting

and where you have been. The URL of the page you see in the

window is called the location, and browsers store this infor-

mation in the location object. As you surf the Web, the

browser stores the URLs of your past pages in the history
object. You can manually view what that object contains by

looking in the browser menu that enables you to jump back to

a previously visited page. This chapter is all about these two

nearly invisible, but important, objects.

Not only are these objects valuable to your browser, but

they are also valuable to snoopers who might want to write

scripts to see what URLs you’re viewing in another frame or

the URLs of other sites you’ve visited in the last dozen mouse

clicks. As a result, security restrictions built into browsers

limit access to some of these objects’ properties (unless you

use signed scripts in NN4+). For older browsers, these proper-

ties simply are not available from a script.

Location Object

Properties Methods Event Handlers

hash assign() None

host reload()

hostname replace()

href

pathname

port

protocol

search

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Loading new pages
and other media
types via the
location object

Security restrictions
across frames

Navigating through
the browser history
under script control

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

322 Part III ✦ Document Objects Reference

Syntax
Loading a new document into the current window:

[window.]location.href = “URL”

Accessing location object properties or methods:

[window.]location.property | method([parameters])

About this object
In its place one level below window-style objects in the document object hierar-

chy, the location object represents information about the URL of any currently

open window or of a specific frame. A multiple-frame window displays the parent

window’s URL in the Location (or Address) field of the browser. Each frame also has

a location associated with it, although you may not see any overt reference to the

frame’s URL in the browser. To get URL information about a document located in

another frame, the reference to the location object must include the window

frame reference. For example, if you have a window consisting of two frames, Table

17-1 shows the possible references to the location objects for all frames compris-

ing the Web presentation.

Scripts cannot alter the URL displayed in the browser’s Location/Address box. For
security and privacy reasons, that text box cannot display anything other than the
URL of a current page or URL in transit.

Table 17-1 Location Object References in a
Two-Frame Browser Window

Reference Description

location (or window.location) URL of frame displaying the document that runs
the script statement containing this reference

parent.location URL information for parent window that defines
the <FRAMESET>

parent.frames[0].location URL information for first visible frame

parent.frames[1].location URL information for second visible frame

parent.otherFrameName.location URL information for another named frame in the
same frameset

Most properties of a location object deal with network-oriented information.

This information involves various data about the physical location of the document

on the network including the host server, the protocol being used, and other com-

ponents of the URL. Given a complete URL for a typical WWW page, the

window.location object assigns property names to various segments of the URL,

as shown here:

Note

windowObject.location

(c) ketabton.com: The Digital Library

323Chapter 17 ✦ Location and History Objects

http://www.giantco.com:80/promos/newproducts.html#giantGizmo

Property Value

protocol “http:”

hostname “www.giantco.com”

port “80”

host “www.giantco.com:80”

pathname “/promos/newproducts.html”

hash “#giantGizmo”

href “http://www.giantco.com:80/promos
newproducts.html#giantGizmo”

The window.location object is handy when a script needs to extract informa-

tion about the URL, perhaps to obtain a base reference on which to build URLs for

other documents to be fetched as the result of user action. This object can elimi-

nate a nuisance for Web authors who develop sites on one machine and then

upload them to a server (perhaps at an Internet service provider) with an entirely

different directory structure. By building scripts to construct base references from

the directory location of the current document, you can construct the complete

URLs for loading documents. You don’t have to manually change the base reference

data in your documents as you shift the files from computer to computer or from

directory to directory. To extract the segment of the URL and place it into the

enclosing directory, use the following:

var baseRef = location.href.substring(0,location.href.lastIndexOf(“/”) + 1)

Security alert: To allay fears of Internet security breaches and privacy invasions,
scriptable browsers prevent your script in one frame from retrieving location
object properties from other frames whose domain and server are not your own
(unless you use signed scripts in NN4+ or you set the IE browser to trust the site).
This restriction puts a damper on many scripters’ well-meaning designs and aids
for Web watchers and visitors. If you attempt such property accesses, however, you
receive an “access denied” (or similar) security warning dialog box.

Setting the value of some location properties is the preferred way to control

which document gets loaded into a window or frame. Though you may expect to

find a method somewhere in JavaScript that contains a plain language “Go” or

“Open” word (to simulate what you see in the browser menu bar), you “point your

browser” to another URL by setting the window.location.href property to that

URL, as in

window.location.href = “http://www.dannyg.com/”

Caution

windowObject.location

(c) ketabton.com: The Digital Library

324 Part III ✦ Document Objects Reference

The equals assignment operator (=) in this kind of statement is a powerful

weapon. In fact, setting the location.href object to a URL of a different MIME

type, such as one of the variety of sound and video formats, causes the browser to

load those files into the plug-in or helper application designated in your browser’s

settings. The location.assign() method was originally intended for internal use

by the browser, but it is available for scripters (although I don’t recommend using it

for navigation). Internet Explorer’s object model includes a window.navigate()
method that also loads a document into a window, but you can’t use it for cross-

browser applications.

Two other methods complement the location object’s capability to control nav-

igation. One method is the script equivalent of clicking Reload; the other method

enables you to replace the current document’s entry in the history with that of the

next URL of your script’s choice.

Properties
hash

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The hash mark (#) is a URL convention that directs the browser to an anchor

located in the document. Any name you assign to an anchor (with the ... tag pair) becomes part of the URL after the hash mark. A

location object’s hash property is the name of the anchor part of the current URL

(which consists of the hash mark and the name).

If you have written HTML documents with anchors and directed links to navigate

to those anchors, you have probably noticed that although the destination location

shows the anchor as part of the URL (for example, in the Location field), the win-

dow’s anchor value does not change as the user manually scrolls to positions in the

document where other anchors are defined. An anchor appears in the URL only

when the window has navigated there as part of a link or in response to a script

that adjusts the URL.

Just as you can navigate to any URL by setting the window.location.href
property, you can navigate to another hash in the same document by adjusting only

the hash property of the location without the hash mark (as shown in the following

example). Such navigation, even within a document, sometimes causes IE to reload

the document. No reload occurs in NN3+.

Example (with Listing 17-1) on the CD-ROM

Related Item: location.href property.

On the
CD-ROM

windowObject.location.hash

(c) ketabton.com: The Digital Library

325Chapter 17 ✦ Location and History Objects

host
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The location.host property describes both the hostname and port of a URL.

The port is included in the value only when the port is an explicit part of the URL. If

you navigate to a URL that does not display the port number in the Location field of

the browser, the location.host property returns the same value as the loca-
tion.hostname property.

Use the location.host property to extract the hostname:port part of the URL

of any document loaded in the browser. This capability may be helpful for building

a URL to a specific document that you want your script to access on the fly.

Example (with Listings 17-2, 17-3, and 17-4) on the CD-ROM

Related Items: location.port, location.hostname properties.

hostname
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The hostname of a typical URL is the name of the server on the network that

stores the document you view in the browser. For most Web sites, the server name

includes not only the domain name, but also the www. prefix. The hostname does

not, however, include the port number if the URL specifies such a number.

Example on the CD-ROM

Related Items: location.host, location.port properties.

On the
CD-ROM

On the
CD-ROM

windowObject.location.hostname

(c) ketabton.com: The Digital Library

326 Part III ✦ Document Objects Reference

href
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Of all the location object properties, href (hypertext reference) is probably

the one most often called upon in scripting. The location.href property supplies

a string of the entire URL of the specified window object.

Using this property on the left side of an assignment statement is the JavaScript

way of opening a URL for display in a window. Any of the following statements can

load my Web site’s index page into a single-frame browser window:

window.location=”http://www.dannyg.com”
window.location.href=”http://www.dannyg.com”

At times, you may encounter difficulty by omitting a reference to a window.

JavaScript may get confused and reference the document.location property. To

prevent this confusion, the document.location property was deprecated (put on

the no-no list) and replaced by the document.URL property. In the meantime, you

can’t go wrong by always specifying a window in the reference.

You should be able to omit the href property name when assigning a new URL to
the location object (for example, location = “http://www.dannyg.com”).
While this works in most browsers most of the time, some early browsers (espe-
cially IE3) behave more reliably if you assign a URL explicitly to the
location.href property. I recommend using location.href at all times.

Sometimes you must extract the name of the current directory in a script so

another statement can append a known document to the URL before loading it into

the window. Although the other location object properties yield an assortment of

a URL’s segments, none of them provides the full URL to the current URL’s direc-

tory. But you can use JavaScript string manipulation techniques to accomplish this

task. Listing 17-5 shows such a possibility.

Depending on your browser, the values for the location.href property may be

encoded with ASCII equivalents of non-alphanumeric characters. Such an ASCII

value includes the % symbol and the ASCII numeric value. The most common

encoded character in a URL is the space: %20. If you need to extract a URL and dis-

play that value as a string in your documents, you can safely pass all such poten-

tially encoded strings through the JavaScript unescape() function. For example, if

a URL to one of Giantco’s pages is http://www.giantco.com/product%20list,

you can convert it by passing it through the unescape() function, as in the follow-

ing example.

var plainURL = unescape(window.location.href)
// result = “http://www.giantco.com/product list”

Note

windowObject.location.href

(c) ketabton.com: The Digital Library

327Chapter 17 ✦ Location and History Objects

The inverse function, escape(), is available for sending encoded strings to CGI

programs on servers. See Chapter 42 for more details on these functions.

Example (with Listing 17-5) on the CD-ROM

Related Items: location.pathname, document.location properties; String
object (Chapter 34).

pathname
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The pathname component of a URL consists of the directory structure relative to

the server’s root volume. In other words, the root (the server name in an http:
connection) is not part of the pathname. If the URL’s path is to a file in the root

directory, then the location.pathname property is a single slash (/) character.

Any other pathname starts with a slash character, indicating a directory nested

within the root. The value of the location.pathname property also includes the

document name.

Example on the CD-ROM

Related Item: location.href property.

port
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

These days, few consumer-friendly Web sites need to include the port number as

part of their URLs. You see port numbers mostly in the less-popular protocols, in

URLs to sites used for private development purposes, or in URLs to sites that have

no assigned domain names. You can retrieve the value with the location.port
property. If you extract the value from one URL and intend to build another URL

with that component, be sure to include the colon delimiter between the server’s IP

address and port number.

On the
CD-ROM

On the
CD-ROM

windowObject.location.port

(c) ketabton.com: The Digital Library

328 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: location.host property.

protocol
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The first component of any URL is the protocol used for the particular type of

communication. For World Wide Web pages, the Hypertext Transfer Protocol (http)

is the standard. Other common protocols you may see in your browser include

HTTP-Secure (https), File Transfer Protocol (ftp), File (file), and Mail (mailto).

Values for the location.protocol property include not only the name of the pro-

tocol, but also the trailing colon delimiter. Thus, for a typical Web page URL, the

location.protocol property is

http:

Notice that the usual slashes after the protocol in the URL are not part of the

location.protocol value. Of all the location object properties, only the full URL

(location.href) reveals the slash delimiters between the protocol and other com-

ponents.

Example on the CD-ROM

Related Item: location.href property.

search
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Perhaps you’ve noticed the long, cryptic URL that appears in the

Location/Address field of your browser whenever you ask one of the WWW search

services to look up matches for items you enter into the keyword field. The URL

On the
CD-ROM

On the
CD-ROM

windowObject.location.search

(c) ketabton.com: The Digital Library

329Chapter 17 ✦ Location and History Objects

starts the regular way — with protocol, host, and pathname values. But following

the more traditional URL are search commands that are submitted to the search

engine (a CGI program running on the server). You can retrieve or set that trailing

search query by using the location.search property.

Each search engine has its own formula for query submissions based on the

designs of the HTML forms that obtain details from users. These search queries

come in an encoded format that appears in anything but plain language. If you plan

to script a search query, be sure you fully understand the search engine’s format

before you start assembling a string to assign to the location.search property of

a window.

The most common format for search data is a series of name/value pairs. An

equal symbol (=) separates a name and its value. Multiple name/value pairs have

ampersands (&) between them. You should use the escape() function to convert

the data into URL-friendly format, especially when the content includes spaces.

The location.search property also applies to any part of a URL after the file-

name, including parameters being sent to CGI programs on the server.

Passing data among pages via URLs
It is not uncommon to want to preserve some pieces of data that exist in one

page so that a script in another page can pick up where the script processing left

off in the first page. You can achieve persistence across page loads through one of

three techniques: the document.cookie (Chapter 18), variables in framesetting

documents, and the search string of a URL. That’s really what happens when you

visit search and e-commerce sites that return information to your browser. Rather

than store, say, your search criteria on the server, they spit the criteria back to the

browser as part of the URL. The next time you activate that URL, the values are sent

to the server for processing (for example, to send you the next page of search

results for a particular query).

Passing data among pages is not limited to client/server communication. You can

use the search string strictly on the client side to pass data from one page to

another. Unless some CGI process on the server is programmed to do something

with the search string, a Web server regurgitates the search string as part of the

location data that comes back with a page. A script in the newly loaded page can

inspect the search string (via the location.search property) and tear it apart to

gather the data and put it into script variables. The example on the CD-ROM

demonstrates a powerful application of this technique.

Example (with Listings 17-6, 17-7, and 17-8) on the CD-ROM

Related Item: location.href property.

On the
CD-ROM

windowObject.location.search

(c) ketabton.com: The Digital Library

330 Part III ✦ Document Objects Reference

Methods
assign(“URL”)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

In earlier discussions about the location object, I said that you navigate to

another page by assigning a new URL to the location object or location.href
property. The location.assign() method does the same thing. In fact, when you

set the location object to a URL, JavaScript silently applies the assign() method.

No particular penalty or benefit comes from using the assign() method, except per-

haps to make your code more understandable to others. I don’t recall the last time I

used this method in a production document, but you are free to use it if you like.

Related Item: location.href property.

reload(unconditionalGETBoolean)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The location.reload() method may be named inappropriately because it

makes you think of the Reload/Refresh button in the browser toolbar. The

reload() method is actually more powerful than the Reload/Refresh button.

Many form elements retain their screen states when you click Reload/Refresh

(except in IE3). Text and TEXTAREA objects maintain whatever text is inside them;

radio buttons and checkboxes maintain their checked status; SELECT objects

remember which item is selected. About the only items the Reload/Refresh button

destroys are global variable values and any settable, but not visible, property (for

example, the value of a hidden INPUT object). I call this kind of reload a soft reload.

Browsers are frustratingly irregular about the ways they reload a document in

the memory cache. In theory, an application of the location.reload() method

should retrieve the page from the cache if the page is still available there (while the

history.go(0) method should be even gentler, preserving form element settings).

Adding a true parameter to the method is supposed to force an unconditional GET
to the server, ignoring the cached version of the page. Yet when it is crucial for your

application to get a page from the cache (for speed) or from the server (to guaran-

tee a fresh copy), the browser behaves in just the opposite way you want it to

windowObject.location.reload()

(c) ketabton.com: The Digital Library

331Chapter 17 ✦ Location and History Objects

behave. Meta tags supposedly designed to prevent caching of a page rarely, if ever,

work. Some scripters have had success in reloading the page from the server by

setting location.href to the URL of the page, plus a slightly different search

string (for example, based on a string representation of the Date object) so that

there is no match for the URL in the cache.

The bottom line is to be prepared to try different schemes to achieve the effect

you want. And also be prepared to not get the results you need.

Example (with Listing 17-9) on the CD-ROM

Related Item: history.go() method.

replace(“URL”)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

In a complex Web site, you may have pages that you do not want to appear in the

user’s history list. For example, a registration sequence may lead the user to one or

more intermediate HTML documents that won’t make much sense to the user later.

You especially don’t want users to see these pages again if they use the Back button

to return to a previous URL. The location.replace() method navigates to

another page, but it does not let the current page stay in the queue of pages acces-

sible via the Back button.

Although you cannot prevent a document from appearing in the history list while

the user views that page, you can instruct the browser to load another document

into the window and replace the current history entry with the entry for the new

document. This trick does not empty the history list but instead removes the cur-

rent item from the list before the next URL is loaded. Removing the item from the

history list prevents users from seeing the page again by clicking the Back button

later.

Example on the CD-ROM

Related Item: history object.

On the
CD-ROM

On the
CD-ROM

windowObject.location.replace()

(c) ketabton.com: The Digital Library

332 Part III ✦ Document Objects Reference

History Object

Properties Methods Event Handlers

current back() (None)

length forward()

next go()

previous

Syntax
Accessing history object properties or methods:

[window.]history.property | method([parameters])

About this object
As a user surfs the Web, the browser maintains a list of URLs for the most recent

stops. This list is represented in the scriptable object model by the history object.

A script cannot surreptitiously extract actual URLs maintained in that list unless

you use signed scripts (in NN4+ — see Chapter 46) and the user grants permission.

Under unsigned conditions, a script can methodically navigate to each URL in the

history (by relative number or by stepping back one URL at a time), in which case

the user sees the browser navigating on its own as if possessed by a spirit. Good

Netiquette dictates that you do not navigate a user outside of your Web site without

the user’s explicit permission.

One application for the history object and its back() or go() methods is to

provide the equivalent of a Back button in your HTML documents. That button trig-

gers a script that checks for any items in the history list and then goes back one

page. Your document doesn’t have to know anything about the URL from which the

user lands at your page.

The behavior of the Back and Forward buttons in Netscape Navigator underwent

a significant change between versions 2 and 3. If you script these actions and need

to support the older Navigator versions, you should understand how these

browsers handle backward and forward navigation.

In Navigator 2, one history list applies to the entire browser window. You can

load a frameset into the window and navigate the contents of each frame individu-

ally with wild abandon. But if you then click the Back button, Navigator unloads the

frameset and takes you back to the page in history prior to that frameset.

In Navigator 3, each frame (window object) maintains its own history list. Thus, if

you navigate within a frame, a click of the Back button steps you back out frame by

frame. Only after the initial frameset documents appear in the window does the

next Back button click unload the frameset. That behavior persists today in all

other scriptable browsers.

windowObject.history

(c) ketabton.com: The Digital Library

333Chapter 17 ✦ Location and History Objects

JavaScript’s reaction to the change of behavior over the generations is a bit

murky. In Navigator 2, the history.back() and history.forward() methods act

like the toolbar buttons because there is only one kind of history being tracked. In

Navigator 3, however, there is a disconnect between JavaScript behavior and what

the browser does internally with history: JavaScript fails to connect history entries

to a particular frame. Therefore, a reference to history.back() built with a given

frame name does not prevent the method from exceeding the history of that frame.

Instead, the behavior is more like a global back operation, rather than being frame-

specific.

For NN4, there is one more sea change in the relationship between JavaScript

and these history object methods. The behavior of the Back and Forward buttons

is also available through a pair of window methods: window.back() and

window.forward(). The history object methods are not specific to a frame that is

part of the reference. When the parent.frameName.history.back() method

reaches the end of history for that frame, further invocations of that method are

ignored.

IE’s history mechanism is not localized to a particular frame of a frameset.

Instead, the history.back() and history.forward() methods mimic the physi-

cal act of clicking the toolbar buttons. If you want to ensure cross-browser, if not

cross-generational, behavior in a frameset, address references to the

history.back() and history.forward() methods to the parent window.

So much for the history of the history object. As the tale of history object

method evolution indicates, you must use the history object and its methods with

extreme care. Your design must be smart enough to “watch” what the user is doing

with your pages (for example, by checking the current URL before navigating with

these methods). Otherwise, you run the risk of confusing your user by navigating to

unexpected places. Your script can also get into trouble because it cannot detect

where the current document is in the Back–Forward sequence in history.

Properties
current
next
previous

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � �

To know where to go when you click the Back and Forward buttons, the browser

maintains a list of URLs visited. To someone trying to invade your privacy and see

what sites and pages you frequent, this information is valuable. That’s why the

three NN-specific properties that expose the actual URLs in the history list are

restricted to pages with signed scripts and whose visitors have given permission to

read sensitive browser data (see Chapter 46).

windowObject.history.current

(c) ketabton.com: The Digital Library

334 Part III ✦ Document Objects Reference

With signed scripts and permission, you can look through the entire array of his-

tory entries in any frame or window. Because the list is an array, you can extract

individual items by index value. For example, if the array has 10 entries, you can

see the fifth item by using normal array indexing methods:

var fifthEntry = window.history[4]

No property or method exists that directly reveals the index value of the cur-

rently loaded URL, but you can script an educated guess by comparing the values

of the current, next, and previous properties of the history object against the

entire list.

I personally don’t like some unknown entity watching over my shoulder while I’m

on the Net, so I respect that same feeling in others and therefore discourage the use

of these powers unless the user is given adequate warning. The signed script per-

mission dialog box does not offer enough detail about the consequences of reveal-

ing this level of information.

Notice that in the above compatibility chart these properties were available in

some form in NN3. Access to them required a short-lived security scheme called

data tainting. That mechanism was never implemented fully and was replaced by

signed scripts.

Related Item: history.length property.

length
Value: Number Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Use the history.length property to count the items in the history list.

Unfortunately, this nugget of information is not particularly helpful in scripting nav-

igation relative to the current location because your script cannot extract anything

from the place in the history queue where the current document is located. If the

current document is at the top of the list (the most recently loaded), you can calcu-

late relative to that location. But users can use the Go/View menu to jump around

the history list as they like. The position of a listing in the history list does not

change by virtue of navigating back to that document. A history.length of 1,

however, indicates that the current document is the first one the user loaded since

starting the browser software.

Example (with Listing 17-11) on the CD-ROM

Related Items: None.

On the
CD-ROM

windowObject.history.length

(c) ketabton.com: The Digital Library

335Chapter 17 ✦ Location and History Objects

Methods
back()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The behavior of the history.back() method has changed in Netscape’s

browsers between versions 3 and 4. Prior to Navigator 4, the method acted identi-

cally to clicking the Back button. (Even this unscripted behavior changed between

Navigator 2 and 3 to better accommodate frame navigation.) IE3+ follows this

behavior. In Navigator 4, however, the history.back() method is window/frame-

specific. Therefore, if you direct successive back() methods to a frame within a

frameset, the method is ignored once it reaches the first document to be loaded

into that frame. The Back button (and the new window.back() method) unload the

frameset and continue taking you back through the browser’s global history.

If you deliberately lead a user to a dead end in your Web site, you should make

sure that the HTML document provides a way to navigate back to a recognizable

spot. Because you can easily create a new window that has no toolbar or menu bar

(non-Macintosh browsers), you may end up stranding your users because they

have no way of navigating out of a cul-de-sac in such a window. A button in your

document should give the user a way back to the last location.

Unless you need to perform some additional processing prior to navigating to

the previous location, you can simply place this method as the parameter to the

event handler attribute of a button definition. To guarantee compatibility across all

browsers, direct this method at the parent document when used from within a

frameset.

Example (with Listings 17-12 and 17-13) on the CD-ROM

Related Items: history.forward(), history.go() methods.

forward()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Less likely to be scripted than the history.back() action is the method that

performs the opposite action: navigating forward one step in the browser’s history

list. The only time you can confidently use the history.forward() method is to

On the
CD-ROM

windowObject.history.forward()

(c) ketabton.com: The Digital Library

336 Part III ✦ Document Objects Reference

balance the use of the history.back() method in the same script — where your

script closely keeps track of how many steps the script heads in either direction.

Use the history.forward() method with extreme caution, and only after perform-

ing extensive user testing on your Web pages to make sure that you’ve covered all

user possibilities. The same cautions about differences introduced in NN4 for

history.back() apply equally to history.forward(): Forward progress extends

only through the history listing for a given window or frame, not the entire browser

history list. See Listings 17-12 and 17-13 for a demonstration.

Related Items: history.back(), history.go() methods.

go(relativeNumber | “URLOrTitleSubstring”)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Use the history.go() method to script navigation within the history list cur-

rently stored in the browser. If you elect to use a URL as a parameter, however, that

precise URL must already exist in the history listing. Therefore, do not regard this

method as an alternate to setting the window.location object to a brand-new URL.

For navigating n steps in either direction along the history list, use the

relativeNumber parameter of the history.go() method. This number is an inte-

ger value that indicates which item in the list to use, relative to the current loca-

tion. For example, if the current URL is at the top of the list (that is, the Forward

button in the toolbar is dimmed), then you need to use the following method to

jump to the URL two items backward in the list:

history.go(-2)

In other words, the current URL is the equivalent of history.go(0) (a method

that reloads the window). A positive integer indicates a jump that many items for-

ward in the history list. Thus, history.go(-1) is the same as history.back(),

whereas history.go(1) is the same as history.forward().

Alternatively, you can specify one of the URLs or document titles stored in the

browser’s history list (titles appear in the Go/View menu). The method is a bit

lenient with the string you specify as a parameter. It compares the string against all

listings. The first item in the history list to contain the parameter string is regarded

as the match. But, again, no navigation takes place if the item you specify does not

appear in the history.

Like most other history methods, your script finds it difficult to manage the his-

tory list or the current URL’s spot in the queue. That fact makes it even more diffi-

cult for your script to intelligently determine how far to navigate in either direction

or to which specific URL or title matches it should jump. Use this method only for

situations in which your Web pages are in strict control of the user’s activity (or for

designing scripts for yourself that automatically crawl around sites according to a

windowObject.history.go()

(c) ketabton.com: The Digital Library

337Chapter 17 ✦ Location and History Objects

fixed regimen). Once you give the user control over navigation, you have no guaran-

tee that the history list will be what you expect, and any scripts you write that

depend on a history object will likely break.

In practice, this method mostly performs a soft reload of the current window

using the 0 parameter.

If you are developing a page for all scriptable browsers, be aware that Internet
Explorer’s go() method behaves a little differently than Netscape’s. First, a bug in
Internet Explorer 3 causes all invocations of history.go() with a non-zero value
to behave as if the parameter were -1. Second, the string version does not work at
all in IE3 (it generates an error alert); for IE4+, the matching string must be part of
the URL and not part of the document title, as in Navigator. Finally, the reloading
of a page with history.go(0) often returns to the server to reload the page
rather than reloading from the cache.

Example (with Listing 17-14) on the CD-ROM

Related Items: history.back(), history.forward(), location.reload()
methods.

✦ ✦ ✦

On the
CD-ROM

Tip

windowObject.history.go()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The Document
and Body
Objects

User interaction is a vital aspect of client-side JavaScript

scripting, and most of the communication between

script and user takes place by way of the document object

and its components. Understanding the scope of the docu-
ment object within each of the object models you support is

key to implementing successful cross-browser applications.

Review the document object’s place within the original

object hierarchy. Figure 18-1 clearly shows that the document
object is a pivotal point for a large percentage of JavaScript

objects.

Figure 18-1: The basic document object model hierarchy

window
frame self top parent

history document location

text radio button select

textarea checkbox reset option

link form anchor

password submit

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing arrays of
objects contained by
the document object

Writing new
document content to
a window or frame

Using the BODY
element for IE
window
measurements

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

340 Part III ✦ Document Objects Reference

In fact, the document object and all that it contains is so big that I have divided

its discussion into many chapters, each focusing on related object groups. This

chapter looks at the document object and body object (which have conceptual

relationships), while each of the succeeding chapters in this part of the book

details objects contained by the document object.

I must stress at the outset that many newcomers to JavaScript have the expecta-

tion that they can, on the fly, modify sections of a loaded page’s content with ease:

replace some text here, change a table cell there. However, understanding that

these capabilities — an important part of what is called Dynamic HTML — are avail-

able only in more recent browsers, specifically IE4+ and NN6+, is very important.

Not only do these browsers expose every HTML element to script languages, but

they also automatically reflow the page when the size of content changes under

script control. Pages on all previous browsers are limited to a small set of modifi-

able objects, such as images and form elements. (NN4 also has a layer object that is

useful for DHTML, but that object is unique to NN4 only.)

If your application requires compatibility with all scriptable browsers, you will

be limited to changing only a handful of other invisible properties after the page

loads. If these compatible pages need to modify their contents based on user input

or timed updates, consider designing your pages so that scripts write the contents;

then let the scripts rewrite the entire page with your new settings.

Document Object

Properties Methods Event Handlers

activeElement attachEvent()† onActivate†

alinkColor captureEvents() onBeforeCut†

all† clear() onBeforeDeactivate†

anchors clearAttributes()† onBeforeEditFocus†

applets close() onBeforePaste†

attributes† createAttribute() onClick†

bgColor createElement() onContextMenu†

body createEventObject() onControlSelect†

charset createStyleSheet() onCut†

characterSet createTextNode() onDblClick†

childNodes† detachEvent()† onDrag†

cookie elementFromPoint() onDragEnd†

defaultCharset execCommand() onDragEnter†

designMode focus()† onDragLeave†

doctype getElementById() onDragOver†

document

(c) ketabton.com: The Digital Library

341Chapter 18 ✦ The Document and Body Objects

Properties Methods Event Handlers

documentElement getElementsByName() onDragStart†

domain getElementsByTagName()† onDrop†

embeds getSelection() onHelp†

expando handleEvent() onKeyDown†

fgColor hasFocus()† onKeyPress†

fileCreatedDate mergeAttributes()† onKeyUp†

fileModifiedDate open() onMouseDown†

fileSize queryCommandEnabled() onMouseMove†

firstChild† queryCommandIndterm() onMouseOut†

forms queryCommandState() onMouseOver†

frames queryCommandSupported() onMouseUp†

height queryCommandText() onPaste†

ids queryCommandValue() onPropertyChange†

images recalc() onReadyStateChange†

implementation releaseCapture()† onResizeEnd†

lastChild† releaseEvents() onResizeStart†

lastModified routeEvent() onSelectionChange

layers setActive()† onStop

linkColor write()

links writeln()

location

media

mimeType

namespaces

namespaceURI

nextSibling†

nodeName†

nodeType†

ownerDocument†

parentNode†

Continued

document

(c) ketabton.com: The Digital Library

342 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

parentWindow

plugins

previousSibling†

protocol

readyState†

referrer

scripts

security

selection

styleSheets

tags

title

uniqueID†

URL

URLUnencoded

VlinkColor

width

†See Chapter 15.

Syntax
Accessing document object properties or methods:

[window.]document.property | method([parameters])

About this object
A document object encompasses the totality of what exists inside the content

region of a browser window or window frame (excluding toolbars, status lines, and

so on). The document is a combination of the content and interface elements that

make the Web page worth visiting. In more recent browsers, which treat HTML ele-

ments as nodes of a hierarchical tree, the document object is the root node — that

from which all other nodes grow.

Because the document object isn’t explicitly represented in an HTML document

by tags or any other notation, the original designers of JavaScript and object mod-

els decided to make the document object the portal to many settings that were rep-

resented in HTML as belonging to the BODY element. That element’s tag contains

attributes for document-wide attributes, such as background color (BGCOLOR) and

link colors in various states (ALINK, LINK, and VLINK). The BODY element also

document

(c) ketabton.com: The Digital Library

343Chapter 18 ✦ The Document and Body Objects

served as an HTML container for forms, links, and anchors. The document object,

therefore, assumed a majority of the role of the BODY element. But even then, the

document object became the most convenient place to bind some properties that

extend beyond the BODY element, such as the TITLE element and the URL of the

link that referred the user to the page. When viewed within the context of the HTML

source code, the original document object is somewhat schizophrenic. Even so, the

document object has worked well as the basis for references to original object

model objects, such as forms, images, and applets.

This, of course, was before every HTML element, including the BODY element,

was exposed as an object via modern object models. Amazingly, even with the IE4+

object model and W3C DOM — both of which treat the BODY element as an object

separate from the document object — script compatibility with the original object

model is quite easily accomplished. The document object has assumed a new

schizophrenia, splitting its personality between the original object model and the

one that places the document object at the root of the hierarchy, quite separate

from the BODY element object it contains. The object knows which “face” to put on

based on the rest of the script syntax that follows it. This means that quite often

there are multiple ways to achieve the same reference. For example, you can use

the following statement in all scriptable browsers to get the number of form objects

in a document:

document.forms.length

In IE4+, you can also use

document.tags[“FORM”].length

And in the W3C DOM as implemented in IE5+ and NN6, you can use

document.getElementsByTagName(“FORM”).length

The more modern versions provide generic ways of accessing elements (the

tags array in IE4+ and the getElementsByTagName() method in the W3C DOM) to

meet the requirements of object models that expose every HTML (and XML) ele-

ment as an object.

Promoting the BODY element to the ranks of exposed objects presented its own

challenges to the new object model designers. The BODY element is the true

“owner” of some properties that the original document object had to take on by

default. Most properties that had belonged to the original document object

were renamed in their transfer to the BODY element. For example, the original

document.alinkColor property is the body.aLink property in the new model.

But the bgColor property has not been renamed. For the sake of code compatibil-

ity, the current versions of browsers recognize both properties, even though the

W3C DOM (in an effort to push the development world ahead) has removed the old

versions as properties of what it conceives as the document object.

As confusing as all of this may sound on the surface, understanding when to

refer to the original document object and when to use the new syntax doesn’t take

long. It all depends on what you hang off the right edge of the reference. Original

properties and methods are recognized as using the original document object; new

properties and methods summon the powers of the new document object. It’s all

quite automatic. Thankfully.

document

(c) ketabton.com: The Digital Library

344 Part III ✦ Document Objects Reference

Properties
activeElement

Value: Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

In IE4+, a script can examine the document.activeElement property to see

which element currently has focus. The value returned is an element object refer-

ence. You can use any of the properties and methods listed in Chapter 15 to find

out more about the object. Be aware that not all elements in all operating systems

receive focus. For example, buttons in IE4 for the Macintosh do not receive focus.

Although the element used to generate a mouse or keyboard event will most

likely have focus (except for IE4/Mac buttons), don’t rely on the activeElement
property to find out which element generated an event. The IE event.srcElement
property is far more reliable.

Example on the CD

Related Items: event.srcElement property.

alinkColor
bgColor
fgColor
linkColor
vlinkColor

Value: Hexadecimal triplet or color name string Mostly Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

These five properties are the script equivalent of the <BODY> tag attributes of the

same name (although the property names are case-sensitive). All five settings can

be read via scripting, but the ability to change some or all of these properties varies

widely with browser and client platform. Table 18-1 shows a summary of which

browsers and platforms can set which of the color properties.

On the
CD-ROM

document.alinkColor

(c) ketabton.com: The Digital Library

345Chapter 18 ✦ The Document and Body Objects

Table 18-1 Setting Document Colors on the Fly
(Browser Versions)

Navigator Internet Explorer

Color Property Windows Mac UNIX Windows Mac UNIX

bgColor All 4+ 4+ All All 4+

All others 6 6 6 All All 4+

If you experiment with setting document.bgColor on Mac or UNIX versions of

Navigator 2 and 3, you may be fooled into thinking that the property is being set

correctly. While the property value may stick, these platforms do not refresh their

windows properly: If you change the color after all content is rendered, the swath of

new color obscures the content until a reload of the window. The safest, backward-

compatible scripted way of setting document color properties is to compose the

content of a frame or window by script and set the <BODY> tag color attributes

dynamically when document.write() puts the content into the window.

Values for all color properties can be either the common HTML hexadecimal

triplet value (for example, “#00FF00”) or any of the Netscape color names. Internet

Explorer recognizes these plain language color names, as well. But also be aware

that some colors work only when the user has the monitor set to 16- or 24-bit color

settings.

If you are scripting exclusively for IE4+ and NN6, you should use the document.
body object to access these properties.

Example on the CD with Listing 18-1

Related Items: body.aLink, body.bgColor, body.link, body.text, body.vLink
properties.

anchors
Value: Array of anchor objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Anchor objects (described in Chapter 21) are points in an HTML document

marked with tags. Anchor objects are referenced in URLs by a hash

value between the page URL and anchor name. Like other object properties that

contain a list of nested objects, the document.anchors property (notice the plural)

On the
CD-ROM

document.anchors

(c) ketabton.com: The Digital Library

346 Part III ✦ Document Objects Reference

delivers an indexed array of anchors in a document. Use the array references to

pinpoint a specific anchor for retrieving any anchor property.

Anchor arrays begin their index counts with 0: The first anchor in a document,

then, has the reference document.anchors[0]. And, as is true with any built-in

array object, you can find out how many entries the array has by checking the

length property. For example

var anchorCount = document.anchors.length

The document.anchors property is read-only. To script navigation to a particu-

lar anchor, assign a value to the window.location or window.location.hash
object, as described in Chapter 17’s location object discussion.

Example on the CD with Listing 18-2

Related Items: anchor, location objects; document.links property.

applets
Value: Array of applet objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The applets property refers to Java applets defined in a document by the

<APPLET> tag. An applet is not officially an object in the document until the applet

loads completely.

Most of the work you do with Java applets from JavaScript takes place via the

methods and variables defined inside the applet. Although you can reference an

applet according to its indexed array position within the applets array, you will

more likely use the applet object’s name in the reference to avoid any confusion.

Note that applets are not accessible to JavaScript in IE/Mac. For more details, see

the discussion of the applet object in Chapter 32 and the LiveConnect discussion in

Chapter 44.

Example on the CD

Related Items: applet object.

bgColor
See alinkColor

On the
CD-ROM

On the
CD-ROM

document.bgColor

(c) ketabton.com: The Digital Library

347Chapter 18 ✦ The Document and Body Objects

body
Value: BODY Element Object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The document.body property is a shortcut reference to the BODY element

object in modern object models. As you can see in the discussion of the BODY ele-

ment object later in this chapter, that object has many key properties that govern

the look of the entire page. Because the document object is the root of all refer-

ences within any window or frame, the document.body property is easier to use to

get to the BODY properties, rather than longer references normally used to access

HTML element objects in both the IE4+ and W3C object models.

Example on the CD

Related Items: BODY element object.

charset
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The charset property reveals the character set used by the browser to render

the current document (the NN6 version of this property is called characterSet).

You can find possible values for this property at

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Each browser and operating system has its own default character set. Values

may also be set via a <META> tag.

Example on the CD

Related Items: characterSet, defaultCharset properties.

On the
CD-ROM

On the
CD-ROM

document.charset

(c) ketabton.com: The Digital Library

348 Part III ✦ Document Objects Reference

characterSet
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The characterSet property reveals the character set used by the browser to

render the current document (the IE4+ version of this property is called charset).

You can find possible values for this property at

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Each browser and operating system has its own default character set. Values

may also be set via a <META> tag.

Example on the CD

Related Items: charset property.

cookie
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The cookie mechanism in a Web browser lets you store small pieces of informa-

tion on the client computer in a reasonably secure manner. In other words, when

you need some tidbit of information to persist at the client level while either load-

ing diverse HTML documents or moving from one session to another, the cookie

mechanism saves the day. You can find Netscape’s technical documentation (much

of which is written from the perspective of a server writing to a cookie) on the Web

at http://www.netscape.com/newsref/std/cookie_spec.html.

The cookie is commonly used as a means to store the username and password

you enter into a password-protected Web site. The first time you enter this informa-

tion into a CGI-governed form, the CGI program has Navigator write the information

back to a cookie on your hard disk (usually after encrypting the password). Rather

than bothering you to enter the username and password the next time you access

the site, the server searches the cookie data stored for that particular server and

extracts the username and password for automatic validation processing behind

the scenes.

On the
CD-ROM

document.cookie

(c) ketabton.com: The Digital Library

349Chapter 18 ✦ The Document and Body Objects

Other applications of the cookie include storing user preferences and informa-

tion about the user’s previous visit to the site. Preferences may include font styles

or sizes and whether the user prefers viewing content inside a frameset or not. As

shown in Chapter 54, a time stamp of the previous visit can allow a coded HTML

page to display highlighted images next to content that has changed since the

user’s last visit, even if you have updated the page several times in the interim.

Rather than hard-wiring “New” flags for your last visit, the scripts highlight what’s

new for the visitor.

I cover the technical differences between Navigator and Internet Explorer cookies
later in this section. But for IE3, be aware that the browser neither reads nor writes
cookies when the document accessing the cookie is on the local hard disk. IE4+
works with cookies generated by local files.

The cookie file
Allowing some foreign CGI program to read from and write to your hard disk may

give you pause, but browser cookie mechanisms don’t just open up your drive’s

directory for the world to see (or corrupt). Instead, the cookie mechanism provides

access to just one special text file (Navigator) or type of text file (Internet Explorer)

located in a platform-specific spot on your drive.

In Windows versions of Navigator 4, for example, the cookie file is named

cookies.txt and is located in a directory reserved for a user’s Navigator prefer-

ences; Mac users can find the MagicCookie file inside the Netscape folder, which is

located within the System Folder:Preferences folder. Internet Explorer for Windows

uses a different filing system: all cookies for each domain saved in a domain-specific

file inside a Cookies directory within system directories. File names include the

user name and domain of the server that wrote the cookie.

A cookie file is a text file (but because NN’s Macintosh MagicCookie file’s type is

not TEXT, Mac users can open it only via applications capable of opening any kind of

file). If curiosity drives you to open a cookie file, I recommend you do so only with a

copy saved in another directory or folder. Any alteration to the existing file can mess

up whatever valuable cookies are stored there for sites you regularly visit. The data

format for NN and IE differs, in line with the different methodologies used for filing

cookies. Inside the Netscape file (after a few comment lines warning you not to man-

ually alter the file) are lines of tab-delimited text. Each return-delimited line contains

one cookie’s information. The cookie file is just like a text listing of a database. In

each of the IE cookie files, the same data points are stored for a cookie as for

Navigator, but the items are in a return-delimited list. The structure of these files is

of no importance to scripting cookies, because both browsers utilize the same syn-

tax for reading and writing cookies through the document.cookie property.

As you experiment with browser’s cookies, you will be tempted to look into the
cookie file after a script writes some data to the cookie. The cookie file will not
contain the newly written data, because cookies are transferred to disk only when
the user quits the browser; conversely, the cookie file is read into the browser’s
memory when it is launched. While you read, write, and delete cookies during a
browser session, all activity is performed in memory (to speed up the process) to
be saved later.

Note

Note

document.cookie

(c) ketabton.com: The Digital Library

350 Part III ✦ Document Objects Reference

A cookie record
Among the “fields” of each cookie record are the following (not necessarily in

this order):

✦ Domain of the server that created the cookie

✦ Information on whether you need a secure HTTP connection to access the

cookie

✦ Pathname of URL(s) capable of accessing the cookie

✦ Expiration date of the cookie

✦ Name of the cookie entry

✦ String data associated with the cookie entry

Notice that cookies are domain-specific. In other words, if one domain creates a

cookie, another domain cannot access it through the browser’s cookie mechanism

behind your back. That reason is why it’s generally safe to store what I call throw-
away passwords (the username/password pairs required to access some free

registration-required sites) in cookies. Moreover, sites that store passwords in a

cookie usually do so as encrypted strings, making it more difficult for someone to

hijack the cookie file from your unattended PC and figure out what your personal

password scheme may be.

Cookies also have expiration dates. Because some browsers may allow no more

than a fixed number of cookies (300 in NN), the cookie file can get pretty full over

the years. Therefore, if a cookie needs to persist past the current browser session,

it should have an expiration date established by the cookie writer. Browsers auto-

matically clean out any expired cookies.

Not all cookies have to last beyond the current session, however. In fact, a sce-

nario in which you use cookies temporarily while working your way through a Web

site is quite typical. Many shopping sites employ one or more temporary cookie

records to behave as the shopping cart for recording items you intend to purchase.

These items are copied to the order form at checkout time. But after you submit the

order form to the server, that client-side data has no particular value. As it turns

out, if your script does not specify an expiration date, the browser keeps the cookie

fresh in memory without writing it to the cookie file. When you quit the browser,

that cookie data disappears as expected.

JavaScript access
Scripted access of cookies from JavaScript is limited to setting the cookie (with a

number of optional parameters) and getting the cookie data (but with none of the

parameters).

The original object model defines cookies as properties of documents, but this

description is somewhat misleading. If you use the default path to set a cookie (that

is, the current directory of the document whose script sets the cookie in the first

place), then all documents in that same server directory have read and write

access to the cookie. A benefit of this arrangement is that if you have a scripted

application that contains multiple documents, all documents served from the same

directory can share the cookie data. NN and IE, however, impose a limit of 20

document.cookie

(c) ketabton.com: The Digital Library

351Chapter 18 ✦ The Document and Body Objects

named cookie entries for any domain; IE3 imposes an even more restrictive limit of

one cookie (that is, one name/value pair) per domain. If your cookie requirements

are extensive, then you need to fashion ways of concatenating cookie data (I do this

in the Decision Helper application in Chapter 55).

Saving cookies
To write cookie data to the cookie file, you use a simple JavaScript assignment

operator with the document.cookie property. But the formatting of the data is

crucial to achieving success. Here is the syntax for assigning a value to a cookie

(optional items are in brackets):

document.cookie = “cookieName=cookieData
[; expires=timeInGMTString]
[; path=pathName]
[; domain=domainName]
[; secure]”

Examine each of the properties individually.

Name/Data
Each cookie must have a name and a string value (even if that value is an empty

string). Such name/value pairs are fairly common in HTML, but they look odd in an

assignment statement. For example, if you want to save the string “Fred” to a cookie

named “userName,” the JavaScript statement is
document.cookie = “userName=Fred”

If the browser sees no existing cookie in the current domain with this name, it

automatically creates the cookie entry for you; if the named cookie already exists,

the browser replaces the old data with the new data. Retrieving document.cookie
at this point yields the following string:

userName=Fred

You can omit all the other cookie-setting properties, in which case the browser

uses default values, as explained in a following section. For temporary cookies

(those that don’t have to persist beyond the current browser session), the

name/value pair is usually all you need.

The entire name/value pair must be a single string with no semicolons, commas,

or character spaces. To take care of spaces between words, preprocess the value

with the JavaScript escape() function, which URL-encodes the spaces as %20 (and

then be sure to unescape() the value to restore the human-readable spaces when

you retrieve the cookie later).

You cannot save a JavaScript array or object to a cookie. But with the help of the

Array.join() method, you can convert an array to a string; use String.split()
to re-create the array after reading the cookie at a later time. These two methods

are available in NN3+ and IE4+.

Expires
Expiration dates, when supplied, must be passed as Greenwich Mean Time

(GMT) strings (see Chapter 36 about time data). To calculate an expiration date

based on today’s date, use the JavaScript Date object as follows:

document.cookie

(c) ketabton.com: The Digital Library

352 Part III ✦ Document Objects Reference

var exp = new Date()
var oneYearFromNow = exp.getTime() + (365 * 24 * 60 * 60 * 1000)
exp.setTime(oneYearFromNow)

Then convert the date to the accepted GMT string format:

document.cookie = “userName=Fred; expires=” + exp.toGMTString()

In the cookie file, the expiration date and time is stored as a numeric value (sec-

onds) but, to set it, you need to supply the time in GMT format. You can delete a

cookie before it expires by setting the named cookie’s expiration date to a time and

date earlier than the current time and date. The safest expiration parameter is

expires=Thu, 01-Jan-70 00:00:01 GMT

Omitting the expiration date signals the browser that this cookie is temporary.

The browser never writes it to the cookie file and forgets it the next time you quit

the browser.

Path
For client-side cookies, the default path setting (the current directory) is usually

the best choice. You can, of course, create a duplicate copy of a cookie with a sepa-

rate path (and domain) so that the same data is available to a document located in

another area of your site (or the Web).

Domain
To help synchronize cookie data with a particular document (or group of docu-

ments), the browser matches the domain of the current document with the domain

values of cookie entries in the cookie file. Therefore, if you were to display a list of

all cookie data contained in a document.cookie property, you would get back all

the name/value cookie pairs from the cookie file whose domain parameter matches

that of the current document.

Unless you expect the document to be replicated in another server within your

domain, you can usually omit the domain parameter when saving a cookie. Default

behavior automatically supplies the domain of the current document to the cookie

file entry. Be aware that a domain setting must have at least two periods, such as

.mcom.com

.hotwired.com

Or, you can write an entire URL to the domain, including the http:// protocol.

SECURE
If you omit the SECURE parameter when saving a cookie, you imply that the

cookie data is accessible to any document or CGI program from your site that

meets the other domain- and path-matching properties. For client-side scripting of

cookies, you should omit this parameter when saving a cookie.

Retrieving cookie data
Cookie data retrieved via JavaScript is contained in one string, including the

whole name-data pair. Even though the cookie file stores other parameters for each

cookie, you can retrieve only the name-data pairs via JavaScript. Moreover, when

two or more (up to a maximum of 20) cookies meet the current domain criteria,

document.cookie

(c) ketabton.com: The Digital Library

353Chapter 18 ✦ The Document and Body Objects

these cookies are also lumped into that string, delimited by a semicolon and space.

For example, a document.cookie string may look like this:

userName=Fred; password=NikL2sPacU

In other words, you cannot treat named cookies as objects. Instead, you must

parse the entire cookie string, extracting the data from the desired name-data pair.

When you know that you’re dealing with only one cookie (and that no more will

ever be added to the domain), you can customize the extraction based on known

data, such as the cookie name. For example, with a cookie name that is seven

characters long, you can extract the data with a statement such as this:

var data = unescape(document.cookie.substring(7,document.cookie.length))

The first parameter of the substring() method includes the equals sign to

separate the name from the data.

A better approach is to create a general-purpose function that can work with

single- or multiple-entry cookies. Here is one I use in some of my pages:

function getCookieData(labelName) {
var labelLen = labelName.length
// read cookie property only once for speed
var cookieData = document.cookie
var cLen = cookieData.length
var i = 0
var cEnd
while (i < cLen) {

var j = i + labelLen
if (cookieData.substring(i,j) == labelName) {

cEnd = cookieData.indexOf(“;”,j)
if (cEnd == -1) {

cEnd = cookieData.length
}
return unescape(cookieData.substring(j+1, cEnd))

}
i++

}
return “”

}

Calls to this function pass the label name of the desired cookie as a parameter.

The function parses the entire cookie string, chipping away any mismatched entries

(through the semicolons) until it finds the cookie name.

If all of this cookie code still makes your head hurt, you can turn to a set of func-

tions devised by experienced JavaScripter and Web site designer Bill Dortch of

hIdaho Design. His cookie functions provide generic access to cookies that you can

use in all of your cookie-related pages. Listing 18-3 shows Bill’s cookie functions,

which include a variety of safety nets for date calculation bugs that appeared in

some versions of Netscape Navigator 2. Don’t be put off by the length of the listing:

Most of the lines are comments. Updates to Bill’s functions can be found at

http://www.hidaho.com/cookies/cookie.txt.

document.cookie

(c) ketabton.com: The Digital Library

354 Part III ✦ Document Objects Reference

Listing 18-3: Bill Dortch’s Cookie Functions

<html>
<head>
<title>Cookie Functions</title>
</head>
<body>
<script language=”javascript”>
<!-- begin script
//
// Cookie Functions -- “Night of the Living Cookie” Version (25-Jul-96)
//
// Written by: Bill Dortch, hIdaho Design <bdortch@hidaho.com>
// The following functions are released to the public domain.
//
// This version takes a more aggressive approach to deleting
// cookies. Previous versions set the expiration date to one
// millisecond prior to the current time; however, this method
// did not work in Netscape 2.02 (though it does in earlier and
// later versions), resulting in “zombie” cookies that would not
// die. DeleteCookie now sets the expiration date to the earliest
// usable date (one second into 1970), and sets the cookie’s value
// to null for good measure.
//
// Also, this version adds optional path and domain parameters to
// the DeleteCookie function. If you specify a path and/or domain
// when creating (setting) a cookie**, you must specify the same
// path/domain when deleting it, or deletion will not occur.
//
// The FixCookieDate function must now be called explicitly to
// correct for the 2.x Mac date bug. This function should be
// called *once* after a Date object is created and before it
// is passed (as an expiration date) to SetCookie. Because the
// Mac date bug affects all dates, not just those passed to
// SetCookie, you might want to make it a habit to call
// FixCookieDate any time you create a new Date object:
//
// var theDate = new Date();
// FixCookieDate (theDate);
//
// Calling FixCookieDate has no effect on platforms other than
// the Mac, so there is no need to determine the user’s platform
// prior to calling it.
//
// This version also incorporates several minor coding improvements.
//
// **Note that it is possible to set multiple cookies with the same
// name but different (nested) paths. For example:
//
// SetCookie (“color”,”red”,null,”/outer”);
// SetCookie (“color”,”blue”,null,”/outer/inner”);

document.cookie

(c) ketabton.com: The Digital Library

355Chapter 18 ✦ The Document and Body Objects

//
// However, GetCookie cannot distinguish between these and will return
// the first cookie that matches a given name. It is therefore
// recommended that you *not* use the same name for cookies with
// different paths. (Bear in mind that there is *always* a path
// associated with a cookie; if you don’t explicitly specify one,
// the path of the setting document is used.)
//
// Revision History:
//
// “Toss Your Cookies” Version (22-Mar-96)
// - Added FixCookieDate() function to correct for Mac date bug
//
// “Second Helping” Version (21-Jan-96)
// - Added path, domain and secure parameters to SetCookie
// - Replaced home-rolled encode/decode functions with Netscape’s
// new (then) escape and unescape functions
//
// “Free Cookies” Version (December 95)
//
//
// For information on the significance of cookie parameters,
// and on cookies in general, please refer to the official cookie
// spec, at:
//
// http://www.netscape.com/newsref/std/cookie_spec.html
//
//**
//
// “Internal” function to return the decoded value of a cookie
//
function getCookieVal (offset) {
var endstr = document.cookie.indexOf (“;”, offset);
if (endstr == -1)
endstr = document.cookie.length;

return unescape(document.cookie.substring(offset, endstr));
}
//
// Function to correct for 2.x Mac date bug. Call this function to
// fix a date object prior to passing it to SetCookie.
// IMPORTANT: This function should only be called *once* for
// any given date object! See example at the end of this document.
//
function FixCookieDate (date) {
var base = new Date(0);
var skew = base.getTime(); // dawn of (Unix) time - should be 0
if (skew > 0) // Except on the Mac - ahead of its time
date.setTime (date.getTime() - skew);

}
//
// Function to return the value of the cookie specified by “name”.
// name - String object containing the cookie name.

Continued

document.cookie

(c) ketabton.com: The Digital Library

356 Part III ✦ Document Objects Reference

Listing 18-3 (continued)

// returns - String object containing the cookie value, or null if
// the cookie does not exist.
//
function GetCookie (name) {
var arg = name + “=”;
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {
var j = i + alen;
if (document.cookie.substring(i, j) == arg)
return getCookieVal (j);

i = document.cookie.indexOf(“ “, i) + 1;
if (i == 0) break;

}
return null;
}
//
// Function to create or update a cookie.
// name - String object containing the cookie name.
// value - String object containing the cookie value. May contain
// any valid string characters.
// [expires] - Date object containing the expiration data of the cookie. If
// omitted or null, expires the cookie at the end of the current session.
// [path] - String object indicating the path for which the cookie is valid.
// If omitted or null, uses the path of the calling document.
// [domain] - String object indicating the domain for which the cookie is
// valid. If omitted or null, uses the domain of the calling document.
// [secure] - Boolean (true/false) value indicating whether cookie
transmission
// requires a secure channel (HTTPS).
//
// The first two parameters are required. The others, if supplied, must
// be passed in the order listed above. To omit an unused optional field,
// use null as a place holder. For example, to call SetCookie using name,
// value and path, you would code:
//
// SetCookie (“myCookieName”, “myCookieValue”, null, “/”);
//
// Note that trailing omitted parameters do not require a placeholder.
//
// To set a secure cookie for path “/myPath”, that expires after the
// current session, you might code:
//
// SetCookie (myCookieVar, cookieValueVar, null, “/myPath”, null, true);
//
function SetCookie (name,value,expires,path,domain,secure) {
document.cookie = name + “=” + escape (value) +
((expires) ? “; expires=” + expires.toGMTString() : “”) +
((path) ? “; path=” + path : “”) +

document.cookie

(c) ketabton.com: The Digital Library

357Chapter 18 ✦ The Document and Body Objects

((domain) ? “; domain=” + domain : “”) +
((secure) ? “; secure” : “”);

}

// Function to delete a cookie. (Sets expiration date to start of epoch)
// name - String object containing the cookie name
// path - String object containing the path of the cookie to delete. This
MUST
// be the same as the path used to create the cookie, or
null/omitted if
// no path was specified when creating the cookie.
// domain - String object containing the domain of the cookie to delete.
This MUST
// be the same as the domain used to create the cookie, or
null/omitted if
// no domain was specified when creating the cookie.
//
function DeleteCookie (name,path,domain) {
if (GetCookie(name)) {
document.cookie = name + “=” +
((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”) +
“; expires=Thu, 01-Jan-70 00:00:01 GMT”;

}
}

//
// Examples
//
var expdate = new Date ();
FixCookieDate (expdate); // Correct for Mac date bug - call only once for given
Date object!
expdate.setTime (expdate.getTime() + (24 * 60 * 60 * 1000)); // 24 hrs from now
SetCookie (“ccpath”, “http://www.hidaho.com/colorcenter/”, expdate);
SetCookie (“ccname”, “hIdaho Design ColorCenter”, expdate);
SetCookie (“tempvar”, “This is a temporary cookie.”);
SetCookie (“ubiquitous”, “This cookie will work anywhere in this
domain”,null,”/”);
SetCookie (“paranoid”, “This cookie requires secure
communications”,expdate,”/”,null,true);
SetCookie (“goner”, “This cookie must die!”);
document.write (document.cookie + “
”);
DeleteCookie (“goner”);
document.write (document.cookie + “
”);
document.write (“ccpath = “ + GetCookie(“ccpath”) + “
”);
document.write (“ccname = “ + GetCookie(“ccname”) + “
”);
document.write (“tempvar = “ + GetCookie(“tempvar”) + “
”);
// end script -->
</script>
</body>
</html>

document.cookie

(c) ketabton.com: The Digital Library

358 Part III ✦ Document Objects Reference

Extra batches
You may design a site that needs more than 20 cookies for a given domain. For

example, in a shopping site, you never know how many items a customer may load

into the shopping cart cookie.

Because each named cookie stores plain text, you can create your own text-

based data structures to accommodate multiple pieces of information per cookie.

(But also watch out for a practical limit of 2,000 characters per name/value pair

within the 4,000 character maximum for any domain’s combined cookies.) The trick

is determining a delimiter character that won’t be used by any of the data in the

cookie. In Decision Helper (in Chapter 55), for example, I use a period to separate

multiple integers stored in a cookie.

With the delimiter character established, you must then write functions that con-

catenate these “subcookies” into single cookie strings and extract them on the

other side. It’s a bit more work, but well worth the effort to have the power of

persistent data on the client.

Example on the CD

Related Items: String object methods (Chapter 34).

defaultCharset
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The defaultCharset property reveals the character set used by the browser to

render the current document. You can find possible values for this property at

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Each browser and operating system has its own default character set. Values

may also be set via a <META> tag. The difference between the defaultCharset and

charset properties is not clear, especially because both are read/write (although

modifying the defaultCharset property has no visual effect on the page).

However, if your scripts temporarily modify the charset property, you can use the

defaultCharset property to return to the original character set:

document.charset = document.defaultCharset

Example on the CD

Related Items: charset, characterSet properties.

On the
CD-ROM

On the
CD-ROM

document.defaultCharset

(c) ketabton.com: The Digital Library

359Chapter 18 ✦ The Document and Body Objects

designMode
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The designMode property is applicable only when IE5 technology is being used

as a component in another application. More information can be found at http://
msdn.microsoft.com/workshop/browser/default.asp. The property controls

whether the browser module is being used for HTML editing. Modifying the prop-

erty from within a typical HTML page in the IE5 browser has no effect.

doctype
Value: DocumentType object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The doctype property comes from the W3C Core DOM and returns a

DocumentType object — a representation of the DTD information for the document.

In IE5.5 and NN6, the DocumentType object (even if one is not explicitly defined in

the source code) is the first child node of the root document node (and is thus a

sibling to the HTML element).

As of NN6, only a couple of properties of this still-evolving W3C DOM specifica-

tion are implemented. Table 18-2 shows the typical DocumentType object property

list and values for a generic HTML page. Future DOM specifications will allow these

properties to be read/write.

Table 18-2 DocumentType Object in NN6

Property Value

entities null

internalSubset (empty)

name HTML

notations null

publicId -//W3C//DTD HTML 3.2 Final//EN

systemId (empty)

Related Items: Node object (Chapter 14).

document.doctype

(c) ketabton.com: The Digital Library

360 Part III ✦ Document Objects Reference

documentElement
Value: HTML or XML element object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The documentElement property returns a reference to the HTML (or XML) ele-

ment object that contains all of the content of the current document. The naming of

this property is a bit misleading, because the root document node is not an ele-

ment, but its only child node is the HTML (or XML) element for the page. At best,

you can think of this property as providing scripts with an “element face” to the

document object and document node associated with the page currently loaded in

the browser.

Example on the CD

Related Items: ownerDocument property (Chapter 15).

domain
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Security restrictions can get in the way of sites that have more than one server

at their domain. Because some objects, especially the location object, prevent

access to properties of other servers displayed in other frames, legitimate access

to those properties are blocked. For example, it’s not uncommon for popular sites

to have their usual public access site on a server named something such as

www.popular.com. If a page on that server includes a front end to a site search

engine located at search.popular.com, visitors who use browsers with these

security restrictions are denied access.

To guard against that eventuality, a script in documents from both servers can

instruct the browser to think both servers are the same. In the preceding example,

you would set the document.domain property in both documents to popular.com.

Without specifically setting the property, the default value includes the server

name as well, thus causing a mismatch between host names.

Before you start thinking that you can spoof your way into other servers, be

aware that you can set the document.domain property only to servers with the

same domain (following the “two-dot” rule) as the document doing the setting.

On the
CD-ROM

document.domain

(c) ketabton.com: The Digital Library

361Chapter 18 ✦ The Document and Body Objects

Therefore, documents originating only from xxx.popular.com can set their

document.domain properties to popular.com server.

Related Items: window.open() method; window.location object; security

(Chapter 46).

embeds
Value: Array of EMBED element objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Whenever you want to load data that requires a plug-in application to play or dis-

play, you use the <EMBED> tag. The document.embeds property is merely one way

to determine the number of such tags defined in the document:

var count = document.embeds.length

For controlling those plug-ins in Navigator, you can use the LiveConnect technol-

ogy, described in Chapter 44.

Related Items: EMBED element object (Chapter 32).

expando
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Microsoft calls any custom property that is not a native property of the docu-
ment object an expando property. By default, most objects in recent generations of

browsers allow scripts to add new properties of objects as a way to temporarily

store data without explicitly defining global variables. For example, if you want to

maintain an independent counter of how often a function is invoked, you can create

a custom property of the document object and use it as the storage facility:

document.counter = 0

IE4+ lets you control whether the document object is capable of accepting

expando properties. The default value of the document.expando property is true,

thus allowing custom properties. But the potential downside to this permissive-

ness, especially during the page construction phase, is that a misspelled native

property name is gladly accepted by the document object. You may not be aware of

why the title bar of the browser window doesn’t change when you assign a new

string to the document.Title property (which, in the case-sensitive world of

JavaScript, is distinct from the native document.title property).

document.expando

(c) ketabton.com: The Digital Library

362 Part III ✦ Document Objects Reference

Example on the CD

Related Items: prototype property of custom objects (Chapter 41).

fgColor
See alinkColor.

fileCreatedDate
fileModifiedDate
fileSize

Value: String, Integer (fileSize) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These three IE-specific properties return information about the file that holds the

current document. Two of the properties (not implemented in IE5/Mac) reveal the

dates on which the current document’s file was created and modified. For an

unmodified file, its creation and modified dates are the same. The fileSize
property reveals the number of bytes of the file.

Date values returned for the first two properties are formatted differently

between IE4 and IE5. The former provides a full readout of the day and date; the lat-

ter in a format similar to mm/dd/yyyy. Note, however, that the values contain only

the date and not the time. In any case, you can use the values as the parameter to a

new Date() constructor function. You can then use date calculations for such

information as the number of days between the current day and the most recent

modification.

Not all servers may provide the proper date or size information about a file or in

a format that IE can interpret. Test your implementation on the deployment server

to ensure compatibility.

Also, be aware that these properties can be read only for a file that is loaded in

the browser. JavaScript by itself cannot get this information about files that are on

the server but not loaded in the browser.

IE5.5 exposes a property called fileUpdatedDate, but the property does not

return any data. This property may be a phantom property left over from a prere-

lease version.

Example on the CD with Listing 18-4

Related Items: lastModified property.

On the
CD-ROM

On the
CD-ROM

document.fileCreatedDate

(c) ketabton.com: The Digital Library

363Chapter 18 ✦ The Document and Body Objects

forms
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

As I show in Chapter 23, which is dedicated to the form object, an HTML form

(anything defined inside a <FORM>...</FORM> tag pair) is a JavaScript object unto

itself. You can create a valid reference to a form according to its name (assigned via

a form’s NAME attribute). For example, if a document contains the following form

definition

<FORM NAME=”phoneData”>
input item definitions

</FORM>

your scripts can refer to the form object by name:

document.phoneData

However, a document object also tracks its forms in another way: as an array of

Form objects. The first item of a document.forms array is the form that loaded first

(it was first from the top of the HTML code). If your document defines one form, the

forms property is an array one entry in length; with three separate forms in the

document, the array is three entries long.

Use standard array notation to reference a particular form from the

document.forms array. For example, the first form in a document (the “zeroth”

entry of the document.forms array) is referenced as

document.forms[0]

Any of the form object’s properties or methods are available by appending the

desired property or method name to the reference. For example, to retrieve the

value of an input text field named homePhone from the second form of a document,

the reference you use is

document.forms[1].homePhone.value

One advantage to using the document.forms property for addressing a form

object or element instead of the actual form name is that you may be able to gener-

ate a library of generalizable scripts that know how to cycle through all available

forms in a document and hunt for a form that has some special element and prop-

erty. The following script fragment (part of a repeat loop described more fully in

Chapter 39) uses a loop-counting variable (i) to help the script check all forms in a

document:

for (var i = 0; i < document.forms.length; i++) {
if (document.forms[i]. ...) {

statements
}

}

document.forms

(c) ketabton.com: The Digital Library

364 Part III ✦ Document Objects Reference

One more variation on forms array references lets you substitute the name of a

form (as a string) for the forms array index. For example, the form named

phoneData can be referenced as

document.forms[“phoneData”]

If you use a lot of care in assigning names to objects, you will likely prefer the

document.formName style of referencing forms. In this book, you see both indexed

array and form name style references. The advantage of using name references is

that even if you redesign the page and change the order of forms in the document,

references to the named forms will still be valid, whereas the index numbers of the

forms will have changed. See also the discussion in Chapter 23 of the form object

and how to pass a form’s data to a function.

Example on the CD with Listing 18-5

Related Items: form object (Chapter 23).

frames
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The document.frames property is similar to the window.frames property, but

its association with the document object may seem a bit illogical at times. The

objects contained by the array returned from the property are window objects,

which means they are the window objects of any FRAME elements (from a frameset-

ting document) or IFRAME elements (from a plain HTML document) defined for the

document. Distinguishing the window objects from the element objects is impor-

tant. Window objects have different properties and methods than the FRAME and

IFRAME element objects. The latter’s properties typically represent the attributes

for those element’s tags. If a document contains no IFRAME elements, the frames
array length is zero.

While you can access an individual frame object via the typical array syntax (for

example, document.frames[0]), you can also use alternate syntax that Microsoft

provides for collections of objects. The index number can also be placed inside

parentheses, as in

document.frames(0)

Moreover, if the frames have values assigned to their NAME attributes, you can

use the name (in string form) as a parameter:

document.frames(“contents”)

On the
CD-ROM

document.frames

(c) ketabton.com: The Digital Library

365Chapter 18 ✦ The Document and Body Objects

And if the collection of frames has more than one frame with the same name, you

must take special care. Using the duplicated name as a parameter forces the refer-

ence to return a collection of frame objects that share that name. Or, you can limit

the returned value to a single instance of the duplicate-named frames by specifying

an optional second parameter indicating the index. For example, if a document has

two IFRAME elements with the name contents, a script could reference the second

window object as

document.frames(“contents”, 1)

For the sake of cross-browser compatibility, my preference for referencing frame

window objects is via the window.frames property.

Example on the CD

Related Items: window.frames property.

height
width

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The height and width properties of the NN4+ document object provide the

pixel dimensions of the content within the current window (or frame). If the docu-

ment’s content is smaller than the size of the browser’s content region, the dimen-

sions returned by these properties include the blank space to the right and/or

bottom edges of the content area of the window. But if the content extends beyond

the viewable edges of the content region, the dimensions include the unseen con-

tent as well. The corresponding measures in IE4+ are the document.body.
scrollHeight and document.body.scrollWidth properties.

Example on the CD

Related Items: document.body.scrollHeight, document.body.scrollWidth
properties.

On the
CD-ROM

On the
CD-ROM

document.height

(c) ketabton.com: The Digital Library

366 Part III ✦ Document Objects Reference

ids
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN4-specific ids property is used in the browser’s alternative, JavaScript-

based style sheet syntax. Deployment of JavaScript style sheets is exceedingly rare.

In some ways, the document.ids property behaves similarly to the IE4+ document.
all property, but document.ids cannot be used in regular scripts to access ele-

ment objects.

Related Items: tags property.

images
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

With images treated as first-class objects beginning with NN3 and IE4 (and IE ver-

sion 3.01 on the Mac), it’s only natural for a document to maintain an array of all

the image tags defined on the page (just as it does for links and anchors). The

prime importance of having images as objects is that you can modify their content

(the source file associated with the rectangular space of the image) on the fly. You

can find details about the image object in Chapter 22.

Use image array references to pinpoint a specific image for retrieval of any

image property or for assigning a new image file to its src property. Image arrays

begin their index counts with 0: The first image in a document has the reference

document.images[0]. And, as with any array object, you can find out how many

images the array contains by checking the length property. For example:

var imageCount = document.images.length

Images can also have names, so if you prefer, you can refer to the image object

by its name, as in

var imageLoaded = document.imageName.complete

or

var imageLoaded = document.images[imageName].complete

The document.images array is a useful guide to knowing whether a browser

supports swappable images. Any browser that treats an IMG element as an object

always forms a document.images array in the page. If no images are defined in the

page, the array is still there, but its length is zero. The array’s existence, however, is

document.images

(c) ketabton.com: The Digital Library

367Chapter 18 ✦ The Document and Body Objects

the clue about image object compatibility. Because the document.images array

evaluates to an array object when present, the expression can be used as a condi-

tion expression for branching to statements that involve image swapping:

if (document.images) {
// image swapping or precaching here

}

Earlier browsers that don’t have this property evaluate document.images as

undefined and thus the condition is treated as a false value.

Example on the CD

Related Items: Image object (Chapter 22).

implementation
Value: Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The Core W3C DOM defines the document.implementation property as an

avenue to let scripts find out what DOM features (that is, modules of the DOM stan-

dard) are implemented for the current environment. While the object returned by

the property (a DOMImplementation object) has no properties, it has a method,

hasFeature(), which lets scripts find out, for example, whether the environment

supports HTML or just XML. The first parameter of the hasFeature() method is

the feature in the form of a string. The second parameter is a string form of the

version number. The method returns a Boolean value.

A section of the W3C DOM specification, called “Conformance,” governs the

module names (the standard also allows browser-specific features to be tested via

the hasFeature() method). Module names include strings such as HTML, XML,

MouseEvents, and so on.

Version numbering for W3C DOM modules corresponds to the W3C DOM level.

Thus, the version for the XML DOM module in DOM Level 2 is known as 2.0. Note

that versions refer to DOM modules and not, for instance, the separate HTML

standard.

NN6 reports that it conforms to many modules defined in the W3C DOM Level 2,

as shown in Table 18-3. But the indicated support may be misleading. According to

the W3C standard, conformance for a module and version should indicate support

for “all the interfaces for that module and the associated semantics.” In some cases,

however, NN6 has merely reserved placeholders for objects, properties, and meth-

ods that are not yet implemented. As a result, it is risky to use the hasFeature()
method as a substitute for object detection in scripts. For now, you can trust the

reported conformance only as a coarse indication of feature support.

On the
CD-ROM

document.implementation

(c) ketabton.com: The Digital Library

368 Part III ✦ Document Objects Reference

Table 18-3 NN6 document.implementation.hasFeature() Support

Feature Versions

XML 1.0, 2.0

HTML 1.0, 2.0

Views 2.0

StyleSheets 2.0

CSS 2.0

Events 2.0

MouseEvents 2.0

HTMLEvents 2.0

Range 2.0

Example on the CD

lastModified
Value: Date String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Every disk file maintains a modified timestamp, and most (but not all) servers

are configured to expose this information to a browser accessing a file. This infor-

mation is available by reading the document.lastModified property. If your

server supplies this information to the client, you can use the value of this property

to present this information for readers of your Web page. The script automatically

updates the value for you, rather than requiring you to hand-code the HTML line

every time you modify the home page.

If the value returned to you displays itself as a date in 1969, it means that you are

positioned somewhere west of GMT, or Greenwich Mean Time (some number of

time zones west of GMT at 1 January 1970), and the server is not providing the

proper data when it serves the file. Sometimes server configuration can fix the

problem, but not always.

The returned value is not a date object (Chapter 36) but rather a straight string

consisting of time and date, as recorded by the document’s file system. The format

of the string varies from browser to browser and version to version. You can, how-

ever, usually convert the date string to a JavaScript date object and use the date

On the
CD-ROM

document.lastModified

(c) ketabton.com: The Digital Library

369Chapter 18 ✦ The Document and Body Objects

object’s methods to extract selected elements for recompilation into readable form.

Listing 18-6 shows an example.

Some browser versions running in Windows 95 may return a two-digit year, which
will lead to Y2K problems when generating a date object.

Even local file systems don’t necessarily provide the correct data for every

browser to interpret. For example, in Navigator of all generations for the Macintosh,

dates from files stored on local disks come back as something from the 1920s

(although Internet Explorer manages to reflect the correct date). But put that same

file on a UNIX or NT Web server, and the date appears correctly when accessed via

the Net.

Example on the CD with Listing 18-6

Related Items: Date object (Chapter 36).

layers
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The layer object (Chapter 31) is the NN4 way of exposing positioned elements to

the object model. Thus, the document.layers property is an array of positioned

elements in the document. But due to the nonstandard way that NN4 implements

positioned elements, not every positioned element is represented in the

document.layers array. More deeply nested positioned elements must be

referenced through a hierarchy of layers.

The layer object and document.layers property are orphaned in NN4, and their
importance diminishes as the installed base of NN4 shrinks. The remaining dis-
cussion is included only for those Web authors who must support positioned ele-
ments in NN4. In NN6, the layer is represented by any HTML element whose style
sheet definition includes a position attribute. References to such elements can
be made through the document.getElementById() method or shortcuts
described in Chapter 14.

A Netscape layer is a container for content that can be precisely positioned on

the page. Layers can be defined with the NN4-specific <LAYER> tag or with W3C

standard style sheet positioning syntax, as explained in Chapter 31. Each layer con-

tains a document object — the true holder of the content displayed in that layer.

Note

On the
CD-ROM

Note

document.layers

(c) ketabton.com: The Digital Library

370 Part III ✦ Document Objects Reference

Layers can be nested within each other, but a reference to document.layers
reveals only the first level of layers defined in the document. Consider the following

HTML skeleton.

<HTML>
<BODY>
<LAYER NAME=”Europe”>

<LAYER NAME=”Germany”></LAYER>
<LAYER NAME=”Netherlands”></LAYER>

</LAYER>
</BODY>
</HTML>

From the point of view of the primary document, there is one layer (Europe).

Therefore, the length of the document.layers array is 1. But the Europe layer has

a document, in which two more layers are nested. A reference to the array of those

nested layers is

document.layers[1].document.layers

or

document.Europe.document.layers

The length of this nested array is two: The Germany and Netherlands layers. No

property exists that reveals the entire set of nested arrays in a document, but you

can create a for loop to crawl through all nested layers (shown in Listing 18-7).

Example on the CD with Listing 18-7

Related Items: layer object (Chapter 31).

linkColor
See alinkColor.

links
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The document.links property is similar to the document.anchors property,

except that the objects maintained by the array are link objects — items created

with tags. Use the array references to pinpoint a specific link for

retrieving any link property, such as the target window specified in the link’s HTML

definition.

On the
CD-ROM

document.links

(c) ketabton.com: The Digital Library

371Chapter 18 ✦ The Document and Body Objects

Link arrays begin their index counts with 0: The first link in a document has the

reference document.links[0]. And, as with any array object, you can find out how

many entries the array has by checking the length property. For example:

var linkCount = document.links.length

Entries in the document.links property are full-fledged location objects.

Example on the CD

Related Items: link object; document.anchors property.

location
URL

Value: String Read/Write and Read-Only (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � (�) (�) � � �

The fact that JavaScript frequently reuses the same terms in different contexts

may be confusing to the language’s newcomers. Such is the case with the

document.location property. You may wonder how this property differs from the

location object (Chapter 17). In practice, many scripts also get the two confused

when references don’t include the window object. As a result, a new property name,

document.URL, was introduced in NN3 and IE4 to take the place of

document.location. You can still use document.location, but the term may

eventually disappear from the object model vocabulary. To help you get into the

future mindset, the rest of this discussion refers to this property as document.URL.

The remaining question is how the window.location object and document.URL
property differ. The answer lies in their respective data types.

A location object, you may recall from Chapter 17, consists of a number of

properties about the document currently loaded in a window or frame. Assigning a

new URL to the location object (or location.href property) tells the browser to

load the page from that URL into the frame. The document.URL property, on the

other hand, is simply a string (read-only in Navigator) that reveals the URL of the

current document. The value may be important to your script, but the property

does not have the “object power” of the window.location object. You cannot

change (assign another value to) this property value because a document has only

one URL: its location on the Net (or your hard disk) where the file exists, and what

protocol is required to get it.

This may seem like a fine distinction, and it is. The reference you use (window.
location object or document.URL property) depends on what you are trying to

accomplish specifically with the script. If the script is changing the content of a

window by loading a new URL, you have no choice but to assign a value to the

On the
CD-ROM

document.location

(c) ketabton.com: The Digital Library

372 Part III ✦ Document Objects Reference

window.location object. Similarly, if the script is concerned with the component

parts of a URL, the properties of the location object provide the simplest avenue

to that information. To retrieve the URL of a document in string form (whether it is

in the current window or in another frame), you can use either the document.URL
property or the window.location.href property.

Example on the CD with Listings 18-8, 18-9, and 18-10

Related Items: location object; location.href, URLUnencoded properties.

media
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

At its introduction in IE5.5, the document.media property is limited to one

value besides the default value of empty: print. Details of this property are

sketchy, but the intention appears to be to provide a way to use scripting to set

the equivalent of the CSS2 @media rule (one of the so-called “at” rules because of

the at symbol). This style sheet rule allows browsers to assign separate styles for

each type of output device on which the page is rendered (for example, perhaps a

different font for a printer versus the screen). In practice, however, this property is

not modifiable in IE5.5.

Related Items: None.

mimeType
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Although this property is readable in IE5+, its value is not strictly speaking a

MIME type, or at least not in traditional MIME format. Moreover, the results are

inconsistent between IE5 and IE5.5. Perhaps this property will be of more use in an

XML, rather than HTML, document environment. In any case, this property in no

way exposes supported MIME types in the current browser.

On the
CD-ROM

document.mimeType

(c) ketabton.com: The Digital Library

373Chapter 18 ✦ The Document and Body Objects

namespaces
Value: Array of namespace objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

A namespace object (new in IE5.5) can dynamically import an XML-based IE

Element Behavior. The namespaces property returns an array of all namespace
objects defined in the current document. For more details on how to utilize Element

Behaviors and ViewLinks (custom controls devised out of HTML and scripting) in

IE5.5, visit http://msdn.microsoft.com/workshop/author/behaviors/
overview/identityb_ovw.asp.

Related Items: None.

parentWindow
Value: window object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The document.parentWindow property returns a reference to the window object

containing the current document. The value is the same as any reference to the cur-

rent window.

Example on the CD

Related Items: window object.

plugins
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The document.plugins property returns the same array of EMBED element

objects that you get from the document.embeds property. This property appears to

have been deprecated in favor of document.embeds.

Related Items: document.embeds property.

On the
CD-ROM

document.plugins

(c) ketabton.com: The Digital Library

374 Part III ✦ Document Objects Reference

protocol
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific document.protocol property returns the plain-language version

of the protocol that was used to access the current document. For example, if the

file is accessed from a Web server, the property returns Hypertext Transfer
Protocol. This property differs from the location.protocol property, which

returns the portion of the URL that includes the often more cryptic protocol abbre-

viation (for example, http:). As a general rule, you want to hide all of this stuff

from a Web application user.

Example on the CD

Related Items: location.protocol property.

referrer
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

When a link from one document leads to another, the second document can,

under JavaScript control, reveal the URL of the document containing the link. The

document.referrer property contains a string of that URL. This feature can be a

useful tool for customizing the content of pages based on the previous location the

user was visiting within your site. A referrer contains a value only when the user

reaches the current page via a link. Any other method of navigation (such as

through the history, bookmarks, or by manually entering a URL) sets this property

to an empty string.

The document.referrer property is broken in Windows versions of IE3 and IE4.
In the Windows version, the current document’s URL is given as the referrer; the
proper value is returned in the Macintosh versions. For IE5+, the property returns
empty when the referrer document is accessed via the file: protocol.

Example on the CD with Listings 18-11 and 18-12

Related Items: link object.

On the
CD-ROM

Note

On the
CD-ROM

document.referrer

(c) ketabton.com: The Digital Library

375Chapter 18 ✦ The Document and Body Objects

scripts
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific document.scripts property returns an array of all SCRIPT ele-

ment objects in the current document. You can reference an individual SCRIPT ele-

ment object to read not only the properties it shares with all HTML element objects

(Chapter 15) but also script-specific properties, such as defer, src, and htmlFor.

The actual scripting is accessible either through the innerText or text properties

for any SCRIPT element object.

While the document.scripts array is read-only, many properties of individual

SCRIPT element objects are modifiable. Adding or removing SCRIPT elements

impacts the length of the document.scripts array. Don’t forget, too, that if your

scripts need to access a specific SCRIPT element object, you can assign an ID
attribute to it and reference the element directly.

This property is an IE-specific convenience property that is the same as the IE4+

and NN6 expression document.getElementsByTagName(“SCRIPT”), which

returns an array of the same objects.

Example on the CD

Related Items: SCRIPT element object (Chapter 20).

security
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The security property reveals information about a security certificate, if one is

associated with the current document. As of this writing, the property is not for-

mally documented by Microsoft, so its range of possibilities is not clear for now. For

a standard document, the value of the property is This type of document does
not have a security certificate.

On the
CD-ROM

document.security

(c) ketabton.com: The Digital Library

376 Part III ✦ Document Objects Reference

selection
Value: Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The document.selection property returns a selection object whose content

is represented in the browser window as a body text selection. That selection can

be explicitly performed by the user (by clicking and dragging across some text) or

created under script contol via the IE/Windows TextRange object (see Chapter 19).

Because script action on a selection (for example, finding the next instance of

selected text) is performed via the TextRange object, converting a selection to a

TextRange object using the document.selection.createRange() method is

common practice. See the selection object in Chapter 19 for more details.

Be aware that you cannot script interaction with text selections through user

interface elements, such as buttons. Clicking a button gives focus to the button and

deselects the selection. Use other events, such as document.onmouseup to trigger

actions on a selection.

Example on the CD

Related Items: selection, TextRange objects.

styleSheets
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The document.styleSheets array consists of references to all STYLE element

objects in the document. Not included in this array are style sheets that are

assigned to elements by way of the STYLE attribute inside a tag or linked in via LINK

elements. See Chapter 30 for details about the styleSheet object.

Related Items: styleSheet object (Chapter 30).

On the
CD-ROM

document.styleSheets

(c) ketabton.com: The Digital Library

377Chapter 18 ✦ The Document and Body Objects

tags
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN4-specific tags property is used in the browser’s alternate, JavaScript-

based style sheet syntax. Deployment of JavaScript style sheets is exceedingly

rare. In some ways, the document.tags property behaves like the IE4+ and NN5

document.getElementsByTagName() method, but document.tags cannot be

used in regular scripts to access element objects.

Related Items: ids property.

title
Value: String Read-Only and Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A document’s title is the text that appears between the <TITLE>...</TITLE>
tag pair in an HTML document’s Head portion. The title usually appears in the title

bar of the browser window in a single-frame presentation. Only the title of the top-

most framesetting document appears as the title of a multiframe window. Even so,

the title property for an individual document within a frame is available via

scripting. For example, if two frames are available (UpperFrame and LowerFrame),

a script in the document occupying the LowerFrame frame can reference the title
property of the other frame’s document, such as this:

parent.UpperFrame.document.title

This property is read-only in browsers prior to IE4 and NN6.

The document.title property is a holdover from the original document object

model. HTML elements in recent browsers have an entirely different application of

the title property (see Chapter 15). In IE4+ and NN6, you should address the doc-

ument’s title by way of the TITLE element object directly.

UNIX versions of Navigator 2 fail to return the document.title property value.
Also, in Navigator 4 for the Macintosh, if a script creates the content of another
frame, the document.title property for that dynamically written frame returns
the filename of the script that wrote the HTML, even when it writes a valid
<TITLE> tag set.

Related Items: history object.

Note

document.title

(c) ketabton.com: The Digital Library

378 Part III ✦ Document Objects Reference

URL
See location.

URLUnencoded
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The document.URL property returns a URL-encoded string, meaning that non-

alphanumeric characters in the URL are converted to URL-friendly characters (for

example, a space becomes %20). You can always use the unescape() function on

the value returned by the document.URL property, but the URLUnencoded property

does that for you. If there are no URL-encoded characters in the URL, then both

properties return identical strings.

Related Items: document.URL property.

vlinkColor
See alinkColor.

width
See height.

Methods
captureEvents(eventTypeList)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

In Navigator 4 only, the natural propagation of an event is downward from the

window object, through the document object, and eventually reaching its target. For

example, if you click a button, the click event first reaches the window object;

then it goes to the document object; if the button is defined within a layer, the event

also filters through that layer; eventually (in a split second) the event reaches the

button, where an onClick event handler is ready to act on that click.

The NN4 mechanism allows window, document, and layer objects to intercept

events and process them prior to reaching their intended targets (or preventing

them from reaching their destinations entirely). But for an outer container to grab

an event, your script must instruct it to capture the type of event your application

document.captureEvents()

(c) ketabton.com: The Digital Library

379Chapter 18 ✦ The Document and Body Objects

is interested in preprocessing. If you want the document object to intercept all

events of a particular type, use the document.captureEvents() method to turn

that facility on.

Event capture with different syntax has been standardized in the W3C DOM and is
implemented in NN6. See the addEventListener() method in Chapter 15 for
the W3C counterpart to the NN4 captureEvents() method. Also, see Chapter
29 for more details on the combination of event capture and event bubbling in the
W3C DOM.

The document.captureEvents() method takes one or more event types as

parameters. An event type is a constant value built inside the NN4 Event object.

One event type exists for every kind of event handler that you see in all of the docu-

ment objects of NN4. The syntax consists of a reference to the Event object and the

event name in all uppercase letters. For example, if you want the document to inter-

cept all click events, the statement is

document.captureEvents(Event.CLICK)

For multiple events, add them as parameters, separated by the pipe (|) character:

document.captureEvents(Event.MOUSEDOWN | Event.KEYPRESS)

After the document object is set to capture an event type, it must have a function

ready to deal with the event. For example, perhaps the function looks through all

Event.MOUSEDOWN events and looks to see if the right mouse button is the one that

triggers the event and what form element (if any) is the intended target. The goal is

perhaps to display a pop-up menu (as a separate layer) for a right-click. If the click

comes from the left mouse button, then the event is routed to its intended target.

To associate a function with a particular event type captured by a document
object, assign a function to the event. For example, to assign a custom

doClickEvent() function to click events captured by the wdocument object, use

the following statement:

document.onclick=doClickEvent

Notice that the function name is assigned only as a reference name, unlike an

event handler within a tag. The function, itself, is like any function, but it has the

added benefit of automatically receiving the event object as a parameter. To turn off

event capture for one or more event types, use the document.releaseEvent()
method. See Chapter 29 for details of working with NN4 events.

Capturing events at the window, document, or layer level in NN4 does not always
work the way you may want, which is especially true if your page contains tables.
For example, capturing mouse events has no effect in the Windows version of NN4
unless the cursor is atop a cell border. Event capture works most reliably when a
scriptable object has an event handler defined for it (even if the handler is an
empty string), and the element is the target of the event (for example, you are
about to type into a text field). For all other elements, event capture may simply
not be captured at the document or window level.

Note

Note

document.captureEvents()

(c) ketabton.com: The Digital Library

380 Part III ✦ Document Objects Reference

Example on the CD

Related Items: document.handleEvent(), document.releaseEvents(),

document.routeEvent() methods; parallel window object event methods.

clear()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Ever since NN2, the document.clear() method was intended to clear the cur-

rent document from the browser window. This method is quite impractical, because

you typically need some further scripts to execute after you clear the document,

but if the scripts are gone, nothing else happens.

In practice, the document.clear() method never did what it was supposed to

do (and in earlier browsers easily caused browser crashes). I recommend against

using document.clear(), including in preparation for generating a new page’s con-

tent with document.write(). The document.write() method clears the original

document from the window before adding new content. If you truly want to empty a

window or frame, then use document.write() to write a blank HTML document or

to load an empty HTML document from the server.

Related Items: document.close(), document.write(), document.writeln()
methods.

close()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Whenever a layout stream is opened to a window via the document.open()
method or either of the document writing methods (which also open the layout

stream), you must close the stream after the document is written. This causes the

Layout:Complete and Done messages to appear in the status line (although you

may experience some bugs in the status message on some platforms). The docu-

ment closing step is very important to prepare the window for the next potential

round of replenishment with new script-assembled HTML. If you don’t close the

document, subsequent writing is appended to the bottom of the document.

On the
CD-ROM

document.close()

(c) ketabton.com: The Digital Library

381Chapter 18 ✦ The Document and Body Objects

Some or all of the data specified for the window won’t display properly until you

invoke the document.close() method, especially when images are being drawn as

part of the document stream. A common symptom is the momentary appearance

and then disappearance of the document parts. If you see such behavior, look for a

missing document.close() method after the last document.write() method.

Example on the CD

Related Items: document.open(), document.clear(), document.write(),

document.writeln() methods.

createAttribute(“attributeName”)
Returns: Attribute object reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The document.createAttribute() method generates an attribute node

object (formally known as an Attr object in W3C DOM terminology) and returns a

reference to the newly created object. Invoking the method assigns only the name of

On the
CD-ROM

document.createAttribute()

Fixing the Sticky Wait Cursor

IE4+ frequently fails to restore the cursor to normal after document.write() and
document.close() (and some other content-modifying scripts). The cursor stubbornly
remains in the wait mode when, in truth, all processing has been completed. One, albeit
ugly, workaround that I have found effective is to force an extra document.close() via a
javascript: pseudo-URL (just adding another document.close() to your script doesn’t
do the trick). For use within a frameset, the javascript: URL must be directed to the top
of the frameset hierarchy, while the document.close() is aimed at the frame that had its
content changed. For example, if the change is made to a frame named content, create a
function, such as the following:

function recloseDoc() {
if (isIE) {

top.location.href=”javascript:void (parent.content.document.close())”
}

}

This assumes, of course, that you have browser-sniffing working in the script that sets the
isIE global variable to true when the browser is running in IE. If you place this function in
the framesetting document, scripts that modify the content frame can invoke this script
after any operation that prevents the normal cursor from appearing.

(c) ketabton.com: The Digital Library

382 Part III ✦ Document Objects Reference

the attribute, so it is up to your script to assign a value to the object’s nodeValue
property and then plug the new attribute into an existing element via that element’s

setAttributeNode() method (described in Chapter 15). The following sequence

generates an attribute that becomes an attribute of a TABLE element:

var newAttr = document.createAttribute(“width”)
newAttr.nodeValue = “80%”
document.getElementById(“myTable”).setAttributeNode(newAttr)

Attributes do not always have to be attributes known to the HTML standard,

because the method also works for XML elements, which have custom attributes.

Example on the CD

Related Items: setAttributeNode() method (Chapter 15).

createElement(“tagName”)
Returns: Element object reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The document.createElement() method generates an element object for what-

ever HTML (or XML) tag name you pass as the parameter. This object is not offi-

cially part of the current document object model because it has not yet been placed

into the document. But this method is the way you begin assembling an element

object that eventually gets inserted into the document.

The returned value is a reference to the object. Properties of that object include

all properties (set to default values) that the browser’s object model defines for

that element object. Your scripts can then address the object via this reference to

set the object’s properties. Typically you do this before the object is inserted into

the document, especially because otherwise read-only properties can be modified

before the element is inserted into the document.

After the object is inserted into the document, the original reference (for exam-

ple, a global variable used to store the value returned from the createElement()
method) still points to the object, even while it is in the document and being dis-

played for the user. To demonstrate this effect, consider the following statements

that create a simple paragraph element containing a text node:

var newText = document.createTextNode(“Four score and seven years ago...”)
var newElem = document.createElement(“P”)
newElem.id = “newestP”
newElem.appendChild(newText)
document.body.appendChild(newElem)

On the
CD-ROM

document.createElement()

(c) ketabton.com: The Digital Library

383Chapter 18 ✦ The Document and Body Objects

At this point, the new paragraph is visible in the document. But you can now

modify, for example, the style of the paragraph by addressing either the element in

the document object model or the variable that holds the reference to the object

you created:

newElem.style.fontSize = “20pt”

or

document.getElementById(“newestP”).style.fontSize = “20pt”

The two references are inextricably connected and always point to the exact

same object. Therefore, if you want to use a script to generate a series of similar

elements (for example, a bunch of LI elements), then you can use

createElement() to make the first one and set all properties that the items have

in common. Then use cloneNode() to make a new copy, which you can then treat

as a separate element (and probably assign unique IDs to each one).

Scripting in the W3C DOM environment (to the extent that it is supported in both

IE5 and NN6), you may rely on document.createElement() frequently to generate

new content for a page or portion thereof (unless you prefer to use the convenience

innerHTML property to add content in the form of strings of HTML). In a strict W3C

DOM environment, creating new elements is not a matter of assembling HTML

strings, but rather creating genuine element (and text node) objects.

Example on the CD

Related Items: document.createTextNode() method.

createEventObject([eventObject])
Returns: event Object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The IE-specific createEventObject() method creates an event object, which

can then be passed as a parameter to the fireEvent() method of any element

object. The event object created by this event is just like an event object created

by a user or system action.

An optional parameter lets you base the new event on an existing event object.

In other words, the properties of the newly created event object pick up all the

properties of the event object passed as a parameter, which lets you then modify

properties of your choice. If you provide no parameter to the method, then you

must fill the essential properties manually. For more about the properties of an

event object, see Chapter 29.

On the
CD-ROM

document.createEventObject()

(c) ketabton.com: The Digital Library

384 Part III ✦ Document Objects Reference

Example on the CD

Related Items: fireEvent() method (Chapter 15); event object (Chapter 29).

createStyleSheet([“URL”[, index]])
Returns: styleSheet object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific createStyleSheet() method creates a styleSheet object, a

type of object that includes STYLE element objects as well as style sheets that are

imported into a document via the LINK element. Thus you can dynamically load an

external style sheet even after a page has loaded. Note that this method does not

work in IE4 for the Macintosh.

Unlike the other “create” methods entering W3C DOM usage, the

createStyleSheet() method not only creates the style sheet, but it inserts the

object into the document object model immediately. Thus, any style sheet rules

that belong (or are assigned to) that object take effect on the page right away. If

you’d rather create a style sheet and delay its deployment, you should use the

createElement() method and element object assembly techniques.

If you don’t specify any parameters to the method, an empty styleSheet object

is created. It is assumed that you will then use styleSheet object methods, such

as addRule() (not implemented in IE5/Mac) to add the details to the style sheet.

To link in an external style sheet file, assign the file’s URL to the first parameter of

the method. The newly imported style sheet is appended to the end of the docu-
ment.styleSheets array of styleSheet objects. An optional second parameter

lets you specify precisely where in the sequence of style sheet elements the newly

linked style sheet should be inserted. A style sheet rule for any given selector is

overridden by a style sheet for the same selector that appears later in the sequence

of style sheets in a document.

Example on the CD with Listing 18-13

Related Items: styleSheet object (Chapter 30).

On the
CD-ROM

On the
CD-ROM

document.createStyleSheet()

(c) ketabton.com: The Digital Library

385Chapter 18 ✦ The Document and Body Objects

createTextNode(“text”)
Returns: Text node object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

A text node is a W3C DOM object that contains body text without any HTML (or

XML) tags, but is usually contained by (meaning, is a child of) an HTML (or XML)

element. Without the IE innerText convenience property for modifying the text of

an element, the W3C DOM relies on the node hierarchy of a document (NN6 exceeds

the W3C DOM by providing an innerHTML property, which you can use to replace

text in an element). To insert or replace text inside an HTML element in the W3C

DOM way, you create the text node and then use methods of the parent element (for

example, appendChild(), insertBefore(), and replaceChild(), all described in

Chapter 15) to modify the document’s content. To generate a fresh text node, use

document.createTextNode().

The sole parameter of the createTextNode() method is a string whose text

becomes the nodeValue of the text node object returned by the method. You can

also create an empty text node (passing an empty string) and assign a string to the

nodeValue of the object later. As soon as the text node is present in the document

object model, scripts can simply change the nodeValue property to modify text of

an existing element. For more details on the role of text nodes in the W3C DOM, see

Chapter 14.

Example on the CD

Related Items: document.createElement() method.

elementFromPoint(x, y)
Returns: Element object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific elementFromPoint() method returns a reference to whatever

element object occupies the point whose integer coordinates are supplied as

parameters to the method. The coordinate plane is that of the document, whose

top-left corner is at point 0,0. This coordinate plane can be very helpful in interac-

tive designs that need to calculate collision detection between positioned objects

or mouse events.

On the
CD-ROM

document.elementFromPoint()

(c) ketabton.com: The Digital Library

386 Part III ✦ Document Objects Reference

When more than one object occupies the same point (for example, one element

is positioned atop another), the element with the highest z-index value is returned.

A positioned element always wins when placed atop a normal body-level element.

And if multiple overlapping positioned elements have the same z-index value (or

none by default), the element that comes last in the source code order is returned

for the coordinate that they share in common.

Example on the CD with Listing 18-14

Related Items: event.clientX, event.clientY properties; positioned objects

(Chapter 31).

execCommand(“commandName”[, UIFlag]
[, param])

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE4+ includes a large set of commands that are outside of the methods defined

for objects in the object model. These commands are also accessible to program-

mers who build an Internet Explorer ActiveX control into their applications. The

execCommand() method (not implemented in IE5/Mac) is the JavaScript gateway to

those commands. A series of related methods (queryCommandEnable() and oth-

ers) also facilitate management of these commands.

The syntax for the execCommand() method requires at least one parameter, a

string version of the command name. Command names are not case-sensitive. An

optional second parameter is a Boolean flag to instruct the command to display any

user interface artifacts that may be associated with the command. The default is

false. For the third parameter, some commands require that an attribute value be

passed for the command to work. For example, to set the font size of a text range,

the syntax is

myRange.execCommand(“FontSize”, true, 5)

The execCommand() method returns Boolean true if the command is successful;

false if not successful; undefined in IE5/Mac. Some commands can return values

(for example, finding out the font name of a selection), but those are accessed

through the queryCommandValue() method.

Most of these commands operate on body text selections that are TextRange
objects. As described in Chapter 19, a TextRange object must be created under

script control. But a TextRange object can be done in response to a user selecting

some text in the document. Because a TextRange object is independent of the ele-

ment hierarchy (indeed, a TextRange can spread across multiple nodes), it cannot

On the
CD-ROM

document.execCommand()

(c) ketabton.com: The Digital Library

387Chapter 18 ✦ The Document and Body Objects

respond to style sheet specifications. Thus, many of the commands that can oper-

ate on a TextRange object have to do with formatting or modifying the text. For a

list of commands that work exclusively on TextRange objects, see the

TextRange.execCommand() method in Chapter 19.

While many of the commands intended for the TextRange also work when

invoked from the document object, in this section the focus is on those commands

that have scope over the entire document. Table 18-4 lists those few commands

that work with the document. Also listed are many commands that work exclusively

on text selections in the document, whether the selections are made manually by

the user or with the help of the TextRange object (see Chapter 19).

Table 18-4 document.execCommand() Commands

Command Parameter Description

Refresh None Reloads the page.

SelectAll None Selects entire page content.

Unselect None Unselects any page selection.

BackColor Color String Encloses the current selection with a FONT element
whose STYLE attribute sets the background-color
style to the parameter value.

CreateBookmark Anchor String Encloses the current selection (or text range) with an
anchor element whose NAME attribute is set to the
parameter value.

CreateLink URL String Encloses the current selection with an A element
whose HREF attribute is set to the parameter value.

FontName Font Face(s) Encloses the current selection with a FONT element
whose FACE attribute is set to the parameter value.

FontSize Size String Encloses the current selection with a FONT element
whose SIZE attribute is set to the parameter value.

FontColor Color String Encloses the current selection with a FONT element
whose COLOR attribute is set to the parameter value.

Indent None Indents the current selection.

JustifyCenter None Centers the current selection.

JustifyFull None Full-justifies the current selection.

JustifyLeft None Left-justifies the current selection.

JustifyRight None Right-justifies the current selection.

Outdent None Outdents the current selection.

RemoveFormat None Removes formatting for the current selection.

Continued

document.execCommand()

(c) ketabton.com: The Digital Library

388 Part III ✦ Document Objects Reference

Table 18-4 (continued)

Command Parameter Description

SelectAll None Selects all text of the document.

UnBookmark None Removes anchor tags that surround the current
selection.

Unlink None Removes link tags that surround the current selection.

Unselect None Deselects the current selection anywhere in the
document.

Example on the CD

Related Items: queryCommandEnabled(), queryCommandIndterm(),

queryCommandState(), queryCommandSupported(), queryCommandText(),

queryCommandValue() methods.

getElementById(“elementID”)
Returns: Element object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The document.getElementById() method is the W3C DOM syntax for retriev-

ing a reference to any element in a document that has a unique identifier assigned

to its ID attribute. If the document contains more than one instance of an ID, the

method returns a reference to the first element in source code order with that ID.

Because this method is such an important avenue to writing references to objects

that are to be modified under script control, you can see how important it is to

assign unique IDs to elements.

This method’s name is quite a finger twister for scripters, especially compared to

the IE4+ convention of letting a reference to any element begin simply with the

object’s ID. But unless you utilize the document.all normalization trick for NN6 as

described in Chapter 15, the getElementById() method is the cross-browser way

of gaining an element’s reference for IE5+ and NN6+. When you type this method, be

sure to use a lowercase “d” as the last character of the method name.

Unlike some other element-oriented methods (for example,

getElementsByTagName()), which can be invoked on any element in a document,

the getElementById() method works exclusively with the document object.

On the
CD-ROM

document.getElementById()

(c) ketabton.com: The Digital Library

389Chapter 18 ✦ The Document and Body Objects

Example on the CD

Related Items: getElementsByTagName() method (Chapter 15).

getElementsByName(“elementName”)
Returns: Array.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The document.getElementsByName() method returns an array of references to

objects whose NAME attribute is assigned the element name passed as the method’s

attribute. Although NN6 recognizes NAME attributes even for elements that don’t

have them by default, IE5+ does not. Therefore, for maximum cross-browser com-

patibility, use this method only to locate elements that have NAME attributes defined

for them by default, such as form control elements. If the element does not exist in

the document, the method returns an array of zero length.

For the most part, you are best served by using IDs on elements and the

getElementById() method to unearth references to individual objects. But some

elements, especially the INPUT element of type radio, use the NAME attribute to

group elements together. In that case, a call to getElementsByName() returns an

array of all elements that share the name — facilitating perhaps a for loop that

inspects the checked property of a radio button group. Thus, instead of using the

old-fashioned (although entirely backward compatible) approach by way of the

containing form object

var buttonGroup = document.forms[0].radioGroupName

you can go more directly:

var buttonGroup = document.getElementsByName(radioGroupName)

In the latter case, you operate independently of the containing form object’s

index number or name. This assumes, of course, that a group name is not shared

elsewhere on the page.

Example on the CD

Related Items: document.getElementsById(), getElementsByTagName()
methods.

On the
CD-ROM

On the
CD-ROM

document.getElementsByName()

(c) ketabton.com: The Digital Library

390 Part III ✦ Document Objects Reference

getSelection()
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Many Web browser users aren’t aware that they can select and copy body text in

a document for pasting into other application documents. Even so, NN4+ offers a

scripted way of capturing the text selected by a user in a page. The document.
getSelection() method returns the string of text selected by the user. If nothing

is selected, an empty string is the result. Returned values consist only of the visible

text on the page and not the underlying HTML or style of the text.

The IE4+ equivalent involves the document.selection property, which returns

an IE selection object (not implemented in IE5/Mac). To derive the text from this

object, you must create a TextRange object from it and then inspect the text
property:

var selectedText = document.selection.createRange().text

Example on the CD with Listing 18-15

Related Items: document.selection property.

handleEvent(event)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

When you explicitly capture NN4 events in the window, document, or layer object

(by invoking the captureEvents() method for that object), you can control where

the events go after their initial capture. To let an event continue to its original target

(for example, a button that is clicked by a user), you use the routeEvent() method.

But if you want to redirect an event (or class of events) to a particular event handler

elsewhere in the document, use the handleEvent() method.

See the discussion of the handleEvent() method for the window object in

Chapter 16. The behavior of the handleEvent() method for all objects is the same.

Related Items: document.captureEvents(), document.releaseEvents(),

document.routeEvent() methods; event object (Chapter 29).

On the
CD-ROM

document.handleEvent()

(c) ketabton.com: The Digital Library

391Chapter 18 ✦ The Document and Body Objects

open([“mimeType”] [, replace])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Opening a document is different from opening a window. In the case of a window,

you’re creating a new object, both on the screen and in the browser’s memory.

Opening a document, on the other hand, tells the browser to get ready to accept

some data for display in the window named or implied in the reference to the

document.open() method. (For example, parent.frames[1].document.open()
may refer to a different frame in a frameset, whereas document.open() implies the

current window or frame.) Therefore, the method name may mislead newcomers

because the document.open() method has nothing to do with loading documents

from the Web server or hard disk. Rather, this method is a prelude to sending data

to a window via the document.write() or document.writeln() methods. In a

sense, the document.open() method merely opens the valve of a pipe; the other

methods send the data down the pipe like a stream, and the document.close()
method closes that valve as soon as the page’s data has been sent in full.

The document.open() method is optional because a document.write()
method that attempts to write to a closed document automatically clears the old

document and opens the stream for a new one. Whether or not you use the

document.open() method, be sure to use the document.close() method after

all the writing has taken place.

An optional parameter to the document.open() method lets you specify the

nature of the data being sent to the window. A MIME (Multipurpose Internet Mail

Extension) type is a specification for transferring and representing multimedia data

on the Internet (originally for mail transmission, but now applicable to all Internet

data exchanges). You’ve seen MIME depictions in the list of helper applications in

your browser’s preferences settings. A pair of data type names separated by a slash

represent a MIME type (such as text/html and image/gif). When you specify a

MIME type as a parameter to the document.open() method, you’re instructing the

browser about the kind of data it is about to receive, so that it knows how to render

the data. Common values that most browsers accept are

text/html
text/plain
image/gif
image/jpeg
image/xbm

If you omit the parameter, JavaScript assumes the most popular type,

text/html— the kind of data you typically assemble in a script prior to writing to

the window. The text/html type includes any images that the HTML references.

Specifying any of the image types means that you have the raw binary representa-

tion of the image that you want to appear in the new document — possible, but

unlikely.

document.open()

(c) ketabton.com: The Digital Library

392 Part III ✦ Document Objects Reference

Another possibility is to direct the output of a write() method to a plug-in. For

the mimeType parameter, specify the plug-in’s MIME type (for example, application/
x-director for Shockwave). Again, the data you write to a plug-in must be in a

form that it knows how to handle. The same mechanism also works for writing

data directly to a helper application.

IE3 does not accept any parameters for the document.open() method. IE4
accepts only the text/html MIME type parameter.

NN4+ and IE5+ include a second, optional parameter to the method: replace.

This parameter does for the document.open() method what the replace()
method does for the location object. For document.open(), it means that the

new document you are about to write replaces the previous document in the win-

dow or frame from being recorded to that window or frame’s history.

Avoid document.open() entirely for NN2 in the same window or frame as the
one containing the script that invokes the document.open() method.
Attempting to reopen the script’s own document with this method in Navigator 2
usually leads to a crash of the browser.

Example on the CD

Related Items: document.close(), document.clear(), document.write(),

document.writeln() methods.

queryCommandEnabled(“commandName”)
queryCommandIndterm(“commandName”)
queryCommandCommandState(“commandName”)
queryCommandSupported(“commandName”)
queryCommandText(“commandName”)
queryCommandValue(“commandName”)

Returns: Various values.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These six methods (not implemented in IE5/Mac) lend further support to the

execCommand() method for document and TextRange objects. If you choose to use

On the
CD-ROM

Tip

Note

document.queryCommandEnabled()

(c) ketabton.com: The Digital Library

393Chapter 18 ✦ The Document and Body Objects

the execCommand() method to achieve some stylistic change on a text selection,

you can use some of these query methods to make sure the browser supports the

desired command and to retrieve any returned values. Table 18-5 summarizes the

purpose and returned values for each of the methods.

Table 18-5 IE Query Commands

queryCommand Returns Description

Enabled Boolean Reveals whether the document or TextRange object
is in a suitable state to be invoked.

Indterm Boolean Reveals whether the command is in an indeterminate
state.

CommandState Boolean | null Reveals whether the command has been completed
(true), is still working (false), or is in an
indeterminate state (null).

Supported Boolean Reveals whether the command is supported in the
current browser.

Text String Returns any text that may be returned by a command.

Value Varies Returns whatever value (if any) is returned by a
command.

Because the execCommand() method cannot be invoked on a page while it is still

loading, any such invocations that may collide with the loading of a page should

check with queryCommandEnabled() prior to invoking the command. Validating that

the browser version running the script supports the desired command (especially for

commands that have been introduced after IE4) is also a good idea. Therefore, you

may want to wrap any command call with the following conditional structure:

if (queryCommandEnabled(commandName) && queryCommandSupported(commandName)) {...}

When using a command to read information about a selection, use the

queryCommandText() or queryCommandValue() methods to catch that informa-

tion (recall that the execCommand() method itself returns a Boolean value regard-

less of the specific command invoked).

Example on the CD

Related Items: TextRange object (Chapter 19); execCommand() method.

On the
CD-ROM

document.queryCommandEnabled()

(c) ketabton.com: The Digital Library

394 Part III ✦ Document Objects Reference

recalc([allFlag])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

IE5 introduced the concept of dynamic properties. With the help of the

setExpression() method of all elements and the expression() style sheet value,

you can establish dependencies between object properties and potentially dynamic

properties, such as a window’s size or a draggable element’s location. After those

dependencies are established, the document.recalc() method causes those

dependencies to be recalculated — usually in response to some user action, such as

resizing a window or dragging an element.

The optional parameter is a Boolean value. The default value, false, means that

the recalculations are performed only on expressions for which the browser has

detected any change since the last recalculation. If you specify true, however, all

expressions are recalculated whether they have changed or not.

Example on the CD

Related Items: getExpression(), removeExpression(), setExpression()
methods (Chapter 15).

releaseEvents(eventTypeList)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If your NN4 scripts have enabled event capture for the document object (or

window or layer, for that matter), you can turn off that capture with the

releaseEvents() method. This method does not inhibit events from reaching

their intended target. In fact, by releasing capture from a higher object, released

events don’t bother stopping at those higher objects anymore.

See the discussion of the releaseEvents() method for the window object in

Chapter 16. The behavior of the releaseEvents() method for all objects is the

same.

Related Items: document.captureEvents(), document.routeEvent() methods.

On the
CD-ROM

document.releaseEvents()

(c) ketabton.com: The Digital Library

395Chapter 18 ✦ The Document and Body Objects

routeEvent(event)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If you turn on NN4 event capturing in the window, document, or layer object (via

their respective captureEvents() methods), the event handler you assign to

those events really captures those events, preventing them from ever reaching their

intended targets. For some page designs, this capturing is intentional, for it allows

the higher-level object to handle all events of a particular type. But if your goal is to

perform some preprocessing of events before they reach their destination, you

need a way to pass that event along its regular path, which is what the

routeEvent() method is for.

See the discussion of the routeEvent() method for the window object in

Chapter 16. The behavior of the routeEvent() method for all objects is the same.

Related Items: document.captureEvents(), document.releaseEvents() methods.

write(“string1” [,”string2” ...
[, “stringn”]])
writeln(“string1” [,”string2” ...
[, “stringn”]])

Returns: Boolean true if successful.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Both of these methods send text to a document for display in its window. The

only difference between the two methods is that document.writeln() appends a

carriage return to the end of the string it sends to the document. This carriage

return is helpful for formatting source code when viewed through the browser’s

source view window. For new lines in rendered HTML that is generated by these

methods, you must still write a
 to insert a line break.

Not all browsers and versions display the source code that is dynamically gener-
ated by a client-side script when you attempt to view the source. In NN3 and NN4,
the browser frequently shows the source code of such a page to have a wysiwyg:
protocol, meaning that the document exists only in memory. Don’t fool yourself
into believing that this is a way to hide scripts from nosey visitors. Other browsers
or versions (perhaps on a different operating system) are able to view the ren-
dered source without any problem. Plus, a browser with scripting turned off is able
to view the page that dynamically generated the code in the first place. See the
section “Hiding scripts entirely?” in Chapter 13.

Note

document.write()

(c) ketabton.com: The Digital Library

396 Part III ✦ Document Objects Reference

A common, incorrect conclusion that many JavaScript newcomers make is that

these methods enable a script to modify the contents of an existing document,

which is not true. As soon as a document has loaded into a window (or frame), the

only fully backward compatible text that you can modify without reloading or

rewriting the entire page is the content of text and TEXTAREA objects. In IE4+, you

can modify HTML and text via the innerHTML, innerText, outerHTML, and

outerText properties of any element. For NN6 and IE5+, you can modify an ele-

ment’s text by setting its nodeValue or innerHTML properties; strict adherence to

the W3C DOM requires creating and inserting or replacing new elements, as

described in Chapter 15.

The two safest ways to use the document.write() and document.writeln()
methods are to

✦ Write some or all of the page’s content by way of scripts embedded in the

document

✦ Send HTML code either to a new window or to a separate frame in a multi-

frame window

For the first case, you essentially interlace script segments within your HTML.

The scripts run as the document loads, writing whatever scripted HTML content

you like. This task is exactly what you did in script1.htm in Chapter 3. This task is

also how you can have one page generate browser-specific HTML when a particular

class of browser requires unique syntax.

In the latter case, a script can gather input from the user in one frame and then

algorithmically determine the layout and content destined for another frame. The

script assembles the HTML code for the other frame as a string variable (including

all necessary HTML tags). Before the script can write anything to the frame, it can

optionally open the layout stream (to close the current document in that frame)

with the parent.frameName.document.open() method. In the next step, a

parent.frameName.document.write() method pours the entire string into the

other frame. Finally, a parent.frameName.document.close() method ensures

that the total data stream is written to the window. Such a frame looks just the

same as if it were created by a source document on the server rather than on the fly

in memory. The document object of that window or frame is a full citizen as a stan-

dard document object. You can, therefore, even include scripts as part of the HTML

specification for one of these temporary HTML pages.

NN2 has some nasty bugs when you use document.write() to write to the cur-

rent window, but in NN3+ and IE3+, you can write to the current window without

problems. Even so, you should be prepared for the consequences. After an HTML

document (containing the script that is going to do the writing) loads completely,

the page’s incoming stream closes automatically. If you then attempt to apply a

series of document.write() statements, the first document.write() method com-

pletely removes all vestiges of the original document. That includes all of its objects

and scripted variable values. Therefore, if you try to assemble a new page with a

series of document.write() statements, the script and variables from the original

page will be gone before the second document.write() statement executes. To get

around this potential problem, assemble the content for the new screen of content

as one string variable and then pass that variable as the parameter to a single

document.write()

(c) ketabton.com: The Digital Library

397Chapter 18 ✦ The Document and Body Objects

document.write() statement. Also be sure to include a document.close() state-

ment in the next line of script.

Assembling HTML in a script to be written via the document.write() method

often requires skill in concatenating string values and nesting strings. A number of

JavaScript String object shortcuts facilitate the formatting of text with HTML tags

(see Chapter 34 for details).

If you are writing to a different frame or window, you are free to use multiple

document.write() statements if you like. Whether your script sends lots of small

strings via multiple document.write() methods or assembles a larger string to be

sent via one document.write() method depends partly on the situation and partly

on your own scripting style. From a performance standpoint, a fairly standard pro-

cedure is to do more preliminary work in memory and place as few I/O (input/out-

put) calls as possible. On the other hand, making a difficult-to-track mistake is

easier in string concatenation when you assemble longer strings. My personal pref-

erence is to assemble longer strings, but you should use the system that’s most

comfortable for you.

You may see another little-known way of passing parameters to these methods.

Instead of concatenating string values with the plus (+) operator, you can also bring

string values together by separating them with commas. For example, the following

two statements produce the same results:

document.write(“Today is “ + new Date())
document.write(“Today is “,new Date())

Neither form is better than the other, so use the one that feels more comfortable

to your existing programming style.

Dynamically generating scripts requires an extra trick, especially in NN. The root
of the problem is that if you try code, such as document.
write(“<SCRIPT></SCRIPT>”), the browser interprets the end script tag as
the end of the script that is doing the writing. You have to trick the browser by sep-
arating the end tag into a couple of components. Escaping the forward slash also
helps. For example, if you want to load a different .js file for each class of
browser, the code looks similar to the following:

// variable ‘browserVer’ is a browser-specific string and
// ‘page’ is the HTML your script is accumulating for document.write()
page += “<SCRIPT LANGUAGE=’JavaScript’ SRC=’” + browseVer + “.js’><” +
“\/SCRIPT>”

Using the document.open(), document.write(), and document.close()
methods to display images in a document requires some small extra steps. First,

any URL assignments that you write via document.write() must be complete (not

relative) URL references (especially for users of Navigator 2). Alternatively, you can

write the <BASE> tag for the dynamically generated page so that its HREF attribute

value matches that of the file that is writing the page.

Note

document.write()

(c) ketabton.com: The Digital Library

398 Part III ✦ Document Objects Reference

The other image trick is to be sure to specify HEIGHT and WIDTH attributes for

every image, scripted or otherwise. Navigator 2 requires these attributes (as does

the HTML 4.0 specification), and document-rendering performance is improved on

all platforms, because the values help the browser lay out elements even before

their details are loaded.

In addition to the document.write() example that follows (see Listings 18-16

through 18-18), you can find fuller implementations that use this method to assem-

ble images and bar charts in many of the applications in Chapters 48 through 57.

Because you can assemble any valid HTML as a string to be written to a window or

frame, a customized, on-the-fly document can be as elaborate as the most complex

HTML document that you can imagine.

Example on the CD with Figure 18-2 and Listings 18-16, 18-17, and 18-18

Related Items: document.open(); document.close(); document.clear()
methods.

Event handlers
onSelectionChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The onSelectionChange event can be triggered by numerous user actions,

although all of those actions occur on elements that are under the influence of the

IE5.5/Windows edit mode.

Related Items: onControlSelect event handler.

onStop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The onStop event fires in IE5 when the user clicks the browser’s Stop button.

Use this event handler to stop potentially runaway script execution on a page,

because the Stop button does not otherwise control scripts after a page has loaded.

If you are having a problem with a runaway repeat loop during development, you

can temporarily use this event handler to let you stop the script for debugging.

On the
CD-ROM

document.onStop

(c) ketabton.com: The Digital Library

399Chapter 18 ✦ The Document and Body Objects

Example on the CD with Listing 18-19

Related Items: Repeat loops (Chapter 39).

BODY Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alink createControlRange() onAfterPrint

background createTextRange() onBeforePrint

bgColor doScroll() onScroll

bgProperties

bottomMargin

leftMargin

link

noWrap

rightMargin

scroll

scrollLeft

scrollTop

text

topMargin

vLink

Syntax
Accessing BODY element object properties or methods:

[window.] document.body.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

On the
CD-ROM

document.body

(c) ketabton.com: The Digital Library

400 Part III ✦ Document Objects Reference

About this object
In object models that reveal HTML element objects, the BODY element object is

the primary container of the content that visitors see on the page. The BODY con-

tains all rendered HTML. This special place in the node hierarchy gives the BODY

object some special powers, especially in the IE object model.

As if to signify the special relationship, both the IE and W3C object models pro-

vide the same shortcut reference to the BODY element: document.body. As a first-

class HTML element object (as evidenced by the long lists of properties, methods,

and event handlers covered in Chapter 15), you are also free to use other syntaxes

to reach the BODY element.

You are certainly familiar with several BODY element attributes that govern

body-wide content appearance, such as link colors (in three states) and back-

ground (color or image). But IE and NN (and the W3C so far) have some very differ-

ent ideas about the BODY element’s role in scripting documents. Many methods

and properties that NN considers to be the domain of the window (for example,

scrolling, inside window dimensions, and so forth), IE puts into the hands of the

BODY element object. Therefore, while NN scrolls the window (and whatever it may

contain), IE scrolls the body (inside whatever window it lives). And because the

BODY element fills the entire viewable area of a browser window or frame, that

viewable rectangle is determined in IE by the body’s scrollHeight and

scrollWidth properties, whereas NN4+ features window.innerHeight and

window.innerWidth properties. This distinction is important to point out because

when you are scripting window- or document-wide appearance factors, you may

have to look for properties and methods for the window or BODY element object,

depending on your target browser(s).

Use caution when referencing the document.body object while the page is load-
ing. The object may not officially exist until the page has completely loaded. If you
need to set some initial properties via scripting, do so in response to the onLoad
event handler located in the <BODY> tag. Attempts at setting BODY element
object properties in immediate scripts inside the HEAD element may result in error
messages about the object not being found.

Properties
aLink
bgColor
link
text
vLink

Value: Hexadecimal triplet or color name string Read/Write

Note

document.body.aLink

(c) ketabton.com: The Digital Library

401Chapter 18 ✦ The Document and Body Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The aLink, link, and vLink properties are the new versions of the document
properties alinkColor, linkColor, and vlinkColor. The bgColor is the same as

the old document.bgColor property, while the text property is the new version of

the document.fgColor property. These new properties are the scripted equiva-

lents of the HTML attributes for the BODY element — the property names more

closely align themselves with the HTML attributes than the old property names.

Link colors that are set via pseudo-class selectors in style sheets (as STYLE
attributes of the BODY element) must be accessed via the style property for the

BODY object. Over time, these properties will likely fall into disuse as style sheets

become more common.

Example on the CD

Related Items: document.alinkColor, document.bgColor, document.fgColor,

document.linkColor, document.vlinkColor properties.

background
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The background property lets you set or get the URL for the background image

(if any) assigned to the BODY element. A BODY element’s background image over-

lays the background color in case both attributes or properties are set. To remove

an image from the document’s background, set the document.body.background
property to an empty string.

Example on the CD

Related Items: body.bgColor, body.bgProperties properties.

bgColor
See aLink

On the
CD-ROM

On the
CD-ROM

document.body.bgColor

(c) ketabton.com: The Digital Library

402 Part III ✦ Document Objects Reference

bgProperties
Value: String constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific bgProperties property is an alternative way of adjusting

whether the background image should remain fixed when the user scrolls the docu-

ment or if it should scroll with the document. Initial settings for this behavior

should be done via the background-attachment CSS attribute and modified under

script control by way of the BODY element’s style.backgroundAttachment
property.

No matter which way you reference this property, the only allowable values are

string constants scroll (the default) or fixed.

Example on the CD

Related Items: body.background property.

bottomMargin
leftMargin
rightMargin
topMargin

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The four IE-specific margin properties are alternatives to setting the correspond-

ing four margin style sheet attributes for the BODY element

(body.style.marginBottom, and so on). Style sheet margins represent blank

space between the edge of an element’s content and its next outermost container.

In the case of the BODY element, that container is an invisible document container.

Of the four properties, only the one for the bottom margin may be confusing if

the content does not fill the vertical space of a window or frame. The margin value

is not automatically increased to accommodate the extra blank space.

Different versions and operating system implementations of IE4+ offer a variety

of default integer values for these properties. But be aware that their values are not

necessarily returned by these properties unless they are explicitly set in the IE-

proprietary BODY element attributes of the same name. Therefore, even though a

default BODY has a visible margin, the property does not return that default value.

On the
CD-ROM

document.body.bottomMargin

(c) ketabton.com: The Digital Library

403Chapter 18 ✦ The Document and Body Objects

Example on the CD

Related Items: style object.

leftMargin
See bottomMargin.

link
See aLink.

noWrap
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The noWrap property lets you modify the BODY element behavior normally set

via the NOWRAP attribute. Because the property name is a negative, the Boolean

logic needed to control it can get confusing.

The default behavior for a BODY element is for text to wrap within the width of

the window or frame. This behavior occurs when the value of noWrap is its default

value of false. By turning noWrap to true, a line of text continues to render past

the right edge of the window or frame until the HTML contains a line break (or end

of paragraph). If the text continues on past the right edge of the window, the win-

dow (or frame) gains a horizontal scrollbar (of course, not if a frame is set to not

scroll).

By and large, users don’t like to scroll in any direction if they don’t have to.

Unless you have a special need to keep single lines intact, let the default behavior

rule the day.

Example on the CD

Related Items: None.

rightMargin
See bottomMargin.

On the
CD-ROM

On the
CD-ROM

document.body.rightMargin

(c) ketabton.com: The Digital Library

404 Part III ✦ Document Objects Reference

scroll
Value: Constant String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific scroll property provides scripted access to the IE-specific

SCROLL attribute of a BODY element. By default, an IE BODY element displays a ver-

tical scrollbar even if the height of the content does not warrant it; a horizontal

scrollbar appears only when the content is forced to be wider than the window or

frame. You can make sure that both scrollbars are hidden by setting the SCROLL
attribute to “no” or changing it via script. Possible values for this property are the

constant strings yes and no.

Other than frame attributes and NN4+ signed scripts, other browsers do not pro-

vide facilities for turning off scrollbars under script control. You can generate a new

window (via the window.open() method) and specify that its scrollbars be hidden.

Example on the CD

Related Items: window.scrollbars property; window.open() method.

scrollLeft
scrollTop

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Even though the scrollLeft and scrollTop properties of the BODY object are

the same as those for generic HTML element objects, they play an important roll in

determining the position of positioned elements (described more fully in Chapter

31). Because the mouse event and element position properties tend to be relative to

the visible content region of the browser window, you must take the scrolling val-

ues of the document.body object into account when assigning an absolute posi-

tion. Values for both of these properties are integers representing pixels.

Example on the CD with Listing 18-20

Related Items: window.pageXOffset, window.pageYOffset properties.

On the
CD-ROM

On the
CD-ROM

document.body.scrollLeft

(c) ketabton.com: The Digital Library

405Chapter 18 ✦ The Document and Body Objects

text
See aLink.

topMargin
See bottomMargin.

vLink
See aLink.

Methods
createControlRange()

Returns: Array.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

This method is listed here for the sake of completeness. Microsoft has so far pro-

vided few clues as to when or how to use a controlRange object, except that it has

something to do with a document in edit mode. In regular document view mode, the

createControlRange() method (not implemented in IE5/Mac) returns an empty

array.

createTextRange()
Returns: TextRange object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The BODY element object is the most common object to use to generate a

TextRange object in IE4+, especially when the text you are about to manipulate is

part of the document’s body text. The initial TextRange object returned from the

createTextRange() method (not implemented in IE5/Mac) encompasses the

entire BODY element’s HTML and body text. Further action on the returned object

is required to set the start and end point of the range. See Chapter 19’s discussion

of the TextRange object for more details.

Example on the CD

Related Items: TextRange object (Chapter 19).

On the
CD-ROM

document.body.createTextRange()

(c) ketabton.com: The Digital Library

406 Part III ✦ Document Objects Reference

doScroll([“scrollAction”])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Use the doScroll() method (not implemented in IE5/Mac) to simulate user

action on the scrollbars inside a window or frame that holds the current document.

This method comes in handy if you are creating your own scrollbars in place of the

standard system scrollbars. Scrolling is instantaneous, however, rather than with

animation even if the Display control panel is set for animated scrolling. The param-

eter for this method is one of the string constant values shown in Table 18-6. In

practice, occasionally the longer scroll action names more closely simulate an

actual click on the scrollbar component, whereas the shortcut versions may scroll

at a slightly different increment.

Table 18-6 document.body.doScroll() Parameters

Long Parameter Short Parameter Scroll Action Simulates

scrollbarDown down Clicking the down arrow.

scrollbarHThumb n/a Clicking the horizontal scrollbar
thumb (no scrolling action).

scrollbarLeft left Clicking the left arrow.

scrollbarPageDown pageDown Clicking the page down area or
pressing PgDn (default).

scrollbarPageLeft pageLeft Clicking the page left area.

scrollbarPageRight pageRight Clicking the page right area.

scrollbarPageUp pageUp Clicking the page up area or
pressing PgUp.

scrollbarVThumb n/a Clicking the vertical scrollbar
thumb (no scrolling action).

Unlike scrolling to a specific pixel location (by setting the BODY element’s

scrollTop and scrollLeft properties), the doScroll() method depends entirely

on the spatial relationship between the body content and the window or frame size.

Also, the doScroll() method triggers the onScoll event handler for the BODY ele-

ment object.

Be aware that scripted modifications to body content can alter these spatial rela-

tionships. IE is prone to being sluggish in updating all of its internal dimensions

after content has been altered. Should you attempt to invoke the doScroll()
method after such a layout modification, the scroll may not be performed as

document.body.doScroll()

(c) ketabton.com: The Digital Library

407Chapter 18 ✦ The Document and Body Objects

expected. You may find the common trick of using setTimeout() to delay the invo-

cation of the doScroll() method by a fraction of a second.

Example on the CD

Related Items: body.scroll, body.scrollTop, body.scrollLeft properties;

window.scroll(), window.scrollBy(), window.scrollTo() methods.

Event handlers
onAfterPrint
onBeforePrint

See the onAfterPrint event handler for the window object, Chapter 16.

onScroll

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onScroll event handler fires for the BODY element object as the result of

manual scrolling of the document (via scrollbars or navigation keyboard keys) and

scripted scrolling via the doScroll() method, scrollIntoView() method, or

adjusting the scrollTop and/or scrollLeft properties of the BODY element

object. For manual scrolling and scrolling by doScroll(), the event seems to fire

twice in succession. Moreover, the event.srcElement property is null, even

when the BODY element is handling the onScroll event handler.

Example on the CD with Listing 18-21

Related Items: body.scrollTop, body.scrollLeft properties;

srcollIntoView(), body.doScroll() methods.

✦ ✦ ✦

On the
CD-ROM

On the
CD-ROM

document.body.onScroll

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Body Text
Objects

A large number of HTML elements fall into a catchall cate-

gory of elements whose purposes are slightly more tar-

geted than contextual elements covered in Chapter 15. In this

group are some very widely used elements, such as the H1

through H6 header elements, plus several elements that are

not yet widely used because their full support may be lacking

in even some of the most modern browsers. In this chapter,

you find all sorts of text-related objects, excluding those

objects that act as form controls (text boxes and such, which

are covered in Chapter 25). For the most part, properties,

methods, and event handlers of this chapter’s objects are the

generic ones covered in Chapter 15. Only those items that are

unique to each object are covered in this chapter (as will be

the case in all succeeding chapters).

Beyond the HTML element objects covered in this chapter,

you also meet the TextRange object, first introduced in IE4,

and the corresponding Range object from the W3C DOM

implemented in NN6. This object is a very powerful one for

scripters because it allows scripts to work very closely with

body content — not in terms of, for example, the innerText
or nodeValue properties of elements, but rather in terms of

the text as it appears on the page in what users see as para-

graphs, lists, and the like. The TextRange and Range objects

essentially give your scripts cursor control over running body

text for functions, such as cutting, copying, pasting, and appli-

cations that extend from those basic operations — search and

replace, for instance. Bear in mind that everything you read in

this chapter requires in the least the dynamic object models

of IE4+ and NN6+; some items require IE5+. Unfortunately, the

IE TextRange object is not implemented in IE5/Mac.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Objects that display
running body text in
documents

Using the NN Range
and IE TextRange
objects

Scripting search and
replace actions

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

410 Part III ✦ Document Objects Reference

BLOCKQUOTE and Q Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

cite

Syntax
Accessing BLOCKQUOTE or Q element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About these objects
The BLOCKQUOTE element is a special-purpose text container. Browsers typi-

cally start the content on its own line in the body and indent on both the left and

right margins approximately 40 pixels. An inline quotation can be encased inside a

Q element, which does not force the quoted material to start on the next line.

From an object point of view, the only property that distinguishes these two

objects from any other kind of contextual container is the cite property, which

comes from the HTML 4.0 CITE attribute. This attribute simply provides a URL ref-

erence for the citation and does not act as an SRC or HREF attribute to load an

external document.

Property
cite

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The cite property can contain a URL (as a string) that points to the source of

the quotation in the BLOCKQUOTE or Q element. Future browsers may provide

some automatic user interface link to the source document, but none of the

browsers that support the cite property do anything special with this information.

Related Items: None.

BLOCKQUOTE.cite

(c) ketabton.com: The Digital Library

411Chapter 19 ✦ Body Text Objects

BR Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

clear

Syntax
Accessing BR element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The BR element forces a carriage return and line feed for rendered content on

the page. This element does not provide the same kind of vertical spacing that goes

between paragraphs in a series of P elements. Only one attribute (CLEAR) distin-

guishes this element from generic HTML elements and objects.

Property
clear

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The clear property defines how any text in an element following the BR element

wraps around a floating element (for example, an image set to float along the right

margin). While recent browsers expose this property, the attribute on which it is

based is deprecated in the HTML 4.0 specification in an effort to encourage the use

of the clear style sheet attribute for a BR element.

Values for the clear property can be one of the following strings: all, left, or

right.

Related Items: clear stylesheet property.

BR.clear

(c) ketabton.com: The Digital Library

412 Part III ✦ Document Objects Reference

FONT Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

color

face

size

Syntax
Accessing FONT element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
In a juxtaposition of standards implementations, for the first time the FONT ele-

ment is exposed as an object only in browsers that also support Cascading Style

Sheets as the preferred way to control font faces, colors, and sizes. This change

doesn’t mean that you shouldn’t use FONT elements in your page with the newer

browsers — using this element may be necessary for a single page that needs to be

backward-compatible with older browsers. But it does present a quandary for

scripters who want to use scripts to modify font characteristics of body text after

the page has loaded. A good rule of thumb to follow is to use the FONT element

(and script the FONT-HTML element object’s properties) when the page must work

in all browsers; use style sheets (and their scriptable properties) on pages that will

be running exclusively in IE4+ and NN6+.

Properties
color

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A FONT object’s text color can be controlled via the color property. Values can

be either hexadecimal triplets (for example, #FFCCFF) or the plain-language color

names recognized by most browsers. In either case, the values are case-insensitive

strings.

FONT.color

(c) ketabton.com: The Digital Library

413Chapter 19 ✦ Body Text Objects

Example (with Listing 19-1) on the CD-ROM

Related Items: color stylesheet attribute.

face
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A FONT object’s font face is controllable via the face property. Just as the FACE
attribute (and the corresponding font-family style sheet attribute), you can spec-

ify one or more font names in a comma-delimited string. Browsers start with the

leftmost font face and look for a match in the client computer’s system. The first

matching font face that is found in the client system is applied to the text sur-

rounded by the FONT element. You should list the most specific fonts first, and gen-

erally allow the generic font faces (sans-serif, serif, and monospace) to come

last; that way you exert at least some control over the look of the font on systems

that don’t have your pretty fonts. If you know that Windows displays a certain font

you like and the Macintosh has something that corresponds to that font but with a

different name, you can specify both names in the same property value. The

browser skips over font face names not currently installed on the client.

Example on the CD-ROM

Related Items: font-family style sheet attribute.

size
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The size of text contained by a FONT element can be controlled via the size
property. Unlike the more highly recommended font-size style sheet attribute,

the size property of the FONT element object (and its corresponding SIZE
attribute) are restricted to the relative font size scale imposed by early HTML

implementations: a numbering scale from 1 to 7.

On the
CD-ROM

On the
CD-ROM

FONT.size

(c) ketabton.com: The Digital Library

414 Part III ✦ Document Objects Reference

Values for the size property are strings, even though most of the time they are

single numeral values. You can also specify a size relative to the default value by

including a plus or minus sign before the number. For example, if the default font

size (as set by the browser’s user preferences) is 3, then you can bump up the size

of a text segment by encasing it inside a FONT element and then setting its size
property to “+2”.

For more accurate font sizing using units, such as pixels or points, use the font-
size style sheet attribute.

Example on the CD-ROM

Related Items: font-size style sheet attribute.

H1...H6 Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

Syntax
Accessing H1 through H6 element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About these objects
The so-called “heading” elements (denoted by H1, H2, H3, H4, H5, and H6) pro-

vide shortcuts for formatting up to six different levels of headings and subheadings.

While you can simulate the appearance of these headings with P elements and style

sheets, the heading elements very often contain important contextual information

about the structure of the document. With the IE5+ and NN6+ powers of inspecting

the node hierarchy of a document, a script can generate its own table of contents

or outline of a very long document by looking for elements whose nodeName prop-

erties are in the Hn family. Therefore, it is a good idea to continue using these ele-

ments for contextual purposes, even if you intend to override the default

appearance by way of style sheet templates.

As for the scriptable aspects of these six objects, they are essentially the same

as the generic contextual objects with the addition of the align property. Because

each Hn element is a block-level element, you can use style sheets to set their align-

ment rather than the corresponding attribute or property. The choice is up to you.

On the
CD-ROM

Hn

(c) ketabton.com: The Digital Library

415Chapter 19 ✦ Body Text Objects

Property
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

String values of the align property control whether the heading element is

aligned with the left margin (left), center of the page (center), or right margin

(right). The corresponding ALIGN attribute is deprecated in HTML 4.0 in favor of

the text-align style sheet attribute.

Related Items: text-align style sheet attribute.

HR Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

color

noShade

size

width

Syntax
Accessing HR element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The HR element draws a horizontal rule according to size, dimension, and align-

ment characteristics normally set by the attributes of this element. Style sheets can

also specify many of those settings, the latter route being recommended for pages

that will be loaded exclusively in pages that support CSS. In IE4+ and NN6+, your

scripts can modify the appearance of an HR element either directly through ele-

ment object properties or through style sheet properties. To reference a specific HR

HR

(c) ketabton.com: The Digital Library

416 Part III ✦ Document Objects Reference

element by script, you must assign an ID attribute to the element — a practice that

you are probably not accustomed to observing.

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

An HR object’s horizontal alignment can be controlled via the align property.

String values enable you to set it to align with the left margin (left), the center of

the page (center), or right margin (right). By default, the element is centered.

Example (with Listing 19-2) on the CD-ROM

Related Items: text-align style sheet attribute.

color
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

An HR object’s color can be controlled via the color property. Values can be

either hexadecimal triplets (for example, #FFCCFF) or the plain-language color

names recognized by most browsers. In either case, the values are case-insensitive

strings. If you change the color from the default, the default shading (3-D effect) of

the rule disappears. I have yet to find the magic value that lets you return the color

to the browser default after it has been set to another color.

Example on the CD-ROM

Related Items: color style sheet attribute.

On the
CD-ROM

On the
CD-ROM

HR.color

(c) ketabton.com: The Digital Library

417Chapter 19 ✦ Body Text Objects

noShade
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A default HR element is displayed with a kind of three-dimensional effect, called

shading. You can turn shading off under script control by setting the noShade prop-

erty to true. But be aware that in IE4+, the noShade property is a one-way journey:

You cannot restore shading after it is removed. Moreover, default shading is lost if

you assign a different color to the rule.

Example on the CD-ROM

Related Items: color style sheet attribute.

size
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The size of an HR element is its vertical thickness, as controlled via the size prop-

erty. Values are integers, representing the number of pixels occupied by the rule.

Example on the CD-ROM

Related Items: None.

width
Value: Integer or String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The width of an HR element is controlled via the width property. By default, the

element occupies the entire width of its parent container (usually the BODY).

On the
CD-ROM

On the
CD-ROM

HR.width

(c) ketabton.com: The Digital Library

418 Part III ✦ Document Objects Reference

You can specify width as either an absolute number of pixels (as an integer) or

as a percentage of the width of the parent container. Percentage values are strings

that include a trailing percent character (%).

Example on the CD-ROM

Related Items: width style sheet attribute.

LABEL Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

accessKey

form

htmlFor

Syntax
Accessing LABEL element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The LABEL element lets you assign a contextual relationship between a form

control (text field, radio button, select list, and so on) and the otherwise freestand-

ing text that is used to label the control on the page. This element does not control

the rendering or physical relationship between the control and the label — the

HTML source code order does that. Wrapping a form control label inside a LABEL

element is important if scripts will be navigating the element hierarchy of a page’s

content and the relationship between a form control and its label is important to

the results of the document parsing.

Properties
accessKey

Value: String Read/Write

On the
CD-ROM

LABEL.accessKey

(c) ketabton.com: The Digital Library

419Chapter 19 ✦ Body Text Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

For most other HTML element objects, the accessKey property description is

covered in the generic element property descriptions of Chapter 15. The function of

the property for the LABEL object is the same as the IE implementation for all other

elements. The single-character string value is the character key to be used in con-

cert with the OS- and browser-specific modifier key (for example, Ctrl in IE for

Windows) to bring focus to the form control associated with the label. This value is

best set initially via the ACCESSKEY attribute for the LABEL element.

Related Items: accessKey property of generic elements.

form
Value: Form object reference Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The form property of a LABEL element object returns a reference to the form

object that contains the form control with which the label is associated. This prop-

erty can be useful in a node parsing script that wants to retrieve the form container

from the perspective of the label rather than from the form control. The form object

reference returned from the LABEL element object is the same form object refer-

ence returned by the form property of any form control object.

Related Items: form property of INPUT element objects.

htmlFor
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The htmlFor property is a string that contains the ID of the form control ele-

ment with which the label is associated. This value is normally set via the HTMLFOR
attribute in the LABEL element’s tag. Modifying this property does not alter the

position or rendering of the label, but it does change the relationships between

label and control.

Related Items: None.

LABEL.htmlFor

(c) ketabton.com: The Digital Library

420 Part III ✦ Document Objects Reference

MARQUEE.behavior

MARQUEE Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

behavior start() onBounce

bgColor stop() onFinish

direction onStart

height

hspace

loop

scrollAmount

scrollDelay

trueSpeed

vspace

width

Syntax
Accessing MARQUEE element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])

About this object
The MARQUEE element is a Microsoft proprietary element that displays scrolling

text within a rectangle specified by the WIDTH and HEIGHT attributes of the element.

Text that scrolls in the element goes between the element’s start and end tags.

The IE4+ object model exposes the element and many properties to the object

model for control by script.

Properties
behavior

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The behavior property controls details in the way scrolled text moves within

the scrolling space. Values for this property are one of the following three strings:

(c) ketabton.com: The Digital Library

421Chapter 19 ✦ Body Text Objects

alternate, scroll, and slide. When set to alternate, scrolling alternates

between left and right (or up and down, depending on the direction property set-

ting). A value of scroll means that the text marches completely to and through the

space before appearing again. And a value of slide causes the text to march into

view until the last character is visible. When the slide value is applied as a prop-

erty (instead of as an attribute value in the tag), the scrolling stops when the text

reaches an edge of the rectangle. Default behavior for the MARQUEE element is the

equivalent of scroll.

Example (with Listing 19-3) on the CD-ROM

Related Items: direction property of MARQUEE object.

bgColor
Value: Hexadecimal triplet or color name string Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The bgColor property determines the color of the background of the MARQUEE

element’s rectangular space. To set the color of the text, either surround the MAR-

QUEE element with a FONT element or apply the color style sheet attribute to the

MARQUEE element. Values for all color properties can be either the common HTML

hexadecimal triplet value (for example, “#00FF00”) or any of the Netscape color

names (a list is available at http://developer.netscape.com/docs/manuals/
htmlguid/colortab.htm).

Example on the CD-ROM

direction
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The direction property lets you get or set the horizontal or vertical direction

in which the scrolling text moves. Four possible string values are left, right,

down, up. The default value is left.

On the
CD-ROM

On the
CD-ROM

MARQUEE.direction

(c) ketabton.com: The Digital Library

422 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: behavior property of MARQUEE object.

height
width

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The height and width properties enable you to get or set the pixel size of the

rectangle occupied by the element. You can adjust each property independently of

the other, but like most attribute-inspired properties of IE objects, if no HEIGHT or

WIDTH attributes are defined in the element’s tag, you cannot use these properties

to get the size of the element as rendered by default.

Related Items: None.

hspace
vspace

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The hspace and vspace properties let you get or set the amount of blank margin

space surrounding the MARQUEE element. Adjustments to the hspace property

affect both the left and right (horizontal) margins of the element; vspace governs

both top and bottom (vertical) margins. Margin thicknesses are independent of the

height and width of the element.

Related Items: None.

loop
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

On the
CD-ROM

MARQUEE.loop

(c) ketabton.com: The Digital Library

423Chapter 19 ✦ Body Text Objects

The loop property allows you to discover the number of times the MARQUEE

element was set to repeat its scrolling according to the LOOP attribute. Although

this property is read/write, modifying it by script does not cause the text to loop

only that number of times more before stopping. Treat this property as read-only.

Related Items: None.

scrollAmount
scrollDelay

Value: Integers Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The scrollAmount and scrollDelay properties control the perceived speed

and scrolling smoothness of the MARQUEE element text. The number of pixels

between redrawings of the scrolling text is controlled by the scrollAmount prop-

erty. The smaller the number, the less jerky the scrolling is (the default value is 6).

At the same time, you can control the time in milliseconds between each redrawing

of the text with the scrollDelay property. The smaller the number, the more fre-

quently redrawing is performed (the default value is 85 or 90, depending on the

operating system). Thus, a combination of low scrollAmount and scrollDelay
property values presents the smoothest (albeit slow) perceived scrolling.

Example on the CD-ROM

Related Items: trueSpeed property of MARQUEE object.

trueSpeed
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE has a built-in regulator that prevents SCROLLDELAY attribute or scrollDelay
property settings below 60 from causing the MARQUEE element text to scroll too

quickly. But if you genuinely want to use a speed faster than 60 (meaning, a value

lower than 60), then also set the trueSpeed property to true.

Related Items: scrollDelay property of MARQUEE object.

On the
CD-ROM

MARQUEE.trueSpeed

(c) ketabton.com: The Digital Library

424 Part III ✦ Document Objects Reference

Methods
start()
stop()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Scripts can start or stop (pause) a MARQUEE element via the start() and

stop() methods. Neither method takes parameters, and you are free to invoke

them as often as you like after the page loads. Be aware that the start() method

does not trigger the onStart event handler for the object.

Example on the CD-ROM

Event Handlers
onBounce

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onBounce event handler fires only when the MARQUEE element has its

behavior set to alternate. In that back-and-forth mode, each time the text reaches

a boundary and is about to start its return trip, the onBounce event fires. If you

truly want to annoy your users, you could have the onBounce event handlers play a

sound at each bounce (I’m kidding — please don’t do this).

Related Items: behavior property of MARQUEE object.

onFinish

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onFinish event handler fires only when the MARQUEE element has its loop

set to a specific value of 1 or greater. After the final text loop has completed, the

onFinish event fires.

Related Items: loop property of MARQUEE object.

On the
CD-ROM

MARQUEE.onFinish

(c) ketabton.com: The Digital Library

425Chapter 19 ✦ Body Text Objects

onStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � ��

The onStart event handler fires as the MARQUEE element begins its scrolling,

but only as a result of the page loading. The start() method does not trigger this

event handler.

Related Items: start() method of MARQUEE object.

Range Object

Properties Methods Event Handlers

collapsed cloneContents()

commonAncestorContainer cloneRange()

endContainer collapse()

endOffset compareBoundaryPoints()

startContainer createContextualFragment()

startOffet deleteContents()

detach()

extractContents()

insertNode()

isValidFragment()

selectNode()

selectNodeContents()

setEnd()

setEndAfter()

setEndBefore()

setStart()

setStartAfter()

setStartBefore()

surroundContents()

toString()

Range

(c) ketabton.com: The Digital Library

426 Part III ✦ Document Objects Reference

Syntax
Creating a Range object:

var rangeRef = document.createRange()

Accessing Range object properties or methods:

(NN6+) rangeRef.property | method([parameters])

About this object

The first release of NN6 suffers from several bugs and omissions with respect to
the Range object. Discussions about the NN6 Range object throughout this chap-
ter cover some features that may not be implemented or fixed until a later version
of the NN6 browser. I mention specific bugs and omissions found in the early NN6
whenever the description here does not yet match the browser implementation.
Even some of the example listings do not work correctly (or at all) with the first
release of NN6. In time, however, everything described in this section will be a part
of the Netscape browser.

The Range object is the W3C DOM (Level 2) version of what Microsoft had imple-

mented earlier as its TextRange object. A number of important differences (not the

least of which is an almost entirely different property and method vocabulary) dis-

tinguish the behaviors and capabilities of these two similar objects. Although

Microsoft participated in the W3C DOM Level 2 working groups, no participant from

the company is credited on the DOM specification chapter regarding the Range
object. Because the W3C version has not been implemented as of IE5.5, it is

unknown if IE will eventually implement the W3C version. In the meantime, see the

IE/Windows TextRange object section later in this chapter for comparisons

between the two objects. Neither the W3C DOM Range nor Microsoft TextRange
objects are implemented in IE5/Mac.

The purpose of the W3C DOM Range object is to provide hooks to a different

“slice” of content (most typically a portion of a document’s content) that is not nec-

essarily restricted to the node hierarchy (tree) of a document. While a Range object

can be used to access and modify nodes and elements, it can also transcend node

and element boundaries to encompass arbitrary segments of a document’s content.

The content contained by a range is sometimes referred to as a selection, but this

does not mean that the text is highlighted on the page, such as a user selection.

Instead, the term “selection” here means a segment of the document’s content that

can be addressed as a unit, separate from the node tree of the document. As soon

as the range is created, a variety of methods let scripts examine, modify, remove,

replace, and insert content on the page.

A range object (meaning, an instance of the static Range object) has a start point

and an end point, which together define the boundaries of the range. The points are

defined in terms of an offset count of positions within a container. These counts are

usually character positions within text nodes (ignoring any HTML tag or attribute

characters), but when both boundaries are at the edges of the same node, the off-

sets may also be counts of nodes within a container that surrounds both the start

and end points. An example helps clarify these concepts.

Note

Range

(c) ketabton.com: The Digital Library

427Chapter 19 ✦ Body Text Objects

Consider the following simplified HTML document:

<HTML>
<BODY>
<P>This paragraph has an emphasized segment.</P>
</BODY>
</HTML>

You can create a range that encompasses the text inside the EM element from

several points of view, each with its own offset counting context:

1. From the EM element’s only child node (a text node). The offset of the start

point is zero, which is the location of the insertion point in front of the first

character (lowercase “e”); the end point offset is 10, which is the character

position (zero-based) following the lowercase “d”.

2. From the EM element. The point of view here is that of the child text node

inside the EM element. Only one node exists here, and the offset for the start

point is 0, while the offset for the end point is 1.

3. From the P element’s child nodes (two text nodes and an element node). You

can set the start point of a range to the very end (counting characters) of the

first child text node of the P element; you can then set the end point to be in

front of the first character of the last child text node of the P element. The

resulting range encompasses the text within the EM element.

4. From the P element. From the point of view of the P element, the range can be

set with an offset starting with 1 (the second node nested inside the P ele-

ment) and ending with 2 (the start of the third node).

While these different points of view provide a great deal of flexibility, they also

can make it more difficult to imagine how you can use this power. The W3C vocabu-

lary for the Range methods, however, helps you figure out what kind of offset mea-

sure to use.

A range object’s start point could be in one element, and its end point in another.

For example, consider the following HTML:

<P>And now to introduce our very special guest:</P>

If the text shown in boldface indicates the content of a range object, you can see

that the range crosses element boundaries in a way that would make HTML element

or node object properties difficult to use for replacing that range with some other

text. The W3C specification provides guidelines for browser makers on how to han-

dle the results of removing or inserting HTML content that crosses node borders.

An important aspect of the Range object is that the size of a range can be zero or

more characters. Start and end points always position themselves between charac-

ters. When the start point and end point of a range are at the same location, the

range acts like a text insertion pointer.

Working with ranges
To create a range object, use the document.createRange() method and assign

the range object returned by this method to a variable that you can use to control

the range:

Range

(c) ketabton.com: The Digital Library

428 Part III ✦ Document Objects Reference

var rng = document.createRange()

The first release of NN6 requires that a newly created range be more explicitly
defined (as described in a moment) before scripts can access the range’s proper-
ties. The W3C DOM, however, suggests that a new range has as its containing
node the document node (which encompasses all content of the page, including
the <HTML> tag set). Moreover, the start and end points are set initially to zero,
meaning that the initial range is collapsed at the very beginning of the document.

With an active range stored in a variable, you can use many of the object’s meth-

ods to adjust the start and end points of the range. If the range is to consist of all of

the contents of a node, you have two convenience methods that do so from differ-

ent points of view: selectNode() and selectNodeContents(). The sole parame-

ter passed with both methods is a reference to the node whose contents you want

to turn into a range. The difference between the two methods is how the offset

properties of the range are calculated as a result (see the discussion about these

methods later in the chapter for details). Another series of methods

(setStartBefore(), setStartAfter(), setEndBefore(), and

setEndAfter())let you adjust each end point individually to a position relative to

a node boundary. For the most granular adjustment of boundaries, the setStart()
and setEnd() methods let you specify a reference node (where to start counting

the offset) and the offset integer value.

If you need to select an insertion point (for example, to insert some content into

an existing node), you can position either end point where you want it, and then

invoke the collapse() method. A parameter determines whether the collapse

should occur at the range’s start or end point.

A suite of other methods lets your scripts work with the contents of a range

directly. You can copy (cloneContents()), delete (deleteContents(),

extractContents()), insert a node (insertNode()), and even surround a range’s

contents with a new parent node (surroundContents()). Several properties let

your scripts examine information about the range, such as the offset values, the

containers that hold the offset locations, whether the range is collapsed, and a ref-

erence to the next outermost node that contains both the start and end points.

Netscape adds a proprietary method to the Range object (which is actually a

method of an object that is built around the Range object) called

createContextualFragment(). This method lets scripts create a valid node (of

type DocumentFragment) from arbitrary strings of HTML content — a feature that

the W3C DOM does not (yet) offer. This method was devised at first as a substitute

for what eventually became the NN6 innerHTML property.

Using the Range object can be a bit tedious, because it often requires a number

of script statements to execute an action. Three basic steps are generally required

to work with a Range object:

1. Create the text range.

2. Set the start and end points.

3. Act on the range.

Note

Range

(c) ketabton.com: The Digital Library

429Chapter 19 ✦ Body Text Objects

As soon as you are comfortable with this object, you will find it provides a lot of

flexibility in scripting interaction with body content. For ideas about applying the

Range object in your scripts, see the examples that accompany the descriptions of

individual properties and methods in the following sections.

Properties
collapsed

Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The collapsed property reports whether a range has its start and end points

set to the same position in a document. If the value is true, then the range’s start

and end containers are the same and the offsets are also the same. You can use this

property to verify that a range is in the form of an insertion pointer just prior to

inserting a new node:

if (rng.collapsed) {
rng.insertNode(someNewNodeReference)

}

Example on the CD-ROM

Related Items: endContainer, endOffset, startContainer, startOffset
properties; Range.collapse() method.

commonAncestorContainer
Value: Node object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The commonAncestorContainer property returns a reference to the document

tree node that both the start and end points have in common. It is not uncommon

for a range’s start point to be in one node and the end point to be in another. Yet a

more encompassing node most likely contains both of those nodes, perhaps even

the document.body node. The W3C DOM specification also calls the shared ances-

tor node the root node for the range (a term that may make more sense to you).

On the
CD-ROM

Range.commonAncestorContainer

(c) ketabton.com: The Digital Library

430 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: endContainer, endOffset, startContainer, startOffset
properties; all “set” and “select” methods of the Range object.

endContainer
startContainer

Value: Node object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The endContainer and startContainer properties return a reference to the

document tree node that contains the range’s end point and start point, respec-

tively. Be aware that the object model calculates the container, and the container

may not be the reference you used to set the start and end points of a range. For

example, if you use the selectNode() method to set the start and end points of a

range to encompass a particular node, the containers of the end points are most

likely the next outermost nodes. Thus, if you want to expand a range to the start of

the node that contains the current range’s start point, you can use the value

returned by the startContainer property as a parameter to the setStartBefore()
method:

rng.setStartBefore(rng.startContainer)

Example on the CD-ROM

Related Items: commonAncestor, endOffset, startOffset properties; all “set”

and “select” methods of the Range object.

endOffset
startOffset

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The endOffset and startOffset properties return an integer count of the num-

ber of characters or nodes for the location of the range’s end point and start point,

On the
CD-ROM

On the
CD-ROM

Range.endOffset

(c) ketabton.com: The Digital Library

431Chapter 19 ✦ Body Text Objects

respectively. These counts are relative to the node that acts as the container node

for the position of the boundary (see Range.endContainer and Range.
startContainer properties earlier in this chapter).

When a boundary is at the edge of a node (or perhaps “between” nodes is a bet-

ter way to say it), the integer returned is the offset of nodes (zero-based) within the

boundary’s container. But when the boundary is in the middle of a text node, the

integer returned is an index of the character position within the text node. The fact

that each boundary has its own measuring system (nodes versus characters, rela-

tive to different containers) can get confusing if you’re not careful, because conceiv-

ably the integer returned for an end point could be smaller than that for the start

point. Consider the following nested elements:

<P>This paragraph has an emphasized segment.</P>

The next script statements set the start of the range to a character within the

first text node and the end of the range to the end of the EM node:

var rng = document.createRange()
rng.setStart(document.getElementById(“myP”).firstChild, 19)
rng.setEndAfter(document.getElementById(“myEM”))

Using bold face to illustrate the body text that is now part of the range and the

pipe (|) character to designate the boundaries as far as the nodes are concerned,

here is the result of the above script execution:

<P ID=”myP”>This paragraph has |an <EM ID=”myEM”>emphasized| segment.</P>

Because the start of the range is in a text node (the first child of the P element),

the range’s startOffset value is 19, which is the zero-based character position of

the “a” of the word “an.” The end point, however, is at the end of the EM element.

The system recognizes this point as a node boundary, and thus counts the

endOffset value within the context of the end container: the P element. The

endOffset value is 2 (the P element’s text node is node index 0; the EM element is

node index 1; and the position of the end point is at the start of the P element’s final

text node, at index 2).

For the endOffset and startOffset values to be of any practical use to a

script, you must also use the endContainer and startContainer properties to

read the context for the offset integer values.

Example on the CD-ROM

Related Items: endContainer, startContainer properties; all “set” and “select”

methods of the Range object.

Methods
cloneContents()
cloneRange()

Returns: DocumentFragment node reference; Range object reference.

On the
CD-ROM

Range.cloneContents()

(c) ketabton.com: The Digital Library

432 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The cloneContents() method (not implemented in NN6.0, but expected in a

future release) takes a snapshot copy of the contents of a Range object and returns

a reference to that copy. The copy is stored in the browser’s memory, but is not

part of the document tree. The cloneRange() method (available in NN6.0) per-

forms the same action on an entire range and stores the range copy in the

browser’s memory. A range’s contents can consist of portions of multiple nodes

and may not be surrounded by an element node; that’s why its data is of the type

DocumentFragment (one of the W3C DOM’s node types). Because a

DocumentFragment node is a valid node, it can be used with other document tree

methods where nodes are required as parameters. Therefore, you can clone a text

range to insert a copy elsewhere in the document.

In contrast, the cloneRange() method deals with range objects. While you are

always free to work with the contents of a range object, the cloneRange() method

returns a reference to a range object, which acts as a kind of wrapper to the con-

tents (just as it does when the range is holding content in the main document). You

can use the cloneRange() method to obtain a copy of one range to compare the

end points of another range (via the Range.compareBoundaryPoints() method).

Example on the CD-ROM

Related Items: compareBoundaryPoints(), extractContents() methods.

collapse([startBoolean])
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Use the collapse() method to shrink a range from its current size down to a

single insertion point between characters. Collapsing a range becomes more impor-

tant than you may think at first, especially in a function that is traversing the body

or large chunk of text. For example, in a typical looping word-counting script, you

create a text range that encompasses the body fully. To begin counting words, you

can first collapse the range to the insertion point at the very beginning of the range.

Next, use the expand() method to set the range to the first word of text (and incre-

ment the counter if the expand() method returns true). At that point, the text

range extends around the first word. You want the range to collapse at the end of

the current range so that the search for the next word starts after the current one.

Use collapse() once more, but this time with a twist of parameters.

On the
CD-ROM

Range.collapse()

(c) ketabton.com: The Digital Library

433Chapter 19 ✦ Body Text Objects

The optional parameter of the collapse() method is a Boolean value that

directs the range to collapse itself either at the start or end of the current range.

The default behavior is the equivalent of a value of true, which means that unless

otherwise directed, a collapse() method shifts the text range to the point in front

of the current range. This method works great at the start of a word-counting script,

because you want the text range to collapse to the start of the text. But for subse-

quent movements through the range, you want to collapse the range so that it is

after the current range. Thus, you include a false parameter to the collapse()
method.

Example on the CD-ROM

Related Items: Range.setEnd(), Range.setStart() methods.

compareBoundaryPoints(typeInteger,
sourceRangeRef)

Returns: Integer (-1, 0, or 1).

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Generating multiple range objects and assigning them to different variables is

not a problem. You can then use the compareBoundaryPoints() method to com-

pare the relative positions of start and end points of both ranges. One range is the

object you use to invoke the compareBoundaryPoints() method, and the other

range is the second parameter of the method. The order in which you reference the

two ranges influences the results, based on the value assigned to the first

parameter.

Values for the first parameter can be one of four constant values that are proper-

ties of the static Range object: Range.START_TO_START, Range.START_TO_END,

Range.END_TO_START, and Range.END_TO_END. What these values specify is which

point of the current range is compared with which point of the range passed as the

second parameter. For example, consider the following body text that has two text

ranges defined within it:

It was the best of times.

The first text range (assigned in our discussion here to variable rng1) is shown

in boldface, while the second text range (rng2) is shown in bold-italic. In other

words, rng2 is nested inside rng1. We can compare the position of the start of rng1
against the position of the start of rng2 by using the Range.START_TO_START value

as the first parameter of the compareBoundaryPoints() method:

var result = rng1.compareBoundaryPoints(Range.START_TO_START, rng2)

On the
CD-ROM

Range.compareBoundaryPoints()

(c) ketabton.com: The Digital Library

434 Part III ✦ Document Objects Reference

The value returned from the compareBoundaryPoints() method is an integer of

one of three values. If the positions of both points under test are the same, then the

value returned is 0. If the start point of the (so-called source) range is before the

range on which you invoke the method, the value returned is -1; in the opposite

positions in the code, the return value is 1. Therefore, from the example above,

because the start of rng1 is before the start of rng2, the method returns -1. If you

change the statement to invoke the method on rng2, as in

var result = rng2.compareBoundaryPoints(Range.START_TO_START, rng1)

the result is 1.

In the first release of NN6, the returned values of 1 and -1 are the opposite of
what they should be. This is to be corrected in a subsequent release.

In practice, this method is helpful in knowing if two ranges are the same, if one of

the boundary points of both ranges is the same, or if one range starts where the

other ends.

Example (with Listing 19-4) on the CD-ROM

Related Items: None.

createContextualFragment(“text”)
Returns: W3C DOM DocumentFragment Node.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The createContextualFragment() method is a method of the NN6 Range
object (a proprietary extension of the W3C DOM Range object). This method pro-

vides a way, within the context of the W3C DOM Level 2 node hierarchy to create a

string of HTML text (with or without HTML tags, as needed) for insertion or

appendage to existing node trees. During the development of the NN6 browser, this

method filled a gap that was eventually filled by Netscape’s adoption of the

Microsoft proprietary innerHTML property. The method obviates the need for

tediously assembling a complex HTML element via a long series of

document.createElement() and document.createTextNode() methods for

each segment, plus the assembly of the node tree prior to inserting it into the

actual visible document. The existence of the innerHTML property of all element
objects, however, reduces the need for the createContextualFragment()
method, while allowing more code to be shared across browser brands.

The parameter to the createContextualFragment() method is any text,

including HTML tags. To invoke the method, however, you need to have an existing

On the
CD-ROM

Note

Range.createContextualFragment()

(c) ketabton.com: The Digital Library

435Chapter 19 ✦ Body Text Objects

range object available. Therefore, the sequence used to generate a document frag-

ment node is

var rng = document.createRange()
rng.selectNode(document.body) // any node will do
var fragment = rng.createContextualFragment(“<H1>Howdy</H1>”)

As a document fragment, the node is not part of the document node tree until

you use the fragment as a parameter to one of the tree modification methods, such

as Node.insertBefore() or Node.appendChild().

Example on the CD-ROM

Related Items: Node object (Chapter 15).

deleteContents()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The deleteContents() method removes all contents of the current range from

the document tree. After deletion, the range collapses to an insertion point where

any surrounding content (if any) cinches up to its neighbors.

Some alignment of a range’s boundaries forces the browser to make decisions

about how element boundaries inside the range are treated after the deletion. An

easy deletion is one for which the range boundaries are symmetrical. For example,

consider the following HTML with a range highlighted in bold:

<P>One paragraph with an emphasis inside.</P>

After you delete the contents of this range, the text node inside the EM element

disappears, but the EM element remains in the document tree (with no child

nodes). Similarly, if the range is defined as being the entire second child node of the

P element, as follows

<P>One paragraph with an emphasis inside.</P>

then deleting the range contents removes both the text node and the EM element

node, leaving the P element with a single, unbroken text node as a child (although

in the previous case, an extra space would be between the words “an” and “inside”

because the EM element does not encompass a space on either side).

When range boundaries are not symmetrical, the browser does its best to main-

tain document tree integrity after the deletion. Consider the following HTML and

range:

<P>One paragraph with an emphasis inside.</P>

On the
CD-ROM

Range.deleteContents()

(c) ketabton.com: The Digital Library

436 Part III ✦ Document Objects Reference

After deleting this range’s contents, the document tree for this segment looks

like the following:

<P>One paragraph phasis inside.</P>

The range collapses to an insertion point just before the tag. But notice

that the EM element persisted to take care of the text still under its control. Many

other combinations of range boundaries and nodes are possible, so be sure that

you check out the results of a contents deletion for asymmetrical boundaries

before applying the deletion.

Example on the CD-ROM

Related Items: Range.

detach()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The detach() method instructs the browser to release the current range object

from the object model. In the process, the range object is nulled out to the extent

that an attempt to access the object results in a script error. You can still assign a

new range to the same variable if you like. You are not required to detach a range

when you’re finished with it, and the browser resources employed by a range are

not that large. But it is good practice to “clean up after yourself,” especially when a

script repetitively creates and manages a series of new ranges.

Related Items: document.createRange() method.

extractContents()
Returns: DocumentFragment node reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The extractContents() method (not implemented in the first release of NN6)

deletes the contents of the range and returns a reference to the document fragment

node that is held in the browser memory, but which is no longer part of the docu-

ment tree. A range’s contents can consist of portions of multiple nodes and may not

be surrounded by an element node; that’s why its data is of the type

On the
CD-ROM

Range.extractContents()

(c) ketabton.com: The Digital Library

437Chapter 19 ✦ Body Text Objects

DocumentFragment (one of the W3C DOM’s node types). Because a

DocumentFragment node is a valid node, it can be used with other document tree

methods where nodes are required as parameters. Therefore, you can extract a text

range from one part of a document to insert elsewhere in the document.

Example on the CD-ROM

Related Items: cloneContents(), deleteContents() methods.

insertNode(nodeReference)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The insertNode() method (not implemented in the first release of NN6) inserts

a node at the start point of the current range. The node being inserted may be an

element or text fragment node, and its source can be any valid node creation mech-

anism, such the document.createTextNode() method or any node extraction

method.

Example (with Listing 19-5) on the CD-ROM

Related Items: None.

isValidFragment(“HTMLText”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The isValidFragment() method belongs to the Netscape-specific version of

the W3C DOM Range object. The method validates text as to whether it can be suc-

cessfully converted to a document fragment node via Netscape’s other proprietary

Range method, createContextualFragment(). Knowing that this is not an HTML

or XML validator is important. Ideally, you pass the text through the

isValidFragment() method prior to creating the fragment, as in the following:

var rng = document.createRange()
rng.selectNode(document.body)

On the
CD-ROM

On the
CD-ROM

Range.isValidFragment()

(c) ketabton.com: The Digital Library

438 Part III ✦ Document Objects Reference

var newHTML = “<H1>Howdy</H1>”
if (rng.isValidFragment(newHTML)) {

var newFragment = rng.createContextualFragment(newHTML)
}

See the description of the Range.createContextualFragment() method ear-

lier in this chapter for the application of a document fragment node in NN6.

Example on the CD-ROM

Related Items: Range.createContextualFragment() method.

selectNode(nodeReference)
selectNodeContents(nodeReference)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The selectNode() and selectNodeContents() methods are convenience

methods for setting both end points of a range to surround a node or a node’s con-

tents. The kind of node you supply as the parameter to either method (text node or

element node) has a bearing on the range’s container node types and units of mea-

sure for each (see the container- and offset-related properties of the Range object

earlier in this chapter).

Starting with the selectNode() method, if you specify an element node as the

one to select, the start and end container node of the new range is the next outer-

most element node; offset values count nodes within that parent element. If you

specify a text node to be selected, the container node for both ends is the parent

element of that text node; offset values count the nodes within that parent.

With the selectNodeContents() method, the start and end container nodes are

the very same element specified as the parameter; offset values count the nodes

within that element. If you specify a text node’s contents to be selected, the text

node is the start and end parent, but the range is collapsed at the beginning of the

text.

By and large, you specify element nodes as the parameter to either method,

allowing you to set the range to either encompass the element (via selectNode())

or just the contents of the element (via selectNodeContents()).

Example on the CD-ROMOn the
CD-ROM

On the
CD-ROM

Range.selectNode()

(c) ketabton.com: The Digital Library

439Chapter 19 ✦ Body Text Objects

Related Items: setEnd(), setEndAfter(), setEndBefore(), setStart(),

setStartAfter(), setStartBefore() methods.

setEnd(nodeReference, offset)
setStart(nodeReference, offset)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

You can adjust the start and end points of a text range independently via the

setStart() and setEnd() methods. While not as convenient as the

selectNode() or selectNodeContents() methods, these two methods give you

the ultimate in granularity over precise positioning of a range boundary.

The first parameter to both methods is a reference to a node. This reference can

be an element or text node, but your choice here also influences the kind of mea-

sure applied to the integer offset value supplied as the second parameter. When the

first parameter is an element node, the offset counts are in increments of child

nodes inside the specified element node. But if the first parameter is a text node,

the offset counts are in increments of characters within the text node.

When you adjust the start and end points of a range with these methods, you

have no restrictions to the symmetry of your boundaries. One boundary can be

defined relative to a text node, while the other relative to an element node — or vice

versa.

To set the end point of a range to the last node or character within a text node

(depending on the unit of measure for the offset parameter), you can use the

length property of the units being measured. For example, to set the end point to

the end of the last node within an element (perhaps there are multiple nested ele-

ments and text nodes within that outer element), you can use the first parameter

reference to help you get there:

rng.setEnd(document.getElementById(“myP”),
document.getElementById(“myP”).childNodes.length)

These kinds of expressions get lengthy, so you may want to make a shortcut to

the reference to simplify the values of the parameters, as shown in this version that

sets the end point to after the last character of the last text node of a P element:

var nodeRef = document.getElementById(“myP”).lastChild
rng.setEnd(nodeRef, nodeRef.nodeValue.length)

In both previous examples with the length properties, the values of those prop-

erties are always pointing to the node or character position after the final object

because the index values for those objects’ counts are zero-based. Also bear in

mind that if you want to set a range end point at the edge of a node, you have four

other methods to choose from (setEndAfter(), setEndBefore(),

setStartAfter(), setStartBefore()). The setEnd() and setStart() methods

are best used when an end point needs to be set at a location other than at a node

boundary.

Range.setEnd()

(c) ketabton.com: The Digital Library

440 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: selectNode(), selectNodeContents(), setEndAfter(),

setEndBefore(), setStartAfter(), setStartBefore() methods.

setEndAfter(nodeReference)
setEndBefore(nodeReference)
setStartAfter(nodeReference)
setStartBefore(nodeReference)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

You can adjust the start and end points of a text range relative to existing node

boundaries via your choice of these four methods. The “before” and “after” designa-

tions are used to specify which side of the existing node boundary the range should

have for its boundary. For example, using setStartBefore() and setEndAfter()
with the same element node as a parameter is the equivalent of the selectNode()
method on that element. You may also specify a text node as the parameter to any

of these methods. But because these methods work with node boundaries, the off-

set values are always defined in terms of node counts, rather than character

counts. At the same time, however, the boundaries do not need to be symmetrical,

so that one boundary can be inside one node and the other boundary inside

another node.

Example on the CD-ROM

Related Items: selectNode(), selectNodeContents(), setEnd(), setStart()
methods.

surroundContents(nodeReference)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The surroundContents() method (not implemented in the first release of NN6)

surrounds the current range with a new parent element. Pass the new parent

On the
CD-ROM

On the
CD-ROM

Range.surroundContents()

(c) ketabton.com: The Digital Library

441Chapter 19 ✦ Body Text Objects

element as a parameter to the method. No document tree nodes or elements are

removed or replaced in the process, but the current range becomes a child node of

the new node; if the range coincides with an existing node, then the relationship

between that node and its original parent becomes that of grandchild and grandpar-

ent. An application of this method may be to surround user-selected text with a

SPAN element whose class renders the content with a special font style or other dis-

play characteristic based on a style sheet selector for that class name.

When the element node being applied as the new parent has child nodes itself,

those nodes are discarded before the element is applied to its new location.

Therefore, for the most predictable results, using content-free element nodes as the

parameter to the surroundContents() method is best.

Example (with Listing 19-6) on the CD-ROM

Related Items: Range.insertNode() method.

toString()
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Use the toString() method to retrieve a copy of the body text that is contained

by the current text range. The text returned from this method is ignorant of any

HTML tags or node boundaries that exist in the document tree. You also use this

method (eventually) to get the text of a user selection, after it has been converted

to a text range (as soon as NN6 implements the planned feature).

Example on the CD-ROM

Related Items: selection.getRangeAt(), Range.extractContents() methods.

selection Object

Properties Methods Event Handlers

type clear()

createRange()

empty()

On the
CD-ROM

On the
CD-ROM

selection

(c) ketabton.com: The Digital Library

442 Part III ✦ Document Objects Reference

Syntax
Accessing selection object properties or methods:

(IE4+) [window.]document.selection.property | method()

About this object
In some ways, the short list of properties and methods for the selection object is

misleading. The items shown in the list belong to the IE4+ selection object. NN6

implements a selection object (not a part of the W3C DOM), but the first release

of the browser does not provide a way to create such an object. Opening remarks

below provide a preview of how the NN6 selection object will work whenever it is

implemented. Details about properties and methods are not provided at this time.

The IE version
The IE4+ selection object is a property of the document object, providing

scripted access to any body text or text in a form text control that is selected either

by the user or by script. A selection object of one character or more is always

highlighted on the page, and only one selection object can be active at any given

instant.

Take advantage of the selection object when your page invites a user to select

text for some operation that utilizes the selected text. The best event to use for work-

ing with a selection is the onMouseUp event handler. This event fires on every release

of the mouse, and your script can investigate the document.selection object to see

if any text has been selected (using the selection’s type property). Turn a selection

into a TextRange object via the createRange() method. You can then use the text
property of the text range to access the actual selected characters. This sequence

may seem like a long way to go for the text, perhaps, but the IE selection object

provides no direct property for reading or writing the selected text.

If you intend to perform some action on a selection, you may not be able to trig-

ger that action by way of a button or link. In some browser versions and operating

systems, clicking one of these elements automatically deselects the body selection.

The NN version
Navigator 4 provides the document.getSelection() method to let scripts look

at the selected body text, but you have no selection object per se for that

browser. The NN6 selection object intends to improve the situation.

The document.getSelection() is deprecated in NN6 in favor of the round-

about way of getting a copy of a selection similar to the IE route described previ-

ously: Make a range out of the selection and get the text of the range. To obtain the

selection object representing the current selection, use the

window.getSelection() method (as soon as the method is implemented in NN6).

One important difference between the IE and NN selections is that the NN6 selec-
tion object works only on body text, and not on selections inside text-oriented

form controls.

An NN6 selection object has relationships with the document’s node tree in

that the object defines itself by the nodes (and offsets within those nodes) that

encase the start and end points of a selection. When a user drags a selection, the

node in which the selection starts is called the anchor node; the node holding the

text at the point of the selection release is called the focus node; for double- or

selection

(c) ketabton.com: The Digital Library

443Chapter 19 ✦ Body Text Objects

triple-clicked selections, the direction between anchor and focus nodes is in the

direction of the language script (for example, left-to-right in Latin-based script fami-

lies). In many ways, an NN6+ selection object behaves just as the W3C DOM

Range object, complete with methods to collapse and extend the selection. Unlike a

range, however, the text encompassed by a selection object is highlighted on the

page. If your scripts need to work with the nodes inside a selection, the

getRangeAt() method of the selection object returns a range object whose

boundary points coincide with the selection’s boundary points.

Properties
type

Value: String Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The type property returns Text whenever a selection exists on the page.

Otherwise the property returns None. A script can use this information to deter-

mine if a selection is made on the page:

if (document.selection.type == “Text”) {
// process selection
...

}

Microsoft indicates that this property can sometimes return Control, but that

terminology is associated with an edit mode outside the scope of this book.

Example (with Listing 19-7) on the CD-ROM

Related Items: TextRange.select() method.

Methods
clear()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Use the clear() method to delete the current selection from the document. To

the user, the clear() method has the same effect as setting the TextRange.text

On the
CD-ROM

selection.clear()

(c) ketabton.com: The Digital Library

444 Part III ✦ Document Objects Reference

property to an empty string. The difference is that you can use the clear()
method without having to generate a text range for the selection. After you delete a

selection, the selection.type property returns None.

Example on the CD-ROM

Related Items: selection.empty() method.

createRange()
Returns: TextRange object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

To generate a text range for a user selection in IE, invoke the createRange()
method of the selection object. I’m not sure why the method for the selection
object is called createRange() while text ranges for other valid objects are cre-

ated with a createTextRange() method. The result of both methods is a full-

fledged TextRange object.

Example on the CD-ROM

Related Items: TextRange object.

empty()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The empty() method deselects the current IE selection. After deselection, the

selection.type property returns None. The action of the empty() method is the

same as the UnSelect command invoked via the execCommand() method for a doc-

ument. If the selection was made from a TextRange object (via the

TextRange.select() method), the empty() method affects only the visible selec-

tion and not the text range.

On the
CD-ROM

On the
CD-ROM

selection.empty()

(c) ketabton.com: The Digital Library

445Chapter 19 ✦ Body Text Objects

Example on the CD-ROM

Related Items: selection.clear() method.

Text and TextNode Objects

Properties Methods Event Handlers

attributes† appendChild()†

childNodes† appendData()

data cloneNode()†

firstChild† deleteData()

lastChild† hasChildNodes()†

length† insertBefore()†

localName† insertData()

namespaceURI† normalize()†

nextSibling† removeChild()†

nodeName† replaceChild()†

nodeType† replaceData()

nodeValue† splitText()

ownerDocument† substringData()

parentNode†

prefix†

previousSibling†

†See Chapter 15

Syntax
Accessing Text and TextNode object properties or methods:

(IE5+/NN6+) [window.]document.getElementById(“id”).textNodeRef.property |
method()

About this object
Discussing both the Text object of the W3C DOM and NN6 in the same breath as

the IE5+ TextNode object is a little tricky. Conceptually, they are the same kind of

On the
CD-ROM

TextNode

(c) ketabton.com: The Digital Library

446 Part III ✦ Document Objects Reference

object in that they are the document tree objects — text nodes — that contain an

HTML element’s text (see Chapter 14 for details on the role of the text node in the

document object hierarchy). Generating a new text node by script is achieved the

same way in both object models: document.createTextNode(). What makes the

discussion of the two objects tricky is that while the W3C DOM version comes from

a strictly object-oriented specification (in which a text node is an instance of a

CharacterData object, which, in turn is an instance of the generic Node object),

the IE object model is not quite as complete. For example, while the W3C DOM Text
object inherits all of the properties and methods of the CharacterData and Node
definitions, the IE TextNode object exposes only those properties and method that

Microsoft deems appropriate.

No discrepancy in terminology gets in the way as to what to call these objects

because their object names never become part of the script. Instead script state-

ments always refer to text nodes by other means, such as through a child node-

related property of an element object or as a variable that receives the result of the

document.createTextNode() method.

While both objects share a number of properties and one method, the W3C DOM

Text object contains a few methods that have “data” in their names. These proper-

ties and methods are inherited from the CharacterData object in the DOM specifi-

cation. They are discussed as a group in the section about object methods in this

chapter. In all cases, check the browser version support for each property and

method described here.

Properties
data

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The data property contains the string comprising the text node. Its value is iden-

tical to the nodeValue property of a text node. See the description of the

nodeValue property in Chapter 15.

Example on the CD-ROM

Related Items: nodeValue property of all element objects (Chapter 15).

On the
CD-ROM

TextNode.data

(c) ketabton.com: The Digital Library

447Chapter 19 ✦ Body Text Objects

Methods
appendData(“text”)
deleteData(offset, count)
insertData(offset, “text”)
replaceData(offset, count, “text”)
substringData(offset, count)

Returns: See text.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

These five methods of the W3C DOM Text object provide scripted manipulation

of the text inside a text node. Methods that modify the node’s data automatically

change the values of both the data and nodeValue properties.

The purposes of these methods are obvious for the most part. Any method that

requires an offset parameter uses this integer value to indicate where in the exist-

ing text node the deletion, insertion, or replacement starts. Offsets are zero-based,

meaning that to indicate the action should take place starting with the first charac-

ter, specify a zero for the parameter. A count parameter is another integer, but one

that indicates how many characters are to be included. For example, consider a

text node that contains the following data:

abcdefgh

This node could be a node of an element on the page or a node that has been

created and assigned to a variable but not yet inserted into the page. To delete the

first three characters of that text node, the statement is

textNodeReference.deleteData(0,3)

This leaves the text node content as

defgh

As for the replaceData() method, the length of the text being put in place of

the original chunk of text need not match the count parameter. The count parame-

ter, in concert with the offset parameter, defines what text is to be removed and

replaced by the new text.

The substringData() method is similar to the JavaScript core language

String.substr() method in that both require parameters indicating the offset

within the string to start reading and for how many characters. You get the same

result with the substringData() method of a text node as you do from a

nodeValue.substr() method when both are invoked from a valid text node

object.

Of all five methods discussed here, only substringData() returns a value: a

string.

TextNode.appendData()

(c) ketabton.com: The Digital Library

448 Part III ✦ Document Objects Reference

Example (with Listing 19-8) on the CD-ROM

Related Items: appendChild(), removeChild(), replaceChild() methods of

element objects (Chapter 15).

splitText(offset)
Returns: Text or TextNode object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The splitText() method performs multiple actions with one blow. The offset
parameter is an integer indicating the zero-based index position within the text

node at which the node is to divide into two nodes. After you invoke the method on

the current text node, the current node consists of the text from the beginning of

the node up to the offset position. The method returns a reference to the text node

whose data starts with the character after the dividing point and extends to the end

of the original node. Users won’t notice any change in the rendered text: This

method influences only the text node structure of the document. Using this method

means, for example, that an HTML element that starts with only one text node will

have two after the splitText() method is invoked. The opposite action (combin-

ing contiguous text node objects into a single node) is performed by the NN6 nor-
malize() method (Chapter 15).

Example on the CD-ROM

Related Items: normalize() method (Chapter 15).

TextRange Object

Properties Methods Event Handlers

boundingHeight collapse()

boundingLeft compareEndPoints()

boundingTop duplicate()

boundingWidth execCommand()

htmlText expand()

On the
CD-ROM

On the
CD-ROM

TextRange

(c) ketabton.com: The Digital Library

449Chapter 19 ✦ Body Text Objects

Properties Methods Event Handlers

offsetLeft† findText()

offsetTop† getBookmark()

text getBoundingClientRect()†

getClientRects()†

inRange()

isEqual()

move()

moveEnd()

moveStart()

moveToBookmark()

moveToElementText()

moveToPoint()

parentElement()

pasteHTML()

queryCommandEnabled()

queryCommandIndeterm()

queryCommandState()

queryCommandSupported()

queryCommandText()

queryCommandValue()

scrollIntoView()†

select()

setEndPoint()

†See Chapter 15

Syntax
Creating a TextRange object:

var rangeRef = document.body.createTextRange()
var rangeRef = buttonControlRef.createTextRange()
var rangeRef = textControlRef.createTextRange()
var rangeRef = document.selection.createRange()

Accessing TextRange object properties or methods:

(IE4+) rangeRef.property | method([parameters])

TextRange

(c) ketabton.com: The Digital Library

450 Part III ✦ Document Objects Reference

About this object
Unlike most of the objects covered in Part III of the book, the IE4+ TextRange

object is not tied to a specific HTML element. The TextRange object is, instead, an

abstract object that represents text content anywhere on the page (including text

content of a text-oriented form control) between a start point and an end point (col-

lectively, the boundaries of the range). The user may not necessarily know that a

TextRange object exists, because no requirement exists to force a TextRange
object to physically select text on the page (although the TextRange object can be

used to assist scripts in automating the selection of text; or a script may turn a user

selection into a TextRange object for further processing).

The purpose of the TextRange object is to give scripts the power to examine,

modify, remove, replace, and insert content on the page. Start and end points of an

IE TextRange object are defined exclusively in terms of character positions within

the element that is used to create the range (usually the BODY element, but also

button- and text-related form control elements). Character positions of body text do

not take into account source code characters that may define HTML elements. This

factor is what distinguishes a TextRange’s behavior from, for instance, the various

properties and methods of HTML elements that let you modify or copy elements

and their text (for example, innerText and outerText properties). A TextRange
object’s start point can be in one element, and its end point in another. For exam-

ple, consider the following HTML:

<P>And now to introduce our very special guest:</P>

If the text shown in boldface indicates the content of a TextRange object, you

can see that the range crosses element boundaries in a way that makes HTML ele-

ment object properties difficult to use for replacing that range with some other text.

Challenges still remain in this example, however. Simply replacing the text of the

range with some other text forces your script (or the browser) to reconcile the

issue of what to do about the nested EM element, because the TextRange object

handles only its text. (Your word processing program must address the same kind

of issue when you select a phrase that starts in italic but ends in normal font, and

then you paste text into that selection.)

An important aspect of the TextRange object is that the size of the range can be

zero or more characters. Start and end points always position themselves between

characters. When the start point and end point of a range are at the same location,

the range acts as a text insertion pointer. In fact, when the TextRange object repre-

sents text inside a text-related form control, the select() method of the

TextRange object can be used to display the text insertion pointer where your

script desires. Therefore, through the TextRange object you can script your forms

to always display the text insertion pointer at the end of existing text in a text box

or textarea when the control receives focus.

Working with text ranges
To create a TextRange object, use the createTextRange() method with the

document.body object or any button- or text-related form control object. If you

want to convert a block of selected text to a text range, use the special

TextRange

(c) ketabton.com: The Digital Library

451Chapter 19 ✦ Body Text Objects

createRange() method of the document.selection object. Regardless of how

you create it, the range encompasses the entire text of the object used to generate

the range. In other words, the start point is at the very beginning of the text and the

end point is at the very end. Note that when you create a TextRange object from

the BODY element, text that is inside text-related form controls is not part of the

text of the TextRange (just as text field content isn’t selected if you select manually

the entire text of the page).

After you create a TextRange object (assigned to a variable), the typical next

steps involve some of the many methods associated with the object that help nar-

row the size of the range. Some methods (move(), moveEnd(), moveStart(), and

sentEndPoint()) offer manual control over the intra-character position for the

start and end points. Parameters of some of these methods understand concepts,

such as words and sentences, so not every action entails tedious character counts.

Another method, moveToElementText(), automatically adjusts the range to

encompass a named element. The oft-used collapse() method brings the start

and end points together at the beginning or end of the current range — helpful

when a script must iterate through a range for tasks, such as word counting or

search and replace. The expand() method can extend a collapsed range to encom-

pass the whole word, whole sentence, or entire range surrounding the insertion

point. Perhaps the most powerful method is findText(), which allows scripts to

perform single or global search and replace operations on body text.

After the range encompasses the desired text, several other methods let scripts

act on the selection. The types of operations include scrolling the page to make the

text represented by the range visible to the user (scrollIntoView()) and select-

ing the text (select()) to provide visual feedback to the user that something is

happening (or to set the insertion pointer at a location in a text form control). An

entire library of additional commands are accessed through the execCommand()
method for operations, such as copying text to the clipboard and a host of format-

ting commands that can be used in place of style sheet property changes. To swap

text from the range with new text accumulated by your script, you can modify the

text property of the range.

Using the TextRange object can be a bit tedious, because it often requires a

number of script statements to execute an action. Three basic steps are generally

required to work with a TextRange object:

1. Create the text range.

2. Set the start and end points.

3. Act on the range.

As soon as you are comfortable with this object, you will find it provides a lot of

flexibility in scripting interaction with body content. For ideas about applying the

TextRange object in your scripts, see the examples that accompany the following

descriptions of individual properties and methods.

TextRange

(c) ketabton.com: The Digital Library

452 Part III ✦ Document Objects Reference

About browser compatibility
The TextRange object is available only for the Windows 9x/NT version of IE4

and IE5. MacOS versions through IE5 do not support the TextRange object.

The W3C DOM and NN6 implement a slightly different concept of text ranges in

what they call the Range object. In many respects, the fundamental way of working

with a Range object is the same as for a TextRange object: create, adjust start and

end points, and act on the range. But the W3C version (like the W3C DOM itself) is

more conscious of the node hierarchy of a document. Properties and methods of

the W3C Range object reflect this node-centric point of view, so that most of the ter-

minology for the Range object differs from that of the IE TextRange object. As of

this writing, it is unknown if or when IE will implement the W3C Range object.

At the same time, the W3C Range object lacks a couple of methods that are quite

useful with the IE TextRange object — notably findText() and select(). On the

other hand, the Range object, as implemented in NN6, works on all OS platforms.

The bottom line question, then, is whether you can make range-related scripts

work in both browsers. While the basic sequence of operations is the same for both

objects, the scripting vocabulary is quite different. Table 19-1 presents a summary

of the property and method behaviors that the two objects have in common and

their respective vocabulary terms (sometimes the value of a property in one object

is accessed via a method in the other object). Notice that the ways of moving indi-

vidual end points are not listed in the table because the corresponding methods for

each object (for example, moveStart() in TextRange versus setStart() in

Range) use very different spatial paradigms.

Table 19-1 TextRange versus Range Common Denominators

TextRange Object Range Object

text toString()

collapse() collapse()

compareEndPoints() compareEndPoints()

duplicate() clone()

moveToElementText() selectContents()

parentElement() commonParent

To blend text range actions for both object models into a single scripted page,

you have to include script execution branches for each category of object model or

create your own API to invoke library functions that perform the branching. On the

IE side of things, too, you have to script around actions that can cause script errors

when run on MacOS and other non-Windows versions of the browser.

TextRange

(c) ketabton.com: The Digital Library

453Chapter 19 ✦ Body Text Objects

Properties
boundingHeight
boundingLeft
boundingTop
boundingWidth

Value: Integer Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Every text range has physical dimension and location on the page, even if you can-

not see the range reflected graphically with highlighting. Even a text insertion pointer

(meaning a collapsed text range) has a rectangle whose height equals the line height

of the body text in which the insertion point resides; its width, however, is zero.

The pixel dimensions of the rectangle of a text range can be retrieved via the

boundingHeight and boundingWidth properties of the TextRange object. When a

text range extends across multiple lines, the dimensions of the rectangle are equal

to the smallest single rectangle that can contain the text (a concept identical to the

bounding rectangle of inline body text, as described in the TextRectangle object

later in this chapter). Therefore, even a range consisting of one character at the end

of one line and another character at the beginning of the next, force the bounding

rectangle to be as wide as the paragraph element.

A text range rectangle has a physical location on the page. The top-left position

of the rectangle (with respect to the browser window edge) is reported by the

boundingTop and boundingLeft properties. In practice, text ranges that are gener-

ated from selections can report very odd boundingTop values in IE4 when the page

scrolls. Use the offsetTop and offsetLeft properties for more reliable results.

Example (with Listing 19-9) on the CD-ROM

Related Items: offsetLeft, offsetTop properties of element objects (Chapter 15).

htmlText
Value: String Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The htmlText property returns the HTML of the text contained by a text range.

If a range’s start and end points are at the very edges of an element’s text, then the

On the
CD-ROM

TextRange.htmlText

(c) ketabton.com: The Digital Library

454 Part III ✦ Document Objects Reference

HTML tag for that element becomes part of the htmlText property value. Also, if

the range starts in one element and ends partway in another, the tags that influence

the text of the end portion become part of the htmlText. This property is read-

only, so you cannot use it to insert or replace HTML in the text range (see the

pasteHTML() method and various insert commands associated with the

execCommand() method in the following section).

Example on the CD-ROM

Related Items: text property.

text
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Use the text property to view or change the string of visible characters that

comprise a text range. The browser makes some decisions for you if the range you

are about to change has nested elements inside. By and large, the nested element

(and any formatting that may be associated with it) is deleted, and the new text

becomes part of the text of the container that houses the start point of the text

range. By the same token, if the range starts in the middle of one element and ends

in the parent element’s text, the tag that governs the start point now wraps all of

the new text.

Example on the CD-ROM

Related Items: htmlText property.

Methods
collapse([startBoolean])

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Use the collapse() method to shrink a text range from its current size down to

a single insertion point between characters. This method becomes more important

On the
CD-ROM

On the
CD-ROM

TextRange.collapse()

(c) ketabton.com: The Digital Library

455Chapter 19 ✦ Body Text Objects

than you may think at first, especially in a function that is traversing the body or

large chunk of text. For example, in a typical looping word-counting script, you cre-

ate a text range that encompasses the full body (or text in a TEXTAREA). When the

range is created, its start point is at the very beginning of the text, and its end point

is at the very end. To begin counting words, you can first collapse the range to the

insertion point at the very beginning of the range. Next, use the expand() method

to set the range to the first word of text (and increment the counter if the expand()
method returns true). At that point, the text range extends around the first word.

What you want is for the range to collapse at the end of the current range so that

the search for the next word starts after the current one. Use collapse() once

more, but this time with a twist of parameters.

The optional parameter of the collapse() method is a Boolean value that

directs the range to collapse itself either at the start or end of the current range.

The default behavior is the equivalent of a value of true, which means that unless

otherwise directed, a collapse() method shifts the text range to the point in front

of the current range. That works great as an early step in the word-counting exam-

ple, because you want the text range to collapse to the start of the text before doing

any counting. But for subsequent movements through the range, you want to col-

lapse the range so that it is after the current range. Thus, you include a false
parameter to the collapse() method.

Example on the CD-ROM

Related Items: Range.collapse(), TextRange.expand() methods.

compareEndPoints(“type”, rangeRef)
Returns: Integer (-1, 0, or 1).

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Generating multiple TextRange objects and assigning them to different variables

is no problem. You can then use the compareEndPoints() method to compare the

relative positions of start and end points of two ranges. One range is the object that

you use to invoke the compareEndPoints() method, and the other range is the

second parameter of the method. The order doesn’t matter, because the first

parameter of the method determines which points in each range you will be com-

paring.

Values for the first parameter can be one of four explicit strings: StartToEnd,

StartToStart, EndToStart, and EndToEnd. What these values specify is which

point of the current range is compared with which point of the range passed as the

second parameter. For example, consider the following body text that has two text

ranges defined within it:

On the
CD-ROM

TextRange.compareEndPoints()

(c) ketabton.com: The Digital Library

456 Part III ✦ Document Objects Reference

It was the best of times.

The first text range (assigned in our discussion here to variable rng1) is shown

in boldface, while the second text range (rng2) is shown in bold-italic. In other

words, rng2 is nested inside rng1. We can compare the position of the start of rng1
against the position of the start of rng2 by using the StartToStart parameter of

the compareEndPoints() method:

var result = rng1.compareEndPoints(“StartToStart”, rng2)

The value returned from the compareEndPoints() method is an integer of one

of three values. If the positions of both points under test are the same, then the

value returned is 0. If the first point is before the second, the value returned is -1; if

the first point is after the second, the value is 1. Therefore, from the example above,

because the start of rng1 is before the start of rng2, the method returns -1. If you

changed the statement to invoke the method on rng2, as in

var result = rng2.compareEndPoints(“StartToStart”, rng1)

the result would be 1.

In practice, this method is helpful in knowing if two ranges are the same, if one of

the boundary points of both ranges is the same, or if one range starts where the

other ends.

Example (with Listing 19-10) on the CD-ROM

Related Items: Range.compareEndPoints() method.

duplicate()
Returns: TextRange object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The duplicate() method returns a TextRange object that is a snapshot copy of

the current TextRange object. In a way, a non-intuitive relationship exists between

the two objects. If you alter the text property of the copy without moving the start

or end points of the original, then the original takes on the new text. But if you

move the start or end points of the original, the text and htmlText of the original

obviously change, while the copy retains its properties from the time of the duplica-

tion. Therefore, this method can be used to clone text from one part of the docu-

ment to other parts.

Example on the CD-ROMOn the
CD-ROM

On the
CD-ROM

TextRange.duplicate()

(c) ketabton.com: The Digital Library

457Chapter 19 ✦ Body Text Objects

Related Items: Range.clone(), TextRange.isEqual() methods.

execCommand(“commandName”[, UIFlag[,
value]])

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE4+ for Win32 operating systems lets scripts access a very large number of com-

mands that act on insertion points, abstract text ranges, and selections that are

made with the help of the TextRange object. Access to these commands is through

the execCommand() method, which works with TextRange objects and the docu-
ment object (see the document.execCommand() method discussion in Chapter 18

and list of document- and selection-related commands in Table 18-3).

The first, required parameter is the name of the command that you want to exe-

cute. Only a handful of these commands offer unique capabilities that aren’t better

accomplished within the IE object model and style sheet mechanism. Of particular

importance is the command that lets you copy a text range into the Clipboard.

Most of the rest of the commands modify styles or insert HTML tags at the position

of a collapsed text range. These actions are better handled by other means, but

they are included in Table 19-2 for the sake of completeness only (see Table 18-3 for

additional commands).

Table 19-2 TextRange.execCommand() Commands

Command Parameter Description

Bold None Encloses the text range in a tag pair

Copy None Copies the text range into the Clipboard

Cut None Copies the text range into the Clipboard and
deletes it from the document or text control

Delete None Deletes the text range

InsertButton ID String Inserts a <BUTTON> tag at the insertion point,
assigning the parameter value to the ID
attribute

InsertFieldset ID String Inserts a <FIELDSET> tag at the insertion point,
assigning the parameter value to the ID
attribute

InsertHoritontalRule ID String Inserts an <HR> tag at the insertion point,
assigning the parameter value to the ID
attribute

Continued

TextRange.execCommand()

(c) ketabton.com: The Digital Library

458 Part III ✦ Document Objects Reference

Table 19-2 (continued)

Command Parameter Description

InsertIFrame ID String Inserts an <IFRAME> tag at the insertion point,
assigning the parameter value to the ID
attribute

InsertInputButton ID String Inserts an <INPUT TYPE=”button”> tag at
the insertion point, assigning the parameter
value to the ID attribute

InsertIntpuCheckbox ID String Inserts an <INPUT TYPE=”checkbox”> tag at
the insertion point, assigning the parameter
value to the ID attribute

InsertInputFileUpload ID String Inserts an <INPUT TYPE=”FileUpload”> tag
at the insertion point, assigning the parameter
value to the ID attribute

InsertInputHidden ID String Inserts an <INPUT TYPE=”hidden”> tag at
the insertion point, assigning the parameter
value to the ID attribute

InsertInputImage ID String Inserts an <INPUT TYPE=”image”> tag at the
insertion point, assigning the parameter value to
the ID attribute

InsertInputPassword ID String Inserts an <INPUT TYPE=”password”> tag at
the insertion point, assigning the parameter
value to the ID attribute

InsertInputRadio ID String Inserts an <INPUT TYPE=”radio”> tag at the
insertion point, assigning the parameter value to
the ID attribute

InsertInputReset ID String Inserts an <INPUT TYPE=”reset”> tag at the
insertion point, assigning the parameter value to
the ID attribute

InsertInputSubmit ID String Inserts an <INPUT TYPE=”submit”> tag at the
insertion point, assigning the parameter value to
the ID attribute

InsertIntputText ID String Inserts an <INPUT TYPE=”text”> tag at the
insertion point, assigning the parameter value to
the ID attribute

InsertMarquee ID String Inserts a <MARQUEE> tag at the insertion point,
assigning the parameter value to the ID attribute

InsertOrderedList ID String Inserts an tag at the insertion point,
assigning the parameter value to the ID attribute

InsertParagraph ID String Inserts a <P> tag at the insertion point, assigning
the parameter value to the ID attribute

TextRange.execCommand()

(c) ketabton.com: The Digital Library

459Chapter 19 ✦ Body Text Objects

Command Parameter Description

InsertSelectDropdown ID String Inserts a <SELECT TYPE=”select-one”> tag
at the insertion point, assigning the parameter
value to the ID attribute

InsertSelectListbox ID String Inserts a <SELECT TYPE=”select-
multiple”> tag at the insertion point, assigning
the parameter value to the ID attribute

InsertTextArea ID String Inserts an empty <TEXTAREA> tag at the
insertion point, assigning the parameter value to
the ID attribute

InsertUnroderedList ID String Inserts a tag at the insertion point,
assigning the parameter value to the ID attribute

Italic None Encloses the text range in an <I> tag pair

OverWrite Boolean Sets the text input control mode to overwrite
(true) or insert (false)

Paste None Pastes the current Clipboard contents into the
insertion point or selection

PlayImage None Begins playing dynamic images if they are
assigned to the DYNSRC attribute of the IMG
element

Refresh None Reloads the current page

StopImage None Stops playing dynamic images if they are
assigned to the DYNSRC attribute of the IMG
element

Underline None Encloses the text range in a <U> tag pair

An optional second parameter is a Boolean flag to instruct the command to dis-

play any user interface artifacts that may be associated with the command. The

default is false. For the third parameter, some commands require an attribute

value for the command to work. For example, insert a new paragraph at an inser-

tion point, you pass the identifier to be assigned to the ID attribute of the P ele-

ment. The syntax is

myRange.execCommand(“InsertParagraph”, true, “myNewP”)

The execCommand() method returns Boolean true if the command is successful;

false if not successful. Some commands can return values (for example, finding

out the font name of a selection), but these values are accessed through the

queryCommandValue() method.

While the commands in Table 19-2 work on text ranges, even the commands that

work on selections (Table 18-3) can frequently benefit from some preprocessing

with a text range. Consider, for example, a function whose job it is to find every

instance of a particular word in a document and set its background color to a yel-

low highlight. Such a function utilizes the powers of the findText() method of a

TextRange.execCommand()

(c) ketabton.com: The Digital Library

460 Part III ✦ Document Objects Reference

text range to locate each instance. Then the select() method selects the text in

preparation for applying the BackColor command. Here is a sample:
function hiliteIt(txt) {

var rng = document.body.createTextRange()
for (var i = 0; rng.findText(txt); i++) {

rng.select()
rng.execCommand(“BackColor”, “false”, “yellow”)
rng.execCommand(“Unselect”)
// prepare for next search
rng.collapse(false)

}
}

This example is a rare case that makes the execCommand() method way of modi-

fying HTML content more efficient than trying to wrap some existing text inside a

new tag. The downside is that you don’t have control over the methodology used to

assign a background color to a span of text (in this case, IE wraps the text in a

 tag with a STYLE attribute set to BACKGROUND-COLOR:yellow— probably

not the way you’d do it on your own).

Example on the CD-ROM

Related Items: Several query command methods of the TextRange object.

expand(“unit”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The single expand() method can open any range — collapsed or not — to the

next largest character, word, or sentence or to the entire original range (for exam-

ple, encompassing the text of the BODY element if the range was generated by

document.body.createTextRange()). The parameter is a string designating

which unit to expand outward to: character, word, sentence, or textedit. If the

operation is successful, the method returns true; otherwise it returns false.

When operating from an insertion point, the expand() method looks for the

word or sentence that encloses the point. The routine is not very smart about sen-

tences, however. If you have some text prior to a sentence that you want to expand

to, but that text does not end in a period, the expand() routine expands outward

until it can find either a period or the beginning of the range. Listing 15-14 demon-

strates a workaround for this phenomenon. When expanding from an insertion

point to a character, the method expands forward to the next character in language

order. If the insertion point is at the end of the range, it cannot expand to the next

characters, and the expand() method returns false.

On the
CD-ROM

TextRange.expand()

(c) ketabton.com: The Digital Library

461Chapter 19 ✦ Body Text Objects

It is not uncommon in an extensive script that needs to move the start and end

points all over the initial range to perform several collapse() and expand()
method operations from time to time. Expanding to the full range is a way to start

some range manipulation with a clean slate, as if you just created the range.

Example on the CD-ROM

Related Items: TextRange.collapse() method.

findText(“searchString”[, searchScope,
flags])

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

One of the most useful methods of the TextRange object is findText(), whose

default behavior is to look through a text range starting at the range’s start point up

to the end of the range in search of a case-insensitive match for a search string. If

an instance is found in the range, the start and end points of the range are cinched

up to the found text and the method returns true; otherwise it returns false, and

the start and end points do not move. Only the rendered text is searched and not

any of the tags or attributes.

Optional parameters let you exert some additional control over the search pro-

cess. You can restrict the distance from a collapsed range to be used for searching.

The searchScope parameter is an integer value indicating the number of charac-

ters from the start point. The larger the number, the more text of the range is

included in the search. Negative values force the search to operate backward from

the current start point. If you want to search backward to the beginning of the

range, but you don’t know how far away the start of the range is, you can specify an

arbitrarily huge number that would encompass the text.

The optional flags parameter lets you set whether the search is to be case-sen-

sitive and/or to match whole words only. The parameter is a single integer value

that uses bit-wise math to calculate the single value that accommodates one or

both settings. The value for matching whole words is 2; the value for matching case

is 4. If you want only one of those behaviors, then supply just the desired number.

But for both behaviors, use the bit-wise XOR operator (the ^ operator) on the val-

ues to reach a value of 6.

The most common applications of the findText() method include a search-and-

replace action and format changes to every instance of a string within the range.

This iterative process requires some extra management of the process. Because

searching always starts with the range’s current start point, advancing the start

point to the end of the text found in the range is necessary. This advancing allows a

On the
CD-ROM

TextRange.findText()

(c) ketabton.com: The Digital Library

462 Part III ✦ Document Objects Reference

successive application of findText() to look through the rest of the range for

another match. And because findText() ignores the arbitrary end point of the

current range and continues to the end of the initial range, you can use the

collapse(false) method to force the starting point to the end of the range that

contains the first match.

A repetitive search can be accomplished by a while or for repeat loop. The

Boolean returned value of the findText() method can act as the condition for con-

tinuing the loop. If the number of times the search succeeds is not essential to your

script, a while loop works nicely:

while (rng.findText(searchString)) {
...
rng.collapse(false)

}

Or you can use a for loop counter to maintain a count of successes, such as a

counter of how many times a string appears in the body:

for (var i = 0; rng.findText(searchString); i++) {
...
rng.collapse(false)

}

Some of the operations you want to perform on a range (such as many of the

commands invoked by the execCommand() method) require that a selection exists

for the command to work. Be prepared to use the select() method on the range

after the findText() method locates a matching range of text.

Example (with Listing 19-11) on the CD-ROM

Related Items: TextRange.select() method.

getBookmark()
Returns: Bookmark String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

In the context of a TextRange object, a bookmark is not to be confused with the

kinds of bookmarks you add to a browser list of favorite Web sites. Instead, a book-

mark is a string that represents a definition of a text range, including its location in

a document, its text, and so on. Viewing the string is futile, because it contains

string versions of binary data, so the string means nothing in plain language. But a

bookmark allows your scripts to save the current state of a text range so that it may

be restored at a later time. The getBookmark() method returns the string repre-

sentation of a snapshot of the current text range. Some other script statement can

On the
CD-ROM

TextRange.getBookmark()

(c) ketabton.com: The Digital Library

463Chapter 19 ✦ Body Text Objects

adjust the TextRange object to the exact specifications of the snapshot with the

moveToBookmark() method (described later in this chapter).

Example on the CD-ROM

Related Items: TextRange.moveToBookmark() method.

inRange(otherRangeRef)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

You can compare the physical stretches of text contained by two different text

ranges via the inRange() method. Typically, you invoke the method on the larger

of two ranges and pass a reference to the smaller range as the sole parameter to the

method. If the range passed as a parameter is either contained by or equal to the

text range that invokes the method, then the method returns true; otherwise the

method returns false.

Example on the CD-ROM

Related Items: TextRange.isEqual() method.

isEqual(otherRangeRef)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

If your script has references to two independently adjusted TextRange objects,

you can use the isEqual() method to test whether the two objects are identical.

This method tests for a very literal equality, requiring that the text of the two

ranges be character-for-character and position-for-position equal in the context of

the original ranges (for example, body or text control content). To see if one range

is contained by another, use the inRange() method instead.

On the
CD-ROM

On the
CD-ROM

TextRange.isEqual()

(c) ketabton.com: The Digital Library

464 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: TextRange.inRange() method.

move(“unit”[, count])
Returns: Integer.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The move() method performs two operations. First, the method collapses the

current text range to become an insertion point at the location of the previous end

point. Next, it moves that insertion point to a position forward or backward any

number of character, word, or sentence units. The first parameter is a string speci-

fying the desired unit (character, word, sentence, or textedit). A value of

textedit moves the pointer to the beginning or end of the entire initial text range.

If you omit the second parameter, the default value is 1. Otherwise you can specify

an integer indicating the number of units the collapsed range should be moved

ahead (positive integer) or backward (negative). The method returns an integer

revealing the exact number of units the pointer is able to move — if you specify

more units than are available, the returned value lets you know how far it can go.

Bear in mind that the range is still collapsed after the move() method executes.

Expanding the range around desired text is the job of other methods.

You can also use the move() method in concert with the select() method to

position the flashing text insertion pointer within a text box or textarea. Thus, you

can script a text field, upon receiving focus or the page loading, to have the text

pointer waiting for the user at the end of existing text. A generic function for such

an action is shown in the following:

function setCursorToEnd(elem) {
if (elem) {

if (elem.type && (elem.type == “text” || elem.type == “textarea”)) {
var rng = elem.createTextRange()
rng.move(“textedit”)
rng.select()

}
}

}

You can then invoke this method from a text field’s onFocus event handler:

<INPUT TYPE=”text” ... onFocus=”setCursorToEnd(this)”>

The function previously shown includes a couple of layers of error checking,

such as making sure that the function is invoked with a valid object as a parameter

and that the object has a type property whose value is one capable of having a text

range made for its content.

On the
CD-ROM

TextRange.move()

(c) ketabton.com: The Digital Library

465Chapter 19 ✦ Body Text Objects

Example on the CD-ROM

Related Items: TextRange.moveEnd(), TextRange.moveStart() methods.

moveEnd(“unit”[, count])
moveStart(“unit”[, count])

Returns: Integer.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The moveEnd() and moveStart() methods are similar to the move() method,

but they each act only on the end and starting points of the current range, respec-

tively. In other words, the range does not collapse before the point is moved. These

methods allow you to expand or shrink a range by a specific number of units by

moving only one of the range’s boundaries.

The first parameter is a string specifying the desired unit (character, word,

sentence, or textedit). A value of textedit moves the pointer to the beginning

or end of the entire initial text range. Therefore, if you want the end point of the

current range to zip to the end of the body (or text form control), use

moveEnd(“textedit”). If you omit the second parameter, the default value is 1.

Otherwise you can specify an integer indicating the number of units the collapsed

range is to move ahead (positive integer) or backward (negative). Moving either

point beyond the location of the other forces the range to collapse and move to the

location specified by the method. The method returns an integer revealing the

exact number of units the pointer is able to move — if you specify more units than

are available, the returned value lets you know how far it can go.

Example on the CD-ROM

Related Items: TextRange.move() method.

moveToBookmark(“bookmarkString”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

If a snapshot of a text range specification has been preserved in a variable (with

the help of the getBookmark() method), the moveToBookmark() method uses that

On the
CD-ROM

On the
CD-ROM

TextRange.moveToBookmark()

(c) ketabton.com: The Digital Library

466 Part III ✦ Document Objects Reference

bookmark string as its parameter to set the text range to exactly the way it

appeared when the bookmark was originally obtained. If the method is successful,

it returns a value of true, and the text range is set to the same string of text as orig-

inally preserved via getBookmark(). It is possible that the state of the content of

the text range has been altered to such an extent that resurrecting the original text

range is not feasible. In that case, the method returns false.

Example on the CD-ROM

Related Items: TextRange.getBookmark() method.

moveToElementText(elemObjRef)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The fastest way to cinch up a text range to the boundaries of an HTML element

on the page is to use the moveToElementText() method. Any valid reference to the

HTML element object is accepted as the sole parameter — just don’t try to use a

string version of the object ID unless it is wrapped in the document.
getElementById() method (IE5+). When the boundaries are moved to the ele-

ment, the range’s htmlText property contains the tags for the element.

Example on the CD-ROM

Related Items: TextRange.parentElement() method.

moveToPoint(x, y)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The moveToPoint() method shrinks the current text range object to an inser-

tion point and then moves it to a position in the current browser window or frame.

You control the precise position via the x (horizontal) and y (vertical) pixel coordi-

nates specified as parameters. The position is relative to the visible window, and

On the
CD-ROM

On the
CD-ROM

TextRange.moveToPoint()

(c) ketabton.com: The Digital Library

467Chapter 19 ✦ Body Text Objects

not the document, which may have been scrolled to a different position. Invoking

the moveToPoint() method is the scripted equivalent of the user clicking that spot

in the window. Use the expand() method to flesh out the collapsed text range to

encompass the surrounding character, word, or sentence.

Using the moveToPoint() method on a text range defined for a text form control
may cause a browser crash. The method appears safe with the document.body
text ranges, even if the x,y position falls within the rectangle of a text control. Such a
position, however, does not drop the text range into the form control or its content.

Example on the CD-ROM

Related Items: TextRange.move(), TextRange.moveStart(),

TextRange.moveEnd() methods.

parentElement()
Returns: Element object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The parentElement() method returns a reference to the next outermost HTML

element container that holds the text range boundaries. If the text range bound-

aries are at the boundaries of a single element, the parentElement() method

returns that element’s reference. But if the boundaries straddle elements, then the

object returned by the method is the element that contains the text of the least-

nested text portion. In contrast to the expand() and various move-related meth-

ods, which understand text constructs, such as words and sentences, the

parentElement() method is concerned solely with element objects. Therefore, if a

text range is collapsed to an insertion point in body text, you can expand it to

encompass the HTML element by using the parentElement() method as a parame-

ter to moveToElementText():

rng.moveToElementText(rng.parentElement())

Example on the CD-ROM

Related Items: TextRange.expand(), TextRange.move(), TextRange.
moveEnd(), TextRange.moveStart() methods.

On the
CD-ROM

On the
CD-ROM

Note

TextRange.parentElement()

(c) ketabton.com: The Digital Library

468 Part III ✦ Document Objects Reference

pasteHTML(“HTMLText”)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

While the execCommand() method offers several commands that insert HTML

elements into a text range, it is probably more convenient to simply paste fully

formed HTML into the current text range (assuming you need to be working with a

text range instead of even more simply setting new values to an element object’s

outerHTML property). Provide the HTML to be inserted as a string parameter to the

pasteHTML() method.

Use the pasteHTML() method with some forethought. Some HTML that you may

attempt to paste into a text range may force the method to wrap additional tags

around the content you provide to ensure the validity of the resulting HTML. For

example, if you were to replace a text range consisting of a portion of text of a P ele-

ment with, for instance an LI element, the pasteHTML() method has no choice but

to divide the P element into two pieces, because a P element is not a valid container

for a solo LI element. This division can greatly disrupt your document object hierar-

chy, because the divided P element assumes the same ID for both pieces. Existing

references to that P element will break, because the reference now returns an array

of two like-named objects.

Example on the CD-ROM

Related Items: outerHTML property; insertAdjacenHTML() method.

queryCommandEnabled(“commandName”)
queryCommandIndeterm(“commandName”)
queryCommandState(“commandName”)
queryCommandSupported(“commandName”)
queryCommandText(“commandName”)
queryCommandValue(“commandName”)

Returns: See document.queryCommandEnabled() in Chapter 18.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

See descriptions under document.queryCommandEnabled() in Chapter 18.

On the
CD-ROM

TextRange.queryCommandEnabled()

(c) ketabton.com: The Digital Library

469Chapter 19 ✦ Body Text Objects

select()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The select() method selects the text inside the boundaries of the current text

range. For some operations, such as prompted search and replace, it is helpful to

show the user the text of the current range to highlight what text is about to be

replaced. In some other operations, especially several commands invoked by

execCommand(), the operation works only on a text selection in the document.

Thus, you can use the TextRange object facilities to set the boundaries, followed

by the select() method to prepare the text for whatever command you like. Text

selected by the select() method becomes a selection object (covered earlier in

this chapter).

Example on the CD-ROM

Related Items: selection object.

setEndPoint(“type”, otherRangeRef)
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

In contrast to the moveEnd() method, which adjusts the end point of the current

range with respect to characters, words, sentences, and the complete range, the

setEndPoint() method sets a boundary of the current range (not necessarily the

ending boundary) relative to a boundary of another text range whose reference is

passed as the second parameter. The first parameter is one of four types that con-

trol which boundary of the current range is to be adjusted and which boundary of

the other range is the reference point. Table 19-3 shows the four possible values

and their meanings.

On the
CD-ROM

TextRange.setEndPoint()

(c) ketabton.com: The Digital Library

470 Part III ✦ Document Objects Reference

Table 19-3 setEndPoint() Method Types

Type Description

StartToEnd Moves the start point of the current range to the end of the other range

StartToStart Moves the start point of the current range to the start of the other range

EndToStart Moves the end point of the current range to the start of the other range

EndToEnd Moves the end point of the current range to the end of the other range

Note that the method moves only one boundary of the current range at a time. If

you want to make two ranges equal to each other, you have to invoke the method

twice, once with StartToStart and once with EndToEnd. At that instant, the

isEqual() method applied to those two ranges returns true.

Setting a boundary point with the setEndPoint() method can have unexpected

results when the revised text range straddles multiple elements. Don’t be surprised

to find that the new HTML text for the revised range does not include tags from the

outer element container.

Example on the CD-ROM

Related Items: TextRange.moveEnd(), TextRange.moveStart(), TextRange.
moveToElementText() methods.

TextRectangle Object

Properties Methods Event Handlers

bottom

left

right

top

Syntax
Accessing TextRectangle object properties:

[window.]document.all.elemID.getBoundingClientRect().property
[window.]document.all.elemID.getClientRects()[i].property

On the
CD-ROM

TextRectangle

(c) ketabton.com: The Digital Library

471Chapter 19 ✦ Body Text Objects

About this object
The IE5+ TextRectangle object (not implemented in IE5/Mac) exposes to

scripts a concept that is described in the HTML 4.0 specification, whereby an ele-

ment’s rendered text occupies a rectangular space on the page just large enough to

contain the text. For a single word, the rectangle is as tall as the line height for the

font used to render the word and no wider than the space occupied by the text. But

for a sequence of words that wraps to multiple lines, the rectangle is as tall as the

line height times the number of lines and as wide as the distance between the left-

most and rightmost character edges, even if it means that the rectangle encloses

some other text that is not part of the element.

If you extract the TextRectangle object for an element by way of, for example,

the getBoundingClientRect() method, be aware that the object is but a snap-

shot of the rectangle when the method was invoked. Resizing the page may very

well alter dimensions of the actual rectangle enclosing the element’s text, but the

TextRectangle object copy that you made previously does not change its values

to reflect the element’s physical changes. After a window resize or modification of

body text, any dependent TextRectangle objects should be recopied from the

element.

Properties
bottom
left
right
top

Values: Integers Read-only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The screen pixel coordinates of its four edges define every TextRectangle
object. These coordinates are relative to the window or frame displaying the page.

Therefore, if you intend to align a positioned element with an inline element’s

TextRectangle, your position assignments must take into account the scrolling of

the body.

To my eye, the left edge of a TextRectangle does not always fully encompass

the left-most pixels of the rendered text. You may have to fudge a few pixels in the

measure when trying to align a real element with the TextRectangle of another

element.

TextRectangle.bottom

(c) ketabton.com: The Digital Library

472 Part III ✦ Document Objects Reference

Example (with Listing 19-12) on the CD-ROM

Related Items: getBoundingClientRect(), getClientRects() methods of

element objects (Chapter 15).

✦ ✦ ✦

On the
CD-ROM

TextRectangle.bottom

(c) ketabton.com: The Digital Library

HTML Directive
Objects

Thanks to the modern browser’s desire to expose all

HTML elements to the document object model, we can

now (in IE4+ and NN6) access a variety of objects that repre-

sent many HTML elements that are normally invisible to the

human viewer of a page. These elements are called directive
elements because they predominantly contain instructions for

the browser — instructions that direct the browser to locate

associated content on the page, link in external specifications,

treat content as executable script statements, and more.

As you browse through the objects of this chapter, you may

wonder why they have so many properties that normally indi-

cate that the elements occupy space on the rendered page.

After all, how can a META element have dimension or position

on the page when it has no renderable content? The reason is

that modern browsers internally employ some form of object-

oriented behavior that lets all HTML elements — rendered or

not — inherit the same set of properties, methods, and event

handlers that any generic element has (see Chapter 15). The

logical flaw is that unrendered elements can have properties

and methods that don’t genuinely apply to them. In such

cases, their property values may be zero, an empty string, or

an empty array. Yet the properties and methods exist in the

objects just the same. Therefore, despite the large number of

objects covered in this chapter, there are relatively few prop-

erties and methods that are not shared already with all HTML

elements (as covered in Chapter 15).

HTML Element Object
For HTML element properties, methods, and event handlers,

see Chapter 15.

Properties Methods Event Handlers

version

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing non-
displayed element
objects

Linking operating-
system specific style
sheet definitions

HTML, HEAD, LINK,
TITLE, META, BASE,
and SCRIPT elements

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

474 Part III ✦ Document Objects Reference

Syntax
Accessing HTML element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])
(IE4+/NN6) [window.]document.body.parentElement.property | method([parameters])

About this object
The HTML element is the big wrapper around all other elements of the page. In

the object tree, the HTML element sits between the all-encompassing document
object and the element’s most common children, the HEAD and BODY elements.

Other than one deprecated property (version), the HTML element object offers

nothing of importance to the scripter — with one possible exception. When your

script needs to use methods on the child nodes of the HTML element, you must

invoke most of those methods from the point of view of the HTML element.

Therefore, you should know how to create a reference to the HTML element

object (shown in the preceding “Syntax” section) just in case you need it.

Property
version

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The version property is an artifact of an “ancient” way an HTML document used

to specify the HTML version of its content. These days, the preferred way to declare

the HTML version for a document is through a Document Type Declaration (DTD)

statement that precedes the <HTML> tag. An example of a modern DTD statement

that accommodates HTML 4 plus deprecated elements and attributes as well as

frameset support is

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Frameset//EN”
“http://www.w3.org/TR/REC-html40/frameset.dtd”>

See http://www.w3.org/TR/REC-html40/struct/global.html#h-7.2 for

several other possibilities. A DTD statement does not affect the version property

of an HTML element object.

Related Items: None.

HEAD Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

HEAD

(c) ketabton.com: The Digital Library

475Chapter 20 ✦ HTML Directive Objects

Properties Methods Event Handlers

profile

Syntax
Accessing HEAD element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The purpose of the HEAD element is primarily to act as a container for most of

the other HTML directive elements. Other than as a reference point to the child

elements nested within, the HEAD element object rarely comes into play when

scripting a document.

Properties
profile

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The profile property is the script version of the optional PROFILE attribute

of a HEAD element. While the attribute and property are supported in NN6 (that is,

they exist), they are not used in practice yet. You can find details about the attribute

at http://www.w3.org/TR/REC-html40/struct/global.html#profiles.

Related Items: META element object.

BASE Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

href

target

BASE

(c) ketabton.com: The Digital Library

476 Part III ✦ Document Objects Reference

Syntax
Accessing BASE element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The BASE element enables the page author to specify a default server directory

and/or link target for the entire page. If you omit the BASE element from the HTML,

browsers use the current page’s path as the base URL and the current window or

frame as the default target. Occasionally, a page generated entirely by way of

document.write() has difficulty establishing the same BASE URL as the docu-

ment that generates the content, particularly if the primary page is written out

by a server script (in Perl or in another language). Including a <BASE> tag in the

dynamically written new page solves the problem; the new page can fetch images

or other external elements via relative URLs within the page.

The two distinctive properties of the BASE element object are rarely scripted,

if ever.

Properties
href

Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The href property is generally an absolute URL to the directory you wish to

declare as the default directory for the page. Even though browsers automatically

set the BASE HREF to the document’s own directory, this object and property do

not have any values unless you explicitly set them in a <BASE> tag. In IE, changing

this property after a page loads causes the page to re-resolve all relative URLs on

the page to the new BASE HREF. Therefore, if images have relative URLs assigned to

their src properties (either by way of the tag attribute or script), a change to the

BASE element’s href property forces the browser to look for those same relative

URLs in the new directory. If the files aren’t there, then the images show up broken

on the page.

Example on the CD-ROMOn the
CD-ROM

BASE.href

(c) ketabton.com: The Digital Library

477Chapter 20 ✦ HTML Directive Objects

target
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The target property governs the default window or frame that is to receive any

content coming from a server in response to a click on a link or any other element

that has its own TARGET attribute. Valid values include the name of any frame (as

assigned to the NAME attribute of the <FRAME> tag) or window (as defined by the

second attribute of the window.open() method). You can also assign standard

HTML targets (_blank, _parent, _self, and _top) to this property as strings.

Example on the CD-ROM

BASEFONT Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

color

face

size

Syntax
Accessing BASEFONT element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The BASEFONT element enables authors to define a font face, size, and color

for an entire section of an HTML document — or the entire document. Although

page authors still frequently use the BASEFONT element, font control in modern

browsers should fall in the hands of style sheets. (The element is deprecated in

HTML 4.0.) The paradox of this is that the BASEFONT element is accessible as a

scriptable object only in browsers that support style sheets. Even so, I recommend

On the
CD-ROM

BASEFONT

(c) ketabton.com: The Digital Library

478 Part III ✦ Document Objects Reference

avoiding dynamic font changes by way of the BASEFONT element and use scripts to

control style sheets instead.

The BASEFONT element has no end tag, so IE’s outerHTML property consists of
all HTML in the document starting with the element itself.

The three distinctive properties of the BASEFONT element object are rarely, if

ever, scripted.

Properties
color
face
size

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

These three properties define the characteristics of font rendering for all content

following the element’s tag in the document. Color specifications can be hexa-decimal

triplets or Netscape color names (a list is available at http://developer.
netscape.com/docs/manuals/htmlguid/colortab.htm). Font faces can

include a list of comma-separated font face names. And because this is HTML as

opposed to style sheet fonts, the size property is in terms of the 1 through 7 scale

of font sizes. You can also use relative sizes (for example, +1).

Example on the CD-ROM

ISINDEX Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alt

border

checked

complete

On the
CD-ROM

Note

ISINDEX

(c) ketabton.com: The Digital Library

479Chapter 20 ✦ HTML Directive Objects

Properties Methods Event Handlers

dynsrc

form

height

hspace

indeterminate

loop

lowsrc

maxLength

name

prompt

readOnly

size

start

status

value

vrml

vspace

width

Syntax
Accessing ISINDEX element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The ISINDEX element is a holdover from the early beginnings of HTML. It offered

the first text input field prior to the addition of FORM and INPUT elements to the

HTML specification. IE treats this element as if it were an INPUT element, so ISINDEX

takes on all possible INPUT element properties (including those of buttons). This

element is deprecated in HTML 4.0 and should not be part of your development

vocabulary. Use forms and genuine INPUT elements instead (see Chapters 23–26).

LINK Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

LINK

(c) ketabton.com: The Digital Library

480 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

charset onLoad

disabled

href

hreflang

media

rel

rev

styleSheet

target

type

Syntax
Accessing LINK element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The LINK element (not to be confused with the A element that is often referred

to as a “link” element when it contains an HREF attribute pointing to another docu-

ment) has many potential uses in pointing to external documents that relate to the

current document. Its most common usage today is for linking an external style sheet

specification to the document. In fact, it’s not uncommon for sophisticated site

designs to use document.write() to generate the <LINK> tag so that operating-

system specific style sheets are applied to the page. In the following code fragment

(which goes inside a document’s HEAD element), the page loads a Macintosh-specific

style sheet when the page is running on a Macintosh; otherwise, it loads a Windows-

specific style sheet:

<SCRIPT LANGUAGE=”JavaScript”>
var isMac = navigator.userAgent.indexOf(“Mac”) != -1
var linkTagStart = “<LINK REL=’stylesheet’ TYPE=’text/css’ HREF=’”
var linkTagEnd = “.css’>”
if (isMac) {

document.write(linkTagStart + “mac” + linkTagEnd
} else {

document.write(linkTagStart + “windows” + linkTagEnd
}
</SCRIPT>

While it may appear that the LINK element can load a variety of content into a

page, do not use it for multimedia (in which case you should use the EMBED or

OBJECT elements) or external HTML (where you should use an IFRAME element).

LINK

(c) ketabton.com: The Digital Library

481Chapter 20 ✦ HTML Directive Objects

Many of the properties of the LINK element object are script representations of

HTML 4.0 attributes for the element. However, browsers don’t take full advantage of

the possibilities available from the LINK element yet. (For example, a browser can

provide arrows to the previous and next documents in a series, as specified by the

REV and REL attributes. But so far, no browser implements this.) Properties unique

to this object offer scripted access (in various browser versions) to attribute values

of the LINK element. Therefore, this chapter does not spend a lot of time on proper-

ties that are not in current use.

Properties
charset

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The charset property advises the browser about the character encoding of the

content that will arrive from the external document (assuming you also have the

HREF attribute set). Values for this property must match the encoding naming con-

ventions defined in an industry standard registry (ftp://ftp.isi.edu/in-notes/
iana/assignments/character-sets).

disabled
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

By changing the disabled property (default is false), you can turn externally

linked content on and off. For example, you can define two different style sheet

links in a document that has two <LINK> tags with one’s DISABLED attribute set.

You can switch between the two style sheets by setting the disabled property of

one to true and the other to false.

href
Value: String See Text

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

LINK.href

(c) ketabton.com: The Digital Library

482 Part III ✦ Document Objects Reference

Another way to swap style sheets is to modify the value of a single LINK element

object’s href property (although the property is read-only in IE4+/Mac and NN6).

The property’s value is a URL string.

hrefLang
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The hrefLang property is an advisory for the browser (if the browser takes

advantage of it) about the written language used for the content to which the LINK

element’s HREF attribute points. Values for this property must be in the form of the

standard language codes (for example, en-us for U.S. English).

media
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The media property (not available in IE4/Mac) is an advisory for the browser

about the target output device intended for the content to which the LINK element’s

HREF attribute points. This is an outgrowth of HTML 4.0 efforts to make way for

future browsers and content that can be optimized for devices such as printers,

handheld computers, and audio digitizers. The W3C specifies a preliminary set of

constant string values for this property’s equivalent attribute. So far, browsers (at

most) recognize all (default), print, and screen.

rel
rev

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The rel and rev properties are intended to define relationships in the forward

and back directions with respect to the current document. Browsers have yet to

exploit most of the potential of these attributes and properties. For the most part,

the attributes solely direct the browser to treat the external content as a style sheet

definition file.

LINK.rel

(c) ketabton.com: The Digital Library

483Chapter 20 ✦ HTML Directive Objects

A long list of values are predefined for these properties, based on the corres-

ponding attribute values specified in HTML 4.0. If the browser does not respond

to a particular value, the value is simply ignored. You can string together multiple

values in a space-delimited list inside a single string. Accepted values are as follows:

alternate contents index start

appendix copyright next stylesheet

bookmark glossary prev subsection

chapter help section

styleSheet
Value: Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

When a LINK element loads an external style sheet, the IE-specific styleSheet
property of the LINK element object provides scripted access to the style sheet

rules that belong to that external file. Use properties of the styleSheet object

(see Chapter 30) to access specifics about the imported rules.

target
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

In the context of using LINK elements to point to other content associated with

the current document (for example, the next and previous documents within a

series), the target property can advise the browser which frame or window to

use to display that content. For example, a suitably equipped browser can display

a glossary in a separate window. No browsers currently implement these extended

features of the LINK element, so the property is provided in browsers only for

compatibility with the W3C standards. If the property were truly functional, it would

accept values in the form of a string name for a frame or one of the window constants

(_blank, _parent, _self, or _top).

LINK.target

(c) ketabton.com: The Digital Library

484 Part III ✦ Document Objects Reference

type
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The type property specifies the MIME type for the content that will arrive from

the external document to which the element’s HREF attribute points. LINK elements

are used primarily for Cascading Style Sheets, so the property value is text/css.

Event handlers
onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onLoad event handler fires when the external content pointed to by the

LINK element’s HREF attribute completes loading. IE5 for Windows fires this event

handler even if the loading does not succeed, so use this event handler with care.

META Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

charset

content

httpEquiv

name

url

Syntax
Accessing META element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

META

(c) ketabton.com: The Digital Library

485Chapter 20 ✦ HTML Directive Objects

About this object
In computer terminology, metadata usually consists of extra information about

the primary data of a document or information collection. In HTML documents,

metadata can be additional hidden information about the document, such as the

name of the author and keywords. If the browser is suitably equipped, metadata

can also include some instructions, such as when to reload the page by itself. META

elements add all of this metadata to HTML documents. Both fact and folklore

urround the application of META elements within pages. One fact is that Internet

search engine robots scour pages for certain kinds of keyword meta tags to help

place your page within relevant categories when Web surfers are looking for specific

content. More on the folklore side is that browsers always respond to META element

wording that prevents browsers from copying pages into the cache — when in fact,

this behavior is not universal among browsers.

Complete details about META element usage is beyond the scope of this JavaScript

book, but you should be aware of one composition that enables you to set a page to

reload itself (or another page) at a fixed time interval. This is especially useful if

your page retrieves very timely information from a database. The format is
<META HTTP-EQUIV=”refresh” CONTENT=”n,url=url”>

n is the number of seconds to delay before reloading the page, and url is the

complete URL of the page to be reloaded. Note that you can specify any page you

like. This allows for a kind of slide show to be sequenced in a freestanding kiosk,

as each page’s META element points to the next page in the series after a fixed

amount of time.

Unique properties for the META element object mimic the HTML attributes for

the <META> tag. These properties are rarely, if ever, accessed from a script, so I

mention them here only briefly.

Properties
charset

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The charset property advises the browser about the character encoding of the

content for the page. Values for this property must match the encoding naming

conventions defined in an industry standard registry (ftp://ftp.isi.edu/
in-notes/iana/assignments/character-sets).

META.charset

(c) ketabton.com: The Digital Library

486 Part III ✦ Document Objects Reference

content
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

For many applications of the META element, the content property contains the

primary value associated with the element. For example, search engines look for

a META element whose NAME attribute is “keywords”. The value of the CONTENT
attribute is a comma-delimited string of keywords that the search engine reads and

indexes in its own database. The content property simply represents the CONTENT
attribute string. Changing the values by script obviously does nothing to alter the

tag values of the page on the server.

httpEquiv
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A META element can simulate and extend the transmission of server instructions

to the browser — instructions that normally arrive in the form of http headers.

These header supplements are supplied in META elements via the HTTP-EQUIV
attribute, which is represented in the object model by the httpEquiv property.

Common values include refresh and expires. Each of these also requires a

CONTENT attribute that provides necessary details for carrying out the instructions.

If you assign a string value to the httpEquiv property, be sure the content property

has a suitable string assigned to it.

name
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A META element that includes genuine metadata about the page (for example,

author or keywords) usually has a NAME attribute that identifies what the metadata

is (analogous to the name of a name/value pair). The name and content properties

go hand in hand because the content string usually must be in a particular form for

an external process (for example, a search engine) to read the data successfully.

Values for the name attribute are rarely case-sensitive.

META.name

(c) ketabton.com: The Digital Library

487Chapter 20 ✦ HTML Directive Objects

url
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

If a META element needs to point to a document on the Internet for any reason,

the URL of that document is assigned to the URL attribute of the element. You can

modify the value via the url property of a META element object. I recommend a

complete URL string for the url property value.

SCRIPT Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defer

event

htmlFor

language

src

text

type

Syntax
Accessing SCRIPT element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The <SCRIPT> tag is well known to scripters, and modern browsers (IE4+ and

NN6) treat the SCRIPT element as an object that, itself, can be scripted. The circu-

larity of this description isn’t as far fetched as it sounds. While scripting an existing

script is a rarity in practice, it is not out of the question to generate a new SCRIPT

element after the page loads. If you use W3C DOM syntax to create a new SCRIPT

element, you then need to assign values to the properties that are normally set via

the tag’s attributes. Thus, scripting a script does make sense.

Unless you have experience with IE’s option of binding event handlers to <SCRIPT>
tags (see Chapter 14), some of the properties described next will be foreign to you.

SCRIPT

(c) ketabton.com: The Digital Library

488 Part III ✦ Document Objects Reference

Even so, these properties are now a part of the W3C DOM specification, so they are

implemented in NN6 as well.

One property to take special note of is language. This property name conflicts

slightly with the language property that is part of all HTML element objects. The

preferred way to specify the language of the script statements inside the element is

to set the TYPE attribute to a MIME type. Unfortunately, this technique does not

distinguish among versions of JavaScript. Also, for backward compatibility, I advise

you to continue using the LANGUAGE attribute as well because only IE4+ and NN6+

recognize the TYPE attribute.

Microsoft developer documentation states that the SCRIPT element object has an
onLoad event handler. If that assertion is true, then it is broken in IE4 and IE5.

Properties
defer

Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The default process of loading a page that contains scripts is to wait for any

immediate script execution to complete before the rest of the page loads. But if you

include a DEFER attribute in the tag, modern browsers continue to load the rest of

the page without waiting for immediate scripts to run. The defer property enables

you to inspect or set that property; its default value is false. Once a page loads,

any changes you make to an existing SCRIPT element’s defer property has no

effect.

event
htmlFor

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Modern browsers enable you to bind events to script statements when you spec-

ify both a FOR and EVENT attribute in the <SCRIPT> tag. Statements inside the tag

execute only when the object named by the FOR attribute receives the event named

by the EVENT attribute. You can examine the EVENT attribute by way of the SCRIPT

element object’s event property, and you can view the FOR attribute through the

Note

SCRIPT.event

(c) ketabton.com: The Digital Library

489Chapter 20 ✦ HTML Directive Objects

htmlFor property. Both properties simply mimic whatever values are assigned to

their respective attributes, such as onClick() and myDIV.

language
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Use the language property to get or set the name of the scripting language

specified for a SCRIPT element object. Even though NN and IE browsers default to

JavaScript (or some equivalent), the property has no value unless you set the

LANGUAGE attribute in the <SCRIPT> tag. If you must specify a particular version of

JavaScript, you can do so by appending the version number immediately after the

language name:

document.getElementById(“myScript”).language = “JavaScript1.5”

IE accepts several language names as values for this property: JavaScript,

JScript, VBScript, and VBS. For IE5, XML is also accepted.

Also see the type property.

src
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The src property is a string of the URL of an external .js script file to be linked

into a page. You cannot change this property after you load the external script.

text
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The full text of a SCRIPT element is available for reading through the text property.

While IE5 may give the impression that you can modify this property, the script that

loads with the page is what is stored in the browser’s memory. Thus, the original

script statements continue to work even though the object’s property is different.

SCRIPT.text

(c) ketabton.com: The Digital Library

490 Part III ✦ Document Objects Reference

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The TYPE attribute was added to the <SCRIPT> tag in HTML 4.0 to help resolve

the conflict that the LANGUAGE attribute created for all HTML elements. The value

of the attribute (and thus the type property) is a MIME type string. For JavaScript,

that value is text/javascript.

TITLE Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

text

Syntax
Accessing TITLE element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
Before the TITLE element was accessible to scripting as an object, the prescribed

way to get to the content of the page’s <TITLE> tag was through the document.
title property. While that property is still available for backward compatibility,

scripts written exclusively for newer browsers should access the text property

of the TITLE element object. As a useful exercise, you can modify Listing 18-17

(loaded via Listing 18-16) to use the IE4+ or W3C DOM syntax to retrieve and display

the document’s title.

Property
text

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

TITLE.text

(c) ketabton.com: The Digital Library

491Chapter 20 ✦ HTML Directive Objects

The text property represents the text between the start and end tags of the

TITLE element object. This is simply a convenience property because the text can

be referenced by other ways in IE4+ (innerText property), NN6 (innerHTML), and

W3C DOM (firstChild.nodeValue) syntaxes. For backward compatibility with

earlier browsers, you can alternatively use the document.title property.

Related Items: document.title property.

✦ ✦ ✦

TITLE.text

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Link and Anchor
Objects

The Web is based on the notion that the world’s informa-

tion can be strung together by way of the hyperlink —

the clickable hunk of text or image that enables an inquisitive

reader to navigate to a further explanation or related material.

Of all the document objects you work with in JavaScript, the

link is the one that makes that connection. Anchors also

provide guideposts to specific locations within documents.

As scriptable objects going back to the first scriptable

browsers, links and anchors are comparatively simple devices.

But this simplicity belies their significance in the entire scheme

of the Web. Under script control, links can be far more powerful

than mere tethers to locations on the Web.

In modern browsers (IE4+ and NN6), the notion of separating

links and anchors as similar yet distinctly different object

begins to fade. The association of the word “link” with objects

is potentially confused by the newer browsers’ recognition

of the LINK element (see Chapter 20), which has an entirely

different purpose, as a scriptable object. Taking the place of

the anchor and link objects is an HTML element object repre-

senting the element created by the <A> tag. As an element

object, the A element assumes all of the properties, methods,

and event handlers that accrue to all HTML element objects

in modern object models. To begin making that transition,

this chapter treats all three types of objects at once. If you

develop pages that must be compatible with early scriptable

browsers, pay special attention to the comments about proper-

ties and event handler compatibility.

Anchor, Link, and A Element
Objects

For HTML element properties, methods, and event handlers,

see Chapter 15.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Differences between
link, anchor, and A
element objects

Scripting a link to
invoke a script
function

Scripting a link to
swap an image on
mouse rollovers

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

494 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

charset

coords

hash

host

hostname

href

hreflang

Methods

mimeType

name

nameProp

pathname

port

protocol

protocolLong

rel

rev

search

shape

target

text

type

urn

x

y

Syntax
Accessing link object properties:

(all) [window.]document.links[index].property

Accessing A element object properties:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

A

(c) ketabton.com: The Digital Library

495Chapter 21 ✦ Link and Anchor Objects

About this object
A little scripting history can help you to understand where the link and anchor

objects came from and how the A element object evolved from them.

Using the terminology of the original object model, the anchor and link objects

are both created in the object model from the <A> tag. What distinguishes a link

from an anchor is the presence of the HREF attribute in the tag. Without an HREF
attribute, the element is an anchor object, which (prior to version 4 browsers) has

no properties, events, or event handlers associated with it. And even in NN4, the

anchor object gains only four properties, all but one of which (name) disappear in

NN6. Table 21-1 shows the implementation schedule for backward-compatible (and

NN4-specific) properties associated with an anchor object.

Table 21-1 anchor Object Backward-Compatible Properties

Property NN IE

name 4 4

text 4 n/a

x 4 n/a

y 4 n/a

A link, on the other hand, is much more alive as an object — all just because of

the inclusion of an HREF attribute, which usually points to a URL to load into a

window or frame. In fact, the majority of early object model properties for the link

object are the same as those of the early location object — properties that reveal

information about the URL assigned to the HREF attribute. The other vital part of

the original link object — especially as distinct from an anchor object — is that a

link can respond to events. Initially, event handlers were limited to just onClick
and onMouseOver. By NN4, additional mouse events and an onDblClick event

joined the repertoire. Table 21-2 shows the properties and event handlers (there

were no methods) for backward compatibility prior to the existence of the A ele-

ment object.

Table 21-2 link Object Backward-Compatible Properties
and Event Handlers

Property NN IE

hash 2 3

host 2 3

hostname 2 3

href 2 3

Continued

A

(c) ketabton.com: The Digital Library

496 Part III ✦ Document Objects Reference

Table 21-2 (continued)

Property NN IE

pathname 2 3

prot 2 3

protocol 2 3

search 2 3

target 2 3

text 4 n/a

x 4 n/a

y 4 n/a

Event Handler NN IE

onClick 2 3

onDblClick 41 4

onMouseDown 4 4

onMouseOut 3 4

onMouseOver 2 3

onMouseUp 4 4

1Not in NN4/Mac

When object models treat HTML elements as objects (IE4+ and NN6), both the

anchor and link objects are subsumed by the A element object. Even so, one impor-

tant characteristic from the original object still holds true: all A element objects

that behave as link objects (by virtue of the presence of an HREF attribute) are

members of the document.links property array. Therefore, if your scripts need to

inspect or modify properties of all link objects on a page, they can do so by way of

a for loop through the array of link objects. This is true even if you script solely for

modern browsers and want to, say, change a style attribute of all links (for example,

changing their style.textDecoration property from none to underline). The

fact that the same element can have different behaviors depending on the existence

of one attribute makes me think of the A element object as potentially two different

animals. Thus, you see references to link and anchor objects throughout this book

when the distinction between the two is important.

Scripting newcomers are often confused about the purpose of the TARGET attri-

bute of an A element when they want a scripted link to act on a different frame or

window. Under plain HTML, the TARGET attribute points to the frame or window

into which the new document (the one assigned to the HREF attribute) is to load,

leaving the current window or frame intact. But if you intend to use event handlers

to navigate (by setting the location.href property), the TARGET attribute does

A

(c) ketabton.com: The Digital Library

497Chapter 21 ✦ Link and Anchor Objects

not apply to the scripted action. Instead, assign the new URL to the location.
href property of the desired frame or window. For example, if one frame contains a

table of contents consisting entirely of links, the onClick event handlers of those

links can load other pages into the main frame by assigning the URL to the parent.
main.location.href property. You must also cancel the default behavior of

any link, as described in the discussion of the generic onClick event handler in

Chapter 15.

When you want a click of the link (whether the link consists of text or an image)

to initiate an action without actually navigating to another URL, you can use a

special technique — the javascript: pseudo-URL — to direct the URL to a JavaScript

function. The URL javascript:functionName() is a valid parameter for the HREF
attribute (and not just in the link object). Browsers that don’t have JavaScript

enabled do not respond to clicks on such a link.

If you don’t want the link to do anything other than change the statusbar in the

onMouseOver event handler, define an empty function and set the URL to that empty

JavaScript function (such as HREF=”javascript:doNothing()”). Starting with

NN3 and IE4, you can also add a special void operator that guarantees that the called

function does not trigger any true linking action (HREF=”javascript: void
someFunction()”). Specifying an empty string for the HREF attribute yields an

FTP-like file listing for the client computer — an undesirable artifact. Don’t forget,

too, that if the URL leads to a type of file that initiates a browser helper application

(for example, to play a RealAudio sound file), then the helper app or plug-in loads

and plays without changing the page in the browser window.

A single link can change the content of more than one frame at once with the help

of JavaScript. If you want only JavaScript-enabled browsers to act on such links, use

a javascript: pseudo-URL to invoke a function that changes the location.href
properties of multiple frames. For example, consider the following function, which

changes the content of two frames:

function navFrames(url1, url2) {
parent.product.location.href = url1
parent.accessories.location.href = url2

}

You can then have a javascript: pseudo-URL invoke this multipurpose function

and pass the specifics for the link as parameters:

<A HREF=”javascript: void navFrames(‘products/gizmo344.html’,
‘access/access344.html’)”>Deluxe Super Gizmo

Or if you want one link to do something for everyone, but something extra for

JavaScript-enabled browsers, you can combine the standard link behavior with an

onClick event handler to take care of both situations:

function setAccessFrame(url) {
parent.accessories.location.href = url

}
...
<A HREF=”products/gizmo344.html” TARGET=”product”
onClick=”setAccessFrame(‘access/access344.html’)”>Deluxe Super Gizmo

Notice here that the TARGET attribute is necessary for the standard link behavior,

while the script assigns a URL to a frame’s location.href property.

A

(c) ketabton.com: The Digital Library

498 Part III ✦ Document Objects Reference

One additional technique allows a single link tag to operate for both scriptable

and nonscriptable browsers (NN3+ and IE4+). For nonscriptable browsers, establish

a genuine URL to navigate from the link. Then make sure that the link’s onClick
event handler evaluates to return false. At click time, a scriptable browser

executes the event handler and ignores the HREF attribute; a nonscriptable browser

ignores the event handler and follows the link. See the discussion of the generic

onClick event handler in Chapter 15 for more details.

As you design your links, consider building onMouseOver and onMouseOut event

handlers into your link definitions. The most common applications for these event

handlers are as a means of adjusting the window.status property or swapping

images. (Early IMG element objects do not have event handlers of their own, so you

must wrap them inside A elements to gain the event handler effect.) Thus, as a user

rolls the mouse pointer atop a link, a descriptive label (perhaps more detailed or

friendly than what the link text or image may indicate) appears in the status line

at the bottom of the window. Whether a user notices the change down there is

another issue, so don’t rely on the status line as a medium for mission-critical

communication. Image swaps, however, are more dramatic and enable a user to

receive visual feedback that the mouse pointer is atop a particular button image.

Thanks to the onMouseDown event handler in NN4 and IE4, you can even swap the

image when the user presses down with the mouse button atop the link.

Properties
charset

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The charset property represents the HTML 4.0 CHARSET attribute of an A

element. It advises the browser of the character set used by the document to which

the HREF attribute points. The value is a string of one of the character set codes

from the registry found at ftp://ftp.isi.edu/in-notes/iana/assignments/
character-sets.

coords
shape

Value: Strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

HTML 4.0 provides specifications for A elements that accommodate different

shapes (rect, circle, and poly) and coordinates when the link surrounds an image.

A.coords

(c) ketabton.com: The Digital Library

499Chapter 21 ✦ Link and Anchor Objects

Although the coords and shape properties are present for A element objects in

NN6 (as directed by the W3C DOM), active support for the feature is not present in

NN6.

hash
host
hostname
pathname
port
protocol
search

Value: Strings Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

This large set of properties is identical to the same-named properties of the

location object (see Chapter 17). All properties are components of the URL that

is assigned to the link object’s HREF attribute. Although none of these properties

appear in the W3C DOM specification for the A element object, they survive in

modern browsers for backward compatibility. If you want to script the change of

the destination for a link, try modifying the value of the object’s href property

rather than individual components of the URL.

Related Item: location object.

href
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The href property (included in the W3C DOM) is the URL of the destination of

an A element equipped to act as a link. URLs can be relative or absolute.

In IE4+ and NN6, you can turn an anchor object into a link object by assigning a

value to the href property even if the A element has no HREF attribute in the HTML

that loads from the server. Naturally, this conversion is temporary, and it lasts only

as long as the page is loaded in the browser. When you assign a value to the href
property of an A element that surrounds text, the text assumes the appearance of a

link (either the default appearance or whatever style you assign to links).

Related Item: location object.

A.href

(c) ketabton.com: The Digital Library

500 Part III ✦ Document Objects Reference

hrefLang
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The hrefLang property advises the browser (if the browser takes advantage of

it) about the written language used for the content to which the A element’s HREF
attribute points. Values for this property must be in the form of the standard

language codes (for example, en-us for U.S. English).

Methods
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The Methods property (note the uppercase “M”) represents the HTML 4.0 METHODS
attribute for an A element. Values for this attribute and property serve as advisory

instructions to the browser about which HTTP method(s) to use for accessing the

destination document. This is a rare case in which an HTML 4.0 attribute is not

echoed in the W3C DOM. In any case, while IE4+ supports the property, the IE

browsers do nothing special with the information.

mimeType
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Introduced in IE4 (but not IE4/Mac), the mimeType property is still present in IE5

but apparently is no longer supported. The HTML 4.0 and W3C DOM specifications

define a TYPE attribute and type property instead. Perhaps this property was

intended as an advisory to allow the browser to “know” ahead of time the MIME

type of the destination document. In such a scenario, different MIME types can

trigger scripts to use different cursors while hovering atop the link. The property

has no actual control over the MIME type of the destination document.

Related Item: A.type property.

A.mimeType

(c) ketabton.com: The Digital Library

501Chapter 21 ✦ Link and Anchor Objects

name
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

While a NAME attribute is optional for an A element serving solely as a link object,

it is required for an anchor object. This value is exposed to scripting via the name
property. While it is unlikely you will need to change the value by scripting, you can

use this property as a way to identify a link object from among the

document.links arrays in a repeat loop. For example:

for (var i = 0; i < document.links.length; i++) {
if (document.links[i].name == “bottom” {

// statements dealing with the link named “bottom”
}

}

nameProp
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific nameProp property is a convenience property that retrieves the

segment of the HREF to the right of the rightmost forward slash character of the

URL. Most typically, this value is the name of the file from a URL. But if the URL also

includes a port number, that number is returned as part of the nameProp value.

protocolLong
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE-specific protocolLong property returns a verbose rendition of the

protocol property as indicated in the A element’s HREF attribute. For example,

if the HREF attribute points to an http: protocol, the protocolLong property

returns HyperText Transfer Protocol. Introduced in IE4 (but not IE4/Mac),

the protocolLong property is still present in IE5 but apparently is no longer

supported.

A.protocolLong

(c) ketabton.com: The Digital Library

502 Part III ✦ Document Objects Reference

rel
rev

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The rel and rev properties define relationships in the forward and back direc-

tions with respect to the destination document of the A element. Browsers have

yet to exploit most of the potential of these attributes and properties.

A long list of values are predefined for these properties, based on the corres-

ponding attribute values specified in HTML 4.0. If the browser does nothing with a

particular value, the value is ignored. You can string together multiple values in a

space-delimited list inside a single string. Accepted values are as follows:

alternate contents index start

appendix copyright next stylesheet

bookmark glossary prev subsection

chapter help section

target
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

An important property of the link object is the target. This value reflects the

window name supplied to the TARGET attribute in the A element.

You can temporarily change the target for a link. But, as with most transient

object properties, the setting does not survive soft reloads. Rather than altering the

target this way, you can safely force the target change by letting the HREF attribute

call a javascript:functionName() psuedo-URL in which the function assigns a

document to the desired window.location. If you have done extensive HTML

authoring before, you will find it hard to break the habit of relying on the TARGET
attribute.

Related Item: document.links property.

A.target

(c) ketabton.com: The Digital Library

503Chapter 21 ✦ Link and Anchor Objects

text
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Between the start and end tags of a link goes the text (or image) that is high-

lighted in the distinguishing link color of the document. Navigator 4 enables you to

read that text with the link.text property. This property is read-only. For later

browsers, use the IE4+ and/or W3C DOM syntax for reading the text node

(innerText, innerHTML, or nodeValue) property of the A element.

This property was not implemented in releases of Navigator 4 prior to version 4.02.

type
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The type property represents the HTML 4.0 TYPE attribute, which specifies the

MIME type for the content of the destination document to which the element’s HREF
attribute points. This is primarily an advisory property for browsers that wish to,

say, display different cursor styles based on the anticipated type of content at the

other end of the link. Thus far, browsers do not take advantage of this feature.

However, you can assign MIME type values to the attribute (for example, video/
mpeg) and let scripts read those values for making style changes to the link text

after the page loads. IE4+ implements this property as the mimeType property.

Related Item: A.mimeType property.

urn
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The urn property represents the IE-specific URN attribute, which enables authors

to use a URN (Uniform Resource Name) for the destination of the A element. (See

Note

A.urn

(c) ketabton.com: The Digital Library

504 Part III ✦ Document Objects Reference

http://www.ietf.org/rfc/rfc2141.txt for information about URNs.) This

property is not in common use.

x
y

Value: Integer Read-Only

Nav2 Nav3 Nav4 Nav6 IE3/J1 IE3/J2 IE4/J3 IE5

Compatibility �

Your Navigator 4 script can retrieve the x and y coordinates of a link object (the

top-left corner of the rectangular space occupied by the linked text or image) via

the link.x and link.y properties. With IE4+ and NN6, you can get the coordinates

of a typical link via the A element’s offsetLeft and offsetTop properties.

✦ ✦ ✦

A.x

(c) ketabton.com: The Digital Library

Image, Area,
and Map Objects

For NN3+ and IE4+ browsers, images and areas — those

items created by the and <AREA> tags — are first-

class objects that you can script for enhanced interactivity.

You can swap the image displayed in an tag with other

images (restricted to images of the same size in NN3 and NN4),

perhaps to show the highlighting of an icon button when the

cursor rolls atop it. And with scriptable client-side area maps,

pages can be smarter about how they respond to users’ clicks

on image regions.

One further benefit afforded scripters is that they can

preload images into the browser’s image cache as the page

loads. With cached images, the user experiences no delay

when the first swap occurs.

Image and IMG Element Objects
For HTML element properties, methods, and event handlers,

see Chapter 15.

Properties Methods Event Handlers

align onAbort

alt onError

border onLoad

complete

dynsrc

fileCreatedDate

fileModifiedDate

fileSize

fileUpdatedDate

height

href

hspace

Continued

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache
images

Swapping images
after a document
loads

Creating interactive,
client-side image
maps

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

506 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

isMap

longDesc

loop

lowsrc

name

nameProp

protocol

src

start

useMap

vspace

width

x

y

Syntax
Creating an image object:

imageName = new Image([pixelWidth, pixelHeight])

Accessing IMG element and image object properties or methods:

(NN3+/IE4+) [window.]document.imageName. property | method([parameters])
(NN3+/IE4+) [window.]document.images[index]. property | method([parameters])
(NN3+/IE4+) [window.]document.images[“imageName”]. property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6+) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

About this object
Before getting into detail about images as objects, it’s important to understand

the distinction between instances of the static Image object and IMG element

objects. The former exist only in the browser’s memory without showing anything

to the user; the latter are the elements on the page generated via the (or

nonsanctioned, but accepted, <IMAGE>) tag. Scripts use Image objects to precache

IMG

(c) ketabton.com: The Digital Library

507Chapter 22 ✦ Image, Area, and Map Objects

images for a page, but Image objects obviously have fewer applicable properties,

methods, and event handlers because they are neither visible on the page nor

influenced by tag attributes.

IMG elements have been in the HTML vocabulary since the earliest days, but

Netscape Navigator 3 was the first to treat them like first-class objects along with

the companion Image object for precaching images. Internet Explorer 3.01 for

the Macintosh includes a partial implementation of both objects (to allow image

precaching and swapping), and all flavors of IE4+ treat IMG elements as true docu-

ment objects. The primary advantage of treating IMG elements as objects is that

scripts can change the image that occupies the IMG object’s space on the page,

even after the document has loaded and displayed an initial image. The key to this

scriptability is the src property of an image.

In a typical scenario, a page loads with an initial image. That image’s tags specify

any of the extra attributes, such as HEIGHT and WIDTH (which help speed the render-

ing of the page), and specify whether the image uses a client-side image map to

make it interactive. (See the AREA object later in this chapter.) As the user spends

time on the page, the image can then change (perhaps in response to user action or

some timed event in the script), replacing the original image with a new one in the

same space. In browsers prior to IE4 and NN6 that support the IMG element object,

the height and width of the initial image that loads into the element establishes a

fixed-sized rectangular space for the image. Attempts to fit an image of another size

into that space forces the image to scale (up or down, as the case may be) to fit the

rectangle. But in IE4+ and NN6+, a change in the image’s size is reflected by an auto-

matic reflow of the page content around the different size.

The benefit of the separate Image object is that a script can create a virtual

image to hold a preloaded image. (The image is loaded into the image cache but

the browser does not display the image.) The hope is that one or more unseen

images will load into memory while the user is busy reading the page or waiting

for the page to download. Then, in response to user action on the page, an image

can change instantaneously rather than forcing the user to wait for the image to

load on demand.

To preload an image, begin by assigning a new, empty image object to a global

variable. The new image is created via the constructor function available to the

Image object:

var imageVariable = new Image(width, height)

You help the browser allocate memory for the image if you provide the pixel

height and width of the precached image as parameters to the constructor function.

All that this statement does is create an object in memory whose properties are all

empty. To force the browser to load the image into the cache, assign an image file

URL to the object’s src property:

var oneImage = new Image(55,68)
oneImage.src = “neatImage.gif”

As this image loads, you see the progress in the statusbar just like any image.

Later, assign the src property of this stored image to the src property of the IMG

element object that appears on the page:

document.images[“someImage”].src = oneImage.src

IMG

(c) ketabton.com: The Digital Library

508 Part III ✦ Document Objects Reference

Depending on the type and size of image, you will be amazed at the speedy

response of this kind of loading. With small-palette graphics, the image displays

instantaneously.

A popular user-interface technique is to change the appearance of an image that

represents a clickable button when the user rolls the mouse pointer atop that art.

This action assumes that a mouse event fires on an element associated with the

object. Prior to IE4 and NN6, IMG element objects did not respond to mouse events

on their own. The required technique was to encase the IMG element inside an A

element. This allowed the events associated with rollovers (onMouseOver and

onMouseOut) and a user click on the image to effect some change (usually to navi-

gate to another page). While IE4+ and NN6+ provide these events directly for IMG

element objects, you can guarantee your pages to be backward-compatible if you

continue to surround your images with A elements. You can see examples of these

kinds of actions in Chapters 12 and 22.

Image rollovers are most commonly accomplished in two different image states:

normal and highlighted. But you may want to increase the number of states to more

closely simulate the way clickable buttons work in application programs. In some

instances, a third state signifies that the button is switched on. For example, if you

use rollovers in a frame for navigational purposes and the user clicks a button to

navigate to the Products area, that button stays selected but in a different style

than the rollover highlights. Some designers go one step further by providing a

fourth state that appears briefly when the user mouses down an image. Each one

of these states requires the download of yet another image, so you have to gauge

the effect of the results against the delay in loading the page.

The speed with which image swapping takes place may lead you to consider

using this method for animation. Though this method may be practical for brief

bursts of animation, the many other ways of introducing animation to your Web

page (such as via GIF89a-standard images, Java applets, and a variety of plug-ins)

produce animation that offers better speed control. In fact, swapping preloaded

JavaScript image objects for some cartoon-like animations may be too fast. You

can build a delay mechanism around the setInterval() method, but the precise

timing between frames varies with client processor performance.

All browsers that implement the IMG element object also implement the

document.images array. You can (and should) use the availability of this array as a

conditional switch before any script statements that work with the IMG element or

Image object. The construction to use is as follows:

if (document.images) {
// statements working with images as objects

}

Earlier browsers treat the absence of this array as the equivalent of false in the

if clause’s conditional statement.

If you place an image inside a table cell, Navigator 3 sometimes generates two
copies of the image object in its object model. This can disturb the content of the
document.images array for your scripts. Specifying HEIGHT and WIDTH
attributes for the image sometimes cures the problem. Otherwise, you have to
craft scripts so they don’t rely on the document.images array.

Tip

IMG

(c) ketabton.com: The Digital Library

509Chapter 22 ✦ Image, Area, and Map Objects

Most of the properties discussed here mirror attributes of the IMG HTML element.

For more details on the meanings and implications of attribute values on the

rendered content, consult the HTML 4.0 specification (http://www.w3.org/TR/
REC-html40) and Microsoft’s extensions for IE (http://msdn.microsoft.com/
workshop/author/dhtml/reference/objects/img.asp).

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The align property defines how the image is oriented in relation to surrounding

text content. It is a double-duty property because you can use it to control the ver-

tical or horizontal alignment depending on the value (and whether the image is

influenced by a float style attribute). Values are string constants, as follows:

absbottom middle
absmiddle right
baseline texttop
bottom top
left

The default alignment for an image is bottom. Increasingly, element alignment is

handed over to style sheet control.

Example (with Listing 22-1) on the CD-ROM

Related Items: text-align, float style sheet attributes.

alt
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The alt property enables you to set or modify the text that the browser displays

in the image’s rectangular space (if height and width are specified in the tag) before

the image downloads to the client. Also, if a browser has images turned off (or is

incapable of displaying images), the alt text helps users identify what is normally

displayed in that space. You can modify this alt text even after the page loads.

On the
CD-ROM

IMG.alt

(c) ketabton.com: The Digital Library

510 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: title property.

border
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The border property defines the thickness in pixels of a border around an

image. Remember that if you wrap an image inside an A element to make use of the

mouse events (for rollovers and such), be sure to set the BORDER=0 attribute of the

 tag to prevent the browser from generating the usual link kind of border

around the image. Even though the default value of the attribute is zero, surrounding

the image with an A element or attaching the image to a client-side image map puts

a border around the image.

Example on the CD-ROM

Related Items: isMap, useMap properties.

complete
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Sometimes you may want to make sure that an image is not still in the process

of loading before allowing another process to take place. This situation is different

from waiting for an image to load before triggering some other process (which you

can do via the image object’s onLoad event handler). To verify that the IMG object

displays a completed image, check for the Boolean value of the complete property.

To verify that a particular image file has loaded, first find out whether the complete
property is true; then compare the src property against the desired filename.

An image’s complete property switches to true even if only the specified LOWSRC
image has finished loading. Do not rely on this property alone for determining

whether the SRC image has loaded if both SRC and LOWSRC attributes are specified

in the tag.

On the
CD-ROM

On the
CD-ROM

IMG.complete

(c) ketabton.com: The Digital Library

511Chapter 22 ✦ Image, Area, and Map Objects

One of the best ways to use this property is in an if construction’s conditional

statement:

if (document.myImage.complete) {
// statements that work with document.myImage

}

The complete property is not reliable in Navigator 4 and some versions of
Internet Explorer 4. For those browsers, the value returns true in all instances.

Example (with Listing 22-2) on the CD-ROM

Related Items: IMG.src, IMG.lowsrc, IMG.readyState properties; onLoad event

handler.

dynsrc
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The dynsrc property is a URL to a video source file, which (in IE) you can play

through an IMG element. You can turn a space devoted to a static image into a video

viewer by assigning a URL of a valid video source (for example, an .avi or .mpg file)

to the dynsrc property of the image element object. Unlike the src property of

image objects, assigning a URL to the dynsrc property does not precache the video.

You may experience buggy behavior in various IE versions when you assign a

value to an image’s dynsrc property after the IMG element renders a .gif or .jpg
image. In IE5/Windows, the status bar indicates that the video file is still download-

ing, even though the download is complete. Clicking the Stop button has no effect.

IE5.5/Windows may not even load the video file, leaving a blank space on the page.

IE5/Macintosh changes between static and motion images with no problems, but

playing the video file multiple times causes the IMG element to display black space

beyond the element’s rectangle. You can experience all this behavior in the example

provided in Listing 22-3. None of these bugs is fatal, but they should discourage you

from using the IMG element as a vehicle for video content.

Example (with Listing 22-3) on the CD-ROM

Related Items: IMG.loop, IMG.start properties.

On the
CD-ROM

On the
CD-ROM

Note

IMG.dynsrc

(c) ketabton.com: The Digital Library

512 Part III ✦ Document Objects Reference

fileCreatedDate
fileModifiedDate
fileSize

Value: String, Integer (fileSize) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These three IE-specific properties return information about the file displayed in

the IMG element (whether still or motion image). Two of the properties reveal the

dates on which the current image’s file was created and modified. For an unmodi-

fied file, its creation and modified dates are the same. The fileSize property

reveals the number of bytes of the file.

Date values returned for the first two properties are formatted differently

between IE4 and IE5. The former provides a full readout of the day and date; the lat-

ter returns a format similar to mm/dd/yyyy. Note, however, that the values contain

only the date and not the time. In any case, you can use the values as the parameter

to a new Date() constructor function. This enables you to then use date calcula-

tions for such information as the number of days between the current day and the

most recent modification.

Not all servers provide the proper date or size information about a file or in a

format that IE can interpret. Test your implementation on the deployment server to

ensure compatibility.

Also, be aware that these properties can be read-only for a file that is loaded in

the browser. JavaScript by itself cannot get this information about files on the

server that are not loaded in the browser.

All of these file-related properties are present in the Mac version of IE, but the
values are empty.

Example on the CD-ROM

Related Items: None.

On the
CD-ROM

Note

IMG.fileCreatedDate

(c) ketabton.com: The Digital Library

513Chapter 22 ✦ Image, Area, and Map Objects

height
width

Value: Integer Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The height and width properties return and (in later browsers) control the

pixel height and width of an image object. The property is read-only in NN3 and

NN4, but it is read/write in all others that support the IMG element object.

If you adjust the height property of an image, the browser automatically

scales the image within the same proportions as the original. But adjusting the

width property has no effect on the height property in most browser versions.

Scaling of an image may cause unwanted pixelation in the image, so modify an

image’s size with extreme care.

Example on the CD-ROM

Related Items: hspace, vspace properties.

href
See src property.

hspace
vspace

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The hspace and vspace properties control the pixel width of a transparent

margin surrounding an image. Specifically, hspace controls the margins at the top

and bottom of the image; vspace controls the left and right side margins. Images,

by default, have margins of zero pixels.

Example on the CD-ROM

Related Items: height, width properties.

On the
CD-ROM

On the
CD-ROM

IMG.hspace

(c) ketabton.com: The Digital Library

514 Part III ✦ Document Objects Reference

isMap
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The isMap property enables you to set whether the image should act as a

server-side image map. When set as a server-side image map, pixel coordinates

of the click are passed as parameters to whatever link HREF surrounds the image.

For client-side image maps, see the useMap property later in this chapter.

longDesc
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The longDesc property is a URL of a file that is intended to provide a detailed

description of the image associated with the IMG element. While NN6 recognizes

this property, the browser does not appear to do anything special with this

information — whether specified by script or the LONGDESC attribute.

Related Item: alt property.

Example on the CD-ROM

Related Item: IMG.useMap property.

loop
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The loop property represents the number of times a video clip playing through

the IMG element object should run. After the video plays that number of times, only

the first frame of the video appears in the image area. The default value is 1; but if

you set the value to -1, the video plays continuously. Unfortunately, setting the

property to 0 prior to assigning a URL to the dynsrc property does not prevent the

movie from playing at least once (except on the Mac, as noted in the dynsrc property

discussion earlier in this chapter).

On the
CD-ROM

IMG.loop

(c) ketabton.com: The Digital Library

515Chapter 22 ✦ Image, Area, and Map Objects

Example on the CD-ROM

Related Item: dynsrc property.

lowsrc
lowSrc

Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

For image files that take several seconds to load, recent browsers enable you to

specify a lower-resolution image or some other quick-loading placeholder to stand

in while the big image crawls to the browser. You assign this alternate image via the

LOWSRC attribute in the tag. The attribute is reflected in the lowsrc property

of an image object.

All compatible browsers recognize the all-lowercase version of this property. But

the W3C DOM specification calls for the interCap “S”. NN6 recognizes this version

as well.

Be aware that if you assign a URL to the LOWSRC attribute, the complete property

switches to true and the onLoad event handler fires when the alternate file finishes

loading: The browser does not wait for the main SRC file to load.

Example on the CD-ROM

Related Items: IMG.src, IMG.complete properties.

name
Value: Identifier String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � (�) � � �

The name property returns the value assigned to the NAME attribute of an IMG

element. Starting with IE4 and NN6, you can use the ID of the element to reference

the IMG element object via document.all and document.getElementById(). But

references in the form of document.imageName and document.images[imageName]
must use only the value assigned to the NAME attribute.

On the
CD-ROM

On the
CD-ROM

IMG.name

(c) ketabton.com: The Digital Library

516 Part III ✦ Document Objects Reference

In some designs, it may be convenient to assign numerically sequenced names to

IMG elements, such as img1, img2, and so on. As with any scriptable identifier, the

name cannot begin with a numeric character. Rarely, if ever, will you need to change

the name of an IMG element object.

Example on the CD-ROM

Related Item: id property.

nameProp
Value: Filename String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Unlike the src property, which returns a complete URL in IE, the IE nameProp
property (not implemented in IE5/Mac) returns only the filename exclusive of

protocol and path. If your image swapping script needs to read the name of the

file currently assigned to the image (to determine which image to show next), the

nameProp property makes it easier to get the actual filename without having to

perform extensive parsing of the URL.

Example on the CD-ROM

Related Item: IMG.src property.

protocol
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The IE protocol property returns only the protocol portion of the complete URL

returned by the src property. This allows your script, for example, to see if the

image is sourced from a local hard drive or a Web server. Values returned are not

the actual protocol strings; rather, they are descriptions thereof: HyperText
Transfer Protocol or File Protocol.

On the
CD-ROM

On the
CD-ROM

IMG.protocol

(c) ketabton.com: The Digital Library

517Chapter 22 ✦ Image, Area, and Map Objects

Example on the CD-ROM

Related Items: IMG.src, IMG.nameProp properties.

src
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

The src property is the gateway to precaching images (in instances of the Image
object that are stored in memory) and performing image swapping (in IMG element

objects). Assigning a URL to the src property of an image object in memory causes

the browser to load the image into the browser’s cache (provided the user has the

cache turned on). Assigning a URL to the src property of an IMG element object

causes the element to display the new image. To take advantage of this powerful

combination, you preload alternate versions of swappable images into image objects

in memory and then assign the src property of the image object to the src property

of the desired IMG element object. These powers are available in IE3 only in the

Macintosh version (specifically, version 3.01, which was the first scriptable version

of IE3 for the Mac).

In NN3 and NN4 (all OS platforms) and IE3 for the Mac, the size of the image

defined by the IMG element’s attributes (or, if not specified, then calculated by the

browser from the size of the incoming image) governs the rectangular space devoted

to that image. An attempt to assign an image of a different size to that IMG element

object causes the image to rescale to fit the rectangle (usually resulting in a distorted

image). In all later browsers, however, the IMG element object resizes itself to

accommodate the image, and the page content reflows around the new size.

Note that when you read the src property, it returns a fully formed URL of the

image file including protocol and path. This often makes it inconvenient to let the

name of the file guide your script to swap images with another image in a sequence

of your choice. Some other mechanism (such as storing the current filename in a

global variable) may be easier to work with (and see the IE5+/Windows nameProp
property).

IE4+ replicates the src property as the href property for an image object. This

may be deprecated in IE, so stick with the src property when dealing with the URL

of a still image.

Example (with Figure 22-1 and Listing 22-4) on the CD-ROM

Related Items: IMG.lowsrc, IMG.nameProp properties.

On the
CD-ROM

On the
CD-ROM

IMG.src

(c) ketabton.com: The Digital Library

518 Part III ✦ Document Objects Reference

start
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The start property works in conjunction with video clips viewed through the

IMG element in IE4+. By default, a clip starts playing (except on the Macintosh)

when the image file opens. This follows the default setting of the start property:

“fileopen”. Another recognized value is “mouseover”, which prevents the clip

from running until the user rolls the mouse pointer atop the image.

Example on the CD-ROM

Related Items: IMG.dynsrc, IMG.loop properties.

useMap
Value: Identifier String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The useMap property represents the USEMAP attribute of an IMG element, pointing

to the name assigned to the AREA element in the page (see Listing 22-7 on

CD-ROM). This AREA element contains the details about the client-side image map

(described later in this chapter). The value for the useMap property must include

the hash mark that defines an internal HTML reference on the page. If you need to

switch among two or more image maps for the same IMG element (for example, you

swap images or the user is in a different mode), you can define multiple MAP ele-

ments each with a different name. Then change the value of the useMap property

for the IMG element object to associate a different map with the image.

Related Item: isMap property.

vspace
See hspace.

width
See height.

On the
CD-ROM

IMG.width

(c) ketabton.com: The Digital Library

519Chapter 22 ✦ Image, Area, and Map Objects

x
y

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

An NN4 script can retrieve the x and y coordinates of an IMG element (the top-left

corner of the rectangular space occupied by the image) via the x and y properties.

These properties are read-only. They were supplanted in NN6 via the offsetLeft
and offsetTop properties of any element.

Even without Dynamic HTML, you can use the information from these properties

to help scroll a NN4 document to a precise position (with the window.scrollTo()
method) as a navigational aid in your page. Due to the different ways each operating

system platform renders pages and the different sizes of browser windows, you can

dynamically locate the position of an image (in other words, scroll the document)

given the current client conditions.

Example on the CD-ROM

Related Items: IMG.offsetLeft, IMG.offsetTop properties; IMG.
scrollIntoView(), window.scrollTo() methods.

Event handlers

onAbort
onError

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Your scripts may need to be proactive when a user clicks the Stop button while an

image loads or when a network or server problem causes the image transfer to fail.

Use the onAbort event handler to activate a function in the event of a user clicking

the Stop button; use the onError event handler for the unexpected transfer snafu.

In practice, these event handlers don’t supply all the information you may like

to have in a script, such as the filename of the image loading at the time. If such

information is critical to your scripts, then the scripts need to store the name of a

currently loading image to a variable before they set the image’s src property. You

also don’t know the nature of the error that triggers an error event. You can treat

On the
CD-ROM

IMG.onAbort

(c) ketabton.com: The Digital Library

520 Part III ✦ Document Objects Reference

such problems by forcing a scripted page to reload or by navigating to an entirely

different spot in your Web site.

Example on the CD-ROM

onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

An IMG object’s onLoad event handler fires when one of three actions occurs: an

image’s LOWSRC image finishes loading; in the absence of a LOWSRC image specifi-

cation, the SRC image finishes loading; or when each frame of an animated GIF

(GIF89a format) appears.

It’s important to understand that if you define a LOWSRC file inside an tag,

the IMG object receives no further word about the SRC image having completed its

loading. If this information is critical to your script, verify the current image file by

checking the src property of the image object.

Be aware, too, that an IMG element’s onLoad event handler may fire before the

other elements on the page have completed loading. If the event handler function

refers to other elements on the page, the function should verify the existence of

other elements prior to addressing them.

The onLoad event handler for images appears to be broken in Navigator 4.

Example (with Listing 22-5) on the CD-ROM

Related Items: IMG.src, IMG.lowsrc properties.

AREA Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alt

coords

hash

host

On the
CD-ROM

Note

On the
CD-ROM

AREA

(c) ketabton.com: The Digital Library

521Chapter 22 ✦ Image, Area, and Map Objects

Properties Methods Event Handlers

hostname

href

noHref

pathname

port

protocol

search

shape

target

Syntax
Accessing AREA element object properties:

(NN3+/IE4+) [window.]document.links[index].property
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.MAPElemID.areas[index].property |

method([parameters])
(IE5+/NN6+) [window.]document.getElementById(“MAPElemID).areas[index].

property | method([parameters])
(IE5+/NN6+) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

About this object
Document object models treat an image map area object as one of the link (A

element) objects in a document (see the anchor object in Chapter 21). When you think

about it, such treatment is not illogical at all because clicking a map area generally

leads the user to another document or anchor location in the same document — a

hyperlinked reference.

Although the HTML definitions of links and map areas differ greatly, the earliest

scriptable implementations of both kinds of objects had nearly the same properties

and event handlers. Therefore, to read about the details for these items, refer to

the discussion about the link object in Chapter 21. The one difference is that in

NN3 and NN4, a map area object does not have the same full array of mouse event

handlers — you can count upon having only the onClick (NN4+), onMouseOver,

and onMouseOut event handlers for those browsers.

Starting with IE4 and NN6, all AREA element attributes are accessible as scriptable

properties. Moreover, you can change the makeup of client-side image map areas by

AREA

(c) ketabton.com: The Digital Library

522 Part III ✦ Document Objects Reference

way of the MAP element object. The MAP element object contains an array of AREA

element objects nested inside. You can remove, modify, or add to the AREA elements

inside the MAP element.

Client-side image maps are fun to work with, and they have been well documented

in HTML references since Netscape Navigator 2 introduced the feature. Essentially,

you define any number of areas within the image based on shape and coordinates.

Many graphics tools can help you capture the coordinates of images that you need

to enter into the COORDS attribute of the <AREA> tag.

If one gotcha exists that trips up most HTML authors, it’s the tricky link between
the and <MAP> tags. You must assign a name to the <MAP>; in the
tag, the USEMAP attribute requires a hash symbol (#) and the map name. If you
forget the hash symbol, you can’t create a connection between the image and its
map.

The onClick event handler appears in Netscape’s area object beginning with
Navigator 4. To be backward compatible with Navigator 3, use a javascript:
URL for the HREF attribute if you want to navigate to another page with a click of
the region.

Example (with Listing 22-6) on the CD-ROM

Properties
alt

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The alt property represents the ALT attribute of an AREA. Future browsers may

implement this attribute to provide additional information about the link associated

with the AREA element.

Related Item: title property.

On the
CD-ROM

Tip

Tip

AREA.alt

(c) ketabton.com: The Digital Library

523Chapter 22 ✦ Image, Area, and Map Objects

coords
shape

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The coords and shape properties control the location, size, and shape of the

image hot spot governed by the AREA element. Shape values that you can use for

this property control the format of the coords property values, as follows:

Shape Coordinates Example

circ center-x, center-y, radius “30, 30, 20”

circle center-x, center-y, radius “30, 30, 20”

poly x1, y1, x2, y2,... “0, 0, 0, 30, 15,30,
0, 0”

polygon x1, y1, x2, y2,... “0, 0, 0, 30, 15,30,
0, 0”

rect left, top, right, bottom “10, 20, 60, 40”

rectangle left, top, right, bottom “10, 20, 60, 40”

The default shape for an AREA is a rectangle.

Example on the CD-ROM

Related Items: None.

hash
host
hostname
href
pathname
port
protocol

On the
CD-ROM

AREA.hash

(c) ketabton.com: The Digital Library

524 Part III ✦ Document Objects Reference

search
target

See corresponding properties of the link object (Chapter 21).

shape
See coords.

MAP Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

areas onScroll

name

Syntax
Accessing MAP element object properties:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
The MAP element object is an invisible HTML container for all AREA elements,

each of which defines a “hot” region for an image. Client-side image maps associate

links (and targets) to rectangular, circular, or polygonal regions of the image.

By far, the most important properties of a MAP element object are the areas
array and, to a lesser extent, its name. It is unlikely that you will change the name of

a MAP. (It is better to define multiple MAP elements with different names, and then

assign the desired name to an IMG element object’s useMap property.) But you can

use the areas array to change the makeup of the AREA objects inside a given

client-side map.

MAP

(c) ketabton.com: The Digital Library

525Chapter 22 ✦ Image, Area, and Map Objects

Properties
areas

Value: Array of AREA element objects Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Use the areas array to iterate through all AREA element objects within a MAP

element. While NN6 adheres closely to the document node structure of the W3C

DOM, IE4+ provides more direct access to the AREA element objects nested inside a

MAP. If you want to rewrite the AREA elements inside a MAP, you can clear out the

old ones by setting the length property of the areas array to zero. Then assign

AREA element objects to slots in the array to build that array.

Example (with Listing 22-7) on the CD-ROM

Related Items: AREA element object.

✦ ✦ ✦

On the
CD-ROM

MAP.areas

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The Form and
Related Objects

Prior to the advent of dynamic object models and auto-

matic page reflow, the majority of scripting in an HTML

document took place in and around forms. Even with all the

new DHTML powers, forms remain the primary user interface

elements of HTML documents because they enable users to

input information and make choices in very familiar user

interface elements, such as buttons, option lists, and so on.

The challenge of scripting forms and form elements often

involves getting object references just right. The references

can get pretty long by the time you start pointing to the prop-

erty of a form element (which is part of a form, which is part

of a document, which is part of a window or frame).

Expanded object models of IE4+ and NN6+ include script-

able access to form-related elements that are part of the

HTML 4.0 specification. One pair of elements, FIELDSET and

LEGEND, provides both contextual and visual containment

of form controls in a document. Another element, LABEL,

provides context for text labels that usually appear adjacent

to form controls. While there is generally little need to script

these objects, the browsers give you access to them just as

they do for virtually every HTML element supported by the

browser.

The Form in the Object Hierarchy
Take another look at the JavaScript object hierarchy in the

lowest common denominator object model (refer back to

Figure 14-1). The FORM element object can contain a wide

variety of form element objects (sometimes called form
controls), which I cover in Chapters 24 through 26. In this

chapter, however, I focus primarily on the container.

The good news on the compatibility front is that much

of the client-side scripting works on all scriptable browsers.

While you are free to use newer ways of addressing forms and

their nested elements when your audience exclusively uses

the newer browsers, it can serve you well to be comfortable

with the “old-fashioned” reference syntax. Therefore, almost

all example code in this and the next three chapters uses

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The FORM object as
a container of form
controls

How to submit forms
via e-mail

Processing form
validations

LABEL, FIELDSET, and
LEGEND element
objects

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

528 Part III ✦ Document Objects Reference

syntax that is compatible with the earliest scriptable browsers. Besides, the only

significant additions to the defining points of the form object in newer browsers are

those characteristics that all other HTML elements share. The true scriptable heart

of the form object has been within the scripter’s reach since NN2.

FORM Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

acceptCharset handleEvent() onReset

action reset() onSubmit

autocomplete submit()

elements

encoding

enctype

length

method

name

target

Syntax
Accessing FORM object properties or methods:

(All) [window.]document.formName. property | method([parameters])
(All) [window.]document.forms[index]. property | method([parameters])
(All) [window.]document.forms[“formName”]. property | method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
Forms and their elements are the most common two-way gateways between

users and JavaScript scripts. A form control element provides the only way that

users can enter textual information. Form controls also provide somewhat stan-

dardized and recognizable user interface elements for the user to make a selection

from a predetermined set of choices. Sometimes those choices appear in the form

of an on/off checkbox, in a set of mutually exclusive radio buttons, or as a selection

from a list.

As you have seen in many Web sites, the form is the avenue for the user to enter

information that is sent to the server housing the Web files. Just what the server

FORM

(c) ketabton.com: The Digital Library

529Chapter 23 ✦ The Form and Related Objects

does with this information depends on the CGI (Common Gateway Interface)

programs running on the server. If your Web site runs on a server directly under

your control (that is, it is in-house or hosted by a service), you have the freedom to

set up all kinds of data-gathering or database search programs to interact with the

user. But with some of the more consumer-oriented Internet Service Providers (ISPs),

you may have no CGI support available — or, at best, a limited set of popular but

inflexible CGI programs available to all customers of the service. Custom databases

or transactional services are rarely provided for this kind of Internet service.

Regardless of your Internet server status, you can find plenty of uses for

JavaScript scripts in forms. For instance, rather than using data exchanges (and

Internet bandwidth) to gather raw user input and report any errors, a JavaScript-

enhanced document can preprocess the information to make sure that it employs

the format that your back-end database or other programs most easily process. All

corrective interaction takes place in the browser, without one extra bit flowing across

the Net. I devote all of Chapter 43 to these kinds of form data-validation techniques.

How you define a FORM element (independent of the user interface elements

described in subsequent chapters) depends a great deal on how you plan to use

the information from the form’s controls. If you intend to use the form completely

for JavaScript purposes (that is, no queries or postings going to the server), you

do not need to use the ACTION, TARGET, and METHOD attributes. But if your Web

page will be feeding information or queries back to a server, you need to specify

at least the ACTION and METHOD attributes. You need to also specify the TARGET
attribute if the resulting data from the server is to be displayed in a window other

than the calling window and the ENCTYPE attribute if your form’s scripts fashion

the server-bound data in a MIME type other than in a plain ASCII stream.

References to form control elements
For most client-side scripting, user interaction comes from the elements within

a form; the FORM element object is merely a container for the various control

elements. If your scripts perform any data validation checks on user entries prior

to submission or other calculations, many statements have the form object as part

of the reference to the element.

A complex HTML document can have multiple FORM objects. Each <FORM>...
</FORM> tag pair defines one form. You don’t receive any penalties (except for

potential confusion on the part of someone reading your script) if you reuse a name

for an element in each of a document’s forms. For example, if each of three forms

has a grouping of radio buttons with the name “choice,” the object reference to

each button ensures that JavaScript doesn’t confuse them. The reference to the

first button of each of those button groups is as follows:

document.forms[0].choice[0]
document.forms[1].choice[0]
document.forms[2].choice[0]

Remember, too, that you can create forms (or any HTML object for that matter)

on the fly when you assemble HTML strings for writing into other windows or

frames. Therefore, you can determine various attributes of a form from settings in

an existing document.

FORM

(c) ketabton.com: The Digital Library

530 Part III ✦ Document Objects Reference

Passing forms and elements to functions
When a form or form element contains an event handler that calls a function

defined elsewhere in the document, you can use a couple of shortcuts to simplify

the task of addressing the objects while the function does its work. Failure to grasp

this concept not only causes you to write more code than you have to, but it also

hopelessly loses you when you try to trace somebody else’s code in his or her

JavaScripted document. The watchword in event handler parameters is

this

which represents a reference to the current object that contains the event handler

attribute. For example, consider the function and form definition in Listing 23-1.

The entire user interface for this listing consists of form elements, as shown in

Figure 23-1.

Listing 23-1: Passing the Form Object as a Parameter

<HTML>
<HEAD>
<TITLE>Beatle Picker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break
}

}
var chosenBeatle = form.Beatles[i].value
var chosenSong = form.song.value
alert(“Looking to see if “ + chosenSong + “ was written by “ +

chosenBeatle + “...”)
}

function checkSong(songTitle) {
var enteredSong = songTitle.value
alert(“Making sure that “ + enteredSong + “ was recorded by the Beatles.”)

}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME=”Abbey Road”>
Choose your favorite Beatle:
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”John Lennon” CHECKED=”true”>John
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”Paul McCartney”>Paul
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”George Harrison”>George
<INPUT TYPE=”radio” NAME=”Beatles” VALUE=”Ringo Starr”>Ringo<P>

Enter the name of your favorite Beatles song:

<INPUT TYPE=”text” NAME=”song” VALUE=”Eleanor Rigby”
onChange=”checkSong(this)”><P>
<INPUT TYPE=”button” NAME=”process” VALUE=”Process Request...”
onClick=”processData(this.form)”>

FORM

(c) ketabton.com: The Digital Library

531Chapter 23 ✦ The Form and Related Objects

</FORM>
</BODY>
</HTML>

Figure 23-1: Controls pass different object references to functions in Listing 23-1.

The processData() function, which needs to read and write properties of

multiple form control elements, can reference the controls in two ways. One way

is to have the onClick event handler (in the button element at the bottom of the

document) call the processData() function and not pass any parameters. Inside

the function, all references to objects (such as the radio buttons or the song field)

must be complete references, such as

document.forms[0].song.value

to retrieve the value entered into the song field.

A more efficient way is to send a reference to the FORM object as a parameter

with the call to the function (as shown in Listing 23-1). By specifying this.form as

the parameter, you tell JavaScript to send along everything it knows about the form

from which the function is called. This works because form is a property of every

form control element; the property is a reference to the form that contains the

control. Therefore, this.form passes the value of the form property of the control.

At the function, the reference to the FORM object is assigned to a variable name

(arbitrarily set to form here) that appears in parentheses after the function name.

I use the parameter variable name form here because it represents an entire form.

But you can use any valid variable name you like.

FORM

(c) ketabton.com: The Digital Library

532 Part III ✦ Document Objects Reference

The reference to the form contains everything the browser needs to know to

find that form within the document. Any statements in the function can therefore

use the parameter value in place of the longer, more cumbersome reference to the

form. Thus, here I can use form to take the place of document.forms[0] in any

address. To get the value of the song field, the reference is:

form.song.value

Had I assigned the form object to a parameter variable called sylvester, the

reference would have been:

sylvester.song.value

When a function parameter is a reference to an object, statements in the function

can retrieve or set properties of that object as well as invoke the object’s methods.

Another version of the this parameter passing style simply uses the word this
as the parameter. Unlike this.form, which passes a reference to the entire form

connected to a particular element, this passes a reference only to that one element.

In Listing 23-1, you can add an event handler to the song field to do some validation

of the entry (to make sure that the entry appears in a database array of Beatles’

songs created elsewhere in the document). Therefore, you want to send only the

field object to the function for analysis:

<INPUT TYPE=”text” NAME=”song” onChange=”checkSong(this)”><P>

You then have to create a function to catch this call:

function checkSong(songTitle) {
var enteredSong = songTitle.value
alert(“Making sure that “ + enteredSong + “ was recorded by the Beatles.”)

}

Within this function, you can go straight to the heart — the value property of the

field element without a long reference.

One further extension of this methodology passes only a single property of a

form control element as a parameter. In the last example, the checkSong() function

needs only the value property of the field, so the event handler can pass this.
value as a parameter. Because this refers to the very object in which the event

handler appears, the this.propertyName syntax enables you to extract and pass

along a single property:

<INPUT TYPE=”text” NAME=”song” onChange=”checkSong(this.value)”><P>

A benefit of this way of passing form element data is that the function doesn’t have

to do as much work:

function checkSong(songTitle) {
alert(“Making sure that “ + songTitle + “ was recorded by the Beatles.”)

}

Unlike passing object references (like the form and text field objects above),

when you pass a property value (for example, this.value), the property’s value is

passed with no reference to the object from which it came. This suffices when the

function just needs the value to do its job. However, if part of that job is to modify

the object’s property (for example, converting all text from a field to uppercase and

redisplaying the converted text), the value passed to the function does not maintain

FORM

(c) ketabton.com: The Digital Library

533Chapter 23 ✦ The Form and Related Objects

a “live” connection with its object. To modify a property of the object that invokes

an event handler function, you need to pass some object reference so that the

function knows where to go to work on the object.

Many programmers with experience in other languages expect parameters to be
passed either by reference or by value, but not both ways. The rule of thumb in
JavaScript, however, is fairly simple: object references are passed by reference;
property values are passed by value.

Here are some guidelines to follow when deciding what kind of value to pass to

an event handler function:

✦ Pass the entire form control object (this) when the function needs to make

subsequent access to that same element (perhaps reading an object’s value
property, converting the value to all uppercase letters, and then writing the

result back to the same object’s value property).

✦ Pass only one property (this.propertyName) when the function needs read-

only access to that property.

✦ Pass the entire FORM element object (this.form) for the function to access

multiple elements inside a form (for example, a button click means that the

function must retrieve a field’s content).

Also be aware that you can submit multiple parameters (for example,

onClick=”someFunction (this.form, this.name)”) or even an entirely

different object from the same form (for example, onClick=”someFunction
(this.form.emailAddr.value)”). Simply adjust your function’s incoming

parameters accordingly. (See Chapter 41 for more details about custom functions.)

E-mailing forms
A common request among scripters is how to send a form via e-mail to the page’s

author. This includes the occasional desire to send “secret” e-mail to the author

whenever someone visits the Web site. Let me address the privacy issue first.

A site visitor’s e-mail address is valuable personal information that you should

not retrieve without the visitor’s permission or knowledge. That’s one reason why

Netscape plugged a privacy hole in Navigator 2 that allowed submitting a form to

a mailto: URL without requesting permission from the user. You can use some

workarounds for this in Navigator 3, but I do not condone surreptitiously lifting

e-mail addresses and therefore choose not to publicize those workarounds here.

Besides, as more users gravitate to newer browser versions, the workarounds fail

anyway.

Microsoft, on the other hand, went too far in preventing forms e-mailing in the

earliest browser versions. While Netscape’s browsers reveal to the user in an alert

that an e-mail message bearing the user’s e-mail address (as stored in the browser’s

preferences) will be sent upon approval, Internet Explorer 3 does not send form

content via e-mail at all. Internet Explorer 4 sends form content as an attachment

through Microsoft Outlook, but only after displaying a mail composition window

to the user. Starting with IE5, the process is much more fluid, but the action works

best when Outlook is the default e-mail client on the computer.

Tip

FORM

(c) ketabton.com: The Digital Library

534 Part III ✦ Document Objects Reference

Many ISPs that host Web sites provide standard CGIs for forwarding forms to an

e-mail address of your choice. This manner of capturing form data, however, does

not also capture the visitor’s e-mail address unless your form has a field where the

visitor voluntarily enters that information.

Under no circumstances is a form submitted via the mailto: URL a secure docu-
ment. The form data is embedded within a plain e-mail message that goes
through the same Internet routes and servers as any e-mail message.

The remaining discussion about mailing forms focuses primarily on NN2+ and

IE5+ browsers. You should be aware that mailing forms in the following ways is

controversial in some Web standards circles. As of this writing, the W3C HTML

specification does not endorse these techniques specifically. However, the latest

browsers do support them nonetheless. Use these facilities judiciously and only

after extensive testing on the client browsers you intend to support.

If you want to have forms submitted as e-mail messages, you must attend to three

<FORM> tag attributes. The first is the METHOD attribute. You must set it to POST. Next

comes ENCTYPE. If you omit this attribute, the e-mail client sends the form data as an

attachment consisting of escaped name-value pairs, as in this example:

name=Danny+Goodman&rank=Scripter+First+Class&serialNumber=042

But if you set the ENCTYPE attribute to text/plain, the form name-value pairs are

placed in the body of the mail message in a more human-readable format:

name=Danny Goodman
rank=Scripter First Class
serialNumber=042

The last attribute of note is the ACTION attribute, which is normally the spot to

place a URL to another file or server CGI. Substitute the URL with the special

mailto: URL followed by an optional parameter for the subject. Here is an example:

ACTION=”mailto:prez@whitehouse.gov?subject=Opinion%20Poll”

To sum up, the following example shows the complete <FORM> tag for e-mailing

the form in Navigator.

<FORM NAME=”entry”
METHOD=POST
ENCTYPE=”text/plain”
ACTION=”mailto:prez@whitehouse.gov?subject=Opinion Poll”>

None of this requires any JavaScript at all. But seeing how you can use the

attributes — and the fact that these attributes are exposed as properties of the

FORM element object — you might see some extended possibilities for script

control over forms.

Changing form attributes
With the exception of IE3 (whose FORM object properties are read-only), all

scriptable browsers expose FORM element attributes as modifiable properties.

Therefore, you can change, say, the action of a form via a script in response to user

interaction on your page. For example, you can have two different CGI programs

invoked on your server depending on whether a form’s checkbox is checked.

Note

FORM

(c) ketabton.com: The Digital Library

535Chapter 23 ✦ The Form and Related Objects

The best opportunity to change the properties of a FORM element object is in a
function invoked by the form’s onSubmit event handler. The modifications are
performed at the last instant prior to actual submission, leaving no room for user-
induced glitches to get in the way.

Buttons in forms
A common mistake that newcomers to scripting make is defining all clickable but-

tons as the submit type of input object (<INPUT TYPE=”submit”>). The Submit

button does exactly what it says — it submits the form. If you don’t set any METHOD
or ACTION attributes of the <FORM> tag, the browser inserts its default values for

you: METHOD=GET and ACTION=pageURL. When you submit a form with these

attributes, the page reloads itself and resets all field values to their initial values.

Use a Submit button only when you want the button to actually submit the

form. If you want a button for other types of action, use the button style (<INPUT
TYPE=”button”>). A regular button can invoke a function that performs some

internal actions and then invokes the FORM element object’s submit() method

to submit the form under script control.

Redirection after submission
Undoubtedly, you have submitted a form to a site and seen a “Thank You” page

come back from the server to verify that your submission was accepted. This is warm

and fuzzy, if not logical, feedback for the submission action. It is not surprising that

you would want to recreate that effect even if the submission is to a mailto: URL.

Unfortunately, a problem gets in the way.

A common sense approach to the situation calls for a script to perform the

submission (via the form.submit() method) and then navigate to another page

that does the “Thank You.” Here is such a scenario from inside a function triggered

by a click of a link surrounding a nice, graphical Submit button:

function doSubmit() {
document.forms[0].submit()
location.href = “thanks.html”

}

The problem is that when another statement executes immediately after the

form.submit() method, the submission is canceled. In other words, the script

does not wait for the submission to complete itself and verify to the browser that

all is well (even though the browser appears to know how to track that information

given the statusbar feedback during submission). The point is, because JavaScript

does not provide an event that is triggered by a successful submission, there is no

sure-fire way to display your own “Thank You” page.

Don’t be tempted by the window.setTimeout() method to change the location

after some number of milliseconds following the form.submit() method. You

cannot predict how fast the network and/or server is for every visitor. If the

submission does not complete before the timeout ends, then the submission is

still canceled — even if it is partially complete.

It’s too bad we don’t have this power at our disposal yet. Perhaps a future

version of the document object model will provide an event that enables us to

do something only after a successful submission.

Tip

FORM

(c) ketabton.com: The Digital Library

536 Part III ✦ Document Objects Reference

Form element arrays
Starting with NN2 and IE4, document object models provide a feature that is

beneficial to a lot of scripters. If you create a series of like-named objects, they

automatically become an array of objects accessible via array syntax (see Chapter 7).

This is particularly helpful when you create forms with columns and rows of fields,

such as in an order form. By assigning the same name to all fields in a column, you

can employ for loops to cycle through each row using the loop index as an array

index.

As an example, the following code shows a typical function that calculates the

total for an order form row (and calls another custom function to format the value):

function extendRows(form) {
for (var i = 0; i < Qty.length; i++) {

var rowSum = form.Qty[i].value * form.Price[i].value
form.Total[i].value = formatNum(rowSum,2)

}
}

All fields in the Qty column are named Qty. The item in the first row has an array

index value of zero and is addressed as form.Qty[i].

Unfortunately, Internet Explorer 3 does not turn like-named fields into an array of

references. But you can still script repetitive moves through an organized set of

fields. The key is to assign names to the fields that include their index numbers:

Qty0, Qty1, Qty2, and so on. You can even assign these names in a for loop that

generates the table:

for (var i = 0; i <= rowcount; i++) {
...
document.write(“<INPUT TYPE=’text’ NAME=’Qty” + i + “‘>”)
...

}

Later, when it comes time to work with the fields, you can use the indexing

scheme to address the fields:

for (var i = 0; i < Qty.length; i++) {
var rowSum = form.elements[“Qty” + i].value * form.elements[“Price” +

i].value
form[“Total” + i].value = formatNum(rowSum,2)

}

In other words, construct names for each item, and use those names as array index

names. This solution is backward- and forward-compatible.

About < INPUT > element objects
While this chapter focuses strictly on the FORM element as a container of con-

trols, the next three chapters discuss different types of controls that nest inside a

form. Many of these controls share the same HTML tag: <INPUT>. Only the TYPE
attribute of the <INPUT> tag determines whether the browser shows you a clickable

button, a checkbox, a text field, or so on. The fact that one element has so many

guises makes the system seem illogical at times to scripters.

An INPUT element has some attributes (and corresponding scriptable object

properties) that simply don’t apply to every type of form control. For example,

FORM

(c) ketabton.com: The Digital Library

537Chapter 23 ✦ The Form and Related Objects

while the maxLength property of a text box makes perfect sense in limiting the

number of characters that a user can type into it, the property has no bearing

whatsoever on form controls that act as clickable buttons. Similarly, you can

switch a radio button or checkbox on or off by adjusting the checked property;

however, that property simply doesn’t apply to a text box.

As the document object models have evolved, they have done so in an increasingly

object-oriented way. The result in this form-oriented corner of the model is that all

elements created via the <INPUT> tag have a long list of characteristics that they all

share by virtue of being types of INPUT elements — they inherit the properties and

methods that are defined for any INPUT element. To try to limit the confusion, I

divide the chapters in this book that deal with INPUT elements along functional lines

(clickable buttons in one chapter, text fields in the other), and only list and discuss

those INPUT element properties and methods that apply to the specific control type.

In the meantime, this chapter continues with details of the FORM element object.

Properties
acceptCharset

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The acceptCharset property represents the ACCEPTCHARSET attribute of the

FORM element in HTML 4.0. The value is a list of one or more recognized character

sets that the server receiving the form must support. For a list of registered

character set names, see ftp://ftp.isi.edu/in-notes/iana/assignments/
character-sets.

Related Items: None.

action
Value: URL String Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The action property (along with the method and target properties) primarily

functions for HTML authors whose pages communicate with server-based CGI

scripts. This property is the same as the value you assign to the ACTION attribute

of a <FORM> tag. The value is typically a URL on the server where queries or postings

are sent for submission.

User input may affect how you want your page to access a server. For example,

a checked box in your document may set a form’s action property so that a CGI

script on one server handles all the input, whereas an unchecked box means the

form data goes to a different CGI script or a CGI script on an entirely different server.

FORM.action

(c) ketabton.com: The Digital Library

538 Part III ✦ Document Objects Reference

Or, one setting may direct the action to one mailto: address, whereas another

setting sets the action property to a different mailto: address.

Although the specifications for all three related properties indicate that they

you can set them on the fly, such changes are ephemeral. A soft reload eradicates

any settings you make to these properties, so you should make changes to these

properties only in the same script function that submits the form (see form.
submit() later in this chapter).

The value of the action property is read-only in IE3.

Example on the CD-ROM

Related Items: form.method, form.target, form.encoding properties.

autocomplete
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Microsoft added a feature to forms with IE5 (but not IE5/Mac) that allows the

browser to supply hints for filling out form controls if the controls’ names map to a

set of single-line text controls defined via some additional attributes linked to the

vCard XML schema. For details on implementing this browser feature, see http://
msdn.microsoft.com/workshop/author/forms/autocomplete_ovr.asp. Values

for the autoComplete property are your choice of two strings: on or off. In either

case, the FORM element object does not report knowing about this property unless

you set the AUTOCOMPLETE attribute in the form’s tag.

Related Items: None.

elements
Value: Array of form control elements Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Elements include all the user interface elements defined for a form: text fields,

buttons, radio buttons, checkboxes, selection lists, and more. The elements property

is an array of all form control items defined within the current form. For example, if a

form defines three <INPUT> items, the elements property for that form is an array

On the
CD-ROM

Note

FORM.elements

(c) ketabton.com: The Digital Library

539Chapter 23 ✦ The Form and Related Objects

consisting of three entries (one for each item in source code order). Each entry is a

valid reference to that element; so, to extract properties or call methods for those

elements, your script must dig deeper in the reference. Therefore, if the first element

of a form is a text field and you want to extract the string currently showing in the

field (a text element’s value property), the reference looks like this:

document.forms[0].elements[0].value

Notice that this reference summons two array-oriented properties along the way:

one for the document’s forms property and one for the form’s elements property.

In practice, I suggest you refer to form controls (and forms) by their names. This

allows you the flexibility to move controls around the page as you fine-tune the

design, and you don’t have to worry about the source code order of the controls.

The elements array comes in handy when you need to iterate through all of the

controls within a form. If your script needs to loop through all elements of a form

in search of particular kinds of elements, use the type property of every form

object (NN3+ and IE4+) to identify which kind of object it is. The type property

consists of the same string used in the TYPE attribute of an <INPUT> tag.

Overall, I prefer to generate meaningful names for each form control element

and use those names in references throughout my scripts. The elements array

helps with form control names, as well. Instead of a numeric index to the elements
array, you can use the string name of the control element as the index. Thus, you

can create a generic function that processes any number of form control elements,

and simply pass the string name of the control as a parameter to the function.

Then use that parameter as the elements array index value. For example:

function putVal(controlName, val) {
document.forms[0].elements[controlName].value = val

}

If you want to modify the number of controls within a form, you should use the

element and/or node management facilities of the browser(s) of your choice. For

example, in IE4+ and NN6+, you can assemble the HTML string for an entirely new

set of form controls and then assign that string to the innerHTML property of the

FORM element object.

Example (with Listing 23-2 and Figure 23-2) on the CD-ROM

Related Items: text, textarea, button, radio, checkbox, and select objects.

encoding
enctype

Value: MIME Type String Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

On the
CD-ROM

FORM.encoding

(c) ketabton.com: The Digital Library

540 Part III ✦ Document Objects Reference

You can define a form to alert a server when the data you submit is in a MIME

type. The encoding property reflects the setting of the ENCTYPE attribute in the

form definition. The enctype property name is defined for FORM element objects

in the W3C DOM (with encoding removed), but NN6 provides both properties for

backward and forward compatibility.

For mailto: URLs, I recommend setting this value (in the tag or via script) to

“text/plain” to have the form contents placed in the mail message body. If the

definition does not have an ENCTYPE attribute, this property is an empty string.

The value of the encoding property is read-only in IE3.

Example on the CD-ROM

Related Items: form.action, form.method properties.

length
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The length property of a FORM element object provides the same information

as the length property of the form’s elements array. The property provides a con-

venient, if not entirely logical, shortcut to retrieving the number of controls in a

form.

Example on the CD-ROM

Related Items: form.elements property.

method
Value: String (GET or POST) Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A form’s method property is either the GET or POST value (not case-sensitive)

assigned to the METHOD attribute in a <FORM> definition. Terminology overlaps here

On the
CD-ROM

On the
CD-ROM

Note

FORM.method

(c) ketabton.com: The Digital Library

541Chapter 23 ✦ The Form and Related Objects

a bit, so be careful to distinguish a form’s method of transferring its data to a server

from the object-oriented method (action or function) that all JavaScript forms have.

The method property is of primary importance to HTML documents that submit

a form’s data to a server-based CGI script because it determines the format used to

convey this information. For example, to submit a form to a mailto: URL, the

method property must be POST. Details of forms posting and CGI processing are

beyond the scope of this book. Consult HTML or CGI documentation to determine

which is the appropriate setting for this attribute in your Web server environment.

If a form does not have a METHOD attribute explicitly defined for it, the default value

is GET.

The method property is read-only in IE3.

Example on the CD-ROM

Related Items: form.action, form.target, form.encoding properties.

name
Value: Identifier String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Assigning a name to a form via the NAME attribute is optional but highly recom-

mended when your scripts need to reference a form or its elements. This attribute’s

value is retrievable as the name property of a form. You don’t have much need to

read this property unless you inspect another source’s document for its form

construction, as in:

var formName = parent.frameName.document.forms[0].name

Moreover, because CGI programs frequently rely on the name of the form for

validation purposes, it is unlikely you will need to change this property.

target
Value: Identifier String Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Whenever an HTML document submits a query to a server for processing, the

server typically sends back an HTML page — whether it is a canned response or,

On the
CD-ROM

Note

FORM.target

(c) ketabton.com: The Digital Library

542 Part III ✦ Document Objects Reference

more likely, a customized page based on the input provided by the user. You see

this situation all the time when you perform a search at Web sites. In a multiframe or

multiwindow environment, you may want to keep the form part of this transaction in

view for the user but leave the responding page in a separate frame or window for

viewing. The purpose of the TARGET attribute of a <FORM> definition is to enable

you to specify where the output from the server’s query should be displayed.

The value of the target property is the name of the window or frame. For

instance, if you define a frameset with three frames and assign the names Frame1,

Frame2, and Frame3 to them, you need to supply one of these names (as a quoted

string) as the parameter of the TARGET attribute of the <FORM> definition. Browsers

also observe four special window names that you can use in the <FORM> definition:

_top, _parent, _self, and _blank. To set the target as a separate subwindow

opened via a script, use the window name from the window.open() method’s

second parameter and not the window object reference that the method returns.

The value of the target property is read-only in IE3.

Example on the CD-ROM

Related Items: form.action, form.method, form.encoding properties.

Methods
handleEvent(event)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

See the discussion of the window.handleEvent() method in Chapter 16 for a

description of this NN4-specific method.

reset()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

On the
CD-ROM

Note

FORM.reset()

(c) ketabton.com: The Digital Library

543Chapter 23 ✦ The Form and Related Objects

A common practice, especially with a long form, is to provide a button that

enables the user to return all the form elements to their default settings. The stan-

dard Reset button (a separate object type described in Chapter 24) does that task

just fine. But if you want to clear the form using script control, you must do so by

invoking the reset() method for the form. More than likely, such a call is initiated

from outside the form, perhaps from a function or graphical button. In such cases,

make sure that the reference to the reset() method includes the complete reference

to the form you want to reset — even if the page only has one form defined for it.

Example (with Listing 23-3) on the CD-ROM

Related Items: onReset event handler; reset object.

submit()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The most common way to send a form’s data to a server’s CGI program for pro-

cessing is to have a user click a Submit button. The standard HTML Submit button

is designed to send data from all named elements of a form according to the specifi-

cations listed in the <FORM> definition’s attributes. But if you want to submit a

form’s data to a server automatically for a user, or want to use a graphical button

for submission, you can accomplish the submission with the form.submit()
method.

Invoking this method is almost the same as a user clicking a form’s Submit but-

ton (except that the onSubmit event handler is not triggered). Therefore, you may

have an image on your page that is a graphical submission button. If that image is

surrounded by a link object, you can capture a mouse click on that image and trig-

ger a function whose content includes a call to a form’s submit() method (see

Listing 23-3).

In a multiple-form HTML document, however, you must reference the proper

form either by name or according to its position in a document.forms array.

Always make sure that the reference you specify in your script points to the desired

form before you submit any data to a server.

As a security and privacy precaution for people visiting your site, JavaScript

ignores all submit() methods whose associated form actions are set to a mailto:
URL. Many Web page designers would love to have secret e-mail addresses cap-

tured from visitors. Because such a capture can be considered an invasion of pri-

vacy, the power has been disabled since Navigator 2.02. You can, however, still use

an explicit Submit button object to mail a form to you from browsers. (See the sec-

tion, “E-mailing forms” earlier in this chapter.)

On the
CD-ROM

FORM.submit()

(c) ketabton.com: The Digital Library

544 Part III ✦ Document Objects Reference

Because the form.submit() method does not trigger the form’s onSubmit event

handler, you must perform any presubmission processing and forms validation in

the same script that ends with the form.submit() statement. You also do not want

to interrupt the submission process after the script invokes the form.submit()
method. Script statements inserted after one that invokes form.submit()— espe-

cially those that navigate to other pages or attempt a second submission — cause

the first submission to cancel itself.

Example on the CD-ROM

Related Item: onSubmit event handler.

Event handlers
onReset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Immediately before a Reset button returns a form to its default settings,

JavaScript sends a reset event to the form. By including an onReset event handler

in the form definition, you can trap that event before the reset takes place.

A friendly way of using this feature is to provide a safety net for a user who acci-

dentally clicks the Reset button after filling out a form. The event handler can run a

function that asks the user to confirm the action.

The onReset event handler employs a technique that surfaced with Navigator 3:

The event handler must evaluate to return true for the event to continue to the

browser. This may remind you of the way onMouseOver and onMouseOut event han-

dlers work for links and image areas. This requirement is far more useful here

because your function can control whether the reset operation ultimately proceeds

to conclusion.

Example (with Listing 23-4) on the CD-ROM

onSubmit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

No matter how a form’s data is actually submitted (by a user clicking a Submit

button or by a script invoking the form.submit() method), you may want your

On the
CD-ROM

On the
CD-ROM

FORM.onSubmit

(c) ketabton.com: The Digital Library

545Chapter 23 ✦ The Form and Related Objects

JavaScript-enabled HTML document to perform some data validation on the user

input, especially with text fields, before the submission heads for the server. You

have the option of doing such validation while the user enters data (see Chapter

43) or in batch mode before sending the data to the server (or both). The place to

trigger this last-ditch data validation is the form’s onSubmit event handler. Note,

however, that this event fires only from a genuine Submit type <INPUT> element

and not from the form’s submit() method.

When you define an onSubmit handler as an attribute of a <FORM> definition,

JavaScript sends the submit event to the form just before it dashes off the data to

the server. Therefore, any script or function that is the parameter of the onSubmit
attribute executes before the data is actually submitted. Note that this event han-

dler fires only in response to a genuine Submit-style button and not from a

form.submit() method.

Any code executed for the onSubmit event handler must evaluate to an expres-

sion consisting of the word return plus a Boolean value. If the Boolean value is

true, the submission executes as usual; if the value is false, no submission is

made. Therefore, if your script performs some validation prior to submitting data,

make sure that the event handler calls that validation function as part of a return

statement (as shown in Listing 23-4).

Even after your onSubmit event handler traps a submission, JavaScript’s secu-

rity mechanism can present additional alerts to the user depending on the server

location of the HTML document and the destination of the submission.

Example on the CD-ROM

FIELDSET and LEGEND Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

form

Syntax
Accessing FIELDSET or LEGEND element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

On the
CD-ROM

FIELDSET

(c) ketabton.com: The Digital Library

546 Part III ✦ Document Objects Reference

About these objects
The FIELDSET and LEGEND elements go hand in hand to provide some visual

context to a series of form controls within a form. Browsers that implement the

FIELDSET element draw a rectangle around the document space occupied by the

form controls nested inside the FIELDSET element (although IE5/Mac drops the

space into a debossed area on the page — a nice effect). The rectangle renders the

full width of the body, unless its width is controlled by appropriate style sheet

properties (for example, width). To that rectangle is added a text label that is

assigned via the LEGEND element nested inside the FIELDSET element. (For

IE5/Mac, the legend text is rendered just inside the debossed space.) None of this

HTML-controlled grouping is necessary if you design a page layout that already

provides graphical elements to group the form controls together.

Nesting the elements properly is essential to obtaining the desired browser

rendering. A typical HTML sequence looks like the following:

<FORM>
<FIELDSET>
<LEGEND>Legend Text</LEGEND>
All your form controls and their labels go here.
</FIELDSET>
</FORM>

You can have more than one FIELDSET element inside a form. Each set has a

rectangle drawn around it. This can help organize a long form into more easily

digestible blocks of controls for users — yet the single form retains its integrity for

submission to the server.

A FIELDSET element acts like any HTML container with respect to style sheets

and the inheritance thereof. For example, if you set the color style property of a

FIELDSET element, the color affects the text of elements nested within; however,

the color of the border drawn by the browser is unaffected. Assigning a color to the

FIELDSET style’s border-color property colors just the border and not the textual

content of nested elements.

Note that the content of the LEGEND element can be any HTML. Alternatively,

you can assign a distinctive style sheet rule to the LEGEND element. If your scripts

need to modify the text of the legend, you can accomplish this with the innerText
(IE4+), innerHTML (IE4+, NN6+), or nodeValue (IE5+, NN6+) properties of HTML

element objects.

Only two element-specific properties are assigned to this object pair. The first is

the align property of the LEGEND object. This property matches the capabilities

of the ALIGN attribute for the element as specified in the HTML 4.0 recommenda-

tion (albeit the property is deprecated in favor of style sheet rules). IE5+ for the

Mac and IE5.5+ for Windows enable you to adjust this property on the fly (generally

between your choices of “right” and “left”) to alter the location of the legend at the

top of the fieldset rectangle.

Because these elements are children of a FORM element, it makes sense that the

DOM Level 2 specification supplies the read-only form property to both of these

objects. That property returns a reference to the FORM element object that

encloses either element. The form property for the FIELDSET and LEGEND objects

is implemented only in IE5/Mac and NN6.

FIELDSET

(c) ketabton.com: The Digital Library

547Chapter 23 ✦ The Form and Related Objects

LABEL Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form

htmlFor

Syntax
Accessing LABEL element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

About this object
With the push in the HTML 4.0 specification to provide context-oriented tags for

just about every bit of content on the page, the W3C HTML working group filled a

gap with respect to text that usually hangs in front of or immediately after INPUT,

SELECT, and TEXTAREA form control elements. You use these text chunks as labels

for the items to describe the purpose of the control. The only INPUT element that

had an attribute for its label was the button input type. But even the newer

BUTTON element did away with that.

A LABEL element enables you to surround a control’s label text with a contextual

tag. In addition, one of the element’s attributes —FOR— enables you to associate

the label with a particular form control element. In the HTML, the FOR attribute is

assigned the ID of the control with which the label is associated. A LABEL element

can be associated with a form control if the form control’s tag is contained between

the LABEL element’s start and end tags.

At first glance, browsers do nothing special (from a rendering point of view) for a

LABEL element. But for some kinds of elements, especially checkbox and radio

input type elements, browsers help restore to users a vital user-interface conven-

tion: clicking the label is the same as clicking the control. For text elements, focus

events are passed to the text input element associated with the label. In fact, all

events that are directed at a label bubble upward to the form control associated

with it. The following page fragment demonstrates how FIELDSET, LEGEND, and

LABEL elements look in a form consisting of two radio buttons:

LABEL

(c) ketabton.com: The Digital Library

548 Part III ✦ Document Objects Reference

<FORM ...>
<FIELDSET ID=”form1set1”>
<LEGEND ID=”form1set1legend”>Choose the Desired Performance</LEGEND>
<INPUT TYPE=”radio” NAME=”speed” ID=”speed1”>

<LABEL FOR=”speed1”>Fastest (lower quality)</LABEL>

<INPUT TYPE=”radio” NAME=”speed” ID=”speed2”>

<LABEL FOR=”speed2”>Slower (best quality)</LABEL>
</FIELDSET>
</FORM>

Even so, a LABEL and its associated form control element do not have to be adja-

cent to each other in the source code. For example, you can have a label in one cell

of a table row with the form control in another cell (in the same or different row).

Properties
htmlFor

Value: Element Object Reference Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The htmlFor property is the scripted equivalent of the FOR attribute of the

LABEL element. An acceptable value is a full reference to a form control element

(INPUT, TEXTAREA, or SELECT element objects). It is highly unlikely that you would

modify this property for an existing LABEL element. However, if your script is

creating a new LABEL element (perhaps a replacement form), use this property to

associate the label with a form control.

Example on the CD-ROM

✦ ✦ ✦

On the
CD-ROM

LABEL.htmlFor

(c) ketabton.com: The Digital Library

Button Objects

This chapter is devoted to those lovable buttons that

invite users to initiate action and make choices with a

single click of the mouse button. In this category fall the stan-

dard system-looking buttons with labels on them, as well as

radio buttons and checkboxes. For such workhorses of the

HTML form, these objects have a limited vocabulary of object-

specific properties, methods, and event handlers.

I group together the button, submit, and reset objects for

an important reason: They look alike yet they are intended for

very different purposes. Knowing when to use which button is

important — especially when to differentiate between the but-

ton and submit objects. Many a newcomer get the two con-

fused and wind up with scripting error headaches. That

confusion won’t happen to you by the time you finish this

chapter.

The BUTTON Element Object, and
the Button, Submit, and Reset
Input Objects

For HTML element properties, methods, and event han-

dlers, see Chapter 15.

Properties Methods Event Handlers

form click() onClick

name onMouseDown

type onMouseUp

value

Syntax
Accessing button object properties or methods:

(All) [window.]document.formName.buttonName.property |
method([parameters])

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Triggering action
from a user’s click of
a button

Assigning hidden
values to radio and
checkbox buttons

Distinguishing
between radio button
families and their
individual buttons

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

550 Part III ✦ Document Objects Reference

(All) [window.]document.formName.elements[index].property |
method([parameters])

(All) [window.]document.forms[index].buttonName.property |
method([parameters])

(All) [window.]document.forms[“formName”].buttonName.property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About these objects
Button objects generate standard, pushbutton-style user interface elements on

the page, depending on the operating system on which the particular browser runs.

In the early days, the browsers called upon the operating systems to generate these

standard interface elements. In more recent versions, the browsers define their own

look, albeit frequently still different for each operating system. More recently, the

appearance of a button may also be influenced by browser-specific customizations

that browser makers put into their products. Even so, any computer user will recog-

nize a button when the browser produces it on the page.

Starting with IE4 and NN6, you have two ways to put standard buttons into a

page. The first, and completely backward-compatible way, is to use INPUT elements

nested inside a FORM container. But a new HTML element, the BUTTON element,

provides a slightly different way of specifying a button in a page, including the

option of putting a button outside of a FORM (presumably for some client-side

script execution, independent of form submission). From an HTML point of view,

the difference between the two concerns itself with the way the label of the button

is specified. With an INPUT element, the string assigned to the VALUE attribute

becomes the label of the button; but a BUTTON element is a container (meaning

with an end tag), whose content becomes the button’s label. You can still assign a

value to the VALUE attribute, which, if a form contains the button, gets submitted to

the server, independent of the label text.

Always give careful thought to the label that you assign to a button. Because a

button initiates some action, make sure that the verb in the label clearly defines

what happens after you click it. Also, take cues from experienced user interface

designers who craft operating system and commercial software buttons: Be con-

cise. If you find your button labels going longer than two or three words, reconsider

the design of your page so that the user can clearly understand the purpose of any

button from a shorter label.

Browsers automatically display a button sized to accommodate the label text.

But only browsers that support style sheets (IE4+ and NN6+) allow you to control

more visual aspects of the button, such as size, label font, and coloration. And, as

for the position of the button on the page, buttons, as in all in-line elements, appear

where they occur in the source code. You can, of course, use element positioning of

recent browsers (Chapter 31) to make a button appear wherever you want it. But if

your pages run on multiple operating systems and generations of browsers, be

aware that the appearance (and size) of a button will not be identical on all screens.

Check out the results on as many platforms as possible.

document.formObject.buttonObject

(c) ketabton.com: The Digital Library

551Chapter 24 ✦ Button Objects

Buttons in the Windows environment follow their normal behavior in that they

indicate the focus with highlighted button-label text (usually with a dotted rectan-

gle). Some newer browsers running on other operating systems offer this kind of

highlighting and selection as a user option. IE5 provides additional INPUT element

features that prevent buttons from receiving this kind of visible focus.

The lone button object event handler that works on all browser versions is one

that responds to a user clicking the pointer atop the mouse: the onClick event

handler. Virtually all action surrounding a button object comes from this event han-

dler. You rarely need to extract property values or invoke the click() method (the

method does not work correctly in Navigator 3). NN4 and IE4 add events for the

components of a click: mouseDown and mouseUp; and IE4+ and NN6+ provide a

plethora of user-initiated events for buttons.

Two special variants of the button object are the submit and reset button

objects. With their heritages going back to early incarnations of HTML, these two

button types perform special operations on their own. The submit-style button

automatically sends the data within the same form object to the URL listed in the

ACTION attribute of the <FORM> definition. The METHOD attribute dictates the format

in which the button sends the data. Therefore, you don’t have to script this action if

your HTML page is communicating with a CGI program on the server.

If the form’s ACTION attribute is set to a mailto: URL, you must provide the

page visitor with a Submit button to carry out the action. Setting the form’s ENC-
TYPE attribute to text/plain is also helpful so that the form data arrives in a more

readable form than the normal encoded name-value pairs. See “E-Mailing forms” in

Chapter 23 for details about submitting form content via e-mail.

The partner of the Submit button is the Reset button. This button, too, has spe-

cial powers. A click of this button type restores all elements within the form to their

default values. That goes for text objects, radio button groups, checkboxes, and

selection lists. The most common application of the button is to clear entry fields of

the last data entered by the user.

All that distinguishes these three types of buttons from each other in the

<INPUT> tag or <BUTTON> tag is the parameter of the TYPE attribute. For buttons

not intended to send data to a server, use the “button” style (this is the default

value for the BUTTON element). Reserve “submit” and “reset” for their special

powers.

If you want an image to behave like a button in all scriptable browsers, consider

either associating a link with an image (see the discussion on the link object in

Chapter 21) or creating a client-side image map (see the area object discussion in

Chapter 22). But for IE4+ and NN6+, you can use the INPUT element with a TYPE
attribute set to image (discussed later in this chapter).

Probably the biggest mistake scripters make with these buttons is using a

Submit button to do the work of a plain button. Because these two buttons look

alike, and the submit type of input element has a longer tradition than the button,

confusing the two is easy. But if all you want is to display a button that initiates

client-side script execution, use a plain button. The Submit button attempts to sub-

mit the form. If no ACTION attribute is set, then the page reloads, and all previous

processing and field entries are erased. The plain button does its job quietly with-

out reloading the page (unless the script intentionally does so).

document.formObject.buttonObject

(c) ketabton.com: The Digital Library

552 Part III ✦ Document Objects Reference

Properties
form

Value: FORM object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A property of every INPUT element object is a reference to the FORM element

that contains the control. This property can be very convenient in a script when

you are dealing with one form control that is passed as a parameter to the function

and you want to either access another control in the same form or invoke a method

of the form. An event handler of any INPUT element can pass this as the parame-

ter, and the function can still get access to the form without having to hard-wire the

script to a particular form name or document layout.

Example on the CD-ROM

Related Items: FORM object.

name
Value: Identifier String Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A button’s name is fixed in the INPUT or BUTTON element’s NAME attribute and

cannot be adjusted via scripting except in newer browsers. You may need to

retrieve this property in a general-purpose function handler called by multiple but-

tons in a document. The function can test for a button name and perform the neces-

sary statements for that button. If you change the name of the object, even a soft

reload or window resize restores its original name.

Example on the CD-ROM

Related Items: name property of all form elements.

On the
CD-ROM

On the
CD-ROM

document.formObject.buttonObject.name

(c) ketabton.com: The Digital Library

553Chapter 24 ✦ Button Objects

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The precise value of the type property echoes the setting of the TYPE attribute

of the <INPUT> or <BUTTON> tag that defines the object: button; submit; or reset.

value
Value: String Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Both INPUT and BUTTON elements have the VALUE attribute, which is repre-

sented by the value property in the object model. But the purpose of the

attribute/property in the two elements differs. For the INPUT element, the value
property represents the label displayed on the button. For a BUTTON element,

however, the label text is created by the HTML text between the start and end tags

for the BUTTON element. In both cases, when the element has a NAME value associ-

ated with it, the name/value pair is submitted along with the form (assuming the

BUTTON element is inside a form).

If you do not assign a VALUE attribute to a reset or submit style button, the

browsers automatically assign the labels Reset and Submit without assigning a

value. A value property can be any string, including multiple words.

You can modify this text on the fly in a script, but some cautions apply. Browsers

prior to IE4 and NN6 do not resize the width of the button to accommodate a new

name that is longer or shorter than the original. Moreover, any soft reload or resize

of the window restores the original label. IE4+ and NN6, however, resize the button

and reflow the page to meet the new space needs; the new label survives a window

resizing, but not a soft reload of the page. Finally, IE4 for the Mac allows you to set

this property, but it doesn’t really stick.

Example on the CD-ROM

Related Items: value property of text object.

On the
CD-ROM

document.formObject.buttonObject.value

(c) ketabton.com: The Digital Library

554 Part III ✦ Document Objects Reference

Methods
click()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A button’s click() method should simulate, via scripting, the human action of

clicking that button. Unfortunately, the method is highly unreliable in browsers

prior to IE4 and NN4.

Example on the CD-ROM

Related Items: onClick event handler.

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Virtually all button action takes place in response to the onClick event handler.

A click is defined as a press and release of the mouse button while the screen

pointer rests atop the button. The event goes to the button only after the user

releases the mouse button.

For a Submit button, you should probably omit the onClick event handler and

allow the form’s onSubmit event handler to take care of lastminute data entry vali-

dation before sending the form. By triggering validation with the onSubmit event

handler, your scripts can cancel the submission if something is not right (see the

FORM object discussion in Chapter 23).

Example (with Listing 24-1) on the CD-ROM

Related Items: button.onMouseDown, button.onMouseUp, form.onSubmit event

handlers.

On the
CD-ROM

On the
CD-ROM

document.formObject.buttonObject.onClick

(c) ketabton.com: The Digital Library

555Chapter 24 ✦ Button Objects

onMouseDown
onMouseUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

More recent browsers have event handlers for the components of a click event:

the onMouseDown and onMouseUp event handlers. These events fire in addition to

the onClick event handler.

The system-level buttons provided by the operating system perform their

change of appearance while a button is being pressed. Therefore, trapping for the

components of a click action won’t help you in changing the button’s appearance

via scripting. Remember that a user can roll the cursor off the button while the but-

ton is still down. When the cursor leaves the region of the button, the button’s

appearance returns to its unpressed look, but any setting you make with the

onMouseDown event handler won’t undo itself with an onMouseUp counterpart, even

after the user releases the mouse button elsewhere. On the other hand, if you can

precache a click-on and click-off sound, you can use these events to fire the respec-

tive sounds in response to the mouse button action.

Related Items: button.onClick event handler.

Checkbox Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

checked click()† onClick†

form†

name†

type

value

† See Button object.

Syntax
Accessing checkbox properties or methods:

(All) [window.]document.formName.boxName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].boxName.property |

method([parameters])
(All) [window.]document.forms[“formName”].boxName.property |

method([parameters])

document.formObject.checkboxObject

(c) ketabton.com: The Digital Library

556 Part III ✦ Document Objects Reference

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
Checkboxes have a very specific purpose in modern graphical user interfaces: to

toggle between “on” and “off” settings. As with a checkbox on a printed form, a

mark in the box indicates that the label text is true or should be included for the

individual who made that mark. When the box is unchecked or empty, the text is

false or should not be included. If two or more checkboxes are physically grouped

together, they should have no interaction: Each is an independent setting (see the

discussion on the radio object for interrelated buttons).

I make these user interface points at the outset because, in order to present a

user interface in your HTML pages consistent with the user’s expectations based on

exposure to other programs, you must use checkbox objects only for on/off choices

that the user makes. Using a checkbox as an action button that, for example, navi-

gates to another URL, is not good form. Just as they do in a Windows or Mac dialog

box, users make settings with checkboxes and radio buttons and initiate action by

clicking a standard button or image map.

That’s not to say that a checkbox object cannot perform some limited action in

response to a user’s click, but such actions are typically related to the context of

the checkbox button’s label text. For example, in some Windows and Macintosh dia-

log boxes, turning on a checkbox may activate a bunch of otherwise inactive set-

tings elsewhere in the same dialog box. IE4+ and NN6+ allow disabling (dimming) or

hiding form elements, so a checkbox may control those visible attributes of related

controls. Or, in a two-frame window, a checkbox in one frame may control whether

the viewer is an advanced user. If so, the content in the other frame may be more

detailed. Toggling the checkbox changes the complexity level of a document show-

ing in the other frame (using different URLs for each level). The bottom line, then, is

that you should use checkboxes for toggling between on/off settings. Provide regu-

lar buttons for users to initiate processing.

In the <INPUT> tag for a checkbox, you can preset the checkbox to be checked

when the page appears. Add the constant CHECKED attribute to the definition. If you

omit this attribute, the default, unchecked appearance rules. As for the checkbox

label text, its definition lies outside the <INPUT> tag. If you look at the way check-

boxes behave in HTML browsers, this location makes sense: The label is not an

active part of the checkbox (as it typically is in Windows and Macintosh user inter-

faces, where clicking the label is the same as clicking the box).

Naming a checkbox can be an important part of the object definition, depending

on how you plan to use the information in your script or document. For forms

whose content goes to a CGI program on the server, you must word the box name

as needed for use by the CGI program, so that the program can parse the form data

and extract the setting of the checkbox. For JavaScript client-side use, you can

assign not only a name that describes the button, but also a value useful to your

script for making if...else decisions or for assembling strings that are eventually

displayed in a window or frame.

document.formObject.checkboxObject

(c) ketabton.com: The Digital Library

557Chapter 24 ✦ Button Objects

Properties
checked

Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The simplest property of a checkbox reveals (or lets you set) whether or not a

checkbox is checked. The value is true for a checked box and false for an

unchecked box. To check a box via a script, simply assign true to the checkbox’s

checked property:

document.forms[0].boxName.checked = true

Setting the checked property from a script does not trigger a click event for

the checkbox object.

You may need an instance in which one checkbox automatically checks another

checkbox elsewhere in the same or other form of the document. To accomplish this

task, create an onClick event handler for the one checkbox and build a statement

similar to the preceding one to set the other related checkbox to true. Don’t get

too carried away with this feature, however: For a group of interrelated, mutually

exclusive choices, use a group of radio buttons instead.

If your page design requires that a checkbox be checked after the page loads,

don’t bother trying to script this checking action. Simply add the one-word

CHECKED attribute to the <INPUT> tag. Because the checked property is a Boolean

value, you can use its results as an argument for an if clause, as shown in the next

example.

Example (with Listing 24-2) on the CD-ROM

Related Items: defaultChecked, value properties.

defaultChecked
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

If you add the CHECKED attribute to the <INPUT> definition for a checkbox, the

defaultChecked property for that object is true; otherwise, the property is

false. Having access to this property enables your scripts to examine checkboxes

to see if they have been adjusted (presumably by the user, if your script does not

set properties).

On the
CD-ROM

document.formObject.checkboxObject.defaultChecked

(c) ketabton.com: The Digital Library

558 Part III ✦ Document Objects Reference

Example (with Listing 24-3) on the CD-ROM

Related Items: checked, value properties.

type
Value: String (checkbox) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Use the type property to help you identify a checkbox object from an unknown

group of form elements.

Related Items: form.elements property.

value
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A checkbox object’s value property is a string of any text that you want to asso-

ciate with the box. Note that the checkbox’s value property is not the label, as it is

for a regular button, but hidden text associated with the checkbox. For instance,

the label that you attach to a checkbox may not be worded in a way that is useful to

your script. But if you place that useful wording in the VALUE attribute of the check-

box tag, you can extract that string via the value property.

When a checkbox object’s data is submitted to a CGI program, the value prop-

erty is sent as part of the name/value pair if the box is checked (nothing about the

checkbox is sent if the box is unchecked). If you omit the VALUE attribute in your

definition, the property always yields the string “on,” which is submitted to a CGI

program when the box is checked. From the JavaScript side, don’t confuse this

string with the on and off settings of the checkbox: Use the checked property to

determine a checkbox’s status.

Example (with Listing 24-4) on the CD-ROM

Related Items: checked property.

On the
CD-ROM

On the
CD-ROM

document.formObject.checkboxObject.value

(c) ketabton.com: The Digital Library

559Chapter 24 ✦ Button Objects

Methods
click()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The intention of the click() method is to enact, via script, the physical act of

clicking a checkbox (but without triggering the onClick event handler).

Unfortunately, this method does not work in Navigator 2 or 3 as expected. Even if

this method worked flawlessly, your scripts are better served by setting the

checked property so that you know exactly what the setting of the box is at any

time.

Related Items: checked property; onClick event handler.

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Because users regularly click checkboxes, the objects have an event handler for

the click event. Use this event handler only if you want your page (or variable val-

ues hidden from view) to respond in some way to the action of clicking a checkbox.

Most user actions, as mentioned earlier, are initiated by clicking standard buttons

rather than checkboxes, so be careful not to overuse event handlers in checkboxes.

Example (with Listing 24-5) on the CD-ROM

Related Items: checkbox mouse-related event handler.

Radio Input Object

Properties Methods Event Handlers

See checkbox object.

On the
CD-ROM

document.formObject.radioObject

(c) ketabton.com: The Digital Library

560 Part III ✦ Document Objects Reference

Syntax
Accessing radio object properties or methods:

(All) [window.]document.formName.buttonGroupName[index].property |
method([parameters])

(All) [window.]document.formName.elements[index] [index].property |
method([parameters])

(All) [window.]document.forms[index]. buttonGroupName[index].property |
method([parameters])

(All) [window.]document.forms[“formName”]. buttonGroupName[index].property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID[index].property | method([parameters])
(IE5+/NN6)[window.]document.getElementById(“elemID”)[index].property |

method([parameters])

About this object
A radio button object is an unusual one within the body of JavaScript applica-

tions. In every other case of form control elements, one object equals one visual

element on the screen. But a radio object actually consists of a group of radio but-

tons. Because of the nature of radio buttons — a mutually exclusive choice among

two or more selections — a group always has multiple visual elements. All buttons

in the group share the same name — which is how the browser knows to group but-

tons together and to let the clicking of a button deselect any other selected button

within the group. Beyond that, however, each button can have unique properties,

such as its value or checked property.

Use JavaScript array syntax to access information about an individual button

within the button group. Look at the following example of defining a button group

and see how to reference each button. This button group lets the user select a

favorite member of the Three Stooges:

<FORM>
Select your favorite Stooge:<P>
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard” CHECKED>Moe
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine” >Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard” >Curly
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Shemp Howard” >Shemp
</FORM>

After this group displays on the page, the first radio button is preselected for the

user. Only one property of a radio button object (length) applies to all members of

the group. However, the other properties apply to individual buttons within the

group. To access any button, use an array index value as part of the button group

name. For example:

firstBtnValue = document.forms[0].stooges[0].value // “Moe Howard”
secondBtnValue = document.forms[0].stooges[1].value // “Larry Fine”

Any time you access the checked, defaultChecked, type, or value property,

you must point to a specific button within the group according to its order in the

document.formObject.radioObject

(c) ketabton.com: The Digital Library

561Chapter 24 ✦ Button Objects

array (or, in IE4+ and NN6, each button can also have a unique ID). The order of but-

tons in the group depends on the sequence in which the individual buttons are

defined in the HTML document. In other words, to uncover the currently selected

radio button, your script has to iterate through all radio buttons in the radio group.

Examples of this come later in the discussion of this object.

Supplying a VALUE attribute to a radio button can be very important in your

script. Although the text label for a button is defined outside the <INPUT> tag, the

VALUE attribute lets you store any string in the button’s hip pocket. In the earlier

example, the radio button labels were just first names, whereas the value proper-

ties were set in the definition to the full names of the actors. The values could have

been anything that the script needed, such as birth dates, shoe sizes, URLs, or the

first names again (because a script has no way to retrieve the labels except through

innerHTML or node property access in more modern browsers). The point is that

the VALUE attribute should contain whatever string the script needs to derive from

the selection made by the user. The VALUE attribute contents are also what is sent

to a CGI program on a server in a submit action for the form.

How you decide to orient a group of buttons on the screen is entirely up to your

design and the real estate available within your document. You can string them in a

horizontal row (as shown earlier), place
 tags after each one to form a column,

or do so after every other button to form a double column. Numeric order within

the array is determined only by the order in which the buttons are defined in the

source code, not by where they appear. To determine which radio button of a group

is checked before doing processing based on that choice, you need to construct a

repeat loop to cycle through the buttons in the group (shown in the next example).

For each button, your script examines the checked property.

To be Navigator 2–friendly, be sure to always specify an onClick event handler to
every radio button (even if onClick=””). This action overrides a bug that causes
index values to be reversed among buttons in a group.

Properties
checked

Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Only one radio button in a group can be highlighted (checked) at a time (the

browser takes care of highlighting and unhighlighting buttons in a group for you).

That one button’s checked property is set to true, whereas all others in the group

are set to false.

Beginning with NN3 (and IE3), you can safely set the checked property of a radio

button. By setting the checked property of one button in a group to true, all other

buttons automatically uncheck themselves.

Tip

document.formObject.radioObject.checked

(c) ketabton.com: The Digital Library

562 Part III ✦ Document Objects Reference

Example (with Listing 24-6) on the CD-ROM

Related Items: defaultChecked property.

defaultChecked
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

If you add the CHECKED attribute to the <INPUT> definition for a radio button, the

defaultChecked property for that object is true; otherwise, the property is

false. Having access to this property enables your scripts to examine individual

radio buttons to see if they have been adjusted (presumably by the user, if your

script does not perform automatic clicking).

Example (with Listing 24-7) on the CD-ROM

Related Items: checked, value properties.

length
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A radio button group has length — the number of individual radio buttons

defined for that group. Attempting to retrieve the length of an individual button

yields a null value. The length property is valuable for establishing the maximum

range of values in a repeat loop that must cycle through every button within that

group. If you specify the length property to fill that value (rather than hard-wiring

the value), the loop construction will be easier to maintain — as you make changes

to the number of buttons in the group during page construction, the loop adjusts to

the changes automatically.

Example on the CD-ROM

Related Items: None.

On the
CD-ROM

On the
CD-ROM

On the
CD-ROM

document.formObject.radioObject.length

(c) ketabton.com: The Digital Library

563Chapter 24 ✦ Button Objects

name
Value: Identifier String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The name property, while associated with an entire radio button group, can be

read only from individual buttons in the group, such as

btnGroupName = document.forms[0].groupName[2].name

In that sense, each radio button element in a group inherits the name of the

group. Your scripts have little need to extract the name property of a button or

group. More often than not, you will hard-wire a button group’s name into your

script to extract other properties of individual buttons. Getting the name property

of an object whose name you know is obviously redundant. But understanding the

place of radio button group names in the scheme of JavaScript objects is important

for all scripters.

Related Items: value property.

type
Value: String (radio) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Use the type property to help identify a radio object from an unknown group of

form elements.

Related Items: form.elements property.

value
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

As described earlier in this chapter for the checkbox object, the value property

contains arbitrary information that you assign when mapping out the <INPUT> defi-

nition for an individual radio button. Using this property is a handy shortcut to cor-

relating a radio button label with detailed or related information of interest to your

script or CGI program on a server. If you like, the value property can contain the

same text as the label.

document.formObject.radioObject.value

(c) ketabton.com: The Digital Library

564 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Items: name property.

Methods
click()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The intention of the click() method is to enact, via a script, the physical act of

clicking a radio button. Unfortunately, this method does not work in Navigator 2 or

3. Even if it worked flawlessly, you better serve your scripts by setting the checked
properties of all buttons in a group so that you know exactly what the setting of the

group is at any time.

Related Items: checked property; onClick event handler.

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Radio buttons, more than any user interface element available in HTML, are

intended for use in making choices that other objects, such as submit or standard

buttons, act upon later. You may see cases in Windows or Mac programs in which

highlighting a radio button — at most — activates or brings into view additional,

related settings (see Listing 24-5).

I strongly advise you not to use scripting handlers that perform significant

actions at the click of any radio button. At best, you may want to use knowledge

about a user’s clicking of a radio button to adjust a global variable or

document.cookie setting that influences subsequent processing. Be aware, how-

ever, that if you script such a hidden action for one radio button in a group, you

must also script similar actions for others in the same group. That way, if a user

changes the setting back to a previous condition, the global variable is reset to the

way it was. JavaScript, however, tends to run fast enough so that a batch operation

can make such adjustments after the user clicks a more action-oriented button.

On the
CD-ROM

document.formObject.radioObject.onClick

(c) ketabton.com: The Digital Library

565Chapter 24 ✦ Button Objects

Example (with Listing 24-8) on the CD-ROM

Image Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

complete

form†

name†

src

type

† See Button object.

Syntax
Accessing image input object properties or methods:

(All) [window.]document.formName.imageName.property |
method([parameters])

(All) [window.]document.formName.elements[index].property |
method([parameters])

(All) [window.]document.forms[index].imageName.property |
method([parameters])

(All) [window.]document.forms[“formName”].imageName.property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
Browsers with fuller document object models include the image input element

among scriptable objects. The image input object most closely resembles the but-

ton input object but replaces the value property (which defines the label for the

button) with the src property, which defines the URL for the image that is to be dis-

played in the form control. This is a much simpler way to define a clickable image

On the
CD-ROM

document.formObject.imageObject

(c) ketabton.com: The Digital Library

566 Part III ✦ Document Objects Reference

icon, for example, than the way required for compatibility with older browsers:

wrapping an IMG element inside an A element so that you can use the A element’s

event handlers.

Although this element loads a regular Web image in the document, you have vir-

tually no control over the image, which the IMG element provides. Be sure the ren-

dering is as you predict.

Properties
complete

Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The complete property works as it does for an IMG element, reporting true if

the image has finished loading. Otherwise the property returns false. Interestingly,

there is no onLoad event handler for this object.

Related Items: Image.complete property.

src
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Like the IMG element object, the image input element’s src property controls

the URL of the image being displayed in the element. The property can be used for

image swapping in a form control, just as it is for a regular IMG element. Because

the image input element has all necessary mouse event handlers available (for

example, onMouseOver, onMouseOut, onMouseDown) you can script rollovers, click-

downs, or any other user interface technique that you feel is appropriate for your

buttons and images. To adapt code written for link-wrapped images, move the

event handlers from the A element to the image input element, and make sure the

name of the image input element is the same as your old IMG element.

Older browsers load images into an image input element, but no event handlers

are recognized.

Related Items: Image.src property.

document.formObject.imageObject.src

(c) ketabton.com: The Digital Library

567Chapter 24 ✦ Button Objects

type
Value: String (image) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Use the type property to help you identify an image input object from an

unknown group of form elements.

Related Items: form.elements property.

✦ ✦ ✦

document.formObject.imageObject.type

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Text-Related
Form Objects

The document object model for forms includes four text-

related user interface objects — text, password, and hid-

den INPUT element objects, plus the TEXTAREA element

object. All four of these objects are used for entry, display, or

temporary storage of text data. While all of these objects can

have text placed in them by default as the page loads, scripts

can also modify the contents of these objects. Importantly, all

but the hidden objects retain their user- or script-modified

content during a soft reload (for example, clicking the Reload

button), except in IE3. Hidden objects revert to their default

values on all reloads in all browsers.

A more obvious difference between the hidden object and

the rest is that its invisibility removes it from the realm of

user events and actions. Therefore, the range of scripted pos-

sibilities is much smaller for the hidden object.

The persistence of text and TEXTAREA object data through

reloads (and window resizes) makes these objects prime tar-

gets for off-screen storage of data that may otherwise be

stored temporarily in a cookie. If you create a frame with no

size (for example, you set the COLS or ROWS values of a

<FRAMESET> tag to let all visible frames occupy 100 percent of

the space and assign the rest —*— to the hidden frame), you

can populate the frame with fields that act as shopping cart

information or other data holders. Therefore, if users have

cookies turned off or don’t usually respond affirmatively to

cookie requests, your application can still make use of tempo-

rary client storage. The field contents may survive unloading

of the page, but whether this happens and for how many navi-

gations away from the page the contents last depends on the

visitor’s cache settings (or if the browser is IE3, in which case

no values preserve the unloading of a document). If the user

quits the browser or closes the browser window, the field

entry is lost.

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Capturing and
modifying text field
contents

Triggering action by
entering text

Capturing individual
keystroke events

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

570 Part III ✦ Document Objects Reference

Text Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultValue select() onAfterUpdate

form onBeforeUpdate

maxLength onChange

name onErrorUpdate

readOnly onSelect

size

type

value

Syntax
Accessing text INPUT object properties or methods:

(All) [window.]document.formName.fieldName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].fieldName.property |

method([parameters])
(All) [window.]document.forms[“formName”].fieldName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
The text INPUT object is the primary medium for capturing single-line, user-

entered text. By default, browsers tend to display entered text in a monospaced

font (usually Courier or a derivative), so that you can easily specify the width

(SIZE) of a field based on the anticipated number of characters that a user may put

into the field. Until you get to IE4+ and NN6+, the font is a fixed size and always is

left-aligned in the field. In those later browsers, style sheets can control the font

characteristics of a text field. If your design requires multiple lines of text, use the

TEXTAREA object that comes later in this chapter.

Before document object models in IE4 and NN6 allowed dynamic modification of

body content, a common practice was to use text objects to display results of a

script calculation or other processing. Such fields may stand alone on a page or be

part of a table.

document.formObject.textObject

(c) ketabton.com: The Digital Library

571Chapter 25 ✦ Text-Related Form Objects

Also prior to IE4 and NN6, these fields could not be made fully write-protected,

so it was easy to understand how a novice user may become confused after he or

she causes the text pointer or selection to activate a field used exclusively for out-

put, simply by tabbing through a page.

Text object methods and event handlers use terminology that may be known to

Windows users but not to Macintosh users. A field is said to have focus whenever

the user clicks or tabs into the field. When a field has focus, either the text insertion

pointer flashes, or any text in the field may be selected. Only one text object on a

page can have focus at a time. The inverse user action — clicking or tabbing away

from a text object — is called a blur. Clicking another object, whether it is another

field or a button of any kind, causes a field that currently has focus to blur.

If you don’t want the contents of a field to be changed by the user, you have three

possibilities — depending on the vintage of browsers you need to support: forcing the

field to lose focus; disabling the field; or setting the field’s readOnly property.

The tactic that is completely backward compatible uses the following event han-

dler in a field you want to protect:

onFocus=”this.blur()”

Starting with IE4 and NN6, the object model provides a disabled property for

form controls. Setting the property to true leaves the element visible on the page,

but the user cannot access the control. The same browsers provide a readOnly
property, which doesn’t dim the field, but prevents typing in the field.

Text fields and events
Focus and blur also interact with other possible user actions to a text object:

selecting and changing. Selecting occurs when the user clicks and drags across any

text in the field; changing occurs when the user makes any alteration to the content

of the field and then either tabs or clicks away from that field.

When you design event handlers for fields, be aware that a user’s interaction

with a field may trigger more than one event with a single action. For instance,

clicking a field to select text may trigger both a focus and select event. If you

have conflicting actions in the onFocus and onSelect event handlers, your scripts

can do some weird things to the user’s experience with your page. Displaying alert

dialog boxes, for instance, also triggers blur events, so a field that has both an

onSelect handler (which displays the alert) and an onBlur handler gets a nasty

interaction from the two.

As a result, be very judicious with the number of event handlers you specify in

any text object definition. If possible, pick one user action that you want to use to

initiate some JavaScript code execution and deploy it consistently on the page. Not

all fields require event handlers — only those you want to perform some action as

the result of user activity in that field.

Many newcomers also become confused by the behavior of the change event. To

prevent this event from being sent to the field for every character the user types,

any change to a field is determined only after the field loses focus by the user’s

clicking or tabbing away from it. At that point, instead of a blur event being sent to

the field, only a change event is sent, triggering an onChange event handler if one is

defined for the field. This extra burden of having to click or tab away from a field

may entice you to shift any onChange event handler tasks to a separate button that

the user must click to initiate action on the field contents.

document.formObject.textObject

(c) ketabton.com: The Digital Library

572 Part III ✦ Document Objects Reference

document.formObject.textObject

Text Boxes and the Enter/Return Key

Early browsers established a convention that continues to this day. When a form consists of
only one text box, a press of the Enter/Return key acts the same as clicking a Submit button
for the form. You have probably experienced this many times when entering a value into a
single search field of a form. Press the Enter/Return key, and the search request goes off to
the server.

The flip side is that if the form contains more than one text box, the Enter/Return key does
no submission from any of the text boxes (IE4 for the Mac is an exception: it submits no
matter how many text boxes there are). But with the advent of keyboard events, you can
script this action (or the invocation of a client-side script) into any text boxes of the form
you like. To make it work with all flavors of browsers capable of keyboard events requires a
small conversion function that extracts the DOM-specific desired code from the keystroke.
The following listing shows a sample page that demonstrates how to implement a function
that inspects each keystroke from a text field and initiates processing if the key pressed is
the Enter/Return key.

<HTML>
<HEAD>
<TITLE>Enter/Return Event Trigger</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Event object processor for NN4, IE4+, NN6
function isEnterKey(evt) {

if (!evt) {
// grab IE event object
evt = window.event

} else if (!evt.keyCode) {
// grab NN4 event info
evt.keyCode = evt.which

}
return (evt.keyCode == 13)

}

function processOnEnter(fld, evt) {
if (isEnterKey(evt)) {

alert(“Ready to do some work with the form.”)
return false

}
return true

}
</SCRIPT>
</HEAD>

<BODY>
<H1>Enter/Return Event Trigger</H1>
<HR>
<FORM>

(c) ketabton.com: The Digital Library

573Chapter 25 ✦ Text-Related Form Objects

Starting with NN4 and IE4, text fields also have event handlers for keyboard

actions, namely onKeyDown, onKeyPress, and onKeyUp. With these event handlers,

you can intercept keystrokes before the characters reach the text field. Thus, you

can use keyboard events to prevent anything but numbers from being entered into

a text box while the user types the characters.

Text field values and persistence
Text objects (including the related TEXTAREA object) have one unique behavior

that can be very important to some document and script designs. Even if a default

value is specified for the content of a field (in the VALUE attribute), any text entered

into a field by a user or script persists in that field as long as the document is

cached in the browser’s memory cache (but Internet Explorer 3 has no such persis-

tence). Therefore, if users of your page enter values into some fields, or your

scripts display results in a field, all that data will be there later, even if the user per-

forms a soft reload of the page or navigates to dozens of other Web pages or sites.

Navigating back via the Go or Bookmarks menu entries causes the browser to

retrieve the cached version (with its field entries). To force the page to appear with

its default text object values, use the Open Location or Open File selections in the

File menu, or script the location.reload() method. These actions cause the

browser to load the desired page from scratch, regardless of the content of the

cache. After you quit and relaunch the browser, the first time it goes to the desired

page, the browser loads the page from scratch — with its default values.

This level of persistence is not as reliable as the document.cookie property

because a user can reopen a URL at any time, thus erasing whatever was temporar-

ily stored in a text or TEXTAREA object. Still, this method of temporary data stor-

age may suffice for some designs. Unfortunately, you cannot completely hide a text

object in case the data you want to store is for use only by your scripts. The

TYPE=”hidden” form element is not an alternative here because script-induced

changes to its value do not persist across soft reloads.

If you prefer to use a text INPUT or TEXTAREA object as a storage medium but

don’t want users to see it, design the page to display in a non-resizable frame of

height or width zero. Use proper frame references to store or retrieve values from

the fields. Carrying out this task requires a great deal of work. The

document.cookie may not seem so complicated after all that.

document.formObject.textObject

Field 1: <INPUT TYPE=”text” NAME=”field1”
onKeyDown=”return processOnEnter(this,event)”>
Field 2: <INPUT TYPE=”text” NAME=”field2”
onKeyDown=”return processOnEnter(this,event)”>
Field 3: <INPUT TYPE=”text” NAME=”field3”
onKeyDown=”return processOnEnter(this,event)”>
</FORM>
</BODY>
</HTML>

Notice that to accommodate the NN4+ event models, a reference to the event object must
be passed as a parameter to the processing function. For more details on event handling,
see Chapter 29.

(c) ketabton.com: The Digital Library

574 Part III ✦ Document Objects Reference

To extract the current content of a text object, summon the property

document.formName.fieldName.value. After you have the string value, you can

use JavaScript’s string object methods to parse or otherwise massage that text as

needed for your script. If the field entry is a number and you need to pass that

value to methods requiring numbers, you have to convert the text to a number with

the help of the parseInt() or parseFloat() global functions.

Properties
defaultValue

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Though your users and your scripts are free to muck with the contents of a text
object by assigning strings to the value property, you can always extract (and thus

restore, if necessary) the string assigned to the text object in its <INPUT> definition.

The defaultValue property yields the string parameter of the VALUE attribute.

Example (with Listing 25-1) on the CD-ROM

Related Items: value property.

form
Value: FORM object reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A property of every INPUT element object is a reference to the FORM element

that contains the control. This property can be very convenient in a script when

you are dealing with one form control that is passed as a parameter to the function

and you want to either access another control in the same form or invoke a method

of the form. An event handler of any INPUT element can pass this as the parame-

ter, and the function can still get access to the form without having to hard-wire the

script to a particular form name or document layout.

Example on the CD-ROM

Related Items: FORM object.

On the
CD-ROM

On the
CD-ROM

document.formObject.textObject.form

(c) ketabton.com: The Digital Library

575Chapter 25 ✦ Text-Related Form Objects

maxLength
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The maxLength property controls the maximum number of characters allowed

to be typed into the field. There is no interaction between the maxLength and size
properties. This value is normally set initially via the MAXLENGTH attribute of the

INPUT element.

Example on the CD-ROM

Related Items: size property.

name
Value: Identifier String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Text object names are important for two reasons. First, if your HTML page sub-

mits information to CGI scripts, the input device passes the name of the text object

along with the data to help the server program identify the data being supplied by

the form. Second, you can use a text object’s name in its reference within JavaScript

coding. If you assign distinctive, meaningful names to your fields, these names will

help you read and debug your JavaScript listings (and will help others follow your

scripting tactics).

Be as descriptive about your text object names as you can. Borrowing text from

the field’s on-page label may help you mentally map a scripted reference to a physi-

cal field on the page. Like all JavaScript object names, text object names must begin

with a letter and be followed by any number of letters or numbers. Avoid punctua-

tion symbols with the exception of the very safe underscore character.

Although I urge you to use distinctive names for all objects you define in a docu-

ment, you can make a case for assigning the same name to a series of interrelated

fields — and JavaScript is ready to help. Within a single form, any reused name for

the same object type is placed in an indexed array for that name. For example, if

you define three fields with the name entry, the following statements retrieve the

value property for each field:

data = document.forms[0].entry[0].value
data = document.forms[0].entry[1].value
data = document.forms[0].entry[2].value

On the
CD-ROM

document.formObject.textObject.name

(c) ketabton.com: The Digital Library

576 Part III ✦ Document Objects Reference

This construction may be useful if you want to cycle through all of a form’s

related fields to determine which ones are blank. Elsewhere, your script probably

needs to know what kind of information each field is supposed to receive, so that it

can process the data intelligently. I don’t often recommend reusing object names,

but you should be aware of how the object model handles them in case you need

this construction. Unfortunately, IE3 does not turn like-named text input objects

into arrays. See “Form Element Arrays” in Chapter 23 for more details.

Example on the CD-ROM

Related Items: form.elements property; all other form element objects’ name
property.

readOnly
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

To display text in a text field yet prevent users from modifying it, newer

browsers offer the readOnly property (and tag attribute). When set to true, the

property prevents users from changing or removing the content of the text field.

Unlike a disabled text field, a read-only text field looks just like an editable one.

For older browsers, you can partially simulate this behavior by including the fol-

lowing event handler in the INPUT element:

onFocus=”this.blur()”

The event handler approach is not foolproof, however, in that quick-fingered

users may be able to change a field before the event handler completes its task. For

NN4, you can also trap for any keyboard events and prevent them from putting

characters in the field.

Example on the CD-ROM

Related Items: disabled property.

size
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

On the
CD-ROM

On the
CD-ROM

document.formObject.textObject.size

(c) ketabton.com: The Digital Library

577Chapter 25 ✦ Text-Related Form Objects

Unless otherwise directed, a text box is rendered to accommodate approxi-

mately 20 characters of text for the font family and size assigned to the element’s

style sheet. You can adjust this under script control (in case the SIZE attribute of

the tag wasn’t enough) via the size property, whose value is measured in charac-

ters (not pixels). Be forewarned, however, that browsers don’t always make com-

pletely accurate estimates of the space required to display a set number of

characters. If you are setting the MAXLENGTH attribute of a text box, making the

SIZE one or two characters larger is often a safe bet.

Example on the CD-ROM

Related Items: maxLength property.

type
Value: String (text) Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Use the type property to help you identify a text input object from an unknown

group of form elements.

Related Items: form.elements property.

value
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A text object’s value property is the two-way gateway to the content of the field.

A reference to an object’s value property returns the string currently showing in the

field. Note that all values coming from a text object are string values. If your field

prompts a user to enter a number, your script may have to perform data conversion

to the number-as-string value (“42” instead of plain, old 42) before a script can per-

form math operations on it. JavaScript tries to be as automatic about this data con-

version as possible and follows some rules about it (see Chapter 34). If you see an

error message that says a value is not a number (for a math operation), the value is

still a string.

Your script places text of its own into a field for display to the user by assigning

a string to the value property of a text object. Use the simple assignment operator.

For example:

document.forms[0].ZIP.value = “90210”

On the
CD-ROM

document.formObject.textObject.value

(c) ketabton.com: The Digital Library

578 Part III ✦ Document Objects Reference

JavaScript is more forgiving about data types when assigning values to a text

object. JavaScript does its best to convert a value to a string on its way to a text

object display. Even Boolean values get converted to their string equivalents true
or false. Scripts can place numeric values into fields without a hitch. But remem-

ber that if a script later retrieves these values from the text object, they will come

back as strings. About the only values that don’t get converted are objects. They

typically show up in text boxes as [object] or, in some browsers, a more descrip-

tive label for the object.

Storing arrays in a field requires special processing. You need to use the

array.join() method to convert an array into a string. Each array entry is delim-

ited by a character you establish in the array.join() method. Later you can use

the string.split() method to turn this delimited string into an array.

Example (with Listings 25-2 and 25-3) on the CD-ROM

Related Items: defaultValue property.

Methods
blur()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Just as a camera lens blurs when it goes out of focus, a text object blurs when it

loses focus — when someone clicks or tabs out of the field. Under script control,

blur() deselects whatever may be selected in the field, and the text insertion

pointer leaves the field. The pointer does not proceed to the next field in tabbing

order, as it does if you perform a blur by tabbing out of the field manually.

Example on the CD-ROM

Related Items: focus() method; onBlur event handler.

focus()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

On the
CD-ROM

On the
CD-ROM

document.formObject.textObject.focus()

(c) ketabton.com: The Digital Library

579Chapter 25 ✦ Text-Related Form Objects

For a text object, having focus means that the text insertion pointer is flashing in

that text object’s field (having focus means something different for buttons in a

Windows environment). Giving a field focus is like opening it up for human editing.

Setting the focus of a field containing text does not let you place the cursor at

any specified location in the field. The cursor usually appears at the beginning of

the text (although in IE4+, you can use the TextRange object to position the cursor

wherever you want in the field, as shown in Chapter 19). To prepare a field for entry

to remove the existing text, use both the focus() and select() methods.

The focus() method does not work reliably in Navigator 3 for UNIX clients. While
the select() method selects the text in the designated field, focus is not handed
to the field.

Example on the CD-ROM

Related Items: select() method; onFocus event handler.

select()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Selecting a field under script control means selecting all text within the text

object. A typical application is one in which an entry validation script detects a mis-

take on the part of the user. After alerting the user to the mistake (via a

window.alert() dialog box), the script finishes its task by selecting the text of the

field in question. Not only does this action draw the user’s eye to the field needing

attention (especially important if the validation code is checking multiple fields),

but it also keeps the old text there for the user to examine for potential problems.

With the text selected, the next key the user presses erases the former entry.

Trying to select a text object’s contents with a click of a button is problematic.

One problem is that a click of the button brings the document’s focus to the button,

which disrupts the selection process. For more ensured selection, the script should

invoke both the focus() and the select() methods for the field, in that order. No

penalty exists for issuing both methods, and the extra insurance of the second

method provides a more consistent user experience with the page.

Internet Explorer for Windows is known to exhibit anomalous (meaning buggy)

behavior when using the technique of focusing and selecting a text field after the

appearance of an alert dialog box. The fix is not elegant, but it works: inserting an

artificial delay via the setTimeout() method before invoking a separate function

that focuses and selects the field. Better-behaved browsers accept the workaround

with no penalty.

On the
CD-ROM

Note

document.formObject.textObject.select()

(c) ketabton.com: The Digital Library

580 Part III ✦ Document Objects Reference

Selecting a text object via script does not trigger the same onSelect event han-

dler for that object as the one that triggers if a user manually selects text in the

field. Therefore, no event handler script is executed when a user invokes the

select() method.

Example (with Listing 25-4) on the CD-ROM

Related Items: focus() method; onSelect event handler.

Event handlers
onAfterUpdate
onBeforeUpdate
onErrorUpdate

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

If you are using IE/Windows data binding on a text element, the element is sub-

ject to three possible events in the course of retrieving updated data. The

onBeforeUpdate and onAfterUpdate events fire immediately before and after

(respectively) the update takes place. If an error occurs in the retrieval of data from

the database, the onErrorUpdate event fires.

All three events may be used for advisory purposes. For example, an

onAfterUpdate event handler may temporarily change the font characteristics of

the element to signify the arrival of fresh data. Or an onErrorUpdate event handler

may fill the field with hyphens because no valid data exists for the field. These

events apply only to INPUT elements of type text (meaning not password or hidden

types).

Related Items: dataFld, dataSrc properties (Chapter 15).

onBlur
onFocus
onSelect

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

All three of these event handlers should be used only after you have a firm

understanding of the interrelationships of the events that reach text objects. You

must use extreme care and conduct lots of user testing before including more than

On the
CD-ROM

document.formObject.textObject.onBlur

(c) ketabton.com: The Digital Library

581Chapter 25 ✦ Text-Related Form Objects

one of these three event handlers in a text object. Because some events cannot

occur without triggering others either immediately before or after (for example, an

onFocus occurs immediately before an onSelect if the field did not have focus

before), whatever actions you script for these events should be as distinct as possi-

ble to avoid interference or overlap.

The onSelect event handler does not work in Windows versions of NN at least
through Version 4.

In particular, be careful about displaying modal dialog boxes (for example,

window.alert() dialog boxes) in response to the onFocus event handler. Because

the text field loses focus when the alert displays and then regains focus after the

alert is closed, you can get yourself into a loop that is difficult to break out of. If you

get trapped in this manner, try the keyboard shortcut for reloading the page (Ctrl+R

or Ô-R) repeatedly as you keep closing the dialog box window.

A question often arises about whether data-entry validation should be triggered

by the onBlur or onChange event handler. An onBlur validation cannot be fooled,

whereas an onChange one can be (the user simply doesn’t change the bad entry as

he or she tabs out of the field). What I don’t like about the onBlur way is it can

cause a frustrating experience for a user who wants to tab through a field now and

come back to it later (assuming your validation requires data be entered into the

field before submission). As in Chapter 43’s discussion about form data validation, I

recommend using onChange event handlers to trigger immediate data checking and

then using another last-minute check in a function called by the form’s onSubmit
event handler.

Example (with Listing 25-5) on the CD-ROM

onChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Of all the event handlers for a text object, you will probably use the onChange
handler the most in your forms (see Listing 25-6). This event is the one I prefer for

triggering the validation of whatever entry the user just typed in the field. The

potential hazard of trying to do only a batch-mode data validation of all entries

before submitting an entire form is that the user’s mental focus is away from the

entry of a given field as well. When you immediately validate an entry, the user is

already thinking about the information category in question. See Chapter 43 for

more about data-entry validation.

On the
CD-ROM

Note

document.formObject.textObject.onChange

(c) ketabton.com: The Digital Library

582 Part III ✦ Document Objects Reference

In NN4 (only), if you have both onChange and any keyboard event handlers
defined for the same text field tag, the onChange event handlers are ignored.
This is not true for IE4, where all events fire.

Example (with Listing 25-6) on the CD-ROM

Password Input Object

Properties Methods Event Handlers

See Text Input Object

Syntax
See Text Input Object.

About this object
A password-style field looks like a text object, but when the user types some-

thing into the field, only asterisks or bullets (depending on your operating system)

appear in the field. For the sake of security, any password exchanges should be

handled by a server-side CGI program.

Many properties of the password object were blocked from scripted access in

NN2. Scripts in later browsers can treat a password object exactly like a text INPUT

object. This may lead a scripter to capture a user’s Web site password for storage in

the document.cookie of the client machine. A password object value property is

returned in plain language, so that such a captured password would be stored in

the cookie file the same way. Because a client machine’s cookie file can be exam-

ined on the local computer (perhaps by a snoop during lunch hour), plain-language

storage of passwords is a potential security risk. Instead, develop a scripted

encryption algorithm for your page for reading and writing the password in the

cookie. Most password-protected sites, however, usually have a CGI program on the

server encrypt the password prior to sending it back to the cookie.

See the text object discussion for the behavior of password object’s properties,

methods, and event handlers. The type property for this object returns password.

Hidden Input Object

Properties Methods Event Handlers

See Text Input Object

On the
CD-ROM

Note

document.formObject.hiddenObject

(c) ketabton.com: The Digital Library

583Chapter 25 ✦ Text-Related Form Objects

Syntax
See Text Input Object.

About this object
A hidden object is a simple string holder within a form object whose contents

are not visible to the user of your Web page. Despite the long list of properties,

methods, and event handlers that this input element type inherits by virtue of

being an input element, you will be doing little with a hidden element beyond read-

ing and writing its value property.

The hidden object plays a vital role in applications that rely on CGI programs on

the server. Very often, the server has data that it needs to convey to itself the next

time the client makes a submission (for example, a user ID captured at the applica-

tion’s login page). A CGI program can generate an HTML page with the necessary

data hidden from the user but located in a field transmitted to the server at submit

time.

Along the same lines, a page for a server application may present a user-friendly

interface that makes data-entry easy for the user. But on the server end, the

database or other application requires that the data be in a more esoteric format. A

script located in the page generated for the user can use the onSubmit event han-

dler to perform the last minute assembly of user-friendly data into database-

friendly data in a hidden field. When the CGI program receives the request from the

client, it passes along the hidden field value to the database.

I am not a fan of the hidden object for use on client-side-only JavaScript applica-

tions. If I want to deliver with my JavaScript-enabled pages some default data col-

lections or values, I do so in JavaScript variables and arrays as part of the script.

Because scripted changes to the contents of a hidden field are fragile (for exam-

ple, a soft reload erases the changes), the only place you should consider making

such changes is in the same script that submits a form to a CGI program or in a

function triggered by an onSubmit event handler. In effect, you’re just using the hid-

den fields as holding pens for the scripted data to be submitted. For more persis-

tent storage, use the document.cookie property or genuine text fields in hidden

frames, even if just for the duration of the visit to the page.

For information about the properties of the hidden object, consult the earlier

listing for the text input object. The type property for this object returns hidden.

TEXTAREA Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

cols createTextRange() onAfterUpdate†

form† select()† onBeforeUpdate†

name† onChange

readOnly† onErrorUpdate†

Continued

TEXTAREA

(c) ketabton.com: The Digital Library

584 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

rows

type†

wrap

† See text input object.

Syntax
Accessing TEXTAREA element object properties or methods:

(All) [window.]document.formName.textareaName.property |
method([parameters])

(All) [window.]document.formName.elements[index].property |
method([parameters])

(All) [window.]document.forms[index].textareaName.property |
method([parameters])

(All) [window.]document.forms[“formName”].textareaName.property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
Although not in the same HTML syntax family as other <INPUT> elements of a

form, a TEXTAREA object is indeed a form input element, providing multiple-line

text input facilities. Although some browsers let you put a TEXTAREA element any-

where in a document, it really should be contained by a FORM element.

A TEXTAREA object closely resembles a text object, except for attributes that

define its physical appearance on the page. Because the intended use of a

TEXTAREA object is for multiple-line text input, the attributes include specifications

for height (number of rows) and width (number of columns in the monospaced

font). No matter what size you specify, the browser displays a textarea with hori-

zontal and vertical scrollbars in older browsers; more recent browsers tend to be

smarter about displaying scrollbars only when needed (although there are excep-

tions). Text entered in the textarea wraps within the visible rectangle of the field if

you set the WRAP attribute to virtual or physical in NN and soft or hard in IE; other-

wise the text scrolls for a significant distance horizontally (the horizontal scrollbar

appears when wrapping has the default off setting). This field is, indeed, a primitive

text field by GUI computing standards in that font specifications made possible in

newer browsers by way of style sheets apply to all text in the box.

All properties, methods, and event handlers of text objects apply to the

TEXTAREA object. They all behave exactly the same way (except, of course, for the

type property, which is textarea). Therefore, refer to the previous listings for the

text object for scripting details for those items. Discussed next are a handful of

additional properties that are unique to the TEXTAREA object.

TEXTAREA

(c) ketabton.com: The Digital Library

585Chapter 25 ✦ Text-Related Form Objects

Carriage returns inside textareas
The three classes of operating systems supported by Netscape Navigator —

Windows, Macintosh, and UNIX — do not agree about what constitutes a carriage

return character in a text string. This discrepancy carries over to the TEXTAREA

object and its contents on these platforms.

After a user enters text and uses Enter/Return on the keyboard, one or more

unseen characters are inserted into the string. In the parlance of JavaScript’s literal

string characters, the carriage return consists of some combination of the new line

(\n) and return (\r) character. The following table shows the characters inserted

into the string for each operating system category.

Operating System Character String

Windows \r\n

Macintosh \r

Unix \n

This tidbit is valuable if you need to remove carriage returns from a textarea for

processing in a CGI or local script. The problem is that you obviously need to per-

form platform-specific operations on each. For the situation in which you must pre-

serve the carriage return locations, but your server-side database cannot accept the

carriage return values, I suggest you use the string.escape() method to URL-

encode the string. The return character is converted to %0D and the newline charac-

ter is converted to %0A. Of course these characters occupy extra character spaces in

your database, so these additions must be accounted for in your database design.

As far as writing carriage returns into textareas, the situation is a bit easier. From

NN3 and IE4 onward, if you specify any one of the combinations in the preceding

table, all platforms know how to automatically convert the data to the form native

to the operating system. Therefore, you can set the value of a TEXTAREA object to

1\r\n2\r\n3 in all platforms, and a columnar list of the numbers 1, 2, and 3 will

appear in those fields. Or, if you URL-encoded the text for saving to a database, you

can unescape that character string before setting the textarea value, and no matter

what platform the visitor has, the carriage returns are rendered correctly. Upon

reading those values again by script, you can see that the carriage returns are in

the form of the platform (shown in the previous table).

Properties
cols
rows

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

TEXTAREA.cols

(c) ketabton.com: The Digital Library

586 Part III ✦ Document Objects Reference

The displayed size of a TEXTAREA element is defined by its COLS and ROWS
attributes, which are represented in the object model by the cols and rows proper-

ties, respectively. Values for these properties are integers. For cols, the number

represents the number of characters that can be displayed without horizontal

scrolling of the textarea; for rows, the number is the number of lines of text that can

be displayed without vertical scrolling.

Example on the CD-ROM

Related Items: wrap property.

wrap
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The wrap property represents the WRAP attribute, which, surprisingly, is not a

W3C-sanctioned attribute as of HTML 4.0. In any case, IE4+ lets you adjust the prop-

erty by scripting. Allowable string values are soft, hard, and off. The browser

adds soft returns (the default in IE) to word-wrap the content, but no carriage

return characters are actually inserted into the text. A setting for hard returns

means that carriage return characters are added to the text (and would be submit-

ted with the value to a server CGI). With wrap set to off, text continues to extend

beyond the right edge of the textarea until the user manually types the

Enter/Return key.

Related Items: cols property.

Methods
createTextRange()

Returns: TextRange object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

On the
CD-ROM

TEXTAREA.createTextRange()

(c) ketabton.com: The Digital Library

587Chapter 25 ✦ Text-Related Form Objects

The createTextRange() method for a TEXTAREA operates just as the docu-
ment.createTextRange() method, except that the range consists of text inside

the TEXTAREA element, apart from the regular body content. This version of the

TextRange object comes in handy when you want a script to control the location of

the text insertion pointer inside a TEXTAREA element for the user.

Example on the CD-ROM

Related Items: TextRange object (Chapter 19).

✦ ✦ ✦

On the
CD-ROM

TEXTAREA.createTextRange()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Select, Option,
and FileUpload
Objects

Selection lists — whether in the form of pop-up menus or

scrolling lists — are space-saving form elements in HTML

pages. They enable designers to present a lot of information

in a comparatively small space. At the same time, users are

familiar with the interface elements from working in their own

operating systems’ preference dialog boxes and application

windows.

However, selection lists are more difficult to script, espe-

cially in older browsers, because the objects themselves are

complicated entities. Scripts find all the real data associated

with the form control in OPTION elements that are nested

inside SELECT elements. As you can see throughout this chap-

ter, backward-compatible references necessary to extract

information from a SELECT element object and its OPTION

objects can get pretty long. The results, however, are worth

the effort.

The other object covered in this chapter, the fileUpload

input object, is frequently misunderstood as being more pow-

erful than it actually is. It is, alas, not the great file transfer

elixir desired by many page authors.

SELECT Element Object
For HTML element properties, methods, and event han-

dlers, see Chapter 15.

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Triggering action
based on a user’s
selection in a pop-up
or select list

Modifying the
contents of SELECT
objects

Using the fileUpload
object

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

590 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

form† options[i].add() onChange

length item()

multiple namedItem()

name† options[i].remove()

options

selectedIndex

size

type

value

†See text input object (Chapter 25).

Syntax
Accessing SELECT element object properties:

(All) [window.]document.formName.selectName.property |
method([parameters])

(All) [window.]document.formName.elements[index].property |
method([parameters])

(All) [window.]document.forms[index].selectName.property |
method([parameters])

(All) [window.]document.forms[“formName”].selectName.property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

About this object
SELECT element objects are perhaps the most visually interesting user interface

elements among the standard built-in objects. In one format, they appear on the

page as pop-up lists; in another format, they appear as scrolling list boxes. Pop-up

lists, in particular, offer efficient use of page real estate for presenting a list of

choices for the user. Moreover, only the choice selected by the user shows on the

page, minimizing the clutter of unneeded verbiage.

Compared with other JavaScript objects, SELECT objects are difficult to script —

mostly because of the complexity of data that goes into a list of items. What the

user sees as a SELECT element on the page consists of both that element and

OPTION elements that contain the actual choices from which the user makes a

selection. Some properties that are of value to scripters belong to the SELECT

object, while others belong to the nested OPTION objects. For example, you can

extract the number (index) of the currently selected option in the list — a property

SELECT

(c) ketabton.com: The Digital Library

591Chapter 26 ✦ Select, Option, and FileUpload Objects

of the entire SELECT object. To get the displayed text of the selected option, how-

ever, you must zero in further to extract the text property of a single option among

all options defined for the object.

When you define a SELECT object within a form, the construction of the

<SELECT>...</SELECT> tag pair is easy to inadvertently mess up. First, most

attributes that define the entire object — such as NAME, SIZE, and event handlers —

are attributes of the opening <SELECT> tag. Between the end of the opening tag and

the closing </SELECT> tag are additional tags for each option to be displayed in the

list. The following object definition creates a selection pop-up list containing three

color choices:

<FORM>
<SELECT NAME=”RGBColors” onChange=”changeColor(this)”>

<OPTION SELECTED>Red
<OPTION>Green
<OPTION>Blue

</SELECT>
</FORM>

The indented formatting of the tags in the HTML document is not critical. I

indent the lines of options merely for the sake of readability.

By default, a SELECT element is rendered as a pop-up list. To make it appear as a

scrolled list, assign an integer value greater than 1 to the SIZE attribute to specify

how many options should be visible in the list without scrolling — how tall the list’s

box should be, measured in lines. Because scrollbars in GUI environments tend to

require a fair amount of space to display a minimum set of clickable areas (includ-

ing sliding “thumbs”), you should set list-box style sizes to no less than 4. If that

makes the list box too tall for your page design, consider using a pop-up menu

instead.

Significant differences exist in the way each GUI platform presents pop-up

menus. Because each browser sometimes relies on the operating system to display

its native pop-up menu style (and sometimes the browser designers go their own

way), considerable differences exist among the OS and browser platforms in the

size of a given pop-up menu. What fits nicely within a standard window width of one

OS may not fit in the window of another OS in a different browser. In other words,

you cannot rely on any SELECT object having a precise dimension on a page (in

case you’re trying to align a SELECT object with an image).

In list-box form, you can set a SELECT object to accept multiple, noncontiguous

selections. Users typically accomplish such selections by holding down a modifier

key (the Shift, Ctrl, or Ô key, depending on the operating system) while clicking

additional options. To switch on this capability for a SELECT object, include the

MULTIPLE attribute constant in the definition.

For each entry in a list, your <SELECT> tag definition must include an <OPTION>
tag plus the text as you want it to appear in the list. If you want a pop-up list to

show a default selection when the page loads, you must attach a SELECTED
attribute to that item’s <OPTION> tag. Without this attribute, the default item may

be empty or the first item, depending on the browser. (I go more in depth about this

in the OPTION object discussion later in this chapter.) You can also assign a string

to each OPTION’s VALUE attribute. As with radio buttons, this value can be text

SELECT

(c) ketabton.com: The Digital Library

592 Part III ✦ Document Objects Reference

other than the wording displayed in the list. In essence, your script can act on that

“hidden” value rather than on the displayed text, such as letting a plain-language

select listing actually refer to a complex URL. This string value is also the value sent

to a CGI program (as part of the name/value pair) when the user submits the

SELECT object’s form.

One behavioral aspect of the SELECT object may influence your page design. The

onChange event handler triggers immediately when a user makes a new selection in

a pop-up list (except in cases affected by a Navigator 2 bug on Windows versions).

If you prefer to delay any action until the user makes other settings in the form,

omit an onChange event handler in the SELECT object — but be sure to create a but-

ton that enables users to initiate an action governed by those user settings.

Modifying SELECT options (NN3+, IE4+)
Script control gives you considerable flexibility in modifying the contents and

selection of a SELECT object. These powers are available only in NN3+ or IE4+.

Some of this flexibility is rather straightforward, such as changing the

selectObj.options[i].text property to alter the display of a single-option

entry. The situation gets tricky, though, when the number of options in the SELECT

object changes. Your choices include

✦ Removing an individual option (and thus collapsing the list)

✦ Reducing an existing list to a fewer number of options

✦ Removing all options

✦ Adding new options to a SELECT object

To remove an option from the list, set the specific option to null. For example, if

a list contains five items and you want to eliminate the third item altogether (reduc-

ing the list to four items), the syntax (from the SELECT object reference) for doing

that task is this:

selectObj.options[2] = null

After this statement, selectObj.options.length equals 4.

In another scenario, suppose that a SELECT object has five options in it and you

want to replace it with one having only three options. You first must hard-code the

length property to 3:

selectObj.options.length = 3

Then, set individual text and value properties for index values 0 through 2.

Perhaps you want to start building a new list of contents by completely deleting

the original list (without harming the SELECT object). To accomplish this, set the

length to 0:

selectObj.options.length = 0

From here, you have to create new options (as you do when you want to expand

a list from, say, three to seven options). The mechanism for creating a new option

involves an object constructor: new Option(). This constructor accepts up to four

parameters, which enable you to specify the equivalent of an <OPTION> tag’s

attributes:

SELECT

(c) ketabton.com: The Digital Library

593Chapter 26 ✦ Select, Option, and FileUpload Objects

✦ Text to be displayed in the option

✦ Contents of the option’s value property

✦ Whether the item is the defaultSelected option (Boolean)

✦ Whether the item is selected (Boolean)

You can set any (or none) of these items as part of the constructor and return to

other statements to set their properties. I suggest setting the first two parameters

(leave the others blank) and then setting the selected property separately. The

following is an example of a statement that creates a new, fifth entry in a SELECT

object and sets both its displayed text and value properties:

selectObj.options[4] = new Option(“Yahoo”,”http://www.yahoo.com”)

To demonstrate all of these techniques, Listing 26-1 enables you to change the

text of a SELECT object — first by adjusting the text properties in the same number

of options and then by creating an entirely new set of options. Radio button

onClick event handlers trigger functions for making these changes — rare exam-

ples of when radio buttons can logically initiate visible action.

Listing 26-1: Modifying SELECT Options

<HTML>
<HEAD>
<TITLE>Changing Options On The Fly</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// flag to reload page for older NNs
var isPreNN6 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) <= 4)

// initialize color list arrays
plainList = new Array(6)
hardList = new Array(6)
plainList[0] = “cyan”
hardList[0] = “#00FFFF”
plainList[1] = “magenta”
hardList[1] = “#FF00FF”
plainList[2] = “yellow”
hardList[2] = “#FFFF00”
plainList[3] = “lightgoldenrodyellow”
hardList[3] = “#FAFAD2”
plainList[4] = “salmon”
hardList[4] = “#FA8072”
plainList[5] = “dodgerblue”
hardList[5] = “#1E90FF”

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors

Continued

SELECT

(c) ketabton.com: The Digital Library

594 Part III ✦ Document Objects Reference

Listing 26-1 (continued)

// filter out old browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length
// save selected index
var currSelected = listObj.selectedIndex
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

if (which == “plain”) {
listObj.options[i].text = plainList[i]

} else {
listObj.options[i].text = hardList[i]

}
}
if (isPreNN6) {

history.go(0)
} else {

listObj.selectedIndex = currSelected
}

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”
// empty options from list
listObj.length = 0
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

if (lang == “plain”) {
listObj.options[i] = new Option(plainList[i])

} else {
listObj.options[i] = new Option(hardList[i])

}
}
listObj.options[0].selected = true
if (isPreNN6) {

history.go(0)
}

}
}

SELECT

(c) ketabton.com: The Digital Library

595Chapter 26 ✦ Select, Option, and FileUpload Objects

</SCRIPT>
</HEAD>

<BODY>
<H1>Flying Select Options</H1>
<FORM>
Choose a palette size:
<INPUT TYPE=”radio” NAME=”paletteSize” VALUE=3
onClick=”setCount(this)” CHECKED>Three
<INPUT TYPE=”radio” NAME=”paletteSize” VALUE=6
onClick=”setCount(this)”>Six
<P>
Choose geek level:
<INPUT TYPE=”radio” NAME=”geekLevel” VALUE=””
onClick=”setLang(‘plain’)” CHECKED>Plain-language
<INPUT TYPE=”radio” NAME=”geekLevel” VALUE=””
onClick=”setLang(‘hard’)”>Gimme hex-triplets!
<P>
Select a color:
<SELECT NAME=”colors”>

<OPTION SELECTED>cyan
<OPTION>magenta
<OPTION>yellow

</SELECT>
</FORM>
</BODY>
</HTML>

In an effort to make this code easily maintainable, the color choice lists (one in

plain language, the other in hexadecimal triplet color specifications) are estab-

lished as two separate arrays. Repeat loops in both large functions can work with

these arrays no matter how big they get.

The first two radio buttons (see Figure 26-1) trigger the setLang() function.

This function’s first task is to extract a reference to the SELECT object to make

additional references shorter (just listObj). Then by way of the length property,

you find out how many items are currently displayed in the list because you just

want to replace as many items as are already there. In the repeat loop, you set the

text property of the existing SELECT options to corresponding entries in either of

the two array listings.

SELECT

(c) ketabton.com: The Digital Library

596 Part III ✦ Document Objects Reference

Figure 26-1: Radio button choices alter the contents of the SELECT object on the fly.

In the second pair of radio buttons, each button stores a value indicating how

many items should be displayed when the user clicks the button. This number is

picked up by the setCount() function and is used in the repeat loop as a maximum

counting point. In the meantime, the function finds the selected language radio but-

ton and zeros out the SELECT object entirely. Options are rebuilt from scratch using

the new Option() constructor for each option. The parameters are the corre-

sponding display text entries from the arrays. Because none of these new options

have other properties set (such as which one should be selected by default), the

function sets that property of the first item in the list.

Notice that both functions call history.go(0) for NN3 and NN4 browsers after

setting up their SELECT objects. The purpose of this call is to give these earlier

Navigator versions an opportunity to resize the SELECT object to accommodate the

contents of the list. The difference in size here is especially noticeable when you

switch from the six-color, plain-language list to any other list. Without resizing,

some long items are not readable. IE4+ and NN6, on the other hand, automatically

redraw the page to the newly sized form element.

Modifying SELECT options (IE4+)
Microsoft offers another way to modify SELECT element options for IE4+, but the

technique involves two proprietary methods of the options array property of the

SELECT object. Because I cover all other ways of modifying the SELECT element in

this section, I cover the IE way of doing things here as well.

SELECT

(c) ketabton.com: The Digital Library

597Chapter 26 ✦ Select, Option, and FileUpload Objects

The two options array methods are add() and remove(). The add() method

takes one required parameter and one optional parameter. The required parameter

is a reference to an OPTION element object that your script creates in another

statement (using the document.createElement() method). If you omit the second

parameter to add(), the new OPTION element is appended to the current collection

of items. But you can also specify an index value as the second parameter. The

index points to the position in the options array where the new item is to be

inserted.

Listing 26-2 shows how to modify the two main functions from Listing 26-1 using

the IE approach exclusively (changes and additions appear in bold). The script

assumes that only IE browsers ever load the page (in other words, there is no filter-

ing for browser brand here). When replacing one set of options with another, there

are two approaches demonstrated. In the first (the setLang() function), the

replacements have the same number of items, so the length of existing options pro-

vides a counter and index value for the remove() and add() methods. But when

the number of items may change (as in the setCount() function), a tight loop

removes all items before they are added back via the add() method without a sec-

ond parameter (items are appended to the list). The approach shown in Listing 26-2

has no specific benefit over that of Listing 26-1.

Listing 26-2: Modifying SELECT Options (IE4+)

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors
var newOpt
// filter out old IE browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length
// save selected index
var currSelected = listObj.selectedIndex
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

newOpt = document.createElement(“OPTION”)
newOpt.text = (which == “plain”) ? plainList[i] : hardList[i]
listObj.options.remove(i)
listObj.options.add(newOpt, i)

}
listObj.selectedIndex = currSelected

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors
var newOpt
// filter out old browsers
if (listObj.type) {

// get language setting

Continued

SELECT

(c) ketabton.com: The Digital Library

598 Part III ✦ Document Objects Reference

Listing 26-2 (continued)

var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”
// empty options from list
while (listObj.options.length) {

listObj.options.remove(0)
}
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

newOpt = document.createElement(“OPTION”)
newOpt.text = (lang == “plain”) ? plainList[i] : hardList[i]
listObj.options.add(newOpt)

}
listObj.options[0].selected = true

}
}

Modifying SELECT options (W3C DOM)
Yet another approach is possible in browsers that closely adhere to the W3C

DOM Level 2 standard. In NN6, for example, you can use the add() and remove()
methods of the SELECT element object. They work very much like the same-named

methods for the options array in IE4+, but these are methods of the SELECT ele-

ment object itself. The other main difference between the two syntaxes is that the

NN6 add() method does not use the index value as the second parameter but

rather a reference to the OPTION element object before which the new option is

inserted. The second parameter is required, so to simply append the new item at

the end of the current list, supply null as the parameter. Listing 26-3 shows the

W3C-compatible version of the SELECT element modification scripts shown in

Listings 26-1 and 26-2. I highlight source code lines in bold that exhibit differences

between the IE4+ and W3C DOM versions.

Listing 26-3: Modifying SELECT Options (NN6+)

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors
var newOpt
// filter out old IE browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length
// save selected index
var currSelected = listObj.selectedIndex
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

newOpt = document.createElement(“OPTION”)
newOpt.text = (which == “plain”) ? plainList[i] : hardList[i]

SELECT

(c) ketabton.com: The Digital Library

599Chapter 26 ✦ Select, Option, and FileUpload Objects

listObj.remove(i)
listObj.add(newOpt, listObj.options[i])

}
listObj.selectedIndex = currSelected

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors
var newOpt
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”
// empty options from list
while (listObj.options.length) {

listObj.remove(0)
}
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

newOpt = document.createElement(“OPTION”)
newOpt.text = (lang == “plain”) ? plainList[i] : hardList[i]
listObj.add(newOpt, null)

}
listObj.options[0].selected = true

}
}

As with the IE version, the W3C version offers no specific benefit over the origi-

nal, backward-compatible approach. Choose the most modern one that fits the

types of browsers you need to support with your page.

Properties

length
Value: Integer Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Like all JavaScript arrays, the options array has a length property of its own.

But rather than having to reference the options array to determine its length, the

SELECT object has its own length property that you use to find out how many

items are in the list. This value is the number of options in the object. A SELECT

object with three choices in it has a length property value of 3.

SELECT.length

(c) ketabton.com: The Digital Library

600 Part III ✦ Document Objects Reference

In NN3+ and IE4+, you can adjust this value downward after the document loads.

This is one way to decrease the number of options in a list. Setting the value to 0
causes the SELECT object to empty but not disappear.

Example on the CD-ROM

Related Item: options property.

multiple
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The multiple property represents the MULTIPLE attribute setting for a SELECT

element object. If the value is true, the element accepts multiple selections by the

user (for example, Ctrl+clicking in Windows). If you want to convert a pop-up list

into a multiple SELECT pick list, you must also adjust the size property to direct

the browser to render a set number of visible choices in the list.

Example on the CD-ROM

Related Item: size property.

options[index]
Value: Array of OPTION element objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

You typically don’t summon this property by itself. Rather, it is part of a refer-

ence to a specific option’s properties (or methods in later browsers) within the

entire SELECT object. In other words, the options property is a kind of gateway to

more specific properties, such as the value assigned to a single option within the

list. In early versions of NN, displaying an alert that referenced the options array

showed the HTML for the options. But more recent browsers simply return an indi-

cation that the value is an object.

In newer browsers (IE4+ and NN6+), you can reference individual options as sep-

arate HTML element objects. These references do not require the reference to the

On the
CD-ROM

On the
CD-ROM

SELECT.options[index]

(c) ketabton.com: The Digital Library

601Chapter 26 ✦ Select, Option, and FileUpload Objects

containing FORM or SELECT element objects. For backward compatibility, however,

I recommend you stick with the long references through the SELECT objects.

I list the next several properties here in the SELECT object discussion because

they are backward-compatible with all browsers, including browsers that don’t

treat the OPTION element as a distinct object. Be aware that all properties shown

here that include options[index] as part of their references are also properties of

the OPTION element object in IE4+ and NN6+.

Example on the CD-ROM

Related Items: All options[index].property items.

options[index].defaultSelected
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

If your SELECT object definition includes one option that features the SELECTED
attribute, that option’s defaultSelected property is set to true. The

defaultSelected property for all other options is false. If you define a SELECT

object that allows multiple selections (and whose SIZE attribute is greater than 1),

however, you can define the SELECTED attribute for more than one option

definition. When the page loads, all items with that attribute are preselected for the

user (even in noncontiguous groups).

Example on the CD-ROM

Related Item: options[index].selected property.

options[index].index
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The index value of any single option in a SELECT object likely is a redundant

value in your scripting. Because you cannot access the option without knowing the

On the
CD-ROM

On the
CD-ROM

SELECT.options[index].index

(c) ketabton.com: The Digital Library

602 Part III ✦ Document Objects Reference

index anyway (in brackets as part of the options[index] array reference), you

have little need to extract the index value. The value is a property of the item just

the same.

Example on the CD-ROM

Related Item: options property.

options[index].selected
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

As mentioned earlier in the discussion of this object, better ways exist for deter-

mining which option a user selects from a list than looping through all options and

examining the selected property. An exception to that “rule” occurs when you set

up a list box to enable multiple selections. In this situation, the selectedIndex
property returns an integer of only the topmost item selected. Therefore, your

script needs to look at the true or false values of the selected property for each

option in the list and determine what to do with the text or value data.

Example (with Listing 26-4) on the CD-ROM

Related Items: options[index].text, options[index].value,
selectedIndex properties.

options[index].text
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The text property of an option is the text of the item as it appears in the list. If

you can pass that wording along with your script to perform appropriate tasks, this

property is the one you want to extract for further processing. But if your process-

ing requires other strings associated with each option, assign a VALUE attribute in

the definition and extract the options[index].value property (see Listing 26-6).

On the
CD-ROM

On the
CD-ROM

SELECT.options[index].text

(c) ketabton.com: The Digital Library

603Chapter 26 ✦ Select, Option, and FileUpload Objects

Example (with Listing 26-5) on the CD-ROM

Related Item: options[index].value property.

options[index].value
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

In many instances, the words in the options list appear in a form that is conve-

nient for the document’s users but inconvenient for the scripts behind the page.

Rather than set up an elaborate lookup routine to match the selectedIndex or

options[index].text values with the values your script needs, you can easily

store those values in the VALUE attribute of each <OPTION> definition of the SELECT

object. You can then extract those values as needed.

You can store any string expression in the VALUE attributes. That includes URLs,

object properties, or even entire page descriptions that you want to send to a

parent.frames[index].document.write() method.

Starting with IE4 and NN6, the SELECT element object itself has a value property

that returns the value property of the selected option. But for backward compati-

bility, be sure to use the longer approach shown in the following example.

Example (with Listing 26-6) on the CD-ROM

Related Item: options[index].text property.

selectedIndex
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

When a user clicks a choice in a selection list, the selectedIndex property

changes to a zero-based number corresponding to that item in the list. The first

item has a value of 0. This information is valuable to a script that needs to extract

the value or text of a selected item for further processing.

On the
CD-ROM

On the
CD-ROM

SELECT.selectedIndex

(c) ketabton.com: The Digital Library

604 Part III ✦ Document Objects Reference

You can use this information as a shortcut to getting at a selected option’s prop-

erties. To examine a SELECT object’s selected property, rather than cycling

through every option in a repeat loop, use the object’s selectedIndex property to

fill in the index value for the reference to the selected item. The wording gets kind

of long; but from an execution standpoint, this methodology is much more efficient.

Note, however, that when the SELECT object is a multiple-style, the selectedIndex
property value reflects the index of only the topmost item selected in the list.

To script the selection of a particular item, assign an integer value to the SELECT

element object’s selectedIndex property, as shown in Listings 26-1 through 26-3.

Example (with Listing 26-7) on the CD-ROM

Related Item: options property.

size
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The size property represents the SIZE attribute setting for a SELECT element

object. You can modify the integer value of this property to change the number of

options that are visible in a pick list without having to scroll.

Example on the CD-ROM

Related Item: multiple property.

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Use the type property to help you identify a SELECT object from an unknown

group of form elements. The precise string returned for this property depends on

whether the SELECT object is defined as a single (select-one) or multiple

(select-multiple) type.

Related Item: form.elements property.

On the
CD-ROM

On the
CD-ROM

SELECT.type

(c) ketabton.com: The Digital Library

605Chapter 26 ✦ Select, Option, and FileUpload Objects

value
Value: String Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The more recent browsers (and the W3C DOM) provide a value property for the

SELECT element object. This property returns the string assigned to the VALUE
attribute (or value property) of the currently selected OPTION element. If you do

not assign a string to the attribute or property, the value property returns an

empty string. For these browser generations, you can use this shortcut reference to

the SELECT element object’s value property instead of the longer version that

requires a reference to the selectedIndex property and the options array of the

element object.

If you assign a new string to this property (and that string does not match an

existing option value), IE accepts the new value property and displays an empty

item in the list. While this property is technically read/write also in NN6, assigning a

string to this property does not override the string returned based on the user

selection.

Example on the CD-ROM

Related Item: options[index].value property.

Methods
options[index].add(elementRef[, index])
options[index].remove()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These two IE-specific methods belong to the options array property of a

SELECT element object. See the discussion at the opening of the SELECT element

object earlier in this chapter to see how to use these methods and their counter-

parts in other browser versions and object models.

On the
CD-ROM

SELECT.options[index].add()

(c) ketabton.com: The Digital Library

606 Part III ✦ Document Objects Reference

item(index)
namedItem(“optionID”)

Returns: OPTION element reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The item() and namedItem() methods are Netscape-specific convenience meth-

ods that access OPTION element objects nested inside a SELECT object. In a sense,

they provide shortcuts to referencing nested options without having to use the

options array property and the indexing within that array.

The parameter for the item() method is an index integer value. For example, the

following two statements refer to the same OPTION element object:

document.forms[0].mySelect.options[2]
document.forms[0].mySelect.item(2)

If your script knows the ID of an OPTION element, then it can use the

namedItem() method, supplying the string version of the ID as the parameter, to

return a reference to that option element.

Example on the CD-ROM

Related Item: options property.

Event handlers

onChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

As a user clicks a new choice in a SELECT object, the object receives a change
event that the onChange event handler can capture. In examples earlier in this sec-

tion (Listings 26-6 and 26-7, for example), the action is handed over to a separate

button. This design may make sense in some circumstances, especially when you

use multiple SELECT lists or any list box. (Typically, clicking a list box item does not

trigger any action that the user sees.) But for most pop-up menus, triggering the

action when the user makes a choice is desirable.

To bring a pop-up menu to life, add an onChange event handler to the <SELECT> def-

inition. If the user makes the same choice as previously selected, the onChange event

handler is not triggered. In this case, you can still trigger an action via the onClick
event handler; but this event works for the SELECT object only in IE4+ and NN6+.

On the
CD-ROM

SELECT.onChange

(c) ketabton.com: The Digital Library

607Chapter 26 ✦ Select, Option, and FileUpload Objects

A bug in the Windows versions of Navigator 2 (only) causes the onChange event
handler in SELECT objects to fail unless the user clicks outside the SELECT object.
If your audience includes users of these browsers, then consider adding a special
routine that employs document.write() to include a “do nothing” button next
to the SELECT object. This button should entice the user to click out of the SELECT
object. The onChange event handler fires at a click of that button (or any other
location on the page).

Example (with Listing 26-8) on the CD-ROM

OPTION Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties MethodsEvent Handlers

defaultSelected

form†

label

selected

text

value

†See text input object (Chapter 25).

Syntax
Accessing OPTION object properties:

(All) [window.]document.formName.selectName.options[index].property |
method([parameters])

(All) [window.]document.formName.elements[index].options[index].property |
method([parameters])

(All) [window.]document.forms[index].selectName.options[index].property |
method([parameters])

(All) [window.]document.forms[“formName”].selectName.
options[index].property | method([parameters])

(All) [window.]document.forms[“formName”].elements[index].
options[index].property | method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6+) [window.]document.getElementById(“elemID”).property |

method([parameters])
(NN6) [window.]document.forms[index].selectName.item(index).property |

method([parameters])
(NN6) [window.]document.forms[“formName”].selectName.namedItem(elemID).

property | method([parameters])

On the
CD-ROM

Note

OPTION

(c) ketabton.com: The Digital Library

608 Part III ✦ Document Objects Reference

About this object
OPTION elements are nested inside SELECT elements. Each option represents an

item in the list of choices presented by the SELECT element. Properties of the

OPTION element object let scripts inspect whether a particular option is currently

selected or is the default selection. Other properties enable you to get or set the

hidden value associated with the option as well as the visible text. For more details

about the interaction between the SELECT and OPTION element objects, see the

discussion about the SELECT object earlier in this chapter as well as the discussion

of the properties and methods associated with the options array returned by the

SELECT object’s options property.

I discuss all backward-compatible OPTION object properties (defaultSelected,

selected, text, and value) among the options property descriptions in the

SELECT object section. The only items listed in this section are those that are

unique to the OPTION element object defined in newer browsers.

In NN3+ and IE4+, there is a provision for creating a new option object via an

Option object constructor function. The syntax is as follows:

var newOption = new Option(“text”,”value”)

Here, text is the string that is displayed for the item in the list, and value is the

string assigned to the value property of the new option. This new option object is

not added to a SELECT object until you assign it to a slot in the options array of

the SELECT object. You can see an example of this approach to modifying options

in Listing 26-1.

Properties
label

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The label property corresponds to the HTML 4.0 LABEL attribute of an OPTION

element. This attribute (and property) enables you to assign alternate text for an

option. The property is implemented in IE5/Mac and NN6.

In IE5/Mac, any string assigned to the LABEL attribute or corresponding property

overrides the display of text found between the start and end tags of the OPTION

element. Therefore, you can assign content to both the attribute and tag, but only

browsers adhering to the HTML 4.0 standard for this element display the value

assigned to the label. While the label property is implemented in NN6, the browser

does not modify the option item’s text to reflect the property’s setting.

Example on the CD-ROMOn the
CD-ROM

OPTION.label

(c) ketabton.com: The Digital Library

609Chapter 26 ✦ Select, Option, and FileUpload Objects

Related Item: text property.

OPTGROUP Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form†

label

†See text input object (Chapter 25).

Syntax
Accessing OPTGROUP object properties:

(IE5/Mac) [window.]document.all.elemID”.property | method([parameters])
(NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) (�)

About this object
An OPTGROUP element in the HTML 4.0 specification enables authors to group

options into subgroups within a SELECT list. The label assigned to the OPTGROUP

element is rendered in the list as a non-selectable item, usually differentiated from

the selectable items by some alternate display. In NN6, OPTGROUP items by default

are shown in bold italic, while all OPTION elements nested within an OPTGROUP

are indented but with normal font characteristics. The OPTGROUP element object

has fewer properties, methods, and event handlers than most elements because (as

of this writing) it is not part of the IE DOM in Windows versions — although it is

implemented in IE5/Mac to provide nicely formatted hierarchical menus.

Browsers not recognizing this element ignore it. All options are presented as if

the OPTGROUP elements are not there.

Properties
label

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) (�)

OPTGROUP.label

(c) ketabton.com: The Digital Library

610 Part III ✦ Document Objects Reference

The label property corresponds to the HTML 4.0 LABEL attribute of an OPT-

GROUP element. This attribute (and property) enables you to assign text to the label

that encompasses a group of nested OPTION elements in the pop-up list display.

IE5/Mac exhibits a bug that prevents scripts from assigning values to the last OPT-
GROUP element inside a SELECT element.

Example (with Listing 26-9) on the CD-ROM

Related Item: OPTION.label property.

File Input Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultValue† select()† onchange†

form†

name†

readOnly†

size†

type†

value†

†See text input object (Chapter 25).

Syntax
Accessing file INPUT element object properties:

(NN3+/IE4+) [window.]document.formName.inputName.property |
method([parameters])

(NN3+/IE4+) [window.]document.formName.elements[index].property |
method([parameters])

(NN3+/IE4+) [window.]document.forms[index].inputName.property |
method([parameters])

(NN3+/IE4+) [window.]document.forms[“formName”].inputName.property |
method([parameters])

(NN3+/IE4+) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

On the
CD-ROM

Note

document.formObject.fileInputObject

(c) ketabton.com: The Digital Library

611Chapter 26 ✦ Select, Option, and FileUpload Objects

About this object
Some Web sites enable you to upload files from the client to the server, typically

by using a form-style submission to a CGI program on the server. The INPUT ele-

ment whose type is set to “file” (also known as a fileUpload object) is merely a

user interface that enables users to specify which file on their PC they want to

upload. Without a server process capable of receiving the file, the file input element

does nothing. Moreover, you must also set two FORM element attributes as follows:

METHOD=”POST”
ENCTYPE=”multipart/form-data”

This element displays a field and a Browse button. The Browse button leads to

an Open file dialog box (in the local operating system’s interface vernacular) where

a user can select a file. After you make a selection, the filename (or pathname,

depending on the operating system) appears in the file input element’s field. The

value property of the object returns the filename.

You do not have to script much for this object on the client side. The value
property, for example, is read-only in earlier browsers; in addition, a form cannot

surreptitiously upload a file to the server without the user’s knowledge or consent.

Listing 26-10 helps you see what the element looks like. The syntax is compatible

in NN3+ and IE4+.

Listing 26-10: File Input Element

<HTML>
<HEAD>
<TITLE>FileUpload Object</TITLE>
</HEAD>
<BODY>
<FORM METHOD=”POST” ACTION=”yourCGIURL” ENCTYPE=”multipart/form-data”>
File to be uploaded:
<INPUT TYPE=”file” SIZE=40 NAME=”fileToGo”><P>
<INPUT TYPE=”button” VALUE=”View Value”
onClick=”alert(this.form.fileToGo.value)”>
</FORM>
</BODY>
</HTML>

In a true production environment, a Submit button and a URL to your CGI pro-

cess are specified for the ACTION attribute of the <FORM> tag.

✦ ✦ ✦

document.formObject.fileInputObject

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Table and List
Objects

Tables are incredibly popular HTML constructions. When

you consider that a lot of CGI programs search SQL

databases and display data gathered from SQL tables, it’s not

unusual to find the table concept carried over from data stor-

age to data display. Spreadsheet programs certainly put the

notion of tabular display into the minds of most computer

users.

One of the truly beneficial properties of tables in HTML is

that they pack a lot of page organization and alignment punch

in just a few tags and attributes. Even if you’re not a graphics

designer or a dedicated HTML jockey, you can get rows and

columns of text and images to line up perfectly on the page.

This behavior also lures many page designers to sculpt elabo-

rately detailed pages out of what appear to be positioned ele-

ments. Earlier browsers didn’t offer positioning facilities, so

borderless tables were torqued into performing all kinds of

placement tricks with the help of precisely sized, transparent

images creating the illusion of white space between carefully

placed elements. If you use some of the WYSIWYG authoring

tools for HTML pages, you may not realize how much table-

related HTML code is generated for you as you use the tool to

drag an image to a particular location on the page.

Someone probably could write an entire book on the HTML

aspects of tables by themselves, especially when taking into

account the variability of rendering that can occur. But that’s

not the task at hand. The first part of this chapter focuses on

the scriptable aspects of TABLE element objects and the shop-

ping list of elements that support tables. All of these objects

became scriptable objects in browsers starting with IE4 and

NN6. Later in the chapter, I discuss element objects that cre-

ate formatted lists in pages.

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Modifying table cell
content

Adding and deleting
table rows

TABLE, CAPTION,
TBODY, TFOOT,
THEAD, COL,
COLGROUP, TH, TR,
and TD element
objects

OL, UL, LI, and DL list
element objects

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

614 Part III ✦ Document Objects Reference

The Table Object Family Hierarchy
The repertoire of table-related elements expanded a bit with the HTML 4.0 speci-

fication, and the W3C DOM built upon that foundation. While most of this discus-

sion is best left to HTML texts, the structure of a full-fledged table and the

relationships among the elements — particularly the parent-child relationships —

may affect your scripting and event handling.

You are probably well familiar with the most basic table structure that predates

HTML 4.0. Such a table (in a 2×2 layout) can have the following form:

<TABLE>
<TR>

<TD></TD>
<TD></TD>

</TR>
<TR>

<TD></TD>
<TD></TD>

</TR>
</TABLE>

If you want to place a row of cells at the top of each column such that the con-

tents of the cells act as headers for each column, then add such a row as follows:

<TABLE>
<TR>

<TH></TH>
<TH></TH>

</TR>
<TR>

<TD></TD>
<TD></TD>

</TR>
<TR>

<TD></TD>
<TD></TD>

</TR>
</TABLE>

You can also include a caption associated with the table. Its tag goes immedi-

ately after the TABLE element’s start tag:

<TABLE>
<CAPTION></CAPTION>
<TR>

<TH></TH>
<TH></TH>

</TR>
<TR>

<TD></TD>
<TD></TD>

</TR>
<TR>

<TD></TD>
<TD></TD>

</TR>
</TABLE>

(c) ketabton.com: The Digital Library

615Chapter 27 ✦ Table and List Objects

In line with its emphasis on providing contextual tags, HTML 4.0 includes three

tags that enable you to define groups of table rows according to whether they are

the header, body, or footer of the table (THEAD, TBODY, and TFOOT elements,

respectively). A table footer, for example, can display column totals. The only seem-

ingly illogical rule about these elements is that you should define the TFOOT ele-

ment and its row contents before the TBODY element(s) in the table. Even with this

source code placement, the TFOOT row appears at the bottom of the table.

Some browsers produce visual dividers between these sections (IE5+ for

Windows does a nice job of this). Moreover, you can have multiple TBODY sections

within a table. Some browsers render dividers between these TBODY sections

(again, IE5+ for Windows does it well). Regardless of the built-in divider support,

these contextual groupings also enable you to assign style sheets to HTML tag

selectors rather than having to dream up a scheme of class and ID names tied to

style sheet rules. Building upon the skeletal table shown thus far, you add the

THEAD and TBODY elements like this:

<TABLE>
<CAPTION></CAPTION>
<THEAD>

<TR>
<TH></TH>
<TH></TH>

</TR>
</THEAD>
<TBODY>

<TR>
<TD></TD>
<TD></TD>

</TR>
<TR>

<TD></TD>
<TD></TD>

</TR>
</TBODY>

</TABLE>

That’s the extent of table-oriented HTML containers. The remaining two ele-

ments, COLGROUP and COL, provide a different “slice” of the table for style sheets

and other visual groupings. One of the most obvious purposes of these two ele-

ments is to assign a width or other style to all cells in a particular column or group

of columns. You can also use these elements to group adjacent columns so that

dividers are drawn between groups of columns — if the browser (such as IE5+ for

Windows) supports dividers between column groups — without specifying global

table borders. You can see an example of the HTML for a complex table in the

HTML 4.0 specification (http://www.w3.org/TR/REC-html40/struct/
tables.html#h-11.5). Elsewhere on that same page, you can find the formal

specification for all table-related tags and attributes as defined by the W3C.

Populating table cells
Source material for a table’s content can come from many different places. Most

of the tables you see on the Web are hard-coded in the HTML. That is to say, the

content of the table is fixed inside a static HTML file on the server.

(c) ketabton.com: The Digital Library

616 Part III ✦ Document Objects Reference

But tables may also convey content from live databases or content that changes

more frequently than the Web site’s author manually updates other content. The

source and your Web development infrastructure (not to mention your technical

skills) dictate other avenues for populating tables.

After hard-coded HTML files, the next most common way to generate tables is

through server-based CGI programs. These programs (written in Perl, C, and many

other languages, including server-side JavaScript on those few servers that support

it) generally compose a query for the database and then repackage the data

returned from the database into HTML-formatted pages.

A more client-side-oriented approach is to let JavaScript apply the

document.write() method to compose the table’s tags as the page loads. Data for

the cells can come from JavaScript arrays defined at the beginning of the document

or defined in external .js library files that are linked in as the page loads. In the

newest browsers, the data may come from blocks of XML-formatted data stuffed

into the document. These solutions can work in situations where you need to

update the table data periodically, but the table delivered to the client does not

reflect the instantaneous state of a database. For example, a daily batch program on

a server can capture the day’s sales totals and write out a .js text file to a known

place on the server. The file consists entirely of JavaScript array definitions. When

the HTML page loads, the current .js file is automatically loaded into the page, and

document.write() statements compose the table’s HTML from the data supplied

in the arrays. While the script that assembles the HTML for the tables might appear

formidable to a nonscripter, a nonscripter can also manually update the array data

by following a template format supplied by the programmer.

Finally, if your page visitors run IE4+ for Windows (only), you can take advantage

of a Windows-specific technology called data binding. Data binding invokes the pow-

ers of one or more ActiveX controls that come with the IE browser. These objects

(collectively called Data Source Objects) let HTML pages access ODBC databases

(as well as some formatted text files). As the page loads, the table fills with data

pulled live from the database. You can see an example of data binding in Chapter 15

under the description of the data binding property: dataFld. The HTML file carries

tags for only one row of cells, but data binding fills in the rest of the rows and cells.

Modifying table cell content
You can modify the HTML content of a table cell directly in IE4+ and NN6+. Some

tricks with positioned elements in NN4 can, under some circumstances, make it

appear to the user as if the table content is being modified.

By far, the most compatible way to modify a table cell’s content in IE4+ and NN6+

is via the TD element’s innerHTML property (a Microsoft invention that is not

sanctioned by the W3C DOM Level 2 but is supported in NN6). Even if the content is

simply text that is to inherit the style format of the surrounding TD element, you

can still use the innerHTML property. If the size of the new content affects the

dimensions of the cell’s column width or row height, the browser reflows the rest of

the table content around the new content.

If you prefer to follow the W3C DOM form of modifying an element’s content (for

IE5+ and NN6), then you can generate the new content via the

(c) ketabton.com: The Digital Library

617Chapter 27 ✦ Table and List Objects

document.createElement() sequence and assign that new content to the cell by

way of the TD element’s replaceChild() method.

The situation for NN4 is quite gnarled because the content you replace must be

within its own layer (either a LAYER element or positioned container element, such

as a DIV or SPAN). No matter how you create the layer in your HTML, you must

overcome the problem that a layer floats in its own plane and must be positioned

precisely where the table cell is. Table cells are not objects in NN4, so you must cre-

ate a positioning context in the cell by first creating a relative-positioned layer that

can contain nothing more than an “invisible” nonbreaking space character

(). The layer displaying the content must be absolute-positioned with

respect to that relative-positioned layer. Nesting of layers in NN4 causes headaches,

especially when scripts reference the deeply nested content — content that is,

essentially, an HTML document inside the nested layer.

Listing 27-1 shows a synthesis of different techniques to effect cell content

replacement, including script code branches that emulate the appearance of

replacement in NN4. The table represents only one line of what might be an order

form for several products. As the user makes a selection of the quantity, the

extended total is displayed in the rightmost column.

You can find the key features of the NN4 implementation in the script that

dynamically writes the table cell content within the HTML as the page loads. The

cell begins with a relative-positioned SPAN element. This SPAN is positioned at the

top left of the table cell, as planned. That spot now is the positioning context for

the absolute-positioned SPAN nested inside it. This second span is the layer whose

document contains the displayed content. The content, itself, is yet another SPAN

element because it simplifies the application of a style sheet rule (to display the

total in red) when you replace the content. Because a newly written NN4 layer does

not inherit the style sheet of its next outermost layer, you must apply the style as

part of the new content.

The initial SPAN content contains a series of nonbreaking space characters that

force NN4 to open space for eventual replacement content. Recall that an NN4 page

does not reflow the page to accommodate resized content. This means that what-

ever you intend to insert in the table cell can be no larger than the original space

allocated for it.

Although the page shown in Listing 27-1 consists of only one row of data, the

scripts and naming conventions are intended to be carried out among multiple

rows. The product name appears in several object names and IDs in each row, and

the scripts count on the convention being followed throughout. In fact, the regular-

ity of the namings can allow the content for a table’s row to form a script function

that is invoked for each table row. The product code name can be passed as the

parameter, and all object names and IDs can be assembled in that function. The reg-

ularity of table content often lends itself to script-generated construction.

For NN4, when the table gets complicated, you will have more success defining
the absolute-positioned elements outside of the table entirely. They should be
defined on their own at the bottom of the BODY. You can still position them with
respect to the relative-positioned elements in the table, but all such layers are now
only one level deep within the main document.

Note

(c) ketabton.com: The Digital Library

618 Part III ✦ Document Objects Reference

Listing 27-1: Replacing Table Cell Content

<HTML>
<HEAD>
<TITLE>Modifying Table Cell Content</TITLE>
<STYLE TYPE=”text/css”>
.absoluteWrap {position:absolute}
.relativeWrap {position:relative}
.total {color:red}
</STYLE>

<SCRIPT LANGUAGE=”JavaScript”>
var Ver4 = parseInt(navigator.appVersion) == 4
var Ver4Up = parseInt(navigator.appVersion) >= 4
var Nav4 = ((navigator.appName == “Netscape”) && Ver4)
var modifiable

// calculate and display a row’s total
function showTotal(qtyList) {

var qty = qtyList.options[qtyList.selectedIndex].value
var prodID = qtyList.name
var total = “US$” +

(qty * parseFloat(qtyList.form.elements[prodID + “Price”].value))
var newCellHTML = “” + total + “”

if(Nav4) {
document.layers[prodID + “TotalWrapper”].document.layers[prodID +

“Total”].document.write(newCellHTML)
document.layers[prodID + “TotalWrapper”].document.layers[prodID +

“Total”].document.close()
} else if (modifiable) {

if (document.all) {
document.all(prodID + “Total”).innerHTML = newCellHTML

} else {
document.getElementById(prodID + “Total”).innerHTML = newCellHTML

}
}

}

// initialize global flag for browsers capable of modifiable content
function init() {

modifiable = (Ver4Up && document.body && document.body.innerHTML)
}

// display content for all products (e.g., in case of Back navigation)
function showAllTotals(form) {

for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == “select-one”) {

showTotal(form.elements[i])
}

}
}
</SCRIPT>
</HEAD>

(c) ketabton.com: The Digital Library

619Chapter 27 ✦ Table and List Objects

<BODY onLoad=”init(); showAllTotals(document.orderForm)”>
<H1>Modifying Table Cell Content</H1>
<HR>
<FORM NAME=”orderForm”>
<TABLE BORDER=1>
<COLGROUP WIDTH=150>
<COLGROUP WIDTH=100>
<COLGROUP WIDTH=50>
<COLGROUP WIDTH=100
<TR>

<TH>Product Description</TH>
<TH>Price Each</TH>
<TH>Quantity</TH>
<TH>Total</TH>

</TR>
<TR>

<TD>Wonder Widget 9000</TD>
<TD>US$125.00</TD>
<TD><SELECT NAME=”ww9000” onChange=”showTotal(this)”>

<OPTION VALUE=”0”>0
<OPTION VALUE=”1”>1
<OPTION VALUE=”2”>2
<OPTION VALUE=”3”>3
</SELECT>
<INPUT TYPE=”hidden” NAME=”ww9000Price” VALUE=”125.00”></TD>

<TD>
<SCRIPT LANGUAGE=”JavaScript”>
if (Nav4) {

var placeHolder = “ ”
placeHolder += “ ”
document.write(“”)
document.write(“”)
document.write(“” + placeHolder + “”)

} else {
document.write(“” +
“<P> </P>”)

}
</SCRIPT>
</TD>

</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Modifying table rows
In IE4+ and NN6+, all table-related elements are full-fledged objects within the

browser’s object model. This means that you are free to use your choice of DOM

element modification techniques on the row and column makeup of a table. But due

to the frequent complexity of tables and all of their nested elements, the code

(c) ketabton.com: The Digital Library

620 Part III ✦ Document Objects Reference

required to manage a table can balloon in size. To the rescue come some methods

that enable you to add and remove rows and cells from a table. Despite minor dif-

ferences in the implementations of these methods across DOMs, the syntax exhibits

sufficient unanimity to allow one set of code to work on both browsers — especially

for adding elements to a table.

Table 27-1 provides a quick summary of the key methods used to add or remove

elements within a TABLE, a table section (THEAD, TBODY, or TFOOT), and a row

(TR). For simple tables (in other words, those that do not define THEAD or TFOOT

segments), you can work exclusively with the row modification methods of the

TABLE element object (and then the cell modification methods of the rows within

the TABLE element). The reason for the duplication of the row methods in the table

section objects is that instead of having to worry about row index numbers lining

up among the combined total of head, body, and foot rows, you can treat each seg-

ment as a distinct unit. For example, if you want to add a row just to the beginning

of the TFOOT section, you can use the insertRow() method for the TFOOT ele-

ment object and not have to count up the TR elements and perform arithmetic to

arrive at the desired row number. Instead, simply use the insertRow() method on

the TFOOT element object and supply the method with parameters that ensure the

row is inserted as the first row of the element.

IE5 for the Macintosh offers unpredictable results when inserting rows of a table
via these methods. The browser does behave when modifying the HTML elements
by accumulating the HTML for a row as a string and then adding the row to the
table via IE DOM methods such as insertAdjacentHTML(). If your pages must
modify the composition of tables after the page loads — and your audience
includes IE5/Mac users — then use the element and node insertion techniques
rather than the methods shown in Table 27-1 and techniques described next.

Table 27-1 IE4+ and NN6 Table Modification Methods

TABLE THEAD, TBODY, TFOOT TR

insertRow() insertRow() insertCell()

deleteRow() deleteRow() deleteCell()

createTHead()

deleteTHead()

createTFoot()

deleteTFoot()

createCaption()

deleteCaption()

Note

(c) ketabton.com: The Digital Library

621Chapter 27 ✦ Table and List Objects

The basic sequence for inserting a row into a table entails the following steps:

1. Invoke insertRow() and capture the returned reference to the new, unpopu-

lated row.

2. Use the reference to the row to invoke insertCell() for each cell in the row,

capturing the returned reference to each new, unpopulated cell.

3. Assign values to properties of the cell, including its content.

The following code fragment appends a new row to a table (myTABLE) and

supplies information for the two cells in that row:

// parameter of -1 appends to table
// (you can use document.all.myTABLE.insertRow(-1) for IE4+ only)
var newRow = document.getElementById(“myTABLE”).insertRow(-1)
// parameter of 0 inserts at first cell position
var newCell = newRow.insertCell(0)
newCell.innerHTML = “Mighty Widget 2000”
// parameter of 1 inserts at second cell position
newCell = newRow.insertCell(1)
newCell.innerHTML = “Release Date TBA”

A key point to note about this sequence is that the insertRow() and

insertCell() methods do their jobs before any content is handed over to the

table. In other words, you first create the HTML space for the content and then add

the content.

Listing 27-2 presents a living environment that adds and removes THEAD, TR,

and TFOOT elements to an empty table in the HTML. The only subelement inside

the TABLE element is a TBODY element, which directs the insertion of table rows so

as not to disturb any existing THEAD or TFOOT elements. You can also see how to

add or remove a caption from a table via caption-specific methods.

The first release version of NN6 does not behave well when scripts excessively
modify tables. After some scripted changes, the browser reflows the page while
ignoring TABLE element attributes, such as CELLSPACING.

Each table row consists of the hours, minutes, seconds, and milliseconds of a

time stamp generated when you add the row. The color of any freshly added row in

the TBODY is a darker color than the normal TBODY rows. This is so you can see

what happens when you specify an index value to the insertRow() method. Some

of the code here concerns itself with enabling and disabling form controls and

updating SELECT elements, so don’t be deterred by the length of Listing 27-2.

Listing 27-2: Inserting/Removing Row Elements

<HTML>
<HEAD>
<TITLE>Modifying Table Cell Content</TITLE>
<STYLE TYPE=”text/css”>

Continued

Note

(c) ketabton.com: The Digital Library

622 Part III ✦ Document Objects Reference

Listing 27-2 (continued)

THEAD {background-color:lightyellow; font-weight:bold}
TFOOT {background-color:lightgreen; font-weight:bold}
#myTABLE {background-color:bisque}
</STYLE>

<SCRIPT LANGUAGE=”JavaScript”>
var theTable, theTableBody
function init() {

theTable = (document.all) ? document.all.myTABLE :
document.getElementById(“myTABLE”)

theTableBody = theTable.tBodies[0]
}
function appendRow(form) {

insertTableRow(form, -1)
}

function addRow(form) {
insertTableRow(form, form.insertIndex.value)

}

function insertTableRow(form, where) {
var now = new Date()
var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),

now.getMilliseconds()]
clearBGColors()
var newCell
var newRow = theTableBody.insertRow(where)
for (var i = 0; i < nowData.length; i++) {

newCell = newRow.insertCell(i)
newCell.innerHTML = nowData[i]
newCell.style.backgroundColor = “salmon”

}
updateRowCounters(form)

}

function removeRow(form) {
theTableBody.deleteRow(form.deleteIndex.value)
updateRowCounters(form)

}

function insertTHEAD(form) {
var THEADData = [“Hours”,”Minutes”,”Seconds”,”Milliseconds”]
var newCell
var newTHEAD = theTable.createTHead()
newTHEAD.id = “myTHEAD”
var newRow = newTHEAD.insertRow(-1)
for (var i = 0; i < THEADData.length; i++) {

newCell = newRow.insertCell(i)
newCell.innerHTML = THEADData[i]

}

(c) ketabton.com: The Digital Library

623Chapter 27 ✦ Table and List Objects

updateRowCounters(form)
form.addTHEAD.disabled = true
form.deleteTHEAD.disabled = false

}

function removeTHEAD(form) {
theTable.deleteTHead()
updateRowCounters(form)
form.addTHEAD.disabled = false
form.deleteTHEAD.disabled = true

}

function insertTFOOT(form) {
var TFOOTData = [“Hours”,”Minutes”,”Seconds”,”Milliseconds”]
var newCell
var newTFOOT = theTable.createTFoot()
newTFOOT.id = “myTFOOT”
var newRow = newTFOOT.insertRow(-1)
for (var i = 0; i < TFOOTData.length; i++) {

newCell = newRow.insertCell(i)
newCell.innerHTML = TFOOTData[i]

}
updateRowCounters(form)
form.addTFOOT.disabled = true
form.deleteTFOOT.disabled = false

}

function removeTFOOT(form) {
theTable.deleteTFoot()
updateRowCounters(form)
form.addTFOOT.disabled = false
form.deleteTFOOT.disabled = true

}

function insertCaption(form) {
var captionData = form.captionText.value
var newCaption = theTable.createCaption()
newCaption.innerHTML = captionData
form.addCaption.disabled = true
form.deleteCaption.disabled = false

}

function removeCaption(form) {
theTable.deleteCaption()
form.addCaption.disabled = false
form.deleteCaption.disabled = true

}

// housekeeping functions
function updateRowCounters(form) {

var sel1 = form.insertIndex
var sel2 = form.deleteIndex
sel1.options.length = 0

Continued

(c) ketabton.com: The Digital Library

624 Part III ✦ Document Objects Reference

Listing 27-2 (continued)

sel2.options.length = 0
for (var i = 0; i < theTableBody.rows.length; i++) {

sel1.options[i] = new Option(i, i)
sel2.options[i] = new Option(i, i)

}
form.removeRowBtn.disabled = (i==0)

}

function clearBGColors() {
for (var i = 0; i < theTableBody.rows.length; i++) {

for (var j = 0; j < theTableBody.rows[i].cells.length; j++) {
theTableBody.rows[i].cells[j].style.backgroundColor = “”

}
}

}

</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>Modifying Tables</H1>
<HR>
<FORM NAME=”controls”>
<FIELDSET>
<LEGEND>Add/Remove Rows</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” VALUE=”Append 1 Row”

onClick=”appendRow(this.form)”></TD>
<TD><INPUT TYPE=”button” VALUE=”Insert 1 Row” onClick=”addRow(this.form)”> at
index:

<SELECT NAME=”insertIndex”>
<OPTION VALUE=”0”>0

</SELECT></TD>
<TD><INPUT TYPE=”button” NAME=”removeRowBtn” VALUE=”Delete 1 Row” DISABLED

onClick=”removeRow(this.form)”> at index:
<SELECT NAME=”deleteIndex”>

<OPTION VALUE=”0”>0
</SELECT></TD>

</TR>
</TABLE>
</FIELDSET>
<FIELDSET>
<LEGEND>Add/Remove THEAD and TFOOT</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” NAME=”addTHEAD” VALUE=”Insert THEAD”

onClick=”insertTHEAD(this.form)”>

<INPUT TYPE=”button” NAME=”deleteTHEAD” VALUE=”Remove THEAD” DISABLED

onClick=”removeTHEAD(this.form)”>
</TD>

(c) ketabton.com: The Digital Library

625Chapter 27 ✦ Table and List Objects

<TD><INPUT TYPE=”button” NAME=”addTFOOT” VALUE=”Insert TFOOT”
onClick=”insertTFOOT(this.form)”>

<INPUT TYPE=”button” NAME=”deleteTFOOT” VALUE=”Remove TFOOT” DISABLED

onClick=”removeTFOOT(this.form)”>
</TD>
</TR>
</TABLE>
</FIELDSET>
<FIELDSET>
<LEGEND>Add/Remove Caption</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” NAME=”addCaption” VALUE=”Add Caption”

onClick=”insertCaption(this.form)”></TD>
<TD>Text: <INPUT TYPE=”text” NAME=”captionText” SIZE=40 VALUE=”Sample Caption”>
<TD><INPUT TYPE=”button” NAME=”deleteCaption” VALUE=”Delete Caption” DISABLED

onClick=”removeCaption(this.form)”></TD>
</TR>
</TABLE>
</FIELDSET>
</FORM>
<HR>
<TABLE ID=”myTABLE” CELLPADDING=10 BORDER=1>
<TBODY>
</TABLE>
</BODY>
</HTML>

Modifying table columns
Unlike the table row-oriented elements, such as TBODY, the COL and COLGROUP

elements are not containers of cells. Instead, these elements serve as directives for

the rendering of columns within a table. But through scripting, you can add or

remove one or more columns from a table on the fly. There is no magic to it; you

simply insert or delete the same-indexed cell from every row of the table.

Listing 27-3 demonstrates adding and removing a left-hand column of a table.

The table presents the four longest rivers in Africa, and the new column provides

the numeric ranking. Thanks to the regularity of this table, the values for the rank-

ings can be calculated dynamically. Note, too, that the className property of each

new table cell is set to a class that has a style sheet rule defined for it. Instead of

inheriting the style of the table, the cells obey the more specific background color

and font weight rules defined for the cells. (The early release of NN6 does not ren-

der the enabling and disabling of the buttons in this example correctly, but the but-

tons operate as intended.)

(c) ketabton.com: The Digital Library

626 Part III ✦ Document Objects Reference

Listing 27-3: Modifying Table Columns

<HTML>
<HEAD>
<TITLE>Modifying Table Columns</TITLE>
<STYLE TYPE=”text/css”>
THEAD {background-color:lightyellow; font-weight:bold}
.rankCells {background-color:lightgreen; font-weight:bold}
#myTABLE {background-color:bisque}
</STYLE>

<SCRIPT LANGUAGE=”JavaScript”>
var theTable, theTableBody
function init() {

theTable = (document.all) ? document.all.myTABLE :
document.getElementById(“myTABLE”)

theTableBody = theTable.tBodies[0]
}

function insertColumn(form) {
var oneRow, newCell, rank
if (theTable.tHead) {

oneRow = theTable.tHead.rows[0]
newCell = oneRow.insertCell(0)
newCell.innerHTML = “Ranking”

}
rank = 1
for (var i = 0; i < theTableBody.rows.length; i++) {

oneRow = theTableBody.rows[i]
newCell = oneRow.insertCell(0)
newCell.className = “rankCells”
newCell.innerHTML = rank++

}
form.addColumn.disabled = true
form.removeColumn.disabled = false

}

function deleteColumn(form) {
var oneRow
if (theTable.tHead) {

oneRow = theTable.tHead.rows[0]
oneRow.deleteCell(0)

}
for (var i = 0; i < theTableBody.rows.length; i++) {

oneRow = theTableBody.rows[i]
oneRow.deleteCell(0)

}
form.addColumn.disabled = false
form.removeColumn.disabled = true

}
</SCRIPT>

(c) ketabton.com: The Digital Library

627Chapter 27 ✦ Table and List Objects

</HEAD>

<BODY onLoad=”init()”>
<H1>Modifying Table Columns</H1>
<HR>
<FORM NAME=”controls”>
<FIELDSET>
<LEGEND>Add/Remove Left Column</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” NAME=”addColumn” VALUE=”Insert Left Column”

onClick=”insertColumn(this.form)”></TD>
<TD><INPUT TYPE=”button” NAME=”removeColumn” VALUE=”Remove Left Column”

DISABLED onClick=”deleteColumn(this.form)”></TD>
</TR>
</TABLE>
</FIELDSET>
</TABLE>
</FIELDSET>
</FORM>
<HR>
<TABLE ID=”myTABLE” CELLPADDING=5 BORDER=1>
<THEAD ID=”myTHEAD”>
<TR>

<TD>River<TD>Outflow<TD>Miles<TD>Kilometers
</TR>
</THEAD>
<TBODY>
<TR>

<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
</TR>
<TR>

<TD>Congo<TD>Atlantic Ocean<TD>2900<TD>4670
</TR>
<TR>

<TD>Niger<TD>Atlantic Ocean<TD>2600<TD>4180
</TR>
<TR>

<TD>Zambezi<TD>Indian Ocean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

W3C DOM table object classes
If you ever read the W3C DOM Level 2 specification, notice that the objects

defined for tables do not align themselves fully with the actual elements defined in

the HTML 4.0 specification. That’s not to say the DOM scoffs at the HTML spec;

rather, the needs of a DOM with respect to tables differ a bit. For example, as far as

the W3C DOM is concerned, the THEAD, TBODY, and TFOOT are all regarded as

table sections and are thus known as HTMLTableSectionElement objects. In other

words, in the W3C DOM, there is no particular distinction among the types of table

(c) ketabton.com: The Digital Library

628 Part III ✦ Document Objects Reference

section elements. They’re all lumped together, and they bear the same properties

and methods. With its strong adherence to the W3C DOM, the NN6 DOM sticks to

the W3C DOM object constructions.

When you work in both the IE and W3C DOMs at the same time, it’s helpful to

know the relationships between the object naming conventions used in each. Table

27-2 provides a quick cross-reference between the object types in both DOMs. None

of terminology in Table 27-2 affects the way scripts construct references to ele-

ments or the way elements are nested within one another. The containment hierar-

chy is driven by the HTML element containment — and that remains the same

regardless of DOM exposure.

Table 27-2 Table Object Classifications

W3C DOM (NN6) IE4+ and HTML

HTMLTableElement TABLE

HTMLTableCaptionElement CAPTION

HTMLTableColElement COL, COLGROUP

HTMLTableSectionElement TBODY, TFOOT, THEAD

HTMLTableRowElement TR

HTMLTableCellElement TD, TH

While the following object-specific discussions list the objects according to their

HTML tag name, I group these objects according to the W3C DOM classifications

because element objects that share a classification also share the same properties,

methods, and event handlers.

TABLE Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align createCaption() onScroll

background createTFoot()

bgColor createTHead()

border deleteCaption()

borderColor deleteRow()

borderColorDark deleteTFoot()

borderColorLight deleteTHead()

caption firstPage()

TABLE

(c) ketabton.com: The Digital Library

629Chapter 27 ✦ Table and List Objects

Properties Methods Event Handlers

cellPadding insertRow()

cellSpacing lastPage()

cells moveRow()

cols nextPage()

datePageSize previousPage()

frame refresh()

height

rows

rules

summary

tBodies

tFoot

tHead

width

Syntax
Accessing TABLE element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
The TABLE element object is the outermost container of table-related informa-

tion. The HTML element has a large number of attributes, most of which are echoed

by their counterpart properties in the object model. You rarely will modify these

properties if the values are set in the tag’s attributes. However, if you construct a

new TABLE element object for insertion into the page, use these properties to

assign values to the equivalents of the element’s attributes.

A number of additional properties return collections of cell, row, and row section

objects; still more properties return references to other, singular objects within the

table (such as the CAPTION element object). For example, if your script needs to

TABLE

(c) ketabton.com: The Digital Library

630 Part III ✦ Document Objects Reference

iterate through all rows within just the TBODY elements (in other words, without

affecting the rows in the THEAD element), your script can perform a nested for
loop to access each row:

var oneTBody, oneRow
for (var i = 0; i < tableRef.tBodies.length; i++) {

oneTBody = tableRef.tBodies[i]
for (var j = 0; j < oneTBody.rows.length; j++) {

oneRow = oneTBody.rows[j]
// more stuff working on each row

}
}

For a simple table that does not define table row sections, you can iterate

through the rows collection property of a TABLE element object. You can even

access cells directly; but it may be easier to keep track of cells in a loop by going

through them row by row (via the cells property of each TR element object).

A large number of methods enable you to modify the structure of a table (as

described earlier in this chapter), but they primarily work with rows. Column

modifications require a different approach, as also demonstrated earlier.

Properties
align

Value: String (center, left, right) Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The align property controls the horizontal alignment of the table with respect

to the next outermost container that provides positioning context. Most typically,

the next outermost positioning container is the BODY element. Modifications to

this property on an existing table cause the surrounding content to reflow on the

page. Be sure you test the consequences of any modification with a variety of

browser window sizes.

Example on the CD-ROM

Related Item: style.align property.

On the
CD-ROM

TABLE.align

(c) ketabton.com: The Digital Library

631Chapter 27 ✦ Table and List Objects

background
Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Only IE4+ makes a provision for assigning a background image to a table, and the

background property controls that value. You can swap out an image by assigning

a new URL to the background property. The image appears in front of any back-

ground color assigned to the table. Thus, you can assign attributes for both charac-

teristics so that there is at least a background color (and an image for IE users).

Example on the CD-ROM

Related Item: IMG.src property.

bgColor
Value: Color Value String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The bgColor attribute controls the background color of a table (the BGCOLOR
attribute). Colors assigned to the entire table are overridden if colors are assigned

to row, row groups, or cells within the table. If you set the bgColor property, the

backgroundColor style property is not affected. Assign values in any acceptable

color string format, such as hexadecimal triplets (for example, “#FCFC00”) or the

generally recognized plain-language names (for example, “cornflowerblue”).

Example on the CD-ROM

Related Item: style.backgroundColor property.

On the
CD-ROM

On the
CD-ROM

TABLE.bgColor

(c) ketabton.com: The Digital Library

632 Part III ✦ Document Objects Reference

border
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The border property controls the thickness of the table’s borders. Values indi-

cate the number of pixels thick the border should be. A value of zero removes all

visible borders surrounding the table. Different browsers render table cell borders

differently depending on background colors and other visual attributes of tables

and table elements. Be sure to verify the appearance on as many browsers and

operating systems as possible.

Example on the CD-ROM

Related Item: borderColor property.

borderColor
borderColorDark
borderColorLight

Value: Color Value String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE4+ provides attributes and corresponding properties to control the border col-

ors of a table. When table borders have enough thickness to display a three-dimen-

sional raised look, the appearance is created by generating two dark and two light

edges (simulating a light source coming from the upper-left or lower-right corner).

If you want to do a better job of specifying the color combinations for the light and

dark edges, you can control them individually via the borderColorLight and

borderColorDark properties, respectively. You can assign colors in any valid color

value (hexadecimal triplet or plain-language name); but when you read the prop-

erty, the value is returned as a hexadecimal triplet (for example, “#008000”).

Example on the CD-ROM

Related Item: TD.borderColor property.

On the
CD-ROM

On the
CD-ROM

TABLE.borderColor

(c) ketabton.com: The Digital Library

633Chapter 27 ✦ Table and List Objects

caption
Value: CAPTION element object reference Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The caption property returns a reference to the CAPTION element object that is

nested inside the current table. If there is no CAPTION element, the value is null.

You can use this property as a shortcut reference to the CAPTION element if you

need to read or modify that element’s properties. The property is read/write in

NN6, provided you create a valid CAPTION element object and assign that new

object to the caption property.

Example on the CD-ROM

Related Item: CAPTION element object.

cellPadding
cellSpacing

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The cellPadding property is a table-wide specification for the blank space

inserted between the edge of a table cell and the content of the cell. One value

affects the padding on all four sides. The effect of cell padding is especially appar-

ent when there are borders between cells; in this case, the padding provides wel-

come breathing space between the border and content. The cellSpacing property

influences the thickness of borders between cells. If no visible borders are present

between cells in a table, you can usually set either CELLPADDING or CELLSPACING
to provide the desired blank space between cells.

Example on the CD-ROM

Related Item: border property.

On the
CD-ROM

On the
CD-ROM

TABLE.cellPadding

(c) ketabton.com: The Digital Library

634 Part III ✦ Document Objects Reference

cells
Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The cells property (not implemented in IE5/Mac) returns an array (collection)

of all TD and TH element objects within the entire table. From the perspective of

the TABLE element object, this “view” encompasses all cells — whether they are

inside a table row segment (for example, a THEAD) or in a freestanding row. In the

W3C DOM (and NN6), the cells collection is accessible only as a property of a TR

object. However, a rows collection is available from all table container elements,

thus enabling you to iterate through all cells of all rows.

Example on the CD-ROM

Related Items: rows, TR.cells properties.

cols
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The cols property represents the IE-specific COLS attribute for TABLE elements.

Specifying this attribute should speed table rendering. If you don’t specify the

attribute explicitly in your HTML, the property has a value of zero — the property

does not tell you dynamically the size of your table. Although this property is

read/write, you cannot use this property to add or remove columns from a table.

Instead, use the table modification methods discussed later in this section.

Related Item: rows property.

dataPageSize
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

On the
CD-ROM

TABLE.dataPageSize

(c) ketabton.com: The Digital Library

635Chapter 27 ✦ Table and List Objects

When using IE4+ data binding to obtain table data from a data source, there may

be more rows or data (records) than you wish to display in one table. If so, you can

define the number of rows (records) that constitutes a “page” of data within the

table. With this limit installed for the table, you can then use the firstPage(),

previousPage(), nextPage(), and lastPage() methods to access another page

relative to the currently viewed page. While you usually establish this value via the

DATAPAGESIZE attribute of the TABLE element, you can adjust it later via the

dataPageSize property to show more or fewer records per “page” in the table.

Example on the CD-ROM

Related Items: dataSrc, dataFld properties; firstPage(), lastPage(),

nextPage(), previousPage() methods.

frame
Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The frame property enables you to control which side or sides of the table’s bor-

der should be displayed. Values for this property can be any of a fixed set of string

constants. Table 27-3 lists the acceptable values. Hiding or showing table border

edges under script control can have an effect on the layout and placement of both

the table and surrounding elements.

Table 27-3 Table frame Property Values

Value Description

above Top edge only

below Bottom edge only

border All four sides (same as box)

box All four sides (same as border)

hsides Horizontal (top and bottom) edges only

lhs Left-hand side edge only

rhs Right-hand side edge only

void No borders

vsides Vertical (left and right) edges only

On the
CD-ROM

TABLE.frame

(c) ketabton.com: The Digital Library

636 Part III ✦ Document Objects Reference

Example (with Listing 27-4) on the CD-ROM

Related Items: border, borderColor, rules properties.

height
width

Value: Integer or Length String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The height (IE4+) and width (IE4+/NN6+) properties represent the HEIGHT and

WIDTH attributes assigned to the TABLE element. If no values are assigned to the

element in the tag, the properties do not reveal the rendered size of the table (use

the offsetHeight and offsetWidth properties for that information). Values for

these properties can be integers representing pixel dimensions or strings contain-

ing percentage values, just like the attribute values. Scripts can shrink the dimen-

sions of a table no smaller than the minimum space required to render the cell

content. Notice that only the width property is W3C DOM-sanctioned (as well as

the corresponding property in the HTML 4.0 specification).

Example on the CD-ROM

Related Items: offsetHeight, offsetWidth properties.

rows
Value: Array of Row Objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The rows property returns an array (collection) of TR element objects in the

current table. This array includes rows in the THEAD, TBODY, and TFOOT row sec-

tions if the table is segmented. You can use the rows property to create a cross-

browser script that accesses each cell of a table. Such a nested for loop looks like

the following:

On the
CD-ROM

On the
CD-ROM

TABLE.rows

(c) ketabton.com: The Digital Library

637Chapter 27 ✦ Table and List Objects

var oneCell
for (var i = 0; i < tableRef.rows.length; i++) {

for (var j = 0; j < tableRef.rows[i].cells.length; j++) {
oneCell = tableRef.rows[i].cells[j]
// more statements working with the cell

}
}

If you want to limit the scope of the rows property to rows within a row segment

(for example, just in the TBODY), you can access this property for any of the three

types of row segment objects.

Example on the CD-ROM

Related Items: TBODY.rows, TFOOT.rows, THEAD.rows properties.

rules
Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

In contrast to the frame property, the rules property governs the display of

borders between cells. Values for this property can be any of a fixed set of string

constants. Table 27-4 lists the acceptable values. Hiding or showing table cell bor-

der edges under script control can have an effect on the layout and placement of

both the table and surrounding elements. Early versions of NN6 may not render

scripted changes to the rules property, but reading or writing the property does

not cause errors.

Table 27-4 Table rules Property Values

Value Description

all Borders around every cell

cols Vertical borders between columns

groups Vertical borders between column groups;
horizontal borders between row groups

none No borders between cells

rows Horizontal borders between row groups

On the
CD-ROM

TABLE.rules

(c) ketabton.com: The Digital Library

638 Part III ✦ Document Objects Reference

Example (with Listing 27-5) on the CD-ROM

Related Items: border, borderColor, frame properties.

summary
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The summary property represents the HTML 4.0 SUMMARY attribute. The text

assigned to this attribute is intended for use by browsers that present a page’s

content through nonvisual means. For example, a browser equipped to use speech

synthesis to read the page aloud can use the text of the summary to describe the

table for the user.

Related Item: caption property.

tBodies
Value: Array of TBODY element objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The tBodies property returns an array of all TBODY elements in the table. Even

if you don’t specify a TBODY element, every table contains an implied TBODY ele-

ment. Thus, to access a batch of rows of a simple table other than the THEAD and

TFOOT sections, you can use the tBodies[0] array notation. From there, you can

get the rows of the table body section via the rows property. This property is not

available in IE4/Mac.

Example on the CD-ROM

Related Items: tFoot, tHead properties.

On the
CD-ROM

On the
CD-ROM

TABLE.tBodies

(c) ketabton.com: The Digital Library

639Chapter 27 ✦ Table and List Objects

tFoot
tHead

Value: Row segment element object Read/Write (see text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Each table can have (at most) one TFOOT and one THEAD element. If you specify

one of these for the table, the tFoot and tHead properties, respectively, return ref-

erences to those element objects. These properties are read-only in IE, but NN6

enables you to assign valid TFOOT and THEAD element objects to these properties

in order to insert or replace the elements in the current table. The process for

doing this is similar to the sequence described in the caption property. For either

of these two elements, however, you have to construct the desired number of table

cell objects (and row objects if you want multiple rows) for the newly created row

segment object. See the discussions of these two objects for details on accessing

rows and cells of the segments.

Related Items: TBODY, TFOOT, THEAD objects.

width
See height.

Methods
createCaption()
deleteCaption()

Returns: Reference to new CAPTION element object; Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The createCaption() and deleteCaption() convenience methods enable you

to add or remove a CAPTION element object from the current table. When you cre-

ate a new caption, the action simply inserts the equivalent of a blank CAPTION ele-

ment tag into the TABLE element (this may not, however, be reflected in the source

view of the page). You must populate the CAPTION element with text or HTML

before it appears on the page. Because the method returns a reference to the newly

created object, you can use that reference to assign content to its innerHTML
property or you can append a child text node.

TABLE.createCaption()

(c) ketabton.com: The Digital Library

640 Part III ✦ Document Objects Reference

Because a table can have only one CAPTION element nested within, the

deleteCaption() method belongs to the TABLE element object. The method

returns no value.

Example
See Listing 27-2 for an example of creating, inserting, and removing a CAPTION

element object from a table.

Related Item: CAPTION element object.

createTFoot()
createTHead()
deleteTFoot()
deleteTHead()

Returns: Element references (create methods); Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�) � �

These four methods enable you to add or remove TFOOT and THEAD table row

section objects. When you create a THEAD or TFOOT element, the methods return

references to the newly inserted elements. But, as with createCaption(), these

methods do nothing to display content. Instead, use the returned references to pop-

ulate the row(s) of the header and footer with cells. Regardless of the number of

rows associated with a THEAD or TFOOT element, the deleteTFoot() and

deleteTHead() methods remove all associated rows and return no values.

While these methods are available in IE4, you may not have complete write

access to the properties of the objects returned by the creation methods. For exam-

ple, you may not be able to assign a value to the id property of the TFOOT or

THEAD element returned by their respective creation methods.

Example
See Listing 27-2 for an example of creating, inserting, and removing TFOOT and

THEAD elements object from a table.

Related Items: TFOOT, THEAD element objects.

deleteRow(rowIndex)
insertRow(rowIndex)

Returns: Nothing; Reference to newly created row.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

TABLE.deleteRow()

(c) ketabton.com: The Digital Library

641Chapter 27 ✦ Table and List Objects

The insertRow() and deleteRow() convenience methods assist in adding TR

elements to, and removing them from, a TABLE element. Inserting a row does little

more than the equivalent of inserting a pair of empty TR element tags into the

HTML (although you may not see them in the source view of the page). It is up to

the rest of your scripts to assign properties to the row and populate it with new

cells (see the insertCell() method of the TR element object).

Attributes for both methods are zero-based index numbers. In the case of

insertRow(), the number indicates the row before which the new row is to be

inserted. To append the row to the end of the table, use -1 as a shortcut parameter.

To delete a row, use the index value for that row. Be aware that if you intend to

employ deleteRow() to remove all rows from a table (presumably to repopulate

the table with a new set), the most efficient way is to use a while loop that contin-

ues to remove the first row until there are no more:

while (tableRef.rows.length > 0) {
tableRef.deleteRow(0)

}

Example
See Listing 27-2 for examples of inserting and deleting table rows.

Related Item: TD.insertCell() method.

firstPage()
lastPage()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

For tables that are bound to external data sources via IE4+ data binding, the

firstPage() and lastPage() methods zoom to the first and last pages of the

data, respectively. You must specify the table’s data page size for the Data Source

Object to know how many records to assign to a “page” of data. Note that while

related methods —nextPage() and previousPage()— are available in IE4, these

two methods were available in IE5 first.

Related Items: dataPageSize, dataSrc, dataFld properties; nextPage(),

previousPage() methods.

moveRow(sourceRowIndex, destinationRowIndex)
Returns: Row element object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

TABLE.moveRow()

(c) ketabton.com: The Digital Library

642 Part III ✦ Document Objects Reference

The IE5+ moveRow() convenience method enables you to move a row from one

position to another within the same table. Both parameters are integer index val-

ues. The first parameter is the index of the row you want to move; the second is the

index of the row to where you want to move the row. Because no movement takes

place when the method is invoked, the removal of the source row does not impact

the index count of the destination row. But after the method executes, the row that

was in the destination row is now pushed down one row. This method returns a

reference to the moved row.

You can accomplish this same functionality in W3C DOM compatible syntax (for

both IE5+ and NN6+) via the replaceChild() method of the TABLE element.

Example on the CD-ROM

Related Item: replaceChild() method.

nextPage()
previousPage()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

For tables that are bound to external data sources via IE4+ data binding, the

nextPage() and previousPage() methods jump ahead and back one page of the

data, respectively. You must specify the table’s data page size for the Data Source

Object to know how many records to assign to a “page” of data. Typically, naviga-

tional buttons associated with the table invoke these methods.

Related Items: dataPageSize, dataSrc, dataFld properties; firstPage(),

lastPage() methods.

refresh()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

For tables that are bound to external data sources via IE4+ data binding, the

refresh() method retrieves the current data source data for display in the table. A

script can use setTimeout() to invoke a function that calls this method at an inter-

val of your desire. If you frequently update the database associated with the table,

On the
CD-ROM

TABLE.refresh()

(c) ketabton.com: The Digital Library

643Chapter 27 ✦ Table and List Objects

this method can help keep the table up to date without requiring the client to

download the entire page (and perhaps run into cache conflicts).

Related Items: dataPageSize, dataSrc, dataFld properties.

TBODY, TFOOT, and THEAD Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align† deleteRow()†

bgColor† insertRow()†

ch moveRow()†

chOff

rows†

vAlign

†See TABLE element object.

Syntax
Accessing TBODY, TFOOT, and THEAD element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

Accessing TBODY element object properties and methods:

(IE4+) [window.]document.all.tableID.tBodies[i].property |
method([parameters])

(IE5+/NN6) [window.]document.getElementById(“tableID”).tBodies[i].property |
method([parameters])

Accessing TFOOT element object properties and methods:

(IE4+) [window.]document.all.tableID.tFoot.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableID”).tFoot.property |

method([parameters])

Accessing THEAD element object properties and methods:

(IE4+) [window.]document.all.tableID.tHead.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableID”).tHead.property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�) � �

TBODY

(c) ketabton.com: The Digital Library

644 Part III ✦ Document Objects Reference

About these objects
Each of these element objects represents a row grouping within a TABLE element

(an HTMLTableSectionElement in the syntax of the W3C DOM specification). A

table can have only one THEAD and one TFOOT, but it can have as many TBODY

elements as your table organization requires.

These elements share many properties and methods with the TABLE element in

that they all contain rows. The benefit of defining table segments is apparent if you

use table rules (see the TABLE.rules property earlier in this chapter) and if you

wish to limit the scope of row activities only to rows within one segment. For

instance, if your table has a THEAD that is to remain static, your scripts can merrily

loop through the rows of only the TBODY section without coming anywhere near

the row(s) in the THEAD.

None of these elements are available in IE4 for the Macintosh.

Properties
ch
chOff

Value: One-Character String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The ch and chOff properties are defined for NN6, but they may be serving as

placeholders for future implementation. These properties represent the optional

CHAR and CHAROFF attributes of table row section elements in the HTML 4.0 specifi-

cation. If these are implemented in a future browser, they will help align cell content

within a column or column group similar to the way word processers allow for for-

matting features such as decimal tabs. For details on these attributes, see

http://www.w3.org/TR/REC-html40/struct/tables.html#adef-char.

Related Items: COL, COLGROUP objects.

vAlign
Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Providing the cell-oriented vAlign property for a table row section enables you

to specify a vertical alignment to apply to all cells within that section rather than

specify the VALIGN attribute for each TD element. By default, browsers render cell

TBODY.vAlign

(c) ketabton.com: The Digital Library

645Chapter 27 ✦ Table and List Objects

content with a middle vertical alignment within the cell. If you want to modify the

setting for an existing table section (or assign it to a new one you create), the values

must be one of the following string constants: baseline, bottom, middle, or top.

Example on the CD-ROM

Related Item: TD.vAlign property.

CAPTION Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align†

vAlign††

†See TABLE element object.

††See TBODY element object.

Syntax
Accessing CAPTION element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
A CAPTION element is a simple HTML container whose only prerequisite is that

it must be nested inside a TABLE element. That nesting allows the TABLE element

object to control insertion and removal of a CAPTION element at will. You can mod-

ify the content of a CAPTION element just like you do any HTML element (in DOMs

that allow such modification). You can see an example of how the TABLE element

object uses some of its methods to create and remove a CAPTION element in

Listing 27-2.

The only properties that lift the CAPTION element object above a mere contex-

tual element (described in Chapter 15) are vAlign (IE4+) and the W3C DOM-

sanctioned align (IE4+ and NN6+). I describe these properties and their values for

other objects in this chapter.

On the
CD-ROM

CAPTION

(c) ketabton.com: The Digital Library

646 Part III ✦ Document Objects Reference

COL and COLGROUP Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align†

ch††

chOff††

span

vAlign††

width

†See TABLE element object.

††See TBODY element object.

Syntax
Accessing COL and COLGROUP element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About these objects
The purpose of the COL and COLGROUP elements is to allow cells within one or

more columns to be treated as a single entity for purposes of style sheet and other

style-related control. In other words, if you want one column of a table to be all

boldface, you can assign that style sheet rule to the COL element that encompasses

that column. All cells within that column inherit the style sheet rule definition.

Having two different element names allows for the nesting of column groups, which

can come in handy for complex tables. For instance, consider a table that reports

the forecasted and actual sales for a list of products across four quarters of a year.

The left column of the table stands alone with the product item numbers. To the

right is one large grouping of eight columns that encompasses the four pairs of fore-

casted/actual sales pairs. All eight columns of cells are to be formatted with a par-

ticular font style to help differentiate the pairs of columns for each quarter. You

also want to assign a different background color. Therefore, you designate each pair

of columns as its own subgroup within the eight-column master grouping. The

COLGROUP and COL tags for this nine-column table are as follows:

COL

(c) ketabton.com: The Digital Library

647Chapter 27 ✦ Table and List Objects

<COL ID=”productIDs”>
<COLGROUP ID=”fiscalYear” SPAN=”8” WIDTH=”40”>

<COL ID=”Q1” SPAN=”2”>
<COL ID=”Q2” SPAN=”2”>
<COL ID=”Q3” SPAN=”2”>
<COL ID=”Q4” SPAN=”2”>

</COLGROUP>

Up in the HEAD section of this document are style sheet rules similar to the

following:

<STYLE TYPE=”text/css”>
#productIDs {font-weight:bold}
#fiscalYear {font-family: Courier, “Courier New”, monospace}
#Q1 {background-color: lightyellow}
#Q2 {background-color: pink}
#Q3 {background-color: lightblue}
#Q4 {background-color: lightgreen}
</STYLE>

The HTML code for the column groups demonstrates the two key attributes:

SPAN and WIDTH. Both of these attributes are reflected as properties of the objects,

and I describe them in the following section. Notice, however, that COL and COL-

GROUP elements act cumulatively and in source code order to define the column

groups for the table. In other words, if the style of the left-hand column is not

important, the table still requires the initial one-column COL element before the

eight-column COLGROUP element. Otherwise, the browser makes the first eight

columns the column group. Therefore, it is a good idea to account for every column

with COL and/or COLGROUP elements if you intend to use any column grouping in

your table.

From a scripter’s point of view, you are more likely to modify styles for a column

or column group than you are to alter properties such as span or width. But, if

your scripts generate new tables, you may create new COL or COLGROUP elements

whose properties you definitely should initialize with values.

Properties
span

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The span property represents the number of columns that the column group

should encompass. Don’t confuse this property with the colSpan property of TD

and TH elements. A COL or COLGROUP span does not have any impact on the ren-

dering or combination of multiple cells into one. It simply draws an imaginary lasso

around as many columns as are specified, signifying that these columns can be

treated as a group for style purposes (and also for drawing of divider rules, if you

set the table’s rules property to groups).

COL.span

(c) ketabton.com: The Digital Library

648 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: width property.

width
Value: Length String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The only reason the width property is highlighted for these objects is that the

property (and corresponding attribute) impacts the width of table cells inside the

scope of the column grouping. For example, if you assign a width of 50 pixels to a

COLGROUP whose SPAN attribute is set to 3, all cells in all three columns inherit the

50-pixel width specification. For more details on the values acceptable to this prop-

erty, see the TABLE.width property description earlier in this chapter.

Related Item: TABLE.width property.

TR Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align† deleteCell()

bgColor† insertCell()

borderColor†

borderColorDark†

borderColorLight†

cells

ch††

chOff††

height

rowIndex

sectionRowIndex

vAlign††

†See TABLE element object.

††See TBODY element object.

On the
CD-ROM

TR

(c) ketabton.com: The Digital Library

649Chapter 27 ✦ Table and List Objects

Syntax
Accessing TR element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.tableID.rows[i].property | method([parameters])
(IE4+) [window.]document.all.tableRowSectionID.rows[i].property |

method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”). property |

method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableID”).rows[i].property |

method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableRowSectionID”).

rows[i].property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
Table rows are important objects within the complex nesting of table-related ele-

ments and objects. When a table represents server database data, one row usually

equals one record. And, although you can employ scripting to add columns to a

table, the more common table modifications are to add or delete rows — hence the

presence of the TABLE element object’s insertRow() and deleteRow() methods.

The primary job of the TR element is to act as a container for TD elements. All

the cells in a row inherit some attributes and properties that you apply to that row.

An array of cell objects is available for iteration via for loops. A TR element object,

therefore, also has methods that insert and remove individual cells in that row.

The number of columns in a row is determined by the number of TD elements or,

more specifically, by the number of columns that the cells intend to span. One row

can have four TD elements, while the next row can have only two TD elements —

each of which is defined to occupy two columns. The row of the table with the most

TD elements and column reservations determines the column width for the entire

table.

Of the properties just listed, the ones related to border color are available in IE4+

only. In IE4+, the border is drawn around each cell of the row rather than the entire

row. The HTML 4.0 specification (and the W3C DOM Level 2 specification by exten-

sion) does not recognize border colors for rows alone, nor are style sheet border

rules inherited by the cell children of a row. However, you can define borders for

individual cells or classes of cells.

TR

(c) ketabton.com: The Digital Library

650 Part III ✦ Document Objects Reference

Properties
cells

Value: Array of TD element objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The cells property returns an array (collection) of TD element objects nested

inside the current TR object. The length property of this array indicates the num-

ber of actual TD elements in the row, which may not be the number of columns if

one or more cells occupy multiple columns.

Use the cells property in for loops to iterate through all cells within a row.

Assuming your script has a reference to a single row, the loop should look like the

following:

for (var i = 0; i < rowRef.cells.length; i++) {
oneCell = rowRef.cells[i]
// more statements working with the cell

}

Example on the CD-ROM

Related Items: TABLE.rows, TD.cellIndex properties.

height
Value: Integer or Length String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IE4+ enables page authors to predefine a height for a table row; this attribute is

echoed by the height property. The value can be a number of pixels or a percent-

age length value. Note that this property does not reveal the rendered height of the

row unless you explicitly set the attribute in the HTML. To get the actual height (in

IE4+ and NN6+), use the offsetHeight property. You cannot adjust the height
property to be smaller than the table normally renders the row.

On the
CD-ROM

TR.height

(c) ketabton.com: The Digital Library

651Chapter 27 ✦ Table and List Objects

Example on the CD-ROM

Related Item: offsetHeight property (Chapter 15).

rowIndex
sectionRowIndex

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Each row occupies a position within the collection of rows in the table as well as

within the collection of rows for a table section (THEAD, TBODY, or TFOOT). The

rowIndex property returns the zero-based index value of the row inside the rows
collection for the entire table, regardless of table section composition. In contrast,

the sectionRowIndex property returns the zero-based index value of the row

inside its row section container. If the table has no row sections defined for it, a

single, all-encompassing TBODY element is assumed; in this case, the

sectionRowIndex and rowIndex values are equal.

These properties serve in functions that are passed a reference to a row.

However, the functions might also need to know the position of the row within the

table or section. While there is no TR object property that returns a reference to

the next outermost table row section or the table itself, the parent and parent’s

parent elements, respectively, can reference these objects.

Example on the CD-ROM

Related Items: TABLE.rows, TBODY.rows, TFOOT.rows, THEAD.rows properties.

Methods
deleteCell(cellIndex)
insertCell(cellIndex)

Returns: Nothing; Reference to New Cell.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

On the
CD-ROM

On the
CD-ROM

TR.deleteCell()

(c) ketabton.com: The Digital Library

652 Part III ✦ Document Objects Reference

The act of inserting a row into a table is not complete until you also insert cells

into the row. The insertCell() method does just that, with a parameter indicating

the zero-based index of the cell’s position among other cells in the row. A value of -
1 appends the cell to the end of existing cells in the row.

When you invoke the insertCell() method, it returns a reference to the new

cell. This gives you the opportunity to adjust other properties of that cell before

moving onto the next cell. For example, if you want to insert a cell that has a col-

umn span of 2, you adjust the colSpan property of the cell whose reference just

returned, as in the following:

var oneCell = tableRowRef.insertCell(-1)
oneCell.colSpan = 2

Scripts that add rows and cells must make sure that they add the identical num-

ber of cells (or cell column spaces) from one row to the next. Otherwise, you have

an unbalanced table with ugly blank spaces where you probably don’t want them.

To remove a cell from a row, use the deleteCell() method. The parameter is a

zero-based index value of the cell you want to remove. If all you want to do is

replace the content of a cell, apply the new content to the innerHTML property of

the TD element. This is smoother and safer than deleting and reinserting a cell

because any execution error that occurs in the process results in an unbalanced

table. Finally, to rid yourself of all cells in a row, use the deleteRow() method of

the TABLE and table row section element objects.

Example
See Listing 27-2 for an example of inserting cells during the row insertion process.

Related Item: TABLE.insertRow() method.

TD and TH Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

abbr

align†

axis

background†

bgColor†

borderColor†

borderColorDark†

borderColorLight†

cellIndex

ch††

TD

(c) ketabton.com: The Digital Library

653Chapter 27 ✦ Table and List Objects

Properties Methods Event Handlers

chOff††

colSpan

headers

height

noWrap

rowSpan

vAlign††

width

†See TABLE element object.

††See TBODY element object.

Syntax
Accessing TD and TH element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.tableID.cells[i].property |

method([parameters])
(IE4+) [window.]document.all.tableRowSectionID.cells[i].property |

method([parameters])
(IE4+) [window.]document.all.tableRowID.cells[i].property |

method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”). property |

method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableID”).cells[i].property |

method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableRowSectionID”).

cells[i].property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“tableRowID”).rows[i].property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About these objects
TD (table data) and TH (table header) elements create cells within a table. By

common convention, a TH element is rendered in today’s browsers with a distinc-

tive style — usually with a bold font and center alignment. A table cell is as deeply

nested as you can get with table-related elements.

Properties of cells that are delivered in the HTML of the page are rarely modified

(with the exception of the innerHTML property). But you still need full access to

TD

(c) ketabton.com: The Digital Library

654 Part III ✦ Document Objects Reference

properties of cells if your scripts add rows to a table dynamically. After creating

each blank table cell object, your scripts can adjust colSpan, rowSpan, noWrap,

and other properties that influence the characteristics of that cell within the table.

See the beginning of this chapter for discussions and examples of how to add

rows of cells and modify cell content under script control.

Properties
abbr
axis
headers

Value: See Text Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

These three properties are defined for table cell element objects in the W3C

DOM and NN6. They all represent attributes for these elements in the HTML 4.0

specification. The purposes of these attributes and properties are geared toward

browsers that provide alternate means of rendering content, such as through

speech synthesis. While these properties are definitely valid for NN6, they have no

practical effect. Perhaps other versions of browsers built upon the same Mozilla

engine as NN6 will use these attributes to good effect. For general application, how-

ever, you can ignore these properties — but also avoid using them as data storage

spaces while a page loads. Consider them reserved for future use.

cellIndex
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The cellIndex property returns an integer indicating the zero-based count of the

current cell within its row. Thus, if a script is passed a reference to a cell, the

cellIndex property reveals its position within the row. Inserting or deleting cells in

the row at lower index values influences the cellIndex value after the alteration.

Example on the CD-ROM

Related Item: TR.rowIndex property.

On the
CD-ROM

TD.cellIndex

(c) ketabton.com: The Digital Library

655Chapter 27 ✦ Table and List Objects

colSpan
rowSpan

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The colSpan and rowSpan properties represent the COLSPAN and ROWSPAN
attributes of table cell elements. Assign values to these properties only when you

are creating new table rows and cells — and you are firm in your table cell design. If

you fail to assign the correct values to either of these properties, your table cell

alignment will get out of whack. Modifying these property values on an existing

table is extremely risky unless you are performing other cell manipulation to

maintain the balance of rows and columns. Values for both properties are integers

greater than or equal to 1.

Example on the CD-ROM

Related Item: COL.span property.

height
width

Value: Integer and Length String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Table cells may be specified to be larger than their default rendered size. This

usually happens in the HEIGHT and WIDTH attributes of the cell. Settings of the

WIDTH attribute of a COL or COLGROUP element (IE4+ and NN6+) may also govern

the width of a cell. A cell’s height can be inherited from the HEIGHT attribute setting

of a table row or row section (IE4+). Both HEIGHT and WIDTH attributes are depre-

cated in HTML 4.0 in favor of the height and width style sheet attributes. That

said, the height and width properties of a table cell echo only the settings of the

explicit attributes in the cell’s tag. If a style sheet in the element tag governs a cell’s

dimensions, then visit the cell object’s style property to determine the dimen-

sions. Explicit attributes override style sheet rules.

Values for these two properties are length values. These can be pixel integers or

percentage values as strings. Attempts to set the sizes smaller than their default

On the
CD-ROM

TD.height

(c) ketabton.com: The Digital Library

656 Part III ✦ Document Objects Reference

rendered size results in a cell of default size. Also be aware that enlarging a cell

affects the width of the entire column and/or height of the entire row occupied by

that cell.

Example on the CD-ROM

Related Items: COL.width, TR.height properties.

noWrap
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The default behavior of a table cell is to wrap text lines within the cell if the text

would extend beyond the right edge of the cell as calculated from the width of the

entire table. But you can force the table to be wider to accommodate the text in an

unwrapped line of text by setting the noWrap property (or NOWRAP attribute) of the

cell to true. The NOWRAP attribute is deprecated in HTML 4.0.

Example on the CD-ROM

rowSpan
See colSpan.

width
See height.

OL Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact

start

type

On the
CD-ROM

On the
CD-ROM

OL

(c) ketabton.com: The Digital Library

657Chapter 27 ✦ Table and List Objects

Syntax
Accessing OL element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”). property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
The OL (ordered list) element is a container of LI (list item) elements. An ordered

list means that the list items have a sequence and are preceded by a number or let-

ter to signify the position within the sequence. The few element-specific attributes

are being deprecated in favor of style sheet definitions. For the sake of backward

compatibility with existing content, however, it is likely that many future genera-

tions of browsers will continue to support these deprecated attributes. These

attributes are therefore available as properties of the element object.

Most of the special appearance of a list (notably indentation) is handled auto-

matically by the browser’s interpretation of how an ordered list should look. You

have control over the numbering or lettering schemes and the starting point for

those sequences.

Properties
compact

Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Although the properties are defined for the browsers just shown (not IE4/Mac,

however), the compact property (and the deprecated attribute it echoes) has no

impact on the density of the listing.

start
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

OL.start

(c) ketabton.com: The Digital Library

658 Part III ✦ Document Objects Reference

The start property governs which number or letter begins the sequence of

leading characters for nested LI items. If the TYPE attribute specifies numbers, then

the corresponding number is used; if it specifies letters, then the letter of the alpha-

bet corresponding to the number becomes as the starting character. You can

change the numbering in the middle of a sequence via the LI.value property.

It is an extremely rare case that requires you to modify this property for an

existing OL element. But if your script is creating a new element for a segment of

ordered list items that has some other content intervening from an earlier OL ele-

ment, you can use the property to assign a starting value to the OL group.

Example on the CD-ROM

Related Items: type, LI.value properties.

type
Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

An OL element can use any of five different numbering schemes. Each scheme

has a type code, whose value you can use for the type property. The following

table shows the property values and examples:

Value Example

A A, B, C, ...

a a, b, c, ...

I I, II, III, ...

i i, ii, iii, ...

1 1, 2, 3, ...

The default value is 1. You are free to adjust the property after the table has ren-

dered, and you can even stipulate a different type for specific LI elements nested

inside (see the LI.type property). If you want to have further nesting with a differ-

ent numbering scheme, you can nest the OL elements and specify the desired type

for each nesting level, as shown in the following HTML example:

<OL TYPE=”A”>
One
Two

On the
CD-ROM

OL.type

(c) ketabton.com: The Digital Library

659Chapter 27 ✦ Table and List Objects

Three
<OL TYPE=”a”>

Sub One
Sub Two
Sub Three

Four

Indenting the HTML is optional, but it may help you to keep the nesting straight.

Example on the CD-ROM

Related Items: start, UL.type, LI.type properties.

UL Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact†

type

†See OL Element Object.

Syntax
Accessing UL element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
The UL (unordered list) element is a container of LI (list item) elements. An

unordered list means that the list items have no sequence and are preceded by sym-

bols that don’t signify any particular order. The few element-specific attributes are

being deprecated in favor of style sheet definitions. For the sake of backward com-

patibility with existing content, however, it is likely that many future generations of

browsers will continue to support these deprecated attributes. These attributes are

therefore available as properties of the element object.

On the
CD-ROM

UL

(c) ketabton.com: The Digital Library

660 Part III ✦ Document Objects Reference

Most of the special appearance of a list (notably indentation) is handled auto-

matically by the browser’s interpretation of how an ordered list should look. You

have control over the three possible characters that precede each item.

Properties
type

Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

A UL element can use any of three different leading characters. Each character

type has a type code whose value you can employ for the type property. Property

values are circle, disc, and square. The difference between a circle and disc is

that the circle is unfilled, while the disc is solid. The default value is disc.

Example on the CD-ROM

Related Items: OL.type, UL.type properties.

LI Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

type

value

Syntax
Accessing LI element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”).property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

On the
CD-ROM

LI

(c) ketabton.com: The Digital Library

661Chapter 27 ✦ Table and List Objects

About this object
An LI (list item) element contains the HTML that is displayed for each item

within an OL or UL list. Note that you can put any HTML you want inside a list item,

including images. Attributes and properties of this element enable you to override

the specifications declared in the OL or UL containers (except in IE/Mac).

Properties
type

Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Because either an OL or UL container can own an LI element, the type property

accepts any of the values that you assign to the type properties of both the OL and

UL element objects. See the OL.type and UL.type properties earlier in this chapter

for lists of those values.

Exercise caution, however, if you attempt to mix and match types. For example, if

you try to set the LI.type property of an LI element to circle inside an OL ele-

ment, the results vary from browser to browser. NN6, for example, follows your

command; however, IE may display some other characters.

Example on the CD-ROM

Related Items: OL.type, UL.type properties.

value
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The value property governs which number or letter is used for the current list

item inside an ordered list. Employ this attribute and property to override the natu-

ral progression. Because these sequence characters can be letters, numbers, or

Roman numerals, the integer you specify for this property is converted to the num-

bering scheme in force by the LI or OL element’s type property.

On the
CD-ROM

LI.value

(c) ketabton.com: The Digital Library

662 Part III ✦ Document Objects Reference

Example on the CD-ROM

Related Item: OL.start property.

DL, DT, and DD Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact†

†See OL Element Object.

Syntax
Accessing DL, DT, and DD element object properties and methods:

(IE4+) [window.] document.all.elemID.property | method([parameters])
(IE5+/NN6+) [window.] document.getElementById(“elemID”). property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About these objects
Three elements — DL, DT, and DD — provide context and (optionally) formatting

for definitions in a document. The DL element is the outer wrapper signifying a defi-

nition list. Each definition term should be inside a DT element, while the definition

description should be in the nested DD element. The HTML for a simple definition

list has the following structure:

<DL>
<DT>First term
<DD>First term’s definition
<DT>Second term
<DD>Second term’s definition

</DL>

While there are no specific requirements for rendering definition lists by conven-

tion, the term and description are usually on different lines with the description

indented.

All three of these elements are treated as element objects, sharing the same

properties, methods, and event handlers of generic element objects. The only one

On the
CD-ROM

DL

(c) ketabton.com: The Digital Library

663Chapter 27 ✦ Table and List Objects

of the three that has anything special is the DL element, which has a compact prop-

erty. IE4+ for Windows does respond to this attribute and property by putting the

description and term on the same line if the term is shorter than the usual indenta-

tion space of the description.

DIR and MENU Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact†

†See OL Element Object.

Syntax
Accessing DIR and MENU element object properties and methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“elemID”). property |

method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About these objects
The DIR and MENU elements are treated in modern browsers as if they were UL

elements for unordered lists of items. Both elements are deprecated in HTML 4.0;

yet, because they are acknowledged in that standard, they are also acknowledged

in the W3C DOM (and the IE DOM, too). Originally intended to assist in creating sin-

gle and double columns of text (long since supplanted by tables), usage of these

elements has fallen out of favor and is discouraged.

✦ ✦ ✦

DIR

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The Navigator
and Other
Environment
Objects

Client-side scripting primarily focuses on the document

inside a browser window and the content of the docu-

ment. As discussed in Chapter 16, the window, too, is an

important part of how you apply JavaScript on the client. But

stepping out even one more level is the browser application

itself. Scripts sometimes need to know about the browser and

the computing environment in which it runs so that they can

tailor dynamic content for the current browser and operating

system.

To that end, browsers provide objects that expose as much

about the client computer and the browser as is feasible within

accepted principles of preserving a user’s privacy. In addition

to providing some of the same information that CGI programs

on the server receive as environment variables, these browser-

level objects also include information about how well equipped

the browser is with regard to plug-ins and Java. Another object

defined for NN4+ and IE4+ reveals information about the user’s

video monitor, which may influence the way your scripts calcu-

late information displayed on the page.

The objects in this chapter don’t show up on the document

object hierarchy diagrams, except as freestanding groups (see

Appendix A). The IE4+ object model, however, incorporates

these environmental objects as properties of the window
object. Because the window reference is optional, you can

omit it for IE and wind up with a cross-browser, compatible

script in many cases.

Where the IE (for Windows anyway) and NN environments

diverge significantly is in the way scripts can find out whether

a particular plug-in or support for a particular MIME type is

available in the current browser. As you learn in this chapter,

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining which
browser the user has

Branching scripts
according to the
user’s operating
system

Detecting plug-in
support

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

666 Part III ✦ Document Objects Reference

the IE for Windows methodology can be a bit roundabout. And yet the Macintosh

version of IE5+ has adopted the approach initiated by NN3. Go figure.

clientInformation Object (IE4+) and navigator
Object (All)

Properties Methods Event Handlers

appCodeName javaEnabled()

appMinorVersion preference()

appName taintEnabled()

appVersion

browserLanguage

cookieEnabled

cpuClass

language

mimeTypes

onLine

oscpu

platform

plugins

product

productSub

securityPolicy

systemLanguage

userAgent

userLanguage

userProfile

vendor

vendorSub

Syntax
Accessing clientInformation and navigator object properties and methods:

(All) navigator.property | method()
(IE4+/NN6) [window.]navigator.property | method()
(IE4+) [window.]clientInformation.property | method()

navigator

(c) ketabton.com: The Digital Library

667Chapter 28 ✦ The Navigator and Other Environment Objects

About this object
In Chapter 16, I repeatedly mention that the window object is the top banana of

the document object hierarchy. In other programming environments, you likely can

find a level higher than the window — perhaps referred to as the application level.
You may think that an object known as the navigator object is that all-encompass-

ing object. That is not the case, however.

Although Netscape originally invented the navigator object for the Navigator 2

browser, Microsoft Internet Explorer also supports this object in its object model.

For those who exhibit partisan feelings toward Microsoft, IE4+ provides an alternate

object —clientInformation— that acts as an alias to the navigator object. You

are free to use the IE-specific terminology if your development is intended only for

IE browsers. All properties and methods of the navigator and

clientInformation objects are identical. In the rest of this section, all references

to the navigator object also apply to the clientInformation object.

Be aware that the number of properties for this object has grown with virtually

every browser version. Moreover, other than some basic items that have been

around since the early days, most of the more recent properties are browser-spe-

cific. Observe the compatibility ratings for each of the following properties very

carefully.

Most of the properties of the navigator object deal with the browser program

the user runs to view documents. Properties include those for extracting the ver-

sion of the browser and the platform of the client running the browser. Because so

many properties of the navigator object are related to one another, I begin this

discussion by grouping four of the most popular ones together.

Properties
appCodeName
appName
appVersion
userAgent

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

These four properties reveal just about everything that browser-sniffing code

needs to know about the user’s browser brand, version, and other tidbits. Of these

four, only the last three are particularly valuable. The first property in the list,

appCodeName, defines a class of client that encompasses essentially every standard

browser. The value returned by browsers, Mozilla, is the code name of the first

browser engine on which NN and IE browsers at one time were based (the NCSA

Mosaic browser). This information does nothing to help your scripts distinguish

among browser flavors, so you can ignore the property. But the other three proper-

ties are the ones with all the goodies.

navigator.appCodeName

(c) ketabton.com: The Digital Library

668 Part III ✦ Document Objects Reference

The appName property returns the official name for the browser application. For

Netscape browsers, the appName value is Netscape; for Internet Explorer, the value

is Microsoft Internet Explorer.

The appVersion and userAgent properties provide more meaningful detail. I

start with the appVersion property because it is revealing and, at times, misleading.

Using the appVersion property
A typical appVersion property value looks like the following (one from NN6, one

from IE5):

5.0 (Windows; en-US)
4.0 (compatible; MSIE 5.5; Windows 98; compat; DigExt)

Because most version decisions are based on numeric comparisons (for exam-

ple, the version is equal to or greater than 4), you frequently need to extract just

the number part of the string returned by the appVersion property. The cleanest

way to do this is via the parseInt() or parseFloat() methods. Use

parseInt(navigator.appVersion)

if you are interested only in the number to the left of the decimal; to get the com-

plete leading floating-point number, use

parseFloat(navigator.appVersion)

All other characters after the leading numbers are ignored.

Also notice that the number does not always accurately represent the version of

the browser at hand. For instance, IE5.5 reports that it is version 4.0. The number is

more indicative of a broad generation number rather than a specific browser ver-

sion number. In other words, the browser exhibits characteristics of the first

browsers to wear the appVersion of 4 (IE 4.0, it turns out). While this means that

IE5.5 can use everything that is in the language and object model of IE4, this obvi-

ously doesn’t help your script to know if the browser is capable of IE5.5 scripting

features.

At the same time, however, buried elsewhere in the appVersion string is the

wording MSIE 5.5— the “true” version of the browser. IE uses this technique to

distinguish the actual version number from the generational number. Therefore, for

IE, you may have to dig deeper by using string methods such as indexOf() to see if

the appVersion contains the desired string. For example, to see if the browser is a

variant of IE5, you can test for just “MSIE 5” as follows:

var isIE5x = navigator.appVersion.indexOf(“MSIE 5”) != -1

Or to know if the browser is IE5.5, include more of the string:

var isIE5_5 = navigator.appVersion.indexOf(“MSIE 5.5”) != -1

There is a hazard in doing this kind of testing, however. Going forward, your

code will break if future versions of IE have larger version numbers. Therefore, if

you want to use IE5 features with an IE6 browser (assuming such a browser

becomes available), your testing for the presence of “MSIE 5” fails and the script

thinks that it cannot use IE5 features even though they most certainly would be

navigator.appVersion

(c) ketabton.com: The Digital Library

669Chapter 28 ✦ The Navigator and Other Environment Objects

available in IE6. To find out if the current IE browser is the same or newer than a

particular version, you must use JavaScript string parsing to deal with the MSIE
x.x substring of the appVersion (or userAgent) property. The following example

shows one function that extracts the precise IE version name and another function

that confirms whether the version is at least IE5.0 for Windows.

var ua = navigator.userAgent
function getIEVersion() {

var IEOffset = ua.indexOf(“MSIE “)
return parseFloat(ua.substring(IEOffset + 5, ua.indexOf(“;”, IEOffset)))

}
function qualifyBrowser() {

var qualified = false
if (navigator.appName == “Microsoft Internet Explorer”) {

if (parseInt(getIEVersion()) >= 5) {
if (ua.indexOf(“Windows”) != -1) {

qualified = true
}

}
}
if (!qualified) {

var msg = “These scripts are currently certified to run on:\n”
msg += “ - MS Internet Explorer 5.0 or later for Windows\n”
alert(msg)

}
return qualified

}

As clever as the code above looks, using it assumes that the version string sur-

rounding the MSIE characters will be immutable in the future. We do not have that

kind of guarantee, so you have to remain vigilant for possible changes in future ver-

sions.

Thus, with each browser generation’s pollution of the appVersion and

userAgent properties, the properties become increasingly less useful for browser

sniffing — unless you wish to burden your code with a lot of general-purpose sniff-

ing code, very little of which any one browser uses.

Even NN is not free of problems. For example, the main numbering in the

appVersion property for NN6 is 5 (in other words, the fifth generation of Mozilla).

Buried elsewhere in the property value is the string Netscape6. A potentially

thornier problem arises due to Netscape’s decision to eliminate some nonstandard

NN4 DOM features from the NN6 DOM (layer objects and some event object behav-

iors). Many scripters followed the previously recommended technique of “prepare

for the future” by using an appVersion of 4 as a minimum:

var isNN4 = parseInt(navigator.appVersion) >= 4

But any code that relies on the isNN4 variable to branch to code that talks to the

dead-end NN4 objects and properties breaks when it runs in NN6.

The bottom line question is, “What do I do for browser version detection?”

Unfortunately, there are dozens of answers to that question, depending on what

you need browser detection to do and what level of code you produce.

navigator.appVersion

(c) ketabton.com: The Digital Library

670 Part III ✦ Document Objects Reference

At one end of the spectrum is code that tries to be many things to many

browsers, implementing multiple levels of features for many different generations of

browser. This is clearly the most difficult tactic, and you have to create quite a long

list of variables for the conditions for which you establish branches. Some

branches may work on one combination of browsers, while you may need to split

other branches differently because the scripted features have more browser-spe-

cific implementations.

At the other end of the spectrum is the code that tries to support, say, only IE5+

and NN6+ with W3C DOM-compatible syntax to the extent that both browser fami-

lies implement the object model features. Life for this scripter is much easier in that

the amount of branching is little or none depending on what the scripts do with the

objects.

Between these two extremes, situations call for many different solutions. Object

detection (for example, seeing if document.images exists before manipulating

image objects) is a good solution at times, but not so much for determining the

browser version as for knowing whether some code that addresses those objects

works. As described in Chapter 14, it is hazardous to use the existence of, say, doc-
ument.all as an indicator that the browser is IE4+. Some other browser in the

future may also implement the document.all property, but not necessarily all the

other IE4+ objects and syntax. Code that thinks it’s running in IE4+ just because

document.all exists can easily break if document.all is implemented in another

browser but not all the rest of the IE4+ DOM. Using object detection to branch code

that addresses the detected objects is, however, very desirable in the long run

because it frees your code from getting trapped in the ever-changing browser ver-

sion game.

Don’t write off the appVersion and userAgent properties entirely. The combina-

tion of features that you script may benefit from some of the data in that string,

especially when the decisions are made in concert with the navigator.appName
property. A number of other properties implemented in IE4+ and NN6 can also pro-

vide the sufficient clues for your code to perform the branching that your applica-

tion needs. For instance, it may be very helpful to your scripts to know whether the

navigator.platform property informs them that they are running in a Windows

or Macintosh environment because of the way each operating system renders fonts.

userAgent property details
The string returned by the navigator.userAgent property contains a more

complete rundown of the browser. The userAgent property is a string similar to

the USER_AGENT header that the browser sends to the server at certain points dur-

ing the connection process between client and server.

Unfortunately, there is no standard for the way information in the userAgent
property is formatted. It may be instructive, however, to view what kinds of values

come from a variety of browsers on different platforms. Table 28-1 shows some of

the values that your scripts are likely to see. This table does not include, of course,

the many values that are not reflected by browsers that do not support JavaScript.

The purpose of the table is to show you just a sampling of data that the property

can contain from a variety of browsers and operating systems (particularly enlight-

ening if you do not have access to Macintosh or UNIX computers).

navigator.userAgent

(c) ketabton.com: The Digital Library

671Chapter 28 ✦ The Navigator and Other Environment Objects

Table 28-1 Typical navigator.userAgent Values

navigator.userAgent Description

Mozilla/5.0 (Windows; U; Navigator 6 for Windows, running under
Win98; en-US) Netscape6/6.0 Windows 98; U.S. English edition and U.S.

encryption

Mozilla/4.74 [en] (X11; U; Navigator 4.74, English edition for Linux
Linux 2.2.154mdksmp i686) with U.S. encryption

Mozilla/4.73 (Macintosh; U; PPC) Navigator 4.73 for PowerPC Macintosh with
U.S. encryption

Mozilla/4.02 [en] (Win95; I; Nav) Navigator-only version of Communicator
4.02, English edition for Windows 95, and
export encryption

Mozilla/4.01 [fr] (Win95; I) Navigator 4.01, French edition for Windows
95, export encryption

Mozilla/3.01Gold (Win95; I) Navigator 3.01 Gold for Windows 95

Mozilla/3.01 (Macintosh; I; PPC) Navigator 3.01 for PowerPC Macintosh

Mozilla/3.01 (X11; I; Navigator 3.01 for HP-UX on RS-9000
HP-UX A.09.05 9000/720)

Mozilla/3.01 (X11; I; Navigator 3.01 for SunOS 5.4
SunOS 5.4 sun4m)

Mozilla/3.01Gold [de] (Win16; I) Navigator 3.01, German edition for
Windows 3.0x

Mozilla/4.0 (compatible; IE 5.0 for Windows 98 with digital
MSIE 5.0; Windows 98; DigExt) signature

Mozilla/4.0 (compatible;
MSIE 5.5; Windows NT 5.0) IE 5.5 running under Windows NT 5.0

Mozilla/4.0 (compatible;
MSIE 5.0; Mac_PowerPC) IE 5.0 running on a PowerPC-equipped

Macintosh

Mozilla/3.0 WebTV/1.2 IE 2 built into a WebTV box, emulating
(compatible; MSIE 2.0) Navigator 3 (its scripting compatibility with

Navigator 3 is in question)

Mozilla/2.0 (compatible; IE 3 (version for America Online software
MSIE 3.0; AOL 3.0; Windows 3.1) version 3) for Windows 3.1, emulating

Navigator 2

Mozilla/2.0 (compatible; IE 3.02, Update a for Windows 95,
MSIE 3.02; Update a; Windows 95) emulating Navigator 2

Mozilla/2.0 (compatible; IE 3 (beta) emulating Navigator 2
MSIE 3.0B; Windows NT)

navigator.userAgent

(c) ketabton.com: The Digital Library

672 Part III ✦ Document Objects Reference

Because the userAgent property contains a lot of the same information as the

appVersion property, the same cautions just described apply to the userAgent
string and the environment data it returns.

Speaking of compatibility and browser versions, the question often arises

whether your scripts should distinguish among incremental releases within a

browser’s generation (for example, 3.0, 3.01, 3.02, and so on). The latest incremen-

tal release occasionally contains bug fixes and (rarely) new features on which you

may rely. If that is the case, then I suggest you look for this information when the

page loads and recommend to the user that he or she download the latest browser

version. Beyond that, I suggest scripting for the latest version of a given generation

and not bothering with branching for incremental releases.

See Chapters 13 and 14 for more information about designing pages for cross-

platform deployment.

Example (with Listing 28-1) on the CD-ROM

Related Items: appMinorVersion, cpuClass, oscpu, platform properties.

appMinorVersion
Value: One-Character String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

In IE parlance, the minor version is indicated by the first digit to the right of the

decimal in a full version number. But the “version number” referred to here is the

number that the navigator.appVersion property reports, not the actual version

of the browser. For example, although IE5.5 seems to have a version number of 5

and a minor version number of 5, the appVersion reports version 4.0. In this case,

the minorAppVersion reports 0. Thus, you cannot use the appMinorVersion prop-

erty to detect differences between, say, IE5 and IE5.5. That information is buried

deeper within the string returned by appVersion and userAgent.

Example on the CD-ROM

Related Item: appVersion property.

On the
CD-ROM

On the
CD-ROM

navigator.appMinorVersion

(c) ketabton.com: The Digital Library

673Chapter 28 ✦ The Navigator and Other Environment Objects

browserLanguage
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The browserLanguage property in IE4+ (and the language property in NN4+)

returns the identifier for a localized language version of the program (it has nothing

to do with scripting or programming language). The value of the browserLanguage
property almost always is the same as the other IE language-related properties,

unless the user changes the Windows control panel for regional settings after

installing IE. In that case, browserLanguage returns the original language of the

browser application, while the other properties report the language indicated in the

system-level preferences panel.

Users of the multilanguage version of Windows 2000 can choose alternate lan-
guages for menus and dialog boxes. The browserLanguage property returns the
language you choose for those settings.

These short strings may resemble, but are not identical to, the URL suffixes for

countries. Moreover, when a language has multiple dialects, the dialect can also be

a part of the identifier. For example, en is the identifier for English. However, en-us
(or en-US) represents the American dialect of English, while en-gb (or en-GB) rep-

resents the dialect recognized in Great Britain. NN sometimes includes these values

as part of the userAgent data as well. Table 28-2 shows a sampling of language

identifiers used for all language-related properties of the navigator object.

Table 28-2 Sample navigator.browserLanguage Values

navigator.language Language

en English

de German

es Spanish

fr French

ja Japanese

da Danish

it Italian

ko Korean

nl Dutch

pt Brazilian Portuguese

sv Swedish

Note

navigator.browserLanguage

(c) ketabton.com: The Digital Library

674 Part III ✦ Document Objects Reference

You can assume that a user of a particular language version of the browser or

system is also interested in content in the same language. If your site offers multiple

language paths, then you can use this property setting to automate the navigation

to the proper section for the user.

Related Items: navigator.userAgent, navigator.language,

navigator.systemLanguage, navigator.userLanguage properties.

cookieEnabled
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The cookieEnabled property allows your scripts to determine easily if the

browser has cookie functionality turned on. You can surround cookie-related state-

ments with an if construction as follows:

if (navigator.cookieEnabled) {
// do cookie stuff here

}

This works reliably only on browsers that implement the property. Because

older browsers do not have this navigator object property, the if condition

appears false (even though cookies may be turned on).

You can still check for cookie functionality in older browsers, but only clumsily.

The technique entails assigning a “dummy” cookie value to the document.cookie
property and attempting to read back the cookie value. If the value is there, then

cookies are enabled.

Example on the CD-ROM

Related Item: document.cookie property.

cpuClass
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The cpuClass property returns one of several fixed strings that identifies the

family of central processing units running IE. Possible values and their meanings

are as follows:

On the
CD-ROM

navigator.cpuClass

(c) ketabton.com: The Digital Library

675Chapter 28 ✦ The Navigator and Other Environment Objects

cpuClass Description

x86 Intel processor (and some emulators)

PPC Motorola Power PC processor (for example, Macintosh)

68K Motorola 68000-family processor (for example, Macintosh)

Alpha Digital Equipment Alpha processor

Other Other processors, such as SPARC

The processor is not a good guide to determining the operating system because

you can run multiple operating systems on most of the preceding processor fami-

lies. Moreover, the cpuClass value represents the processor that the browser

“thinks” it is running on. For example, when a Windows version of IE is hosted by

the Virtual PC emulator on a PowerPC Macintosh, the cpuClass is reported as x86
even though the actual hardware processor is PPC.

Example on the CD-ROM

Related Item: navigator.oscpu property.

language
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The NN4+ language property returns the language code for the browser applica-

tion. While the comparable IE property (navigator.browserLanguage) has mor-

phed in later versions to focus on the operating system language, NN’s property

deals exclusively with the language for which the browser application is written.

Related Item: navigator.browserLanguage property.

mimeTypes
Value: Array of mimeType objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�) (�)

On the
CD-ROM

navigator.mimeTypes

(c) ketabton.com: The Digital Library

676 Part III ✦ Document Objects Reference

A MIME (Multipurpose Internet Mail Extension) type is a file format for information

that travels across the Internet. Browsers usually have a limited capability for dis-

playing or playing information beyond HTML text and one or two image standards

(.gif and .jpg are the most common formats). To fill in the gap, browsers main-

tain an internal list of MIME types with corresponding instructions on what to do

when information of a particular MIME type arrives at the client. For example, when

a CGI program serves up an audio stream in an audio format, the browser locates

that MIME type in its table (the MIME type is among the first chunk of information

to reach the browser from the server) and then launches a helper application or

activates a plug-in capable of playing that MIME type. Your browser is not equipped

to display every MIME type, but it does know how to alert you when you don’t have

the helper application or plug-in needed to handle an incoming file. For instance,

the browser may ask if you want to save the file for later use or switch to a Web

page containing more information about the necessary plug-in.

The mimeTypes property of the navigator object is simply the array of MIME

types about which your browser knows (see the “MimeType object” section later in

this chapter). NN3+ come with dozens of MIME types already listed in their tables

(even if the browser doesn’t have the capability to handle all those items automati-

cally). If you have third-party plug-ins in Navigator’s plug-ins directory/folder or

helper applications registered with Navigator, that array contains these new entries

as well.

If your Web pages are media-rich, you want to be sure that each visitor’s browser

is capable of playing the media your page has to offer. With JavaScript and NN3+,

you can cycle through the mimeTypes array to find a match for the MIME type of

your media. Then use the properties of the mimeType object (detailed later in this

chapter) to ensure the optimum plug-in is available. If your media still requires a

helper application instead of a plug-in, the array only lists the MIME type; thus, you

can’t determine whether a helper application is assigned to this MIME type from

the array list.

You may have noticed that the preceding discussion focuses on Netscape

Navigator, yet the compatibility chart shows that IE4+ supports the mimeTypes
property. The actual situation is more complex. The Windows version of IE4+ sup-

ports this property only in so far as to return an empty array. In other words, the

property is defined, but it does not contain mimeType objects — a nonexistent

object in IE for Windows. But on the Macintosh side, IE5+ supports the way

Netscape Navigator allows script inspection of MIME types and plug-ins. To see

ways of determining plug-in support for IE/Windows, see the section “Plug-in detec-

tion in IE/Windows” later in this chapter.

Example on the CD-ROM

Related Item: navigator.plugins property; mimeType object.

On the
CD-ROM

navigator.mimeTypes

(c) ketabton.com: The Digital Library

677Chapter 28 ✦ The Navigator and Other Environment Objects

onLine
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The onLine property lets scripts determine the state of the offline browsing set-

ting for the browser. Bear in mind that this property does not reveal whether the

page is accessed via the Net or a local hard disk. The browser can be in online

mode and still access a local page; in this case, the onLine property returns true.

With the offline browsing capabilities of IE4+, users may prefer to download

copies of pages they wish to reference frequently (perhaps on a disconnected lap-

top computer). In such cases, your pages may want to avoid network-reliant con-

tent when accessed offline. For example, if your page includes a link to a live audio

feed, you can dynamically generate that link with JavaScript — but do so only if the

user is online:

if (navigator.onLine) {
document.write(“Listen to Audio”)

}

Example on the CD-ROM

Related Items: None.

oscpu
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 oscpu property returns a string that reveals OS- or CPU-related informa-

tion about the user’s environment. The precise string varies widely with the client

OS. For instance, a Windows 98 machine reports Win98, while a Macintosh reports

PPC. The string formats for Windows NT versions are not standardized, so they

offer values such as WinNT4.0 and Windows NT 5.0. UNIX platforms reveal more

details, such as the system version and hardware.

Example on the CD-ROMOn the
CD-ROM

On the
CD-ROM

navigator.oscpu

(c) ketabton.com: The Digital Library

678 Part III ✦ Document Objects Reference

Related Item: navigator.cpuClass property.

platform
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The navigator.platform value reflects the operating system according to the

codes established initially by Netscape for its userAgent values. Table 28-3 lists

typical values of several operating systems.

In the long list of browser detection functions in Listing 28-1, I elected not to use

the navigator.platform property because it is not backward-compatible.

Meanwhile, the other properties in that listing are available to all scriptable

browsers.

Table 28-3 Sample navigator.platform Values

navigator.platform Operating System

Win98 Windows 98

WinNT Windows NT

Win16 Windows 3.x

Mac68k Mac (680x0 CPU)

MacPPC Mac (PowerPC CPU)

SunOS Solaris

Notice that the navigator.platform property does not go into versioning of

the operating system. Only the raw name is provided.

Example on the CD-ROM

Related Item: navigator.userAgent property.

plugins
Value: Array of Plug-in Objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � (�) (�) (�)

On the
CD-ROM

navigator.plugins

(c) ketabton.com: The Digital Library

679Chapter 28 ✦ The Navigator and Other Environment Objects

You rarely find users involved with Web page design who have not heard about

plug-ins — the technology that enables you to embed new media types and foreign

file formats directly into Web documents. For instance, instead of requiring you to

view a video clip in a separate window atop the main browser window, a plug-in

enables you to make that viewer as much a part of the page design as a static

image. The same goes for audio players, 3-D animation, chat sessions — even the

display of Microsoft Office documents, such as PowerPoint and Word.

When many browsers launch, they create an internal list of available plug-ins

located in a special directory/folder (the name varies with the browser and operat-

ing system). The navigator.plugins array lists the items registered at launch

time. Each plug-in is, itself, an object with several properties.

The Windows version of IE4+ supports this property only to return an empty

array. In other words, the property is defined, but it does not contain plugin
objects — a nonexistent object in IE for Windows. But on the Macintosh side, IE5+

supports the way Netscape Navigator allows script inspection of MIME types and

plug-ins. To see ways of determining plug-in support for IE/Windows, see the sec-

tion “Plug-in detection in IE/Windows” later in this chapter.

Having your scripts investigate the visitor’s browser for a particular installed

plug-in is a valuable capability if you want to guide the user through the process of

downloading and installing a plug-in (if the system does not have it currently).

Example
For examples of the plugins property and for details about using the plugin

object, see the section “plugin object” later in this chapter. Also see Chapter 32 on

embedded element objects.

Related Items: navigator.mimeTypes property; plugin object.

product
productSub
vendor
vendorSub

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

With the browser engine behind Navigator 6 being developed in an Open Source

environment, any number of vendors might adapt the engine for any number of

browser products. Some distributors of the browser, such as ISPs and computer

manufacturers, may also tailor the browser slightly for their customers. These four

properties can reveal some of the pedigree of the browser currently running scripts

on the page.

Two categories of properties — one for the product, one for the vendor — each

have a pair of fields (a primary and secondary field) that can be populated as the

navigator.product

(c) ketabton.com: The Digital Library

680 Part III ✦ Document Objects Reference

vendor sees fit. Some of this information may contain data, such as an identifying

number of the build (development version) used to generate the product. A script

at a computer maker’s Web site page may look for a particular series of values in

these properties to welcome the customer or to advise the customer of a later build

version that is recommended as an upgrade.

Example on the CD-ROM

Related Item: navigator.userAgent property.

securityPolicy
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The Netscape-specific securityPolicy property returns a string that indicates

which cryptographic scheme is implemented in the current browser. Typical string

values include US and CA domestic policy and export policy. Each policy

indicates the number of bits used for encryption, usually governed by technology

export laws. While the property returns a value in NN4, it returns only an empty

string in the first release of NN6. The corresponding IE property is

document.security.

Related Item: document.security property.

systemLanguage
userLanguage

Value: Language Code String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These two IE-specific properties report the language code of the written lan-

guage specified for the operating system. For most operating system versions,

these two values are the same. Some Windows versions enable you to set system

preferences differently for the base operating system and the language for a given

user. Both of these property values can differ from the

navigator.browserLanguage property if the user downloads and installs the

browser with the system set to one language and then changes the system settings

to another language.

On the
CD-ROM

navigator.systemLanguage

(c) ketabton.com: The Digital Library

681Chapter 28 ✦ The Navigator and Other Environment Objects

Example on the CD-ROM

Related Item: navigator.browserLanguage property.

userAgent
See appCodeName.

userLanguage
See systemLanguage.

userProfile
Value: userProfile Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The userProfile property returns a reference to the IE userProfile object.

This object provides scripted access to a limited range of user profile settings with

the user’s permission. For details, see the userProfile object discussion later in

this chapter.

Related Item: userProfile object.

vendor
vendorSub

See product.

Methods
javaEnabled()

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Although most modern browsers ship with Java support turned on, a user can

easily turn it off in a preferences dialog box (or even elect not to install it with the

browser). Some corporate installations may also turn off Java as the default setting

for their users. If your pages specify Java applets, you don’t normally have to worry

On the
CD-ROM

navigator.javaEnabled()

(c) ketabton.com: The Digital Library

682 Part III ✦ Document Objects Reference

about this property because the applet tag’s alternate text fills the page in the

places where the applet normally goes. But if you script applets from JavaScript

(via LiveConnect, Chapter 44), you don’t want your scripts making calls to applets

or Java classes if Java support is turned off. In a similar vein, if you create a page

with JavaScript, you can fashion two different layouts depending on the availability

of Java.

The navigator.javaEnabled() method returns a Boolean value reflecting the

preferences setting. This value does not reflect Java support in the browser neces-

sarily (and especially not the Java version supported), but rather whether Java is

turned on inside the browsers for which this method is supported. A script cannot

change the browser’s preference setting, but its value does change immediately

upon toggling the Preference setting.

Related Items: navigator.preference() method; LiveConnect (Chapter 44).

preference(name [, val])
Returns: Preference value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The user normally sets browser preferences. Until NN4 and the advent of signed

scripts, almost all settings were completely out of view of scripts — even when it

made sense to expose them. But with signed scripts and the navigator.prefer-
ence() method, many NN preferences are now viewable and settable with the

user’s permission. These preferences were exposed to scripting primarily for the

purposes of centralized configuration administration for enterprise installations. I

don’t recommend altering the browser preferences of a public Web site visitor, even

if given permission to do so — the user may not know how much trouble you can

cause.

When you want to read a particular preference setting, you pass only the prefer-

ence name parameter with the method. Reading a preference requires a signed

script with the target of UniversalPreferencesRead (see Chapter 46). To change

a preference, pass both the preference name and the value (with a signed script tar-

get of UniversalPreferencesWrite).

Table 28-4 shows a handful of scriptable preferences in NN4+ (learn more

about these settings at http://developer.netscape.com/docs/manuals/
communicator/preferences/). Most items have corresponding entries in the

preferences window in NN4+ (shown in parentheses). Notice that the preference

name uses dot syntax. The cookie security level is a single preference value with a

matrix of integer values indicating the level.

navigator.preference()

(c) ketabton.com: The Digital Library

683Chapter 28 ✦ The Navigator and Other Environment Objects

Table 28-4 navigator.preference() Values Sampler

navigator.preference Value Preference Dialog Listing

general.always_load_images Boolean (Advanced) Automatically loads
images

security.enable_java Boolean (Advanced) Enables Java

javascript.enabled Boolean (Advanced) Enables JavaScript

browser.enable_style_sheets Boolean (Advanced) Enables style sheets

autoupdate.enabled Boolean (Advanced) Enables AutoInstall

navigator.preference Value Preference Dialog Listing

network.cookie.cookieBehavior 0 (Advanced) Accepts all cookies

network.cookie.cookieBehavior 1 (Advanced) Accepts only
cookies that get sent back to
the originating server

network.cookie.cookieBehavior 2 (Advanced) Disables cookies

network.cookie.warnAboutCookies Boolean (Advanced) Warns you before
accepting a cookie

One preference to watch out for is the one that disables JavaScript. If you disable
JavaScript, only the user can reenable JavaScript by manually changing the setting
in the Navigator preferences dialog box.

Example (with Listing 28-2) on the CD-ROM

Related Item: navigator.javaEnabled() method.

taintEnabled()
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Navigator 3 featured a partially implemented security feature called data tainting,

which was turned off by default. This feature was replaced by signed scripts; but

for backward compatibility, the navigator.taintEnabled() method is available

in more modern browsers that don’t employ tainting (in which case, the method

always returns false). Do not employ this method in your scripts.

On the
CD-ROM

Tip

navigator.taintEnabled()

(c) ketabton.com: The Digital Library

684 Part III ✦ Document Objects Reference

mimeType Object

Properties Methods Event Handlers

description

enabledPlugin

type

suffixes

Syntax
Accessing mimeType properties:

navigator.mimeTypes[i].property
navigator.mimeTypes[“MIMEtype”].property

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

About this object
A mimeType object is essentially an entry in the internal array of MIME types

about which the browser knows. NN3+, for example, ships with an internal list of

more than five dozen MIME types. Only a handful of these types are associated with

helper applications or plug-ins. But add to that list all of the plug-ins and other

helpers you’ve added, and the number of MIME types can grow to more than a

hundred.

The MIME type for the data is usually among the first bits of information to

arrive at a browser from the server. A MIME type consists of two pieces of informa-

tion: type and subtype. The traditional way of representing these pieces is as a pair

separated by a slash, as in

text/html
image/gif
audio/wav
video/quicktime
application/pdf
application/x-zip-compressed

If a file does not contain the MIME type “header” (or a CGI program sending the

file does not precede the transmission with the MIME type string), the browser

receives the data as a text/plain MIME type. When you load the file from a local

hard drive, the browser looks to the filename’s extension (the suffix after the

period) to figure out the file’s type.

mimeTypeObject

(c) ketabton.com: The Digital Library

685Chapter 28 ✦ The Navigator and Other Environment Objects

Regardless of the way it determines the MIME type of the incoming data, the

browser then acts according to instructions it maintains internally. You can see

these settings by looking at preferences settings usually associated with the name

“Applications.”

By having the mimeType object available to JavaScript, your page can query a

visitor’s NN3+ or IE5+/Mac browser to discover whether it has a particular MIME

type listed currently and whether the browser has a corresponding plug-in installed

and enabled. In such queries, the mimeType and plugin objects work together to

help scripts make these determinations. (For plug-in detection for IE/Windows, see

the section “Plug-in detection in IE/Windows” later in this chapter.)

Because of the close relationship between mimeType and plugin objects, I save

the examples of using these objects and their properties for a section later in this

chapter. There you can see how to build functions into your scripts that enable you

to examine how well a visitor’s NN3+ and IE5+/Mac browser is equipped for either a

MIME type or data that requires a specific plug-in. In the meantime, be sure that

you understand the properties of both objects.

Properties
description

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

While registering with the browser at launch time, plug-ins provide the browser

with an extra field of information: a plain-language description of the plug-in. If a

particular MIME type has a plug-in associated with it and enabled for it, the plug-

in’s description passes through to become the description of the mimeType object.

For example, the Adobe Acrobat plug-in (whose MIME type is application/pdf)

supplies the following description fields:

(NN3/NN4) Acrobat
(NN6) Acrobat (*.pdf)

When a MIME type does not have a plug-in associated with it (either no plug-in is

installed or a helper application is used instead), you often see the type property

repeated in the description field.

Related Items: None.

enabledPlugin
Value: plugin Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

mimeTypeObject.enabledPlugin

(c) ketabton.com: The Digital Library

686 Part III ✦ Document Objects Reference

The descriptions of the mimeType and plugin objects seem to come full circle

when you reach the mimeType.enabledPlugin property. The reason is that the

property is a vital link between a known MIME type and the plug-in that the browser

engages when data of that type arrives.

Knowing which plug-in is associated with a MIME type is very important when

you have more than one plug-in capable of playing a given MIME type. For example,

the Crescendo MIDI audio plug-in can take the place of the default audio plug-in if

you set up your browser that way. Therefore, all MIDI data streams play through the

Crescendo plug-in. If you prefer to have your Web page’s MIDI sound played only

through another plug-in, such as LiveAudio in NN, your script needs to know which

plug-in is set to receive your data and perhaps alert the user accordingly. These

kinds of conflicts are not common, except where there is strong competition for

players of various audio and video media. For other kinds of content, each plug-in

developer typically creates a new type of data that has a unique MIME type. But

you have no guarantee of such uniqueness, so I highly recommend a careful check

of MIME type and plug-in if you want your page to look professional.

The enabledPlugin property evaluates to a plugin object. Therefore, you can

dig a bit deeper with this information to fetch the name or filename properties of a

plug-in directly from a mimeType object. You can use The Evaluator (with NN3+ and

IE5+/Mac) to study the relationship between mimeType and plugin objects:

1. Enter the following statement into the bottom text box to examine the proper-

ties of a mimeType object:

navigator.mimeTypes[0]

Notice that the enabledPlugin property returns an object.

2. Inspect the plugin object from the bottom text box.

navigator.mimeTypes[0].enabledPlugin

You then see properties and values for a plugin object (described later in this

chapter).

3. Check the plugin object for a different mimeType object by using a different

index value:

navigator.mimeTypes[7].enabledPlugin

The mimeTypes array index values vary almost with every browser, depending

on what the user has installed. Therefore, do not rely on the index position in a

script to assume that a particular mimeType object is in that position on all

browsers.

Example
See the section “Looking for MIME Types and Plug-ins” later in this chapter.

Related Item: plugin object.

mimeTypeObject.enabledPlugin

(c) ketabton.com: The Digital Library

687Chapter 28 ✦ The Navigator and Other Environment Objects

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

A mimeType object’s type property is the combination of the type and subtype

commonly used to identify the kind of data coming from the server. CGI programs,

for example, typically precede a data transmission with a special header string in

the following format:

Content-type: type/subtype

This string prompts a browser to look up how to treat an incoming data stream

of this kind. As you see later in this chapter, knowing whether a particular MIME

type is listed in the navigator.mimeTypes array is not enough. A good script must

dig deeper to uncover additional information about what is truly available for your

data.

The type property has a special place in the mimeType object in that its string

value can act as the index to the navigator.mimeTypes array. Therefore, to get

straight to the mimeType object for, say, the audio/wav MIME type, your script can

reference it directly through the mimeTypes array:

navigator.mimeTypes[“audio/wav”]

This same reference can then get you straight to the enabled plug-in (if any) for

the MIME type:

navigator.mimeTypes[“audio/wav”].enabledPlugin

Example
See the section “Looking for MIME Types and Plug-ins” later in this chapter.

Related Item: description property.

suffixes
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

Every MIME type has one or more filename extensions, or suffixes, associated

with it. You can read this information for any mimeType object via the suffixes
property. The value of this property is a string. If the MIME type has more than one

suffix associated with it, the string contains a comma-delimited listing as in

mpg, mpeg, mpe

mimeTypeObject.suffixes

(c) ketabton.com: The Digital Library

688 Part III ✦ Document Objects Reference

Multiple versions of a suffix have no distinction among them. Those MIME types

that are best described in four or more characters (derived from a meaningful

acronym, such as mpeg) have three-character versions to accommodate the

“8-dot-3” filename conventions of MS-DOS and its derivatives.

Example
See the section “Looking for MIME Types and Plug-ins” later in this chapter.

Related Items: None.

plugin Object

Properties Methods Event Handlers

name refresh()

filename

description

length

Syntax
Accessing plugin object properties or method:

navigator.plugins[i].property | method()
navigator.plugins[“plugInName”].property | method()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

About this object
Understanding the distinction between the data embedded in documents that

summon the powers of plug-ins and those items that browsers consider to be plug-

ins is important. The former are made part of the document object by way of

<EMBED> tags. If you want to control the plug-in via LiveConnect, you can gain

access through the document.embedName object (see Chapter 44).

The subject here, however, is the way the plug-ins work from the browser’s per-

spective: The software items registered with the browser at launch time stand

ready for any matching MIME type that comes from the Net. One of the main pur-

poses of having these objects scriptable is to let your scripts determine whether a

desired plug-in is currently registered with the browser and to help with installing a

plug-in.

pluginObject

(c) ketabton.com: The Digital Library

689Chapter 28 ✦ The Navigator and Other Environment Objects

The close association between the plugin and mimeType objects, demonstrated

by the mimeType.enabledPlugin property, is equally visible coming from the

direction of the plug-in. A plugin object evaluates to an array of MIME types that

the plug-in interprets. Use The Evaluator (Chapter 13) to experiment with MIME

types from the point of view of a plug-in. Begin by finding the name of the plug-in

that your browser uses for a common audio MIME type:

1. Enter the following statement into the top text box:

navigator.mimeTypes[“audio/wav”].enabledPlugin.name

If you use NN3+, the value returned is probably “LiveAudio”; for IE5+/Mac,

the name is probably a version of QuickTime. Copy the name into the clip-

board so that you can use it in subsequent statements. The remaining exam-

ples show “LiveAudio” where you should paste in your plug-in’s name.

2. Enter the following statement into the top text box:

navigator.plugins[“LiveAudio”].length

Instead of the typical index value for the array notation, use the actual name

of the plug-in. This expression evaluates to a number indicating the total num-

ber of different MIME types that the plug-in recognizes.

3. Look at the first MIME type specified for the plug-in by entering the following

statement into the top text box:

navigator.plugins[“LiveAudio”][0].type

The two successive pairs of square brackets is not a typo: Because the entry in

the plugins array evaluates to an array itself, the second set of square brackets

describes the index of the array returned by plugins[“LiveAudio”]— a period

does not separate the sets of brackets. In other words, this statement evaluates to

the type property of the first mimeType object contained by the LiveAudio plug-in.

I doubt that you will have to use this kind of construction much; if you know the

name of the desired plug-in, you know what MIME types it already supports. In most

cases, you come at the search from the MIME type direction and look for a specific,

enabled plug-in. See the section “Looking for MIME Types and Plug-ins” later in this

chapter for details on how to use the plugin object in a production setting.

Properties
name
filename
description
length

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

pluginObject.name

(c) ketabton.com: The Digital Library

690 Part III ✦ Document Objects Reference

The first three properties of the plugin object provide descriptive information

about the plug-in file. The plug-in developer supplies the name and description. It’s

unclear whether future versions of plug-ins will differentiate themselves from ear-

lier ones via either of these fields. Thus, while there is no explicit property that

defines a plug-in’s version number, that information may be part of the string

returned by the name or description properties.

Be aware that plug-in authors may not assign the same name to every OS plat-

form version of a plug-in. Be prepared for discrepancies across platforms. You

should hope that the plug-in that you’re interested in has a uniform name across

platforms because the value of the name property can function as an index to the

navigator.plugins array to access a particular plugin object directly.

Another piece of information available from a script is the plug-in’s filename. On

some platforms, such as Windows, this data comes in the form of a complete path-

name to the plug-in DLL file; on other OS platforms, only the plug-in filename

appears.

Finally, the length property of a plugin object counts the number of MIME types

that the plug-in recognizes (but is not enabled for necessarily). Although you can

use this information to loop through all possible MIME types for a plug-in, a more

instructive way is to have your scripts approach the issue via the MIME type (as

discussed later in this chapter).

Example
See the section “Looking for MIME Types and Plug-ins” later in this chapter.

Related Item: mimeType.description property.

Methods
refresh()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�)

You may have guessed that many browsers determine their lists of installed plug-

ins while they launch. If you drop a new plug-in file into the plug-ins

directory/folder, you have to quit the browser and relaunch it before the browser

sees the new plug-in file. But that isn’t a very friendly approach if you take pains to

guide a user through downloading and installing a new plug-in file. The minute the

user quits the browser, you have a slim chance of getting that person right back.

That’s where the refresh() method comes in.

The refresh() method is directed primarily at the browser, but the syntax of

the call reminds the browser to refresh just the plug-ins:

navigator.plugins.refresh()

pluginObject.refresh()

(c) ketabton.com: The Digital Library

691Chapter 28 ✦ The Navigator and Other Environment Objects

Interestingly, this command works only for adding a plug-in to the existing collec-

tion. If the user removes a plug-in and invokes this method, the removed one stays

in the navigator.plugins array — although it may not be available for use. Only

the act of quitting and relaunching the browser makes a plug-in removal take full

effect.

Related Items: None.

Looking for MIME Types and Plug-ins
If you go to great lengths to add new media and data types to your Web pages,

then you certainly want your visitors to reap the benefits of those additions. But

you cannot guarantee that they have the requisite plug-ins installed to accommo-

date that fancy data. Most modern browser versions provide a bit of internal

“smarts” by noticing when data requiring an uninstalled plug-in is about to load and

trying to help the user install a missing plug-in. You may wish, however, to take

more control over the process by examining the user’s browser plug-in functionality

prior to loading the external data file.

The best source of information, when available, is the software developer of the

plug-in. Macromedia, for example, provides numerous technical notes on its Web

site (www.macromedia.com) about plug-in detection for its various plug-ins and ver-

sions. Unfortunately, that kind of assistance is not always easy to find from other

vendors.

A lot of the discussion thus far in this chapter addresses the objects that make

plug-in and MIME type support detection possible in some browsers. Netscape for

NN3 initially introduced these objects. Since then, they have been adopted by IE5

for the Macintosh only. Microsoft makes it possible — but not easy — to determine

whether a particular plug-in is available for IE/Windows. The approach for

IE/Windows is entirely different from what I have covered so far; if you wish to per-

form cross-browser detection, you have to branch your code accordingly. I outline

each approach next in its own section, starting with the NN3+ and IE5+/Mac way.

Overview: using mimeType and plugin objects
The value of performing your own inspection of plug-in support is that you can

maintain better control of your site visitors who don’t have the necessary plug-in

yet. Rather than merely providing a link to the plug-in’s download site, you can

build a more complete interface around the download and installation of the plug-in

without losing your visitor. I have some suggestions about such an interface at the

end of this discussion.

How you go about inspecting a visitor’s plug-in library depends on what informa-

tion you have about the data file or stream and how precise you must be in locating

a particular plug-in. Some plug-ins may override MIME type settings that you nor-

mally expect to find in a browser. For example, a newly installed audio plug-in may

take over for Netscape’s LiveAudio plug-in (often without the user’s explicit permis-

sion). Another issue that complicates matters is that the same plug-in may have a

different name (navigator.plugins[i].name property), depending on the operat-

ing system. Therefore, searching your script for the presence of a plug-in by name

is not good enough if the name differs from the Macintosh version to the Windows

version. With luck, this naming discrepancy will resolve itself over time as plug-in

developers understand the scripter’s need for consistency across platforms.

(c) ketabton.com: The Digital Library

692 Part III ✦ Document Objects Reference

One other point that can help you decide the precise approach to take is which

information about the plug-in — support for the data MIME type or the presence of

a particular plug-in — is important to your page and scripts. If your scripts rely on

the existence of a plug-in that you can script via LiveConnect, then be sure that the

plug-in is present and enabled for the desired MIME type (so that the plug-in is

ensured of loading when it encounters a reference to the URL of the external data).

But if you care only that a plug-in of any kind supports your data’s MIME type, then

you can simply make sure that any plug-in is enabled for your MIME type.

To help you jump-start the process in your scripts, I discuss three utility func-

tions you can use in your own scripts. These functions are excerpts from a long list-

ing (Listing 28-3), which is located in its entirety on the book’s CD-ROM. The pieces

not shown here are merely user interface elements that enable you to experiment

with these functions.

Verifying a MIME type
Listing 28-3a is a function whose narrow purpose is to determine if the browser

currently has plug-in support enabled for a given MIME type (in the type/subtype
format as a string). The first if construction verifies that there is a mimeType

object for the supplied MIME type string. If such an object exists, then the next if
construction determines whether the enabledPlugin property of the mimeType

object returns a valid object. If so, the function returns true— meaning that the

MIME type has a plug-in (of unknown supplier) available to play the external media.

Listing 28-3a: Verifying a MIME Type

// Pass “<type>/<subtype>” string to this function to find
// out if the MIME type is registered with this browser
// and that at least some plug-in is enabled for that type.
function mimeIsReady(mime_type) {

if (navigator.mimeTypes[mime_type]) {
if (navigator.mimeTypes[mime_type].enabledPlugin) {

return true
}

}
return false

}

Verifying a plug-in
In Listing 28-3b, you let JavaScript see if the browser has a specific plug-in regis-

tered in the navigator.plugins array. This method approaches the installation

question from a different angle. Instead of querying the browser about a known

MIME type, the function inquires about the presence of a known plug-in. But

because more than one registered plug-in can support a given MIME type, this func-

tion explores one step further to see whether at least one of the plug-in’s MIME

types (of any kind) is enabled in the browser.

(c) ketabton.com: The Digital Library

693Chapter 28 ✦ The Navigator and Other Environment Objects

Listing 28-3b: Verifying a Plug-in

// Pass the name of a plug-in for this function to see
// if the plug-in is registered with this browser and
// that it is enabled for at least one MIME type of any kind.
function pluginIsReady(plug_in) {

plug_in = plug_in.toLowerCase()
for (var i = 0; i < navigator.plugins.length; i++) {

if (navigator.plugins[i].name.toLowerCase().indexOf(plug_in) != -1) {
for (var j = 0; j < navigator.plugins[i].length; j++) {

if (navigator.plugins[i][j].enabledPlugin) {
return true

}
}
return false

}
}
return false

}

The parameter for the pluginIsReady() function is a string consisting of the

plug-in’s name. As discussed earlier, the precise name may vary from OS to OS or

from version to version. The function here assumes that you aren’t concerned

about plug-in versioning. It also assumes (with reasonably good experience behind

the assumption) that a brand-name plug-in contains a string with the brand in it.

Thus, the pluginIsRead() function simply looks for the existence of the passed

name within the plugin object’s name property. For example, this function accepts

“QuickTime” as a parameter and agrees that there is a match with the plug-in

named “QuickTime Plug-in 4.1.1”. The script loops through all registered plug-

ins for a substring comparison (converting both strings to all lowercase to help

overcome discrepancies in capitalization).

Next comes a second repeat loop, which looks through the MIME types associ-

ated with a plug-in (in this case, only a plug-in whose name contains the parameter

string). Notice the use of the strange, double-array syntax for the most nested if
statement: For a given plug-in (denoted by the i index), you have to loop through

all items in the MIME types array (j) connected to that plug-in. The conditional

phrase for the last if statement has an implied comparison against null (see

another way of explicitly showing the null comparison in Listing 28-3a). The condi-

tional statement evaluates to either an object or null, which JavaScript can accept

as true or false, respectively. The point is that if an enabled plug-in is found for

the given MIME type of the given plug-in, then this function returns true.

Verifying both plug-in and MIME type
The last utility function (Listing 28-3c) is the safest way of determining whether a

visitor’s browser is equipped with the “right stuff” to play your media. This function

requires both a MIME type and plug-in name as parameters and also makes sure

that both items are supported and enabled in the browser before returning true.

(c) ketabton.com: The Digital Library

694 Part III ✦ Document Objects Reference

Listing 28-3c: Verifying Plug-in and MIME Type

// Pass “<type>/<subtype>” and plug-in name strings for this
// function to see if both the MIME type and plug-in are
// registered with this browser, and that the plug-in is
// enabled for the desired MIME type.
function mimeAndPluginReady(mime_type, plug_in) {

if (mimeIsReady(mime_type)) {
var plugInOfRecord = navigator.mimeTypes[mime_type].enabledPlugin
plug_in = plug_in.toLowerCase()
for (var i = 0; i < navigator.plugins.length; i++) {

if (navigator.plugins[i].name.toLowerCase().indexOf(plug_in) != -1) {
if (navigator.plugins[i] == plugInOfRecord) {

return true
}

}
}

}
return false

}

This function starts by calling the mimeIsReady() function from Listing 28-3a.

After that, the function resembles the one in Listing 28-3b until you reach the most

nested statements. Here, instead of looking for any old MIME type, you insist on the

existence of an explicit match between the MIME type passed as a parameter and

an enabled MIME type associated with the plug-in. To see how these functions work

on your NN3+ or IE5+/Mac browser, open the complete file (lst28-03.htm) from

the CD-ROM. The actual listing also includes code that branches around IE for

Windows and other browsers that don’t support this way of inspecting MIME types

and plug-ins.

Managing manual plug-in installation
If your scripts determine that a visitor does not have the plug-in your data

expects, you may want to consider providing an electronic guide to installing the

plug-in. One way to do this is to open a new frameset (in the main window). One

frame can contain step-by-step instructions with links to the plug-in’s download

site. The download site’s page can appear in the other frame of this temporary win-

dow. The steps must take into account all installation requirements for every plat-

form, or, alternatively, you can create a separate installation document for each

unique class of platform. For instance, you must decode Macintosh files frequently

from binhex format and then uncompress them before you move them into the

plug-ins folder. Other plug-ins have their own, separate installation program. The

final step should include a call to

navigator.plugins.refresh()

to make sure that the browser updates its internal listings. After that, the script

can return to the document.referrer, which should be the page that sends the

visitor to the installation pages. All in all, the process is cumbersome — it’s not like

downloading a Java applet. But if you provide some guidance, you stand a better

(c) ketabton.com: The Digital Library

695Chapter 28 ✦ The Navigator and Other Environment Objects

chance of the user returning to play your cool media. Also consider letting the

browser’s own updating facilities handle the job (albeit not as smoothly in many

cases) by simply loading the data into the page ready or not.

“Plug-in” detection in IE/Windows
IE4+ provides some built-in facilities that may take the place of plug-in detection

in some circumstances. First of all, it’s important to recognize that IE/Windows

does not use the term “plug-in” in the same way that Netscape and IE/Mac use it.

Due to the integration between IE and the Windows operating system, IE/Windows

employs system-wide ActiveX controls to handle the job of rendering external con-

tent. Some of these controls are designed to be accessed from outside their walls,

thus allowing client-side scripts to get and set properties or invoke methods built

into the controls. These controls behave a lot like plug-ins, so you frequently see

them referenced as “plug-ins,” as they are in this book.

IE/Windows prefers the <OBJECT> tag for both loading the plug-in (ActiveX con-

trol) and assigning external content to it. One of the attributes of the OBJECT ele-

ment is CLASSID, which points to a monstrously long string of hexadecimal

numbers known as the GUID (Globally Unique Identifier). When the browser

encounters one of these GUIDs, it looks into the Windows Registry to get the path

to the actual plug-in file. If the plug-in is not installed on the user’s machine, then

the object doesn’t load and any other HTML nested inside the <OBJECT> tag ren-

ders instead. Thus, you can display a static image placeholder or HTML message

about the lack of the plug-in. But plug-in detection comes in most handy when your

scripts need to communicate with the plug-in, such as directing an embedded

Windows Media Player plug-in to change sound files or to play. When you build

code around a scriptable plug-in, your scripts should make sure that the plug-in

object is indeed present so they don’t generate errors.

The idea of using the <OBJECT> tag instead of the <EMBED> tag is that the

<OBJECT> tag loads a specific plug-in, whereas the MIME type of the data refer-

enced by the <EMBED> tag lets the browser determine which plug-in to use for that

MIME type. It’s not uncommon, therefore, to see an <OBJECT> tag definition sur-

round an <EMBED> tag — both referencing the same external data file. If the opti-

mum plug-in fails to load, the <EMBED> tag is observed, and the browser tries to find

any plug-in for the file’s MIME type.

With an OBJECT element as part of the HTML page, the element itself is a valid

object — even if the plug-in fails to load. Therefore, you must do more to validate

the existence of the loaded plug-in than simply test for the existence of the OBJECT

element. To that end, you need to know at least one scriptable property of the plug-

in. Unfortunately, not all scriptable plug-ins are fully documented, so you occasion-

ally must perform some detective work to determine which scriptable properties

are available. While you’re on the search for clues, you can also determine the ver-

sion of the plug-in and make it a minimum version that your OBJECT element allows

to load.

Tracking down plug-in details
Not everyone has access to the Microsoft programming development environ-

ments (for example, Visual Basic) through which you can find out all kinds of infor-

mation about an installed ActiveX control. If you don’t have access, you can still dig

deep to get most (if not all) of the information you need. The tools you can use

(c) ketabton.com: The Digital Library

696 Part III ✦ Document Objects Reference

include the Windows Registry Editor (regedit), The Evaluator (Chapter 13), and,

of course, your text editor and IE4+/Windows browser. The following steps take you

through finding out everything you need to know about the Windows Media Player

control.

1. If you don’t know the GUID for the Media Player (most people get it by copy-

ing someone else’s code that employs it), you can use the Registry Editor

(regedit.exe) to find it. Open the Registry Editor (in Win95/98/NT, choose

Run from the Start menu and enter regedit; if that option is not available in

your Windows version, search for the file named regedit).

2. Expand the HKEY_CLASSES_ROOT folder.

3. Scroll down to the nested folder named CLSID, and click that folder.

4. Choose Edit/Find, and enter Windows Media Player. If you were searching

for a different plug-in, you would enter an identifying name (usually the prod-

uct name) in this place.

5. Keep pressing F3 (Find Next) until the editor lands upon a folder whose

default value (in the right side of the Registry Editor window) shows Windows
Media Player.

6. The number inside curly braces next to the highlighted folder is the plug-in’s

GUID. Right-click the number and choose Copy Key Name. Paste the number

into your document somewhere for future reference. Eventually, it will be part

of the value assigned to the CLASSID attribute of the OBJECT element.

7. Expand the highlighted folder.

8. Click the folder named InprocServer32. The default value should show a

pathname to the actual ActiveX control for the Windows Media Player plug-in.

9. Right-click the (Default) name for the path and choose Modify. The full path-

name is visible in an editable field.

10. Armed with this pathname information, open My Computer and locate the

actual file inside a directory listing.

11. Right-click the file and choose Properties.

12. Click the Version tab (if present).

13. Copy the version number (generally four sets of numbers delimited by com-

mas), and paste it into your document for future reference. Eventually, it will

be assigned to the CODEBASE attribute of the OBJECT element.

You are now ready to try loading the plug-in as an object and look for proper-

ties you can test for.

14. Add an OBJECT tag to The Evaluator source code. This can go inside the

HEAD or just before the </BODY> tag. For example, your tag should look some-

thing like the following:

<OBJECT ID=”wmp” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=1,0,0,0”>
</OBJECT>

(c) ketabton.com: The Digital Library

697Chapter 28 ✦ The Navigator and Other Environment Objects

Copy and paste the numbers for the GUID and version. Two points to watch

out for: First, be sure that the GUID value is preceded by CLSID: in the value

assigned to CLASSID; second, be sure the version numbers are preceded by

the prefix shown.

15. Load (or reload) the page in IE4+/Windows.

At this point, the wmp object should exist. If the associated plug-in loads suc-

cessfully, then the wmp object’s properties include properties exposed by the

plug-in.

16. Enter wmp into the bottom text box to inspect properties of the wmp object. Be

patient: It may take many seconds for the retrieval of all properties.

In case you can’t readily distinguish between the OBJECT element object

properties and properties of the scriptable plug-in, scroll down to the

wmp.innerHTML property and its values. When an object loads successfully,

any parameters that it accepts are reflected in the innerHTML for the OBJECT

element. Each PARAM element has a name — the name of one of the scriptable

properties of the plug-in.

17. Look for one of the properties that has some kind of value by default (in other

words, other than an empty string or false). In Windows Media Player, this

can be CreationDate. Use this property as an object detection condition in

scripts that need to access the Windows Media Player properties or methods:

if (wmp && wmp.CreationDate) {
// statements that “talk to” plug-in

}

Setting a minimum version number
The four numbers that you grab in Step 13 in the previous section represent the

version of the plug-in as installed on your computer. Unless you have a way of veri-

fying that your external content runs on earlier versions of the plug-in (if there are

earlier versions), you can safely specify your version as the minimum.

Specificity rankings for the four numbers of a version decrease as you move from

left to right. For example, version 1,0,25,2 is later than 1,0,0,0; version 2,0,0,0 is later

than both of them. If you specify 1,0,25,2, and the user has 1,0,24,0 installed, the

plug-in does not load and the object isn’t available for scripting. On the other hand,

a user with 1,0,26,0 has the object present because the CODEBASE attribute for the

version specifies a minimum allowable version to load.

When an object requires VBScript
Not all objects that load via the OBJECT element are scriptable through JScript.

Occasionally, an object is designed so that its properties are exposed only to

VBScript. This happens, for example, with the Microsoft Windows Media Rights

Manager (DRM) object. To find out if the browser (operating system) is equipped

with DRM, your page loads the object via the OBJECT element as usual; however, a

separate VBScript section must access the object to test for the existence of one of

its properties. Because script segments written in either language can access each

other, this isn’t a problem provided you know what the property or method is for the

object. The following fragment from the Head section of a document demonstrates

(c) ketabton.com: The Digital Library

698 Part III ✦ Document Objects Reference

how JavaScript and VBScript can interact so that JavaScript code can branch based

on the availability of DRM:

<HEAD>
<OBJECT ID=”drmObj” HEIGHT=”1” WIDTH=”1”
CLASSID=”CLSID:760C4B83-E211-11D2-BF3E-00805FBE84A6”></OBJECT>
<SCRIPT LANGUAGE=”VBScript”>
function hasDRM()

on error resume next
drmObj.StoreLicense(“”)
if (err.number = 0) then

hasDRM = true
else

hasDRM = false
end if

end function
</SCRIPT>
<SCRIPT LANGUAGE=”JavaScript”>
var gHasDRM
if (drmObj && hasDRM()) {

gHasDRM = true
} else {

gHasDRM = false
}
</SCRIPT>
</HEAD>

The JavaScript segment sets a Boolean global variable to indicate whether the

object has loaded correctly. Part of the job is accomplished via the hasDRM() func-

tion in the VBScript segment. From VBScript, the drmObj object responds to the

StoreLicense() method call, but it throws a VBScript error indicating that no

parameter was sent along with the method. Any subsequent scripts in this page can

use the gHasDRM global variable as a conditional expression before performing any

actions requiring the object (which works in tandem with the Windows Media

Player).

screen Object
Properties Methods Event Handlers

availHeight

availLeft

availTop

availWidth

bufferDepth

colorDepth

fontSmoothingEnabled

height

screen

(c) ketabton.com: The Digital Library

699Chapter 28 ✦ The Navigator and Other Environment Objects

Properties Methods Event Handlers

pixelDepth

updateInterval

width

Syntax
Accessing screen object properties:

(All) screen.property
(IE4+/NN6) [window.]navigator.screen.property

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

About this object
Browsers other than from the earliest generations provide a screen object that

lets your scripts inquire about the size and color settings of the video monitor used

to display a page. Properties are carefully designed to reveal not only the raw width

and height of the monitor (in pixels), but also what the available width and height

are once you take into account the operating system’s screen-hogging interface ele-

ments (for example, the Windows taskbar and the Mac menu bar).

You can also access some of these property values in Navigator 3 if you use

LiveConnect to access Java classes directly. Example code for this approach

appears in the individual property listings.

Internet Explorer 4 provides a screen object, although it appears as a property

of the window object in the IE4+ object model. Only three properties of the IE4+

screen object —height, width, and colorDepth— share the same syntax as

NN4+’s screen object.

Properties
availHeight
availWidth
height
width

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

screen.availHeight

(c) ketabton.com: The Digital Library

700 Part III ✦ Document Objects Reference

With the availability of window sizing methods in version 4 browsers and later,

your scripts may want to know how large the user’s monitor is. This is particularly

important if you set up an application to run in kiosk mode, which occupies the

entire screen. Two pairs of properties let scripts extract the dimensions of the

screen. All dimensions are in pixels.

You can extract the gross height and width of the monitor from the

screen.height and screen.width properties. Thus, a monitor rated as an 800 ×
600 monitor returns values of 800 and 600 for width and height, respectively.

But not every pixel of the screen’s gross size is available as displayable area for a

window. To the rescue come the screen.availWidth and screen.availHeight
properties. For example, 32-bit Windows operating systems display the taskbar. The

default location for this bar is at the bottom of the window, but users can reorient it

along any edge of the screen. If the default behavior of always showing the taskbar

is in force, the bar takes away from the screen real estate available for window dis-

play (unless you intentionally size or position a window so that part of the window

extends under the bar). When along the top or bottom edge of the screen, the

taskbar occupies 28 vertical pixels; when positioned along one of the sides, the bar

occupies 60 horizontal pixels. On the Macintosh platform, the 20-pixel-deep menu

bar occupies a top strip of the screen. While you can position and size windows so

the menu bar partially covers them, it is not a good idea to open a window in (or

move a window into) that location.

You can use the available screen size values as settings for window properties.

For example, to arrange a window so that it occupies all available space on the

monitor, you must position the window at the top left of the screen and then set the

outer window dimensions to the available sizes as follows:

function maximize() {
window.moveTo(0,0)
window.resizeTo(screen.availWidth, screen.availHeight)

}

The preceding function positions the window appropriately on the Macintosh

just below the menu bar so that the menu bar does not obscure the window. If,

however, the client is running Windows and the user positions the taskbar at the

top of the screen, the window is partially hidden under the taskbar (you cannot

query the available screen space’s coordinates). Also in Windows, the appearance

is not exactly the same as a maximized window. See the discussion of the

window.resizeTo() method in Chapter 16 for more details. Note that IE/Mac gen-

erally returns a value for screen.availHeight that is about 24 pixels fewer than

the actual available height (even after taking into account the Mac menu bar).

For Navigator 3, you can use LiveConnect to access a native Java class that

reveals the overall screen size (not the available screen size). If the user runs

Navigator 3 and Java is enabled, you can place the following script fragment in the

Head portion of your document to set variables with screen width and height:

var toolkit = java.awt.Toolkit.getDefaultToolkit()
var screenSize = toolkit.getScreenSize()

The screenSize variable is an object whose properties (width and height)

contain the pixel measures of the current screen. This LiveConnect technique

works only in NN3+ (IE does not provide direct access to Java classes). In fact, you

screen.availHeight

(c) ketabton.com: The Digital Library

701Chapter 28 ✦ The Navigator and Other Environment Objects

can also extract the screen resolution (pixels per inch) in the same manner. The fol-

lowing statement, added after the preceding ones, sets the variable resolution to

that value:

var resolution = toolkit.getScreenResolution()

Related Items: window.innerHeight, window.innerWidth,

window.outerHeight, window.outerWidth properties; window.moveTo(),

window.resizeTo() methods.

availLeft
availTop

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The availLeft and availTop properties return the pixel measure of where (on

the Windows OS) the available space of the screen begins. The only time these val-

ues are anything other than zero is when a user positions the taskbar along the left

or top edges of the screen. For example, if the user positions the taskbar along the

top of the screen, you do not want to position a window any higher than the 28 pix-

els occupied by the taskbar. Oddly, the availTop measure does not take into

account the Macintosh menu bar, but Mac browsers treat the 0,0 coordinate for a

window movement to be just below the menu bar anyway. Therefore, for NN4+, you

can use the availLeft and availTop properties to move the window in a position

where you can resize it to occupy the screen:

window.moveTo(screen.availLeft, screen.availTop)
window.resizeTo(screen.availWidth, screen.availHeight)

There are no corresponding properties for IE.

Example on the CD-ROM

Related Items: screen.availWidth, screen.availHeight properties;

window.moveTo() method.

bufferDepth
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

On the
CD-ROM

screen.bufferDepth

(c) ketabton.com: The Digital Library

702 Part III ✦ Document Objects Reference

By default, IE does not use any offscreen buffering of page content. But adjusting

the bufferDepth property enables you to turn on offscreen buffering and control

the color depth of the buffer. Using offscreen buffering may improve the smooth-

ness of path-oriented animation through positioning.

The default value (buffering turned off) is 0. By setting the property to -1, you

instruct IE to set the color depth of the offscreen buffer to the same color depth as

the screen (as set in the control panel). This should be the optimum value, but you

can also force the offscreen buffer to have one of the following bit depths: 1, 4, 8,

15, 16, 24, or 32.

Related Items: screen.colorDepth, screen.pixelDepth properties.

colorDepth
pixelDepth

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

You can design a page with different color models in mind because your scripts

can query the client to find out how many colors the user sets the monitor to dis-

play. This is helpful if you have more subtle color schemes that require 16-bit color

settings or images tailored to specific palette sizes.

Both the screen.colorDepth and screen.pixelDepth properties return the

number of color bits to which the color client computer’s video display control

panel is set. The screen.colorDepth value may take into account a custom color

palette; so for NN4+, you may prefer to rely only on the screen.pixelDepth value.

(IE4+, however, supports only the screen.colorDepth property of this pair.) You

can use this value to determine which of two image versions to load, as shown in

the following script fragment that runs as the document loads.

if (screen.colorDepth > 8) {
document.write(“<IMG SRC=’logoHI.jpg’ HEIGHT=’60’ WIDTH=’100’”)

} else {
document.write(“<IMG SRC=’logoLO.jpg’ HEIGHT=’60’WIDTH=’100’”)

}

In this example, the logoHI.jpg image is designed for 16-bit displays or better,

while the colors in logoLO.jpg are tuned for 8-bit display.

While LiveConnect in NN3 has a way to extract what appears to be the

pixelDepth equivalent, the Java implementation is flawed. You do not always get

the correct value, so I don’t recommend that NN3 users rely on this tactic.

Related Item: screen.bufferDepth property.

screen.colorDepth

(c) ketabton.com: The Digital Library

703Chapter 28 ✦ The Navigator and Other Environment Objects

fontSmoothingEnabled
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Some versions of the Windows OS have a Display control panel setting for

“Smooth Edges” on screen fonts. The fontSmoothingEnabled property lets your

script see the state of that setting. This setting can affect, for example, which style

sheet you enable because it has font specifications that look good only when

smoothing is enabled. A default installation of Windows has this feature turned off.

This property is not available on non-Windows versions of IE.

Related Items: None.

updateInterval
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The updateInterval property is the number of milliseconds between screen

updates. The default value of zero lets IE arbitrate among the demands for screen

updates in a highly animated setting. If you set this value to a large number, then

more screen updates are accumulated in a buffer — preventing some animated

steps from updating the screen.

Related Items: None.

userProfile Object

Properties Methods Event Handlers

addReadRequest()

clearRequest()

doReadRequest()

getAttribute()

userProfile

(c) ketabton.com: The Digital Library

704 Part III ✦ Document Objects Reference

Syntax
Accessing userProfile object methods:

(IE4+) [window.]navigator.userProfile.method()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

About this object
The userProfile object is an IE-specific (and Windows, at that) property that

acts as the gateway to the user profile information that the client computer collects

from the user. You can retrieve none of this information via JavaScript without per-

mission from the user. Access to this information is performed in a strict sequence,

part of which enables you to define how the request for this private information is

worded when the user is presented with the request.

User profile data consists of nearly 30 fields of personal information about the

user’s contact information. Each of these fields has a name, which by and large con-

forms to the vCard standard. Your scripts can request one or more specific fields

from the list, rather than having to deal with the entire set of fields.

The sequence for accessing this data entails four basic steps:

1. Put the request for each vCard field into a queue that is maintained in the

browser’s memory (via the addReadRequest() method).

2. Execute the batch request, which displays a detailed dialog box to the user

(via the doReadRequest() method). If a user profile is in effect, the user sees

which fields you are requesting plus the data in the vCard. The user then has

the chance to deselect one or more of your choices — or disallow access com-

pletely.

3. Get each attribute by name (via the getAttribute() method). You invoke

this method once for each vCard field.

4. Clear the queue of requests (via the clearRequest() method).

Returned values are strings. Thus, you can prefill the customer information for

an order form or capture the information in hidden fields that are submitted with a

visible form.

Listing 28-4 demonstrates the use of the four key methods of the userProfile
object. After the page loads, it attempts to extract the data from every vCard field

and displays both the attribute name and the value as associated with the current

user profile in a table. Notice that the names of the attributes are hard-wired

because the object does not provide a list of implemented attributes.

userProfile

(c) ketabton.com: The Digital Library

705Chapter 28 ✦ The Navigator and Other Environment Objects

Listing 28-4: Accessing userProfile Data

<HTML>
<HEAD>
<TITLE>userProfile Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var attrs = [“Business.City”,”Business.Country”,”Business.Fax”,

“Business.Phone”,”Business.State”,”Business.StreetAddress”,
“Business.URL”,”Business.Zipcode”,”Cellular”,”Company”,
“Department”,”DisplayName”,”Email”,”FirstName”,
“Gender”,”Home.City”,”Home.Country”,”Home.Fax”,
“Home.Phone”,”Home.State”,”Home.StreetAddress”,
“Home.Zipcode”,”Homepage”,”JobTitle”,”LastName”,
“MiddleName”,”Notes”,”Office”,”Pager”]

function loadTable() {
// make sure this executes only in IE4+ for Windows
if ((navigator.userAgent.indexOf(“Win”) != -1) && navigator.userProfile) {

var newRow, newCell, attrValue
// queue up requests for every vCard attribute
for (var i = 0; i < attrs.length; i++) {

navigator.userProfile.addReadRequest(“vCard.” + attrs[i])
}
// dispatch the request to let user accept or deny access
navigator.userProfile.doReadRequest(1, “JavaScript Bible”)
// append rows to the table with attribute/value pairs
for (var j = 0; j < attrs.length; j++) {

newRow = document.all.attrTable.insertRow(-1)
newRow.bgColor = “#FFFF99”
newCell = newRow.insertCell(0)
newCell.innerText = “vCard.” + attrs[j]
newCell = newRow.insertCell(1)
// get the actual value
attrValue = navigator.userProfile.getAttribute(“vCard.” + attrs[j])
newCell.innerHTML = (attrValue) ? attrValue : “ ”

}
// clean up after ourselves
navigator.userProfile.clearRequest()

} else {
alert(“This example requires IE4+ for Windows.”)

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”loadTable()”>
<H1>userProfile Object</H1>
<HR>
<TABLE ID=”attrTable” BORDER=1 CELLPADDING=5>

Continued

userProfile

(c) ketabton.com: The Digital Library

706 Part III ✦ Document Objects Reference

Listing 28-4 (continued)

<TR BGCOLOR=”#CCFFFF”>
<TH>vCard Property<TH>Value

</TR>

</TABLE>
</BODY>
</HTML>

It appears that the newer the version of Windows that the user runs, the more

likely that user profile data is available. Even so, there may be little more than name

and address data for those users who are careful not to fill out optional fields of

Microsoft Web site forms requesting personal information.

Comparable information may be available from NN4+ users on any OS platform

via signed scripts that access LDAP preferences. See the discussion earlier in this

chapter about the navigator.preference() method.

Methods
addReadRequest(“attributeName”)

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Before the user is asked for permission to reveal any personal information, you

must queue up requests — even if there is just one field in which you are interested.

For each field, use the addReadRequest() method and specify as the parameter a

string of the attribute name. Acceptable attribute names are as follows:

vCard.Business.City
vCard.Business.Country
vCard.Business.Fax
vCard.Business.Phone
vCard.Business.State
vCard.Business.StreetAddress
vCard.Business.URL
vCard.Business.Zipcode
vCard.Cellular
vCard.Company
vCard.Department
vCard.DisplayName
vCard.Email
vCard.FirstName
vCard.Gender
vCard.Home.City

userProfile.addReadRequest()

(c) ketabton.com: The Digital Library

707Chapter 28 ✦ The Navigator and Other Environment Objects

vCard.Home.Country
vCard.Home.Fax
vCard.Home.Phone
vCard.Home.State
vCard.Home.StreetAddress
vCard.Home.Zipcode
vCard.Homepage
vCard.JobTitle
vCard.LastName
vCard.MiddleName
vCard.Notes
vCard.Office
vCard.Pager

All attribute values are case-insensitive.

This method returns a Boolean value of true if the addition to the queue suc-

ceeds. A returned value of false usually means that the attribute value is not valid

or that a request for that attribute name is already in the queue. If you fail to clear

the queue after compiling one list of attributes, attempts to read the attribute result

in a return value of false.

Example on the CD-ROM

Related Items: clearRequest(), doReadRequest(), and getAttribute()
methods.

clearRequest()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

After retrieving the attributes whose names are stacked in the request queue,

invoke the clearRequest() method to empty the queue. It is always good pro-

gramming practice to clean up after yourself, especially when security concerns are

involved.

Example on the CD-ROM

Related Items: addReadRequest(), doReadRequest(), and getAttribute()
methods.

On the
CD-ROM

On the
CD-ROM

userProfile.clearRequest()

(c) ketabton.com: The Digital Library

708 Part III ✦ Document Objects Reference

doReadRequest(reasonCode, identification[,
domain[, path[, expiration]]])

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Once the names of the desired vCard attributes are stacked in the queue (via the

addReadRequest() method), invoke the doReadRequest() method to prompt the

user for the permission that your scripts need to gain access to the data. The user

sees a detailed dialog box that lists the vCard fields you are requesting, as well as a

description about your reason for wanting the data and who you are.

The first required parameter is an integer representing one of the standard

descriptions as defined by the Internet Privacy Working Group. Associated text is

displayed in the permission request dialog box that the user sees. The codes and

their strings are as follows:

Code Description String

0 Used for system administration.

1 Used for research and/or product development.

2 Used for completion and support of current transaction.

3 Used to customize the content and design of a site.

4 Used to improve the content of the site, including advertisements.

5 Used for notifying visitors about updates to the site.

6 Used for contacting visitors for marketing of services or products.

7 Used for linking other collected information.

8 Used by site for other purposes.

9 Disclosed to others for customization or improvement of the content and
design of the site.

10 Disclosed to others, who may contact you, for marketing of services and/or
products.

11 Disclosed to others, who may contact you, for marketing of services and/or
products; you have the opportunity to ask a site not to do this.

12 Disclosed to others for any other purpose.

While these description strings are fixed, you do have an opportunity to include

some customized information in the second parameter. The parameter is intended

to enable you to identify the Web site or organization requesting the information.

userProfile.doReadRequest()

(c) ketabton.com: The Digital Library

709Chapter 28 ✦ The Navigator and Other Environment Objects

Standards recommendations suggest you include a URL to the site, as well. In any

case, the second parameter can be any string. But it is not treated like HTML, so do

not attempt to include a clickable link here.

Two optional parameters enable you to specify a domain and path within that

domain for which the user permissions are to apply. Both of these parameters

closely mirror their usage in cookies, but they also depend on the capability to set

an expiration date via the fifth parameter. Through IE5.5, however, the expiration

date parameter is ignored. Therefore, permissions expire when the user quits the

browser (just like temporary cookies do).

Example on the CD-ROM

Related Items: addReadRequest(), clearRequest(), and getAttribute()
methods.

getAttribute(“attributeName”)
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The getAttribute() method attempts to retrieve the vCard data based on the

items queued via the addReadRequest() method. A permission dialog box pro-

vides the user an opportunity to choose which of the requested items to reveal or

to deny all access to the information. Only one attribute name is permitted as a

parameter to the getAttribute() method, requiring that you invoke the method

for each attribute you want to fetch.

Example on the CD-ROM

Related Items: addReadRequest(), clearRequest(), and doReadRequest()
methods.

✦ ✦ ✦

On the
CD-ROM

On the
CD-ROM

userProfile.getAttribute()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Event Objects

Prior to NN4 and IE4, user and system actions —

events — were captured predominantly by event han-

dlers defined as attributes inside HTML tags. For instance,

when a user clicked a button, the click event triggered the

onClick event handler in the tag. That handler may invoke a

separate function or perform some inline JavaScript script.

Even so, the events themselves were rather dumb: Either an

event occurred or it didn’t. Where an event occurred (that is,

the screen coordinates of the pointer at the moment the

mouse button was clicked) and other pertinent event tidbits

(for example, whether a keyboard modifier key was pressed at

the same time) were not part of the equation. Until the

Version 4 browsers, that is.

While remaining fully backward-compatible with the event

handler mechanism of old, Version 4 browsers had the first

event model that turned events into first-class objects whose

properties automatically carry a lot of relevant information

about the event when it occurs. These properties are fully

exposed to scripts, allowing pages to respond more intelli-

gently about what the user does with the page and its

elements.

Another new aspect of Version 4 event models was the

notion of “event propagation.” It was possible to have an

event processed by an object higher up the element contain-

ment hierarchy whenever it made sense to have multiple

objects share one event handler. That the event being pro-

cessed carried along with it information about the intended

target, plus other golden information nuggets, made it possi-

ble for event handler functions to be smart about processing

the event without requiring an event handler call to pass all

kinds of target-specific information.

Unfortunately, the joy of this newly found power is tem-

pered by the forces of object model incompatibility. No fewer

than three event object models are in use today: The one initi-

ated by NN4 (whose importance diminishes with each passing

day as users migrate to other, newer browsers); the IE4+

model; and the model adopted by the W3C DOM Level 2 as

implemented in NN6+. Many of these distinctions are

addressed in the overviews of the object models in Chapter

15. In this chapter, you find out more about the actual event

objects that contain all the “goodies.” Where possible, cross-

browser concerns are addressed.

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The “life” of an event
object

Event support in
different browser
generations

Retrieving information
from an event

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

712 Part III ✦ Document Objects Reference

Why “Events”?
Graphical user interfaces are more difficult to program than the “old-fashioned”

command-line interface. With a command-line or menu-driven system, users were

intentionally restricted in the types of actions they could take at any given moment.

The world was very modal, primarily as a convenience to programmers who led

users through rigid program structures.

That all changed in a graphical user interface, such as Windows, MacOS, X

Window System, and all others derived from the pioneering work of the Xerox Star

system. The challenge for programmers is that a good user interface in this realm

must make it possible for users to perform all kinds of actions at any given moment:

roll the mouse, click a button, type a key, select text, choose a pull-down menu

item, and so on. To accommodate this, a program (or, better yet, the operating sys-

tem) must be on the lookout for any possible activity coming from all input ports,

whether it be the mouse, keyboard, or network connection.

A common methodology to accomplish this at the operating system level is to

look for any kind of event, whether it comes from user action or some machine-gen-

erated activity. The operating system or program then looks up how it should pro-

cess each kind of event. Such events, however, must have some smarts about them

so that the program knows what and where on the screen the event is.

What an event knows (and when it knows it)
Although the way to reference an event object varies a bit among the three event

models, the one concept they all share is that an event object is created the instant

the event action occurs. For instance, if you click a button, an event object is cre-

ated in the browser’s memory. As the object is created, the browser assigns values

to its properties — properties that reflect numerous characteristics of that specific

event. For a click event, that information includes the coordinates of the click and

which mouse button was used to generate the event. To be even more helpful, the

browser does some quick calculations to determine that the coordinates of the

click event coincide with the rectangular space of a button element on the screen.

Therefore, the event object has as one of its properties a reference to the “screen

thing” that you clicked on.

Most event object properties (all of them in some event models) are read-only,

because an event object is like a snapshot of an event action. If the event model

were to allow modification of event properties, performing both potentially useful

and potentially unfriendly actions would be possible. For example, how frustrating

would it be to a user to attempt to type into a text box only to have a keystroke

modified between the actual key press and then have a totally different character

appear in the text box? On the other hand, perhaps it may be useful in some situa-

tions to make sure that anything typed into a text box is converted to uppercase

characters, no matter what is typed. Each event model brings its own philosophy to

the table in this regard. For example, the IE4+ event model allows keyboard charac-

ter events to be modified by script; the NN4 and W3C DOM event models do not.

Perhaps the most important aspect of an event object to keep in mind is that it

exists only as long as scripts process the event. An event can trigger an event han-

dler — usually a function. That function, of course, can invoke other functions. As

long as statements are still executing in response to the event handler, the event

(c) ketabton.com: The Digital Library

713Chapter 29 ✦ Event Objects

object and all its properties are still “alive” and available to your scripts. But after

the last script statement runs, the event object reverts to an empty object.

The reason an event object has such a brief life is that there can be only one

event object at a time. In other words, no matter how complex your event handler

functions are, they are executed serially (for experienced programmers: there is

one execution thread). The operating system buffers events that start to bunch up

on each other. Except in rare cases in which the buffer gets full and events are not

recorded, event handlers are executed in the order in which the events occur.

The static Event object
Up to this point, the discussion has been about the event object (with a lower-

case “e”), which is one instance of an event, with all the properties associated with

that specific event action. In the NN4 and W3C DOM event models, there is also a

static Event object (with an uppercase “E”). In the W3C DOM event model are addi-

tional subcategories of the Event object. These subcategories are all covered later

in this chapter, but they are introduced here to draw the contrast between the

event and Event objects. The former, as you’ve seen, is a transient object with

details about a specific event action; the latter serves primarily as a holder of

event-related constant values that scripts can use. The static Event object is

always available to scripts inside any window or frame. If you want to see a list of

all Event object properties in NN4 and NN6+, use The Evaluator (Chapter 13): enter

Event into the bottom text box (also check out the KeyEvent object in NN6+).

The static Event object also turns out to be the object from which event objects

are cloned. Thus, the static Event object has a number of properties and methods

that apply to (are inherited by) the event objects created by event actions. These

relationships are more important in the W3C DOM event model, which builds upon

the DOM’s object-oriented tendencies to implement the event model.

Event Propagation
Prior to the Version 4 browsers, an event fired on an object. If an event handler

was defined for that event and that object, the handler executed; if there was no

event handler, the event just disappeared into the ether. Newer browsers, however,

send events on a longer ride, causing them to propagate through the document

object models. As you know by now, three propagation models exist, one for each

of the event models in use today: NN4, IE4+, and W3C DOM as implemented in

NN6+. Conceptually, the NN4 and IE4+ propagation models are diametrically oppo-

site each other. But the W3C DOM model manages to implement both models simul-

taneously, albeit with all new syntax so as not to step on the older models.

At the root of all three models is the notion that every event has a target. For

user-initiated actions, this is fairly obvious. If you click a button or type in a text

box, that button is the target of your mouse-related event; the text box is the target

of your keyboard event. System-generated events are not so obvious, such as the

onLoad event after a page finishes loading. In all event models, this event fires on

the window object. What distinguishes the event propagation models is how an

event reaches its target, and what, if anything, happens to the event after it finishes

executing the event handler associated with the target.

(c) ketabton.com: The Digital Library

714 Part III ✦ Document Objects Reference

NN4 event propagation
Although the installed base of NN4 continues to diminish, its propagation model

initiated some concepts that are found in the modern W3C DOM event propagation

model. The name for the model is event capture.

In NN4, all events propagate from the top of the document object hierarchy

(starting with the window object) downward to the target object. For example, if

you click a button in a form, the click event passes through the window and docu-
ment (and, if available, layer) objects before reaching the button (the form object is

not part of the propagation path). This propagation happens instantaneously, so

that there is no performance penalty by this extra journey.

The event that passes through the window, document, and layer objects is a fully

formed event object, complete with all properties relevant to that event action.

Therefore, if the event were processed at the window level, one of the event

object’s properties is a reference to the target object, so that the event handler

scripts at the window level can find out information, such as the name of the button

and even get a reference to its enclosing form.

By default, event capture is turned off. To instruct the window, document, or

layer object levels to process that passing click object requires turning on event

capture for the window, document, and/or layer object.

Enabling NN4 event capture
All three objects just mentioned —window, document, and layer—have a

captureEvents() method. You use this method to enable event capture at any of

those object levels. The method requires one or more parameters, which are the

event types (as supplied by Event object constants) that the object should cap-

ture, while letting all others pass untouched. For example, if you want the window
object to capture all keyPress events, you include the following statement in a

script that executes as the page loads:

window.captureEvents(Event.KEYPRESS)

Defining event handlers in the intended targets is also a good idea, even if they

are empty (for example, onKeyPress=””) to help NN4 generate the event in the

first place. If you want the window to capture multiple event types, string the event

type constants together, separated by the pipe character:

window.captureEvents(Event.KEYPRESS | Event.CLICK)

Now you must assign an action to the event at the window’s level for each event

type. More than likely, you have defined functions to execute for the event. Assign a

function reference to the event handler by setting the handler property of the win-
dow object:

window.onKeyPress = processKeyEvent
window.onClick = processClickEvent

Hereafter, if a user clicks a button or types into a field inside that window, the

events are processed by their respective window-level event handler functions.

Turning off event capture
As soon as you enable event capture for a particular event type in a document,

that capture remains in effect until the page unloads or you specifically disable the

capture. You can turn off event capture for each event via the window, document, or

layer releaseEvents() method. The releaseEvents() method takes the same

(c) ketabton.com: The Digital Library

715Chapter 29 ✦ Event Objects

kind of parameters —Event object type constants — as the captureEvents()
method.

The act of releasing an event type simply means that events go directly to their

intended targets without stopping elsewhere for processing, even if an event han-

dler for the higher-level object is still defined. And because you can release individ-

ual event types based on parameters set for the releaseEvents() method, other

events being captured are not affected by the release of others.

To demonstrate not only the captureEvents() and releaseEvents() methods,

but other event model techniques, I present a series of several versions of the same

document. Each successive version implements an added feature to help you expe-

rience the numerous interactions among events and event handling methods. The

document merely contains a few buttons, plus some switches to enable and disable

various methods being demonstrated in the section. A layer object is also thrown

into the mixture because a lot of impetus for capturing and modifying event han-

dling comes from application of layers in a document.

Listing 29-1 is the first example, which shows the basic event capture and release

from the outermost document level. A checkbox lets you enable or disable the doc-

ument-level capture of click events (all checkboxes in these examples use

onMouseUp event handlers to avoid getting in the way of tracing click events).

Because all click events are being captured by the outermost document, even

clicks to the layer’s buttons get trapped by the outermost document when

captureEvents() is set.

Listing 29-1: NN4 Event Capture and Release

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

} else {
document.releaseEvents(Event.CLICK)

}
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”)

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Basic document-level capture of Event.CLICK
<HR>
<FORM>
<INPUT TYPE=”checkbox” onMouseDown=”setDocCapture(this.checked)” CHECKED>Enable
Document Capture
<HR>

Continued

(c) ketabton.com: The Digital Library

716 Part III ✦ Document Objects Reference

Listing 29-1 (continued)

<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1”
onClick=”alert(‘Event finally reached Button:’ + this.name)”>

</FORM>

<LAYER ID=”layer1” LEFT=200 TOP=150 BGCOLOR=”coral”>
<HEAD>
</HEAD>
<BODY>
<FORM>

<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton1’”

NAME=”layerButton1”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton2’”
NAME=”layerButton2”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

With document-level event capture turned on (the default), all click events are

trapped by the document’s onclick event handler property, a function that alerts

the user that the event was captured by the top document. Because all click
events for buttons are trapped there, even click events of the layer’s buttons are

trapped at the top. But if you turn off event capture, the events reach their intended

targets.

If the logic of the setDocCapture() function seems backwards to you, recall
that when the onMouseDown event fires on the checkbox, its state is the opposite
of what it is being changed to.

In Listing 29-2, I add some code (shown in boldface) that lets the layer object

capture click events whenever the outer document event capture is turned off.

Inside the <LAYER> tag, a script sets the layer to capture click events. Therefore, if

you disable the outer document capture, the click event goes straight to the

main1 button and to the layer event capture. Event capture in the layer object pre-

vents the events from ever reaching the buttons in the layer, unless you disable

event capture for both the document and the layer.

Listing 29-2: Document and Layer Event Capture and Release

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>

Note

(c) ketabton.com: The Digital Library

717Chapter 29 ✦ Event Objects

function setDocCapture(enable) {
if (!enable) {

document.captureEvents(Event.CLICK)
} else {

document.releaseEvents(Event.CLICK)
}

}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK)

} else {
document.layer1.releaseEvents(Event.CLICK)

}
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”)

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Document-level and/or Layer-level capture of Event.CLICK
<HR>
<FORM>
<INPUT TYPE=”checkbox” onMouseDown=”setDocCapture(this.checked)” CHECKED>Enable
Document Capture
<INPUT TYPE=”checkbox” onMouseDown=”setLayerCapture(this.checked)”
CHECKED>Enable Layer Capture
<HR>
<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1”

onClick=”alert(‘Event finally reached Button:’ + this.name)”>
</FORM>

<LAYER ID=”layer1” LEFT=200 TOP=150 BGCOLOR=”coral”>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function doLayerClick(e) {

if (e.target.type == “button”) {
alert(“Captured in layer1”)

}
}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</SCRIPT>
</HEAD>
<BODY>
<FORM>
 layer1
<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton1’”

NAME=”layerButton1”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton2’”

Continued

(c) ketabton.com: The Digital Library

718 Part III ✦ Document Objects Reference

Listing 29-2 (continued)

NAME=”layerButton2”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

Passing events toward their targets
If you capture a particular event type, your script may need to perform some lim-

ited processing on that event before letting it reach its intended target. For exam-

ple, perhaps you want to do something special if a user clicks an element with the

Shift metakey pressed. In that case, the function that handles the event at the docu-

ment level inspects the event’s modifiers property to determine if the Shift key was

pressed at the time of the event. If the Shift key was not pressed, you want the

event to continue on its way to the element that the user clicked.

To let an event pass through the object hierarchy to its target, you use the

routeEvent() method, passing as a parameter the event object being handled in

the current function. A routeEvent() method does not guarantee that the event

will reach its intended destination, because another object in between may have

event capturing for that event type turned on and will intercept the event. That

object, too, can let the event pass through with its own routeEvent() method.

Listing 29-3 demonstrates event routing by adding onto the document being built

in previous examples. While the clickable button objects are the same, additional

powers are added to the document and layer function handlers that process events

that come their way. For each of these event-capturing objects, you have additional

checkbox settings to allow or disallow events from passing through after each level

has processed them.

The default settings for the checkboxes are like the ones in Listing 29-2, where

event capture (for the click event) is set for both the document and layer
objects. Clicking any button causes the document object’s event handler to process

and none other. But if you then enable the checkbox that lets the event continue,

you find that click events on the layer buttons cause alerts to display from both the

document and layer object event handler functions. If you then also let events con-

tinue from the layer object, a click on the button displays a third alert, showing that

the event has reached the buttons. Because the main1 button is not in the layer,

none of the layer object event handling settings affect its behavior.

Listing 29-3: NN4 Capture, Release, and Route Events

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

(c) ketabton.com: The Digital Library

719Chapter 29 ✦ Event Objects

} else {
document.releaseEvents(Event.CLICK)
document.forms[0].setDocRte.checked = false
docRoute = false

}

}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK)

} else {
document.layer1.releaseEvents(Event.CLICK)
document.forms[0].setLyrRte.checked = false
layerRoute = false

}
}
var docRoute = false
var layerRoute = false
function setDocRoute(enable) {

docRoute = !enable
}
function setLayerRoute(enable) {

layerRoute = !enable
}
function doMainClick(e) {

if (e.target.type == “button”) {
alert(“Captured in top document”)
if (docRoute) {

routeEvent(e)
}

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Capture, Release, and Routing of Event.CLICK
<HR>
<FORM>
<INPUT TYPE=”checkbox” NAME=”setDocCap”
onMouseDown=”setDocCapture(this.checked)” CHECKED>Enable Document Capture
<INPUT TYPE=”checkbox” NAME=”setDocRte”
onMouseDown =”setDocRoute(this.checked)”>And let event continue<P>
<INPUT TYPE=”checkbox” NAME=”setLyrCap”
onMouseDown =”setLayerCapture(this.checked)” CHECKED>Enable Layer Capture
<INPUT TYPE=”checkbox” NAME=”setLyrRte”
onMouseDown =”setLayerRoute(this.checked)”>And let event continue
<HR>
<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1”

onClick=”alert(‘Event finally reached Button:’ + this.name)”>
</FORM>

<LAYER ID=”layer1” LEFT=200 TOP=150 BGCOLOR=”coral”>

Continued

(c) ketabton.com: The Digital Library

720 Part III ✦ Document Objects Reference

Listing 29-3 (continued)

<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function doLayerClick(e) {

if (e.target.type == “button”) {
alert(“Captured in layer1”)
if (layerRoute) {

routeEvent(e)
}

}
}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</SCRIPT>
</HEAD>
<BODY>
<FORM>
 layer1
<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton1’”

NAME=”layerButton1”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton2’”
NAME=”layerButton2”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

In some cases, your scripts need to know if an event that is passed onward by

routeEvent() method activated a function that returns a value. This knowledge is

especially valuable if your event must return a true or false value to let an object

know if it should proceed with its default behavior (for example, whether a link

should activate its HREF attribute URL or cancel after the event handler evaluates

to return true or return false). When a function is invoked by the action of a

routeEvent() method, the return value of the destination function is passed back

to the routeEvent() method. That value, in turn, can be returned to the object

that originally captured the event.

Event traffic cop
The last scenario is one in which a higher-level object captures an event and

directs the event to a particular object elsewhere in the hierarchy. For example, you

could have a document-level event handler function direct every click event whose

modifiers property indicates that the Alt key was pressed to a Help button object

whose own onClick event handler displays a help panel (perhaps shows an other-

wise hidden layer).

You can redirect an event to any object via the handleEvent() method. This

method works differently from the others described in this chapter, because the

object reference of this method is the reference of the object to handle the event

(c) ketabton.com: The Digital Library

721Chapter 29 ✦ Event Objects

(with the event object being passed as a parameter, such as the other methods). As

long as the target object has an event handler defined for that event, it will process

the event as if it had received the event directly from the system (even though the

event object’s target property may be some other object entirely).

To demonstrate how this event redirection works, Listing 29-4 includes the final

additions to the document being built so far in this chapter. The listing includes

mechanisms that allow all click events to be sent directly to the second button in

the layer (layerButton2). The previous interaction with document and layer event

capture and routing is still intact, although you cannot have event routing and redi-

rection on at the same time.

The best way to see event redirection at work is to enable both document and

layer event capture (the default settings). When you click the main1 button, the

event reaches only as far as the document-level capture handler. But if you then

turn on the “Send event to ‘layerButton2’” checkbox associated with the document

level, a click of the main1 button reaches both the document-level event handler

and layerButton2, even though the main1 button is not anywhere near the layer

button in the document object hierarchy. Click other checkboxes to work with the

interaction of event capturing, routing, and redirection.

Listing 29-4: NN4 Redirecting Events

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

} else {
document.releaseEvents(Event.CLICK)
document.forms[0].setDocRte.checked = false
docRoute = false

}

}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK)

} else {
document.layer1.releaseEvents(Event.CLICK)
document.forms[0].setLyrRte.checked = false
layerRoute = false

}
}
var docRoute = false
var layerRoute = false
function setDocRoute(enable) {

docRoute = !enable
document.forms[0].setDocShortCircuit.checked = false
docShortCircuit = false

}

Continued

(c) ketabton.com: The Digital Library

722 Part III ✦ Document Objects Reference

Listing 29-4 (continued)

function setLayerRoute(enable) {
layerRoute = !enable
document.forms[0].setLyrShortCircuit.checked = false
layerShortCircuit = false

}

var docShortCircuit = false
var layerShortCircuit = false
function setDocShortcut(enable) {

docShortCircuit = !enable
if (docShortCircuit) {

document.forms[0].setDocRte.checked = false
docRoute = false

}
}
function setLayerShortcut(enable) {

layerShortCircuit = !enable
if (layerShortCircuit) {

document.forms[0].setLyrRte.checked = false
layerRoute = false

}
}

function doMainClick(e) {
if (e.target.type == “button”) {

alert(“Captured in top document”)
if (docRoute) {

routeEvent(e)
} else if (docShortCircuit) {

document.layer1.document.forms[0].layerButton2.handleEvent(e)
}

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Redirecting Event.CLICK
<HR>
<FORM>
<INPUT TYPE=”checkbox” NAME=”setDocCap”
onMouseDown=”setDocCapture(this.checked)” CHECKED>Enable Document Capture
<INPUT TYPE=”checkbox” NAME=”setDocRte”
onMouseDown =”setDocRoute(this.checked)”>And let event continue
<INPUT TYPE=”checkbox” NAME=”setDocShortCircuit”
onMouseDown =”setDocShortcut(this.checked)”>Send event to ‘layerButton2’<P>
<INPUT TYPE=”checkbox” NAME=”setLyrCap”
onMouseDown =”setLayerCapture(this.checked)” CHECKED>Enable Layer Capture
<INPUT TYPE=”checkbox” NAME=”setLyrRte”
onMouseDown =”setLayerRoute(this.checked)”>And let event continue

(c) ketabton.com: The Digital Library

723Chapter 29 ✦ Event Objects

<INPUT TYPE=”checkbox” NAME=”setLyrShortCircuit”
onMouseDown =”setLayerShortcut(this.checked)”>Send event to ‘layerButton2’<P>
<HR>
<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1”

onClick=”alert(‘Event finally reached Button:’ + this.name)”>
</FORM>

<LAYER ID=”layer1” LEFT=200 TOP=200 BGCOLOR=”coral”>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function doLayerClick(e) {

if (e.target.type == “button”) {
alert(“Captured in layer1”)
if (layerRoute) {

routeEvent(e)
} else if (layerShortCircuit) {

document.forms[0].layerButton2.handleEvent(e)
}

}
}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</SCRIPT>
</HEAD>
<BODY>
<FORM>
 layer1
<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton1’”

NAME=”layerButton1”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

<P><INPUT TYPE=”button” VALUE=”Button ‘layerButton2’”
NAME=”layerButton2”
onClick=”alert(‘Event finally reached Button:’ + this.name)”></P>

</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

IE4+ event propagation
Event propagation in IE4+ flows in the opposite direction of the NN4 event cap-

ture model. IE’s model is called event bubbling, in which events “bubble” upward

from the target object through the element containment hierarchy. It’s important to

distinguish between the old-fashioned document object hierarchy (followed in the

NN4 event capture model) and the more modern notion of HTML element contain-

ment — a concept that carries to the W3C DOM as well.

A good way to demonstrate the effect of event bubbling — a behavior that is

turned on by default — is to populate a simple document with lots of event handlers

to see which ones fire and in what order. Listing 29-5 has onClick event handlers

defined for a button inside a form, the form itself, and other elements and object all

the way up the hierarchy out to the window.

(c) ketabton.com: The Digital Library

724 Part III ✦ Document Objects Reference

Listing 29-5: Event Bubbling Demonstration

<HTML onClick=”alert(‘Event is now at the HTML element.’)”>
<HEAD>
<TITLE>Event Bubbles</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

window.onclick = winEvent
document.onclick = docEvent
document.body.onclick = docBodEvent

}
function winEvent() {

alert(“Event is now at the window object level.”)
}
function docEvent() {

alert(“Event is now at the document object level.”)
}
function docBodEvent() {

alert(“Event is now at the BODY element.”)
}

</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>Event Bubbles</H1>
<HR>
<FORM onClick=”alert(‘Event is now at the FORM element.’)”>
<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1”

onClick=”alert(‘Event started at Button: ‘ + this.name)”>
</FORM>
</BODY>
</HTML>

You can try this listing in IE4+ and even NN6, because the latter observes event

bubbling. But you will notice differences in the precise propagation among

IE4+/Windows, IE4+/Macintosh, and NN6. But first, notice that after you click the

button in Listing 29-5, the event first fires at the target: the button. Then the event

bubbles upward through the HTML containment to fire at the enclosing FORM ele-

ment; next to the enclosing BODY element; and so on. Where the differences occur

are after the BODY element. Table 29-1 shows the objects for which event handlers

are defined in Listing 29-5 and which objects have the click event bubble to them

in the three classes of browsers.

Table 29-1 Event Bubbling Variations for Listing 29-5

Event Handler Location IE4+/Windows IE4+/Macintosh NN6

BUTTON yes yes yes

FORM yes yes yes

(c) ketabton.com: The Digital Library

725Chapter 29 ✦ Event Objects

Event Handler Location IE4+/Windows IE4+/Macintosh NN6

BODY yes yes yes

HTML yes no yes

document yes yes yes

window no no yes

Despite the discrepancies in Table 29-1, events do bubble through the most

likely HTML containers that come to mind. The object level with the most global

scope and that works in all browser categories shown in the table is the document
object.

Preventing IE event bubbling
Because bubbling occurs by default, there are times when you may prefer to pre-

vent an event from bubbling up the hierarchy. For example, if you have one handler

at the document level whose job is to deal with the click event from a related

series of buttons, any other object that receives click events will allow those

events to bubble upward to the document level unless the bubbling is cancelled.

Having the event bubble up could conflict with the document-level event handler.

Each event object in IE has a property called cancelBubble. The default value

of this property is false, which means that the event bubbles to the next outer-

most container that has an event handler for that event. But if, in the execution of

an event handler, that property is set to true, the processing of that handler fin-

ishes its job, but the event does not bubble up any higher. Therefore, to stop an

event from bubbling beyond the current event handler, include the following state-

ment somewhere in the handler function:

event.cancelBubble = true

You can prove this to yourself by modifying the page in Listing 29-5 to cancel

bubbling at any level. For example, if you change the event handler of the FORM ele-

ment to include a statement that cancels bubbling, the event goes not further than

the FORM in IE (the syntax is different for NN6, as discussed later):

<FORM
onClick=”alert(‘Event is now at the FORM element.’); event.cancelBubble=true”>

Redirecting events
Starting with IE5.5, you can redirect an event to another element, but with some

limitations. The mechanism that makes this possible is the fireEvent() method of

all HTML element objects (see Chapter 15). This method isn’t so much redirecting

an event as causing a brand-new event to be fired. But you can pass most of the

properties of the original event object with the new event by specifying a reference

to the old event object as the optional second parameter to the fireEvent()
method.

The big limitation in this technique, however, is that the reference to the target

element gets lost in this hand-off to the new event. The srcElement property of the

old event gets overwritten with a reference to the object that is the target of the call

to fireEvent(). For example, consider the following onClick event handler func-

tion for a button inside a FORM element:

(c) ketabton.com: The Digital Library

726 Part III ✦ Document Objects Reference

function buttonEvent() {
event.cancelBubble = true
document.body.fireEvent(“onclick”, event)

}

By cancelling event bubbling, the event does not propagate upward to the

enclosing FORM element. Instead, the event is explicitly redirected to the BODY ele-

ment, passing the current event object as the second parameter. When the event

handler function for the BODY element runs, its event object has information

about the original event, such as the mouse button used for the click and the coor-

dinates. But the event.srcElement property points to the document.body object.

As the event bubbles upward from the BODY element, the srcElement property

continues to point to the document.body object. You can see this at work in Listing

29-6 for IE5.5+.

Listing 29-6: Cancelling and Redirecting Events in IE5.5+

<HTML onClick=”revealEvent(‘HTML’, event)”>
<HEAD>
<TITLE>Event Cancelling & Redirecting</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// display alert with event object info
function revealEvent(elem, evt) {

var msg = “Event (from “ + evt.srcElement.tagName + “ at “
msg += event.clientX + “,” + event.clientY + “) is now at the “
msg += elem + “ element.”
alert(msg)

}
function init() {

document.onclick = docEvent
document.body.onclick = docBodEvent

}
function docEvent() {

revealEvent(“document”, event)
}
function docBodEvent() {

revealEvent(“BODY”, event)
}
function buttonEvent(form) {

revealEvent(“BUTTON”, event)
// cancel if checked (IE4+)
event.cancelBubble = form.bubbleCancelState.checked
// redirect if checked (IE5.5+)
if (form.redirect.checked) {

document.body.fireEvent(“onclick”, event)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>Event Cancelling & Redirecting</H1>
<HR>
<FORM onClick=”revealEvent(‘FORM’, event)”>

(c) ketabton.com: The Digital Library

727Chapter 29 ✦ Event Objects

<P><BUTTON NAME=”main1” onClick=”buttonEvent(this.form)”>
Button ‘main1’
</BUTTON></P>
<P><INPUT TYPE=”checkbox” NAME=”bubbleCancelState”
onClick=”event.cancelBubble=true”>Cancel Bubbling at BUTTON

<INPUT TYPE=”checkbox” NAME=”redirect” onClick=”event.cancelBubble=true”>
Redirect Event to BODY</P>
</FORM>
</BODY>
</HTML>

Listing 29-6 is a modified version of Listing 29-5. Major additions are enhanced

event handlers at each level so that you can see the tag name of the event that is

regarded as the srcElement of the event as well as the coordinates of the click

event. With both checkboxes unchecked, events bubble upward from the button,

and the BUTTON element is then shown to be the original target all the way up the

bubble hierarchy. If you check the Cancel Bubbling checkbox, the event goes no fur-

ther than the BUTTON element, because that’s where event bubbling is turned off.

If you then check the Redirect Event to BODY checkbox, the original event is can-

celled at the BUTTON level, but a new event is fired at the BODY element. But

notice that by passing the old event object as the second parameter, the click loca-

tion properties of the old event are applied to the new event directed at the BODY.

This event then continues to bubble upward from the BODY.

As a side note, if you uncheck the Cancel Bubbling checkbox but leave the

Redirect Event box checked, you can see how the redirection is observed at the end

of the BUTTON’s event handler, and something special goes on. The original event

is held aside by the browser while the redirected event bubbles upward. As soon as

that event processing branch finishes, the original bubbling propagation carries on

with the FORM. Notice, though that the event object still knows that it was tar-

geted at the BUTTON element, and the other properties are intact. This means that

for a time, two event objects were in the browser’s memory, but only one is

“active” at a time. While the redirected event is propagating, the window.event
object refers to that event object only.

NN6+ event propagation
Yielding to arguments in favor of both event capture and event bubbling, the

W3C DOM group managed to assemble an event model that employs both propaga-

tion systems. Although forced to use new syntax so as not to conflict with older

browsers, the W3C DOM propagation model works like the NN4 one for capture and

like IE4+ for bubbling. In other words, an event bubbles by default, but you can also

turn on event capture if you want. Thus, an event first trickles down the element

containment hierarchy to the target; then it bubbles up through the reverse path.

Event bubbling is on by default, just as in IE4+. To enable capture, you must

apply a W3C DOM event listener to an object at some higher container. Use the

addEventListener() method (see Chapter 15) for any visible HTML element or

node. One of the parameters of the addEventListener() method determines

whether the event listener function should be triggered while the event is bubbling

or is captured.

(c) ketabton.com: The Digital Library

728 Part III ✦ Document Objects Reference

Listing 29-7 is a simplified example that demonstrates how a click event aimed at

a button can be both captured and allowed to bubble. Most event handling func-

tions are assigned inside the init() function. Borrowing code from Listing 29-5,

event handlers are assigned to the window, document, and BODY objects as prop-

erty assignments. These are automatically treated as bubble-type event listeners.

Next, two objects — the document and a form — are given capture-type event listen-

ers for the click event. The document object event listener invokes the same

function as the bubble-type event handler (the alert text includes some asterisks to

remind you that it is the same alert being displayed in both the capture and bubble

phases of the event). For the form object, however, the capture-type event listener

is directed to one function, while a bubble-type listener for the same object is

directed at a separate function. In other words, the form object invokes one func-

tion as the event trickles down to the target and another function when the event

starts bubbling back up. Many of the event handler functions dynamically read the

eventPhase property of the event object to reveal which phase of event propaga-

tion is in force at the instance the event handler is invoked.

Listing 29-7: NN6 Event Capture and Bubble

<HTML>
<HEAD>
<TITLE>W3C DOM Event Propagation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

// using old syntax to assign bubble-type event handlers
window.onclick = winEvent
document.onclick = docEvent
document.body.onclick = docBodEvent
// turn on click event capture for two objects
document.addEventListener(“click”, docEvent, true)
document.forms[0].addEventListener(“click”, formCaptureEvent, true)
// set event listener for bubble
document.forms[0].addEventListener(“click”, formBubbleEvent, false)

}
function winEvent(evt) {

alert(“Event is now at the window object level (“ + getPhase(evt) + “).”)
}
function docEvent(evt) {

alert(“Event is now at the **document** object level (“ + getPhase(evt) +
“).”)
}
function docBodEvent(evt) {

alert(“Event is now at the BODY level (“ + getPhase(evt) + “).”)
}
function formCaptureEvent(evt) {

alert(“This alert triggered by FORM only on CAPTURE.”)
}
function formBubbleEvent(evt) {

alert(“This alert triggered by FORM only on BUBBLE.”)
}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {

(c) ketabton.com: The Digital Library

729Chapter 29 ✦ Event Objects

case 1:
return “CAPTURING”
break

case 2:
return “AT TARGET”
break

case 3:
return “BUBBLING”
break

default:
return “”

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>W3C DOM Event Propagation</H1>
<HR>
<FORM>
<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1” onClick=

“alert(‘Event is now at the button object level (‘ + getPhase(event) +
‘).’)”>
</FORM>
</BODY>
</HTML>

If you want to remove event capture after it has been enabled, use the

removeEventListener() method on the same object as the event listener that

was originally added (see Chapter 15). And, because multiple event listeners can be

attached to the same object, specify the exact same three parameters to the

removeEventListener() method as applied to the addEventListener() method.

Preventing NN6 event bubbling or capture
Corresponding to the cancelBubble property of the IE4+ event object is an

event object method in the W3C DOM. The method that prevents propagation in

any event phase is the stopPropagation() method. Invoke this method anywhere

within an event listener handler function. The current function executes to comple-

tion, but the event propagates no further.

Listing 29-8 extends the example of Listing 29-7 to include two checkboxes that

let you stop propagation type at the FORM element in your choice of the capture or

bubble phase.

Listing 29-8: Preventing Bubble and Capture

<HTML>
<HEAD>
<TITLE>W3C DOM Event Propagation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

// using old syntax to assign bubble-type event handlers
window.onclick = winEvent

Continued

(c) ketabton.com: The Digital Library

730 Part III ✦ Document Objects Reference

Listing 29-8 (continued)

document.onclick = docEvent
document.body.onclick = docBodEvent
// turn on click event capture for two objects
document.addEventListener(“click”, docEvent, true)
document.forms[0].addEventListener(“click”, formCaptureEvent, true)
// set event listener for bubble
document.forms[0].addEventListener(“click”, formBubbleEvent, false)

}
function winEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the window object level (“ +

getPhase(evt) + “).”)
}

}
function docEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the **document** object level

(“ + getPhase(evt) + “).”)
}

}
function docBodEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the BODY level (“ + getPhase(evt) + “).”)

}
}
function formCaptureEvent(evt) {

if (evt.target.type == “button”) {
alert(“This alert triggered by FORM only on CAPTURE.”)
if (document.forms[0].stopAllProp.checked) {

evt.stopPropagation()
}

}
}
function formBubbleEvent(evt) {

if (evt.target.type == “button”) {
alert(“This alert triggered by FORM only on BUBBLE.”)
if (document.forms[0].stopDuringBubble.checked) {

evt.preventBubble()
}

}
}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”
break

case 2:
return “AT TARGET”
break

case 3:
return “BUBBLING”

(c) ketabton.com: The Digital Library

731Chapter 29 ✦ Event Objects

break
default:

return “”
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>W3C DOM Event Propagation</H1>
<HR>
<FORM>
<INPUT TYPE=”checkbox” NAME=”stopAllProp”>Stop all propagation at FORM

<INPUT TYPE=”checkbox” NAME=”stopDuringBubble”>Prevent bubbling past FORM
<HR>
<INPUT TYPE=”button” VALUE=”Button ‘main1’” NAME=”main1” onClick=

“alert(‘Event is now at the button object level (‘ + getPhase(event) +
‘).’)”>
</FORM>
</BODY>
</HTML>

Redirecting NN6 events
The mechanism for sending an event to an object outside the normal propaga-

tion pattern in NN6 is similar to that of IE4+, although with different syntax. In place

of the IE4+ fireEvent() method, NN6 uses the W3C DOM dispatchEvent()
method. The sole parameter of the method is an event object, such as the current

event object. Listing 29-9 is the same as the IE4+ Listing 29-6, but with just a few

modifications to run in the NN6 event model. Notice that the dispatchEvent()
method passes the current event object as its sole parameter.

Listing 29-9: Cancelling and Redirecting Events in NN6+

<HTML onClick=”revealEvent(‘HTML’, event)”>
<HEAD>
<TITLE>Event Cancelling & Redirecting</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// display alert with event object info
function revealEvent(elem, evt) {

var msg = “Event (from “ + evt.target.tagName + “ at “
msg += evt.clientX + “,” + evt.clientY + “) is now at the “
msg += elem + “ element.”
alert(msg)

}
function init() {

document.onclick = docEvent
document.body.onclick = docBodEvent

}
function docEvent(evt) {

revealEvent(“document”, evt)
}

Continued

(c) ketabton.com: The Digital Library

732 Part III ✦ Document Objects Reference

Listing 29-9 (continued)

function docBodEvent(evt) {
revealEvent(“BODY”, evt)

}
function buttonEvent(form, evt) {

revealEvent(“BUTTON”, evt)
// redirect if checked
if (form.redirect.checked) {

document.body.dispatchEvent(evt)
}
// cancel if checked
if (form.bubbleCancelState.checked) {

evt.stopPropagation()
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>Event Cancelling & Redirecting</H1>
<HR>
<FORM onClick=”revealEvent(‘FORM’, event)”>
<P><BUTTON NAME=”main1” onClick=”buttonEvent(this.form, event)”>
Button ‘main1’
</BUTTON></P>
<P><INPUT TYPE=”checkbox” NAME=”bubbleCancelState”
onClick=”event.stopPropagation()”>Cancel Bubbling at BUTTON

<INPUT TYPE=”checkbox” NAME=”redirect” onClick=”event.stopPropagation()”>
Redirect Event to BODY</P>
</FORM>
</BODY>
</HTML>

Referencing the event object
While there may be essentially three different event object models in today’s

browsers, the way your scripts access those objects is divided into two camps: the

IE way; and the NN (and W3C) way. I start with the simpler, IE way.

IE4+ event object references
In IE4+, the event object is accessible as a property of the window object:

window.event

But, as you are well aware, the window part of references is optional, so your

scripts can treat the event object as if it were a global reference:

event.propertyName

Thus, any statement in an event handler function can access the event object

without any special preparation or initializations.

(c) ketabton.com: The Digital Library

733Chapter 29 ✦ Event Objects

NN4+ (W3C) event object references
The situation is a bit more complicated in the NN4+ event model. In some cases

you must explicitly pass the event object as a parameter to an event handler func-

tion, while in other cases, the event object is delivered as a parameter automati-

cally. The difference depends on how the event handler function is bound to the

object.

Using the original way of binding event handlers to objects — via an attribute in

the element’s tag — you must specify the event object as a parameter by passing

event as a parameter, as in

onClick=”doSomething(event)”

This is the only time in the NN4+ model that you see an explicit reference to the

event (lowercase “e”) object as if it were a global reference. This reference does

not work in any other context — only as a parameter to an event handler function. If

you have multiple parameters, the event reference can go in any order, but I tend

to put it last:

onClick=”doSomething(this, event)”

The function definition that is bound to the element should therefore have a

parameter variable in place to “catch” the event object parameter:

function doSomething(widget, evt) {...}

You have no restrictions on how you name this parameter variable. In some

examples of this book, you may see the variable assigned as event or, more com-

monly, evt. When working with cross-browser scripts, avoid using event as a

parameter variable name so as not to interfere with IE’s event property.

Other ways of binding event handler functions to objects — via property assign-

ments and the addEventListener() method in NN6+ — assign references of those

handlers to the desired objects in the document, as in either of the following:

document.forms[0].someButton.onclick = doSomething
document.getElementById(“myButton”).addEventListener(“click”, doSomething, false)

Event binding through these approaches prevents explicit passage of your own

parameters to the invoked functions. But the NN4+ browsers automatically pass as

the sole parameter a reference to the event object created in response to the user

or system action that triggered the event. This means that your functions should

“receive” the passed event object in a parameter variable:

function doSomething(evt) {...}

Recall that the event object contains a reference to the object that was the target

of the event. From that, you can access any properties of that object, such as the

form object that contains a form control object.

You can see the way the event object is passed as a parameter in Listing 29-9. For

all event handlers that are assigned by reference (both to an event handler property

of an object and to an addEventListener() method call), the functions have a

parameter variable in place to act as a reference to the event object for statements

within the function. If you need to invoke other functions from there, you can pass

the event object reference further along as needed. The event object retains its prop-

erties as long as the chain of execution triggered by the event action continues.

(c) ketabton.com: The Digital Library

734 Part III ✦ Document Objects Reference

event Object Compatibility
Despite the incompatible ways that NN and IE event objects arrive at an event

handler function, you can easily stuff the object into one variable that both browser

types can use. For example, the following function fragment receives an event

object from NN but also accommodates the IE event object:

function doSomething(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”
if (evt) {

// browser has an event to process
...

}
}

If an event object arrives as a parameter, it continues to be available as evt; but

if not, the function makes sure that a window.event object is available and assigns

it to the evt variable; finally, if the browser doesn’t know about an event object,

the evt variable is made an empty string. Processing continues only if evt contains

an event object.

That’s the easy part. The madness comes in the details: reading properties of the

event object when the property names can vary widely across the three event

object models. Sections later in this chapter provide details of each property and

method of all three event object models, but seeing an overview of the property ter-

minology on a comparative basis is helpful. Table 29-2 lists the common informa-

tion bits and actions you are likely to want from an event object and the property

or method names used in the three event object models.

Table 29-2 Common event Object Properties and Methods

Property/Action NN4 IE4+ NN6

Target element target srcElement target

Event type type type type

X coordinate in element n/a† offsetX n/a†

Y coordinate in element n/a† offsetY n/a†

X coordinate in layerX x layerX
positioned element

Y coordinate in layerY y layerY
positioned element

X coordinate on page pageX n/a† pageX

Y coordinate on page pageY n/a† pageY

X coordinate in window n/a clientX clientX

Y coordinate in window n/a clientY clientY

X coordinate on screen screenX screenX screenX

(c) ketabton.com: The Digital Library

735Chapter 29 ✦ Event Objects

Property/Action NN4 IE4+ NN6

Y coordinate on screen screenY screenY screenY

Mouse button which button button

Keyboard key which keyCode keyCode

Shift key pressed modifiers shiftKey shiftKey

Alt key pressed modifiers altKey altKey

Ctrl key pressed modifiers ctrlKey ctrlKey

Previous Element n/a fromElement relatedTarget

Next Element n/a toElement relatedTarget

Cancel bubbling n/a cancelBubble preventBubble()

Prevent default action return false returnValue preventDefault()

†Value can be derived through calculations with other properties.

As you can see in Table 29-2, properties for the IE4+ and NN6 event objects have

a lot in common. This is good news, especially as the installed base of NN4 users

diminishes over time. The primary incompatibility is how to reference the element

that is the intended target of the event. This, too, can be branched in your code to

achieve a common variable that references the element. For example, embedded

within the previous function fragment can be a statement, such as the following:

var elem = (evt.target) ? evt.target : evt.srcElement

Each event model has additional properties that are not shared by the other.

Details about these are covered in the rest of this chapter.

Dueling Event Models
Despite the sometimes widely divergent ways event object models treat their

properties, accommodating a wide range of browsers for event manipulation is not

difficult. In this section, you see two scripts that examine important event proper-

ties. The first script reveals which, if any, modifier keys are held down during an

event; the second script extracts the codes for both mouse buttons and keyboard

keys. Both scripts work with all browsers that have event objects, including NN4. If

your audience no longer uses NN4, you can eliminate the code branches that sup-

port it.

Cross-platform modifier key check
Listing 29-10 demonstrates branching techniques for examining the modifier

key(s) being held down while an event fires. Details of the event object properties,

such as modifiers and altKey, can be found later in this chapter. To see the page

in action, click a link, type into a text box, and click a button while holding down

any combination of modifier keys. A series of four checkboxes representing the four

modifier keys is at the bottom. As you click or type, the checkbox(es) of the

pressed modifier key(s) become checked.

(c) ketabton.com: The Digital Library

736 Part III ✦ Document Objects Reference

Listing 29-10: Checking Events for Modifier Keys

<HTML>
<HEAD>
<TITLE>Event Modifiers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkMods(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement
var form = document.output
if (evt.modifiers) {

form.modifier[0].checked = evt.modifiers & Event.ALT_MASK
form.modifier[1].checked = evt.modifiers & Event.CONTROL_MASK
form.modifier[2].checked = evt.modifiers & Event.SHIFT_MASK
form.modifier[3].checked = evt.modifiers & Event.META_MASK

} else {
form.modifier[0].checked = evt.altKey
form.modifier[1].checked = evt.ctrlKey
form.modifier[2].checked = evt.shiftKey
form.modifier[3].checked = false

}
}
return false

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Event Modifiers</H1>
<HR>
<P>Hold one or more modifier keys and click on

this link to see which keys you are holding.</P>
<FORM NAME=”output”>
<P>Enter some text with uppercase and lowercase letters:
<INPUT TYPE=”text” SIZE=40 onKeyUp=”checkMods(event)”></P>
<P><INPUT TYPE=”button” VALUE=”Click Here With Modifier Keys”
onClick=”checkMods(event)”></P>
<P>
<INPUT TYPE=”checkbox” NAME=”modifier”>Alt
<INPUT TYPE=”checkbox” NAME=”modifier”>Control
<INPUT TYPE=”checkbox” NAME=”modifier”>Shift
<INPUT TYPE=”checkbox” NAME=”modifier”>Meta
</P>
</FORM>
</BODY>
</HTML>

Because all three event handlers call the same checkMods() function, branching

is needed only in this function. Notice, though, that branching is done by object

detection, rather than navigator.userAgent detection. This method makes the

most sense for this example, because the scripts rely on the existence of particular

objects and properties for their proper execution. For NN4, the event object is

(c) ketabton.com: The Digital Library

737Chapter 29 ✦ Event Objects

passed as a parameter (evt) whose modifiers property is Bitwise ANDed with an

Event object constant for each modifier key. For IE4+ and NN6, the script checks

the event object property for each of three modifiers.

Cross-platform key capture
To demonstrate keyboard events in both browsers, Listing 29-11 captures the

key character being typed into a text box, as well as the mouse button used to click

a button. As with Listing 29-10, NN4 has a very different way of getting this informa-

tion compared to IE4+ and NN6. In this arena, however, NN6 continues to support

the NN4 syntax as well, so you can use the old or new syntax as you like. Whereas

NN4 combines the features of key character code and mouse button into one event

object property (depending upon the event type), newer browsers have entirely

separate properties for these values. Listing 29-11 is written such that NN6 follows

the NN4 syntax path, but even if the NN4 syntax should disappear in a future NN

version, the browser would follow the new syntax path without blinking an eye.

Listing 29-11: Checking Events for Key and Mouse Button
Pressed

<HTML>
<HEAD>
<TITLE>Button and Key Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkWhich(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
if (evt) {

var thingPressed = “”
var elem = (evt.target) ? evt.target : evt.srcElement
if (evt.which) {

thingPressed = evt.which
} else {

if (elem.type == “textarea”) {
thingPressed = evt.keyCode

} else if (elem.type == “button”) {
thingPressed = evt.button

}
}
status = thingPressed

}
return false

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Button and Key Properties</H1> (results in the status bar)
<HR>
<FORM>
<P>Mouse down atop this
<INPUT TYPE=”button” VALUE=”Button” onMouseDown=”checkWhich(event)”>
this link or this
<INPUT TYPE=”button” VALUE=”Button” onMouseDown=”checkWhich(event)”>

Continued

(c) ketabton.com: The Digital Library

738 Part III ✦ Document Objects Reference

Listing 29-11 (continued)

with either mouse button (if you have more than one).</P>
<P>Enter some text with uppercase and lowercase letters:
<TEXTAREA COLS=40 ROWS=4 onKeyPress=”checkWhich(event)” WRAP=”virtual”>
</TEXTAREA></P>
</FORM>
</BODY>
</HTML>

The codes displayed for the keyboard event are equivalent to the ASCII values of

character keys. If you need the codes of other keys, the onKeyDown and onKeyUp
event handlers provide Unicode values for any key that you press on the keyboard.

See the keyCode property listings for event objects later in this chapter for more

details.

Event Types
Although browsers prior to Version 4 did not have an accessible event object,

this is a good time to summarize the evolution of what in today’s browsers is known

as the type property. The type property reveals the kind of event that generates an

event object (the event handler name minus the “on”). Object models in IE4+ and

NN6+ provide event handlers for virtually every HTML element, so that it’s possi-

ble, for example, to define an onClick event handler for not only a clickable button,

but also a P or even an arbitrary SPAN element. We’ll come back to the current crop

of browsers in a moment. But first, in case you must write scripts that work on

older browsers, you need to know which elements in those browsers support

which event handlers. This knowledge will help you determine a common denomi-

nator of event handlers to implement in your pages, based on the browsers you

anticipate will be accessing the pages.

Older browsers
Earlier browsers tended to limit the number of event handlers for any particular

element to just those that made sense for the kind of element it was. Even so, many

scripters wanted more event handlers on more objects. But until that became a

reality in IE4+ and NN6+, authors had to know the limits of the object models. Table

29-3 shows the event handlers available for objects within three generations of

early browsers. Each column represents the version in which the event type was

introduced. For example, the window object started out with four event types and

gained three more when NN4 was released. In contrast, the area object was exposed

as an object for the first time in NN3, which is where the first event types for that

object are listed.

(c) ketabton.com: The Digital Library

739Chapter 29 ✦ Event Objects

Table 29-3 Event Types through the Early Ages

Object NN2/IE3 NN3 NN4

window blur dragdrop

focus move

load resize

unload

layer blur

focus

load

mouseout

mouseover

mouseup

link click mouseout dblclick

mouseover mousedown

onmouseup

area mouseout click

mouseover

image abort

error

load

form submit reset

text, textarea, password blur keydown

change keypress

focus keyup

select

all buttons click mousedown

mouseup

select blur

change

focus

fileUpload blur

focus

select

(c) ketabton.com: The Digital Library

740 Part III ✦ Document Objects Reference

With the exception of the NN4 layer object, all objects shown in Table 29-3 have

survived into the newer browsers, so that you can use these event handlers with

confidence. Again, keep in mind that of the browsers listed in Table 29-3, only NN4

has an event object of any kind exposed to scripts.

Event types in IE4+ and NN6
By now you should have at least scanned the list of event handlers defined for

elements in common, as shown in Chapter 15. This list of event types is enormous.

A sizable number of the event types are unique to IE4, IE5, and IE5.5, and in some

cases, just the Windows version at that.

If you compose pages for both IE4+ and NN6+, however, you need to know which

event types these browser families and generations have in common. Event types

for NN6 are based primarily on the W3C DOM Level 2 specification, although they

also include keyboard events, which are not formally part of the Level 2 specifica-

tion. Table 29-4 lists a common denominator of event types for modern browsers

and the objects that support them. As you can see, many of these event types and

corresponding objects go way back to the beginning. The biggest change is that

mouse events are available for any visible element. While not as long as the IE event

list, the event types in Table 29-4 are the basic set you should get to know for all

browsers.

Table 29-4 IE4+ and NN6+ Event Types in Common

Event type Applicable Elements

abort OBJECT

blur window, BUTTON, text, password, LABEL, SELECT, TEXTAREA

change text, password, TEXTAREA, SELECT

click All elements

error window, FRAMESET, OBJECT

focus window, BUTTON, text, password, LABEL, SELECT, TEXTAREA

keydown text, password, TEXTAREA

keypress text, password, TEXTAREA

keyup text, password, TEXTAREA

load window, FRAMESET, OBJECT

mousedown All elements

mousemove All elements

mouseout All elements

mouseover All elements

mouseup All elements

reset FORM

resize window

(c) ketabton.com: The Digital Library

741Chapter 29 ✦ Event Objects

Event type Applicable Elements

scroll window

select text, password, TEXTAREA

submit FORM

unload window, FRAMESET

NN4 event Object

Properties Methods Event Handlers

data

layerX

layerY

modifiers

pageX

pageY

screenX

screenY

target

type

which

Syntax
Accessing NN4 event object properties:

eventObject.property

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

About this object
Most of the details about this object were covered in the comparative event

object discussions earlier in this chapter. As the NN4 browser dissipates from the

user-installed base, this object and its details will become less important.

(NN4) eventObject

(c) ketabton.com: The Digital Library

742 Part III ✦ Document Objects Reference

Properties
data

Value: Array of Strings Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

A DragDrop event contains information about the URL string being dragged to

the browser window. Because dragging multiple items to a window is possible (for

example, many icons representing URLs on some operating systems), the value of

the property is an array of strings, with each string containing a single URL (includ-

ing file:// URLs for computer files).

URL information such as this is deemed to be private data, so it is exposed only

to signed scripts after the user has granted permission to read browser data. If you

want your signed script to capture this information without loading the URL into

the window, the event handler must evaluate to return false.

Example (with Listing 29-12) on the CD-ROM

layerX
layerY
pageX
pageY
screenX
screenY

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

For many (but not all) mouse-related events, the NN4 event object contains a lot

of information about the coordinates of the pointer when the event occurred. In the

most complex case, a click in a layer object has three distinct pairs of horizontal

and vertical (x and y) coordinate values relative to the layer, the page, and the

entire screen. If no layers are specified for a document, the layer and page coordi-

nate systems are identical. Note that these values are merely geographical in nature

and do not, by themselves, contain any information about the object being clicked

(information held by the eventObject.target property).

On the
CD-ROM

(NN4) eventObject.layerX

(c) ketabton.com: The Digital Library

743Chapter 29 ✦ Event Objects

These mouse coordinate properties are set only with specific events. In the case

of a link object, the click and all four mouse events pack these values into the

event object. For buttons, however, only the mouse events (mouseDown and

mouseUp) receive these coordinates.

Each of the two window event types (move and resize) uses one of these prop-

erty pairs to convey the results of the user action involved. For example, when the

user resizes a window, the resize event stuffs the eventObject.layerX and

eventObject.layerY properties with the inner width and height (that is, the con-

tent area) of the browser window (you can also use the optional

eventObject.width and eventObject.height property names if you prefer).

When the user moves the window, the eventObject.screenX and

eventObject.screenY properties contain the screen coordinates of the top-left

corner of the entire browser application window.

Example (with Listing 29-13) on the CD-ROM

Related Items: window and layer object move and resize methods.

modifiers
Value: Constant Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The modifiers property of the NN4 event object refers to the modifier keys that

can be pressed while clicking or typing. Modifier keys are Alt (also the Option key

on the Macintosh keyboard), Ctrl, Shift, and what is known as a meta key (for exam-

ple, the Command key, Ô, on the Macintosh keyboard). You can use this property

to find out if one or more modifier keys were pressed at the time the event

occurred.

Values for these keys are integer values designed in such a way that any combi-

nation of keys generates a unique value. Fortunately, you don’t have to know any-

thing about these values, because the event model supplies some plain-language

constants (properties of a global Event object always available behind the scenes)

that a script can apply to the property value passed with the object. The constant

names consist of the key name (all uppercase), followed by an underscore and the

uppercase word MASK. For example, if the Alt key is pressed by itself or in concert

with other modifier keys, you can use the bitwise AND operator (&) and the

Event.ALT_MASK constant to test for the presence of the Alt key in the property

value:

function handleMyEvent(evt) {
if (evt.modifiers & Event.ALT_MASK) {

//statements for Alt key handling
}

}

On the
CD-ROM

(NN4) eventObject.modifiers

(c) ketabton.com: The Digital Library

744 Part III ✦ Document Objects Reference

Modifiers are not available with every event. You can capture them with

mouseDown and mouseUp events in buttons and links. The only click event offering

modifiers is with button objects. Keyboard events in text objects also include these

modifiers. But be aware that accelerated keyboard combinations (for example,

Ctrl+Q/Ô-Q for Quit) are not trappable by JavaScript event mechanisms because

they are reserved for the browser’s own menu shortcuts.

Example
See Listing 29-10 earlier in this chapter to see (in a cross-browser way) how the

modifier keys are read for NN4.

target
Value: Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Every event has a property containing a reference to the object that was clicked,

typed into, or otherwise acted upon. Most commonly, this property is examined

when you set up a page to trap for events at the window, document, or layer level,

as described earlier in this chapter. The target property lets you better identify

the intended destination of the event while handling all processing for that type of

event in one place. With a reference to the target object at hand in this property,

your scripts can extract and/or set properties of the object directly.

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

An event object’s type is the name of the event that generated the event object.

An event name is the same as the event handler’s name, less the “on” prefix.

Therefore, if a button’s onClick event handler is triggered by a user’s click, then

the event type is click (all lowercase). If you create a multipurpose function for

handling events, you can extract the eventObject.type property to help the func-

tion decide how to handle the current event. This sounds like a good job for the

switch control structure (see Chapter 39).

(NN4) eventObject.type

(c) ketabton.com: The Digital Library

745Chapter 29 ✦ Event Objects

which
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The value of the which property depends on the event type: a mouse button

indicator for mouse events and a character key code for keyboard events.

For a mouse-related event, the eventObject.which property contains either a 1

for the left (primary) mouse button or a 3 for the right (secondary) mouse button.

Most Macintosh computers have only a one-button mouse, so exercise care in

designing pages that rely on the second mouse button. Even on Windows and other

platforms, you must program an object’s onMouseDown event handler to return
false for the secondary button to be registered instead of a browser pop-up menu

appearing on-screen.

Keyboard events generate the ISO-Latin character code for the key that has been

pressed. This value is an integer between 0 and 255. If your script needs to look at

the actual character being typed, rather than the key code, use the

String.fromCharCode() method (see Chapter 34) to make the conversion. If you

have difficulty obtaining character codes from keyboard events, try using the

onKeyDown and onKeyUp events rather than onKeyPress. In either case, the func-

tion keys do not present character codes.

Example
See Listing 29-10 for an example of using the eventObject.which property.

IE4+ event Object

Properties Methods Event Handlers

altKey

altLeft

behaviorCookie

behaviorPart

bookmarks

boundElements

button

cancelBubble

clientX

Continued

(IE) event

(c) ketabton.com: The Digital Library

746 Part III ✦ Document Objects Reference

Properties Methods Event Handlers

clientY

contentOverflow

ctrlKey

ctrlLeft

dataFld

dataTransfer

fromElement

keyCode

nextPage

offsetX

offsetY

propertyName

qualifier

reason

recordset

repeat

returnValue

saveType

screenX

screenY

shiftKey

shiftLeft

srcElement

srcFilter

srcUrn

toElement

type

x

y

(IE) event

(c) ketabton.com: The Digital Library

747Chapter 29 ✦ Event Objects

Syntax
Accessing IE4+ event object properties:

[window.]event.property

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

About this object
The IE4+ event object is a property of the window object. Its basic operation is

covered earlier in this chapter.

You can see a little of what the event object is about with the help of The

Evaluator (see Chapter 13). If you type event into the bottom text box, you can

examine the properties of the event object for the event that triggers the function

that displays the event object properties. If you press the Enter key in the text box,

you see properties of the keypress event that caused the internal script to run;

click the List Properties button to see the properties of the click event fired at the

button. Hold down some of the modifier keys while clicking to see how this affects

some of the properties.

As you review the properties for the event object, make special note of the com-

patibility table for each property. The list of properties for this object has grown

over the evolution of the IE4+ event object model. Also, most properties are listed

here as being read-only, which they were in IE4. But for IE5+, these properties are

also Read/Write if the event is created artificially via methods, such as IE5.5’s docu-
ment.createEventObject() method. Event objects that are created by user or

system action have very few properties that can be modified on the fly (to prevent

your scripts from altering user actions).

Properties
altKey
ctrlKey
shiftKey

Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

When an event object is created in response to a user or system action, these

three properties are set based on whether their corresponding keys were being

held down at the time — a Shift-click, for example. If the key was held down, the

property is assigned a value of true; otherwise the value is false.

(IE) event.altKey

(c) ketabton.com: The Digital Library

748 Part III ✦ Document Objects Reference

Most commonly, you use expressions consisting of this property as if construc-

tion condition statements. Because these are Boolean values, you can combine mul-

tiple properties in a single condition. For example, if you have a branch of a

function that is to execute only if the event occurred with both the Shift and

Control keys held down, the condition looks as the following:

if (event.shiftKey && event.ctrlKey) {
// statements to execute

}

Conversely, you can take a more user-friendly approach to provide special pro-

cessing if the user holds down any one of the three modifier keys:

if (event.shiftKey || event.ctrlKey || event.altKey) {

// statements to execute
}

The rationale behind this approach is to offer perhaps some shortcut operation

for users, but not force them to memorize a specific modifier key combination.

Example
See Listing 29-10, where the values of these three properties are used to set the

checked properties of corresponding checkboxes for a variety of event types.

Related Items: altLeft, ctrlLeft, shiftLeft properties.

altLeft
ctrlLeft
shiftLeft

Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Some versions of Windows (notably Windows NT and Windows 2000) allow

events to be modified by only the left-hand Alt, Ctrl, and Shift keys when using

IE5.5+. For these modifiers to be recorded by the event object, focus must be on

the document (body), and not in any form control. If the left-key version is false
and the regular version is true, then your script knows that the right-hand key had

been held down during the event.

Related Items: altKey, ctrlKey, shiftKey properties.

(IE) event.altLeft

(c) ketabton.com: The Digital Library

749Chapter 29 ✦ Event Objects

behaviorCookie
behaviorPart

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

These two properties are related to a Windows technology that Microsoft calls

rendering behaviors. Unlike the behaviors discussed under the addBehavior()
method in Chapter 15, rendering behaviors are written in C++ and provide services

for custom drawing on your Web page. For more details, consult the document

“Implementing Rendering Behaviors” at http://msdn.microsoft.com/
workshop/browser/editing/imprendbehav.asp.

bookmarks
boundElements
dataFld
qualifier
reason
recordset

Value: See Text Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

This group of event object properties is tied to using Data Binding in Windows

versions of IE4+. Extensive details of Data Binding lie outside the scope of this book,

but Table 29-5 provides a summary of these event object properties within that

context (much of the terminology is used in Data Binding, but doesn’t affect other

scripting). For more details, search for ActiveX Data Objects (ADO) at

http://msdn.microsoft.com/workshop/.

Table 29-5 ADO-Related event Object Properties

Property Value First Implemented Description

bookmarks Array IE4 Array of ADO bookmarks (saved
positions) for records within a
recordset associated with the
object that received the event.

Continued

(IE) event.bookmarks

(c) ketabton.com: The Digital Library

750 Part III ✦ Document Objects Reference

Table 29-5 (continued)

Property Value First Implemented Description

boundElements Array IE5 Array of element references for all
elements bound to the same data
set that was touched by the
current event.

dataFld String IE5 Name of the data source column
that is bound to a table cell that
receives a cellchange event.

qualifier String IE5 Name of the data member
associated with a data source that
receives a data-related event.
Available only if the data source
object (DSO) allows multiple-
named data members or a
qualifier has been explicitly set
via the DATASRC attribute of the
bound element. Read-write in
IE5+.

reason Integer IE4 Set only from
onDataSetComplete event,
provides the result code of the
data set loading (0=successful;
1=transfer aborted; 2=other
error).

recordset Object IE4 Reference to the current
recordset in a data source object.

button
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The button property reveals which button or buttons were pressed to activate a

mouse event. If no mouse button is pressed to generate an event, this property is

zero. But integers 1 through 7 reveal single and multiple button presses, including

(IE) event.button

(c) ketabton.com: The Digital Library

751Chapter 29 ✦ Event Objects

three-button mice when they are recognized by the operating system. Integer val-

ues correspond to buttons according to the following scheme:

Value Description

0 No button

1 Left (primary) button

2 Right button

3 Left and right buttons together

4 Middle button

5 Left and middle buttons together

6 Right and middle buttons together

7 Left, middle, and right buttons together

Mouse buttons other than the primary one are easier to look for in mousedown or

mouseup events, rather than onclick events. Be aware that as the user works

toward pressing multiple buttons, each press fires a mousedown event. Therefore, if

the user presses the left button first, the mousedown event fires, with the

event.button property bearing the 1 value; as soon as the right button is pressed,

the mousedown event fires again, but this time with an event.button value of 3. If

your script intends to perform special action with both buttons pressed, it should

ignore and not perform any action for a single mouse button, because that one-but-

ton event will very likely fire in the process, disturbing the intended action.

Exercise caution when scripting the event.button property for both IE4+ and

NN6+. The W3C DOM event model defines different button values for mouse but-

tons (0, 1, and 2 for left, middle, and right) and no values for multiple buttons.

Example
See Listing 29-11, where the event.button property is revealed in the statusbar.

Try pressing individual mouse buttons on, for example, the screen button. Then try

combinations, watching the results very closely in the statusbar.

Related Items: None.

cancelBubble
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The cancelBubble property (which sounds more as if it should be a method

name) determines whether the current event object bubbles up any higher in the

element containment hierarchy of the document. By default, this property is false,

meaning that if the event is supposed to bubble, then it will do so automatically.

(IE) event.cancelBubble

(c) ketabton.com: The Digital Library

752 Part III ✦ Document Objects Reference

To prevent event bubbling for the current event, set the property to true any-

where within the event handler function. As an alternative, you can cancel bubbling

directly in an element’s event handler attribute, as in the following:

onClick=”doButtonClick(this); event.cancelBubble = true”

Cancelling event bubbling works only for the current event. The very next event

to fire will have bubbling enabled (provided the event bubbles).

Example
See Listing 29-6 to see the cancelBubble property in action. Even though that

listing has some features that apply to IE5.5+, the bubble cancelling demonstration

works all the way back to IE4.

Related Items: returnValue property.

clientX
clientY
offsetX
offsetY
screenX
screenY
x
y

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

An IE event object provides coordinates for an event in as many as four coordi-

nate spaces: the element itself, the parent element of the event’s target, the view-

able area of the browser window, and the entire video screen. Unfortunately,

misleading values can be returned by some of the properties that correspond to

these coordinate spaces, as discussed in this section. Note that no properties pro-

vide the explicit position of an event relative to the entire page, in case the user has

scrolled the window.

Starting with the innermost space — that of the element that is the target of the

event — the offsetX and offsetY properties should provide pixel coordinates

within the target element. This is how, for example, you could determine the click

point on an image, regardless of whether the image is embedded in the BODY or

floating around in a positioned DIV. Windows versions through (at least) IE5.5 pro-

duce the correct values in most cases. But for some elements that are child ele-

ments of the BODY element, the vertical (y) value may be relative to the viewable

(IE) event.clientX

(c) ketabton.com: The Digital Library

753Chapter 29 ✦ Event Objects

window, rather than just the element itself. You can see an example of this when

you work with Listing 29-14 and click the H1 or P elements near the top of the page.

This problem does not affect IE for the Mac, but there is another problem on Mac

versions: If the page is scrolled away from its normal original position, the scrolled

values are subtracted from the clientX and clientY values. This is an incompati-

bility bug, and you must take this error into account if you need click coordinates

inside an element for a potentially scrolled page. This error correction must be

done only for the Mac, because Windows works OK.

Extending scope to the offset parent element of the event’s target, the x and y
properties in IE5+ for Windows should return the coordinates for the event relative

to the target’s offset parent element (the element that can be found via the

offsetParent property). For most non-positioned elements, these values are the

same as the clientX and clientY properties because, as discussed in a moment,

the offset parent element has a zero offset with its parent, the BODY. Observe an

important caution about the x and y properties: In IE4/Windows and through

IE5/Macintosh, the properties do not take into account any offset parent locations

other than the BODY. Even in IE5+ for Windows, this property can give false read-

ings in some circumstances. By and large, these two properties should not be used.

The next set of coordinates, clientX and clientY, are relative to the visible doc-

ument area of the browser window. When the document is scrolled all the way to the

top (or the document doesn’t scroll at all), these coordinates are the same as the

coordinates on the entire page. But because the page can scroll “underneath” the

viewable window, the coordinates on the page can change if the page scrolls. Also, in

the Windows versions of IE, you can actually register mouse events that are up to

two pixels outside of the BODY element, which seems weird, but true. Therefore, in

IE/Windows, if you click the background of the BODY, the event fires on the BODY

element, but the clientX/clientY values will be two pixels greater then

offsetX/offsetY (they’re equal in IE/Mac). Despite this slight discrepancy, you

should rely on the clientX and clientY properties if you are trying to get the coor-

dinates of an event that may be in a positioned element, but have those coordinates

relative to the entire viewable window, rather than just the positioning context.

Taking the page’s scrolling into account for an event coordinate is often impor-

tant. After all, unless you generate a fixed-size window for a user, you don’t know

how the browser window will be oriented. If you’re looking for a click within a spe-

cific region of the page, you must take page scrolling into account. The scrolling fac-

tor can be retrieved from the document.body.scrollLeft and

document.body.scrollTop properties. When reading the clientX and clientY
properties, be sure to add the corresponding scroll properties to get the position

on the page:

var coordX = event.clientX + document.body.scrollLeft
var coordY = event.clientY + document.body.scrollTop

Do this in your production work without fail.

Finally, the screenX and screenY properties return the pixel coordinates of the

event on the entire video screen. These properties may be more useful if IE pro-

vided more window dimension properties. In any case, because mouse events fire

only when the cursor is somewhere in the content region of the browser window,

don’t expect to get screen values of anywhere outside this region.

(IE) event.clientX

(c) ketabton.com: The Digital Library

754 Part III ✦ Document Objects Reference

If these descriptions seem confusing to you, you are not alone. Throw in a

few bugs, and it may seem like quite a mess. But think how you may use event

coordinates in scripts. By and large, you want to know one of two types of mouse

event coordinates: within the element itself and within the page. Use the

offsetX/offsetY properties for the former; use clientX/clientY (plus the scroll

property values) for the latter.

While the coordinate properties are used primarily for mouse events, there is a

little quirk that may let you determine if the user has resized the window via the

maximize icon in the title bar (on the Mac, this is called the zoom box) or the resize

handle at the bottom-right corner of the screen. Mouse event coordinates are

recorded in the event object for a resize event. In the case of the maximize icon,

the clientY coordinate is a negative value (above the client space) and the

clientX coordinate is within about 45 pixels of the previous width of the window

(document.body.clientWidth). This, of course, happens after the window has

resized, so it is not a way to prevent window resizing.

Example (with Listing 29-14) on the CD-ROM

Related Items: fromElement, toElement properties.

dataTransfer
Value: Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The dataTransfer property is a reference to an IE/Windows-only object called

the dataTransfer object. Use this object in drag-and-drop operations (that is, with

drag-and- drop-related events) to control not only the data that gets transferred

from the source to the target but also to control the look of the cursor along the

way.

Table 29-6 lists the properties and methods of the dataTransfer object.

On the
CD-ROM

(IE) event.dataTransfer

(c) ketabton.com: The Digital Library

755Chapter 29 ✦ Event Objects

Table 29-6 dataTransfer object Properties and Methods

Property/Method Returns Description

dropEffect String An element that is a potential recipient of a
drop action can use the onDragEnter,
onDragOver, or onDrop event handler to
set the cursor style to be displayed when the
cursor is atop the element. Before this can
work, the source element’s onDragStart
event handler must assign a value to the
event.effectAllowed property. Possible
string values for both properties are copy,
link, move, or none. These properties
correspond to the Windows system cursors
for the operations users typically do with
files and in other documents. You must also
cancel the default action (meaning set
event.returnValue to false) for all of
these drop element event handlers:
onDragEnter, onDragOver, and onDrop.

effectAllowed String Set in response to an onDragStart event
of the source element, this property
determines which kind of drag-and-drop
action will be taking place. Possible string
values are copy, link, move, or none. This
property value must match the dropEffect
property value for the target element’s
event object. Also, cancel the default action
(meaning, set event.returnValue to
false) in the onDragStart event handler.

clearData([format]) Nothing Removes data in the clipboard. If no format
parameters are supplied, all data are cleared.
Data formats can be one or more of the
following strings: Text, URL, File, HTML,
Image.

getData(format) String Retrieves data of the specified format from
the clipboard. The format is one of the
following strings: Text, URL, File, HTML,
Image. The clipboard is not emptied after
you get the data, so that it can be retrieved
in several sequential operations.

Continued

(IE) event.dataTransfer

(c) ketabton.com: The Digital Library

756 Part III ✦ Document Objects Reference

Table 29-6 (continued)

Property/Method Returns Description

setData(format, data) Boolean Stores string data in the clipboard. The
format is one of the following strings: Text,
URL, File, HTML, Image. For non-text data
formats, the data must be a string that
specifies the path or URL to the content.
Returns true if the transfer to the clipboard
is successful.

The dataTransfer object acts as a conduit and controller of data that your

scripts need to transfer from one element to another in response to a user’s drag-

and-drop action. You need to adhere to a well-defined sequence of actions triggered

by a handful of event handlers. This means that the object is invoked on different

instances of the event object as different events fire in the process of dragging and

dropping.

The sequence begins at the source element, where an onDragStart event han-

dler typically assigns a value to the dropEffect property and uses the getData()
method to explicitly capture whatever data it is about the source object that gets

transferred to the eventual target. For example, if you drag an image, the informa-

tion being transferred may simply be the URL of the image — data that is

extractable from the event.srcElement.src property of that event (the src prop-

erty of the image, that is).

At the target element(s), three event handlers must be defined: onDragEnter,

onDragOver, and onDrop. Most commonly, the first two event handlers do nothing

more than mark the element for a particular dropEffect (which must match the

effectAllowed set at the source during the drag’s start) and set

event.returnValue to false so that the cursor displays the desired cursor. These

actions are also carried out in the onDrop event handler, but that is also the han-

dler that does the processing of the destination action at the target element. This is

when the dataTransfer object’s getData() method is invoked to pick up the data

that has been “stored” away by getData() at the start of the drag. If you also want

to make sure that the data is not picked up accidentally by another event, invoke

the clearData() method to remove that data from memory.

Note that the style of dragging being discussed here is not the kind in which you

see the source element actually moving on the screen (although you could script it

that way). The intention is to treat drag-and-drop operations just as Windows does

in, say, the Windows Explorer window or on the Desktop. To the user, the draggable

component becomes encapsulated in the cursor. That’s why the properties of the

dataTransfer object control the appearance of the cursor at the drop point as a

way of conveying to the user the type of action that will occur with the impending

drop.

(IE) event.dataTransfer

(c) ketabton.com: The Digital Library

757Chapter 29 ✦ Event Objects

Example
An extensive example of the dataTransfer property in action can be found in

Listing 15-37 in the section for the onDrag event handler.

Related Items: onDragEnd, onDragEnter, onDragLeave, onDragOver,

onDragStart, onDrop event handlers.

fromElement
toElement

Value: Element Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The fromElement and toElement properties allow an element to uncover where

the cursor rolled in from or has rolled out to. These properties extend the power of

the onMouseOver and onMouseOut event handlers by expanding their scope to out-

side the current element (usually to an adjacent element).

When the onMouseOver event fires on an element, the cursor had to be over

some other element just beforehand. The fromElement property holds a reference

to that element. Conversely, when the onMouseOut event fires, the cursor is already

over some other element. The toElement property holds a reference to that

element.

Example (with Listing 29-15) on the CD-ROM

Related Items: srcElement property.

keyCode
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

For keyboard events, the keyCode property returns an integer corresponding to

the Unicode value of the character (for onKeyPress events) or the keyboard char-

acter key (for onKeyDown and onKeyUp events). There is a significant distinction

between these numbering code systems.

If you want the Unicode values (the same as ASCII values for the Latin character

set) for the key that a user pressed, get the keyCode property from the onKeyPress
event handler. For example, a lowercase “a” returns 97, while an uppercase “A”

returns 65. Non-character keys, such as arrows, page navigation, and function keys,

On the
CD-ROM

(IE) event.keyCode

(c) ketabton.com: The Digital Library

758 Part III ✦ Document Objects Reference

return a null value for the keyCode property during onKeyPress events. In other

words, the keyCode property for onKeyPress events is more like a character code

than a key code.

To capture the exact keyboard key that the user presses, use either the

onKeyDown or onKeyUp event handler. For these events, the event object captures

a numeric code associated with a particular key on the keyboard. For the character

keys, this varies with the language assigned as the system language. Importantly,

there is no distinction between uppercase or lowercase: The “A” key on the Latin

keyboard returns a value of 65, regardless of the state of the Shift key. At the same

time, however, the press of the Shift key fired its own onKeyDown and onKeyUp
events, setting the keyCode value to 16. Other non-character keys — arrows, page

navigation, function, and similar — have their own codes as well. This gets very

detailed, including special key codes for the numeric keyboard keys that are differ-

ent from their corresponding numbers along the top row of the alphanumeric key-

board.

Be sure to see the extensive section on keyboard events in Chapter 15 for exam-

ples of how to apply the keyCode property in applications.

Example (with Listing 29-16) on the CD-ROM

Related Items: onKeyDown, onKeyPress, onKeyUp event handlers.

nextPage
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The nextPage property is applicable only if your IE5.5/Windows page uses a

TemplatePrinter behavior. Values of this property are one of the following strings:

left, right, or an empty string. For more information about the TemplatePrinter

behavior for Windows-only versions of IE5.5+, see

http://msdn.microsoft.com/workshop/browser/hosting/printpreview/reference/
behaviors/TemplatePrinter.asp

propertyName
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

On the
CD-ROM

(IE) event.propertyName

(c) ketabton.com: The Digital Library

759Chapter 29 ✦ Event Objects

The propertyName property is filled only after an onPropertyChange event

fires. This property is not available through Version 5 of IE/Macintosh.

If a script modifies a property, the onPropertyChange event handler fires, and

the string name of the property is stuffed into the event.propertyName property.

If the property happens to be a property of the style object associated with the

element, the propertyName is the full property reference, as in

style.backgroundColor.

Example
See Listing 15-46 in the section about the onPropertyChange event handler for

an example of the values returned by this property.

Related Items: onPropertyChange event handler (Chapter 15).

repeat
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The repeat property reveals for onKeyDown events only whether the key is in

repeat mode (as determined by the Keyboard control panel settings in the system).

With this information, you can prevent the automatic triggering of repeat mode

from causing multiple characters from being recognized by the browser. This prop-

erty can come in handy if users may be physically challenged and may occasionally

and accidentally hold down a key too long. The following script fragment in an

onKeyDown event handler for a text box or TEXTAREA prevents multiple characters

from appearing even if the system goes into repeat mode:

if (event.repeat) {
event.returnValue = false

}

By disabling the default action while in repeat mode, no further characters reach

the text box until repeat mode goes away (meaning, with the press of another key).

This property is not available in IE/Mac through Version 5.

Related Items: onKeyDown event handler.

returnValue
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

While IE4+ continues to honor the original way of preventing default action for

an event handler (that is, having the last statement of the event handler evaluate to

(IE) event.returnValue

(c) ketabton.com: The Digital Library

760 Part III ✦ Document Objects Reference

return false), the IE4+ event model provides a property that lets the cancellation

of default action take place entirely within a function invoked by an event handler.

By default, the returnValue property of the event object is true, meaning that

the element processes the event after the scripted handler completes its job, just

as if the script weren’t there. Normal processing, for example, is displaying a typed

character, navigating to a link’s HREF URL upon being clicked, or submitting a form

after the Submit button is clicked.

But you don’t always want the default action to occur. For example, consider a

text box that is supposed to allow only numbers be typed in it. The onKeyPress
event handler can invoke a function that inspects each typed character. If the char-

acter is not a numeric character, then it should not reach the text box for display.

The following validation function may be invoked from the onKeyPress event han-

dler of just such a text box:

function checkIt() {
var charCode = event.keyCode
if (charCode < 48 || charCode > 57) {

alert(“Please make sure entries are numerals only.”)
event.returnValue = false

}
}

By using this event handler, the errant character won’t appear in the text box.

Note that this property is not a substitute for the return statement of a func-

tion. If you need a value to be returned to the invoking statement, you can use a

return statement in addition to setting the event.returnValue property.

Example on the CD-ROM

Related Items: return statement (Chapter 41).

saveType
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The saveType property is assigned a value only when an oncontentsave event

is bound to an IE/Windows DHTML behavior (.htc). For more information about

behaviors, see

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Related Items: addBehavior() method.

On the
CD-ROM

(IE) event.saveType

(c) ketabton.com: The Digital Library

761Chapter 29 ✦ Event Objects

srcElement
Value: Element Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The srcElement property is a reference to the HTML element object that is the

original target of the event. Because an event may bubble up through the element

containment hierarchy and be processed at any level along the way, having a prop-

erty that points back to the element from which the event originated is comforting.

After you have a reference to that element, you can read or write any properties

that belong to that element or invoke any of its methods.

Example (with Listing 29-17) on the CD-ROM

Related Items: fromElement, toElement properties.

srcFilter
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

According to Microsoft, the srcFilter property should return a string of the

name of the filter that was applied to trigger an onFilterChange event handler.

While the property exists in the event object, its value is always null, at least

through IE5.5. This property, because it is filter related, is a Windows-only property.

Related Items: onFilterChange event handler; style.filter object.

srcUrn
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

On the
CD-ROM

(IE) event.srcUrn

(c) ketabton.com: The Digital Library

762 Part III ✦ Document Objects Reference

If an event is fired in an IE/Windows behavior attached to an element, and the

behavior has a URN identifier defined for it, the srcUrn property returns the string

from the URN identifier. For more information about behaviors, see

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Related Items: addBehavior() method.

toElement
See fromElement.

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

You can find out what kind of event fired to create the current event object by

way of the type property. The value is a string version of the event name — just the

name of the event without the “on” prefix that is normally associated with event

names in IE. This property can be helpful when you designate one event handler

function to process different kinds of events. For example, both the onMouseDown
and onClick event handlers for an object can invoke one function. Inside the func-

tion, a branch is written for whether the type comes in as mousedown or click,

with different processing for each event type. That is not to endorse such event

handler function sharing, but for you to be aware of this power should your script

constructions find the property helpful.

This property and its values are fully compatible with the NN4 and NN6 event

models.

Example on the CD-ROM

Related Items: All event handlers (Chapter 15).

NN6+ event Object

Properties Methods Event Handlers

altKey preventDefault()

bubbles stopPropagation()

button

On the
CD-ROM

(NN6) eventObject

(c) ketabton.com: The Digital Library

763Chapter 29 ✦ Event Objects

Properties Methods Event Handlers

cancelBubble

cancelable

charCode

clientX

clientY

ctrlKey

currentTarget

detail

eventPhase

isChar

keyCode

layerX

layerY

metaKey

pageX

pageY

relatedTarget

screenX

screenY

shiftKey

target

timeStamp

type

view

Syntax
Accessing NN6+ event object properties and methods:

eventObject.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

(NN6) eventObject

(c) ketabton.com: The Digital Library

764 Part III ✦ Document Objects Reference

About this object
Although it is based largely on the event object as defined by the W3C DOM

Level 2, the NN6+ event object also carries forward several characteristics from the

NN4 event object. A few properties are continued primarily for backward compati-

bility. But because development for NN6 will likely forego the peculiarities of the

NN4 DOM and event models, you should ignore these items (as highlighted below).

Wherever possible, look forward and embrace the W3C DOM aspects of the event

model.

While the NN6 event model provides a bubbling event propagation model just as

IE4+, the incompatibility of referencing event objects between the event models is

still there. In NN6 (as in NN4), an event object is explicitly passed as a parameter to

event handler (or, rather, event listener) functions. But after you have a browser-

specific event object assigned to a variable inside a function, a few important prop-

erties have the same names between the IE4+ and NN6+ event models. If Microsoft

adopts more of the W3C DOM event model in future versions of IE, the compatibil-

ity situation should improve.

The event object discussed in this section is the instance of an event that is cre-

ated as the result of a user or system event action. The NN6 DOM includes an addi-

tional static Event object. Many of the properties of the static Event object are

inherited by the event instances, so the detailed coverage of those shared proper-

ties is in this section because it is the event object you’ll be scripting for the most

part.

In many code fragments in the following detail sections, you will see references

that begin with the evt reference. This assumes that the statement(s) resides

inside a function that has assigned the incoming event object to the evt parameter

variable:

function myFunction(evt) {...}

As shown earlier in this chapter, you can equalize NN6 and IE4+ event object ref-

erences when it is practical to do so because the scripts work on identical (or simi-

lar) event object properties.

Properties
altKey
ctrlKey
metaKey
shiftKey

Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

(NN6) eventObject.altKey

(c) ketabton.com: The Digital Library

765Chapter 29 ✦ Event Objects

When an event object is created in response to a user or system action, these

four properties are set based on whether their corresponding keys were being held

down at the time — a Shift-click, for example. If the key was held down, the property

is assigned a value of true; otherwise the value is false. The metaKey property

corresponds to the Command key on the Macintosh keyboard but does not register

for the Windows key on Wintel computers.

Most commonly, you use expressions consisting of this property as if construc-

tion condition statements. Because these are Boolean values, you can combine mul-

tiple properties in a single condition. For example, if you have a branch of a

function that is to execute only if the event occurred with both the Shift and

Control keys held down, the condition looks as the following:

if (evt.shiftKey && evt.ctrlKey) {
// statements to execute

}

Conversely, you can take a more user-friendly approach to provide special pro-

cessing if the user holds down any one of the four modifier keys:

if (evt.shiftKey || evt.ctrlKey || evt.metaKey || evt.altKey) {
// statements to execute

}

The rationale behind this approach is to offer perhaps some shortcut operation

for users, but not force them to memorize a specific modifier key combination.

Example
See Listing 29-10, where the values of these properties are used to set the

checked properties of corresponding checkboxes for a variety of event types.

Related Items: None.

bubbles
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Not every event bubbles. For example, an onsubmit event propagates no further

than the form object with which the event is associated. Events that do not bubble

have their event object’s bubbles property set to false; all others have the prop-

erty set to true. You use this property in the rare circumstances of a single event

handler function processing a wide variety of events. You may want to perform spe-

cial operations only on events that can bubble and handle the others without spe-

cial treatment. For this branch, you can use the property in an if condition

statement:

if (evt.bubbles) {
// special processing for bubble-able events

}

(NN6) eventObject.bubbles

(c) ketabton.com: The Digital Library

766 Part III ✦ Document Objects Reference

You do not have to branch, however, just to cancel bubbling. A non-propagating

event doesn’t mind if you tell it not to propagate.

Related Items: cancelBubble property.

button
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The button property reveals the button that was pressed to activate the mouse

event. The left (primary) button returns a value of 1. If the mouse is a three-button

mouse, the middle button returns 2. The right button (on any multi-button mouse)

returns a value of 3. Note that these values differ from those stated in the W3C DOM

(0, 1, and 2, respectively), but these values are backward-compatible with the NN4

which property.

Mouse buttons other than the primary one are easier to look for in mousedown or

mouseup events, rather than onclick events. In the case of a user pressing multiple

buttons, only the most recent button is registered.

Exercise caution when scripting the button property for both IE4+ and NN6+.

The respective event models define different button values for mouse buttons.

Example
See Listing 29-11, where the button property is revealed in the statusbar. Try

pressing individual mouse buttons on, say, the screen button.

Related Items: None.

cancelBubble
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The cancelBubble property is a rare instance of an IE4+ event property being

implemented in NN6 even though the property is not defined in the W3C DOM. The

property operates the same as in IE4+ in that it determines whether the current

event object bubbles up any higher in the element containment hierarchy of the

document. By default, this property is false, meaning that if the event is supposed

to bubble, then it will do so automatically.

To prevent event bubbling for the current event, set the property to true any-

where within the event handler function. As an alternative, you can cancel bubbling

directly in an element’s event handler attribute, as in the following:

onClick=”doButtonClick(this); event.cancelBubble = true”

(NN6) eventObject.cancelBubble

(c) ketabton.com: The Digital Library

767Chapter 29 ✦ Event Objects

Cancelling event bubbling works only for the current event. The very next event

to fire will have bubbling enabled (provided the event bubbles).

If you are trying to migrate your code as much as possible to the W3C DOM, then

use the stopPropagation() method instead of cancelBubble. For cross-browser

compatibility, however, cancelBubble is a safe bet.

Example
See Listing 29-6 to see the cancelBubble property in action in an IE environ-

ment. Even though that listing has some features that apply to IE5.5+, the bubble

cancelling demonstration works all the way back to IE4.

Related Items: stopPropagation() method.

cancelable
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

If an event is cancelable, then its default action can be prevented from occurring

with the help of a script. While most events are cancelable, some are not. The can-

celable property lets you inquire about a particular event object to see if its event

type is cancelable. Values for the property are Booleans. You may want to perform

special operations only on events that are cancelable, and handle the others with-

out special treatment. For this branch, you can use the property in an if condition

statement:

if (evt.cancelable) {
// special processing for cancelable events

}

You do not have to branch, however, just to prevent an event’s default action. A

non-cancelable event doesn’t mind if you tell it to prevent the default action.

Related Items: preventDefault() method.

charCode
keyCode

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 event object model clearly distinguishes between the Unicode charac-

ter attached to the alphanumeric keys of the keyboard and the code attached to

(NN6) eventObject.charCode

(c) ketabton.com: The Digital Library

768 Part III ✦ Document Objects Reference

each of the keyboard (regardless of its character). To inspect the character of a key,

use the onKeyPress event to create the event object, and then look at the event
object’s charCode property. This is the property that returns 97 for “a” and 65 for

“A” because it’s concerned with the character associated with the key action. This

property’s value is zero for onKeyDown and onKeyUp events.

In contrast, the keyCode property is filled with a non-zero value only from

onKeyDown and onKeyUp events (onKeyPress sets the property to zero) when

alphanumeric keys are pressed; for most other non-character keys, all three events

fill the keyCode property. Through this property you can look for non-character

keys, such as arrows, page navigation, and function keys. For the character keys,

there is no distinction between uppercase or lowercase: The “A” key on the Latin

keyboard returns a value of 65, regardless of the state of the Shift key. At the same

time, however, the press of the Shift key fires its own onKeyDown and onKeyUp
events, setting the keyCode value to 16. Other non-character keys — arrows, page

navigation, function, and similar — have their own codes as well. This gets very

detailed, including special key codes for the numeric keyboard keys that are differ-

ent from their corresponding numbers along the top row of the alphanumeric

keyboard.

Be sure to see the extensive section on keyboard events in Chapter 15 for exam-

ples of how to apply the keyCode property in applications.

Example (with Listing 29-18) on the CD-ROM

Related Items: onKeyDown, onKeyPress, onKeyUp event handlers.

clientX
clientY
layerX
layerY
pageX
pageY
screenX
screenY

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 event object borrows mouse coordinate properties from both the NN4

and IE4+ event models. If you have worked with event coordinates in these other

browsers, then you have nothing new to learn for NN6.

On the
CD-ROM

(NN6) eventObject.clientX

(c) ketabton.com: The Digital Library

769Chapter 29 ✦ Event Objects

Like the IE4+ event object, the NN6 event object’s clientX and clientY proper-

ties are the coordinates within the viewable content region of the window. These

values are relative to the window space, not the document. But unlike IE4+, you

don’t have to calculate the position of the coordinates within the document

because another pair of properties, pageX and pageY, provide that information

automatically. If the page has not scrolled, then the values of the client and page

coordinates are the same. Because it is usually more important to know an event’s

coordinates with respect to the document than the window, the pageX and pageY
properties are used most often.

Another property pair, layerX and layerY, borrow terminology from the now

defunct layer schemes of NN4, but the properties can still be quite valuable

nonetheless. These coordinates are measured relative to the positioning context of

the element that received the event. For regular, unpositioned elements in the

BODY part of a document, that positioning context is the BODY element. Thus, for

those elements, the values of the page and layer coordinates will be the same. But if

you create a positioned element, the coordinate space is measured from the top-left

corner of that space. Thus, if you are using the coordinates to assist in scripted

dragging of positioned elements, you can confine your scope to just the positioned

element.

One coordinate system missing from the NN6 repertoire is that of the target ele-

ment itself (comparable to the offsetX and offsetY properties of IE4+). These val-

ues, however, can be calculated by subtracting from the page coordinate properties

the offsetLeft and offsetTop properties of both the target element and its posi-

tioning context. For example, if you want to get the coordinates of a mouse event

inside an image, the event handler can calculate those values as follows:

var clickOffsetX = evt.pageX - evt.target.offsetLeft - document.body.offsetLeft
var clickOffsetY = evt.pageY - evt.target.offsetTop - document.body.offsetTop

The last set of coordinate properties, screenX and screenY, provide values rela-

tive to the entire video display. Of all these properties, only the client and screen

coordinates are defined in the W3C DOM Level 2 standard.

Keep in mind that in NN6, event targets include text nodes inside elements.

Because nodes do not have all the properties of elements (for example, they have

no offset properties signifying their location in the document), you may sometimes

have to go to the target node’s parent node to get an element object whose offset

properties provide the necessary page geography. This matters, of course, only if

your scripts need concern themselves with mouse events on text.

Example (with Listing 29-19) on the CD-ROM

Related Items: target property.

On the
CD-ROM

(NN6) eventObject.clientX

(c) ketabton.com: The Digital Library

770 Part III ✦ Document Objects Reference

currentTarget
Value: Element Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

As an event courses its way through its propagation paths, an event listener may

process that event along the way. While the event knows what the target is, it can

also be helpful for the event listener function to know which element’s event lis-

tener is now processing the event. The currentTarget property provides a refer-

ence to the element object whose event listener is processing the event. This allows

one listener function to potentially process the event from different levels, branch-

ing the code to accommodate different element levels that process the event.

A valuable companion piece of information about the event is the eventPhase
property, which helps your event listener function determine if the event is in cap-

ture mode, bubble mode, or is at the target. This property is demonstrated in the

next section.

Example (with Listing 29-20) on the CD-ROM

Related Items: eventPhase property.

detail
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The detail property is included in the W3C DOM specification as an extra prop-

erty whose purpose can be determined by the browser maker. In theory, this inte-

ger property value can convey additional information about the event. While the

property is present in the NN6 event object (and returns values for some events), it

contains no additional data about events, but may in the future.

Related Items: None.

On the
CD-ROM

(NN6) eventObject.detail

(c) ketabton.com: The Digital Library

771Chapter 29 ✦ Event Objects

eventPhase
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

An event fires in one of three possible event phases: event capture, at the target,

or bubbling. Because the same event listener function may be processing an event

in multiple phases, it can inspect the value of the eventPhase property of the event

object to see in which phase the event was when the function was invoked. Values

for this property are integers 1 (capture), 2 (at target), or 3 (bubbling).

Example on the CD-ROM

Related Items: currentTarget property.

isChar
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

You can find out from each keyboard event whether the key being pressed is a

character key by examining the isChar property. Most typically, however, you are

already filtering for character or non-character keys by virtue of the event handlers

used to capture keyboard actions: onKeyPress for character keys; onKeyDown or

onKeyUp for non-character keys. Be aware that the isChar property returns incon-

sistent values (even for the same key) in the first release of NN6.

Related Items: charCode, keyCode properties.

relatedTarget
Value: Element Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The relatedTarget property allows an element to uncover where the cursor

rolled in from or has rolled out to. This property extends the power of the

On the
CD-ROM

(NN6) eventObject.relatedTarget

(c) ketabton.com: The Digital Library

772 Part III ✦ Document Objects Reference

onMouseOver and onMouseOut event handlers by expanding their scope to outside

the current element (usually to an adjacent element). This one property in NN6

does the same duty as the fromElement and toElement properties of the IE4+

event object.

When the onMouseOver event fires on an element, the cursor had to be over

some other element just beforehand. The relatedTarget property holds a refer-

ence to that element. Conversely, when the onMouseOut event fires, the cursor is

already over some other element. The relatedTarget property holds a reference

to that element.

Example (with Listing 29-21) on the CD-ROM

Related Items: target property.

target
Value: Element Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The target property is a reference to the HTML element object that is the origi-

nal target of the event. Because an event may trickle down and bubble up through

the element containment hierarchy and be processed at any level along the way,

having a property that points back to the element from which the event originated

is comforting. As soon as you have a reference to that element, you can read or

write any properties that belong to that element or invoke any of its methods.

Example (with Listing 29-22) on the CD-ROM

Related Items: relatedTarget property.

timeStamp
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Each event receives a time stamp in milliseconds, based on the same date epoch

as the Date object (1 January 1970). Just as with the Date object, accuracy is

wholly dependent on the accuracy of the system clock of the client computer.

On the
CD-ROM

On the
CD-ROM

(NN6) eventObject.timeStamp

(c) ketabton.com: The Digital Library

773Chapter 29 ✦ Event Objects

While the precise time of an event may be of value in only some situations, the

time between events can be useful for applications, such as timed exercises or

action games. You can preserve the time of the most recent event in a global vari-

able, and compare the time of the current time stamp against the stored value to

determine the elapsed time between events.

Example (with Listing 29-23) on the CD-ROM

Related Items: Date object.

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

You can find out what kind of event fired to create the current event object by

way of the type property. The value is a string version of the event name — just the

name of the event without the “on” prefix that is normally associated with event lis-

tener names in NN6. This property can be helpful when you designate one event

handler function to process different kinds of events. For example, both the

onMouseDown and onClick event listeners for an object can invoke one function.

Inside the function, a branch is written for whether the type comes in as mousedown
or click, with different processing for each event type. That is not to endorse such

event handler function sharing, but be aware of this power should your script con-

structions find the property helpful.

This property and its values are fully compatible with the NN4 and IE4+ event

models.

Related Items: All event handlers (Chapter 15).

view
Value: Window Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The closest that the W3C DOM Level 2 specification comes to acknowledging the

browser window is an abstract object called an abstract view (AbstractView class).

The object’s only property is a reference to the document that it contains — the

root document node that you’ve come to know and love. User events always occur

within the confines of one of these views, and this is reflected in the event object’s

On the
CD-ROM

(NN6) eventObject.view

(c) ketabton.com: The Digital Library

774 Part III ✦ Document Objects Reference

view property. NN6 returns a reference to the window object (which can be a

frame) in which the event occurs. This reference allows an event object to be

passed to scripts in other frames and those scripts can then gain access to the

document object of the target element’s window.

Related Items: window object.

Methods
preventDefault()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

While NN6+ continues to honor the original way of preventing default action for

an event handler (that is, having the last statement of the event handler evaluate to

return false), the NN6+ event model provides a method that lets the cancellation

of default action take place entirely within a function invoked by an event handler.

For example, consider a text box that is supposed to allow only numbers be typed

in it. The onKeyPress event handler can invoke a function that inspects each typed

character. If the character is not a numeric character, then it does not reach the

text box for display. The following validation function may be invoked from the

onKeyPress event handler of just such a text box:

function checkIt(evt) {
var charCode = evt.charCode
if (charCode < 48 || charCode > 57) {

alert(“Please make sure entries are numbers only.”)
evt.preventDefault()

}
}

This way, the errant character won’t appear in the text box.

Invoking the preventDefault() method in NN6 is the equivalent of assigning

true to event.returnValue in IE5+.

Related Items: cancelable property.

stopPropagation()
Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

(NN6) eventObject.stopPropagation()

(c) ketabton.com: The Digital Library

775Chapter 29 ✦ Event Objects

Use the stopPropagation() method to stop events from trickling down or bub-

bling up further through the element containment hierarchy. A statement in the

event listener function that invokes

evt.stopPropagation()

is all that is needed. As an alternative, you can cancel bubbling directly in an ele-

ment’s event handler attribute, as in the following:

onClick=”doButtonClick(this); event.stopPropagation()”

If you are writing cross-browser scripts, you also have the option of using the

cancelBubble property, which is compatible with IE4+.

Related Items: bubbles, cancelBubble properties.

✦ ✦ ✦

(NN6) eventObject.stopPropagation()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Style Sheet and
Style Objects

Version 4 browsers were the first to offer full-scale sup-

port for the concept of style sheets (although IE3

offered limited style sheet support). Style sheets promote a

concept that makes excellent sense in the fast-paced, high-

volume content creation environment that is today’s World

Wide Web: separating content from the rendering details of

the content. Textual content may come from any number of

electronic sources, but it may need to be dropped into differ-

ent contexts — just like an online news feed that becomes

amalgamated into dozens of Web portal sites, each with its

own look and feel. All the content cares about is the text and

its meaning; the Web page designer then decides how that

content should be rendered on the page.

The concept has other advantages. Consider the large cor-

porate Web site that wants to promote its identity through a

distinct style. A family of style sheets can dictate the font face,

font size, the look of emphasized text, and the margin width of

all body text. To apply these styles on an element-by-element

basis would not only be a tedious page authoring task, it is

fraught with peril. If the style is omitted from the tags of one

page, the uniformity of the look is destroyed. Worse yet, if the

corporate design changes to use a different font face, the task

of changing every style in every tag — even with a highly pow-

ered search-and-replace operation — is risky. But if a single

external style sheet file dictates the styles, then the designer

need make only one change in that one file to cause the new

look to ripple (“cascade”) through the entire Web site.

Learning how to create and apply style sheets is beyond

the scope of this book, and this chapter assumes you already

are familiar with style sheet terminology, such as a style sheet

rule and a selector. If these terms are not in your vocabulary,

you can find numerous tutorials on the subject both online

and in books. Although IE and NN browsers adhere fairly

closely to W3C standards for style sheets (called Cascading

Style Sheets, or CSS for short), you should learn from an

independent source. Microsoft, in particular, includes some

extras in the style sheet vocabulary that work only on IE4+ for

Windows. Unless that is your single target browser brand and

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Managing style
sheets by script

Changing element
styles on the fly

Distinguishing among
STYLE, styleSheet,
and style objects

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

778 Part III ✦ Document Objects Reference

client operating system, learning the common denominator of style sheet features

is the right way to go. Details in this chapter cover all versions, so pay close atten-

tion to compatibility listings for each item.

One last compatibility note: While NN4 implements a fair amount of CSS, it does

not expose style sheets or style rules to the object model. Part of this is linked to

the static nature of an NN4 page. Because modifying a style may alter the physical

layout of body elements, and because that browser does not reflow the page in

response to such changes, altering styles of content that is already loaded is simply

not possible. In NN6, however, the page reflows, and everything relating to styles is

exposed to the scriptable object model.

Making Sense of the Object Names
The first task in this chapter is to clarify the seemingly overlapping terminology

for the style sheet-related objects that you will be scripting. Some objects are more

abstract than others, but they are all important. The objects in question are

✦ STYLE element object

✦ styleSheet object (a member of the styleSheets array)

✦ rule or cssRule object (a member of the rules or cssRules array)

✦ style object

A STYLE element object is the object that represents the <STYLE> tag in your

document. Most of its properties are inherited from the basic HTML element

objects you see detailed in Chapter 15. While the STYLE element object has a

disabled property, by and large, you won’t be accessing style sheets via the

STYLE element object.

A style sheet can be embedded in a document via the <STYLE> tag or it may be

linked in via a <LINK> tag. One property of the document object, the styleSheets
property, returns an array (collection) of all styleSheet objects that are currently

“visible” to the document, whether or not they are disabled. Even though the

<STYLE> tag, for example, contains lines of code that make up the rules for a style

sheet, the STYLE element object is not the path to reach the individual rules. The

styleSheet object is. It is through the styleSheet object that you can enable or dis-

able an entire sheet, access individual rules (via the rules or cssRules property

array), and add or delete rules for that style sheet.

The meat of any style sheet is the rules that define how elements are to be ren-

dered. At this object level, the terminology forks for IE4+ and NN6. The IE4+ object

model calls each style sheet rule a rule object; NN6, adhering to the W3C DOM

Level 2 standard, calls each rule a cssRule object. IE5 for the Macintosh supports

both references to the same object. Despite the incompatible object names, the two

objects share key property names. Assembling a reference to a rule requires array

references. For example, the reference to the first rule of the first styleSheet object

in the document is as follows for the two browsers:

var oneRule = document.styleSheets[0].rules[0] // IE4+
var oneRule = document.styleSheets[0].cssRules[0] // IE5/Mac, NN6+

(c) ketabton.com: The Digital Library

779Chapter 30 ✦ Style Sheet and Style Objects

The last object of this quartet of style-related objects is the style object. This

object is the motherlode, where actual style definitions take place. In earlier chap-

ters, you have seen countless examples of modifying one or more style properties

of an element. Most typically, this modification is accomplished through the style
property of the HTML element. For example, you would set the font color of a SPAN

element whose ID is “hot” as follows:

document.all.hot.style.color = “red” // IE4+
document.getElementById(“hot”).style.color = “red” // IE5+, NN6+

The style object is also a property of a rule/cssRule object. Thus, if you

need to modify the style of elements affected by an existing style sheet rule, you

approach the style object through a different reference path, but the style object

is treated just as it is for elements:

document.styleSheets[0].rules[0].style.color = “red” // IE4+
document.styleSheets[0].cssRules[0].style.color = “red” // IE5/Mac, NN6+

Many scripters concern themselves solely with the style object, and at that, a

style object associated with a particular element object. Rare are instances that

require manipulation of styleSheet objects beyond perhaps enabling and disabling

them under script control. Therefore, if you are learning about these objects for the

first time, pay closest attention to the style object details rather than to the other

related objects.

Imported Style Sheets
Style sheets embedded in a document via the STYLE element can import addi-

tional style sheets via the @import selector:

<STYLE TYPE=”text/css”>
@import url(externalStyle.css);
P {font-size:16pt}
</STYLE>

In this example scenario, the document sees just one styleSheet object. But

that object has a style sheet nested inside — the style sheet defined by the external

file. IE4+ calls one of these imported styles sheets an import object. An import
object has all the properties of any styleSheet object, but its parentStyle property

is a reference to the styleSheet that “owns” the @import rule. In fact, the @import
statement does not even appear among the rules collection of the IE styleSheet

object. Therefore, to access the first rule of the imported style sheet, the reference

is as the following:

document.styleSheets[0].imports[0].rules[0]

The W3C DOM and NN6 treat import rule objects differently from the IE model.

To the W3C DOM, even an at-rule is considered one of the cssRules collection of a

styleSheet object. One of the properties of a cssRule object is type, which conveys

an integer code value revealing whether the rule is a plain CSS rule or one of several

other types, including an import rule. Of course, an imported rule object then has

as one of its properties the styleSheet object that, in turn, contains the rules

(c) ketabton.com: The Digital Library

780 Part III ✦ Document Objects Reference

defined in the external style sheet file. The parent-child relationship exists here, as

well, whereby the styleSheet that contains the @import rule is referenced by the

imported styleSheet object’s parentStyle property (just as in IE4+).

Reading Style Properties
Both the IE4+ and NN6 (W3C) object models exhibit a behavior that at first

glance may seem disconcerting. On the one hand, the W3C and good HTML practice

encourage defining styles remotely (that is, embedded via <STYLE> or <LINK> tags)

rather than as values assigned to the STYLE attribute of individual element tags

throughout the document. This more closely adheres to the notion of separating

style from content.

On the other hand, object models can be very literal beasts. Strictly speaking, if

an element object presents a scriptable property that reflects an attribute for that

element’s tag, the first time a script tries to read that property, a value will be asso-

ciated with that property only if the attribute is explicitly assigned in the HTML

code. But if you assign style sheet settings via remote style sheets, the values are

not explicitly set in the tag. Therefore, the style property of such an element

comes up empty, even though the element is under the stylistic control of the

remote style sheet. If all you want to do is assign a new value to a style property,

that’s not a problem, because your assignment to the element object’s style prop-

erty overrides whatever style is assigned to that property in the remote style sheet

(and then that new value is subsequently readable from the style property). But if

you want to see what the current setting is, the initial value won’t be in the ele-

ment’s style object.

To the rescue, in IE5+ anyway, comes an extra, read-only property —

currentStyle— that reveals the style sheet values that are currently being

applied to the element, regardless of where the style sheet definitions are. The

currentStyle property returns an object that is in the same format and has the

same properties as the regular style property. If your audience runs browsers no

earlier than IE5, then you should make a habit of reading styles for an element via

its currentStyle property. If you want a change to a style object’s property to

apply to only one element, then use the element’s style property to set that value;

but if the change is to apply to all elements covered by the same remote style sheet

rule, then modify the style property of the rule object.

STYLE Element Object
See Chapter 15 for items shared by all HTML elements.

Properties Methods Event Handlers

media

type

STYLE

(c) ketabton.com: The Digital Library

781Chapter 30 ✦ Style Sheet and Style Objects

Syntax
Accessing STYLE element object properties and methods:

(IE4+) document.all.objectID.property | method([parameters])
(IE5+/NN6) document.getElementById(objectID).property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

About this object
The STYLE element is among the classification of HTML directive elements (see

Chapter 20) in that it goes in the HEAD portion of a document and does not have

any of its own content rendered in the page. But the contents obviously have a

great amount of control over the rendering of other elements. Most of the proper-

ties, methods, and event handlers that the STYLE element inherits from all HTML

elements are irrelevant.

One exception is the Boolean disabled property. Although there are additional

ways to disable a style sheet (the disabled property of the styleSheet object), it

may be easier to disable or enable a style sheet by way of the STYLE element

object. Because you can assign an ID to this element and reference it explicitly,

doing so may be more convenient than trying to identify which styleSheet object

among the document’s styleSheets collection you intend to enable or disable.

Properties
media

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The media property represents the MEDIA attribute of a STYLE element. This

attribute can define what kind of output device is governed by the style sheet. The

HTML 4.0 specification has lofty goals for this attribute, but at best, computer

browsers are limited to the following values: screen, print, and all. Thus, you

can design one set of styles to apply when the page is viewed on the computer

screen and a different set for when it’s printed.

type
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

STYLE.type

(c) ketabton.com: The Digital Library

782 Part III ✦ Document Objects Reference

The type property represents the TYPE attribute of the STYLE element. For CSS

style sheets, this property is always set to text/css. If your scripts assign some

other value to this property and the browser does not support that style sheet

type, the style sheet no longer functions as a CSS style sheet, and any styles it con-

trols revert to their default styles.

styleSheet Object

Properties Methods Event Handlers

cssRules addImport()

cssText addRule()

disabled deleteRule()

href insertRule()

id removeRule()

imports

media

ownerNode

ownerRule

owningElement

pages

parentStyleSheet

readOnly

rules

title

type

Syntax
Accessing styleSheet object properties and methods:

(IE4+/NN6) document.styleSheets[index].property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

styleSheetObject

(c) ketabton.com: The Digital Library

783Chapter 30 ✦ Style Sheet and Style Objects

About this object
If the STYLE element object is the concrete incarnation of a style sheet, then the

styleSheet object is its abstract equivalent. A styleSheet object exists by virtue of a

style sheet definition being embedded in the current document either by way of the

<STYLE> tag or linked in from an external file via the <LINK> tag. Each element that

introduces a style sheet into a document creates a separate styleSheet object.

Access to a styleSheet object is via the document.styleSheets array. If the docu-

ment contains no style sheet definitions, then the array has a length of zero. Styles

that are introduced into a document by way of an element’s STYLE attribute are not

considered styleSheet objects.

Although both IE4+ and NN6+ present styleSheet objects — and the object repre-

sents the same “thing” in both browser families — the set of properties and meth-

ods diverges widely between browsers. In many cases, the object provides the

same information but through differently named properties in the two families.

Interestingly, on some important properties, such as the ones that return the array

of style rules and a reference to the HTML element that is responsible for the style

sheet’s being in the document, IE5+/Mac provides both the Microsoft and W3C ter-

minology. Methods for this object focus on adding rules to and deleting rules from

the style sheet. For the most part, however, your use of the styleSheet object will be

as a reference gateway to individual rules (via the rules or cssRules array).

Properties
cssRules

Value: Array of rule objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�) (�)

The cssRules property returns an array of style sheet rule objects. Strictly

speaking, the objects are called cssRule objects in the W3C DOM terminology. This

property is implemented in the Mac version of IE5+, but not in the Windows version

as of IE5.5. The list of rule objects is in source code order. The corresponding

IE4+/Windows property is rules.

Example on the CD-ROM

Related Items: rules property; cssRule, rule objects.

cssText
Value: String Read/Write

On the
CD-ROM

styleSheetObject.cssText

(c) ketabton.com: The Digital Library

784 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The cssText property contains a string of the style sheet rules contained by the

styleSheet object. Parsing this text in search of particular strings is not wise

because the text returned by this property can have carriage returns and other for-

matting that is not obvious from the text that is assigned to the rules in the style

sheet. But you can use this property as a way to completely rewrite the rules of a

style sheet in a rather brute-force manner: Assemble a string consisting of all the

new rules and assign that string to the cssText property. The more formal way of

modifying rules (adding and removing them) is perhaps better form, but there is no

penalty for using the cssText property if your audience is strictly IE5+.

Example on the CD-ROM

Related Items: addRule(), deleteRule(), insertRule(), removeRule()
methods.

disabled
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

While the disabled property of the STYLE element object works with that ele-

ment only, the styleSheet object’s disabled property works with a styleSheet

object that comes into the document by a LINK element as well.

Enabling and disabling style sheets is one way to swap different appearance

styles for a page, allowing the user to select the preferred style. The page can con-

tain multiple style sheets that control the same selectors, but your script can

enable one and disable another to change the overall style. You can even perform

this action via the onLoad event handler. For example, if you have separate style

sheets for Windows and Mac browsers, you can put both of them in the document,

initially both disabled. An onLoad event handler determines the operating system

and enables the style sheet tailored for that OS. Unless your style sheets are very

extensive, there is little download performance penalty for having both style sheets

in the document.

Example on the CD-ROMOn the
CD-ROM

On the
CD-ROM

styleSheetObject.disabled

(c) ketabton.com: The Digital Library

785Chapter 30 ✦ Style Sheet and Style Objects

Related Items: disabled property of the STYLE element object.

href
Value: String Read/Write (See Text)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

When a style sheet is linked into a document via a LINK element, the href prop-

erty of the styleSheet object contains a string with the URL to that file. Essentially,

the href property of the LINK element is passed along to the styleSheet object that

loads as a result. In IE4+ for Windows only, this property is read/write, allowing you

to dynamically link in an external style sheet file after the page has loaded. In

IE/Mac and NN6, this property is read-only.

Related Items: LINK element object.

id
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The id property of a styleSheet object inherits the id property of its containing

element (STYLE or LINK element). This can get confusing, because it may appear as

though two objects in the document have the same ID. The id string, however, can

be used as an index to the document.styleSheets array in IE4+ (for example,

document.styleSheets[“winLINK”]). NN6 does not provide a comparable identi-

fier associated with a styleSheet object.

Related Items: id property of all element objects.

imports
Value: Array of styleSheet Objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

A style sheet can contain one or more @import rules to import an external style

sheet file into the document. Each imported styleSheet object is treated as an

import object. The imports property is a collection of all imported styleSheet

objects that belong to the current styleSheet object. Imported style sheets are not

styleSheetObject.imports

(c) ketabton.com: The Digital Library

786 Part III ✦ Document Objects Reference

added to the document.styleSheets collection, so that references to an imported

styleSheet object must be through the document.styleSheets[i].imports[i]
array.

An import object is, itself, a styleSheet object. All properties and methods appli-

cable to a styleSheet object also apply to an import object. Therefore, if you want

to load a different external style sheet into the page, you can assign the new URL to

the imported styleSheet object’s href property:

document.styleSheets[0].imports[0].href = “alternate.css”

Modifications of this nature work in IE for Windows, but not in IE/Mac as of

Version 5.

Related Items: styleSheet object.

media
Value: See Text Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

CSS style sheets can be defined to apply to specific output media, such as the

video display screen, printer, and, in the future, devices such as speech synthesiz-

ers or Braille generators. A style sheet gets this direction from the MEDIA attribute

of a STYLE or LINK element. That value is represented in the media property of the

styleSheet object.

In IE4+, the media property value is a string with one of three possible values:

screen, printer, all. The W3C DOM and NN6 take this one step further by allow-

ing for potentially multiple values being assigned to the MEDIA attribute. The NN6

value is an array of string media names.

Related Items: None.

ownerNode
Value: Node Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The ownerNode property is a reference to the document node in which the

styleSheet object is defined. For styleSheet objects defined inside STYLE and

LINK elements, the ownerNode property is a reference to that element. The corre-

sponding property in IE4+ is owningElement. Oddly, IE5/Mac has an additional,

misnamed property called owningNode, whose value equals that of the

owningElement property.

styleSheetObject.ownerNode

(c) ketabton.com: The Digital Library

787Chapter 30 ✦ Style Sheet and Style Objects

Example on the CD-ROM

Related Items: ownerRule, owningElement property.

ownerRule
Value: cssRule Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The ownerRule property applies to a styleSheet object that has been imported

into a document via the @import rule. The property returns a reference to the

@import rule responsible for loading the external style sheet. There is an interac-

tion between the ownerRule and ownerNode properties in that an imported rule

has an ownerRule but its ownerNode property is null; conversely, a regular

styleSheet has an ownerNode, but its ownerRule property is null. Note that NN6

does not expose imported style sheets as objects, so this property is not yet appli-

cable to NN.

Related Items: ownerNode property.

owningElement
Value: Element Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The owningElement property is a reference to the element object in which the

styleSheet object is defined. For styleSheet objects defined inside STYLE and LINK

elements, the owningElement property is a reference to that element. The corre-

sponding property in NN6+ is ownerNode. Oddly, IE5/Mac has an additional, mis-

named property called owningNode, whose value equals that of the

owningElement property.

Example on the CD-ROM

Related Items: ownerNode property.

On the
CD-ROM

On the
CD-ROM

styleSheetObject.owningElement

(c) ketabton.com: The Digital Library

788 Part III ✦ Document Objects Reference

pages
Value: Array of @page Rules Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

An @page style rule defines the dimensions and margins for printed versions of a

Web page. The pages property returns a collection of @page rules contained by the

current styleSheet object. If no @page rules are defined in the style sheet, the array

has a length of zero.

While an @page rule has the same properties as any rule object, it has one more

read-only property, the pseudoClass property, which returns any pseudo-class def-

initions in the rule. For example, the following @page rules define different rectangle

specifications for the left and right printed pages:

@page :left {margin-left:4cm; margin-right:3cm;}
@page :right {margin-left:3cm; margin-right:4cm;}

Values for the pseudoClass property of these two page rules are :left and

:right, respectively.

To the W3C DOM, an @page rule is just another rule object, but one whose type
property returns page.

For more information about the paged media specification, see http://www.
w3.org/TR/REC-CSS2/page.html.

Related Items: None.

parentStyleSheet
Value: styleSheet Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

An imported style sheet is present thanks to the hosting of a styleSheet object

created by a STYLE or LINK element. That host styleSheet object is referenced by

the parentStyleSheet property. For most styleSheet objects (that is, those not

imported via the @import rule), the parentStyleSheet property is null. Take

note of the distinction between the parentStyleSheet property, which points to a

styleSheet object, and the various properties that refer to the HTML element that

“owns” the styleSheet object.

Related Items: None.

styleSheetObject.parentStyleSheet

(c) ketabton.com: The Digital Library

789Chapter 30 ✦ Style Sheet and Style Objects

readOnly
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The readOnly property’s name is a bit misleading. Its Boolean value lets your

script know whether the current style sheet was embedded in the document by

way of the STYLE element or brought in from an external file via the LINK element

or @import rule. When embedded by a STYLE element, the readOnly property is

false; for style sheets defined outside the page, the property is true. But a value

of true doesn’t mean that your scripts cannot modify the style properties. Style

properties can still be modified on the fly, but of course the changes will not be

reflected in the external file from which the initial settings came.

Related Items: owningElement property.

rules
Value: Array of rule Objects Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The rules property returns an array of all rule objects (other than @ rules)

defined in the current style sheet. The order of rule objects in the array is based on

source code order of the rules defined in the STYLE element or in the external file.

Use the rules array as the primary way to reference an individual rule inside a

style sheet. If you use a for loop to iterate through all rules in search of a particular

rule, you will most likely be looking for a match of the rule object’s selectorText
property. This assumes, of course, that each selector is unique within the style

sheet. Using unique selectors is good practice, but no restrictions prevent you from

reusing a selector name in a style sheet for additional style information applied to

the same selector elements.

The corresponding property name for NN6 is cssRules. IE5/Mac responds to

both the rules and cssRules properties.

Example on the CD-ROM

Related Items: rule object; cssRules property.

On the
CD-ROM

styleSheetObject.rules

(c) ketabton.com: The Digital Library

790 Part III ✦ Document Objects Reference

title
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

If you assign a value to the TITLE attribute of a STYLE element or a LINK element

that loads a style sheet, that string value filters down to the title property of the

styleSheet object. You can use the string value as a kind of identifier, but it is not

usable as a true identifier that you can use as an index to the styleSheets array. In

visible HTML elements, the TITLE attribute usually sets the text that displays with

the tooltip over the element. But for the unseen STYLE and LINK elements, the

attribute has no impact on the rendered display of the page. Therefore, you can use

this attribute and corresponding property to convey any string value you want.

Related Items: title property of all HTML elements.

type
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The type property of a styleSheet object picks up the TYPE attribute of the

STYLE or LINK element that embeds a style sheet into the page. Unless you are

experimenting with some new types of style sheet language (assuming it is even

supported in the browser), the value of the type property is text/css.

Related Items: None.

Methods
addImport(“URL”[, index])

Returns: Integer.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The addImport() method lets you add an @import rule to a styleSheet object.

A required first parameter is the URL of the external .css file that contains one or

more style sheet rules. If you omit the second parameter, the @import rule is

styleSheetObject.addImport()

(c) ketabton.com: The Digital Library

791Chapter 30 ✦ Style Sheet and Style Objects

appended to the end of rules in the styleSheet object. Or you can specify an integer

as the index of the position within the rules collection where the rule should be

inserted. The order of rules in a styleSheet object can influence the cascading order

of overlapping style sheet rules (that is, multiple rules that apply to the same

elements).

The value returned by the method is an integer representing the index position

of the new rule within the rules collection of the styleSheet. If you need subsequent

access to the new rule, you can preserve the value returned by the addImport()
method and use it as the index to the rules collection.

Related Items: addRule() method.

addRule(“selector”, “styleSpec”[, index])
removeRule(index)

Returns: Integer (for addRule()).

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The addRule() method appends or inserts a style sheet rule into the current

styleSheet object. The first two parameters are strings for the two components of

every rule: the selector and the style specification. Any valid selector, including

multiple, space-delimited selectors, is permitted. For the style specification, the

string should contain the semicolon-delimited list of style attribute:value pairs,

but without the curly braces that surround the specification in a regular style sheet

rule.

If you omit the last parameter, the rule is appended to the end of the rules col-

lection for the style sheet. Or, you can specify an integer index value signifying the

position within the rules collection where the new rule should go. The order of

rules in a styleSheet object can influence the cascading order of overlapping style

sheet rules (meaning multiple rules that apply to the same elements).

The return value conveys no meaningful information.

To remove a rule from a styleSheet object’s rules collection, invoke the

removeRule() method. Exercise some care here, because you must have the

correct index value for the rule that you want to remove. Your script can use a

for loop to iterate through the rules collection, looking for a match of the

selectorText property (assuming that you have unique selectors). The index for

the matching rule can then be used as the parameter to removeRule(). This

method returns no value.

For NN6, the corresponding methods are called insertRule() and deleteRule().

Example on the CD-ROM

Related Items: deleteRule(), insertRule() methods.

On the
CD-ROM

styleSheetObject.addRule()

(c) ketabton.com: The Digital Library

792 Part III ✦ Document Objects Reference

deleteRule(index)
insertRule(“rule”, index)

Returns: Integer (for insertRule()).

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The insertRule() method appends or inserts a style sheet rule into the current

styleSheet object. The first parameter is a string containing the style rule as it

would normally appear in a style sheet, including the selector and curly braces sur-

rounding the semicolon-delimited list of style attribute:value pairs.

You must supply an index location within the cssRules array where the new

rule is to be inserted. If you want to append the rule to the end of the list, use the

length property of the cssRules collection for the parameter. The order of rules in

a styleSheet object can influence the cascading order of overlapping style sheet

rules (meaning multiple rules that apply to the same elements).

The return value is an index for the position of the inserted rule.

To remove a rule from a styleSheet object’s cssRules collection, invoke the

deleteRule() method. Exercise some care here, because you must have the cor-

rect index value for the rule that you want to remove. Your script could use a for
loop to iterate through the cssRules collection, looking for a match of the

selectorText property (assuming that you have unique selectors). The index for

the matching rule can then be used as the parameter to deleteRule(). This

method returns no value.

For IE4+, the corresponding methods are called addRule() and removeRule().

Example on the CD-ROM

Related Items: addRule(), removeRule() methods.

cssRule and rule Objects

Properties Methods Event Handlers

cssText

parentStyleSheet

readOnly

selectorText

style

type

On the
CD-ROM

ruleObject

(c) ketabton.com: The Digital Library

793Chapter 30 ✦ Style Sheet and Style Objects

Syntax
Accessing rule or cssRule object properties:

(IE4+) document.styleSheets[index].rules[index].property
(IE5-Mac/NN6+) document.styleSheets[index].cssRules[index].property

About these objects
The rule and cssRule objects are different object model names for the same

objects. For IE4+, the object is known as a rule (and a collection of them the rules
collection); for NN6 (and IE5/Mac), the object follows the W3C DOM recommenda-

tion, calling the object a cssRule (and a collection of them the cssRules collection).

For the remainder of this section, they will be referred to generically as the rule

object.

A rule object has two major components. The first is the selector text, which

governs which element(s) are to be influenced by the style rule. The second com-

ponent is the style definition, with its set of semicolon-delimited attribute:value
pairs. In both the IE4+ and NN6 object models, the style definition is treated as an

object: the style object, which has tons of properties representing the style

attributes available in the browser. The style object that belongs to a rule object is

precisely the same style object that is associated with every HTML element

object. Accessing style properties of a style sheet rule requires a fairly long refer-

ence, as in

document.styleSheets[0].rules[0].style.color = “red”

but the format follows the logic of JavaScript’s dot-syntax to the letter.

Properties
cssText

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�)

The cssText property returns the full text of the current cssRule object. This

property is available in NN6 and IE5/Macintosh. While the text returned from this

property can be parsed to locate particular strings, it is easier and more reliable to

access individual style properties and their values via the style property of a

cssRule object.

Related Items: style property.

parentStyleSheet
Value: styleSheet Object Read-Only

ruleObject.parentStyleSheet

(c) ketabton.com: The Digital Library

794 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�)

The parentStyleSheet property is a reference to the styleSheet object that

contains the current cssRule object. This property is available in NN6 and

IE5/Macintosh. The return value is a reference to a styleSheet object, from which

scripts can read and write properties related to the entire style sheet.

Related Items: parentRule property.

readOnly
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The readOnly property’s name is a bit misleading. Its Boolean value lets your

script know whether the current rule’s styleSheet was embedded in the document

by way of the STYLE element or brought in from an external file via the LINK ele-

ment or @import rule. When embedded by a STYLE element, the readOnly prop-

erty is false; for style sheets defined outside the page, the property is true. But a

value of true doesn’t mean that your scripts cannot modify the style properties.

Style properties can still be modified on the fly, but of course the changes are not

reflected in the external file from which the initial settings came.

Related Items: styleSheet.readOnly property.

selectorText
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The selectorText property returns only the selector portion of a style sheet

rule. The value is a string, and if the selector contains multiple, space-delimited

items, the selectorText value returns the same space-delimited string. For selec-

tors that are applied to classes (preceded by a period) or ids (preceded by a

crosshatch), those leading characters are returned as part of the string as well.

If you want to change the selector for a rule, removing the original rule and

adding a new one in its place is better. You can always preserve the style property

of the original rule and assign the style to the new rule.

ruleObject.selectorText

(c) ketabton.com: The Digital Library

795Chapter 30 ✦ Style Sheet and Style Objects

Example on the CD-ROM

Related Items: style property.

style
Value: style Object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The style property of a rule (or cssRule) is, itself, an object whose properties

consist of the CSS style attributes supported by the browser. Modifying a property

of the style object requires a fairly long reference, as in

document.styleSheets[0].rules[0].style.color = “red”

Any change you make to the rule’s style properties is reflected in the rendered

style of whatever elements are denoted by the rule’s selector. If you want to change

the style of just one element, then access the style property of just that element.

Style values applied directly to an element override whatever style sheet style val-

ues are associated with the element.

Example on the CD-ROM

Related Items: style object.

type
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The W3C DOM defines several classes of style sheet rules. To make it easier for a

script to identify the kind of cssRule it is working with, the type property returns

an integer whose value is associated with one of the known cssRule types. While

not all of these rule types may be implemented in NN6, the complete W3C DOM list

is as follows:

On the
CD-ROM

On the
CD-ROM

ruleObject.type

(c) ketabton.com: The Digital Library

796 Part III ✦ Document Objects Reference

Type Description

0 Unknown type

1 Regular style rule

2 @charset rule

3 @import rule

4 @media rule

5 @font-face rule

6 @page rule

Most of the style sheet rules you work with are type 1. To learn more about these

rule types, consult the W3C specification for CSS at http://www.w3.org/TR/
REC-CSS2.

Related Items: None.

currentStyle, runtimeStyle, and style Objects

Properties Methods Event Handlers

(See below)

Syntax
Accessing currentStyle, runtimeStyle, or style object properties:

(IE4+/NN6) elementReference.style.property
(IE4+/NN6) document.styleSheets[index].style.property
(IE5+) elementReference.currentStyle.property
(IE5.5) elementReference.runtimeStyle.property

About these objects
All three of these objects —currentStyle, runtimeStyle, and style— return

an object that contains dozens of properties related to style sheet specifications

associated either with a styleSheet object (for the style object only) or any ren-

dered HTML element object. With the browser page reflow facilities of IE4+ and

NN6+, changes made to the properties of the style and IE-specific runtimeStyle
objects are reflected immediately by the rendered content on the page.

The primary object, the style object, is accessed as a property of either a

styleSheet object or an HTML element object. It is vital to remember that style

properties of an HTML element are reflected by the style object only if the specifi-

cations are made via the STYLE attribute inside the element’s tag. If your coding

style requires that style sheets be applied via STYLE or LINK tags, and if your

elementRef.style

(c) ketabton.com: The Digital Library

797Chapter 30 ✦ Style Sheet and Style Objects

scripts need to access the style property values as set by those style sheets, then

you must read the properties through the read-only currentStyle property (avail-

able in IE5+). The currentStyle object returns the effective style sheet being

applied to an HTML element object.

IE’s currentStyle object does not have precisely the same properties as its

style object. Missing from the currentStyle object are the properties that con-

tain combination values, such as border or borderBottom. On the other hand,

currentStyle provides separate properties for each of the sides of a clipping rect-

angle (clipTop, clipRight, clipBottom, and clipLeft), which the clip property

does not provide.

Microsoft introduced one more flavor of style object — the runtimeStyle
object — in IE5.5. This object lets scripts override any style property that is set in a

style sheet or via the STYLE attribute. In other words, the runtimeStyle object is

like a read/write version of currentStyle except that assigning a new value to one

of its properties does not modify the style sheet definition or the value assigned in

a STYLE attribute. By and large, however, your scripts will modify the style prop-

erty of an element to make changes, unless you modify styles by enabling and dis-

abling style sheets (or changing the className property of an element so that it is

under the control of a different selector).

Style properties
If you add up all the style object properties available in browsers starting with

IE4 and NN6, you have a list approximately 180 properties long. A sizable percent-

age are in common among all browsers and are scriptable versions of W3C CSS

style sheet attributes. The actual CSS attribute names are frequently script-

unfriendly in that multiple-worded attributes have hyphens in them, such as

font-size. JavaScript identifiers do not allow hyphens, so multiple-worded

attributes are converted to interCap versions, such as fontSize.

Not all style properties are supported by all browsers that have the style object

in their object models. Microsoft, in particular, has added many properties that are

sometimes unique to IE and sometimes unique to just IE for Windows (or even just

to Windows 2000). On the Netscape side, you find some properties that appear to

be supported by the style object, but the browser doesn’t genuinely support the

attributes. For example, the CSS specification defines several attributes that

enhance the delivery of content that is rendered through a speech synthesizer.

While NN6 does not qualify, the Gecko browser engine at the core of NN6 could be

adapted to such a browser. Therefore, if you see a property in the following listings

that doesn’t make sense to you, test it out in the compatible browsers to verify that

it works as you need it.

Some browsers also expose advanced style object properties to scripters,

when, in fact, they are not genuinely supported in the browser. For example, an

inspection of the style object for IE5/Mac and NN6 shows a quotes property,

which matches the quotes style attribute in the W3C CSS2 specification. But in

truth, the quotes style property cannot be set by script in these browsers. When

you see that a property is supported by IE5/Mac and NN6 but none others, testing

out the style property (and the style sheet attribute as well) in The Evaluator is a

good idea before attempting to employ the property in your application.

elementRef.style

(c) ketabton.com: The Digital Library

798 Part III ✦ Document Objects Reference

With so many properties associated with an object, it may be difficult to locate

the specific property you need for a particular style effect. To help you locate prop-

erties, the listings that follow are divided into functional categories, ordered by

popularity:

Category Description

Text & Fonts Font specifications, text rendering, text alignment

Inline Display & Layout Element flow, alignment, and display

Positioning Explicit positioning of “layers”

Background Background images and colors

Borders & Edges Borders, padding, and margins around elements

Lists Details for UL and OL elements

Scrollbars Scrollbar colors (IE5.5/Windows only)

Tables Details for TABLE elements and components

Printing Page breaks and alignment for printed pages

Miscellaneous Odds and ends

Aural For rendering via speech-synthesis

Property values
All style object property values are strings. Moreover, many groups of style

properties share the same format for their values. Knowing the formats for the fre-

quently used values is helpful. The purpose of this chapter is not to teach you

about style sheets but to show you how to script them. Therefore, if you see unfa-

miliar terminology here, consult online or print instructional material about CSS

style sheets.

Length
Values for length cover a wide range, but they all define an amount of physical

space in the document. Because content can be displayed on a video monitor or

printed on a sheet of paper, any kind of length value should include a unit of mea-

sure as well as the quantity. One group of units (px, em, ex) are considered relative
units, because the precise size depends on factors beyond the control of the style

sheet (for example, the pixel density of the display) or units set by elements with

more global scope (for example, a P element’s margin em length dependent upon

the BODY element’s font-size setting). Absolute units (in, cm, mm, pi, pt) are more

appropriate for printed output. Length units are referred in script according to the

following table:

elementRef.style

(c) ketabton.com: The Digital Library

799Chapter 30 ✦ Style Sheet and Style Objects

Unit Script Version Example

pixel px 14px

em em 1.5em

ex ex 1.5ex

inch in 3.0in

centimeter cm 4.0cm

millimeter mm 40mm

pica pi 72pi

point pt 14pt

A length value can also be represented by a percentage as a string. For example,

the lineHeight style for a paragraph would be set to 120% of the font size estab-

lished for the paragraph by the following statement:

document.getElementById(“myP”).style.lineHeight = “120%”

Style inheritance — an important CSS concept — often has significant impact on

style properties whose values are lengths.

Color
Values for colors can be one of three types:

✦ RGB values (in a few different formats)

✦ plain-language versions of the color names

✦ plain-language names of system user interface items

RGB values can be expressed as hexadecimal values. The most common way is

with a crosshatch character followed by six hex numbers, as in #ff00ff (letters

can be uppercase or lowercase). A special shortcut is also available to let you

specify three numbers with the assumption that they will be expanded to pairs of

numbers. For example, a color of #f0f is expanded internally to be #ff00ff.

An alternative RGB expression is with the rgb() prefix and three numbers (from

0 to 255) or percentages corresponding to the red, green, and blue components of

the color. Here are a couple of examples:

document.styleSheets[0].rules[0].style.color = “rgb(0, 255, 0)”
document.styleSheets[0].rules[0].style.color = “rgb(0%, 100%, 0%)”

Browsers also respond to a long list of plain-language color names originally

devised by Netscape. You can see the list with sample colors at http://
developer.netscape.com/docs/manuals/htmlguid/colortab.htm. Not all of

those colors are necessarily part of what are known as “Web safe” colors. For a

demonstration of Web safe colors, visit http://www.lynda.com/hexh.html.

The last category of color values references user interface pieces, many of which

are determined by the user’s control panel for video display. The string values cor-

respond to recognizable UI components (also called system colors), as follows:

elementRef.style

(c) ketabton.com: The Digital Library

800 Part III ✦ Document Objects Reference

activeborder graytext menutext

activecaption highlight scrollbar

appworkspace highlighttext threeddarkshadow

background inactiveborder threedface

buttonface inactivecaption threedhighlight

buttonhighlight inactivecaptiontext threedlightshadow

buttonshadow infobackground threedshadow

buttontext infotext window

captiontext menu windowframe

windowtext

Using these color settings may be risky for public sites, because you are at the

mercy of the color settings the user has chosen. For a corporate environment

where system installations and preferences are strictly controlled, these values

could help define a safe color scheme for your pages.

Rectangle sides
Many style properties control the look of sides of rectangles (for example, thick-

ness of a border around a block element). In most cases, the style values can be

applied to individual sides or combinations of sides, depending on the number of

values supplied to the property. The number of values affects the four sides of the

rectangle according to the following matrix:

Number of Values Impact

1 All four sides set to the one value

2 Top and bottom sides set to first value; left and right sides set to
second value

3 Top side set to first value; left and right sides set to second value;
bottom side set to third value

4 Top, right, bottom, and left sides set to individual values in that
order

For example, to set the border color of an element so that all sides are red, the

syntax is

elementRef.style.borderColor = “red”

To set the top and bottom to red but the left and right to green, the syntax is

elementRef.style.borderColor = “red green”

Properties that accept these multiple values cover a wide range of styles. Values

may be colors, lengths, or selections from a fixed list of possible values.

elementRef.style

(c) ketabton.com: The Digital Library

801Chapter 30 ✦ Style Sheet and Style Objects

Combination values
Another category of style values includes properties that act as shortcuts for

several related properties. For example, the border property encompasses the

borderWidth, borderStyle, and borderColor properties. This is possible

because very different classes of values represent the three component properties:

borderWidth is a length; borderStyle is based on a fixed list of values; and

borderColor is a color value. Therefore, you can specify one or more of these

property values (in any order), and the browser knows how to apply the values to

the detailed sub-property. Only one value is permitted for any one of these sub-

properties, which means that if the property is one of the four-sided styles

described in the previous section, the value is applied to all four sides equally.

For example, setting the border property to a single value, as in

elementRef.style.border = “blue”

is the same as setting

elementRef.style.borderColor = “blue”

But if you set multiple items, as in

elementRef.style.border = “groove blue 3px”

then you have set the equivalent of the following three statements:

elementRef.style.borderStyle = “groove”
elementRef.style.borderColor = “blue”
elementRef.style.borderWidth = “3px”

In the property descriptions that follow, these combination values are denoted

by their scripted property names and the OR (||) operator, as in

border = “borderStyle || borderColor || borderWidth”

URLs
Unlike other property values containing URLs, a style property requires a

slightly different format. This format includes the url() prefix, with the actual URL

(relative or absolute) located inside the parentheses. The URL itself is not quoted,

but the entire property value is, as in

elementRef.style.backgroundImage = “url(chainlink.jpg)”

URLs should not have any spaces in them, but if they do, then use the URL-

encoded version for the file specification: convert spaces to %20. This format dis-

tinguishes a URL value from some other string value for shortcut properties.

Text and font properties
color

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

elementRef.style.color

(c) ketabton.com: The Digital Library

802 Part III ✦ Document Objects Reference

Controls: Foreground color of an element, primarily used to assign color to text.

May also affect edges and highlights of other elements in some browsers.

Value: Color specification.

Example: elementRef.style.color = “rgb(#22FF00)”

font

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Up to six font-related style properties.

Value: Combination values: fontStyle || fontVariant || fontWeight ||

fontSize || lineHeight || fontFamily. See individual properties for their

value formats.

Example: elementRef.style.font = “bold sans-serif 16px”

fontFamily

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Font family to be applied to an element in order of priority.

Value: Comma-delimited list of font families to be applied to element, starting with

the most preferred font family name. You can also use one of several generic family

names that rely on the browser to choose the optimal font to match the class:

serif | sans-serif | cursive | fantasy | monospace. Not all browsers

support all constants, but serif, sans-serif, and monospace are commonly

implemented.

Example: elementRef.style.fontFamily = “Bauhaus 93, Arial, monospace”

fontSize

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Size of the characters of the current font family.

elementRef.style.fontSize

(c) ketabton.com: The Digital Library

803Chapter 30 ✦ Style Sheet and Style Objects

Value: Lengths (generally px or pt values); relative size constants: larger | smaller;

absolute size constants: xx-small | x-small | small | medium | large | x-
large | xx-large

Examples: elementRef.style.fontSize = “16px”
elementRef.style.fontSize = “small”

fontSizeAdjust

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Aspect value of a secondary font family so that it maintains a similar

character height as the primary font family.

Value: Number (including floating-point value) or none.

Example: elementRef.style.fontSizeAdjust = “1.05”

fontStretch

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Rendered width of a font’s characters.

Value: Constant ultra-condensed | extra-condensed | condensed | semi-
condensed | semi-expanded | expanded | extra-expanded | ultra-expanded
or wider | narrower | inherit | normal

Example: elementRef.style.fontStretch = “expanded”

fontStyle

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Italic style of characters.

Value: Constant normal | italic | oblique | inherit

Example: elementRef.style.fontStyle = “italic”

elementRef.style.fontStyle

(c) ketabton.com: The Digital Library

804 Part III ✦ Document Objects Reference

fontVariant

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Rendering characters as small caps.

Value: Constant normal | small-caps | inherit

Example: elementRef.style.fontVariant = “small-caps”

fontWeight

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Rendering characters in bold or light weights. Fonts that support

numbered gradations can be controlled by those numbers. Normal = 400;

Bold = 700.

Value: Constant bold | bolder | lighter | normal | 100 | 200 | 300 |

400 | 500 | 600 | 700 | 800 | inherit

Example: elementRef.style.fontWeight = “bold”

letterSpacing

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Spacing between characters. Used to override a font family’s own

characteristics.

Value: Length (usually em units, relative to current font size); Constant normal
| inherit

Example: elementRef.style.letterSpacing = “1.2em”

elementRef.style.letterSpacing

(c) ketabton.com: The Digital Library

805Chapter 30 ✦ Style Sheet and Style Objects

lineBreak

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Line break rules for Japanese text content.

Value: Constant normal | strict

Example: elementRef.style.lineBreak = “strict”

lineHeight

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Height of the rectangular space that holds a line of text characters.

Value: Length (usually em units, relative to current font size); number (a multiplier

on the inherited line height); percentage (relative to inherited line height);

constant normal | inherit

Example: elementRef.style.lineHeight = “1.1”

quotes

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Characters to be used for quotation marks.

Value: Space-delimited pairs of open and close quotation symbols; Constant

none | inherit

Example: elementRef.style.quotes = “« »”

rubyAlign

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 — No

elementRef.style.rubyAlign

(c) ketabton.com: The Digital Library

806 Part III ✦ Document Objects Reference

Controls: Alignment of ruby text within a RUBY element.

Value: Constant auto | left | center | right | distribute-letter |

distribute-space | line-edge

Example: RUBYelementRef.style.rubyAlign = “distribute=letter”

rubyOverhang

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 — No

Controls: Overhang of ruby text within a RUBY element.

Value: Constant auto | whitespace | none

Example: RUBYelementRef.style.rubyOverhang = “whitespace”

rubyPosition

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 — No

Controls: Placement of ruby text with respect to the RUBY element’s base text.

Value: Constant above | inline

Example: RUBYelementRef.style.rubyPosition = “inline”

textAlign

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Horizontal alignment of text with respect to its containing element.

Value: Constant center | justify | left | right

Example: elementRef.style.textAlign = “center”

elementRef.style.textAlign

(c) ketabton.com: The Digital Library

807Chapter 30 ✦ Style Sheet and Style Objects

textAlignLast

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

Controls: Horizontal alignment of last line of text in a paragraph.

Value: Constant auto | center | justify | left | right

Example: elementRef.style.textAlignLast = “justify”

textAutospace

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Extra spacing between ideographic and non-ideographic text.

Value: Constant none | ideograph-alpha | ideograph-numeric | ideograph-
parenthesis | ideograph-space

Example: elementRef.style.textAutospace = “ideograph-alpha”

textDecoration

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Display of underline, overline, or line-through with text.

Value: Constant none | blink | line-through | overline | underline

Example: elementRef.style.textDecoration = “underline”

elementRef.style.textDecoration

(c) ketabton.com: The Digital Library

808 Part III ✦ Document Objects Reference

textDecorationBlink
textDecorationLineThrough
textDecorationNone
textDecorationOverline
textDecorationUnderline

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 — No

Controls: Individual text decoration characteristics for text, allowing for multiple

decorations to be applied to the same text.

Value: Boolean (not strings) true | false

Example: elementRef.style.textDecorationUnderline = true

textIndent

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Amount of indentation for the first line of a block text element (e.g., P).

Value: Length (negative values for outdenting); percentage (relative to inherited

value)

Example: elementRef.style.textIndent = “2.5em”

textJustify

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 — No

Controls: Additional detailed specifications for an element whose textAlign
property is set to justify.

Value: Constant auto | distribute | distribute-all-lines | distribute-
center-last | inter-cluster | inter-ideograph | inter-word |

kashida | newspaper

Example: elementRef.style.textJustify = “distribute”

elementRef.style.textJustify

(c) ketabton.com: The Digital Library

809Chapter 30 ✦ Style Sheet and Style Objects

textJustifyTrim

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 — No

Reserved for future use.

textKashidaSpace

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

Controls: Ratio of kashida expansion to white space expansion for Arabic writing

systems.

Value: Percentage

Example: elementRef.style.textKashidaSpace = “90%”

textShadow

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Shadow rendering around text characters. Note: The style attribute for

this property is not implemented in IE5/Mac or NN6, but the property is listed as

valid for a style object.

Value: Each shadow specification consists of an optional color and three space-

delimited length values (horizontal shadow offset, vertical shadow offset, blur

radius length). Multiple shadow specifications are comma-delimited.

textTransform

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Case rendering of the text (meaning without altering the case of the

original text).

elementRef.style.textTransform

(c) ketabton.com: The Digital Library

810 Part III ✦ Document Objects Reference

Value: Constant none | capitalize | lowercase | uppercase

Example: elementRef.style.textTransform = “uppercase”

textUnderlinePosition

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

Controls: Whether an underline text decoration is displayed above or

below the text. Seems redundant with textDecorationUnderline and

textDecorationOverline.

Value: Constant above | below

Example: elementRef.style.textUnderlinePosition = “above”

unicodeBidi

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 6 Yes

Controls: Within bi-directional text (for example, English and Arabic), to what

extent an alternate direction text block is embedded within the outer element.

Value: Constant normal | embed | bidi-override

Example: elementRef.style.unicodeBidi = “embed”

whiteSpace

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Treatment of white space characters within an element’s source code.

Value: Constant normal | nowrap | pre

Example: elementRef.style.whiteSpace = “nowrap”

elementRef.style.whiteSpace

(c) ketabton.com: The Digital Library

811Chapter 30 ✦ Style Sheet and Style Objects

wordBreak

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Word breaking characteristics, primarily for Asian-language text or text

containing a mixture of Asian and Latin characters.

Value: Constant normal | break-all | keep-all

Example: elementRef.style.wordBreak = “break-all”

wordSpacing

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Spacing between words.

Value: Length (usually in em units); Constant normal

Example: elementRef.style.wordSpacing = “1em”

wordWrap

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

Controls: Word wrapping characteristics of text in a block element, explicitly sized

inline element, or positioned element.

Value: Constant normal | break-word

Example: elementRef.style.wordWrap = “break-word”

writingMode

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

elementRef.style.writingMode

(c) ketabton.com: The Digital Library

812 Part III ✦ Document Objects Reference

Controls: Direction of content flow (left-to-right/top-to-bottom or top-to-

bottom/right-to-left, as in some Asian languages).

Value: Constant lr-tb | tb-rl

Example: elementRef.style.writingMode = “tb-rl”

Inline display and layout properties
clear

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Layout orientation of an element with respect to a neighboring floating

element.

Value: Constant both | left | none | right

Example: elementRef.style.clear = “right”

clip

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: The clipping rectangle of an element (that is, the position of the

rectangle through which the user sees an element’s content).

Value: rect(topLength, rightLength, bottomLength, leftLength) | auto

Example: elementRef.style.clip = “rect(10px, 300px, 200px, 0px)”

clipBottom
clipLeft
clipRight
clipTop

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

elementRef.style.clipBottom

(c) ketabton.com: The Digital Library

813Chapter 30 ✦ Style Sheet and Style Objects

Controls: Individual edges of the clipping rectangle of an element. These

properties are read-only properties of the currentStyle object.

Value: Length | auto

Example: var leftEdge = elementRef.currentStyle.clipLeft

content

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: The content rendered by an element. Note: The style attribute for this

property is not implemented in IE5/Mac or NN6, but the property is listed as valid

for a style object.

Value: See http://www.w3.org/TR/REC-CSS2/generate.html#propdef-content.

counterIncrement

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: The jumps in counter values to be displayed via the content style

property. Note: The style attribute for this property is not implemented in IE5/Mac

or NN6, but the property is listed as valid for a style object.

Value: One or more pairs of counter identifier and integers.

counterReset

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Resets a named counter for content to be displayed via the content
style property. Note: The style attribute for this property is not implemented in

IE5/Mac or NN6, but the property is listed as valid for a style object.

Value: One or more pairs of counter identifier and integers.

elementRef.style.counterReset

(c) ketabton.com: The Digital Library

814 Part III ✦ Document Objects Reference

cssFloat

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Horizontal alignment of an element that allows other content to wrap

around the element (usually text wrapping around an image). Corresponds to the

CSS float style attribute. See also the floatStyle property, below. Floating (non-

positioned) elements follow a long sequence of rules for their behavior, detailed at

http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-float.

Value: Constant left | right | none

Example: elementRef.style.cssFloat = “right”

cursor

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: The icon used for the cursor on the screen from a library of system-

generated cursors. The CSS2 specification defines syntax for downloadable

cursors, but this feature is not implemented as of IE5.5 or NN6.

Value: Constant auto | crosshair | default | e-resize | help | move |

n-resize | ne-resize | nw-resize | pointer | s-resize | se-resize |

sw-resize | text | w-resize | wait

Example: elementRef.style.cursor = “hand”

direction

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 6 Yes

Controls: Layout direction (left-to-right or right-to-left) of inline text (same as DIR
attribute of an element).

Value: Constant ltr | rtl

Example: elementRef.style.direction = “rtl”

elementRef.style.direction

(c) ketabton.com: The Digital Library

815Chapter 30 ✦ Style Sheet and Style Objects

display

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Whether an element is displayed on the page. Content surrounding an

undisplayed element cinches up to occupy the undisplayed element’s space — as if

the element didn’t exist for rendering purposes (see the visibility property for

a different approach). Commonly used to hide or show segments of a graphical

tree structure. Also used to direct the browser to display an element as inline or

block-level element. Some special-purpose values are associated with specific

element types (for example, lists, table cells, and so on).

Value: Constant block | compact | inline | inline-table | list-item | none
| run-in | table | table-caption | table-cell | table-column-group |

table-footer-group | table-header-group | table-row | table-row-group

Example: elementRef.style.display = “none”
// removes element from page

filter

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 — No

Controls: Rendering effects on static content and on transitions between hiding

and showing elements. Microsoft made a massive overhaul of the filter style

sheet syntax for IE5.5/Windows (using the DXImageTransform ActiveX control). A

handy online utility lets you preview the filter results and provides copy-and-paste

code you can use to start adding filters and scripted control of filters to your

pages. See http://msdn.microsoft.com/workshop/samples/author/dhtml/
DXTidemo/DXTidemo.htm. Scripting transitions require several steps to load the

transition and actions before playing the transition. Use style.filter to read or

write the entire filter specification string; use the elem.styles[i] object to

access individual filter properties. See discussion of the filter object later in this

chapter.

Value: Filter specification as string.

Example: var filterSpec = elementRef.style.filter =“alpha(opacity=50)
flipH()”

elementRef.style.filter

(c) ketabton.com: The Digital Library

816 Part III ✦ Document Objects Reference

floatStyle

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 4 — Yes

Controls: Horizontal alignment of an element that allows other content to wrap

around the element (usually text wrapping around an image). Corresponds to the

CSS float style attribute. See also the cssFloat property, above. Floating (non-

positioned) elements follow a long sequence of rules for their behavior, detailed at

http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-float.

Value: Constant left | right | none

Example: elementRef.style.floatStyle = “right”

layoutGrid

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Page grid properties (primarily for Asian-language pages).

Value: Combination values: layoutGridMode || layoutGridType ||

layoutGridLine || layoutGridChar. See individual properties for their value

formats.

Example: elementRef.style.layoutGrid = “2em strict”

layoutGridChar

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Size of the character grid (Asian languages).

Value: Length; Percentage; Constant none | auto

Example: elementRef.style.layoutGridChar = “2em”

elementRef.style.layoutGridChar

(c) ketabton.com: The Digital Library

817Chapter 30 ✦ Style Sheet and Style Objects

layoutGridLine

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Line height of the grid (Asian languages).

Value: Value: Length; Percentage; Constant none | auto

Example: elementRef.style.layoutGridLine = “110%”

layoutGridMode

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: One- or two-dimensional grid (Asian languages).

Value: Constant both | none | line | char

Example: elementRef.style.layoutGridMode = “both”

layoutGridType

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Type of grid for text content (Asian languages).

Value: Constant loose | strict | fixed

Example: elementRef.style.layoutGridType = “strict”

markerOffset

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

elementRef.style.markerOffset

(c) ketabton.com: The Digital Library

818 Part III ✦ Document Objects Reference

Controls: Distance between the edges of a marker box (content whose display is of

a marker type) and a block-level element’s box. Note: The style attribute for this

property is not implemented in IE5/Mac or NN6, but the property is listed as valid

for a style object.

Value: Length; Constant auto

Example: elementRef.style.markerOffset = “2em”

marks

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Rendering of crop marks and the like on the printed page. Note: The

style attribute for this property is not implemented in IE5/Mac or NN6, but the

property is listed as valid for a style object.

Value: Constant crop || cross | none

Example: elementRef.style.marks = “crop”

maxHeight
maxWidth
minHeight
minWidth

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Maximum or minimum height or width of an element. The corresponding

style attribute is implemented in NN6.

Value: Length; Percentage; Constant (for max properties only) none

Example: elementRef.style.maxWidth = “300px”

overflow

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

elementRef.style.overflow

(c) ketabton.com: The Digital Library

819Chapter 30 ✦ Style Sheet and Style Objects

Controls: The rendering of a block-level element’s content when its native

rectangle exceeds that of its next outermost rectangular space. A hidden overflow

clips the block-level content; a scrolled overflow forces the outermost rectangle

to display scrollbars so that users can scroll around the block-level element’s

content; a visible overflow causes the block-level element to extend beyond the

outermost container’s rectangle (indeed, “overflowing” the container).

Value: Constant auto | hidden | scroll | visible

Example: elementRef.style.overflow = “scroll”

overflowX
overflowY

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: The rendering of a block-level element’s content when its native

rectangle exceeds the width (overflowX) or height (overflowY) of its next

outermost rectangular space. A hidden overflow clips the block-level content; a

scrolled overflow forces the outermost rectangle to display scrollbars so that users

can scroll around the block-level element’s content; a visible overflow causes the

block-level element to extend beyond the outermost container’s rectangle (indeed,

“overflowing” the container).

Value: Constant auto | hidden | scroll | visible

Example: elementRef.style.overflowX = “scroll”

styleFloat

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 — Yes

Controls: Horizontal alignment of an element that allows other content to wrap

around the element (usually text wrapping around an image). Corresponds to the

CSS float style attribute. See also the cssFloat property, above. Floating (non-

positioned) elements follow a long sequence of rules for their behavior, detailed at

http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-float.

Value: Constant left | right | none

Example: elementRef.style.styleFloat = “right”

elementRef.style.styleFloat

(c) ketabton.com: The Digital Library

820 Part III ✦ Document Objects Reference

verticalAlign

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: How inline and table cell content aligns vertically with surrounding

content. Not all constant values are supported by all browsers.

Value: Constant baseline | bottom | middle | sub | super | text-bottom |

text-top | top; Length; Percentage.

Example: elementRef.style.verticalAlign = “baseline”

visibility

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Whether an element is displayed on the page. The element’s space is

preserved as empty space when the element is hidden. To cinch up surrounding

content, see the display property. This property is used frequently for hiding

and showing positioned element under script control.

Value: Constant collapse | hidden | visible

Example: elementRef.style.visibility = “hidden”

width

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Horizontal dimension of a block-level element. Earlier browsers exhibit

unexpected behavior when nesting elements that have their width style

properties set.

Value: Length; Percentage; Constant auto

Example: elementRef.style.width = “200px”

elementRef.style.width

(c) ketabton.com: The Digital Library

821Chapter 30 ✦ Style Sheet and Style Objects

zoom

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

Controls: Magnification factor of a rendered element.

Value: Constant normal; Percentage (where 100% is normal); floating-point

number (scale multiplier, where 1.0 is normal)

Example: elementRef.style.zoom = “.9”

Positioning properties
(See Chapter 31 for coding examples of positioned elements and their style

properties.)

bottom
right

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 6 Yes

Controls: The offset measure of a positioned element from its containing

rectangle’s bottom and right edges, respectively. In practice, you should adjust the

size of a positioned element via the style’s height and width properties.

Value: Length; Percentage; Constant auto

Example: elementRef.style.bottom = “20px”

left
top

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: The offset measure of a positioned element from its containing

rectangle’s left and top edges, respectively. In practice, use these properties to

position an element under script control. To position an absolute-positioned

element atop an inline element, calculate the position of the inline element via the

offsetTop and offsetLeft properties with some browser-specific adjustments,

as shown in Chapter 31.

elementRef.style.left

(c) ketabton.com: The Digital Library

822 Part III ✦ Document Objects Reference

Value: Length; Percentage; Constant auto

Example: elementRef.style.top = “250px”

height
width

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Height and width of a block-level element’s box. Used most commonly to

adjust the dimensions of a positioned element (Chapter 31).

Value: Length; Percentage; Constant auto

Example: elementRef.style.height = “300px”

pixelBottom
pixelHeight
pixelLeft
pixelRight
pixelTop
pixelWidth

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 (4) — No

Controls: Integer pixel values for (primarily positioned) elements. Because the

non-pixel versions of these properties return strings that also contain the unit

measure (for example, 30px), these properties let you work exclusively in integers

for pixel units. The same can be done cross-platform by using parseInt() on the

non-pixel versions of these properties. The pixelBottom and pixelRight
properties are not in IE4/Mac.

Value: Integer

Example: elementRef.style.pixelTop = elementRef.style.pixelTop + 20

elementRef.style.pixelBottom

(c) ketabton.com: The Digital Library

823Chapter 30 ✦ Style Sheet and Style Objects

posBottom
posHeight
posLeft
posRight
posTop
posWidth

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 (4) — No

Controls: Numeric values for (primarily positioned) elements in whatever unit was

specified by the corresponding style attribute. Because the non-pos versions of

these properties return strings that also contain the unit measure (for example,

1.2em), these properties let you work exclusively in numbers in the same units as

the style was originally defined. The same can be done cross-platform by using

parseFloat() on the non-pixel versions of these properties.

Value: Integer

Example: elementRef.style.posTop = elementRef.style.posTop + 0.5

position

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: The type of positioning to be applied to the element. An element that is

not explicitly positioned is said to be static. A relative-positioned element appears

in its normal page flow location but can be explicitly positioned relative to that

location. An absolute-positioned element must have its top and left style

attributes set to give the element a set of coordinates for its location. IE5/Mac and

NN6 also allow for a fixed positioned element, which remains at its designated

position in the browser window, even if the page scrolls (for example, for a

watermark effect). See Chapter 31 for more information on positioned elements.

Value: Constant absolute | fixed | relative | static

Example: elementRef.style.position = “absolute”

elementRef.style.position

(c) ketabton.com: The Digital Library

824 Part III ✦ Document Objects Reference

zIndex

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Front-to-back layering of positioned elements. Multiple items with the

same zIndex value are layered in source code order (earliest item at the bottom).

The higher the value, the closer to the user’s eye the element is.

Value: Integer number; Constant auto

Example: elementRef.style.zIndex = “3”

Background properties
background

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Up to five background style properties for an element.

Value: Combination values: backgroundAttachment || backgroundColor ||

backgroundImage || backgroundPosition || backgroundRepeat

Example: elementRef.style.background = “scroll url(bricks.jpg)
repeat-x”

backgroundAttachment

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Whether the background image remains fixed or scrolls with the content.

Default is scroll.

Value: Constant fixed | scroll

Example: elementRef.style.backgroundAttachment = “fixed”

elementRef.style.backgroundAttachment

(c) ketabton.com: The Digital Library

825Chapter 30 ✦ Style Sheet and Style Objects

backgroundColor

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Solid, opaque color for the background, or completely transparent. If you

assign a background image, the color is layered behind the image so that any

transparent spots of the image show the background color.

Value: Color value; Constant transparent

Example: elementRef.style.backgroundColor = “salmon”

backgroundImage

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: The URL (if any) of an image to be used for the background for the

element.

Value: URL value; Constant none

Example: elementRef.style.backgroundImage = “url(bricks.jpg)”

backgroundPosition

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: The left-top location of the background image. Any offset from the left-

top corner (default value “0% 0%”) allows background color to show through along

left and top edges of the element.

Value: Length values; Percentages; Constant left | center | right || top |

center | bottom. While single values are accepted, their behavior may not be as

expected. Providing space-delimited pairs of values is more reliable.

Example: elementRef.style.backgroundPosition = “left top”

elementRef.style.backgroundPosition

(c) ketabton.com: The Digital Library

826 Part III ✦ Document Objects Reference

backgroundPositionX
backgroundPositionY

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 — No

Controls: The left (backgroundPositionX) and top (backgroundPositionY)

locations of the background image. Any offset from the left-top corner (default

value “0%”) allows background color to show through along left and top edges of

the element.

Value: Length value; Percentage; Constant left | center | right (for

backgroundPositionX); Constant top | center | bottom (for

backgroundPositionY).

Example: elementRef.style.backgroundPositionX = “5px”

backgroundRepeat

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Image repetition characteristics of a background image. You can force

the image to repeat along a single axis, if you want.

Value: Constant repeat | repeat-x | repeat-y | no-repeat

Example: elementRef.style.backgroundRepeat = “repeat-y”

Border and edge properties
border

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Up to three border characteristics (color, style, and width) for all four

edges of an element.

Value: Combination values borderColor || borderStyle || borderWidth

Example: elementRef.style.border = “green groove 2px”

elementRef.style.border

(c) ketabton.com: The Digital Library

827Chapter 30 ✦ Style Sheet and Style Objects

borderBottom
borderLeft
borderRight
borderTop

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Up to three border characteristics (color, style, and width) for a single

edge of an element.

Value: Combination values

(for borderBottom)

borderBottomColor || borderBottomStyle ||borderBottomWidth

(for borderLeft)

borderLeftColor || borderLeftStyle || borderLeftWidth

(for borderRight)

borderRightColor || borderRightStyle || borderRightWidth

(for borderTop)

borderTopColor || borderTopStyle || borderTopWidth

Example: elementRef.style.borderLeft = “#3300ff solid 2px”

borderBottomColor
borderLeftColor
borderRightColor
borderTopColor

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

elementRef.style.borderBottomColor

(c) ketabton.com: The Digital Library

828 Part III ✦ Document Objects Reference

Controls: Color for a single border edge of an element.

Value: Color values; Constant transparent

Example: elementRef.style.borderTopColor = “rgb(30%, 50%, 0%)”

borderBottomStyle
borderLeftStyle
borderRightStyle
borderTopStyle

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Rendered style for a border edge of an element.

Value: Constant none | hidden | dotted | dashed | solid | double | groove |

ridge | inset | outset. IE versions for Windows prior to IE5.5 do not respond to

the dotted or dashed types; IE/Mac does not respond to the hidden type.

Example: elementRef.style.borderRightStyle = “double”

borderBottomWidth
borderLeftWidth
borderRightWidth
borderTopWidth

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Thickness of a border edge of an element.

Value: Length value; Constant thin | medium | thick (precise measure is at

browser’s discretion).

Example: elementRef.style.borderBottomWidth = “5px”

borderColor

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

elementRef.style.borderColor

(c) ketabton.com: The Digital Library

829Chapter 30 ✦ Style Sheet and Style Objects

Controls: Rendered color for one to four sides of an element.

Value: Color values for one to four rectangle sides.

Example: elementRef.style.borderColor = “green black”

borderStyle

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Rendered style for one to four sides of an element.

Value: One to four rectangle side constants none | hidden | dotted | dashed |

solid | double | groove | ridge | inset | outset. IE versions for Windows

prior to IE5.5 do not respond to the dotted or dashed types; IE/Mac does not

respond to the hidden type.

Example: elementRef.style.borderStyle = “ridge”

borderWidth

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Thickness of border for one to four sides of an element.

Value: One to four rectangle side length value or constants thin | medium |

thick (precise dimension is at browser’s discretion).

Example: elementRef.style.borderWidth = “5px 4px 5px 3px”

margin

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Thickness of transparent margin space outside the element’s borders for

one to four edges.

Value: One to four rectangle side length values.

Example: elementRef.style.margin = “10px 5px”

elementRef.style.margin

(c) ketabton.com: The Digital Library

830 Part III ✦ Document Objects Reference

marginBottom
marginLeft
marginRight
marginTop

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Thickness of transparent margin space outside the element’s borders for

a single border edge.

Value: Length value

Example: elementRef.style.marginBottom = “50px”

outline

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Up to three characteristics of an outline surrounding an element (such as

a border, but not shifting the location of internal content). This style is not fully

supported in the above browsers, even though the properties are reflected in the

style object.

Value: Combination values: outlineColor || outlineStyle || outlineWidth

Example: elementRef.style.outline = “red groove 2px”

outlineColor

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Color of all four edges of an outline. This style is not fully supported in

the above browsers, even though the properties are reflected in the style object.

Value: Color values; Constant invert

Example: elementRef.style.outlineColor = “cornflowerblue”

elementRef.style.outlineColor

(c) ketabton.com: The Digital Library

831Chapter 30 ✦ Style Sheet and Style Objects

outlineStyle

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Rendered style for all four sides of an element outline. This style is not

fully supported in the above browsers, even though the properties are reflected in

the style object.

Value: Constant none | hidden | dotted | dashed | solid | double | groove |

ridge | inset | outset

Example: elementRef.style.outlineStyle = “ridge”

outlineWidth

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Thickness of all four sides of an element outline. This style is not fully

supported in the above browsers, even though the properties are reflected in the

style object.

Value: Length value or constant thin | medium | thick (precise dimension is at

browser’s discretion)

Example: elementRef.style.outlineWidth = “4px”

padding

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Thickness of space between an element’s content and its borders for one

to four edges.

Value: One to four rectangle side length values.

Example: elementRef.style.padding = “5px”

elementRef.style.padding

(c) ketabton.com: The Digital Library

832 Part III ✦ Document Objects Reference

paddingBottom
paddingLeft
paddingRight
paddingTop

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Thickness of space between an element’s content and its borders for a

single edge.

Value: Length value

Example: elementRef.style.paddingBottom = “20px”

List Properties
listStyle

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Up to three characteristics of a list (OL or UL) presentation. Also applies

to DD, DT, and LI elements.

Value: Combination values listStyleImage || listStylePosition ||

listStyleType

Example: elementRef.style.listStyle = “none inside lower-alpha”

listStyleImage

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

elementRef.style.listStyleImage

(c) ketabton.com: The Digital Library

833Chapter 30 ✦ Style Sheet and Style Objects

Controls: URL of the image to be used as a marker for a list item.

Value: URL value; Constant none

Example: elementRef.style.listStyleImage = “url(custombullet.jpg)”

listStylePosition

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Whether the marker should be formatted inside the wrapped text of its

content or dangle outside the wrapped text (default).

Value: Constant inside | outside

Example: elementRef.style.listStylePosition = “inside”

listStyleType

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Which of the standard marker sets should be used for items in the list. A

change to this property for a single LI element causes succeeding items to be in

the same style.

Value: For UL elements, constant circle | disc | square

For OL elements, constant decimal | lower-alpha | lower-roman | upper-
alpha | upper-roman

Example: elementRef.style.listStyleType = “upper-roman”

elementRef.style.listStyleType

(c) ketabton.com: The Digital Library

834 Part III ✦ Document Objects Reference

Scrollbar properties
scrollbar3dLightColor
scrollbarArrowColor
scrollbarBaseColor
scrollbarDarkShadowColor
scrollbarFaceColor
scrollbarHighlightColor
scrollbarShadowColor
scrollbarTrackColor

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5.5 — — No

Controls: Colors of individual components of scrollbars when they are displayed

for APPLET, BODY, DIV, EMBED, OBJECT, or TEXTAREA elements. To experiment

with how different colors can affect the individual components, visit http://
msdn.microsoft.com/workshop/samples/author/dhtml/refs/
scrollbarColor.htm.

Value: Color values; Constant none

Example: elementRef.style.scrollbarTrackColor = “hotpink”

Table properties
borderCollapse

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Whether a TABLE element adheres to the CSS2 separated borders model

or the collapsed borders model. Style is not fully supported in IE5/Mac.

Value: Constant collapse | separate

Example: elementRef.style.borderCollapse = “separate”

elementRef.style.borderCollapse

(c) ketabton.com: The Digital Library

835Chapter 30 ✦ Style Sheet and Style Objects

borderSpacing

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: For a table following the separated borders model, the thickness of the

spacing between cell rectangles (akin to the CELLSPACING attribute of TABLE

elements). Style is not fully supported in IE5/Mac.

Value: One length value (for horizontal and vertical spacing) or comma-delimited

list of two length values (the first for horizontal; the second for vertical).

Example: elementRef.style.borderSpacing = “10px”

captionSide

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Position of the CAPTION element inside a TABLE element. Style is not

implemented in IE5/Mac and is only partially implemented in NN6.

Value: Constant top | right | bottom | left

Example: elementRef.style.captionSide = “bottom”

emptyCells

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Rendering of cells and their borders when the cells have no content.

Default behavior is to not render borders around empty cells. Style is not

implemented in IE5/Mac and is only partially implemented in NN6.

Value: Constant show | hide

Example: elementRef.style.emptyCells = “show”

elementRef.style.emptyCells

(c) ketabton.com: The Digital Library

836 Part III ✦ Document Objects Reference

tableLayout

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 5 6 Yes

Controls: Whether table is rendered progressively based on fixed width settings of

the first row of cells or is rendered after the widths of all row content can be

determined. Modifying this property after a table loads has no effect on the table.

Value: Constant auto | fixed

Example: elementRef.style.tableLayout = “auto”

Page and printing properties
orphans
widows

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: The minimum number of lines of a paragraph to be displayed at the

bottom of a page (orphans) or top of a page (widows) when a page break occurs.

Value: Integer

Example: elementRef.style.orphans = “4”

page

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: The page (defined in an @page rule) with which the current element

should be associated for printing.

Value: Identifier assigned to an existing @page rule

Example: elementRef.style.page = “landscape”

elementRef.style.page

(c) ketabton.com: The Digital Library

837Chapter 30 ✦ Style Sheet and Style Objects

pageBreakAfter
pageBreakBefore

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 Yes

Controls: Whether a printed page break should be before or after the current

element and the page break type. Style is not fully implemented in the IE4

browsers.

Value: Constant auto | always | avoid | left | right

Example: elementRef.style.pageBreakBefore = “always”

pageBreakInside

IE/Windows IE/Mac NN W3C CSS2

Compatibility — 5 6 Yes

Controls: Whether a printed page break is allowed inside an element.

Value: Constant auto | avoid

Example: elementRef.style.pageBreakInside = “avoid”

size

IE/Windows IE/Mac NN W3C CSS2

Compatibility — — 6 Yes

Controls: The size or orientation of the page box (linked to the style rule via the

page property) used to determine printed pages.

Value: One (same value for width and height) or two space-delimited (width and

height) length values; constant auto | portrait | landscape

Example: elementRef.style.size = “portrait”

elementRef.style.size

(c) ketabton.com: The Digital Library

838 Part III ✦ Document Objects Reference

Miscellaneous properties
accelerator

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: Whether an accelerator key is defined for an element.

Value: Boolean

Example: elementRef.style.accelerator = “true”

behavior

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

Controls: The external behavior to be applied to the current element.

Value: Space-delimited list of URL values. URLs can be a file location, an OBJECT

element id, or one of the built-in (default) behaviors.

Example: elementRef.style.behavior = “url(#default#anchorClick)”

cssText

IE/Windows IE/Mac NN W3C CSS2

Compatibility 4 4 6 No

Controls: Actual CSS rule text (read-only). This property exists by virtue of the

browser’s object model and is not part of the CSS specification. There is no

corresponding CSS attribute.

Value: String

Example: var cssRuleText = elementRef.style.cssText

imeMode

IE/Windows IE/Mac NN W3C CSS2

Compatibility 5 — — No

elementRef.style.imeMode

(c) ketabton.com: The Digital Library

839Chapter 30 ✦ Style Sheet and Style Objects

Controls: Whether text is entered into a text INPUT or TEXTAREA element through

the Input Method Editor (for languages, such as Chinese, Japanese, or Korean).

Value: Constant auto | active | inactive | disabled

Example: elementRef.style.imeMode = “active”

Aural properties
Although these properties are defined in the CSS2 specification and placeholders

exist for them in NN6, the styles are not implemented in NN6. The script equivalent

properties are listed here for the sake of completeness only.

azimuth
cue
cueAfter
cueBefore
elevation
pause
pauseAfter
pauseBefore
pitch
pitchRange
playDuring
richness
speak
speakHeader
speakNumeral
speakPunctuation
speechRate
stress
voiceFamily
volume

IE/Windows IE/Mac NN W3C CSS2

Compatibility — — 6 Yes

elementRef.style.azimuth

(c) ketabton.com: The Digital Library

840 Part III ✦ Document Objects Reference

Controls: A variety of styles primarily for browsers that support speech synthesis

output.

Value: Consult http://www.w3.org/TR/REC-CSS2/aural.html for details on

aural style sheets.

filter Object

Properties Methods Event Handlers

(See text)

Syntax
Accessing filter object properties and methods:

(IE4+) document.all.objectID.style.filters[i].property |
method([parameters])

(IE5.5+) document.all.objectID.style.filters[filterName].property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

About this object
Earlier in this chapter, the style.filter property was shown to allow reading

and writing of the string value that is assigned to an element’s style.filter prop-

erty. Filters are available in IE for Windows only, and not for the Mac as of IE5/Mac,

even though IE5/Mac returns the style.filter property value. The purpose of

this section is to teach you not how to use filters but rather, how to script them.

Multiple filters are merely part of the space-delimited list of filters. Some filter

types have additional specifications. For example, the glow() filter has three

properties that more clearly define how the element should be rendered with a

glow effect. The style sheet rule for an element whose ID is glower looks like the

following:

#glower {filter:glow(color=yellow, strength=5, enabled=true)}

Accessing the currentStyle.filter property for that element yields the string

value:

glow(color=yellow, strength=5, enabled=true)

Attempting to modify a single sub-property of the glow() filter by way of string

parsing would be cumbersome and hazardous at best. For example, imagine trying

to increment the glow filter’s strength property by 5.

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

841Chapter 30 ✦ Style Sheet and Style Objects

Reading and writing sub-properties
A cleaner way to work with individual properties of a filter is to access the filter

as an object belonging to the element affected by the filter. Each type of filter object

has as its properties the individual sub-properties that you set in the style sheet.

Continuing with the glow() filter example, you could access just the color prop-

erty of the filter as follows:

var currColor = document.all.glower.currentStyle.filters[“glow”].color

The reference is through the currentStyle property for reading the value,

because in this case, the filter is applied in a style sheet definition, and only the

currentStyle property reveals the effective style properties acting on an element.

To modify the color, assign a new value to the filter object’s property, but do so

through the element’s style property:

document.all.glower.style.filters[“glow”].color = “green”

To increment a numeric value, such as increasing the glow() filter’s strength
property by 5, use a construction such as the following (long-winded though it may

be):

document.all.glower.style.filters[“glow”].strength =
document.all.glower.currentStyle.filters[“glow”].strength + 5

Table 30-1 lists the filter object names that work all the way back to IE4 and the

properties associated with each filter type.

Table 30-1 IE4-Compatible Static Filter Types

Filter Name Description and Properties

alpha() Transparency level

Properties: opacity (0 to 100)

finishopacity (0 to 100)

style (gradient shape
0 to 3)

startX (coordinate
integer)

startY (coordinate
integer)

finishX (coordinate
integer)

finishY (coordinate
integer)

blur() Simulating blurred motion

Properties: add (1 or 0)

Continued

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

842 Part III ✦ Document Objects Reference

Table 30-1 (continued)

Filter Name Description and Properties

direction (0, 45, 90, 135,
180, 225, 270,
315)

strength (pixel count)

chroma() Color transparency

Properties: color (color value)

dropShadow() Shadow effect

Properties: color (color value)

offx (horizontal offset
pixels)

offy (vertical offset
pixels)

positive (1 or 0)

flipH() Horizontally mirrored image

Properties: None

flipV() Vertically mirrored image

Properties: None

glow() Outer edge radiance

Properties: color (color value)

strength (intensity 1 to
255)

gray() Eliminate color

Properties: None

invert() Opposite hue, saturation,
brightness levels

Properties: None

light() Add light source
(controlled by methods)

Properties: None

mask() Overlay transparent mask

Properties: color (color value)

shadow() Render as silhouette

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

843Chapter 30 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

Properties: color (color value)

direction (0, 45, 90, 135,
180, 225, 270,
315)

wave() Add sine-wave distortion

Properties: add (1 or 0)

freq (integer number
of waves)

light (strength 0 to
100)

phase (percentage
offset 0 to 100)

strength (intensity 0 to
255)

xRay() Render edges only

Properties: None

In addition to the static filter types, which are applied to content and sit there

unless modified by script, the IE4+ filter object also provides types for blends

and reveals for transitions between visible and invisible elements. Scripting transi-

tions to act when a script hides or shows an element requires a few lines of code,

including calls to some of the filter object’s methods. First, Table 30-2 shows the

IE4+ syntax for transition filters.

Table 30-2 IE4+ Transition Filters

Filter Name Description and Properties

blendTrans() Fades out old element,
fades in new element

Properties: duration (floating point number
of seconds)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

Continued

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

844 Part III ✦ Document Objects Reference

Table 30-2 (continued)

Filter Name Description and Properties

revealTrans() Reveals element to be
shown through an effect

Properties: duration (floating-point
number of
seconds)

transition (code number for
effect)

0 Box in

1 Box out

2 Circle in

3 Circle out

4 Wipe up

5 Wipe down

6 Wipe right

7 Wipe left

8 Vertical blinds

9 Horizontal blinds

10 Checkerboard across

11 Checkerboard down

12 Random dissolve

13 Split vertical in

14 Split vertical out

15 Split horizontal in

16 Split horizontal out

17 Strips left down

18 Strips left up

19 Strips right down

20 Strips right up

21 Random bars
horizontally

22 Random bars
vertically

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

845Chapter 30 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

23 Random effect

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

To make a transition work under script control, a filter must be applied to the

element that you want the transition to work on. That can be done by script or by

assigning a filter style to the element. As for the scripting, you begin by invoking

the apply() method of the desired filter object. Next, script the change, such as

assigning a new URL to the src property of an IMG element. While you do this, the

apply() method freezes the image until you invoke the play() method on the fil-

ter. Listing 30-1 effects a checkerboard transition between two images after you

click the image.

Listing 30-1: A Reveal Transition Between Images

<HTML>
<HEAD>
<TITLE>IE4+ Transition</TITLE>
<STYLE TYPE=”text/css”>
IMG {filter:revealTrans(transition=10)}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doReveal() {

document.all.myIMG.filters[“revealTrans”].apply()
if (document.all.myIMG.src.indexOf(“desk1”) != -1) {

document.all.myIMG.src = “desk3.gif”
} else {

document.all.myIMG.src = “desk1.gif”
}
document.all.myIMG.filters[“revealTrans”].play()

}
</SCRIPT>
</HEAD>
<BODY>
<H1>IE4+ Transition</H1>
<HR>
<P>Click on the image to cause a reveal transition.</P>

</BODY>
</HTML>

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

846 Part III ✦ Document Objects Reference

Building on the example in Listing 30-1, the next example in Listing 30-2 demon-

strates how a script can also modify a filter object’s property, including a transi-

tion filter. Before the transition filter has its apply() method invoked, the script

sets the transition type based on a user choice in a SELECT list.

Listing 30-2: Choosing Reveal Transitions Between Images

<HTML>
<HEAD>
<TITLE>IE4+ Transition and Choices</TITLE>
<STYLE TYPE=”text/css”>
IMG {filter:revealTrans(transition=10)}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doReveal() {

document.all.myIMG.filters[“revealTrans”].transition =
document.forms[0].transChoice.value

document.all.myIMG.filters[“revealTrans”].apply()
if (document.all.myIMG.src.indexOf(“desk1”) != -1) {

document.all.myIMG.src = “desk3.gif”
} else {

document.all.myIMG.src = “desk1.gif”
}
document.all.myIMG.filters[“revealTrans”].play()

}
</SCRIPT>
</HEAD>
<BODY>
<H1>IE4+ Transition and Choices</H1>
<HR>
<FORM>
<P>Choose the desired transition type:
<SELECT NAME=”transChoice”>

<OPTION VALUE=0>Box in
<OPTION VALUE=1>Box out
<OPTION VALUE=2>Circle in
<OPTION VALUE=3>Circle out
<OPTION VALUE=4>Wipe up
<OPTION VALUE=5>Wipe down
<OPTION VALUE=6>Wipe right
<OPTION VALUE=7>Wipe left
<OPTION VALUE=8>Vertical blinds
<OPTION VALUE=9>Horizontal blinds
<OPTION VALUE=10>Checkerboard across
<OPTION VALUE=11>Checkerboard down
<OPTION VALUE=12>Random dissolve
<OPTION VALUE=13>Split vertical in
<OPTION VALUE=14>Split vertical out
<OPTION VALUE=15>Split horizontal in
<OPTION VALUE=16>Split horizontal out
<OPTION VALUE=17>Strips left down

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

847Chapter 30 ✦ Style Sheet and Style Objects

<OPTION VALUE=18>Strips left up
<OPTION VALUE=19>Strips right down
<OPTION VALUE=20>Strips right up
<OPTION VALUE=21>Random bars horizontally
<OPTION VALUE=22>Random bars vertically
<OPTION VALUE=23>Random effect

</SELECT>
</FORM>
<P>Click on the image to cause a reveal transition.</P>

</BODY>
</HTML>

IE5.5 filter syntax changes
While IE5.5/Windows still supports the original IE4 way of controlling filters, the

browser also implements a new filter component, which Microsoft strongly encour-

ages authors to use (as evidenced by the difficulty in finding documentation for the

IE4 syntax at its developer Web site). In the process of implementing this new filter

component, the names of many filters change, as do their individual properties.

Moreover, the way the filter component is invoked in the style sheet is also quite

different from the original component.

The style sheet syntax requires a reference to the new component as well as the

filter name. Here is the old way:

#glower {filter:glow(color=yellow, strength=5, enabled=true)}

And here is the new way:

#glower {filter:progid:DXImageTransform.Microsoft.Glow(color=yellow, strength=5,
enabled=true)}

Don’t overlook the extra progid: pointer in the reference. This program identi-

fier becomes part of the filter name that your scripts use to reference the filter:

document.all.glower.style.filters[“DXImageTransform.Microsoft.Glow”].color =
“green”

While some of the filter names and properties stay the same (except for the huge

prefix), several older properties are subsumed by new filters whose properties help

identify the specific effect. The former revealTrans() filter is now divided among

several new filters dedicated to transition effects. Table 30-3 shows the IE5.5 syntax.

Using the new syntax in IE5.5 can cause frequent crashes of the browser (at least
early released versions), especially transition filters. If you implement the new syn-
tax, be sure to torture-test your pages extensively.

Note

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

848 Part III ✦ Document Objects Reference

Table 30-3 IE5.5 DXImageTransform.Microsoft Filter Names

Filter Name Description and Properties

Alpha() Transparency level

Properties: opacity (0 to 100)

finishopacity (0 to 100)

style (gradient shape 0 to 3)

startX (coordinate integer)

startY (coordinate integer)

finishX (coordinate integer)

finishY (coordinate integer)

Barn() Barn-door style transition

Properties: duration (floating-point number
of seconds)

motion (in or out)

orientation (horizontal or
vertical)

percent (0 to 100)

status 0 (stopped), 1
(applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

BasicImage() Element rotation, flip,
color effects, and opacity

Properties: grayScale (1 or 0)

invert (1 or 0)

mask (1 or 0)

maskColor (color value)

mirror (1 or 0)

opacity (0.0 to 1.0)

rotation 0 (no rotation), 1 (90°),
2 (180°), 3 (270°)

xRay (1 or 0)

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

849Chapter 30 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

Blinds() Action transition with
Venetian blind effect

Properties: direction (up, down, right,
left)

squaresX (integer column count)

squaresY (integer row count)

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

Checkerboard() Action transition
with checkerboard
effect

Properties: bands (1 to 100)

direction (up, down, right, left)

duration (floating-point number
of seconds)

percent (0 to 100)

slideStyle (HIDE, PUSH, SWAP)

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

Chroma() Color transparency

Properties: color (color value)

DropShadow() Shadow effect

Properties: color (color value)

offx (horizontal offset pixels)

offy (vertical offset pixels)

positive (1 or 0)

Continued

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

850 Part III ✦ Document Objects Reference

Table 30-3 (continued)

Filter Name Description and Properties

Fade() Blend transition

Properties: duration (floating-point number
of seconds)

overlap (0.0 to 1.0 seconds)

percent (0 to 100)

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

Glow() Outer edge radiance

Properties: color (color value)

strength (intensity 1 to 255)

Iris() Action transition with
zoom effect

Properties: duration (floating-point number
of seconds)

irisStyle (CIRCLE, CROSS,
DIAMOND, PLUS,
SQUARE, STAR)

motion (in or out)

percent (0 to 100)

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-
stream)

Light() Add light source
(controlled by methods)

Properties: None

Methods: addAmbient(red,green,blue,strength)

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

851Chapter 30 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

addCone
(sourceLeft,
sourceTop,
sourceZAxis,
targetLeft,
targetTop, red,
green, blue,
strength,
spreadAngle)

addPoint
(sourceLeft,
sourceTop,
sourceZAxis,
red, green,
blue, strength)

changeColor
(lightID, red,
green, blue,
absoluteColor
Flag)

changeStrength
(lightID,
strength,
absolute
IntensityFlag)

clear()

moveLight
(lightID,
sourceLeft,
sourceTop,
sourceZAxis,
absolute
MovementFlag)

MaskFilter() Overlay transparent mask

Properties: color (color value)

MotionBlur() Simulating blurred motion

Properties: add (1 or 0)

direction (0, 45, 90, 135, 180,
225, 270, 315)

strength (pixel count)

Continued

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

852 Part III ✦ Document Objects Reference

Table 30-3 (continued)

Filter Name Description and Properties

RandomDissolve() Pixelated dissolve
transition

Properties: duration (floating-point number
of seconds)

percent (0 to 100)

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

RandomBars() Bar style transition

Properties: duration (floating-point number
of seconds)

orientation (horizontal or
vertical)

percent (0 to 100)

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

Shadow() Render as silhouette

Properties: color (color value)

direction (0, 45, 90, 135, 180,
225, 270, 315)

Strips() Striped style transition

Properties: duration (floating-point number
of seconds)

motion (in or out)

percent (0 to 100)

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

853Chapter 30 ✦ Style Sheet and Style Objects

Filter Name Description and Properties

status 0 (stopped), 1 (applied),
2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition
mid-stream)

Wave() Add sine-wave distortion

Properties: add (1 or 0)

freq (integer number of
waves)

light (strength 0 to 100)

phase (percentage offset 0
to 100)

strength (intensity 0 to 255)

xRay() Render edges only

Properties: None

For more details on deploying filters in IE for Windows, visit http://
msdn.microsoft.com/workshop/author/filter/filters.asp. Because most of

the live examples require IE5.5+/Windows, be sure to use that version for the best

experience at that page.

✦ ✦ ✦

elementRef.style.filterObject

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Positioned
Objects

This is an oddball chapter within the scheme of Part III.

Thus far, I have devoted each chapter to a distinct set of

object model objects. This chapter breaks away from that

mold for just a moment. The main reason that this chapter

even exists has to do more with the history of Dynamic

HTML — the capability to alter content on the fly in response

to user interaction — particularly with respect to Netscape

Navigator 4. The impetus for this separate discussion is the

NN4 LAYER element and its associated object. What makes

this discussion awkward is that the LAYER element and object

became dead-end entities that never made it into the W3C

standards process. NN6 instead has adopted the W3C stan-

dards for dynamic content, which more closely mimic the way

Microsoft implemented its DHTML features starting with IE4.

NN6 explicitly does not provide backward compatibility with

scripted LAYER element objects, which also means that you

must rewrite legacy applications to work in NN6.

That leaves an ungainly task in this chapter to create a

bridge between the LAYER element and the more modern way

of working with elements that can be positioned on the page,

flown across the page, stacked in front of other elements, or

hidden from view. The IE4+ and NN6 way to accomplish all of

this is through CSS style sheets and the scripting thereof. In

years to come, the NN4 LAYER element will be only a distant

memory. Until then, we must acknowledge it and understand

how to work the same magic with style sheets. To that end,

this chapter provides details on both the NN4 layer object

and the comparable syntax for using IE4+ and NN6 style

sheets to get and set properties or invoke methods. Chapter

48 applies these techniques in some DHTML applications.

What Is a Layer?
Terminology in the area of positioned elements has become

a bit confusing over time. Because NN4 was the earliest

browser to be released with positioned elements (the LAYER

element), the term layer became synonymous with any

positioned element. When IE4 came on the scene, it was

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Layer concepts

How to move, hide,
and show content

The end of the LAYER
element

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

856 Part III ✦ Document Objects Reference

convenient to call a style sheet-positioned element (in other words, an element gov-

erned by a style sheet rule with the position attribute) a layer as a generic term

for any positioned element. In fact, NN4 even treated an element that was posi-

tioned through style sheets as if it were a genuine layer object (although with some

minor differences).

In the end, the layer term made good sense because no matter how it was

achieved, a positioned element acted like a layer in front of the body content of a

page. Perhaps you have seen how animated cartoons were created before computer

animation changed the art. Layers of clear acetate sheets were assembled atop a

static background. Each sheet contained one character or portion of a character.

When all the sheets were carefully positioned atop each other, the view (as cap-

tured by a still camera) formed a composite frame of the cartoon. To create the

next frame of the cartoon, the artist moved one of the layers a fraction of an inch

along its intended path and then took another picture.

If you can visualize how that operation works, you have a good starting point for

understanding how layers work. Each layer contains some kind of HTML content

that exists in its own plane above the main document that loads in a window. You

can change or replace the content of an individual layer on the fly without affecting

the other layers; you can also reposition, resize, or hide the entire layer under

script control.

One aspect of layers that goes beyond the cartoon analogy is that a layer can

contain other layers. When that happens, any change that affects the primary

layer — such as moving the layer 10 pixels downward — also affects the layers

nested inside. It’s as if the nested layers are passengers of the outer layer. When the

outer layer goes somewhere, the passengers do, too. And yet, within the “vehicle,”

the passengers may change seats by moving around without regard for what’s going

on outside.

With this analogy in mind, many commercial DHTML development tools and con-

tent authors refer to positioned elements as layers, which you can move, resize,

stack, and hide independently of the body background. Therefore, references

throughout this book to layers may mean anything from the NN4 layer object to an

element positioned by way of style sheets.

NN4 Layer Object

Properties Methods Event Handlers

above captureEvents() onBlur

background handleEvent() onFocus

below load() onLoad

bgcolor moveAbove() onMouseOut

clip.bottom moveBelow() onMouseOver

clip.left moveBy()

clip.right moveTo()

document.layerObject

(c) ketabton.com: The Digital Library

857Chapter 31 ✦ Positioned Objects

Properties Methods Event Handlers

clip.top moveToAbsolute()

document releaseEvents()

left resizeBy()

name resizeTo()

pageX routeEvent()

pageY

parentLayer

siblingAbove

siblingBelow

src

top

visibility

zIndex

Syntax
Accessing layer object properties or methods:

[window.]document.layerName.[document.layerName. ...] property |
method([parameters])
[window.]document.layers[index].[document.layerName. ...]property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

About this object
You can create a layer object in NN4 in one of three ways. The first two ways use

NN4-only syntax: the <LAYER> tag in HTML and the new Layer() constructor in

JavaScript. The tag offers numerous attributes that establish the location, stacking

order, and visibility. These attributes, in turn, become scriptable properties. If you

create the layer through the constructor, you then use JavaScript to assign values

to the object’s properties.

The third way to create an NN4 layer object is to assign an absolute-positioned

style sheet rule to a block-level element — most typically a DIV element. This is the

way that IE4+ and NN6 do it, too. In practice, however, a positioned DIV element is

not as robust (from rendering and scriptability standpoints) in NN4 as a genuine

LAYER element. Therefore, it is sometimes necessary to branch a page’s code to

use document.write() for a <LAYER> tag in NN4 and a <DIV> tag in IE4+ and NN6.

document.layerObject

(c) ketabton.com: The Digital Library

858 Part III ✦ Document Objects Reference

Layer references
The task of assembling JavaScript references to NN4 layers and the objects they

contain resembles the same process for framesets (in fact, conceptually, a layer is

like a dynamically movable and resizable free-floating frame). Therefore, before you

start writing the reference, you must know the relationship between the document

containing the script and the target of the reference.

To demonstrate how this works, I start with a script in the base document

loaded into a window that needs to change the background color (bgColor prop-

erty) of a layer defined in the document. The skeletal HTML is as follows:

<HTML>
<HEAD>
</HEAD>
<BODY>
<LAYER NAME=”Flintstones” SRC=”flintstonesFamily.html”>
</LAYER>
</BODY>
</HTML>

From a script in the Head section, the statement that changes the layer’s

bgColor property is this:

document.Flintstones.bgColor = “yellow”

This syntax looks like the way you address any object in a document, such as a

link or image. However, things get tricky in that each layer automatically contains a

document object of its own. That document object is what holds the content of the

layer. Therefore, if you want to inspect the lastModified property of the HTML

document loaded into the layer, use this statement:

var modDate = document.Flintstones.document.lastModified

The situation gets more complex if the layer has another layer nested inside it

(one of those “passengers” that goes along for the ride). If the structure changes to

<HTML>
<HEAD>
</HEAD>
<BODY>
<LAYER NAME=”Flintstones” SRC=”flintstonesFamily.html”>

<LAYER NAME=”Fred” SRC=”fredFlintstone.html”></LAYER>
<LAYER NAME=”Wilma” SRC=”wilmaFlintstone.html”></LAYER>

</LAYER>
</BODY>
</HTML>

references to items in the second level of layers get even longer. For example, to

get the lastModified property of the fredFlintstone.html file loaded into the

nested Fred layer, use this reference from the Head script:

document.Flintstones.document.Fred.document.lastModified

The reason for this is that NN4 does not have a shortcut access to every layer

defined in a top-level document. As stated in the description of the document.-
layers property in Chapter 18, the property reflects only the first level of layers

document.layerObject

(c) ketabton.com: The Digital Library

859Chapter 31 ✦ Positioned Objects

defined in a document. You must know the way to San Jose if you want to get its

lastModified property.

Layers and forms
Because each layer has its own document, you cannot spread a form across mul-

tiple layers. Each layer’s document must define its own <FORM> tags. If you need to

submit one form from content located in multiple layers, one of the forms should

have an onSubmit event handler to harvest all the related form values and place

them in hidden input fields in the document containing the submitted form. In this

case, you need to know how to devise references from a nested layer outward.

As a demonstration of reverse-direction references, I start with the following

skeletal structure that contains multiple nested layers:

<HTML>
<HEAD>
</HEAD>
<BODY>
<FORM NAME=”personal”>

<INPUT TYPE=”text” NAME=”emailAddr”>
</FORM>
<LAYER NAME=”product” SRC=”ultraGizmoLine.html”>

<LAYER NAME=”color” SRC=”colorChoice.html”></LAYER>
<LAYER NAME=”size” SRC=”sizeChoice.html”></LAYER>
<LAYER NAME=”sendIt” SRC=”submission.html”></LAYER>

</LAYER>
</BODY>
</HTML>

Each of the HTML files loaded into the layers also has a <FORM> tag defining

some fields or select lists for relevant user choices, such as which specific model of

the UltraGizmo line is selected, what color, and in what size. (These last two are

defined as separate layers because their positions are animated when they are dis-

played.) The assumption here is that the Submit button is in the sendIt layer. That

layer’s document also includes hidden input fields for data to be pulled from the

main document’s form and three other layer forms. Two of those layers are at the

same nested level as sendIt, one is above it, and the main document’s form is at the

highest level.

To reach the value property of a field named theColor in the color layer, a

script in the sendIt layer uses this reference:

parentLayer.document.color.document.forms[0].theColor.value

Analogous to working with frames, the reference starts with a reference to the

next higher level (parentLayer) and then starts working its way down through the

parent layer’s document, the color layer, the color layer’s document, and finally

the form therein.

To reach the value property of a field named modelNum in the product layer, the

reference starts the same way; but because the form is at the parent layer level, the

reference goes immediately to that layer’s document and form:

parentLayer.document.forms[0].modelNum.value

document.layerObject

(c) ketabton.com: The Digital Library

860 Part III ✦ Document Objects Reference

It may seem odd that a reference to an object at a different layer level is shorter

than one at the same level (for example, the color layer), but the route to the par-

ent layer is shorter than going via the parent layer to a sibling. Finally, to reach the

value of the emailAddr field in the base document, the reference must ratchet out

one more layer as follows:

parentLayer.parentLayer.document.forms[0].emailAddr.value

The two parentLayer entries step the reference out two levels, at which point

the scope is in the base layer containing the main document and its form.

Layers and tables
The document-centered nature of NN4 layers also makes it difficult — if not

impossible at times — to incorporate them inside tables. Even defining a layer that

is contained by a TD table cell can cause countless problems.

If you need to have absolute-positioned elements that look as though they are

part of a table, I suggest you define the layers as freestanding elements outside of

the table. After that, you can position the layers to make them look like they live in

the table. You may also need to create empty placeholders in your table to make

room for the overlaid layer. You can do this by way of a relative-positioned element

inside the table cell whose visibility is hidden. This allows the element to flow as the

page loads to accommodate the current browser window dimensions. Scripts can

then read the location of the relative-positioned element and use those coordinates

to move the absolute-positioned elements that are to overlay the hidden elements.

Properties
above
below
siblingAbove
siblingBelow

Value: Layer object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Each layer object is its own physical layer. Given that the variables x and y tradi-

tionally represent width and height, the third dimension — the position of a layer

relative to the stack of layers — is called the z-order. Layer orders are assigned auto-

matically according to the loading order, with the highest number being the top-

most layer. That topmost layer is the one closest to you as you view the page on the

monitor.

If two layers are on a page, one layer must always be in front of the other even if

they both appear to be transparent and visually overlap each other. Knowing which

layer is above the other is important for scripting purposes, especially if your

document.layerObject.above

(c) ketabton.com: The Digital Library

861Chapter 31 ✦ Positioned Objects

script needs to reorder the layering in response to user action. Layer objects have

four properties to help you determine the layers adjacent to a particular layer.

The first pair of properties, layerObject.above and layerObject.below,

takes a global look at all layers defined on the page regardless of the fact that one

layer may contain any number of nested layers separate from other batches on the

screen. If a layer lies above the one in question, the property contains a reference

to that other layer; if no layer exists in that direction, then the value is null.

Attempts to retrieve properties of a nonexistent layer result in runtime scripting

errors indicating that the object does not have properties (of course not — an

object must exist before it can have properties).

To understand these two properties better, consider a document that contains

three layers (in any nesting arrangement you like). The first layer to be defined is on

the bottom of the stack. It has a layer above it, but none below it. The second layer

in the middle has a layer both above and below it. And the topmost layer has a layer

only below it, with no more layers above it (that is, coming toward your eye).

Another pair of properties, layerObject.siblingAbove and

layerObject.siblingBelow, confines itself to the group of layers inside a parent

layer container. Just as in real family life, siblings are descended from (teens might

say “contained by”) the same parent. An only child layer has no siblings, so both

the layerObject.siblingAbove and layerObject.siblingBelow values are

null. For two layers from the same parent, the first one to be defined has a sibling

layer above it; the other has a sibling layer below it.

It is important to understand the difference between absolute layering and sibling

layering to use these properties correctly. A nested layer might be the fifth layer

from the bottom among all layers on the page but at the same time be the first layer

among siblings within its family group. As you can see, these two sets of properties

enable your script to be very specific about the relationships under examination.

Positioned objects in IE4+ and NN6 have no comparable properties to the four

described in this section.

Example (with Listing 31-1) on the CD-ROM

Related Items: layer.parentLayer property; layer.moveAbove(),

layer.moveBelow() methods.

background
Value: Image object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

You can assign a background image to a layer. The BACKGROUND attribute of the

<LAYER> tag usually sets the initial image, but you can assign a new image when-

ever you like via the layerObject.background property.

On the
CD-ROM

document.layerObject.background

(c) ketabton.com: The Digital Library

862 Part III ✦ Document Objects Reference

Layer background images are typically like those used for entire Web pages. They

tend to be subtle — or at least of such a design and color scheme as not to distract

from the primary content of the layer. On the other hand, the background image may

in fact be the content. If so, then have a blast with whatever images suit you.

The value of the layerObject.background property is an image object (see

Chapter 22). To change the image in that property on the fly, you must set the

layerObject.background.src property to the URL of the desired image (just like

changing document.imageName.src on the fly). You can remove the background

image by setting the layerObject.background.src property to null.

Background images smaller than the rectangle of the layer repeat themselves, just

like document background pictures; images larger than the rectangle clip them-

selves to the rectangle of the layer rather than scaling to fit.

The IE4+ and NN6+ way of handling background images is through the style.
backgroundImage property.

Example (with Listing 31-2) on the CD-ROM

Related Items: layer.bgColor property; image object.

bgColor
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

A layer’s background color fills the entire rectangle with the color set in the

<LAYER> tag or from a script at a later time. Color values are the same as for

document-related values; they may be in the hexadecimal triplet format or in one

of the plain-language color names. You can turn a layer transparent by setting its

bgColor property to null.

You control the corresponding behavior in IE4+ and NN6+ via the

style.backgroundColor property.

Example (with Listing 31-3) on the CD-ROM

Related Items: layer.background property; layer.onMouseOver event

handler.

clip
Value: String Read/Write

On the
CD-ROM

On the
CD-ROM

document.layerObject.clip

(c) ketabton.com: The Digital Library

863Chapter 31 ✦ Positioned Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The layerObject.clip property is an object (the only one in NN4’s document

object model that exposes itself as a rectangle object) with six geographical prop-

erties defining the position and size of a rectangular area of a layer visible to the

user. Those six properties are

✦ clip.top

✦ clip.left

✦ clip.bottom

✦ clip.right

✦ clip.width

✦ clip.height

The unit of measure is pixels, and the values are relative to the top-left corner of

the layer object.

A clip region can be the same size as or smaller than the layer object. If the CLIP
attribute is not defined in the <LAYER> tag, the clipping region is the same size as

the layer. In this case, the clip.left and clip.top values are automatically zero

because the clip region starts at the very top-left corner of the layer’s rectangle

(measurement is relative to the layer object whose clip property you’re dealing

with). The height and width of the layer object are not available properties in NN4.

Therefore, you may have to use other means to get that information into your

scripts if you need it. (I do it in Listing 31-4.) Also be aware that even if you set the

HEIGHT and WIDTH attributes of a layer tag, the content rules the initial size of the

visible layer unless the tag also includes specific clipping instructions. Images, for

example, expand a layer to fit the HEIGHT and WIDTH attributes of the tag;

text (either from an external HTML file or inline in the current file) adheres to the

<LAYER> tag’s WIDTH attribute but flows down as far as necessary to display every

character.

Setting a clip property does not move the layer or the content of the layer —

only the visible area of the layer. Each adjustment has a unique impact on the

apparent motion of the visible region. For example, if you increase the clip.left
value from its original position of 0 to 20, the entire left edge of the rectangle shifts

to the right by 20 pixels. No other edge moves. Changes to the clip.width prop-

erty affect only the right edge; changes to the clip.height property affect only

the bottom edge. Unfortunately, no shortcuts exist to adjust multiple edges at once.

JavaScript is fast enough on most client machines to give the impression that multi-

ple sides are moving if you issue assignment statements to different edges in

sequence.

IE4+ and NN6+ have the style.clip property to assist in adjusting the clipping

rectangle of a layer. But the W3C DOM’s style.clip object does not offer addi-

tional subproperties to access individual edges or dimensions of the clipping

document.layerObject.clip

(c) ketabton.com: The Digital Library

864 Part III ✦ Document Objects Reference

rectangle. IE5’s read-only currentStyle object does provide properties for the

four edge dimensions. Listing 31-15 demonstrates how to adjust clipping in IE5+ and

NN6+ syntax.

Example (with Listing 31-4) on the CD-ROM

Related Items: layer.pageX, layer.pageY properties; layer.resizeTo()
method.

document
Value: document object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Your scripts practically never have to retrieve the document property of a layer.

But it is important to remember that it is always there as the actual container of

content in the layer. As described at length in the opening section about the layer

object, the document object reference plays a large role in assembling addresses to

content items and properties in other layers. A document inside a layer has the

same powers, properties, and methods of the main document in the browser win-

dow or in a frame.

Related Items: document object.

left
top

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The layerObject.left and layerObject.top properties correspond to the

LEFT and TOP attributes of the <LAYER> tag. These integer values determine the

horizontal and vertical pixel coordinate point of the top-left corner of the layer rela-

tive to the browser window, frame, or parent layer in which it lives. The coordinate

system of the layer’s most immediate container is the one that these properties

reflect.

Adjustments to these properties reposition the layer without adjusting its size.

Clipping area values are untouched by changes in these properties. Thus, if you cre-

ate a draggable layer object that needs to follow a dragged mouse pointer in a

On the
CD-ROM

document.layerObject.left

(c) ketabton.com: The Digital Library

865Chapter 31 ✦ Positioned Objects

straight line along the x or y axis, it is more convenient to adjust one of these prop-

erties than to use the layerObject.moveTo() method.

IE4+ and NN6+ provide various properties to determine the coordinate location

of a positioned element — all through the style object.

Example (with Listing 31-5) on the CD-ROM

Related Items: layer.clip, layer.parentLayer properties.

name
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The layerObject.name property reflects the NAME attribute of the <LAYER> tag

or name you assign to a positioned DIV or SPAN element. This property is read-only.

If you don’t assign a name to a layer when you create it, Navigator generates a name

for the layer in this format:

js_layer_nn

Here, nn is a serial number. That serial number is not the same every time the

page loads, so you cannot rely on the automatically generated name to help you

script an absolute reference to the layer.

Related Items: None.

pageX
pageY

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

In Netscape’s coordinate terminology, the page is the content area of a docu-

ment. The top-left corner of the page space is point 0,0, and you can position any

layer (including a nested layer) on the page relative to this corner. In the <LAYER>
tag, the attributes that enable authors to set the position are PAGEX and PAGEY.

These values are retrievable and modifiable as the layerObject.pageX and

layerObject.pageY properties, respectively. Note the capitalization of the final

letters of these property names.

On the
CD-ROM

document.layerObject.pageX

(c) ketabton.com: The Digital Library

866 Part III ✦ Document Objects Reference

The layerObject.pageX and layerObject.pageY values are identical to

layerObject.left and layerObject.top only when the layer in question is at

the main document level. That’s because the layerObject.left and

layerObject.top values are measured by the next higher container’s coordinate

system — which, in this case, is the same as the page.

The situation gets more interesting when you’re dealing with nested layers. For a

nested layer, the layerObject.pageX and layerObject.pageY values are still

measured relative to the page, while layerObject.left and layerObject.top
are measured relative to the next higher layer. If trying to conceive of these differ-

ences makes your head hurt, the example in Listing 31-6 should help clear things up

for you.

Adjusting the layerObject.pageX and layerObject.pageY values of any layer

has the same effect as using the layerObject.moveToAbsolute() method, which

measures its coordinate system based on the page. If you create flying layers on

your page, you can’t go wrong by setting the layerObject.pageX and

layerObject.pageY properties (or using the moveToAbsolute() method) in your

script. That way, should you add another layer in the hierarchy between the base

document and the flying layer, the animation is in the same coordinate system as

before the new layer was added.

IE4+ does not provide a pair of properties to determine the location of a posi-

tioned element relative to the page, but the offsetLeft and offsetTop properties

provide coordinates within the element’s next outermost positioning context. Thus,

you may have to “walk” the offsetParent trail to accumulate complete coordinate

values. In NN6, the offsetLeft and offsetTop properties use the page as the

positioning context.

Example (with Listing 31-6) on the CD-ROM

Related Items: layer.left, layer.top, window.innerHeight,

window.innerWidth properties; layer.moveToAbsolute() method.

parentLayer
Value: Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Every layer has a parent that contains that layer. In the case of a layer defined at

the main document level, its parent layer is the window or frame containing that

document (the “page”). For this kind of layer, the layerObject.parentLayer
property object is a window object. But for any nested layer contained by a layer,

the parentLayer property is a layer object.

On the
CD-ROM

document.layerObject.parentLayer

(c) ketabton.com: The Digital Library

867Chapter 31 ✦ Positioned Objects

Be aware of the important distinction between layerObject.parentLayer and

layerObject.below. As a parent layer can contain multiple layers in the next con-

tainment level, each of those layers’ parentLayer properties evaluate to that same

parent layer. But because each layer object is its own physical layer among the

stack of layers on a page, the layer.below property in each layer points to a differ-

ent object — the layer next lower in z-order.

Keeping the direction of things straight can get confusing. On the one hand, you

have a layer’s parent, which, by connotation, is higher up the hierarchical chain of

layers. On the other hand, the order of physical layers is such that a parent more

than likely has a lower z-order than its children because it is defined earlier in the

document.

Use the layerObject.parentLayer property to assemble references to other

nested layers. See the discussion about layer references at the beginning of this

chapter for several syntax examples.

IE4+ offers an offsetParent property, which comes close to the functionality of

the layerObject.parentLayer property.

Related Items: layer.above, layer.below properties.

siblingAbove
siblingBelow

See layer.above and layer.below properties earlier in this chapter.

src
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Content for a layer may come from within the document that defines the layer or

from an external source, such as an HTML or image file. If defined by a <LAYER> tag,

an external file is specified by the SRC attribute. This attribute is reflected by the

layerObject.src property.

The value of this property is a string of the URL of the external file. If you do not

specify an SRC attribute in the <LAYER> tag, the value returns null. Do not set this

property to an empty string in an effort to clear the layer of content:

document.write() or load an empty page instead. Otherwise, the empty string is

treated like a URL, and it loads the current client directory.

You can, however, change the content of a layer by loading a new source file into

the layer. Simply assign a new URL to the layerObject.src property. Again, if a

layer has nested layers inside it, those nested layers are blown away by the content

that loads into the layer whose src property you change. The new file, of course,

can be an HTML file that defines its own nested layers, which then become part of

the page’s object model.

document.layerObject.src

(c) ketabton.com: The Digital Library

868 Part III ✦ Document Objects Reference

Netscape also provides the layerObject.load() method to insert new content

into a layer. One advantage of this method is that an optional second parameter

enables you to redefine the width of the layer at the same time you specify a new

document. But if you are simply replacing the content in the same width layer, you

can use either way of loading new content.

Be aware that the height and width of a replacement layer are governed as much

by their hard-coded content size as by the initial loading of any layer. For example, if

your layer is initially sized at a width of 200 pixels and your replacement layer docu-

ment includes an image whose width is set to 500 pixels, the layer expands its width

to accommodate the larger content — unless you also restrict the view of the layer

via the layerObject.clip properties. Similarly, longer text content flows beyond

the bottom of the previously sized layer unless restricted by clipping properties.

Positioned elements in IE4+ and NN6+ do provide a way to load external content

into them. That’s what the W3C sees as the purpose of the IFRAME element. Even

so, as Listing 31-18 shows, you can script your way around this limitation if it’s

absolutely necessary.

Example (with Listing 31-7) on the CD-ROM

Related Items: layer.load(), layer.resizeTo() methods.

visibility
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

A layer’s visibility property can use one of three settings: show, hide, or

inherit— the same values you can assign to the VISIBILITY attribute of the

<LAYER> tag. But NN4 also enables you to set the property to hidden and visible,

which are the values for the style.visibility property used in IE4+ and NN6+.

Unlike many other layer properties, you can set the visibility property such

that a layer can either follow the behavior of its parent or strike out on its own. By

default, a layer’s visibility property is set to inherit, which means the layer’s

visibility is governed solely by that of its parent (and of its parent, if the nesting

includes many layers). When the governing parent’s property is, say, hide, the

child’s property remains inherit. Thus, you cannot tell whether an inheriting layer

is presently visible or not without checking up the hierarchy (with the help of the

layerObject.parentLayer property). However, you can override the parent’s

behavior by setting the current layer’s property explicitly to show or hide. This

action does not alter in any way other parent-child relationships between layers.

On the
CD-ROM

document.layerObject.visibility

(c) ketabton.com: The Digital Library

869Chapter 31 ✦ Positioned Objects

Example (with Listing 31-8) on the CD-ROM

Related Items: None.

zIndex
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Close relationships exist among the layerObject.above, layerObject.below,

and layerObject.zIndex properties. When you define a layer in a document with

the <LAYER> tag, you can supply only one of the three attributes (ABOVE, BELOW,

and Z-INDEX). After the layer is generated with any one of those attributes, the

document object model automatically assigns values to at least two of those prop-

erties (layerObject.above and layerObject.below) unless you specify the Z-
INDEX attribute; in this case, all three properties are assigned to the layer. If you

don’t specify any of these properties, the physical stacking order of the layers is

the same as in the HTML document. The layerObject.above and layerObject.
below properties are set as described in their discussion earlier in this chapter. But

the layerObject.zIndex properties for all layers are zero.

The CSS attribute is spelled with a hyphen after the “z.” Because a JavaScript prop-
erty name cannot contain a hyphen, the character was removed for the property
name. The capital “I” is important because JavaScript properties are case-sensitive.

Changes to layerObject.zIndex values affect the stacking order only of sibling

layers. You can assign the same value to two layers, but the last layer to have its

layerObject.zIndex property set lies physically above the other one. Therefore,

if you want to ensure a stacking order, set the zIndex values for all layers within a

container. Each value should be a unique number.

Stacking order is determined simply by the value of the integer assigned to the

property. If you want to stack three sibling layers, the order is the same if you

assign them the values of 1, 2, 3 or 10, 13, 50. As you modify a

layerObject.zIndex value, the layerObject.above and layerObject.below
properties for all affected layers change as a result.

Avoid setting zIndex property values to negative numbers in NN4. Negative

values are treated as their absolute (positive) values for ordering.

For IE4+ and NN6+, the style.zIndex property controls z-order.

Example (with Listing 31-9) on the CD-ROMOn the
CD-ROM

Note

On the
CD-ROM

document.layerObject.zIndex

(c) ketabton.com: The Digital Library

870 Part III ✦ Document Objects Reference

Related Items: layer.above, layer.below properties; layer.moveAbove(),

layer.moveBelow() methods.

Methods
load(“URL”, newLayerWidth)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

One way to change the content of an NN4 layer after it loads is to use the

layerObject.load() method. This method has an advantage over setting the

layerObject.src property because the second parameter is a new layer width for

the content if one is desired. If you don’t specify the second parameter, a small

default value is substituted for you (unless the new document hard-wires widths to

its elements that must expand the current width). If you are concerned about a new

document being too long for the existing height of the layer, use the layerObject.
resizeTo() method or set the individual layerObject.clip properties before

loading the new document. This keeps the viewable area of the layer at a fixed size.

IE4+ and NN6 object models don’t have a method like this, but you can work

around the situation (as shown in Listing 31-18) and then adjust the style.width
property of the positioned element.

Example (with Listing 31-10) on the CD-ROM

Related Item: layer.src property.

moveAbove(layerObject)
moveBelow(layerObject)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

With the exception of the layerObject.zIndex property, the layer object does

not let you adjust properties that affect the global stacking order of layers. The

layerObject.moveAbove() and layerObject.moveBelow() methods enable you

to adjust a layer in relation to another layer object. Both layers in the transaction

must be siblings — they must be in the same container, whether it be the base

document window or some other layer. You cannot move existing layers from one

On the
CD-ROM

document.layerObject.moveAbove()

(c) ketabton.com: The Digital Library

871Chapter 31 ✦ Positioned Objects

container to another; you must delete the layer from the source and create a new

layer in the destination. Neither of these methods affects the viewable size or coor-

dinate system location of the layer.

The syntax for these methods is a little strange at first because the statement

that makes these work has two layer object references in it. Named first in the

statement (to the left of the method name, separated by a period) is the layer

object you want to move. The sole parameter for each method is a reference to the

layer object that is the physical reference point for the trip. For example, in this

statement,

document.fred.moveAbove(document.ginger)

the instruction moves the fred layer above the ginger layer. The fred layer can

be in any stacking relation to ginger; but, again, both layers must be in the same

container.

Obviously, after one of these moves, the layerObject.above and layerObject.
below properties of some or all layers in the container feel the ripple effects of the

shift in order. If you have several layers that are out of order because of user inter-

action with your scripts, you can reorder them using these methods — or, more

practically, by setting their layerObject.zIndex properties. In the latter case, it is

easier to visualize through your code how the ordering is handled with increasing

zIndex values for each layer.

There is no comparable method for IE4+ or NN6.

Example on the CD-ROM

Related Items: layer.above, layer.below, layer.zIndex properties.

moveBy(deltaX,deltaY)
moveTo(x,y)
moveToAbsolute(x,y)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Much of what CSS-Positioning is all about is being able to precisely plant an ele-

ment on a Web page. The unit of measure is the pixel, with the coordinate space

starting at an upper-left corner at location 0,0. That coordinate space for a layer is

typically the container (parent layer) for that layer. The layerObject.moveTo()
and layerObject.moveBy() methods let scripts adjust the location of a layer

inside that coordinate space — very much the way window.moveTo() and

window.moveBy() work for window objects.

On the
CD-ROM

document.layerObject.moveBy()

(c) ketabton.com: The Digital Library

872 Part III ✦ Document Objects Reference

Moving a layer entails moving it (and its nested layers) without adjusting its size

or stacking order. You can accomplish animation of a layer by issuing a series of

layerObject.moveTo() methods if you know the precise points along the path. Or

you can nudge the layer by increments in one or both axes with the layerObject.
moveBy() method.

In case you need to position a layer with respect to the page’s coordinate system

(for example, you are moving items from multiple containers to a common point),

the layerObject.moveToAbsolute() method bypasses the layer’s immediate con-

tainer. The 0,0 point for this method is the top-left corner of the document. Be

aware, however, that you can move a layer to a position such that some or all of it

lies out of range of the container’s clip rectangle.

Moving positioned layers in IE4+ and NN6 requires adjusting the style.left
and style.top properties (or the style.pixelLeft, style.pixelTop, style.
posLeft, and style.posTop properties in IE4+).

Example (with Listing 31-11) on the CD-ROM

Related Items: layer.resizeBy(), layer.resizeTo(), window.moveBy(),

window.moveTo() methods.

resizeBy(deltaX,deltaY)
resizeTo(width,height)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The basic functionality and parameter requirements of the layerObject.
resizeBy() and layerObject.resizeTo() methods are similar to the identically

named methods of the window object. You should, however, be cognizant of some

considerations unique to layers.

Unlike resizing a window, which causes all content to reflow to fit the new size,

the layer sizing methods don’t adjust the size of the layer. Instead, these methods

control the size of the clipping region of the layer. Therefore, the content of the

layer does not reflow automatically when you use these methods any more than it

does when you change individual layerObject.clip values.

Another impact of this clipping region relationship deals with content that

extends beyond the bounds of the layer. For example, if you provide HEIGHT and

WIDTH attributes to a <LAYER> tag, content that requires more space to display itself

than those attribute settings afford automatically expands the viewable area of the

layer. To rein in such runaway content, you can set the CLIP attribute. But because

the layer resize methods adjust the clipping rectangle, outsized content doesn’t

overflow the <LAYER> tag’s height and width settings. This may be beneficial for you

On the
CD-ROM

document.layerObject.resizeBy()

(c) ketabton.com: The Digital Library

873Chapter 31 ✦ Positioned Objects

or not, depending on your design intentions. Adjusting the size of a layer with either

method affects only the position of the right and bottom edges of the layer. The top-

left location of the layer does not move.

Neither IE4+ nor NN6 provides a similar method, but you can accomplish the

same effects by adjusting the style properties of a positioned element.

Example (with Listings 31-12a and 31-12b) on the CD-ROM

Related Items: layer.moveBy(), layer.moveTo(), window.resizeBy(),

window.resizeTo() methods.

Event handlers
onBlur
onFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

A user gets no visual cue when a layer receives focus. But a click on the clipping

region of a layer triggers a focus event that can be handled with an onFocus event

handler. Clicking anywhere on the page outside of that layer area fires a blur event.

Changing the stacking order of sibling layers does not fire either event unless

mouse activity occurs in one of the layers.

If your layer contains elements that have their own focus and blur events (such

as text fields), those objects’ event handlers still fire even if you also have the same

event handlers defined for the layer. The layer’s events fire after the text field’s

events.

Unlike comparable event handlers in windows, layer events for blur and focus
do not have companion methods to bring a layer into focus or to blur it. However, if

you use the focus() and/or blur() methods on applicable form elements in a

layer, the layer’s corresponding event handlers are triggered as a result.

Related Items: textbox.blur(), textbox.focus() methods.

onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Scripting layers can sometimes lead to instances of unfortunate sequences of

loading. For example, if you want to set some layer object properties via a script

(that is, not in the <LAYER> tag), you can do so only after the layer object exists in

On the
CD-ROM

document.layerObject.onLoad

(c) ketabton.com: The Digital Library

874 Part III ✦ Document Objects Reference

the document object model. One way to make sure the object exists is to place the

scripting in <SCRIPT> tags at the end of the document. Another way is to specify an

onLoad event handler in the tag, as shown in Listing 31-12a.

Each time you load a document into the layer — either via the SRC attribute in

the <LAYER> tag or by invoking the layerObject.load() method — the onLoad
event handler runs. But also be aware that an interaction occurs between a layer’s

onLoad event handler and an onLoad event handler in the <BODY> tag of a docu-

ment loaded into a layer. If the document body has an onLoad event handler, then

the layer’s onLoad event handler does not fire. You get one or the other, but not

both.

Related Item: window.onLoad event handler.

onMouseOut
onMouseOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

A layer knows when the cursor rolls into and out of its clipping region. Like sev-

eral other objects in the document object model, the layer object has onMouseOver
and onMouseOut event handlers that enable you to perform any number of actions

in response to those user activities. Typically, a layer’s onMouseOver event handler

changes colors, hides, or shows pseudo-borders devised of colored layers behind

the primary layer; sometimes, it even changes the text or image content. The sta-

tusbar is also available to plant plain-language legends about the purpose of the

layer or offer other relevant help.

Both events occur only once per entrance to, and egress from, a layer’s region by

the cursor. If you want to script actions dependent upon the location of the cursor

in the layer, you can use layerObject.captureEvents() to grab mouseMove and

all types of mouse button events. This kind of event capture generates an event
object (see Chapter 29) that includes information about the coordinate position of

the cursor at the time of the event.

Related Items: link.onMouseOut, link.onMouseOver, area.onMouseOut,

area.onMouseOver event handlers.

Positioned Elements in the Modern DOM
With the dwindling NN4 installed base, you can focus on applying “layer” tech-

niques in browsers whose object models expose every element of an object and

whose rendering engines automatically reflow content in response to changes.

This section follows the sequence of examples in the discussion about NN4’s layer

object but shows you how to accomplish the same operations and learn the behav-

ior of positioned elements in IE4+ and NN6+.

An important facet that these newer browsers have in common is the style
property of every renderable element object. Most adjustments to the location,

document.layerObject.onMouseOut

(c) ketabton.com: The Digital Library

875Chapter 31 ✦ Positioned Objects

layering, size, and visibility of positioned elements use the style object associated

with each element. Cross-browser complications ensue, however, with some

aspects of nested layers. Plus, there is the ever-present difference between the

IE- and NN-class browsers with respect to the event objects — how to reference the

event object and the names of its properties. Some of the examples that follow

have more code in them than their corresponding NN4 layer version shown earlier

in this chapter. Most of the additional code concerns itself with accommodating the

different event object models.

One more point about the following examples: The syntax adopted for references

to element objects uses the W3C DOM document.getElementById() method,

which is supported in IE5+ and NN6. If you intend to apply any of the techniques in

these examples to applications that run exclusively in an IE environment (and must

be compatible with IE4), you can substitute the document.all referencing syntax.

Conversely, you can employ the document.all equalization routine shown in

Chapter 14 to let IE4+ and NN6 use document.all references.

Changing element backgrounds
Listing 31-13 demonstrates the syntax and behavior of setting background

images via the style.backgroundImage property. Note the CSS-style syntax for

the URL value assigned to the style.backgroundImage property. It’s a good les-

son to learn that most style properties are strings, and their values are in the

same format as the values normally assigned in a style sheet definition.

Removing a background image requires setting the URL to null. Also, a back-

ground image overlays whatever color (if any) you assign to the element. If the

background image has transparent regions, the background color shows through.

Listing 31-13: Setting Layer Backgrounds (W3C)

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setBg(URL) {

document.getElementById(“bgExpo”).style.backgroundImage = “url(“ + URL + “)”
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Backgrounds (W3C)</H1>
<HR>
<DIV ID=”buttons” STYLE=”position:absolute; top:100”>
<FORM>
<INPUT TYPE=”button” VALUE=”The Usual” onClick=”setBg(‘cr_kraft.gif’)”>

<INPUT TYPE=”button” VALUE=”A Big One” onClick=”setBg(‘arch.gif’)”>

<INPUT TYPE=”button” VALUE=”Not So Usual” onClick=”setBg(‘wh86.gif’)”>

<INPUT TYPE=”button” VALUE=”Decidedly Unusual” onClick=”setBg(‘sb23.gif’)”>

<INPUT TYPE=”button” VALUE=”Quick as...” onClick=”setBg(‘lightnin.gif’)”><P>
<INPUT TYPE=”button” VALUE=”Remove Image” onClick=”setBg(null)”>

</FORM>
</DIV>

Continued

(c) ketabton.com: The Digital Library

876 Part III ✦ Document Objects Reference

Listing 31-13 (continued)

<DIV ID=”bgExpo” STYLE=”position:absolute; top:100; left:250; width:300;
height:260; background-color:gray” >
Some text, which may or may not read
well with the various backgrounds.
</DIV>
</BODY>
</HTML>

Listing 31-14 focuses on background color. A color palette is laid out as a series

of rectangles. As the user rolls atop a color in the palette, the color is assigned to

the background of the layer. Because of the regularity of the DIV elements gener-

ated for the palette, this example uses scripts to dynamically write them to the

page as the page loads. This lets the for loop handle all the positioning math based

on initial values set as global variables.

Perhaps of more interest here than the background color setting is the event

handling. First of all, because the target browsers all employ event bubbling, the

page lets a single event handler at the document level wait for mouseover events to

bubble up to the document level. But because the mouseover event of every ele-

ment on the page bubbles there, the event handler must filter the events and pro-

cess only those on the palette elements.

The setColor() method begins by equalizing the IE4+ and NN6 event object

models. If an object is assigned to the evt parameter variable, then that means the

NN6 browser is processing the event; otherwise, it’s IE4+ — meaning that the win-
dow.event object contains the event information. Whichever browser performs the

processing, the event object is assigned to the evt variable. After verifying that a

valid event triggered the function, the next step is to equalize the different,

event-model-specific property names for the event’s target element. For NN6, the

property is target, while IE4+ uses srcElement. The final validation is to check

the className property of the event’s target element. Because all elements acting

as palette colors share the same CLASS attribute, the className property is exam-

ined. If the value is palette, then the mouseover event has occurred on one of the

colors. Now it’s time to extract the target element’s style.backgroundColor prop-

erty and assign that color to the same property of the main positioned element.

Listing 31-14: Layer Background Colors (W3C)

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setColor(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement
if (elem.className == “palette”) {

(c) ketabton.com: The Digital Library

877Chapter 31 ✦ Positioned Objects

document.getElementById(“display”).style.backgroundColor =
elem.style.backgroundColor

}
}

}
document.onmouseover = setColor
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Background Colors (W3C)</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
var oneLayer
var colorTop = 100
var colorLeft = 20
var colorWidth = 40
var colorHeight = 40
var colorPalette = new Array(“aquamarine”,”coral”,”forestgreen”,

“goldenrod”,”red”,”magenta”,”navy”,”teal”)
for (var i = 0; i < colorPalette.length; i++) {

oneLayer = “<DIV ID=’swatch” + i + “‘ CLASS=’palette’”
oneLayer += “STYLE=’position:absolute; top:” + colorTop + “;”
oneLayer += “left:” + ((colorWidth * i) + colorLeft) + “;”
oneLayer += “width:” + colorWidth + “; height:” + colorHeight + “;”
oneLayer += “background-color:” + colorPalette[i] + “‘></DIV>\n”
document.write(oneLayer)

}
</SCRIPT>
<DIV ID=”display” STYLE=”position:absolute; top:150; left:80; width:200;
height:200; background-color:gray”>

Some reversed text to test against background colors.
</DIV>
</BODY>
</HTML>

Layer clipping
Working with clipping rectangles is a bit cumbersome using CSS syntax because

the object model standard does not provide separate readouts or controls over

individual edges of a clipping rectangle. IE5+ enables you to read individual edge

dimensions via the currentStyle object (for example, currentStyle.clipTop),

but these properties are read-only. NN6 has not connected all the pieces of W3C

DOM Level 2 that expose individual edges of a clipping rectangle yet.

Based on these limitations, Listing 31-15 is implemented in a way that, for the

sake of convenience, preserves the current clipping rectangle edge values as global

variables. Any adjustments to individual edge values are first recorded in those

variables (in the setClip() function), and then the style.clip property is

assigned the long string of values in the required format (in the adjustClip()
function). The showValues() function reads the variable values and displays

updated values after making the necessary calculations for the width and height of

the clipping rectangle.

(c) ketabton.com: The Digital Library

878 Part III ✦ Document Objects Reference

As a demonstration of a “reveal” visual effect (which you can carry out more sim-

ply in IE4+/Windows via a transition filter), the revealClip() function establishes

beginning clip values at the midpoints of the width and height of the layer. Then the

setInterval() method loops through stepClip() until the clipping rectangle

dimensions match those of the layer.

Listing 31-15: Adjusting Layer Clip Properties (W3C)

<HTML>
<HEAD>
<TITLE>Layer Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var origLayerWidth = 0
var origLayerHeight = 0
var currTop, currRight, currBottom, currLeft
function init() {

origLayerWidth = parseInt(document.getElementById(“display”).style.width)
origLayerHeight = parseInt(document.getElementById(“display”).style.height)
currTop = 0
currRight = origLayerWidth
currBottom = origLayerHeight
currLeft = 0
showValues()

}

function setClip(field) {
var val = parseInt(field.value)
switch (field.name) {

case “top” :
currTop = val
break

case “right” :
currRight = val
break

case “bottom” :
currBottom = val
break

case “left” :
currLeft = val
break

case “width” :
currRight = currLeft + val
break

case “height” :
currBottom = currTop + val
break

}
adjustClip()
showValues()

}

function adjustClip() {
document.getElementById(“display”).style.clip = “rect(“ + currTop + “px “ +
currRight + “px “ + currBottom + “px “ + currLeft + “px)”

}

(c) ketabton.com: The Digital Library

879Chapter 31 ✦ Positioned Objects

function showValues() {
var form = document.forms[0]
form.top.value = currTop
form.right.value = currRight
form.bottom.value = currBottom
form.left.value = currLeft
form.width.value = currRight - currLeft
form.height.value = currBottom - currTop

}
var intervalID
function revealClip() {

var midWidth = Math.round(origLayerWidth /2)
var midHeight = Math.round(origLayerHeight /2)
currTop = midHeight
currBottom = midHeight
currRight = midWidth
currLeft = midWidth
intervalID = setInterval(“stepClip()”,1)

}
function stepClip() {

var widthDone = false
var heightDone = false
if (currLeft > 0) {

currLeft += -2
currRight += 2

} else {
widthDone = true

}
if (currTop > 0) {

currTop += -1
currBottom += 1

} else {
heightDone = true

}
adjustClip()
showValues()
if (widthDone && heightDone) {

clearInterval(intervalID)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>Layer Clipping Properties (W3C)</H1>
<HR>
Enter new clipping values to adjust the visible area of the layer.<P>
<DIV STYLE=”position:absolute; top:130”>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.style.clip (left):</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setClip(this)”></TD>

</TR>

Continued

(c) ketabton.com: The Digital Library

880 Part III ✦ Document Objects Reference

Listing 31-15 (continued)

<TR>
<TD ALIGN=”right”>layer.style.clip (top):</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (right):</TD>
<TD><INPUT TYPE=”text” NAME=”right” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (bottom):</TD>
<TD><INPUT TYPE=”text” NAME=”bottom” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (width):</TD>
<TD><INPUT TYPE=”text” NAME=”width” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (height):</TD>
<TD><INPUT TYPE=”text” NAME=”height” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
</TABLE>
<INPUT TYPE=”button” VALUE=”Reveal Original Layer” onClick=”revealClip()”>
</FORM>
</DIV>
<DIV ID=”display” STYLE=”position:absolute; top:130; left:220; width:360;
height:180; clip:rect(0px 360px 180px 0px); background-color:coral”>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</DIV>
</BODY>
</HTML>

Listing 31-16 enables you to compare the results of adjusting a clipping rectangle

versus the size of a positioned element. This example goes a bit further than the

corresponding NN4 layer version (Listing 31-5) in that it enables you to adjust the

dimensions of the entire layer (via the style.left and style.right properties)

as well as the right and bottom edges of the clipping rectangle associated with the

layer. As a bonus, the code includes a function that converts the style.clip string

into an object representing the rectangle of the clipping rectangle (in other words,

with four properties, one for each edge). Values from that rectangle object popu-

late two of the fields on the page, providing dynamic readouts of the clipping rect-

angle’s right and bottom edges.

(c) ketabton.com: The Digital Library

881Chapter 31 ✦ Positioned Objects

Global variables still temporarily store the clipping rectangle values so that the

adjustClip() function can operate just as it does in Listing 31-15. Note that the

clipping rectangle is explicitly defined in the style sheet rule for the positioned ele-

ment. This is necessary for the element’s style.clip property to have some val-

ues with which to start.

Listing 31-16: Comparison of Layer and Clip Location
Properties (W3C)

<HTML>
<HEAD>
<TITLE>Layer vs. Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currClipTop = 0
var currClipLeft = 0
var currClipRight = 360
var currClipBottom = 180
function setClip(field) {

var val = parseInt(field.value)
switch (field.name) {

case “clipBottom” :
currClipBottom = val
break

case “clipRight” :
currClipRight = val
break

}
adjustClip()
showValues()

}
function adjustClip() {

document.getElementById(“display”).style.clip = “rect(“ + currClipTop +
“px “ + currClipRight + “px “ + currClipBottom + “px “ + currClipLeft +
“px)”

}

function setLayer(field) {
var val = parseInt(field.value)
switch (field.name) {

case “width” :
document.getElementById(“display”).style.width = val + “px”
break

case “height” :
document.getElementById(“display”).style.height = val + “px”
break

}
showValues()

}
function showValues() {

var form = document.forms[0]

Continued

(c) ketabton.com: The Digital Library

882 Part III ✦ Document Objects Reference

Listing 31-16 (continued)

var elem = document.getElementById(“display”)
var clipRect = getClipRect(elem)
form.width.value = parseInt(elem.style.width)
form.height.value = parseInt(elem.style.height)
form.clipRight.value = clipRect.right
form.clipBottom.value = clipRect.bottom

}
// convert clip property string to an object
function getClipRect(elem) {

var clipString = elem.style.clip
// assumes “rect(npx, npx, npx, npx)” form
// get rid of “rect(“
clipString = clipString.replace(/rect\(/,””)
// get rid of “px)”
clipString = clipString.replace(/px\)/,””)
// get rid of remaining “px” strings
clipString = clipString.replace(/px/g,”,”)
// turn remaining string into an array
clipArray = clipString.split(“,”)
// make object out of array values
var clipRect = {top:parseInt(clipArray[0]), right:parseInt(clipArray[1]),
bottom:parseInt(clipArray[2]), left:parseInt(clipArray[3])}
return clipRect

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
<H1>Layer vs. Clip Dimension Properties (W3C)</H1>
<HR>
Enter new layer and clipping values to adjust the layer.<P>
<DIV STYLE=”position:absolute; top:130”>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.style.width:</TD>
<TD><INPUT TYPE=”text” NAME=”width” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.height:</TD>
<TD><INPUT TYPE=”text” NAME=”height” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (right):</TD>
<TD><INPUT TYPE=”text” NAME=”clipRight” SIZE=3

onChange=”setClip(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (bottom):</TD>
<TD><INPUT TYPE=”text” NAME=”clipBottom” SIZE=3

onChange=”setClip(this)”></TD>
</TR>
</TABLE>

(c) ketabton.com: The Digital Library

883Chapter 31 ✦ Positioned Objects

</FORM>
</DIV>
<DIV ID=”display” STYLE=”position:absolute; top:130; left:250; width:360;
height:180; clip:rect(0px, 360px, 180px, 0px); background-color:coral”>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</DIV>
</BODY>
</HTML>

Scripting nested layers
Working with nested layer locations, especially in a cross-browser manner, pre-

sents numerous browser-specific syntax problems that need equalization to behave

the same to all users. Some discrepancies even appear between Windows and

Macintosh versions of IE.

The scenario for Listing 31-17 consists of one positioned layer (greenish) nested

inside another (reddish). The inner layer is initially sized and positioned so that the

outer layer extends five pixels in each direction. Text boxes enable you to adjust

the coordinates for either layer relative to the entire page as well as the layer’s posi-

tioning context. If you make a change to any one value, all the others are recalcu-

lated and displayed to show you the effect the change has on other coordinate

values.

As you see when you load the page, the outer element’s positioning context is

the page, so the “page” and “container” coordinates are the same (although the cal-

culations to achieve this equality are not so simple across all browsers). The inner

layer’s initial page coordinates are to the right and down five pixels in each direc-

tion, and the coordinates within the container show those five pixels.

Because of browser idiosyncrasies, calculating the coordinates within the page

takes the most work. The getGrossOffsetLeft() and getGrossOffsetTop()
functions perform those calculations in the page. Passed a reference to the posi-

tioned element to be measured, the first number to grab is whatever the browser

returns as the offsetLeft or offsetTop value of the element (see Chapter 15).

These values are independent of the style property, and they can report different

values for different browsers. IE, for example, measures the offset with respect to

whatever it determines as the next outermost positioning context. NN6, on the

other hand, treats the page as the positioning context regardless of nesting. So, as

long as there is an offsetParent element, a while loop starts accumulating the

offsetLeft measures of each succeeding offset parent element going outward

from the element. But even before that happens, a correction for IE/Macintosh must

be accounted for. If there is a difference between the style.left and offsetLeft
property values of an element, that difference is added to the offset. In IE5/Mac, for

example, failure to correct this results in the “page” and “container” values of the

outer layer being 10 pixels different in each direction. Values returned from these

two gross measures are inserted in the readouts for the “page” measures of both

inner and outer elements.

(c) ketabton.com: The Digital Library

884 Part III ✦ Document Objects Reference

Reading the coordinates relative to each element’s “container” is easy: The

style.left and style.top properties have the correct values for all browsers.

Moving a layer with respect to its positioning context (the “container” values) is

equally easy: assign the entered values to the same style.left and style.top
properties.

Moving the layers with respect to the page coordinate planes (via the

setOuterPage() and setInnerPage() functions) involves going the long way to

assign values that take each browser’s positioning idiosyncrasies into account. The

way you move a positioned element (cross-browser, anyway) is to assign a value to

the style.left and style.top properties. These values are relative to their posi-

tioning context, but NN6 doesn’t offer any shortcuts to reveal what element is the

positioning context for a nested element. Calls to the getNetOffsetLeft() and

getNetOffsetTop() functions do the inverse of the getGrossOffsetLeft() and

getGrossOffsetTop() functions. Because the values received from the text box

are relative to the entire page, the values must have any intervening positioning

contexts subtracted from that value in order to achieve the net positioning values

that can be applied to the style.left and style.top properties. To get there,

however, a call to the getParentLayer() function cuts through the browser-spe-

cific implementations of container references to locate the positioning context so

that its coordinate values can be subtracted properly. The same kind of correction

for IE/Mac is required here as in the gross offset calculations; but here, the correc-

tion is subtracted from the value that eventually is returned as the value for either

the style.left or style.top of the layer.

Let me add one quick word about the condition statements of the while con-

structions in the getNetOffsetLeft() and getNetOffsetTop() functions. You

see here a construction not used frequently in this book, but one that is perfectly

legal. When the conditional expression evaluates, the getParentLayer() method

is invoked, and its returned value is assigned to the elem variable. That expression

evaluates to the value returned by the function. As you can see from the

getParentLayer() function definition, a value is returned as either an element ref-

erence or null. The while condition treats a value of null as false; any reference

to an object is treated as true. Thus, the conditional expression does not use a

comparison operator but rather executes some code and branches based on the

value returned by that code. NN6 reports JavaScript warnings (not errors) for this

construction because it tries to alert you to a common scripting bug that occurs

when you use the = operator when you really mean the == operator. But an NN6

warning is not the same as a script error, so don’t be concerned when you see these

messages in the JavaScript Console window during your debugging.

Listing 31-17: Testing Nested Layer Coordinate Systems
(W3C)

<HTML>
<HEAD>
<TITLE>Nested Layer Coordinates (W3C)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// offsets within page
function getGrossOffsetLeft(elem) {

var offset = 0
while (elem.offsetParent) {

(c) ketabton.com: The Digital Library

885Chapter 31 ✦ Positioned Objects

// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset += (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.left) - parseInt(elem.offsetLeft) : 0
elem = elem.offsetParent
offset += elem.offsetLeft

}
return offset

}
function getGrossOffsetTop(elem) {

var offset = 0
while (elem.offsetParent) {

// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset += (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.top) - parseInt(elem.offsetTop) : 0
elem = elem.offsetParent
offset += elem.offsetTop

}
return offset

}

// offsets within element’s positioning context
function getNetOffsetLeft(offset, elem) {

while (elem = getParentLayer(elem)) {
// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset -= (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.left) - parseInt(elem.offsetLeft) : 0
offset -= elem.offsetLeft

}
return offset

}
function getNetOffsetTop(offset, elem) {

while (elem = getParentLayer(elem)) {
// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset -= (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.top) - parseInt(elem.offsetTop) : 0
offset -= elem.offsetTop

}
return offset

}
// find positioning context parent element
function getParentLayer(elem) {

if (elem.parentNode) {
while (elem.parentNode != document.body) {

elem = elem.parentNode
while (elem.nodeType != 1) {

elem = elem.parentNode
}
if (elem.style.position == “absolute” || elem.style.position ==

“relative”) {

Continued

(c) ketabton.com: The Digital Library

886 Part III ✦ Document Objects Reference

Listing 31-17 (continued)

return elem
}
elem = elem.parentNode

}
return null

} else if (elem.offsetParent && elem.offsetParent.tagName != “HTML”) {
return elem.offsetParent

} else {
return null

}
}

// functions that respond to changes in text boxes
function setOuterPage(field) {

var val = parseInt(field.value)
var elem = document.getElementById(“outerDisplay”)
switch (field.name) {

case “pageX” :
elem.style.left = ((elem.offsetParent) ? getNetOffsetLeft(val, elem) :

val) + “px”
break

case “pageY” :
elem.style.top = ((elem.offsetParent) ? getNetOffsetTop(val, elem) :

val) + “px”
break

}
showValues()

}
function setOuterLayer(field) {

var val = parseInt(field.value)
switch (field.name) {

case “left” :
document.getElementById(“outerDisplay”).style.left = val + “px”
break

case “top” :
document.getElementById(“outerDisplay”).style.top = val + “px”
break

}
showValues()

}
function setInnerPage(field) {

var val = parseInt(field.value)
var elem = document.getElementById(“innerDisplay”)
switch (field.name) {

case “pageX” :
elem.style.left = ((elem.offsetParent) ? getNetOffsetLeft(val, elem) :

val) + “px”
break

case “pageY” :
elem.style.top = ((elem.offsetParent) ? getNetOffsetTop(val, elem) :

val) + “px”
break

(c) ketabton.com: The Digital Library

887Chapter 31 ✦ Positioned Objects

}
showValues()

}
function setInnerLayer(field) {

var val = parseInt(field.value)
switch (field.name) {

case “left” :
document.getElementById(“innerDisplay”).style.left = val + “px”
break

case “top” :
document.getElementById(“innerDisplay”).style.top = val + “px”
break

}
showValues()

}
function showValues() {

var form = document.forms[0]
var outer = document.getElementById(“outerDisplay”)
var inner = document.getElementById(“innerDisplay”)
form.elements[0].value = outer.offsetLeft +
((outer.offsetParent) ? getGrossOffsetLeft(outer) : 0)
form.elements[1].value = outer.offsetTop +
((outer.offsetParent) ? getGrossOffsetTop(outer) : 0)
form.elements[2].value = parseInt(outer.style.left)
form.elements[3].value = parseInt(outer.style.top)
form.elements[4].value = inner.offsetLeft +
((inner.offsetParent) ? getGrossOffsetLeft(inner) : 0)
form.elements[5].value = inner.offsetTop +
((inner.offsetParent) ? getGrossOffsetTop(inner) : 0)
form.elements[6].value = parseInt(inner.style.left)
form.elements[7].value = parseInt(inner.style.top)

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
<H1>Nested Layer Coordinates (W3C)</H1>
<HR>
Enter new page and layer coordinates for the outer
layer and inner layer objects.<P>
<DIV STYLE=”position:absolute; top:130”>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>Page X:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>Page Y:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

Continued

(c) ketabton.com: The Digital Library

888 Part III ✦ Document Objects Reference

Listing 31-17 (continued)

<TD ALIGN=”right” BGCOLOR=”coral”>Container X:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>Container Y:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Page X:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Page Y:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Container X:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Container Y:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
</TABLE>
</FORM>
</DIV>
<DIV ID=”outerDisplay” STYLE=”position:absolute; top:130; left:200; width:370;
height:190; background-color:coral”>
<DIV ID=”innerDisplay” STYLE=”position:absolute; top:5; left:5; width:360;
height:180; background-color:aquamarine” >
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</DIV>
</DIV>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

889Chapter 31 ✦ Positioned Objects

Try entering a variety of values in all text boxes to see what happens. Here is one

possible sequence of tests and explanations:

1. Increase the red Page X value to 250. This moves the outer layer to the right

by 50 pixels. Because the green layer is nested inside, it moves along with it.

The green’s Page X value also increases by 50, but its Container X value

remains the same because the inner layer maintains the same relationship

with the outer layer as before.

2. Increase the green Page X value to 300. This action shifts the position of the

green inner layer by 45 pixels, making it a total of 50 pixels inset within its

positioning context. Because the outer layer does not have its clipping rectan-

gle set, the inner layer’s content bleeds beyond the width of the red layer.

3. Set the Container Y value to -50. This action moves the green inner layer

upward so that its top is 50 pixels above the top of its red container. As a

result, the Page Y value of the inner layer is 80, while the Page Y value of the

red outer layer remains at 130 (thus, the 50-pixel difference).

As you experiment with moving the layers around, you may encounter some

screen refresh problems where traces of the inner layer remain when moved

beyond the outer layer’s rectangle. Take these bugs into account when you design

the actions of your script-controlled positioning.

Loading external HTML into a layer
The NN4 layer object had an unfair advantage when it came to loading external

content into it: the element was designed to do just that, acting in some ways like

the W3C-endorsed IFRAME element.

Because the IE4+ and NN6 object models embrace the IFRAME element, using

that element may be the easy way for you to designate a space within a page for

external content. In fact, you can even assign a style sheet rule that absolute-posi-

tions the IFRAME precisely on the page where you want it. Be sure to set the

FRAMEBORDER attribute to 0 unless you want the border to be visible to the user

(and then watch out for content that may overrun the rectangle and cause scroll-

bars to appear). In this case, you must then leave all the formatting and style sheet

control of that content to the HTML loaded into the IFRAME, just as if it were in a

separate window or frame. To load different content into the element, assign a dif-

ferent URL to the src property of the IFRAME element object.

As one more example that more closely simulates the loading of external content

into a layer, Listing 31-18 demonstrates a somewhat ugly workaround that lets a

layer’s background color or image show through some kinds of HTML content. The

technique works only in IE5.5+ and NN6 because these browser generations are the

first to offer scripted access to the HTML you need to load into an intermediate

(and hidden) IFRAME before stuffing the content into the layer.

A hidden IFRAME element is the initial recipient of the external HTML file, as

loaded by the loadOuter() method. When that file loads, the transferHTML()
method is invoked to copy the innerHTML of just the BODY element of the content

window of the IFRAME (note the different syntax for NN6 — the contentDocument
property — and IE5.5 — the contentWindow property). By eliminating the BODY

(c) ketabton.com: The Digital Library

890 Part III ✦ Document Objects Reference

element and any tags in the HEAD, you prevent the tags in the layer from conflicting

with the tags for the main document. As a result, however, notice how the back-

ground color set for the layer shows through the HTML plugged into the layer.

HTML element objects (other than IFRAME) were not designed to get their con-

tent from external files. But, as Listing 31-18 shows, where there is a will there is a

way — even if the workaround isn’t pretty.

Listing 31-18: Setting Layer Source Content (W3C)

<HTML>
<HEAD>
<TITLE>Loading External Content into a Layer (W3C)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function loadOuter(doc) {

document.getElementById(“hiddenContent”).src = doc
// workaround for missing onLoad event in IFRAME for NN6
if (!document.getElementById(“hiddenContent”).onload) {

setTimeout(“transferHTML()”, 1000)
}

}
function transferHTML() {

var srcFrame = document.getElementById(“hiddenContent”)
var srcContent = (srcFrame.contentDocument) ?
srcFrame.contentDocument.getElementsByTagName(“BODY”)[0].innerHTML :
(srcFrame.contentWindow) ?
srcFrame.contentWindow.document.body.innerHTML : “”
document.getElementById(“outerDisplay”).innerHTML = srcContent

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Loading External Content into a Layer (W3C)</H1>
<HR>
<P>Click the buttons to see what happens when you load new source documents into
the layer object.</P>
<DIV STYLE=”position:absolute; top:150; width:200; background-color:coral”>
<FORM>
Load into outer layer:

<INPUT TYPE=”button” VALUE=”Article I” onClick=”loadOuter(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Entire Bill of Rights”
onClick=”loadOuter(‘bofright.htm’)”>

</FORM>
</DIV>
<DIV ID=”outerDisplay” STYLE=”position:absolute; top:150; left:250; width:370;
height:190; background-color:coral”>

<P>Placeholder text for layer.</P>
</DIV>
<IFRAME ID=”hiddenContent” STYLE=”visibility:hidden”
onLoad=”transferHTML()”></IFRAME>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

891Chapter 31 ✦ Positioned Objects

Positioned element visibility behavior
There is very little code in Listing 31-19 because it simply adjusts the

style.visibility property of an outer layer and a nested, inner layer. You can

see that when the page loads, the green inner layer’s visibility is automatically

set to inherit the visibility of its containing outer layer. When you click the outer

layer buttons, the inner layer blindly follows the settings.

Things change, however, once you start adjusting the properties of the inner

layer independently of the outer layer. With the outer layer hidden, you can show

the inner layer. Only by setting the visibility property of the inner layer to

inherit can you make it rejoin the outer layer in its behavior.

Listing 31-19: Nested Layer Visibility Relationships (W3C)

<HTML>
<HEAD>
<TITLE>layer.style.visibility (W3C)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setOuterVis(type) {

document.getElementById(“outerDisplay”).style.visibility = type
}
function setInnerVis(type) {

document.getElementById(“innerDisplay”).style.visibility = type
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Setting the <TT>layer.style.visibility</TT> Property of Nested Layers
(W3C)</H1>
<HR>
Click the buttons to see what happens when you change the visibility of the
outer layer and inner
layer objects.<P>
<DIV STYLE=”position:absolute; top:150; width:180; background-color:coral”>
<FORM>
Control outer layer property:

<INPUT TYPE=”button” VALUE=”Hide Outer Layer”
onClick=”setOuterVis(‘hidden’)”>

<INPUT TYPE=”button” VALUE=”Show Outer Layer”
onClick=”setOuterVis(‘visible’)”>

</FORM>
</DIV>
<DIV STYLE=”position:absolute; top:270; width:180; background-color:aquamarine”>
<FORM>
Control inner layer property:

<INPUT TYPE=”button” VALUE=”Hide Inner Layer”
onClick=”setInnerVis(‘hidden’)”>

<INPUT TYPE=”button” VALUE=”Show Inner Layer”
onClick=”setInnerVis(‘visible’)”>

<INPUT TYPE=”button” VALUE=”Inherit Outer Layer”
onClick=”setInnerVis(‘inherit’)”>

Continued

(c) ketabton.com: The Digital Library

892 Part III ✦ Document Objects Reference

Listing 31-19 (continued)

</FORM>
</DIV>
<DIV ID=”outerDisplay” STYLE=”position:absolute; top:150; left:200; width:370;
height:190; background-color:coral”>

<DIV ID=”innerDisplay” STYLE=”position:absolute; top:5; left:5; width:360;
height:180; background-color:aquamarine”>

<P>Placeholder text for raw inner layer.</P>
</DIV>

</DIV>
</BODY>
</HTML>

Scripting layer stacking order
Listing 31-20 is simpler than its NN4 layer-specific version (Listing 31-9) because

the W3C DOM, as implemented in IE4+ and NN6, does not have properties that

reveal the equivalent of the layerObject.above or layerObject.below proper-

ties. Therefore, Listing 31-20 confines itself to enabling you to adjust the

style.zIndex property values of three overlapping layers. All three layers (none

of which are nested inside another) initially set their zIndex values to 0, meaning

that the source code order rules the stacking order.

If you try this example on both IE4+ and NN6, however, you will experience a sig-

nificant difference in the behavior of overlapping layers in the two browser cate-

gories. For example, if you reload the page to let source code order lay out the

layers initially, and then set the green middle layer to, say, 5, the middle layer plants

itself in front of the other two in both browser categories. But if you restore the

middle layer’s zIndex value to 0, IE puts it back in source code order. NN6, on the

other hand, leaves it in front of the other two. The rule of thumb (which also

applies to NN4) is that if scripts modify the zIndex property of multiple layers to

all the same value, the most recently set layer stays in front of the others.

There is some method to this seeming madness, which you can experience in

Chapter 56’s map puzzle game. If you drag one of several draggable elements

around the page, you probably will set its zIndex to a value higher than that of all

the others so that the currently active element stays in front of the rest. But when

you complete the dragging, you will want to restore the zIndex to its original value,

which may be the same as that of all the other draggable items. By keeping the

most recently adjusted layer on top, you keep the layer you just dropped in front of

the others in case you want to pick it up again.

Listing 31-20: Relationships Among zIndex Values (W3C)

<HTML>
<HEAD>
<TITLE>layer.style.zIndex</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setZ(field) {

switch (field.name) {
case “top” :

(c) ketabton.com: The Digital Library

893Chapter 31 ✦ Positioned Objects

document.getElementById(“topLayer”).style.zIndex =
parseInt(field.value)

break
case “mid” :

document.getElementById(“middleLayer”).style.zIndex =
parseInt(field.value)

break
case “bot” :

document.getElementById(“bottomLayer”).style.zIndex =
parseInt(field.value)

}
showValues()

}
function showValues() {

var botLayer = document.getElementById(“bottomLayer”)
var midLayer = document.getElementById(“middleLayer”)
var topLayer = document.getElementById(“topLayer”)

document.forms[0].bot.value = botLayer.style.zIndex
document.forms[1].mid.value = midLayer.style.zIndex
document.forms[2].top.value = topLayer.style.zIndex

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
<H1><TT>layer.style.zIndex</TT> Property of Sibling Layers</H1>
<HR>
Enter new zIndex values to see the effect on three layers.<P>
<DIV STYLE=”position:absolute; top:140; width:240; background-color:coral”>
<FORM>
Control Original Bottom Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”bot” SIZE=3
onChange=”setZ(this)”></TD></TR>
</TABLE>
</FORM>
</DIV>
<DIV STYLE=”position:absolute; top:220; width:240; background-color:aquamarine”>
<FORM>
Control Original Middle Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”mid” SIZE=3
onChange=”setZ(this)”></TD></TR>
</TABLE></FORM>
</DIV>
<DIV STYLE=”position:absolute; top:300; width:240; background-color:yellow”>
<FORM>
Control Original Top Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”top” SIZE=3
onChange=”setZ(this)”></TD></TR>
</TABLE>
</FORM>
</DIV>

Continued

(c) ketabton.com: The Digital Library

894 Part III ✦ Document Objects Reference

Listing 31-20 (continued)

<DIV ID=”bottomLayer” STYLE=”position:absolute; top:140; left:260; width:300;
height:190; z-Index:0; background-color:coral”>

Original Bottom Layer
</DIV>
<DIV ID=”middleLayer” STYLE=”position:absolute; top:160; left:280; width:300;
height:190; z-Index:0; background-color:aquamarine”>

Original Middle DIV
</DIV>
<DIV ID=”topLayer” STYLE=”position:absolute; top:180; left:300; width:300;
height:190; z-Index:0; background-color:yellow”>

Original Top Layer
</DIV>
</BODY>
</HTML>

Dragging and resizing a layer
Listing 31-21 is an IE4+- and NN6-compatible version of the layer dragging exam-

ple shown earlier in Listing 31-11. The basic structure is the same, with event han-

dler functions for engaging the drag mode, handling the mouse movement while in

drag mode, and releasing the element at the end of the journey.

There is a lot more code in this version for several reasons. The main reason is

to accommodate the two event object models in the IE and NN browsers. First of

all, event bubbling is used so that all mouse events are handled at the document

level. Thus, all of the event handlers need to equalize the event object and event

target element, as well as filter events so that the action occurs only when a drag-

gable element (as identified by its className property) is the target of the event

action.

The toughest job involves the engage() function because it must use the two

different event and element object models to establish the offset of the mousedown
event within the draggable element. For IE/Windows, this also means taking the

scrolling of the body into account. To get the element to reposition itself with

mouse motion, the dragIt() function applies browser-specific coordinate values

to the style.left and style.top properties of the draggable element. This func-

tion is invoked very frequently in response to the mousemove event.

One extra event handler in this version, onmouseout, disengages the drag action.

This event occurs only if the user moves the cursor faster than the browser can

update the position.

Nothing in this example, however, treats the zIndex stacking order, which must

be addressed if the page contains multiple, draggable items. See the map puzzle

game in Chapter 56 for an example of processing multiple, draggable items.

Listing 31-21: Dragging a Layer (W3C)

<HTML>
<HEAD>
<TITLE>Layer Dragging</TITLE>
<STYLE TYPE=”text/css”>

(c) ketabton.com: The Digital Library

895Chapter 31 ✦ Positioned Objects

.draggable {cursor:hand}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0
function dragIt(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (engaged) {

if (targElem.className == “draggable”) {
while (targElem.id != “myLayer” && targElem.parentNode) {

targElem = targElem.parentNode
}
if (evt.pageX) {

targElem.style.left = evt.pageX - offsetX + “px”
targElem.style.top = evt.pageY - offsetY + “px”

} else {
targElem.style.left = evt.clientX - offsetX + “px”
targElem.style.top = evt.clientY - offsetY + “px”

}
return false

}
}

}
function engage(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (targElem.id == “myLayer”) {

engaged = true
if (evt.pageX) {

offsetX = evt.pageX - targElem.offsetLeft
offsetY = evt.pageY - targElem.offsetTop

} else {
offsetX = evt.offsetX - document.body.scrollLeft
offsetY = evt.offsetY - document.body.scrollTop
if (navigator.userAgent.indexOf(“Win”) == -1) {

offsetX += document.body.scrollLeft
offsetY += document.body.scrollTop
}

}
return false

}
}

}
function release(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement

Continued

(c) ketabton.com: The Digital Library

896 Part III ✦ Document Objects Reference

Listing 31-21 (continued)

if (targElem.className == “draggable”) {
while (targElem.id != “myLayer” && targElem.parentNode) {

targElem = targElem.parentNode
}
if (engaged && targElem.id == “myLayer”) {

engaged = false
}

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Dragging a Layer</H1>
<HR>
<DIV ID=”myLayer” CLASS=”draggable” STYLE=”position:absolute; top:90; left:100;
width:300; height:190; background-color:lightgreen”>

Drag me around the window.
</LAYER>
<SCRIPT LANGUAGE=”JavaScript”>
document.onmousedown = engage
document.onmouseup = release
document.onmousemove = dragIt
document.onmouseout = release
</SCRIPT>
</BODY>
</HTML>

The final listing in this section applies many example components used thus far

to let scripts control the resizing of a positionable element by dragging the lower-

right, 20-pixel region. A lot of the hairy code in the engage() function is for deter-

mining if the onmousedown event occurs in the invisible 20-pixel square.

The resizeIt() function of Listing 31-22 resembles the dragIt() function of

Listing 31-21, but the adjustments are made to the width and height of the position-

able element. A fair amount of math determines the width of the element in

response to the cursor’s instantaneous location and sets the style.width and

style.height properties accordingly.

A user’s success with resizing an element this way depends a lot on the browser

he or she uses. IE, particularly for Windows, may not redraw the resized element

very quickly. In this case, the cursor can easily slip out of the hot spot to end the

drag. In other browsers, however, response is very fast, and it’s very difficult to

have the onmouseout event fire the release() function.

Listing 31-22: Resizing a Layer (W3C)

<HTML>
<HEAD>
<TITLE>Layer Resizing</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false

(c) ketabton.com: The Digital Library

897Chapter 31 ✦ Positioned Objects

var offsetX = 0
var offsetY = 0

function resizeIt(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

if (engaged) {
if (evt.pageX) {

targElem.style.width = (evt.pageX - targElem.offsetLeft -
offsetX) + “px”

targElem.style.height = (evt.pageY - targElem.offsetTop -
offsetY) + “px”

} else {
var elemWidth = evt.clientX - targElem.offsetLeft - offsetX –

(parseInt(targElem.style.left) -
parseInt(targElem.offsetLeft))

var elemHeight = evt.clientY - targElem.offsetTop - offsetY –
(parseInt(targElem.style.top) -

parseInt(targElem.offsetTop))
targElem.style.width = elemWidth + “px”
targElem.style.height = elemHeight + “px”

}
}

}
}

function engage(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (targElem.id == “myLayer”) {

if (evt.pageX && (evt.pageX > ((parseInt(targElem.style.width) - 20) +
targElem.offsetLeft)) && (evt.pageY >
((parseInt(targElem.style.height) - 20) + targElem.offsetTop))) {
offsetX = evt.pageX - parseInt(targElem.style.width) –

targElem.offsetLeft
offsetY = evt.pageY - parseInt(targElem.style.height) –

targElem.offsetTop
engaged = true
} else if ((evt.offsetX > parseInt(targElem.style.width) - 20) &&
(evt.offsetY > parseInt(targElem.style.height) - 20))
{offsetX = evt.offsetX - parseInt(targElem.style.width) –

document.body.scrollLeft
offsetY = evt.offsetY - parseInt(targElem.style.height) –

document.body.scrollTop
engaged = true
if (navigator.userAgent.indexOf(“Win”) == -1) {

offsetX += document.body.scrollLeft

Continued

(c) ketabton.com: The Digital Library

898 Part III ✦ Document Objects Reference

Listing 31-22 (continued)

offsetY += document.body.scrollTop
}

}
return false

}
}

}
function release(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (engaged && targElem.id == “myLayer”) {

engaged = false
}

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Resizing a Layer (W3C)</H1>
<HR>
<DIV ID=”myLayer” CLASS=”draggable” STYLE=”position:absolute; top:170; left:100;
width:300; height:190; background-color:lightblue”>
Here is some content inside the layer. See what happens to it as you
resize the layer via the bottom-right 20-pixel handle.
</DIV>
<SCRIPT LANGUAGE=”JavaScript”>
document.onmousedown = engage
document.onmouseup = release
document.onmousemove = resizeIt
document.onmouseout = release
</SCRIPT>
</BODY>
</HTML>

This chapter only scratches the surface in the kinds of positioned element

actions you can control via scripts. You may have seen examples of positioned ele-

ment scripting at sites around the Web. For example, some pages have subject head-

ers fly into place — even “bounce” around until they settle into position. Or elements

can go in circles or spirals to get your attention (or distract you, as the case may

be). The authors of those tricks apply formulas from other disciplines (such as

games programming) to the style object properties of a positioned element.

(c) ketabton.com: The Digital Library

899Chapter 31 ✦ Positioned Objects

Sometimes the effects are there just for the sake of looking (at first anyway) cool

or because the page author knows how to script those effects. Your chief guide in

implementing such features, however, should be whether the scripting genuinely

adds value to the content offering. If you don’t improve the content by adding a fly-

ing doo-dad or pulsating images, then leave them out. A greater challenge is finding

meaningful ways to apply positioning techniques. Done the right way and for the

right reason, they can significantly enhance the visitor’s enjoyment of your

application.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Embedded
Objects

In addition to the typical content that you see in Web

pages — primarily text and images — you can embed

other kinds of content into the page. Such embedded

content usually requires the powers of additional software,

such as plug-in players or other external code processors,

to load and display the content. All of this external content

is added to a page by one of three HTML elements: APPLET,

EMBED, or OBJECT. In the HTML 4.0 standard, the APPLET

element, which was intended originally for loading Java applets,

is deprecated in favor of the newer OBJECT element. An

OBJECT element is intended to be more extensible, meaning

that it has enough attributes and power to summon the Java

virtual machine if the incoming code is a Java applet, or run

an ActiveX program (in IE for Windows, that is). The EMBED

element is commonly used to display a plug-in control panel

directly in the document, rather than having the panel

appear in a separate window.

In all cases, when a visual element is embedded via any of

these elements, the control panel or applet occupies a segre-

gated rectangular space on the page and generally confines its

activities to that rectangle. But in many cases, JavaScript can

also interact with the content or the player, allowing your

scripts to extend themselves with powers for actions, such

as controlling audio playback or the operation of a Java applet.

This chapter’s primary focus is not on the content and

players that you can control as it is on the HTML element

objects that load the content or players into the page in the

first place. Most of the properties represent nothing more

than scriptable access to the element HTML attributes. The

property descriptions in this chapter are therefore not exten-

sive. Online HTML references (including the W3C HTML 4.0

specification and the Microsoft Developer Network documenta-

tion) should fill in the attribute value information quite well.

In practice, scripts have very little interaction with these ele-

ment objects, but if you ever need to know what’s scriptable,

you’ll find that information here. As for controlling applets and

plug-ins, you can find information about that in Chapter 44.

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using EMBED
element objects

Exploring the OBJECT
element object

Understanding the
unusual PARAM
element

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

902 Part III ✦ Document Objects Reference

APPLET Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align (Applet methods) onCellChange

alt onDataAvailable

altHTML onDatasetChanged

archive onDatasetComplete

code onLoad

codeBase onRowEnter

height onRowExit

hspace onRowsDelete

name onRowsInserted

object onScroll

vspace

width

(Applet variables)

Syntax
Accessing APPLET element object properties or methods:

(NN3+/IE4+) [window.]document.appletName.property | method([parameters])
(NN3+/IE4+) [window.]document.applets[index].property | method([parameters])
(IE4+) [window.]document.all.appletID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“appletID”).property |

method([parameters])

About this object
Starting with NN3 and IE4, Java applets are treated as scriptable objects. While

IE4+ treats both the applet and the APPLET element as objects, NN3 and NN4

offered access to only one property of the APPLET element object (name). In NN6,

however, many more APPLET object properties are also scriptable.

The fact that the applet, itself, can expose public instance variables and public

methods as properties and methods of the applet object means that the scriptable

characteristics of an applet object are highly dependent upon the way the applet

was written. You can learn more about how to compose an applet that exposes its

innards to JavaScript in Chapter 44.

Perhaps the most important point to remember about accessing applets is that

you must have them loaded and running before you can address them as objects.

APPLET

(c) ketabton.com: The Digital Library

903Chapter 32 ✦ Embedded Objects

Although you cannot query an applet to find out whether it’s loaded (as you can

with an image), you can rely on the onLoad event handler of a window to fire only

when all applets in the window are loaded and running (with the occasional version-

or platform-specific bug in frames, as described in the window.onLoad event handler

discussion in Chapter 16). IE4+ also features an onLoad event handler for the APPLET

element directly, but applets tend to be the last things to load on a page. Therefore,

you won’t be able to use an applet embedded in a document to help you create the

HTML content of that page as it loads, but an applet can provide content for new

documents or for modifiable elements of a page. With the highly dynamic object

models of IE4+ and NN6, this can lead to all kinds of possibilities.

Java applets have also been used to maintain contact with a server after the page

has loaded by way of a servlet running on the server. A servlet allows the applet to

query or be refreshed with instantaneously updated information without having to

reload the page. Of course, getting a sophisticated applet to run in a wide range of

browsers and operating systems is a challenge unto itself.

A large set of event handlers for this element (all but onLoad and onScroll) is

related to the application of IE/Windows data binding for PARAM elements nested

inside an APPLET element. These events fire when a variety of actions occur to the

data source or recordset associated with the applet. For more about applying data

binding to an APPLET element, see http://msdn.microsoft.com/workshop/
author/databind/dataconsumer.asp.

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The align property controls either the horizontal or vertical alignment of the

element with regard to surrounding content. String values of left or right cause

the applet rectangle to cling to the left or right edges of its next outermost positioning

context. String values of absbottom, absmiddle, baseline, bottom, middle, text-
top, or top influence the vertical alignment with respect to adjacent text, with the

same kind of results as corresponding values of the style.verticalAlign property.

Related Items: style.verticalAlign property.

alt
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

APPLET.alt

(c) ketabton.com: The Digital Library

904 Part III ✦ Document Objects Reference

The alt property represents the ALT attribute, which should contain text that

displays in the browser in the event that the applet does not load or the user has

Java turned off in the browser preferences. This information should be set as the

APPLET element’s attribute, because assigning text to the property after the applet

attempts to load does not insert the text into the page.

Related Items: altHTML property.

altHTML
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The altHTML property is supposed to provide an APPLET element with HTML

content to render if the applet doesn’t load. In practice, assigning an HTML string to

this property has no effect on an APPLET element.

Related Items: alt property.

archive
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The archive property represents the ARCHIVE attribute, which points to the

URL of a compressed (.zip) file containing Java class files needed for the applet.

The archive must include the class file that is assigned to the CODE attribute to get

the applet loaded and started.

Related Items: code property.

code
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The code property is the URL string of the Java class file that is to begin loading

the applet (or the property may be the entire applet if it consists of a single class

APPLET.code

(c) ketabton.com: The Digital Library

905Chapter 32 ✦ Embedded Objects

file). You cannot change the code assigned to an applet after the element has loaded

(even if the applet code did not load successfully).

Related Items: codeBase property.

codeBase
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The codeBase property is the string of the path on the server to the Java class

file that is to begin loading the applet (or the property may be the entire applet if it

consists of a single class file). The actual Java class file name is not part of the

codeBase property.

Related Items: code property.

height
width

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The height and width properties represent the HEIGHT and WIDTH attributes of

the APPLET element. While these values should be set via attributes in the tag,

these properties can adjust the size of the applet after the fact in IE5+.

Related Items: hspace, vspace properties.

hspace
vspace

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The hspace and vspace properties represent the HSPACE and VSPACE attributes

of the APPLET element, which control the number of pixels of transparent padding

around the APPLET element on the page. While these values should be set via

APPLET.hspace

(c) ketabton.com: The Digital Library

906 Part III ✦ Document Objects Reference

attributes in the tag, these properties can adjust the size of the applet padding after

the fact in IE5+.

Related Items: height, width properties.

name
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The name property represents the NAME attribute, a holdover from the early

implementations of the APPLET element before ID attributes were used to identify

elements. The value assigned to the NAME attribute is the name you can use to

reference applets in all browsers that support accessing applets:

document.appletName.

object
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The object property represents the OBJECT attribute, which, according to the

W3C HTML standard, points to the URL of a serialized (that is, “saved”) version of

the applet’s current state. This attribute, and thus the associated property, may not

be fully implemented in NN6.

Related Items: code property.

vspace
See hspace.

width
See height.

APPLET.width

(c) ketabton.com: The Digital Library

907Chapter 32 ✦ Embedded Objects

OBJECT Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align (Object methods) onCellChange

alt onDataAvailable

altHTML onDatasetChanged

archive* onDatasetComplete

BaseHref onLoad

border* onRowEnter

classid onRowExit

code onRowsDelete

codeBase onRowsInserted

codeType onScroll

contentDocument*

data*

declare*

form*

height

hspace

name

object

standby*

type

useMap*

vspace

width

(Object variables)

*See Text.

Syntax
Accessing OBJECT element object properties or methods:

(IE4+) [window.]document.all.objectID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“objectID”).property |

method([parameters])

OBJECT

(c) ketabton.com: The Digital Library

908 Part III ✦ Document Objects Reference

About this object
The OBJECT element is intended to be the primary way to add external content

(that is, content that the browser itself does not render) to a page. For example,

IE/Windows uses it to load ActiveX controls (whether from the server or locally).

The OBJECT element is also destined to replace usage of the APPLET and EMBED

elements.

As with the APPLET element object, scripts can frequently control the programs

and plug-ins that get loaded into the browser through the OBJECT tag. Chapter 44

shows you how to do that for common objects. The property listings here are merely

for the properties of the element, most of which mimic the attributes available for

the OBJECT element. Even though the properties are exposed, they are very rarely

scripted, except perhaps to adjust the size of the space occupied by a media

controller. Most properties are read-only after their values are set by attributes in

the element’s tag. But if your scripts are creating the OBJECT element anew, then

scripts can set the property values the first time to initialize the object.

In the list of properties that begins this object’s coverage, several are marked with

an asterisk (*). These properties are defined in the W3C DOM Level 2 specification,

and placeholders are included in the NN6 code. But as of this writing, there is no

indication that these properties are “connected.”

A large set of event handlers for this element (all but onLoad and onScroll) is

related to the application of IE/Windows data binding for PARAM elements nested

inside an OBJECT element. These events fire when a variety of actions occur to the

data source or recordset associated with the program associated with the element.

For more about applying data binding to an OBJECT element, see http://msdn.
microsoft.com/workshop/author/databind/dataconsumer.asp.

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The align property controls either the horizontal or vertical alignment of the

element with regard to surrounding content. String values of left or right cause

the object rectangle to cling to the left or right edges of its next outermost position-

ing context. String values of absbottom, absmiddle, baseline, bottom, middle,

texttop, or top influence the vertical alignment with respect to adjacent text, with

the same kind of results as corresponding values of the style.verticalAlign
property.

Related Items: style.verticalAlign property.

OBJECT.align

(c) ketabton.com: The Digital Library

909Chapter 32 ✦ Embedded Objects

alt
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The alt property represents the ALT attribute, which should contain text that

displays in the browser in the event that the object or its data do not load. This infor-

mation should be set as the OBJECT element’s attribute, because assigning text to the

property after the object attempts to load does not insert the text into the page.

Related Items: altHTML property.

altHTML
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The altHTML property is supposed to provide an OBJECT element with HTML

content to render if the object doesn’t load. In practice, assigning an HTML string

to this property has no effect on an OBJECT element.

Related Items: alt property.

BaseHref
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The BaseHref property returns the full URL path to the current document.

Related Items: None.

classid
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

OBJECT.classid

(c) ketabton.com: The Digital Library

910 Part III ✦ Document Objects Reference

The classid property represents the CLASSID attribute of the OBJECT element.

IE for Windows uses this attribute to assign the Globally Unique ID (GUID) of an

ActiveX control. For example, to load a (nearly) invisible Windows Media Player

object into a page, the HTML is as follows:

<OBJECT ID=”medPlayer” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=1,0,0,0”>

If your script then accesses the classid property of the medPlayer object, the

value returned is the complete string as assigned to the attribute:
CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95

Note that the CLSID: prefix is also part of the string value. Even if the object

does not load (for example, because the object is missing or an error is in the long

CLASSID string), the property value reports the value as assigned to the attribute.

The HTML 4.0 specification indicates that the CLASSID attribute be used for any

kind of external class files, including Java applets. But in practice, IE wants applet

URLs supplied to the CODE attribute (a non-HTML 4.0 attribute).

Related Items: code property.

code
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The code property is the URL string of a Java class file that is to begin loading

the applet (or the property may be the entire applet if it consists of a single class

file). You cannot change the code assigned to an applet after the element has

loaded (even if the applet code did not load successfully).

Related Items: codeBase property.

codeBase
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The codeBase property is the string of the path on the server to the source of

the applet or ActiveX control referenced by the CLASSID or CODE attributes. IE4+

also uses the CODEBASE attribute to specify a minimum version of control that is to

OBJECT.codeBase

(c) ketabton.com: The Digital Library

911Chapter 32 ✦ Embedded Objects

load, if the attribute is available. This facet is discussed in Chapter 28’s coverage of

plug-in detection for IE/Windows.

Related Items: code property.

codeType
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The codeType property is a string of the MIME type of whatever object is

pointed to by the CODE attribute value.

Related Items: type property.

height
width

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The height and width properties represent the HEIGHT and WIDTH attributes of

the OBJECT element. While these values should be set via attributes in the tag,

these properties can adjust the size of the embedded element after the fact in IE5+.

Related Items: hspace, vspace properties.

hspace
vspace

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The hspace and vspace properties represent the HSPACE and VSPACE attributes

of the OBJECT element, which control the number of pixels of transparent padding

around the OBJECT element on the page. While these values should be set via

OBJECT.hspace

(c) ketabton.com: The Digital Library

912 Part III ✦ Document Objects Reference

attributes in the tag, these properties can adjust the size of the padding around

the element after the fact in IE5+.

Related Items: height, width properties.

name
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The name property represents the NAME attribute of the OBJECT element. The

better form is to assign an ID to the OBJECT element and use accepted reference

syntax for element ids.

Related Items: None.

object
Value: External Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The object property returns a reference to the object contained by the OBJECT

element. This property is essential if the program running inside the OBJECT

element has the same property or method names as the OBJECT element itself.

For example, consider a Java applet loaded into the OBJECT element as follows:

<OBJECT CODE=”coolApplet” ID=”myAPPLET” ... >

If the applet code contained a public variable called height, an attempt to read

or write that property through the OBJECT element will cause the element’s

properties to be read, and not the applet’s properties. Therefore, if you insert the

object property in the reference, the script reaches into the applet object for

the property:

document.getElementById(“myAPPLET”).object.height = 40

If there is no ambiguity between element and object property and method

names, the browser looks first at the element and then the object to find a match.

Related Items: None.

OBJECT.object

(c) ketabton.com: The Digital Library

913Chapter 32 ✦ Embedded Objects

type
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The type property represents the TYPE attribute of the OBJECT element, which,

in theory anyway, is intended to warn the browser about the MIME type of data that

is to be loaded into the object’s process. I say “in theory” because the HTML 4.0

specification links the TYPE attribute to the DATA attribute, which points to the data

to be loaded to support whatever program code is loaded via the CLASSID or CODE
attribute. But through IE5.5, there is no support for the DATA attribute.

Related Items: codeType property.

vspace
See hspace.

width
See height.

EMBED Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align (Object methods) onLoad

height onScroll

hidden

name

pluginspage

src

units

width

(Object variables)

EMBED

(c) ketabton.com: The Digital Library

914 Part III ✦ Document Objects Reference

Syntax
Accessing EMBED element object properties or methods:

(IE4+) [window.]document.all.objectID.property | method([parameters])
(IE5+/NN6) [window.]document.getElementById(“objectID”).property |

method([parameters])

About this object
An EMBED element is a carryover from the early browser days. Although never

adopted by the W3C HTML standard, the EMBED element has been used in NN and

IE as a way to embed non-native content (for example, sounds, video clips, and

custom MIME types for plug-ins, such as Shockwave) into a page. What gets embed-

ded into the page is the controller or viewer for whatever kind of data the EMBED

element points to (via the SRC attribute).

The EMBED element is far less sophisticated than the OBJECT element, but

current browsers continue to support it. If you have been using the EMBED element

in previous applications, it may be a good idea to start gravitating toward the OBJECT

element. For backward compatibility purposes, nesting an EMBED element inside

an OBJECT element is not uncommon, both of which attempt to load the same

content and plug-in. Browsers that know about the OBJECT element will load the

content that way; older browsers will use the EMBED element and its attributes

and parameters.

Because an EMBED element loads a plug-in (including ActiveX control types of

plug-ins in IE/Windows), you can reference the plug-in’s properties and methods

through the EMBED object’s reference.

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The align property controls either the horizontal or vertical alignment of the

element with regard to surrounding content. String values of left or right cause

the object rectangle to cling to the left or right edges of its next outermost position-

ing context. String values of absbottom, absmiddle, baseline, bottom, middle,

texttop, or top influence the vertical alignment with respect to adjacent text, with

the same kind of results as corresponding values of the style.verticalAlign
property.

Related Items: style.verticalAlign property.

EMBED.align

(c) ketabton.com: The Digital Library

915Chapter 32 ✦ Embedded Objects

height
width

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The height and width properties represent the HEIGHT and WIDTH attributes of

the EMBED element. While these values should be set via attributes in the tag,

these properties can adjust the size of the element after the fact in IE5+.

Related Items: None.

hidden
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The hidden property represents the HIDDEN attribute of the EMBED element.

When an EMBED element is hidden, neither controller nor the content is shown.

Application of this element in modern browsers should use style sheets to hide

and show the element.

Related Items: style.visibility property.

name
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The name property represents the NAME attribute of the EMBED element. The

better form is to assign an ID to the EMBED element and use accepted reference

syntax for element ids.

Related Items: None.

EMBED.name

(c) ketabton.com: The Digital Library

916 Part III ✦ Document Objects Reference

pluginspage
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The pluginspage property represents the PLUGINSPAGE attribute of the EMBED

element. This attribute is a URL that gets applied to a link in the browser if the

plug-in associated with the external file’s MIME type cannot be found on the client.

Related Items: None.

src
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

The src property represents the SRC attribute of the EMBED element. This

attribute points to the external file that is to be loaded into the browser via the

associated plug-in. Scripts can assign a new URL string to this property to load a

different file into the current plug-in.

Related Items: None.

units
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The units property returns the unit of measure assigned with the length value

of the height and width properties. In IE4, this property returned only px. The

property does not appear to be connected in IE5.5, so it is probably deprecated

in IE.

Related Items: height, width properties.

EMBED.units

(c) ketabton.com: The Digital Library

917Chapter 32 ✦ Embedded Objects

The Odd Case of the PARAM Element
HTML pages pass parameters to Java applets, plug-ins, and ActiveX controls

by way of PARAM elements that are nested inside APPLET, EMBED, and OBJECT

elements. Although a PARAM element object is defined by the W3C DOM Level 2

specification, it does not show up on some browsers’ radar when you try to refer-

ence the PARAM element by itself. Even assigning an ID to a PARAM element or

using document.getElementsByTagName(“PARAM”) fail to allow references to

access an individual PARAM element object. At most, you can retrieve the innerHTML
property of the surrounding element. But even here, the values returned may not

necessarily be precisely the HTML you specify in the document.

In practice, this limitation is not particularly important. For one thing, even if you

could access the PARAM elements of an embedded object or program, attempts to

modify the values would be wasted: Those values are read at load time only.

Secondly, a well-designed plug-in, applet, or ActiveX control will provide its own

properties or methods to retrieve the current settings of whatever properties are

initialized via the PARAM elements.

✦ ✦ ✦

PARAM

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

XML Objects

XML (eXtensible Markup Language) is an undeniably hot

topic in the Internet world. Not only has the W3C organi-

zation formed multiple working groups and recommendations

for XML and its offshoots, but the W3C DOM recommen-

dation also has XML in mind when it comes to defining how

elements, attributes, and data of any kind — not just the

HTML vocabulary — are exposed to browsers as an object

model. Most of the arcana of the W3C DOM Core specification —

especially the structure based on the node — are in direct

response to the XML possibilities of documents that are begin-

ning to travel the Internet.

While XML documents can stand alone as containers of

structured data in both IE5+ and NN6, the Windows version

of IE5+ permits XML data to be embedded as “islands” in

an HTML document. Such islands are encased in an XML

element —an IE-specific extension of HTML.

It’s important to distinguish between “the” XML element —

the element generated in a document by the IE-specific <XML>
tag set — and a generic XML element that is a part of the XML

data island. Generic XML elements have tag names that are

meaningful to a data application, and they are usually defined

by a separate Document Type Declaration (DTD) that contains

a formal specification of the element names, their attributes

(if any) and the nature of the data they can contain. Out of

necessity, this book assumes that you are already familiar

with XML such that your server-based applications serve up

XML data exclusively, embed XML islands into HTML docu-

ments, or convert database data into XML. The focus of this

chapter, and an extended application example of Chapter 57,

is how to access custom elements that reside inside an IE

XML element.

Elements and Nodes
Once you leave the specialized DOM vocabulary of HTML

elements, the world can appear rather primitive — a highly

granular world of node hierarchies, elements, element attri-

butes, and node data. This granularity is a necessity in an

environment in which the elements are far from generic and

the structure of data in a document does not have to follow a

format handed down from above. One Web application can

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Treating XML
elements as objects

Creating IE XML data
islands

Accessing XML
element attributes

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

920 Part III ✦ Document Objects Reference

describe an individual’s contact information with one set of elements, while

another application uses a completely different approach to element names,

element nesting, and their sequence.

Fortunately, most, if not all, scripting you do on XML data is on data served up

by your own applications. Therefore, you know what the structure of the data is —

or you know enough of it to let your scripts access the data.

The discussion of the W3C DOM in Chapter 14 should serve as a good introduc-

tion to the way you need to think about elements and their content. All relevant

properties and methods are listed among the items shared by all elements in

Chapter 15.

Microsoft has created a separate document object model exclusively for XML
documents. To distinguish between the DOMs for XML and HTML documents,
Microsoft calls the former the XML DOM and the latter the DHTML DOM.
Specifications for the two DOMs overlap in some terminology, but the two models
are not interchangeable. Read more about the Microsoft XML DOM at http://
msdn.microsoft.com.

An XML data island is a hierarchy of nodes. Typically, the outermost nodes are

elements. Some elements have attributes, each of which is a typical name/value

pair. Some elements have data that goes between the start and end tags of the

element (such data is a text node nested inside the element node). And some

elements can have both attributes and data. When an XML island contains the

equivalent of multiple database records, an element container whose tag name

is the same as each of the other records surrounds each record. Thus, the

getElementsByTagName() method frequently accesses a collection of like-

named elements.

Once you have a reference to an element node, you can reference that ele-

ment’s attributes as properties; however, a more formal access route is via the

getAttribute() method of the element. If the element has data between its start

and end tags, you can access that data from the element’s reference by calling the

firstChild.data property (although you may want to verify that the element has

a child node of the text type before committing to retrieving the data).

Of course, your specific approach to XML elements and their data varies with

what you intend to script with the data. For example, you may wish to do nothing

more with scripting than enable a different style sheet for the data based on a user

choice. The evolving XSL (eXtensible Stylesheet Language) standard is a kind of

(non-JavaScript) scripting language for transforming raw XML data into a variety of

presentations. But you can still use JavaScript to connect user-interface elements

that control which of several style sheets renders the data. Or, as demonstrated in

Chapters 52 and 57, you may wish to use JavaScript for more explicit control over

the data and its rendering, taking advantage of JavaScript sorting and data manipu-

lation facilities along the way.

Table 33-1 is a summary of W3C DOM Core objects, properties, and methods that

you are most likely to use in extracting data from XML elements. You can find

details of all of these items in Chapter 15.

Note

(c) ketabton.com: The Digital Library

921Chapter 33 ✦ XML Objects

Table 33-1 Properties and Methods for XML Element Reading

Property or Method Description

Node.nodeValue Data of a text node

Node.nodeType Which node type

Node.parentNode Reference to parent node

Node.childNodes Array of child nodes

Node.firstChild First of all child nodes

Node.lastChild Last of all child nodes

Node.previousSibling Previous node at same level

Node.nextSibling Next node at same level

Element.parentNode Reference to parent node

Element.childNodes Array of child nodes

Element.firstChild First of all child nodes

Element.lastChild Last of all child nodes

Element.previousSibling Previous node at same level

Element.nextSibling Next node at same level

Element.tagName Tag name

Element.getAttribute(name) Retrieves attribute (Attr) object

Element.getElementsByTagName(name) Array of nested, named elements

Attr.name Name part of attribute object’s name/
value pair

Attr.value Value part of attribute object’s name/
value pair

XML Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

src

XMLDocument

XML

(c) ketabton.com: The Digital Library

922 Part III ✦ Document Objects Reference

Syntax
Accessing XML element object properties or methods:

(IE5+) [window.]document.all.elementID.property | method([parameters])

About this object
The XML element object is the primary container of an XML data island within

an HTML page. If your scripts intend to traverse the node hierarchy within the

element, or simply access properties of nested elements, then you should assign

an identifier to the ID attribute of the XML element. For example, if the XML data

contains results from a database query for music recordings that match some user-

entered criteria, each returned record might be denoted as a RECORDING element

as follows:

<XML ID=”results”>
<SEARCHRESULTS>

<RECORDING>
...elements with details...

</RECORDING>
<RECORDING>

...elements with details...
</RECORDING>
<RECORDING>

...elements with details...
</RECORDING>

</SEARCHRESULTS>
</XML>

Your script can now obtain an array of references to RECORDING elements as

follows:

var recs = document.getElementById(“results”).getElementsByTagName(“RECORDING”)

While it is also true that there is no known HTML element with the tag name

RECORDING (which enables you to use document.getElementsByTagName
(“RECORDING”)), the unpredictability of XML data element names is reason enough

to limit the scope of the getElementsByTagName() method to the XML data island.

Interestingly, the W3C DOM Level 2 does not define an XML element object

within the HTML section. You cannot simply embed an XML document inside an

HTML document: The standards clearly indicate that a document can be one or

the other, but not both. While the NN6 DOM can recognize custom elements, the

browser understandably gets confused when custom elements have tag names

that already belong to the HTML DTD. Therefore, I do not recommend attempting

to embed custom elements into an HTML document for NN6 unless it some day

implements a mechanism similar to IE’s XML data islands.

IE5/Macintosh does not support XML data islands.Note

XML

(c) ketabton.com: The Digital Library

923Chapter 33 ✦ XML Objects

Properties
src

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The src property represents the SRC attribute of the XML element. The attribute

points to the URL of an external XML document whose data is embedded within the

current HTML document.

XMLDocument
Value: Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The XMLDocument property returns a reference to Microsoft’s proprietary XML

document object and the object model associated with it (the so-called XML DOM).

A lot of this object model is patterned after the W3C DOM model, but access to

these properties is via a rather roundabout way. For more details, visit

http://msdn.microsoft.com/xml/reference/xmldom/start.asp

✦ ✦ ✦

XML.XMLDocument

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript Core
Language
Reference

✦ ✦ ✦ ✦

In This Part

Chapter 34
The String Object

Chapter 35
The Math, Number,
and Boolean Objects

Chapter 36
The Date Object

Chapter 37
The Array Object

Chapter 38
The Regular
Expression and
RegExp Objects

Chapter 39
Control Structures
and Exception
Handling

Chapter 40
JavaScript Operators

Chapter 41
Functions and
Custom Objects

Chapter 42
Global Functions and
Statements

✦ ✦ ✦ ✦

P A R T

IVIV

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The String Object

Chapter 6’s tutorial introduced you to the concepts of val-

ues and the types of values that JavaScript works with —

features, such as strings, numbers, and Boolean values. In this

chapter, you look more closely at the very important String

data type, as well as its relationship to the Number data type.

Along the way, you encounter the many ways in which

JavaScript enables scripters to manipulate strings.

Much of the syntax that you see in this chapter is identical
to that of the Java programming language. Because the
scope of JavaScript activity is narrower than that of Java,
you don’t have nearly as much to learn for JavaScript as for
Java. At the same time, certain string object language
features apply to scripting but not to Java programming.
Improvements to the string object’s methods in Navigator
4 greatly simplify a number of string manipulation tasks. If
you must script for a lower common denominator of
browser, however, you may need some of the same kind of
string micro-management skills that a C programmer
needs. I soften the blow by providing some general
purpose functions that you can plug into your scripts to
make those jobs easier.

String and Number Data Types
Although JavaScript is not what is known as a “strongly

typed” language, you still need to be aware of several data

types because of their impact on the way you work with the

information in those forms. In this section, I focus on strings

and two types of numbers.

Simple strings
A string consists of one or more standard text characters

between matching quote marks. JavaScript is forgiving in one

regard: You can use single or double quotes, as long as you

match two single quotes or two double quotes around a

Note

3434C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to parse and
work with text

Performing search-
and-replace
operations

Scripted alternatives
to text formatting

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

928 Part IV ✦ JavaScript Core Language Reference

string. Another benefit to this scheme becomes apparent when you try to include

a quoted string inside a string. For example, say that you’re assembling a line of

HTML code in a variable that you will eventually write to a new window completely

controlled by JavaScript. The line of text that you want to assign to a variable is the

following:

<INPUT TYPE=”checkbox” NAME=”candy”>Chocolate

To assign this entire line of text to a variable, you have to surround the line in

quotes. But because quotes appear inside the string, JavaScript (or any language)

has problems deciphering where the string begins or ends. By carefully placing the

other kind of quote pairs, however, you can make the assignment work. Here are

two equally valid ways:

result = ‘<INPUT TYPE=”checkbox” NAME=”candy”>Chocolate’
result = “<INPUT TYPE=’checkbox’ NAME=’candy’>Chocolate”

Notice that in both cases, the same unique pair of quotes surrounds the entire

string. Inside the string, two quoted strings appear that are treated as such by

JavaScript. I recommend that you settle on one form or the other, and then use that

form consistently throughout your scripts.

Building long string variables
The act of joining strings together — concatenation — enables you to assemble

long strings out of several little pieces. This feature is very important for some of

your scripting — for example, when you need to build an HTML page’s specifi-

cations entirely within a variable before writing the page to another frame with

one document.write() statement.

One tactic that I use keeps the length of each statement in this building process

short enough so that it’s easily readable in your text editor. This method uses the

add-by-value assignment operator (+=) that appends the right-hand side of the

equation to the left-hand side. Here is a simple example, which begins by initializing

a variable as an empty string:

var newDocument = “”
newDocument += “<HTML><HEAD><TITLE>Life and Times</TITLE></HEAD>”
newDocument += “<BODY><H1>My Life and Welcome to It</H1>”
newDocument += “by Sidney Finortny<HR>”

Starting with the second line, each statement adds more data to the string being

stored in newDocument. You can continue appending string data until the entire

page’s specification is contained in the newDocument variable.

Joining string literals and variables
In some cases, you need to create a string out of literal strings (characters

with quote marks around them) and string variable values. The methodology for

concatenating these types of strings is no different from that of multiple string

literals. The plus-sign operator does the job. Therefore, in the following example,

a variable contains a name. That variable value is made a part of a larger string

whose other parts are string literals:

(c) ketabton.com: The Digital Library

929Chapter 34 ✦ The String Object

yourName = prompt(“Please enter your name:”,””)
var msg = “Good afternoon, “ + yourName + “.”
alert(msg)

Some common problems that you may encounter while attempting this kind of

concatenation include the following:

✦ Accidentally omitting one of the quotes around a literal string

✦ Failing to insert blank spaces in the string literals to accommodate word

spaces

✦ Forgetting to concatenate punctuation after a variable value

Also, don’t forget that what I show here as variable values can be any expression

that evaluates to a string, including property references and the results of some

methods. For example

var msg = “The name of this document is “ + document.title + “.”
alert(msg)

Special inline characters
The way string literals are created in JavaScript makes adding certain characters

to strings difficult. I’m talking primarily about adding quotes, carriage returns,

apostrophes, and tab characters to strings. Fortunately, JavaScript provides a

mechanism for entering such characters into string literals. A backslash symbol,

followed by the character that you want to appear as inline, makes that task happen.

For the “invisible” characters, a special set of letters following the backslash tells

JavaScript what to do.

The most common backslash pairs are as follows:

✦ \” Double quote

✦ \’ Single quote (apostrophe)

✦ \\ Backslash

✦ \b Backspace

✦ \t Tab

✦ \n New line

✦ \r Carriage return

✦ \f Form feed

Use these “inline characters” (also known as “escaped characters,” but this

terminology has a different connotation for Internet strings) inside quoted string

literals to make JavaScript recognize them. When assembling a block of text that

needs a new paragraph, insert the \n character pair. Here are some examples of

syntax using these special characters:

msg = “You\’re doing fine.”
msg = “This is the first line.\nThis is the second line.”
msg = document.title + “\n” + document.links.length + “ links present.”

(c) ketabton.com: The Digital Library

930 Part IV ✦ JavaScript Core Language Reference

Technically speaking, a complete carriage return, as known from typewriting

days, is both a line feed (advance the line by one) and a carriage return (move the

carriage all the way to the left margin). Although JavaScript strings treat a line feed

(\n new line) as a full carriage return, you may have to construct \r\n breaks when

assembling strings that go back to a CGI script on a server. The format that you use

all depends on the string-parsing capabilities of the CGI program. (Also see the

special requirements for the TEXTAREA object in Chapter 22.)

Confusing the strings assembled for display in TEXTAREA objects or alert boxes

with strings to be written as HTML is easy. For HTML strings, make sure that you

use the standard HTML tags for line breaks (
) and paragraph breaks (<P>)

rather than the inline return or line feed symbols.

String Object

Properties Methods

constructor anchor()

length big()

prototype† blink()

bold()

charAt()

charCodeAt()

concat()

fixed()

fontcolor()

fontsize()

fromCharCode()†

indexOf()

italics()

lastIndexOf()

link()

localeCompare()

match()

replace()

search()

slice()

small()

split()

stringObject

(c) ketabton.com: The Digital Library

931Chapter 34 ✦ The String Object

Properties Methods

strike()

sub()

substr()

substring()

sup()

toLocaleLowerCase()

toLocaleUpperCase()

toLowerCase()

toString()

toUpperCase()

valueOf()

†Member of the static String object

Syntax
Creating a string object:

var myString = new String(“characters”)

Accessing static String object properties and methods:

String.property | method([parameters])

Accessing string object properties and methods:

string.property | method([parameters])

About this object
JavaScript draws a fine line between a string value and a string object. Both

let you use the same methods on their contents, so that by and large, you do not

have to create a string object (with the new String() constructor) every time

you want to assign a string value to a variable. A simple assignment operation

(var myString = “fred”) is all you need to create a string value that behaves

on the surface very much like a full-fledged string object.

Where the difference comes into play is when you want to exploit the “object-

ness” of a genuine string object, which I explain further in the discussion of the

string.prototype property later in this chapter. You may also encounter the

need to use a full-fledged string object when passing string data to Java applets. If

you find that your applet doesn’t receive a string value as a Java String data type,

then create a new string object via the JavaScript constructor function before

passing the value onto the applet.

With string data often comes the need to massage that text in scripts. In addition

to concatenating strings, you at times need to extract segments of strings, delete

parts of strings, and replace one part of a string with some other text. Unlike many

stringObject

(c) ketabton.com: The Digital Library

932 Part IV ✦ JavaScript Core Language Reference

plain-language scripting languages, JavaScript is fairly low-level in its built-in facilities

for string manipulation. This characteristic means that unless you can take advan-

tage of the regular expression powers of NN4+ and IE4+, you must fashion your own

string handling routines out of very elemental powers built into JavaScript. Later in

this chapter, I provide several functions that you can use in your own scripts for

common string handling in a manner fully compatible with older browsers.

As you work with string values, visualize every string value as an object with prop-

erties and methods like other JavaScript objects. The latest versions of JavaScript

define a few properties and a slew of methods for any string value (and one extra

property for the static String object that is always present in the context of the

browser window). The syntax is the same for string methods as it is for any other

object method:

stringObject.method()

What may seem odd at first is that the stringObject part of this reference can

be any expression that evaluates to a string, including string literals, variables

containing strings, methods or functions that return strings, or other object

properties. Therefore, the following examples of calling the toUpperCase() method

are all valid:

“george burns”.toUpperCase()
yourName.toUpperCase() // yourName is a variable containing a string
window.prompt(“Enter your name”,””).toUpperCase()
document.forms[0].entry.value.toUpperCase() // entry is a text field object

An important concept to remember is that invoking a string method does not

change the string object that is part of the reference. Rather, the method returns

a value, which can be used as a parameter to another method or function call, or

assigned to a variable value.

Therefore, to change the contents of a string variable to the results of a method,

you must use an assignment operator, as in

yourName = yourName.toUpperCase() // variable is now all uppercase

In Navigator 2, avoid nesting method calls for the same string object when the
methods modify the string. The evaluation does not work as you may expect.
Instead, break out each call as a separate JavaScript statement.

Properties
constructor

Value: Function Reference Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Note

stringObject.constructor

(c) ketabton.com: The Digital Library

933Chapter 34 ✦ The String Object

The constructor property is a reference to the function that was invoked to

create the current string. For a native JavaScript string object, the constructor

function is the built-in String() constructor.

When you use the new String() constructor to create a string object, the type

of the value returned by the constructor is object (meaning the typeof operator

returns object). Therefore, you can use the constructor property on an object

value to see if it is a string object:

if (typeof someValue == “object”) {
if (someValue.constructor == String) {

// statements to deal with string object
}

}

Although the property is read/write, and you can assign a different constructor

to the String.prototype, the native behavior of a String object persists through

the new constructor.

Example on the CD-ROM

Related Items: prototype property.

length
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The most frequently used property of a string is length. To derive the length of

a string, read its property as you would read the length property of any object:
string.length

The length value represents an integer count of the number of characters within

the string. Spaces and punctuation symbols count as characters. Any backslash

special characters embedded in a string count as one character, including such

characters as newline and tab. Here are some examples:

“Lincoln”.length // result = 7
“Four score”.length // result = 10
“One\ntwo”.length // result = 7
“”.length // result = 0

The length property is commonly summoned when dealing with detailed string

manipulation in repeat loops.

On the
CD-ROM

stringObject.length

(c) ketabton.com: The Digital Library

934 Part IV ✦ JavaScript Core Language Reference

prototype
Value: Object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

String objects defined with the new String(“stringValue”) constructor are

robust objects compared with plain, old variables that are assigned string values.

You certainly don’t have to create this kind of string object for every string in your

scripts, but these objects do come in handy if you find that strings in variables go

awry. This happens occasionally while trying to preserve string information as

script variables in other frames or windows. By using the string object constructor,

you can be relatively assured that the string value will be available in the distant

frame when needed.

Another byproduct of true string objects is that you can assign prototype proper-

ties and methods to all string objects in the document. A prototype is a property or

method that becomes a part of every new object created after the prototype items

are added. For strings, as an example, you may want to define a new method for

converting a string into a new type of HTML font tag not already defined by the

JavaScript string object. Listing 34-1 shows how to create and use such a prototype.

Listing 34-1: A String Object Prototype

<HTML>
<HEAD>
<TITLE>String Object Prototype</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function makeItHot() {

return “” + this.toString() + “”
}
String.prototype.hot = makeItHot
</SCRIPT>
<BODY>
<SCRIPT LANGUAGE=”JavaScript1.1”>
document.write(“<H1>This site is on “ + “FIRE”.hot() + “!!</H1>”)
</SCRIPT>
</BODY>
</HTML>

A function definition (makeItHot()) accumulates string data to be returned to

the object when the function is invoked as the object’s method. The this keyword

refers to the object making the call, which you convert to a string for concatenation

with the rest of the strings to be returned. In the page’s Body, that prototype method

is invoked in the same way one invokes existing String methods that turn strings

into HTML tags (discussed later in this chapter).

stringObject.prototype

(c) ketabton.com: The Digital Library

935Chapter 34 ✦ The String Object

In the next sections, I divide string object methods into two distinct categories.

The first, parsing methods, focuses on string analysis and character manipulation

within strings. The second group, formatting methods, is devoted entirely to assem-

bling strings in HTML syntax for those scripts that assemble the text to be written

into new documents or other frames.

Parsing methods
string.charAt(index)

Returns: One-Character String

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Use the string.charAt() method to read a single character from a string when

you know the position of that character. For this method, you specify an index

value in the string as a parameter to the method. The index value of the first char-

acter of the string is 0. To grab the last character of a string, mix string methods:
myString.charAt(myString.length - 1)

If your script needs to get a range of characters, use the string.substring()
method. Using string.substring() to extract a character from inside a string is a

common mistake, when the string.charAt() method is more efficient.

Example on the CD-ROM

Related Items: string.lastIndexOf(), string.indexOf(), string.
substring() methods.

string.charCodeAt([index])
String.fromCharCode(num1 [, num2 [, ...
numn]])

Returns: Integer code number for a character; concatenated string value of code

numbers supplied as parameters.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Conversions from plain language characters to their numeric equivalents have

a long tradition in computer programming. For a long time, the most common

numbering scheme was the ASCII standard, which covers the basic English,

On the
CD-ROM

stringObject.charCodeAt()

(c) ketabton.com: The Digital Library

936 Part IV ✦ JavaScript Core Language Reference

alphanumeric characters and punctuation within 128 values (numbered 0 through

127). An extended version with a total of 256 characters, with some variations

depending on the operating system, accounts for other roman characters in other

languages, particularly vowels with umlauts and other pronunciation marks. To

bring all languages, including pictographic languages and other nonroman alphabets,

into the computer age, a world standard called Unicode provides space for thousands

of characters.

In JavaScript, the character conversions are string methods. Acceptable values

depend on the browser that you are using. NN4 works only with the 256 ISO-Latin-I

values; NN6 and IE4+ work with the Unicode system.

The two methods that perform these conversions work in very different ways

syntactically. The first, string.charCodeAt(), converts a single string character

to its numerical equivalent. The string being converted is the one to the left of the

method name — and the string may be a literal string or any other expression that

evaluates to a string value. If no parameter is passed, the character being converted

is by default the first character of the string. However, you can also specify a different

character as an index value into the string (first character is 0), as demonstrated

here:

“abc”.charCodeAt() // result = 97
“abc”.charCodeAt(0) // result = 97
“abc”.charCodeAt(1) // result = 98

If the string value is an empty string or the index value is beyond the last

character, the result is NaN.

To convert numeric values to their characters, use the String.fromCharCode()
method. Notice that the object beginning the method call is the static String object,

not a string value. Then, as parameters, you can include one or more integers

separated by commas. In the conversion process, the method combines the

characters for all of the parameters into one string, an example of which is shown

here:

String.fromCharCode(97, 98, 99) // result “abc”

The string.charCodeAt() method is broken on the first release of the
Macintosh version of Navigator 4, and always returns NaN. This error is fixed in
subsequent releases.

Example (with Listing 34-2) on the CD-ROM

Related Items: None.

On the
CD-ROM

Note

stringObject.charCodeAt()

(c) ketabton.com: The Digital Library

937Chapter 34 ✦ The String Object

string.concat(string2)
Returns: Combined string.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

JavaScript’s add-by-value operator (+=) provides a convenient way to concatenate

strings. Recent browsers, however, include a string object method that performs

the same task. The base string to which more text is appended is the object or

value to the left of the period. The string to be appended is the parameter of the

method, as the following example demonstrates:
“abc”.concat(“def”) // result: “abcdef”

As with the add-by-value operator, the concat() method doesn’t know about

word endings. You are responsible for including the necessary space between words

if the two strings require a space between them in the result.

Related Items: Add-by-value (+=) operator.

string.indexOf(searchString [, startIndex])
Returns: Index value of the character within string where searchString begins.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Like some languages’ offset string function, JavaScript’s indexOf() method

enables your script to obtain the number of the character in the main string

where a search string begins. Optionally, you can specify where in the main string

the search should begin — but the returned value is always relative to the very first

character of the main string. Such as all string object methods, index values start

their count with 0. If no match occurs within the main string, the returned value

is -1. Thus, this method is a convenient way to determine whether one string

contains another, regardless of position.

A bug exists in some versions of Navigator 2 and 3 that can trip up your scripts

if you don’t guard against it. If the string being searched is empty, the indexOf()
method returns an empty string rather than the expected -1 value. Therefore, you

may want to test to make sure the string is not empty before applying this method.

A look at the following examples tells you more about this method than a long

description. In all examples, you assign the result of the method to a variable

named offset.

Example on the CD-ROMOn the
CD-ROM

stringObject.indexOf()

(c) ketabton.com: The Digital Library

938 Part IV ✦ JavaScript Core Language Reference

Related Items: string.lastIndexOf(), string.charAt(), string.substring()
methods.

string.lastIndexOf(searchString[,
startIndex])

Returns: Index value of the last character within string where searchString begins.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The string.lastIndexOf() method is closely related to the method string.
indexOf(). The only difference is that this method starts its search for a match

from the end of the string (string.length - 1) and works its way backward

through the string. All index values are still counted, starting with 0, from the front

of the string. The examples that follow use the same values as in the examples for

string.indexOf() so that you can compare the results. In cases where only one

instance of the search string is found, the results are the same; but when multiple

instances of the search string exist, the results can vary widely — hence the need

for this method.

This string method has experienced numerous bugs, particularly in Navigator 2, and
in later versions for UNIX. Scripts using this method should be tested exhaustively.

Example on the CD-ROM

Related Items: string.lastIndexOf(), string.charAt(), string.substring()
methods.

string.localeCompare(string2)
Returns: Integer.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The localeCompare() method lets a script compare the cumulative Unicode

values of two strings, taking into account the language system for the browser.

The need for this method affects only some language systems (Turkish is said to

be one). If the two strings, adjusted for the language system, are equal, the value

On the
CD-ROM

Caution

stringObject.localeCompare()

(c) ketabton.com: The Digital Library

939Chapter 34 ✦ The String Object

returned is zero. If the string value on which the method is invoked (meaning the

string to the left of the period) sorts ahead of the parameter string, the value

returned is a negative integer; otherwise the returned value is a positive integer.

The ECMA standard for this method leaves the precise positive or negative

values up to the browser designer. NN6 calculates the cumulative Unicode values

for both strings and subtracts the string parameter’s sum from the string value’s

sum. IE5.5, on the other hand, returns -1 or 1 if the strings are not colloquially equal.

Related Items: string.toLocaleLowerCase(), string.toLocaleUpperCase()
methods.

string.match(regExpression)
Returns: Array of matching strings.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The string.match() method relies on the RegExp (regular expression) object

introduced to JavaScript in NN4 and IE4. The string value under scrutiny is to the

left of the dot, while the regular expression to be used by the method is passed as a

parameter. The parameter must be a regular expression object, created according

to the two ways these objects can be generated.

This method returns an array value when at least one match turns up; otherwise

the returned value is null. Each entry in the array is a copy of the string segment

that matches the specifications of the regular expression. You can use this method

to uncover how many times a substring or sequence of characters appears in a

larger string. Finding the offset locations of the matches requires other string

parsing.

Example (with Listing 34-3) on the CD-ROM

Related Items: RegExp object (Chapter 38).

string.replace(regExpression, replaceString)
Returns: Changed string.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

On the
CD-ROM

stringObject.replace()

(c) ketabton.com: The Digital Library

940 Part IV ✦ JavaScript Core Language Reference

Regular expressions are commonly used to perform search-and-replace operations.

JavaScript’s string.replace() method provides a simple framework in which to

perform this kind of operation on any string.

Searching and replacing requires three components. The first is the main string

that is the target of the operation. Second is the regular expression to search for.

And third is the string to replace each instance of the text found by the operation.

For the string.replace() method, the main string is the string value or object

referenced to the left of the period. This string can also be a literal string (that is,

text surrounded by quotes). The regular expression to search for is the first

parameter, while the replacement string is the second parameter.

The regular expression definition determines whether the replacement is of just

the first match encountered in the main string or all matches in the string. If you

add the g parameter to the end of the regular expression, then one invocation of

the replace() method performs global search-and-replace through the entire

main string.

As long as you know how to generate a regular expression, you don’t have to

be a whiz to use the string.replace() method to perform simple replacement

operations. But using regular expressions can make the operation more powerful.

Consider these soliloquy lines by Hamlet:

To be, or not to be: that is the question:
Whether ‘tis nobler in the mind to suffer

If you wanted to replace both instances of “be” with “exist,” you can do it in this

case by specifying

var regexp = /be/g
soliloquy.replace(regexp, “exist”)

But you can’t always be assured that the letters “b” and “e” will be standing

alone as a word. What happens if the main string contains the word “being” or

“saber”? The above example replaces the “be” letters in them as well.

The regular expression help comes from the special characters to better define

what to search for. In the example here, the search is for the word “be.” Therefore,

the regular expression surrounds the search text with word boundaries (the \b
special character), as in

var regexp = /\bbe\b/g
soliloquy.replace(regexp, “exist”)

This syntax also takes care of the fact that the first two “be” words are followed

by punctuation, rather than a space, as you may expect for a freestanding word. For

more about regular expression syntax, see Chapter 38.

Example (with Listing 34-4) on the CD-ROM

Related Items: string.match() method; RegExp object.

On the
CD-ROM

stringObject.replace()

(c) ketabton.com: The Digital Library

941Chapter 34 ✦ The String Object

string.search(regExpression)
Returns: Offset Integer.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The results of the string.search() method may remind you of the string.
indexOf() method. In both cases, the returned value is the character number

where the matching string first appears in the main string, or -1 if no match occurs.

The big difference, of course, is that the matching string for string.search() is a

regular expression.

Example on the CD-ROM

Related Items: string.match() method; RegExp object.

string.slice(startIndex [, endIndex])
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The string.slice() method resembles the method string.substring() in

that both let you extract a portion of one string and create a new string as a result

(without modifying the original string). A helpful improvement in string.slice(),

however, is that specifying an ending index value relative to the end of the main

string is easier.

Using string.substring() to extract a substring that ends before the end of

the string requires machinations, such as the following:

string.substring(4, (string.length-2))

Instead, you can assign a negative number to the second parameter of

string.slice() to indicate an offset from the end of the string:

string.slice(4, -2)

The second parameter is optional. If you omit the second parameter, the

returned value is a string from the starting offset to the end of the main string.

Example (with Listing 34-5) on the CD-ROMOn the
CD-ROM

On the
CD-ROM

stringObject.slice()

(c) ketabton.com: The Digital Library

942 Part IV ✦ JavaScript Core Language Reference

Related Items: string.substr(), string.substring() methods.

string.split(“delimiterCharacter” [,
limitInteger])

Returns: Array of delimited items.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The split() method is the functional opposite of the array.join() method

(see Chapter 37). From the string object point of view, JavaScript splits a long string

into pieces delimited by a specific character and then creates a dense array with

those pieces. You do not need to initialize the array via the new Array() constructor.

Given the powers of array object methods, such as array.sort(), you may want

to convert a series of string items to an array to take advantage of those powers.

Also, if your goal is to divide a string into an array of single characters, you can still

use the split() method, but specify an empty string as a parameter. For NN3 and

IE4, only the first parameter is observed.

In NN4+ and IE4+, you can use a regular expression object for the first parameter,

enhancing the powers of finding delimiters in strings. For example, consider the

following string:

var nameList = “1.Fred,2.Jane,3.Steve”

To convert that string into a three-element array of only the names takes a lot of

parsing without regular expressions before you can even use string.split().

However, with a regular expression as a parameter,

var regexp = /,*\d.\b/
var newArray = nameList.split(regexp)

// result = an array “Fred”, “Jane”, “Steve”

the new array entries hold only the names and not the leading numbers or periods.

A second addition is an optional second parameter. This integer value allows you to

specify a limit to the number of array elements generated by the method.

And finally, NN4+ provides some extra (but non-ECMA-standard) functionality

if you use the string.split() method inside a <SCRIPT> tag that specifies

JavaScript1.2 (only). A space character as a single parameter, such as string.
split(“ “), is interpreted to mean any white space (spaces, tabs, carriage returns,

line feeds) between runs of characters. Even if the number of spaces between

elements is not uniform, they are treated all the same. This special feature may not

be adopted by ECMA and is omitted from later JavaScript versions in NN.

Example on the CD-ROM

Related Items: array.join() method.

On the
CD-ROM

stringObject.split()

(c) ketabton.com: The Digital Library

943Chapter 34 ✦ The String Object

string.substr(start [, length])
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The string.substr() method offers a variation of the string.substring()
method that has been in the language since the beginning. The distinction is that

the string.substr() method’s parameters specify the starting index and a num-

ber of characters to be included from that start point. In contrast, the string.
substring() method parameters specify index points for the start and end

characters within the main string.

As with all string methods requiring an index value, the string.substr() first

parameter is zero-based. If you do not specify a second parameter, the returned

substring starts at the indexed point and extends to the end of the string. A second

parameter value that exceeds the end point of the string means that the method

returns a substring to the end of the string.

Even though this method is newer than its partner, it is not part of the ECMA

standard as of Edition 3 of the language spec. But because the method is so widely

used, the standard does acknowledge it so that other scripting contexts can imple-

ment the method consistent with browser practice.

NN4/Mac users should avoid setting the second parameter to a negative number
to prevent a crash.

Example (with Listing 34-6) on the CD-ROM

Related Items: string.substring() method.

string.substring(indexA, indexB)
Returns: String of characters between index values indexA and indexB.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The string.substring() method enables your scripts to extract a copy of a

contiguous range of characters from any string. The parameters to this method are

the starting and ending index values (first character of the string object is index

value 0) of the main string from which the excerpt should be taken. An important

On the
CD-ROM

Caution

stringObject.substring()

(c) ketabton.com: The Digital Library

944 Part IV ✦ JavaScript Core Language Reference

item to note is that the excerpt goes up to, but does not include, the character

pointed to by the higher index value.

It makes no difference which index value in the parameters is larger than the

other: The method starts the excerpt from the lowest value and continues to (but

does not include) the highest value. If both index values are the same, the method

returns an empty string; and if you omit the second parameter, the end of the

string is assumed to be the endpoint.

NN4 experimented with a slight variation of this method. If you use this method in
a <SCRIPT LANGUAGE=”JavaScript1.2”> tag, the first index value is always
the start of the excerpt, and the end is at the second index value, even if it means
that the string value comes out in reverse. This variation has not been carried
forward in later versions of JavaScript in NN.

Example (with Listing 34-7) on the CD-ROM

Related Items: string.substr(), string.slice() methods.

string.toLocaleLowerCase()
string.toLocaleUpperCase()

Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

These two methods are variations on the standard methods for changing the case

of a string. They take into account some language systems whose cases for a partic-

ular character don’t necessarily map to the Latin alphabet character mappings.

Related Items: string.toLowerCase(), string.toUpperCase() methods.

string.toLowerCase()
string.toUpperCase()

Returns: The string in all lower- or uppercase, depending on which method you

invoke.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

On the
CD-ROM

Note

stringObject.toLowerCase()

(c) ketabton.com: The Digital Library

945Chapter 34 ✦ The String Object

A great deal of what takes place on the Internet (and in JavaScript) is case-

sensitive. URLs on some servers, for instance, are case-sensitive for directory

names and filenames. These two methods, the simplest of the string methods,

return a copy of a string converted to either all lowercase or all uppercase. Any

mixed-case strings get converted to a uniform case. If you want to compare user

input from a field against some coded string without worrying about matching

case, you can convert both strings to the same case for the comparison.

Example on the CD-ROM

Related Items: string.toLocaleLowerCase(), string.toLocaleUpperCase()
methods.

string.toString()
string.valueOf()

Returns: String value.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Both of these methods return string values (as opposed to full-fledged string

objects). If you have created a string object via the new String() constructor, the

type of that item is object. Therefore, if you want to examine more precisely what

kind of value is held by the object, you can use the valueOf() method to get the

value and then examine it via the typeof operator. The toString() method is

present for this object primarily because a string object inherits the method from

the root object of JavaScript.

Example on the CD-ROM

Related Items: typeof operator (Chapter 40).

String Utility Functions
Figuring out how to apply the various string object methods to a string manipu-

lation challenge is not always an easy task, especially if you need backward

compatibility with older scriptable browsers. I also find it difficult to anticipate

every possible way you may need to massage strings in your scripts. But to help

On the
CD-ROM

On the
CD-ROM

stringObject.toString()

(c) ketabton.com: The Digital Library

946 Part IV ✦ JavaScript Core Language Reference

you get started, Listing 34-8 contains a library of string functions for inserting,

deleting, and replacing chunks of text in a string. If your audience uses browsers

capable of including external .js library files, that would be an excellent way to

make these functions available to your scripts.

Listing 34-8: Utility String Handlers

// extract front part of string prior to searchString
function getFront(mainStr,searchStr){

foundOffset = mainStr.indexOf(searchStr)
if (foundOffset == -1) {

return null
}
return mainStr.substring(0,foundOffset)

}

// extract back end of string after searchString
function getEnd(mainStr,searchStr) {

foundOffset = mainStr.indexOf(searchStr)
if (foundOffset == -1) {

return null
}
return mainStr.substring(foundOffset+searchStr.length,mainStr.length)

}

// insert insertString immediately before searchString
function insertString(mainStr,searchStr,insertStr) {

var front = getFront(mainStr,searchStr)
var end = getEnd(mainStr,searchStr)
if (front != null && end != null) {

return front + insertStr + searchStr + end
}
return null

}

// remove deleteString
function deleteString(mainStr,deleteStr) {

return replaceString(mainStr,deleteStr,””)
}

// replace searchString with replaceString
function replaceString(mainStr,searchStr,replaceStr) {

var front = getFront(mainStr,searchStr)
var end = getEnd(mainStr,searchStr)
if (front != null && end != null) {

return front + replaceStr + end
}
return null

}

(c) ketabton.com: The Digital Library

947Chapter 34 ✦ The String Object

The first two functions extract the front or end components of strings as needed

for some of the other functions in this suite. The final three functions are the core

of these string-handling functions. If you plan to use these functions in your scripts,

be sure to notice the dependence that some functions have on others. Including all

five functions as a group ensures that they work as designed.

Formatting methods
Now we come to the other group of string object methods, which ease the

process of creating the numerous string display characteristics when you use

JavaScript to assemble HTML code. The following is a list of these methods:

string.anchor(“anchorName”) string.link(locationOrURL)

string.blink() string.big()

string.bold() string.small()

string.fixed() string.strike()

string.fontcolor(colorValue) string.sub()

string.fontsize(integer1to7) string.sup()

string.italics()

First examine the methods that don’t require any parameters. You probably see

a pattern: All of these methods are font-style attributes that have settings of on or

off. To turn on these attributes in an HTML document, you surround the text in the

appropriate tag pairs, such as ... for boldface text. These methods take the

string object, attach those tags, and return the resulting text, which is ready to be

put into any HTML that your scripts are building. Therefore, the expression

“Good morning!”.bold()

evaluates to

Good morning!

Of course, nothing is preventing you from building your HTML by embedding

real tags instead of by calling the string methods. The choice is up to you. One

advantage to the string methods is that they never forget the ending tag of a tag

pair. Listing 34-9 shows an example of incorporating a few simple string methods in

a string variable that is eventually written to the page as it loads. Internet Explorer

does not support the <BLINK> tag and therefore ignores the string.blink()
method.

Listing 34-9: Using Simple String Methods

<HTML>
<HEAD>
<TITLE>HTML by JavaScript</TITLE>
</HEAD>

<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
var page = “”

Continued

(c) ketabton.com: The Digital Library

948 Part IV ✦ JavaScript Core Language Reference

Listing 34-9 (continued)

page += “JavaScript can create HTML on the fly.<P>Numerous string object methods
facilitate creating text that is “ + “boldfaced”.bold() + “, “ +
“italicized”.italics() + “, or even the terribly annoying “ + “blinking
text”.blink() + “.”
document.write(page)
</SCRIPT>
</BODY>
</HTML>

Of the remaining string methods, two more (string.fontsize() and string.
fontcolor()) also affect the font characteristics of strings displayed in the HTML

page. The parameters for these items are pretty straightforward — an integer

between 1 and 7 corresponding to the seven browser font sizes and a color value

(as either a hexadecimal triplet or color constant name) for the designated text.

Listing 34-10 adds a line of text to the string of Listing 34-9. This line of text not only

adjusts the font size of some parts of the string but also nests multiple attributes

inside one another to set the color of one word in a large-font-size string. Because

these string methods do not change the content of the string, you can safely nest

methods here.

Listing 34-10: Nested String Methods

<HTML>
<HEAD>
<TITLE>HTML by JavaScript</TITLE>
</HEAD>

<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
var page = “”
page += “JavaScript can create HTML on the fly.<P>Numerous string object methods
facilitate creating text that is “ + “boldfaced”.bold() + “, “ +
“italicized”.italics() + “, or even the terribly annoying “ + “blinking
text”.blink() + “.<P>”
page += “We can make “ + “some words big”.fontsize(5) + “ and some words both “
+ (“big and “ + “colorful”.fontcolor(‘coral’)).fontsize(5) + “ at the same
time.”
document.write(page)
</SCRIPT>
</BODY>
</HTML>

The final two string methods let you create an anchor and a link out of a string.

The string.anchor() method uses its parameter to create a name for the anchor.

Thus, the following expression

“Table of Contents”.anchor(“toc”)

(c) ketabton.com: The Digital Library

949Chapter 34 ✦ The String Object

evaluates to

Table of Contents

In a similar fashion, the string.link() method expects a valid location or URL

as its parameter, creating a genuine HTML link out of the string:
“Back to Home”.link(“index.html”)

This evaluates to the following:

Back to Home

Again, the choice of whether you use string methods to build HTML anchors and

links over assembling the actual HTML is up to you. The methods may be a bit easier

to work with if the values for the string and the parameters are variables whose

content may change based on user input elsewhere in your Web site.

URL String Encoding and Decoding
When browsers and servers communicate, some non-alphanumeric characters

that we take for granted (such as a space) cannot make the journey in their native

form. Only a narrower set of letters, numbers, and punctuation is allowed. To

accommodate the rest, the characters must be encoded with a special symbol (%)

and their hexadecimal ASCII values. For example, the space character is hex 20

(ASCII decimal 32). When encoded, it looks like %20. You may have seen this

symbol in browser history lists or URLs.

JavaScript includes two functions, escape() and unescape(), that offer instant

conversion of whole strings. To convert a plain string to one with these escape codes,

use the escape function, as in

escape(“Howdy Pardner”) // result = “Howdy%20Pardner”

The unescape() function converts the escape codes into human-readable form.

Both of these functions and some newer, more robust versions for recent browsers

are covered in Chapter 42.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The Math,
Number, and
Boolean Objects

The introduction to data types and values in Chapter 6’s

tutorial scratched the surface of JavaScript’s numeric

and Boolean powers. In this chapter, you look more closely at

JavaScript’s way of working with numbers and Boolean data.

Math often frightens away budding programmers; but as

you’ve seen so far in this book, you don’t really have to be a

math genius to program in JavaScript. The powers described

in this chapter are here when you need them — if you need

them. So if math is not your strong suit, don’t freak out over

the terminology here.

An important point to remember about the objects described

in this chapter is that (like string values and string objects)

numbers and Booleans are both values and objects. Fortunately

for script writers, the differentiation is rarely, if ever, a factor

unless you get into some very sophisticated programming. To

those who actually write the JavaScript interpreters inside the

browsers we use, the distinctions are vital.

For most scripters, the information about numeric data

types and conversions as well as the Math object are important

to know. I present other details in this chapter about the

number and Boolean objects primarily for completeness

because their direct powers are almost never used in day-to-

day scripting of Web applications.

Numbers in JavaScript
More powerful programming languages have many different

kinds of numbers, each related to the amount of memory it

occupies in the computer. Managing all these different types

may be fun for some, but it gets in the way of quick scripting.

A JavaScript number has only two possibilities. It can be an

integer or a floating-point value. An integer is any whole number

within a humongous range that does not have any fractional

3535C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Advanced math
operations

Number base
conversions

Working with
integers and floating-
point numbers

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

952 Part IV ✦ JavaScript Core Language Reference

part. Integers never contain a decimal point in their representation. Floating-point
numbers in JavaScript spread across the same range, but they are represented with

a decimal point and some fractional value. If you are an experienced programmer,

refer to the discussion about the Number object later in this chapter to see how the

JavaScript number type lines up with numeric data types you use in other program-

ming environments.

Integers and floating-point numbers
Deep inside a computer, the microprocessor has an easier time performing

math on integer values as compared to any number with a decimal value tacked

on it, which requires the microprocessor to go through extra work to add even two

such floating-point numbers. We, as scripters, are unfortunately saddled with this

historical baggage and must be conscious of the type of number used in certain

calculations.

Most internal values generated by JavaScript, such as index values and length
properties, consist of integers. Floating-point numbers usually come into play as

the result of the division of numeric values, special values such as pi, and human-

entered values such as dollars and cents. Fortunately, JavaScript is forgiving if

you try to perform math operations on mixed numeric data types. Notice how the

following examples resolve to the appropriate data type:

3 + 4 = 7 // integer result
3 + 4.1 = 7.1 // floating-point result
3.9 + 4.1 = 8 // integer result

Of the three examples, perhaps only the last result is unexpected. When two

floating-point numbers yield a whole number, the result is rendered as an integer.

When dealing with floating-point numbers, be aware that not all browser versions

return the precise same value down to the last digit to the right of the decimal. For

example, the following table shows the result of 8/9 as calculated by numerous

scriptable browsers (all Windows 95) and converted for string display:

Navigator 2 0.88888888888888884

Navigator 3 .8888888888888888

Navigator 4 .8888888888888888

Navigator 6 0.8888888888888888

Internet Explorer 3 0.888888888888889

Internet Explorer 4+ 0.8888888888888888

Clearly, from this display, you don’t want to use floating-point math in JavaScript

browsers to plan space flight trajectories. For everyday math, however, you need to

be cognizant of floating-point errors that accrue in PC arithmetic.

In Navigator, JavaScript relies on the operating system’s floating-point math for

its own math. Operating systems that offer accuracy to as many places to the right

of the decimal as JavaScript displays are exceedingly rare. As you can detect from

the preceding table, the modern versions of browsers from Netscape and Microsoft

agree about how many digits to display and how to perform internal rounding for

(c) ketabton.com: The Digital Library

953Chapter 35 ✦ The Math, Number, and Boolean Objects

this display. That’s good for the math, but not particularly helpful when you need to

display numbers in a specific format.

Until you get to IE5.5 and NN6, JavaScript does not offer built-in facilities for

formatting the results of floating-point arithmetic. (For the newer browsers, see

the Number object later in this chapter for formatting methods.) Listing 35-1

demonstrates a generic formatting routine for positive values, plus a specific call

that turns a value into a dollar value. Remove the comments and the routine is

fairly compact.

Listing 35-1: A Generic Number-Formatting Routine

<HTML>
<HEAD>
<TITLE>Number Formatting</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// generic positive number decimal formatting function
function format (expr, decplaces) {

// raise incoming value by power of 10 times the
// number of decimal places; round to an integer; convert to string
var str = “” + Math.round (eval(expr) * Math.pow(10,decplaces))
// pad small value strings with zeros to the left of rounded number
while (str.length <= decplaces) {

str = “0” + str
}
// establish location of decimal point
var decpoint = str.length - decplaces
// assemble final result from: (a) the string up to the position of
// the decimal point; (b) the decimal point; and (c) the balance
// of the string. Return finished product.
return str.substring(0,decpoint) + “.” + str.substring(decpoint,str.length);

}
// turn incoming expression into a dollar value
function dollarize (expr) {

return “$” + format(expr,2)
}
</SCRIPT>
</HEAD>
<BODY>
<H1>How to Make Money</H1>
<FORM>
Enter a positive floating-point value or arithmetic expression to be converted
to a currency format:<P>
<INPUT TYPE=”text” NAME=”entry” VALUE=”1/3”>
<INPUT TYPE=”button” VALUE=”>Dollars and Cents>”
onClick=”this.form.result.value=dollarize(this.form.entry.value)”>
<INPUT TYPE=”text” NAME=”result”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

954 Part IV ✦ JavaScript Core Language Reference

This routine may seem like a great deal of work, but it’s essential if your application

relies on floating-point values and specific formatting for all browsers.

You can also enter floating-point numbers with exponents. An exponent is

signified by the letter “e” (upper- or lowercase), followed by a sign (+ or -) and the

exponent value. Here are examples of floating-point values expressed as exponents:

1e6 // 1,000,000 (the “+” symbol is optional on positive exponents)
1e-4 // 0.0001 (plus some error further to the right of the decimal)
-4e-3 // -0.004

For values between 1e-5 and 1e15, JavaScript renders numbers without exponents

(although you can force a number to display in exponential notation in IE5.5 and

NN6). All other values outside these boundaries return with exponential notation in

all browsers.

Hexadecimal and octal integers
JavaScript enables you to work with values in decimal (base-10), hexadecimal

(base-16), and octal (base-8) formats. You have only a few rules to follow when

dealing with any of these values.

Decimal values cannot begin with a leading 0. Therefore, if your page asks users

to enter decimal values that begin with a 0, your script must strip those zeroes

from the input string or use the number parsing global functions (described in the

next section) before performing any math on the values.

Hexadecimal integer values are expressed with a leading 0x or 0X. (That’s a zero,

not the letter “o.”) The A through F values can appear in upper- or lowercase, as

you prefer. Here are some hex values:

0X2B
0X1a
0xcc

Don’t confuse the hex values used in arithmetic with the hexadecimal values used

in color property specifications for Web documents. Those values are expressed in a

special hexadecimal triplet format, which begins with a crosshatch symbol followed

by the three hex values bunched together (such as #c0c0c0).

Octal values are represented by a leading 0 followed by any digits between 0 and 7.

Octal values consist only of integers.

You are free to mix and match base values in arithmetic expressions, but

JavaScript renders all results in decimal form. For conversions to other number

bases, you have to employ a user-defined function in your script. Listing 35-2,

for example, is a function that converts any decimal value from 0 to 255 into a

JavaScript hexadecimal value.

Listing 35-2: Decimal-to-Hexadecimal Converter Function

function toHex(dec) {
hexChars = “0123456789ABCDEF”
if (dec > 255) {

return null
}
var i = dec % 16

(c) ketabton.com: The Digital Library

955Chapter 35 ✦ The Math, Number, and Boolean Objects

var j = (dec - i) / 16
result = “0X”
result += hexChars.charAt(j)
result += hexChars.charAt(i)
return result

}

The toHex() conversion function assumes that the value passed to the function

is a decimal integer. If you simply need a hexadecimal representation of a number in

string format, see the toString() method in Chapter 42.

Converting strings to numbers
What is missing so far from this discussion is a way to convert a number repre-

sented as a string to a number with which the JavaScript arithmetic operators can

work. Before you get too concerned about this, be aware that most JavaScript

operators and math methods gladly accept string representations of numbers and

handle them without complaint. You will run into data type incompatibilities most

frequently when trying to accomplish addition with the + operator (which is also

the string concatenation operator). Also know that if you perform math operations

on values retrieved from form text boxes, those object value properties are strings.

Therefore, in many cases, you need to convert those values to values of the number

type for math operations.

Conversion to numbers requires one of two JavaScript functions:

parseInt(string [,radix])
parseFloat(string [,radix])

These functions, inspired by the Java language. The term parsing has many

implied meanings in programming. One meaning is the same as extracting. The

parseInt() function returns whatever integer value it can extract from the string

passed to it; the parseFloat() function returns the floating-point number that can

be extracted from the string. Here are some examples and their resulting values:

parseInt(“42”) // result = 42
parseInt(“42.33”) // result = 42
parseFloat(“42.33”) // result = 42.33
parseFloat(“42”) // result = 42
parseFloat(“fred”) // result = NaN

Because the parseFloat() function can also work with an integer and return

an integer value, you may prefer using this function in scripts that have to deal

with either kind of number, depending on the string entered into a text field by a user.

An optional second parameter to both functions enables you to specify the base

of the number represented by the string. This comes in handy particularly when

you need a decimal number from a string that starts with one or more zeros.

Normally, the leading zero indicates an octal value. But if you force the conversion

to recognize the string value as a decimal, it is converted the way you expect:

parseInt(“010”) // result = 8
parseInt(“010”,10) // result = 10
parseInt(“F2”) // result = NaN
parseInt(“F2”, 16) // result = 242

(c) ketabton.com: The Digital Library

956 Part IV ✦ JavaScript Core Language Reference

Use these functions wherever you need the integer or floating-point value.

For example:

var result = 3 + parseInt(“3”) // result = 6
var ageVal = parseInt(document.forms[0].age.value)

The latter technique ensures that the string value of this property is converted

to a number (although you should do more data validation — see Chapter 43 —

before trying any math on a user-entered value).

Both the parseInt() and parseFloat() methods start working on the first

character of a string and continue until there are no more numbers or decimal

characters. That’s why you can use them on strings — such as the one returned

by the navigator.appVersion property (for example, 4.0 (compatible; MSIE
5.5; Windows95)) — to obtain just the leading, numeric part of the string. If the

string does not begin with an acceptable character, the methods return NaN (not

a number).

Converting numbers to strings
If you attempt to pass a numeric data type value to many of the string methods

discussed in Chapter 34, JavaScript complains. Therefore, you should convert any

number to a string before you, for example, find out how many digits make up a

number.

There are several ways to force conversion from any numeric value to a string.

The old-fashioned way is to precede the number with an empty string and the

concatenation operator. For example, assume that a variable named dollars
contains the integer value of 2500. To use the string object’s length property

(discussed later in this chapter) to find out how many digits the number has, use

this construction:

(“” + dollars).length // result = 4

The parentheses force JavaScript to evaluate the concatenation before attempting

to extract the length property.

A more elegant way is to use the toString() method. Construct such statements

as you do to invoke any object’s method. For example, to convert the dollars
variable value to a string, use this statement:

dollars.toString() // result = “2500”

This method has one added power in NN3+ and IE4+: You can specify a number

base for the string representation of the number. Called the radix, the base number

is added as a parameter to the method name. Here is an example of creating a

numeric value for conversion to its hexadecimal equivalent as a string:

var x = 30
var y = x.toString(16) // result = “1e”

Use a parameter of 2 for binary results and 8 for octal. The default is base 10.

Be careful not to confuse these conversions with true numeric conversions. You

cannot use results from the toString() method as numeric operands in other

statements.

Finally, in IE5.5 and NN6, three additional methods of the Number object —

toExponential(), toFixed(), and toPrecision()— return string versions of

(c) ketabton.com: The Digital Library

957Chapter 35 ✦ The Math, Number, and Boolean Objects

numbers formatted according to the rules and parameters passed to the methods. I

describe these in detail later in this chapter.

When a number isn’t a number
In a couple of examples in the previous section, you probably noticed that the

result of some operations was a value named NaN. That value is not a string but

rather a special value that stands for Not a Number. For example, if you try to

convert the string “joe” to an integer with parseFloat(), the function cannot

possibly complete the operation. It reports back that the source string, when

converted, is not a number.

When you design an application that requests user input or retrieves data from

a server-side database, you cannot be guaranteed that a value you need to be

numeric is, or can be converted to, a number. If that’s the case, you need to see if

the value is a number before performing some math operation on it. JavaScript

provides a special global function, isNaN(), that enables you to test the “number-

ness” of a value. The function returns true if the value is not a number and false if

it is a number. For example, you can examine a form field that should be a number:

var ageEntry = parseInt(document.forms[0].age.value)
if (isNaN(ageEntry)) {

alert(“Try entering your age again.”)
}

NaN and isNaN() are implemented in Navigator 2 only on UNIX versions. You can
find these terms on all OS platforms of NN3+ and IE4+.

Math Object
Whenever you need to perform math that is more demanding than simple arith-

metic, look through the list of Math object methods for the solution.

Syntax
Accessing Math object properties and methods:

Math.property
Math.method(value [, value])

About this object
In addition to the typical arithmetic operations (covered in detail in Chapter 40),

JavaScript includes more advanced mathematical powers that you can access in a

way that may seem odd to you if you have not programmed in true object-oriented

environments before. Although most arithmetic takes place on the fly (such as var

result = 2 + 2), the rest requires use of the JavaScript internal Math object (with a

capital “M”). The Math object brings with it several properties (which behave like

some other languages’ constants) and many methods (which behave like some

other languages’ math functions).

Note

Math

(c) ketabton.com: The Digital Library

958 Part IV ✦ JavaScript Core Language Reference

The way you use the Math object in statements is the same way you use any

JavaScript object: You create a reference beginning with the Math object’s name,

a period, and the name of the property or method you need:

Math.property | method([parameter]. . . [,parameter])

Property references return the built-in values (things such as pi). Method refer-

ences require one or more values to be sent as parameters of the method. Every

method returns a result.

Properties
JavaScript Math object properties represent a number of valuable constant

values in math. Table 35-1 shows you those methods and their values as displayed

to 16 decimal places.

Table 35-1 JavaScript Math Properties

Property Value Description

Math.E 2.718281828459045091 Euler’s constant

Math.LN2 0.6931471805599452862 Natural log of 2

Math.LN10 2.302585092994045901 Natural log of 10

Math.LOG2E 1.442695040888963387 Log base-2 of E

Math.LOG10E 0.4342944819032518167 Log base-10 of E

Math.PI 3.141592653589793116 π

Math.SQRT1_2 0.7071067811865475727 Square root of 0.5

Math.SQRT2 1.414213562373095145 Square root of 2

Because these property expressions return their constant values, you use them

in your regular arithmetic expressions. For example, to obtain the circumference of

a circle whose diameter is in variable d, employ this statement:

circumference = d * Math.PI

Perhaps the most common mistakes scripters make with these properties are

failing to capitalize the Math object name and observing the case-sensitivity of

property names.

Methods
Methods make up the balance of JavaScript Math object powers. With the

exception of the Math.random() method, all Math object methods take one or

more values as parameters. Typical trigonometric methods operate on the single

values passed as parameters; others determine which of the numbers passed

along are the highest or lowest of the group. The Math.random() method takes

no parameters but returns a randomized, floating-point value between 0 and 1
(note that the method does not work on Windows or Macintosh versions of

Math

(c) ketabton.com: The Digital Library

959Chapter 35 ✦ The Math, Number, and Boolean Objects

Navigator 2). Table 35-2 lists all the Math object methods with their syntax and

descriptions of the values they return.

Table 35-2 Math Object Methods

Method Syntax Returns

Math.abs(val) Absolute value of val

Math.acos(val) Arc cosine (in radians) of val

Math.asin(val) Arc sine (in radians) of val

Math.atan(val) Arc tangent (in radians) of val

Math.atan2(val1, val2) Angle of polar coordinates x and y

Math.ceil(val) Next integer greater than or equal to val

Math.cos(val) Cosine of val

Math.exp(val) Euler’s constant to the power of val

Math.floor(val) Next integer less than or equal to val

Math.log(val) Natural logarithm (base e) of val

Math.max(val1, val2) The greater of val1 or val2

Math.min(val1, val2) The lesser of val1 or val2

Math.pow(val1, val2) Val1 to the val2 power

Math.random() Random number between 0 and 1

Math.round(val) N+1 when val >= N.5; otherwise N

Math.sin(val) Sine (in radians) of val

Math.sqrt(val) Square root of val

Math.tan(val) Tangent (in radians) of val

HTML is not exactly a graphic artist’s dream environment, so using trig functions

to obtain a series of values for HTML-generated charting is not a hot JavaScript

prospect. Only with the advent of positionable elements have scripters been able to

apply their knowledge of using these functions to define fancy trajectories for flying

elements. For scripters who are not trained in programming, math is often a major

stumbling block. But as you’ve seen so far, you can accomplish a great deal with

JavaScript by using simple arithmetic and a little bit of logic — leaving the heavy-

duty math for those who love it.

Creating random numbers
The Math.random() method returns a floating-point value between 0 and 1. If

you design a script to act like a card game, you need random integers between 1

and 52; for dice, the range is 1 to 6 per die. To generate a random integer between

zero and any top value, use the following formula:

Math

(c) ketabton.com: The Digital Library

960 Part IV ✦ JavaScript Core Language Reference

Math.floor(Math.random() * n)

Here, n is the top number. To generate random numbers between a different

range, use this formula:

Math.floor(Math.random() * n) + m

Here, m is the lowest possible integer value of the range and n equals the top

number of the range. For the dice game, the formula for each die is

newDieValue = Math.floor(Math.random() * 6) + 1

Math object shortcut
In Chapter 39, you see details about a JavaScript construction that enables you

to simplify the way you address multiple Math object properties and methods in

statements. The trick is to use the with statement.

In a nutshell, the with statement tells JavaScript that the next group of state-

ments (inside the braces) refers to a particular object. In the case of the Math
object, the basic construction looks like this:

with (Math) {
//statements

}

For all intervening statements, you can omit the specific references to the Math
object. Compare the long reference way of calculating the area of a circle (with a

radius of six units)

result = Math.pow(6,2) * Math.PI

to the shortcut reference way:

with (Math) {
result = pow(6,2) * PI

}

Though the latter occupies more lines of code, the object references are shorter

and more natural when reading the code. For a longer series of calculations involving

Math object properties and methods, the with construction saves keystrokes and

reduces the likelihood of a case-sensitive mistake with the object name in a reference.

You can also include other full-object references within the with construction;

JavaScript attempts to attach the object name only to those references lacking an

object name. On the downside, the with construction is not particularly efficient

in JavaScript because it must perform a lot of internal tracking in order to work.

Number Object

Properties Methods

constructor toExponential()

MAX_VALUE toFixed()

Number

(c) ketabton.com: The Digital Library

961Chapter 35 ✦ The Math, Number, and Boolean Objects

MIN_VALUE toLocaleString()

NaN toString()

NEGATIVE_INFINITY toPrecision()

POSITIVE_INFINITY valueOf()

prototype

Syntax
Creating a number object:

var val = new Number(number)

Accessing number and Number object properties and methods:

number.property | method([parameters])
Number.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

About this object
The Number object is rarely used because (for the most part) JavaScript satisfies

day-to-day numeric needs with a plain number value. But the Number object contains

some information and power of value to serious programmers.

First on the docket are properties that define the ranges for numbers in the

language. The largest number (in both Navigator and Internet Explorer) is 1.79E+308;

the smallest number is 2.22E-308. Any number larger than the maximum is POSITIVE_
INFINITY; any number smaller than the minimum is NEGATIVE_INFINITY. Rarely

will you accidentally encounter these values.

More to the point of a JavaScript object, however, is the prototype property. In

Chapter 34, you see how to add a method to a string object’s prototype such that

every newly created object contains that method. The same goes for the Number.
prototype property. If you have a need to add common functionality to every

number object, this is where to do it. This prototype facility is unique to full-

fledged number objects and does not apply to plain number values. For experienced

programmers who care about such matters, JavaScript number objects and values

are defined internally as IEEE double-precision 64-bit values.

Properties
constructor

See string.constructor (Chapter 34).

MAX_VALUE
MIN_VALUE

numberObject.constructor

(c) ketabton.com: The Digital Library

962 Part IV ✦ JavaScript Core Language Reference

NEGATIVE_INFINITY
POSITIVE_INFINITY

Value: Number Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

The Number.MAX_VALUE and Number.MIN_VALUE properties belong to the static

Number object. They represent constants for the largest and smallest possible posi-

tive numbers that JavaScript (and ECMAScript) can work with. Their actual values

are 1.7976931348623157 *, 10308, and 5 * 10-324, respectively.

A number that falls outside the range of allowable numbers is equal to the

constant Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY.

Example on the CD-ROM

Related Items: NaN property; isNaN() global function.

NaN
Value: NaN Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

The NaN property is a constant that JavaScript uses to report when a number-

related function or method attempts to work on a value other than a number or the

result is something other than a number. You encounter the NaN value most commonly

as the result of the parseInt() and parseFloat() functions whenever a string

undergoing conversion to a number lacks a numeral as the first character. Use the

isNaN() global function to see if a value is an NaN value.

Example
See the discussion of the isNaN() function in Chapter 42.

Related Item: isNaN() global function.

prototype
See String.prototype (Chapter 34).

On the
CD-ROM

Number.prototype

(c) ketabton.com: The Digital Library

963Chapter 35 ✦ The Math, Number, and Boolean Objects

Methods
number.toExponential(fractionDigits)
number.toFixed(fractionDigits)
number.toPrecision(precisionDigits)

Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

A recent addition to the ECMA language — and thus to the JavaScript-enabled

browsers — are three Number object methods that let scripts control the formatting

of numbers for display as string text. Each method has a unique purpose, but they

all return strings. You should perform all math operations as unformatted number

objects because the values have the most precision. Only after you are ready to

display the results should you use one of these methods to convert the number to

a string for display as body text or assignment to a text field.

The toExponential() method forces a number to display in exponential nota-

tion, even if the number is in the range in which JavaScript normally uses standard

notation. The parameter is an integer specifying how many digits to the right of the

decimal should be returned. All digits to the right of the decimal are returned, even

if they are zero. For example, if a variable contains the numeric value 345, applying

toExponential(3) to that value yields 3.450e+2, which is JavaScript’s exponential

notation for 3.45 × 102.
Use the toFixed() method when you want to format a number with a specific

number of digits to the right of the decimal. This is the method you use, for instance,

to display the results of a financial calculation in units and hundredths of units (for

example, dollars and cents). The parameter to the method is an integer indicating

the number of digits to be displayed to the right of the decimal. If the number being

formatted has more numbers to the right of the decimal than the number of digits

specified by the parameter, the method rounds the rightmost visible digit — but

only with respect to the unrounded value of the next digit. For example, the value

123.455 fixed to two digits to the right of the decimal is rounded up to 123.46.

But if the starting value is 123.4549, the method ignores the 9 and sees that the 4

to the right of the 5 should be rounded down; therefore, the result is 123.45. Do

not consider the toFixed() method to be an accurate rounder of numbers; however,

it does a satisfactory job in most cases.

The final method is toPrecision(), which enables you to define how many total

digits (including digits to the left and right of the decimal) to display of a number. In

other words, you define the precision of a number. The following list demonstrates

the results of several parameter values signifying a variety of precisions:

var num = 123.45
num.toPrecision(1) // result = 1e+2
num.toPrecision(2) // result = 1.2e+2
num.toPrecision(3) // result = 123

numberObject.toExponential()

(c) ketabton.com: The Digital Library

964 Part IV ✦ JavaScript Core Language Reference

num.toPrecision(4) // result = 123.5
num.toPrecision(5) // result = 123.45
num.toPrecision(6) // result = 123.450

Notice that the same kind of rounding can occur with toPrecision() as it does

for toFixed().

Example on the CD-ROM

Related Item: Math object.

number.toLocaleString()
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

According to the ECMA Edition 3 standard, browsers have some leeway in deter-

mining exactly how the toLocaleString() method should return a string value

that conforms with the language standard of the client system or browser. IE5.5

appears to return the same value as the toFixed(2) method.

Related Items: number.toFixed(), number.toString() methods.

number.toString([radix])
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

The number.toString() method returns a string value version of the current

number. The default radix parameter (10) converts the value to base-10 notation if

the original number isn’t already of that type. Or you can specify other number bases

(for example, 2 for binary, 16 for hexadecimal) to convert the original number to the

other base — as a string, not a number, for further calculation.

Example on the CD-ROM

Related Item: toLocaleString() method.

On the
CD-ROM

On the
CD-ROM

numberObject.toString()

(c) ketabton.com: The Digital Library

965Chapter 35 ✦ The Math, Number, and Boolean Objects

number.valueOf()
See string.valueOf() (Chapter 34).

Boolean Object

Properties Methods

constructor toString()

prototype valueOf()

Syntax
Creating a Boolean object:

var val = new Boolean(BooleanValue)

Accessing Boolean object properties:

BooleanObject.property | method

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

About this object
You work with Boolean values a lot in JavaScript — especially as the result of

conditional tests. Just as string values benefit from association with string objects

and their properties and methods, so, too, do Boolean values receive aid from the

Boolean object. For example, when you display a Boolean value in a text box, the

“true” or “false” string is provided by the Boolean object’s toString() method

so you don’t have to invoke it directly.

The only time you need to even think about a Boolean object is if you wish to

attach some property or method to Boolean objects that you create with the new

Boolean() constructor. Parameter values for the constructor include the string

versions of the values, numbers (0 for false; any other integer for true), and

expressions that evaluate to a Boolean value. Any such new Boolean object is

imbued with the new properties or methods you add to the prototype property

of the core Boolean object.

For details about the properties and methods of the Boolean object, see the

corresponding listings for the String object in Chapter 34.

✦ ✦ ✦

BooleanObject

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The Date Object

Perhaps the most untapped power of JavaScript is its

date and time handling. Scripters passed over the Date
object with good cause in the early days of JavaScript, because

in earlier versions of scriptable browsers, significant bugs and

platform-specific anomalies made date and time programming

hazardous without significant testing. Even with the improved

bug situation, working with dates requires a working knowledge

of the world’s time zones and their relationships with the

standard reference point, known as Greenwich Mean Time

(GMT) or Coordinated Universal Time (abbreviated UTC).

Now that date- and time-handling has improved in the

latest browsers, I hope more scripters look into incorporating

these kinds of calculations into their pages. In Chapter 54,

for example, I show you an application that lets your Web site

highlight the areas that have been updated since each visitor’s

last surf ride through your pages — an application that relies

heavily on date arithmetic and time zone conversion.

Before getting to the JavaScript part of date discussions,

however, the chapter summarizes key facts about time zones

and their impact on scripting date and time on a browser. If

you’re not sure what GMT and UTC mean, the following

section is for you.

Time Zones and GMT
By international agreement, the world is divided into distinct

time zones that allow the inhabitants of each zone to say with

confidence that when the Sun appears directly overhead, it is

roughly noon, squarely in the middle of the day. The current

time in the zone is what we set our clocks to — the local time.

That’s fine when your entire existence and scope of life go

no further than the width of your own time zone. But with

instant communication among all parts of the world, your

scope reaches well beyond local time. Periodically you must

be aware of the local time in other zones. After all, if you live

in New York, you don’t want to wake up someone in Los

Angeles before dawn with a phone call from your office.

For the rest of this section, I speak of the Sun “moving” as
if Earth were the center of the solar system. I do so for the
convenience of our daily perception of the Sun arcing

Note

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with date
and time values in
JavaScript

Performing date
calculations

Validating date entry
form fields

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

968 Part IV ✦ JavaScript Core Language Reference

across what appears to us as a stationary sky. In point of fact, I believe
Copernicus’s theories, so delete that e-mail you were about to send me.

From the point of view of the time zone over which the Sun is positioned at any

given instant, all time zones to the east have already had their noon, so it is later in

the day for them — one hour later per time zone (except for those few time zones

offset by fractions of an hour). That’s why when U.S. television networks broadcast

simultaneously to the eastern and central time zones, the announced schedule for

a program is “10 eastern, 9 central.”

Many international businesses must coordinate time schedules of far-flung events.

Doing so and taking into account the numerous time zone differences (not to mention

seasonal national variations, such as daylight saving time) would be a nightmare.

To help everyone out, a standard reference point was devised: the time zone running

through the celestial observatory at Greenwich (pronounced GREN-itch), England.

This time zone is called Greenwich Mean Time, or GMT for short. The “mean” part

comes from the fact that on the exact opposite side of the globe (through the Pacific

Ocean) is the international date line, another world standard that decrees where

the first instance of the next calendar day appears on the planet. Thus, GMT is

located at the middle, or mean, of the full circuit of the day. Not that many years

ago, GMT was given another abbreviation that is not based on any one language of

the planet. The abbreviation is UTC (pronounced as its letters: yu-tee-see), and the

English version is Coordinated Universal Time. Whenever you see UTC, it is for all

practical purposes the same as GMT.

If your personal computer’s system clock is set correctly, the machine ticks away

in GMT time. But because you set your local time zone in the appropriate control

panel, all file time stamps and clock displays are in your local time. The machine

knows what the offset time is between your local time and GMT. For daylight saving

time, you may have to check a preference setting so that the offset is adjusted

accordingly; in Windows 95 and later, the operating system knows when the change-

over occurs and prompts you if changing the offset is okay. In any case, if you travel

across time zones with a laptop, you should change the computer’s time zone setting,

not its clock.

JavaScript’s inner handling of date and time works a lot like the PC clock (on

which your programs rely). Date values that you generate in a script are stored

internally in GMT time; however, almost all the displays and extracted values are

in the local time of the visitor (not the Web site server). And remember that the

date values are created on the visitor’s machine by virtue of your script’s generating

that value — you don’t send “living” date objects to the client from the server. This

concept is perhaps the most difficult to grasp as you work with JavaScript date

and time.

Whenever you program time and date in JavaScript for a public Web page, you

must take the worldview. This view requires knowing that the visitor’s computer

settings determine the accuracy of the conversion between GMT and local time.

You’ll also have to do some testing by changing your PC’s clock to times in other

parts of the world and making believe you are temporarily in those remote locations,

which isn’t always easy to do. It reminds me of the time I was visiting Sydney,

Australia. I was turning in for the night and switched on the television in the hotel.

This hotel received a live satellite relay of a long-running U.S. television program,

(c) ketabton.com: The Digital Library

969Chapter 36 ✦ The Date Object

Today. The program broadcast from New York was for the morning of the same day

I was just finishing in Sydney. Yes, this time zone stuff can make your head hurt.

The Date Object
Like a handful of other objects in JavaScript and the document object models,

there is a distinction between the single, static Date object that exists in every

window (or frame) and a date object that contains a specific date and time. The

static Date object (uppercase “D”) is used in only a few cases: Primarily to create

a new instance of a date and to invoke a couple of methods that the Date object

offers for the sake of some generic conversions.

Most of your date and time work, however, is with instances of the Date object.

These instances are referred to generically as date objects (lowercase “d”). Each

date object is a snapshot of an exact millisecond in time, whether it be for the instant

at which you generate the object or for a specific time in the past or future you

need for calculations. If you need to have a live clock ticking away, your scripts will

repeatedly create new date objects to grab up-to-the-millisecond snapshots of your

computer’s clock. To show the time on the page, extract the hours, minutes, and

seconds from the snapshot date object, and then display the values as you like

(for example, a digital readout, a graphical bar chart, and so on). By and large, it

is the methods of a date object instance that your scripts invoke to read or modify

individual components of a date object (for example, the month or hour).

Despite its name, every date object contains information about date and time.

Therefore, even if you’re concerned only about the date part of an object’s data,

time data is standing by as well. As you learn in a bit, the time element can catch

you off-guard for some operations.

Creating a date object
The statement that asks JavaScript to make an object for your script uses the

special object construction keyword new. The basic syntax for generating a new

date object is as follows:

var dateObjectName = new Date([parameters])

The date object evaluates to an object data type rather than to some string or

numeric value.

With the date object’s reference safely tucked away in the variable name, you

access all date-oriented methods in the dot-syntax fashion with which you’re

already familiar:

var result = dateObjectName.method()

With variables, such as result, your scripts perform calculations or displays of

the date object’s data (some methods extract pieces of the date and time data from

the object). If you then want to put some new value into the date object (such as

adding a year to the date object), you assign the new value to the object by way of

the method that lets you set the value:

dateObjectName.method(newValue)

(c) ketabton.com: The Digital Library

970 Part IV ✦ JavaScript Core Language Reference

This example doesn’t look like the typical JavaScript assignment statement, which

has an equals sign operator. But this statement is the way in which methods that

set date object data work.

You cannot get very far into scripting dates without digging into time zone arith-

metic. Although JavaScript may render the string equivalent of a date object in your

local time zone, the internal storage is strictly GMT.

Even though you haven’t yet seen details of a date object’s methods, here is how

you use two of them to add one year to today’s date.

var oneDate = new Date() // creates object with current GMT date
var theYear = oneDate.getYear() // theYear is now storing the value 98
theYear = theYear + 1 // theYear now is 99
oneDate.setYear(theYear) // new year value now in the object

At the end of this sequence, the oneDate object automatically adjusts all the

other date components for the next year’s date. The day of the week, for example,

will be different, and JavaScript takes care of that for you, should you need to extract

that data. With next year’s data in the oneDate object, you may now want to extract

that new date as a string value for display in a field on the page or submit it quietly

to a CGI program on the server.

The issue of parameters for creating a new date object is a bit complex, mostly

because of the flexibility that JavaScript offers the scripter. Recall that the job of

the new Date() statement is to create a place in memory for all data that a date

needs to store. What is missing from that task is the data — what date and time to

enter into that memory spot. That’s where the parameters come in.

If you leave the parameters empty, JavaScript takes that to mean you want

today’s date and the current time to be assigned to that new date object. JavaScript

isn’t any smarter, of course, than the setting of the internal clock of your page visi-

tor’s personal computer. If the clock isn’t correct, JavaScript won’t do any better of

a job identifying the date and time.

Remember that when you create a new date object, it contains the current time as
well. The fact that the current date may include a time of 16:03:19 (in 24-hour
time) may throw off things, such as days-between-dates calculations. Be careful.

To create a date object for a specific date or time, you have five ways to send

values as a parameter to the new Date() constructor function:

new Date(“Month dd, yyyy hh:mm:ss”)
new Date(“Month dd, yyyy”)
new Date(yy,mm,dd,hh,mm,ss)
new Date(yy,mm,dd)
new Date(milliseconds)

The first four variations break down into two styles — a long string versus a

comma-delimited list of data — each with optional time settings. If you omit time

settings, they are set to 0 (midnight) in the date object for whatever date you

entered. You cannot omit date values from the parameters — every date object

must have a real date attached to it, whether you need it or not.

Note

(c) ketabton.com: The Digital Library

971Chapter 36 ✦ The Date Object

In the long string versions, the month is spelled out in full in English. No abbrevi-

ations are allowed. The rest of the data is filled with numbers representing the date,

year, hours, minutes, and seconds, even if the order is different from your local way

of indicating dates. For single-digit values, you can use either a one- or two-digit

version (such as 4:05:00). Colons separate hours, minutes, and seconds.

The short versions contain a non-quoted list of integer values in the order indi-

cated. JavaScript cannot know that a 30 means the date if you accidentally place it

in the month slot.

You use the last version only when you have the millisecond value of a date and

time available. This generally occurs after some math arithmetic (described later

in this chapter), leaving you with a date and time in millisecond format. To convert

that numeric value to a date object, use the new Date() constructor. From the

new date object created, you can retrieve more convenient values about the date

and time.

Native object properties and methods
Like the String and Array objects, the Date object features a small handful of

properties and methods that all native JavaScript objects have in common. On the

property side, the Date object in NN3+ and IE3/J2+ has a prototype property, which

enables you to apply new properties and methods to every date object created in

the current page. You can see examples of how this works in discussions of the

prototype property for String and Array objects (Chapters 34 and 37, respectively).

At the same time, every instance of a date object in IE4+ and NN6 has a constructor
property that references the constructor function that generated the object.

Methods in common are toString() and valueOf() (both NN4+ and IE3/J2+).

A date object has numerous methods that convert date object types to strings,

most of which are more specific than the generic toString() one. The valueOf()
method returns the millisecond integer that is stored for a particular date — the

same value that you get with the more object-specific getUTCMilliseconds()
method (see the following section).

Date methods
The bulk of a date object’s methods are for reading parts of the date and time

information and for changing the date and time stored in the object. These two

categories of methods are easily identifiable because they all begin with the word

“get” or “set.” Table 36-1 lists all of the methods of both the static Date object and,

by inheritance, date object instances. The list is impressive — some would say

frightening — but there are patterns you should readily observe. Most methods

deal with a single component of a date and time value: year, month, date, and so

forth. Each block of “get” and “set” methods also has two sets of methods: one for

the local date and time conversion of the date stored in the object; one for the

actual UTC date stored in the object. After you see the patterns, the list should be

more manageable. Unless otherwise noted, a method has been part of the Date
object since the first generation of scriptable browsers.

(c) ketabton.com: The Digital Library

972 Part IV ✦ JavaScript Core Language Reference

Table 36-1: Date Object Methods

Method Value Range Description

dateObj.getFullYear() 1970-... Specified year (NN4+, IE3/J2+)

dateObj.getYear() 70-... (See Text)

dateObj.getMonth() 0-11 Month within the year (January = 0)

dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time

dateObj.getMinutes() 0-59 Minute of the specified hour

dateObj.getSeconds() 0-59 Second within the specified minute

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00
GMT

dateObj.getMilliseconds() 0-... Milliseconds since 1/1/70 00:00:00
GMT (NN4+, IE3/J2+)

dateObj.getUTCFullYear() 1970-... Specified UTC year (NN4+, IE3/J2+)

dateObj.getUTCMonth() 0-11 UTC month within the year (January
= 0) (NN4+, IE3/J2+)

dateObj.getUTCDate() 1-31 UTC date within the month (NN4+,
IE3/J2+)

dateObj.getUTCDay() 0-6 UTC day of week (Sunday = 0)
(NN4+, IE3/J2+)

dateObj.getUTCHours() 0-23 UTC hour of the day in 24-hour time
(NN4+, IE3/J2+)

dateObj.getUTCMinutes() 0-59 UTC minute of the specified hour
(NN4+, IE3/J2+)

dateObj.getUTCSeconds() 0-59 UTC second within the specified
minute (NN4+, IE3/J2+)

dateObj.getUTCMilliseconds() 0-... UTC milliseconds since 1/1/70
00:00:00 GMT (NN4+, IE3/J2+)

dateObj.setYear(val) 1970-... Be safe: always specify a four-digit
year

dateObj.setFullYear(val) 1970-... Specified year (NN4+, IE3/J2+)

dateObj.setMonth(val) 0-11 Month within the year (January = 0)

dateObj.setDate(val) 1-31 Date within the month

dateObj.setDay(val) 0-6 Day of week (Sunday = 0)

dateObj.setHours(val) 0-23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0-59 Minute of the specified hour

(c) ketabton.com: The Digital Library

973Chapter 36 ✦ The Date Object

dateObj.setSeconds(val) 0-59 Second within the specified minute

dateObj.setMilliseconds(val) 0-... Milliseconds since 1/1/70 00:00:00
GMT (NN4+, IE3/J2+)

dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00
GMT

dateObj.setUTCFullYear(val) 1970-... Specified UTC year (NN4+, IE3/J2+)

dateObj.setUTCMonth(val) 0-11 UTC month within the year (January
= 0) (NN4+, IE3/J2+)

dateObj.setUTCDate(val) 1-31 UTC date within the month (NN4+,
IE3/J2+)

dateObj.setUTCDay(val) 0-6 UTC day of week (Sunday = 0)
(NN4+, IE3/J2+)

dateObj.setUTCHours(val) 0-23 UTC hour of the day in 24-hour time
(NN4+, IE3/J2+)

dateObj.setUTCMinutes(val) 0-59 UTC minute of the specified hour
(NN4+, IE3/J2+)

dateObj.setUTCSeconds(val) 0-59 UTC second within the specified
minute (NN4+, IE3/J2+)

dateObj.setUTCMilliseconds(val) 0-... UTC milliseconds since 1/1/70
00:00:00 GMT (NN4+, IE3/J2+)

dateObj.getTimezoneOffset() 0-... Minutes offset from GMT/UTC

dateObj.toDateString() Date-only string in a format
determined by browser (IE5.5)

dateObj.toGMTString() Date/time string in universal format

dateObj.toLocaleDateString() Date-only string in your system’s
localized format (NN6, IE5.5)

dateObj.toLocaleString() Date/time string in your system’s
localized format

dateObj.toLocaleTimeString() Time-only string in your system’s
localized format (NN6, IE5.5)

dateObj.toString() Date/time string in a format
determined by browser

dateObj.toTimeString() Time-only string in a format
determined by browser (IE5.5)

dateObj.toUTCString() Date/time string in universal format
(NN4+, IE3/J2+)

Date.parse(“dateString”) Converts string date to milliseconds
integer

Date.UTC(date values) Converts GMT string date to
milliseconds integer

(c) ketabton.com: The Digital Library

974 Part IV ✦ JavaScript Core Language Reference

Deciding between using the UTC or local versions of the methods depends on

several factors. If the browsers you must support go back to the beginning, you will

be stuck with the local versions in any case. But even for newer browsers, activities,

such as calculating the number of days between dates or creating a countdown timer

for a quiz, won’t care which set you use, but you must use the same set for all

calculations. If you start mixing local and UTC versions of date methods, you’ll be

destined to get wrong answers. Where the UTC versions come in most handy is

when your date calculations must take into account the time zone of the client

machine compared to some absolute in another time zone — calculating the time

remaining to the chiming of Big Ben signifying the start of the New Year in London.

JavaScript maintains its date information in the form of a count of milliseconds

(thousandths of a second) starting from January 1, 1970, in the GMT (UTC) time

zone. Dates before that starting point are stored as negative values (but see the

section on bugs and gremlins later in this chapter). Regardless of the country you

are in or the date and time formats specified for your computer, the millisecond is

the JavaScript universal measure of time. Any calculations that involve adding or

subtracting times and dates should be performed in the millisecond values to

ensure accuracy. Therefore, though you may never display the milliseconds value

in a field or dialog box, your scripts will probably work with them from time to time

in variables. To derive the millisecond equivalent for any date and time stored in a

date object, use the dateObj.getTime() method, as in

var startDate = new Date()
var started = startDate.getTime()

Although the method has the word “time” in its name, the fact that the value is

the total number of milliseconds from January 1, 1970, means the value also conveys

a date.

Other date object get methods read a specific component of the date or time.

You have to exercise some care here, because some values begin counting with 0

when you may not expect it. For example, January is month 0 in JavaScript’s scheme;

December is month 11. Hours, minutes, and seconds all begin with 0, which, in the

end, is logical. Calendar dates, however, use the actual number that would show up

on the wall calendar: The first day of the month is date value 1. For the twentieth

century years, the year value is whatever the actual year number is, minus 1900.

For 1996, that means the year value is 96. But for years before 1900 and after 1999,

JavaScript uses a different formula, showing the full year value. This means you

have to check whether a year value is less than 100 and add 1900 to it before

displaying that year.

var today = new Date()
var thisYear = today.getYear()
if (thisYear < 100) {

thisYear += 1900
}

This assumes, of course, you won’t be working with years before A.D. 100. If your

audience is strictly IE3/J2+ and NN4+, then use only the getFullYear() method,

which returns the complete set of year digits from all ranges.

To adjust any one of the elements of a date value, use the corresponding set

method in an assignment statement. If the new value forces the adjustment of other

(c) ketabton.com: The Digital Library

975Chapter 36 ✦ The Date Object

elements, JavaScript takes care of that. For example, consider the following

sequence and how some values are changed for us:

myBirthday = new Date(“September 11, 2001”)
result = myBirthday.getDay() // result = 2, a Tuesday
myBirthday.setYear(2002) // bump up to next year
result = myBirthday.getDay() // result = 3, a Wednesday

Because the same date in the following year is on a different day, JavaScript

tracks that for you.

Accommodating time zones
Understanding the dateObj.getTimezoneOffset() method involves both your

operating system’s time control panel setting and an internationally recognized (in

computerdom, anyway) format for representing dates and times. If you have ignored

the control panel stuff about setting your local time zone, the values you get for this

property may be off for most dates and times. In the eastern part of North America,

for instance, the eastern standard time zone is five hours earlier than Greenwich

Mean Time. With the getTimezoneOffset() method producing a value of minutes’

difference between GMT and the PC’s time zone, the five hours difference of eastern

standard time is rendered as a value of 300 minutes. On the Windows platform, the

value automatically changes to reflect changes in daylight saving time in the user’s

area (if applicable). Offsets to the east of GMT (to the date line) are expressed as

negative values.

Dates as strings
When you generate a date object, JavaScript automatically applies the toString()

method to the object if you attempt to display that date either in a page or alert

box. The format of this string varies with browser and operating system platform.

For example, in Navigator 4 for Windows 98, the string is in the following format:

Wed Oct 31 11:43:34 GMT-0800 (Pacific Standard Time) 2001

But in the same version for Macintosh, the string is

Wed Oct 31 11:43:34 GMT-0800 2001

Internet Explorer returns its own variations on the string. The point is not to rely

on a specific format and character location of this string for the components of

dates. Use the date object methods to read date object components.

JavaScript does, however, provide two methods that return the date object in

more constant string formats. One, dateObj.toGMTString(), converts the date

and time to the GMT equivalent on the way to the variable that you use to store the

extracted data. Here is what such data looks like:

Wed, 1 Nov 2000 04:25:28 GMT

If you’re not familiar with the workings of GMT and how such conversions can

present unexpected dates, exercise great care in testing your application. Eight

o’clock on a Friday evening in California in the winter is four o’clock on Saturday

morning GMT.

(c) ketabton.com: The Digital Library

976 Part IV ✦ JavaScript Core Language Reference

If time zone conversions make your head hurt, you can use the second string

method, dateObj.toLocaleString(). In Navigator 3 for North American Windows

users, the returned value looks like this:

10/31/2000 20:25:28

Starting with IE5.5 and NN6, you can also have JavaScript convert a date

object to just the date or time portions in a nicely formatted version. The best

pair of methods for this are toLocaleDateString() and toLocaleTimeString(),

because these methods return values that make the most sense to the user, based

on the localization settings of the user’s operating system and browser.

Friendly date formats for older browsers
If you don’t have the luxury of writing only for IE5.5+ or NN6+, you can create

your own formatting function to do the job for a wide range of browsers. Listing

36-1 demonstrates one way of creating this kind of string from a date object (in a

form compatible with Navigator 2 and Internet Explorer 3 pseudo-arrays).

Listing 36-1: Creating a Friendly Date String

<HTML>
<HEAD>
<TITLE>Date String Maker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function MakeArray(n) {

this.length = n
return this

}
monthNames = new MakeArray(12)
monthNames[1] = “January”
monthNames[2] = “February”
monthNames[3] = “March”
monthNames[4] = “April”
monthNames[5] = “May”
monthNames[6] = “June”
monthNames[7] = “July”
monthNames[8] = “August”
monthNames[9] = “September”
monthNames[10] = “October”
monthNames[11] = “November”
monthNames[12] = “December”

dayNames = new MakeArray(7)
dayNames[1] = “Sunday”
dayNames[2] = “Monday”
dayNames[3] = “Tuesday”
dayNames[4] = “Wednesday”
dayNames[5] = “Thursday”
dayNames[6] = “Friday”
dayNames[7] = “Saturday”

(c) ketabton.com: The Digital Library

977Chapter 36 ✦ The Date Object

function customDateString(oneDate) {
var theDay = dayNames[oneDate.getDay() + 1]
var theMonth = monthNames[oneDate.getMonth() + 1]
var theYear = oneDate.getYear()
theYear += (theYear < 100) ? 1900 : 0
return theDay + “, “ + theMonth + “ “ + oneDate.getDate() + “, “ + theYear

}
</SCRIPT>
</HEAD>

<BODY>
<H1> Welcome!</H1>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(customDateString(new Date()))
</SCRIPT>

<HR>
</BODY>
</HTML>

Assuming the user has the PC’s clock set correctly (a big assumption), the date

appearing just below the opening headline is the current date — making it appear as

though the document had been updated today. The downside to this approach (as

opposed to the newer toLocaleDateString() method) is that international users

are forced to view dates in the format you design, which may be different from their

local custom.

More conversions
The last two methods shown in Listing 36-1 are methods of the static Date

object. These utility methods convert dates from string or numeric forms into

millisecond values of those dates. The primary beneficiary of these actions is the

dateObj.setTime() method, which requires a millisecond measure of a date as a

parameter. You use this method to throw an entirely different date into an existing

date object.

Date.parse() accepts as a parameter date strings similar to the ones you’ve

seen in this section, including the internationally approved version. Date.UTC(),

on the other hand, requires the comma-delimited list of values (in proper order:

yy,mm,dd,hh,mm,ss) in the GMT zone. The Date.UTC() method gives you a back-

ward-compatible way to hard-code a GMT time (you can do the same in NN4+ and

IE4+ via the UTC methods). The following is an example that creates a new date

object for 6 p.m. on March 4, 2002, GMT in IE5/Windows:

var newObj = new Date(Date.UTC(2002,2,4,18,0,0))
result = newObj.toString() // result = “Mon, Mar 04 10:00:00 PST 2002”

The second statement returns a value in a local time zone, because all non-UTC

methods automatically convert the GMT time stored in the object to the client’s

local time.

(c) ketabton.com: The Digital Library

978 Part IV ✦ JavaScript Core Language Reference

Date and time arithmetic
You may need to perform some math with dates for any number of reasons.

Perhaps you need to calculate a date at some fixed number of days or weeks in the

future or figure out the number of days between two dates. When calculations of

these types are required, remember the lingua franca of JavaScript date values:

milliseconds.

What you may need to do in your date-intensive scripts is establish some variable

values representing the number of milliseconds for minutes, hours, days, or weeks,

and then use those variables in your calculations. Here is an example that establishes

some practical variable values, building on each other:

var oneMinute = 60 * 1000
var oneHour = oneMinute * 60
var oneDay = oneHour * 24
var oneWeek = oneDay * 7

With these values established in a script, I can use one to calculate the date one

week from today:

var targetDate = new Date()
var dateInMs = targetDate.getTime()
dateInMs += oneWeek
targetDate.setTime(dateInMs)

Another example uses components of a date object to assist in deciding what

kind of greeting message to place in a document, based on the local time of the

user’s PC clock. Listing 36-2 adds to the scripting from Listing 36-1, bringing some

quasi-intelligence to the proceedings. Again, this script uses the older array

creation mechanism to be compatible with Navigator 2 and Internet Explorer 3.

Listing 36-2: A Dynamic Welcome Message

<HTML>
<HEAD>
<TITLE>Date String Maker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function MakeArray(n) {

this.length = n
return this

}
monthNames = new MakeArray(12)
monthNames[1] = “January”
monthNames[2] = “February”
monthNames[3] = “March”
monthNames[4] = “April”
monthNames[5] = “May”
monthNames[6] = “June”
monthNames[7] = “July”
monthNames[8] = “August”
monthNames[9] = “September”
monthNames[10] = “October”
monthNames[11] = “November”
monthNames[12] = “December”

(c) ketabton.com: The Digital Library

979Chapter 36 ✦ The Date Object

dayNames = new MakeArray(7)
dayNames[1] = “Sunday”
dayNames[2] = “Monday”
dayNames[3] = “Tuesday”
dayNames[4] = “Wednesday”
dayNames[5] = “Thursday”
dayNames[6] = “Friday”
dayNames[7] = “Saturday”

function customDateString(oneDate) {
var theDay = dayNames[oneDate.getDay() + 1]
var theMonth = monthNames[oneDate.getMonth() + 1]
var theYear = oneDate.getYear()
theYear += (theYear < 100) ? 1900 : 0
return theDay + “, “ + theMonth + “ “ + oneDate.getDate() + “, “ + theYear

}
function dayPart(oneDate) {

var theHour = oneDate.getHours()
if (theHour <6)

return “wee hours”
if (theHour < 12)

return “morning”
if (theHour < 18)

return “afternoon”
return “evening”

}
</SCRIPT>
</HEAD>

<BODY>
<H1> Welcome!</H1>
<SCRIPT LANGUAGE=”JavaScript”>
today = new Date()
var header = (customDateString(today)).italics()
header += “
We hope you are enjoying the “
header += dayPart(today) + “.”
document.write(header)
</SCRIPT>
<HR>
</BODY>
</HTML>

The script divides the day into four parts and presents a different greeting for

each part of the day. The greeting that plays is based, simply enough, on the hour

element of a date object representing the time the page is loaded into the browser.

Because this greeting is embedded in the page, the greeting does not change no

matter how long the user stays logged on to the page.

Counting the days...
You may find one or two more date arithmetic applications useful. One displays

the number of shopping days left until Christmas (in the user’s time zone); the

other is a countdown timer to the start of the year 2100.

(c) ketabton.com: The Digital Library

980 Part IV ✦ JavaScript Core Language Reference

Listing 36-3 demonstrates how to calculate the number of days between the

current day and some fixed date in the future. The assumption in this application is

that all calculations take place in the user’s time zone. The example shows the

display of the number of shopping days before the next Christmas day (December

25). The basic operation entails converting the current date and the next December

25 to milliseconds, calculating the number of days represented by the difference in

milliseconds. If you let the millisecond values represent the dates, JavaScript auto-

matically takes care of leap years.

The only somewhat tricky part is setting the year of the next Christmas day

correctly. You can’t just slap the fixed date with the current year, because if the

program is run on December 26, the year of the next Christmas must be incremented

by one. That’s why the constructor for the Christmas date object doesn’t supply a

fixed date as its parameters but, rather, sets individual components of the object.

Listing 36-3: How Many Days Until Christmas

<HTML>
<HEAD>
<TITLE>Christmas Countdown</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function getDaysUntilXmas() {

var oneMinute = 60 * 1000
var oneHour = oneMinute * 60
var oneDay = oneHour * 24
var today = new Date()
var nextXmas = new Date()
nextXmas.setMonth(11)
nextXmas.setDate(25)
if (today.getMonth() == 11 && today.getDate() > 25) {

nextXmas.setFullYear(nextXmas.getFullYear() + 1)
}
var diff = nextXmas.getTime() - today.getTime()
diff = Math.floor(diff/oneDay)
return diff

}
</SCRIPT>
</HEAD>

<BODY>
<H1>
<SCRIPT LANGUAGE=”JavaScript”>
var header = “You have <I>” + getDaysUntilXmas() + “</I> “
header += “shopping days until Christmas.”
document.write(header)
</SCRIPT>
</H1><HR>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

981Chapter 36 ✦ The Date Object

The second variation on calculating the amount of time before a certain event

takes time zones into account. For this demonstration, the page is supposed to

display a countdown timer to the precise moment when the flame for the 2004

Summer Games in Athens is to be lit. That event takes place in a time zone that

may be different from that of the page’s viewer, so the countdown timer must

calculate the time difference accordingly.

Listing 36-4 shows a simplified version that simply displays the ticking timer in

a text field. The output, of course, could be customized in any number of ways,

depending on the amount of dynamic HTML you want to employ on a page. The

time of the lighting for this demo is set at 17:00 GMT on August 13, 2004 (the date

is certainly accurate, but the officials may set a different time closer to the actual

event).

Because this application is implemented as a live ticking clock, the code starts

by setting some global variables that should be calculated only once so that the

function that gets invoked repeatedly has a minimum of calculating to do (to be

more efficient). The Date.UTC() method provides the target time and date in

standard time. The getTimeUntil() function accepts a millisecond value (as

provided by the targetDate variable) and calculates the difference between the

target date and the actual internal millisecond value of the client’s PC clock.

The core of the getCountDown() function peels off the number of whole days,

hours, minutes, and seconds from the total number of milliseconds difference

between now and the target date. Notice that each chunk is subtracted from the

total so that the next smaller chunk can be calculated from the leftover milliseconds.

One extra touch on this page is that users of Windows operating systems have a

display of the local date and time of the actual event. The Mac is excluded because

it does not provide accurate daylight saving time adjustments for local dates. Some

UNIX flavors may do the right thing, but they were not tested for this example.

Listing 36-4: Summer Games Countdown

<HTML>
<HEAD>
<TITLE>Summer Games Countdown</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// globals -- calculate only once
// set target date to 1700GMT on August 13, 2004
var targetDate = Date.UTC(2004, 7, 13, 17, 0, 0, 0)
var oneMinute = 60 * 1000
var oneHour = oneMinute * 60
var oneDay = oneHour * 24

function getTimeUntil(targetMS) {
var today = new Date()
var diff = targetMS - today.valueOf()
return Math.floor(diff)

}
function getCountDown() {

var ms = getTimeUntil(targetDate)
var output = “”
var days, hrs, mins, secs
if (ms >= 0) {

Continued

(c) ketabton.com: The Digital Library

982 Part IV ✦ JavaScript Core Language Reference

Listing 36-4 (continued)

days = Math.floor(ms/oneDay)
ms -= oneDay * days
hrs = Math.floor(ms/oneHour)
ms -= oneHour * hrs
mins = Math.floor(ms/oneMinute)
ms -= oneMinute * mins
secs = Math.floor(ms/1000)
output += days + “ Days, “ +

hrs + “ Hours, “ +
mins + “ Minutes, “ +
secs + “ Seconds”

} else {
output += “The time has passed.”

}
return output

}
function updateCountDown() {

document.forms[0].timer.value = getCountDown()
setTimeout(“updateCountDown()”, 1000)

}
</SCRIPT>
</HEAD>

<BODY onLoad=”updateCountDown()”>
<H1>Athens Games Torch Lighting Countdown</H1>
<P>
<SCRIPT LANGUAGE=”JavaScript”>
if (navigator.userAgent.indexOf(“Win”) >= 0) {

document.write(“(“ + (new Date(targetDate)).toLocaleString())
document.write(“ in your time zone.)”)

}
</SCRIPT>
</P>
<FORM>
<INPUT TYPE=”text” NAME=”timer” SIZE=60>
</FORM>
<HR>
</BODY>
</HTML>

Date bugs and gremlins
Each new browser generation improves the stability and reliability of scripted

date objects. Unfortunately, Navigator 2 has enough bugs and crash problems

across many platforms to make scripting complex world-time applications for this

browser impossible. The Macintosh version also has bugs that throw off dates by

as much as a full day. I recommend avoiding NN2 on all platforms for serious date

and time scripting.

(c) ketabton.com: The Digital Library

983Chapter 36 ✦ The Date Object

The situation is much improved for NN3. Still, some bugs persist. One bug in

particular affects Macintosh versions of NN3. Whenever you create a new date

object with daylight saving time engaged in the Date and Time control panel, the

browser automatically adds one hour to the object. See the time-based application

in Chapter 54 for an example of how to counteract the effects of typical time bugs.

Also afflicting the Macintosh in NN3 is a faulty calculation of the time zone offset for

all time zones east of GMT. Instead of generating these values as negative numbers

(getting lower and lower as you head east), the offset values increase continuously

as you head west from Greenwich. While the Western Hemisphere is fine, the values

continue to increase past the international date line, rather than switch over to the

negative values.

Internet Explorer 3 isn’t free of problems. It cannot handle dates before January

1, 1970 (GMT). Attempts to generate a date before that one result in that base date

as the value. IE3 also completely miscalculates the time zone offset, following the

erroneous pattern of Navigator 2. Even Navigators 3 and 4 have problems with

historic dates. You are asking for trouble if the date extends earlier than January 1,

A.D. 1. Internet Explorer 4, on the other hand, appears to sail very well into ancient

history.

You should be aware of one more discrepancy between Mac and Windows

versions of Navigator through Version 4. In Windows, if you generate a date object

for a date in another part of the year, the browser sets the time zone offset for that

object according to the time zone setting for that time of year. On the Mac, the

current setting of the control panel governs whether the normal or daylight saving

time offset is applied to the date, regardless of the actual date within the year. This

discrepancy affects Navigator 3 and 4 and can throw off calculations from other

parts of the year by one hour.

It may sound as though the road to Date object scripting is filled with land mines.

While date and time scripting is far from hassle free, you can put it to good use with

careful planning and a lot of testing.

Validating Date Entries in Forms
Given the bug horror stories in the previous section, you may wonder how you

can ever perform data entry validation for dates in forms. The problem is not so

much in the calculations as it is in the wide variety of acceptable date formats

around the world. No matter how well you instruct users to enter dates in a

particular format, many will follow their own habits and conventions. Moreover,

how can you know whether an entry of 03/04/2002 is the North American March 4,

2002, or the European April 3, 2002? The answer: You can’t.

My recommendation is to divide a date field into three components: month, day,

and year. Let the user enter values into each field and validate each field individually

for its valid range. Listing 36-5 shows an example of how this is done. The page

includes a form that is to be validated before it is submitted. Each component field

does its own range checking on the fly as the user enters values. But because this

kind of validation can be defeated, the page includes one further check triggered by

the form’s onSubmit event handler. If any field is out of whack, the form submission

is canceled.

(c) ketabton.com: The Digital Library

984 Part IV ✦ JavaScript Core Language Reference

Listing 36-5: Date Validation in a Form

<HTML>
<HEAD>
<TITLE>Date Entry Validation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
// **BEGIN GENERIC VALIDATION FUNCTIONS**
// general purpose function to see if an input value has been entered at all
function isEmpty(inputStr) {

if (inputStr == “” || inputStr == null) {
return true

}
return false

}

// function to determine if value is in acceptable range for this application
function inRange(inputStr, lo, hi) {

var num = parseInt(inputStr, 10)
if (num < lo || num > hi) {

return false
}
return true

}
// **END GENERIC VALIDATION FUNCTIONS**

function validateMonth(field, bypassUpdate) {
var input = field.value
if (isEmpty(input)) {

alert(“Be sure to enter a month value.”)
select(field)
return false

} else {
input = parseInt(field.value, 10)
if (isNaN(input)) {

alert(“Entries must be numbers only.”)
select(field)
return false

} else {
if (!inRange(input,1,12)) {

alert(“Enter a number between 1 (January) and 12 (December).”)
select(field)
return false

}
}

}
if (!bypassUpdate) {

calcDate()
}
return true

}

function validateDate(field) {
var input = field.value

(c) ketabton.com: The Digital Library

985Chapter 36 ✦ The Date Object

if (isEmpty(input)) {
alert(“Be sure to enter a date value.”)
select(field)
return false

} else {
input = parseInt(field.value, 10)
if (isNaN(input)) {

alert(“Entries must be numbers only.”)
select(field)
return false

} else {
var monthField = document.birthdate.month
if (!validateMonth(monthField, true)) return false
var monthVal = parseInt(monthField.value, 10)
var monthMax = new Array(31,31,29,31,30,31,30,31,31,30,31,30,31)
var top = monthMax[monthVal]
if (!inRange(input,1,top)) {

alert(“Enter a number between 1 and “ + top + “.”)
select(field)
return false

}
}

}
calcDate()
return true

}

function validateYear(field) {
var input = field.value
if (isEmpty(input)) {

alert(“Be sure to enter a year value.”)
select(field)
return false

} else {
input = parseInt(field.value, 10)
if (isNaN(input)) {

alert(“Entries must be numbers only.”)
select(field)
return false

} else {
if (!inRange(input,1900,2005)) {

alert(“Enter a number between 1900 and 2005.”)
select(field)
return false

}
}

}
calcDate()
return true

}
function select(field) {

field.focus()
field.select()

}

Continued

(c) ketabton.com: The Digital Library

986 Part IV ✦ JavaScript Core Language Reference

Listing 36-5 (continued)

function calcDate() {
var mm = parseInt(document.birthdate.month.value, 10)
var dd = parseInt(document.birthdate.date.value, 10)
var yy = parseInt(document.birthdate.year.value, 10)
document.birthdate.fullDate.value = mm + “/” + dd + “/” + yy

}

function checkForm(form) {
if (validateMonth(form.month)) {

if (validateDate(form.date)) {
if (validateYear(form.year)) {

return true
}

}
}
return false

}
//-->
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”birthdate” ACTION=”mailto:fun@dannyg.com” METHOD=POST
onSubmit=”return checkForm(this)”>
Please enter your birthdate...

Month:<INPUT TYPE=”text” NAME=”month” VALUE=1 SIZE=2
onChange=”validateMonth(this)”>
Date:<INPUT TYPE=”text” NAME=”date” VALUE=1 SIZE=2
onChange=”validateDate(this)”>
Year:<INPUT TYPE=”text” NAME=”year” VALUE=1900 SIZE=4
onChange=”validateYear(this)”>
<P>
Thank you for entering:<INPUT TYPE=”text” NAME=”fullDate” SIZE=10><P>
<INPUT TYPE=”submit”> <INPUT TYPE=”Reset”>
</FORM>
</BODY>
</HTML>

The page shows the three entry fields as well as a field that is normally hidden

on a form to be submitted to a CGI program. On the server end, the CGI program

responds only to the hidden field with the complete date, which is in a format for

entry into, for example, an Informix database.

Not every date entry validation must be divided in this way. For example, an

intranet application can be more demanding in the way users are to enter data.

Therefore, you can have a single field for date entry, but the parsing required for

such a validation is quite different from that shown in Listing 36-5. See Chapter 43

for an example of such a one-field date validation routine.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

The Array Object

An array is the sole JavaScript data structure provided

for storing and manipulating ordered collections of

data. But unlike some other programming languages,

JavaScript’s arrays are very forgiving as to the kind of data

you store in each cell or entry of the array. This allows, for

example, an array of arrays, providing the equivalent of multi-

dimensional arrays customized to the kind of data your appli-

cation needs.

If you have not done a lot of programming in the past, the

notion of arrays may seem like an advanced topic. But if you

ignore their capabilities, you set yourself up for a harder job

when implementing many kinds of tasks. Whenever I

approach a script, one of my first thoughts is about the data

being controlled by the application and whether handling it as

an array will offer some shortcuts for creating the document

and handling interactivity with the user.

I hope that by the end of this chapter, you will not only be

familiar with the properties and methods of JavaScript arrays,

but you will begin to look for ways to make arrays work for you.

Structured Data
In programming, an array is defined as an ordered collec-

tion of data. You can best visualize an array as a table, not

much different from a spreadsheet. In JavaScript, arrays are

limited to a table holding one column of data, with as many

rows as needed to hold your data. As you have seen in many

chapters in Part III, a JavaScript-enabled browser creates a

number of internal arrays for the objects in your HTML docu-

ments and browser properties. For example, if your document

contains five links, the browser maintains a table of those

links. You access them by number (with 0 being the first link)

in the array syntax: the array name is followed by the index

number in square brackets, as in document.links[0], which

represents the first link in the document.

For many JavaScript applications, you will want to use an

array as an organized warehouse for data that users of your

page access, depending on their interaction with form ele-

ments. In the application shown in Chapter 50, for example, I

demonstrate an extended version of this usage in a page that

lets users search a small table of data for a match between the

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with
ordered collections of
data

Simulating
multidimensional
arrays

Manipulating
information stored in
an array

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

988 Part IV ✦ JavaScript Core Language Reference

first three digits of their U.S. Social Security numbers and the state in which they

registered with the agency. Arrays are the way JavaScript-enhanced pages can

recreate the behavior of more sophisticated CGI programs on servers. When the

collection of data you embed in the script is no larger than a typical .gif image file,

the user won’t experience significant delays in loading your page; yet he or she has

the full power of your small database collection for instant searching without any

calls back to the server. Such database-oriented arrays are important applications

of JavaScript for what I call serverless CGIs.

As you design an application, look for clues as to potential application of arrays.

If you have a number of objects or data points that interact with scripts the same

way, you have a good candidate for array structures. For example, in every browser,

with the exception of Internet Explorer 3, you can assign like names to every text

field in a column of an order form. In that sequence, like-named objects are treated

as elements of an array. To perform repetitive row calculations down an order form,

your scripts can use array syntax to perform all the extensions within a handful of

JavaScript statements, rather than perhaps dozens of statements hard-coded to

each field name. Chapter 51 shows an example of this application.

You can also create arrays that behave like the Java hash table: a lookup table

that gets you to the desired data point instantaneously if you know the name asso-

ciated with the entry. If you can conceive your data in a table format, an array is in

your future.

Creating an Empty Array
Arrays are treated in JavaScript like objects, but the extent to which your scripts

can treat them as objects depends on whether you’re using the first version of

JavaScript (in Navigator 2 and Internet Explorer 3 with the Version 1 JScript DLL) or

more recent versions (in Navigator 3 or later and Internet Explorer with JScript DLL

Version 2 or later). For the sake of compatibility, I begin by showing you how to cre-

ate arrays that work in all scriptable browsers.

You begin by defining an object constructor function that assigns a passed param-

eter integer value to the length property of the object:

function makeArray(n) {
this.length = n
return this

}

Then, to actually initialize an array for your script, use the new keyword to con-

struct the object for you while assigning the array object to a variable of your

choice:

var myArray = new makeArray(n)

where n is the number of entries you anticipate for the array. This initialization

does not make any array entries or create any placeholders. Such preconditioning

of arrays is not necessary in JavaScript.

In one important aspect, an array created in this “old” manner does not exhibit

an important characteristic of standard arrays. The length property here is artifi-

cial in that it does not change with the size of the array (true JavaScript arrays are

completely dynamic, letting you add items at any time). The length value here is

hardwired by assignment. You can always change the value manually, but it takes a

great deal of scripted bookkeeping to manage that task.

(c) ketabton.com: The Digital Library

989Chapter 37 ✦ The Array Object

Another point to remember about this property scheme is that the value

assigned to this.length in the constructor actually occupies the first entry (index

0) of the array. Any data you want to add to an array should not overwrite that posi-

tion in the array if you expect to use the length to help a repeat loop look through

an array’s contents.

What a full-fledged array object gains you is behavior more like that of the arrays

you work with elsewhere in JavaScript. You don’t need to define a constructor func-

tion, because it’s built into the JavaScript object mechanism. Instead, you create a

new array object, such as this:

var myArray = new Array()

An array object automatically has a length property (0 for an empty array).

Most importantly, this length value does not occupy one of the array entries; the

array is entirely for data.

Should you want to presize the array (for example, preload entries with null val-

ues), you can specify an initial size as a parameter to the constructor. For example,

here is how to create a new array to hold information about a 500-item compact

disc collection:

var myCDCollection = new Array(500)

Presizing an array does not give you any particular advantage, because you can

assign a value to any slot in an array at any time: The length property adjusts itself

accordingly. For instance, if you assign a value to myCDCollection[700], the array

object adjusts its length upward to meet that slot (with the count starting at 0):

myCDCollection [700] = “Gloria Estefan/Destiny”
collectionSize = myCDCollection.length // result = 701

A true array object also features a number of methods and the capability to add

prototype properties, described later in this chapter.

Populating an Array
Entering data into an array is as simple as creating a series of assignment state-

ments, one for each element of the array. Listing 37-1 (not on the CD-ROM) assumes

that you’re using the newer style array object and that your goal is to generate an

array containing a list of the nine planets of the solar system.

Listing 37-1: Generating and Populating a New Array

solarSys = new Array(9)
solarSys[0] = “Mercury”
solarSys[1] = “Venus”
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”
solarSys[7] = “Neptune”
solarSys[8] = “Pluto”

(c) ketabton.com: The Digital Library

990 Part IV ✦ JavaScript Core Language Reference

This way of populating a single array is a bit tedious when you’re writing the

code, but after the array is set, it makes accessing information collections as easy

as any array reference:

onePlanet = solarSys[4] // result = “Jupiter”

A more compact way to create an array is available if you know that the data will

be in the desired order (as the preceding solarSys array). Instead of writing a

series of assignment statements (as in Listing 37-1), you can create what is called a

dense array by supplying the data as parameters to the Array() constructor:

solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”)

The term “dense array” means that data is packed into the array, without gaps,

starting at index position 0.

The example in Listing 37-1 shows what you may call a vertical collection of data.

Each data point contains the same type of data as the other data points — the name

of a planet — and the data points appear in the relative order of the planets from

the Sun.

But not all data collections are vertical. You may, for instance, just want to create

an array that holds various pieces of information about one planet. Earth is handy,

so use some of its astronomical data to build a completely separate array of earthly

info in Listing 37-2 (not on the CD-ROM).

Listing 37-2: Creating a “Horizontal” Array

earth = new Array()
earth.diameter = “7920 miles”
earth.distance = “93 million miles”
earth.year = “365.25 days”
earth.day = “24 hours”
earth.length // result = 4

What you see in Listing 37-2 is an alternative way to populate an array. In a

sense, you saw a preview of this approach for the creation of an array in the old

style, where the length property name was assigned to its first entry. If you assign

a value to a property name that has not yet been assigned for the array, JavaScript

is smart enough to append a new property entry for that value.

In an important change from the old style of array construction, the way you

define an array entry affects how you access that information later. For example,

when you populate an array based on numeric index values (Listing 37-1), you can

retrieve those array entries only via references that include the index values.

Conversely, if you define array entries by property name (as in Listing 37-2), you

cannot access those values via the numeric index way. In Navigator 2, for instance,

the array assignments of Listing 37-2 can be retrieved by their corresponding index

values:

earth.diameter // result = “7920 miles”
earth[“diameter”] // result = “7920 miles”
earth[0] // result = “7920 miles”

(c) ketabton.com: The Digital Library

991Chapter 37 ✦ The Array Object

In Navigator 3 or 4, however, because these entries are defined as named proper-

ties, they must be retrieved as properties, not as numeric index values:

earth.diameter // result = “7920 miles”
earth[“diameter”] // result = “7920 miles”
earth[0] // result = null

The impact here on your scripts is that you need to anticipate how you expect to

retrieve data from your array. If an indexed repeat loop is in the forecast, populate

the array with index values (as in Listing 37-1); if the property names are more

important to you, then populate the array that way (as in Listing 37-2). Your choice

of index value type for a single-column array is driven by the application, but you

will want to focus on the named array entry style for creating what appear to be

two-dimensional arrays.

JavaScript 1.2 Array Creation Enhancements
The JavaScript version in NN4+ and IE4+ provides one more way to create a

dense array and also clears up a bug in the old way. A new, simpler way to create a

dense array does not require the Array object constructor. Instead, JavaScript 1.2

(and later) accepts what is called literal notation to generate an array. To demon-

strate the difference, the following statement is the regular dense array constructor

that works with Navigator 3:

solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”)

While JavaScript 1.2+ fully accepts the preceding syntax, it also accepts the new

literal notation:

solarSys = [“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”]

The square brackets stand in for the call to the Array constructor. You have to

judge which browser types your audience will be using before deploying this

streamlined approach to array creation.

The bug fix has to do with how to treat the earlier dense array constructor if the

scripter enters only the numeric value 1 as the parameter —new Array(1). In NN3

and IE4, JavaScript erroneously creates an array of length 1, but that element is

undefined. For NN4 (and inside a <SCRIPT LANGUAGE=”JavaScript1.2”> tag)

and all later browsers (IE5+, NN6), the same statement creates that one-element

array and places the value in that element.

Deleting Array Entries
You can always set the value of an array entry to null or an empty string to wipe

out any data that used to occupy that space. But until the delete operator in NN4

and IE4, you could not completely remove the element.

Deleting an array element eliminates the index from the list of accessible index

values but does not reduce the array’s length, as in the following sequence of

statements:

myArray.length // result: 5
delete myArray[2]

(c) ketabton.com: The Digital Library

992 Part IV ✦ JavaScript Core Language Reference

myArray.length // result: 5
myArray[2] // result: undefined

The process of deleting an array entry does not necessarily release memory

occupied by that data. The JavaScript interpreter’s internal garbage collection

mechanism (beyond the reach of scripters) is supposed to take care of such activ-

ity. See the delete operator in Chapter 40 for further details.

Parallel Arrays
Using an array to hold data is frequently desirable so that a script can do a

lookup to see if a particular value is in the array (perhaps verifying that a value

typed into a text box by the user is permissible); however, even more valuable is if,

upon finding a match, a script can look up some related information in another

array. One way to accomplish this is with two or more parallel arrays: the same

indexed slot of each array contains related information.

Consider the following three arrays:

var regionalOffices = new Array(“New York”, “Chicago”, “Houston”, “Portland”)
var regionalManagers = new Array(“Shirley Smith”, “Todd Gaston”, “Leslie Jones”,
“Harold Zoot”)
var regOfficeQuotas = new Array(300000, 250000, 350000, 225000)

The assumption for these statements is that Shirley Smith is the regional man-

ager out of the New York office, and her office’s quota is 300,000. This represents

the data that is included with the document, perhaps retrieved by a CGI program on

the server that gets the latest data from a SQL database and embeds the data in the

form of array constructors. Listing 37-3 shows how this data appears in a simple

page that looks up the manager name and quota values for whichever office is cho-

sen in the SELECT element. The order of the items in the list of SELECT is not acci-

dental: The order is identical to the order of the array for the convenience of the

lookup script.

Lookup action in Listing 37-3 is performed by the getData() function. Because

the index values of the options inside the SELECT element match those of the paral-

lel arrays index values, the selectedIndex property of the SELECT element makes

a convenient way to get directly at the corresponding data in other arrays.

Listing 37-3: A Simple Parallel Array Lookup

<HTML>
<HEAD>
<TITLE>Parallel Array Lookup</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// the data
var regionalOffices = new Array(“New York”, “Chicago”, “Houston”, “Portland”)
var regionalManagers = new Array(“Shirley Smith”, “Todd Gaston”, “Leslie Jones”,
“Harold Zoot”)
var regOfficeQuotas = new Array(300000, 250000, 350000, 225000)
// do the lookup into parallel arrays
function getData(form) {

var i = form.offices.selectedIndex
form.manager.value = regionalManagers[i]
form.quota.value = regOfficeQuotas[i]

(c) ketabton.com: The Digital Library

993Chapter 37 ✦ The Array Object

}
</SCRIPT>
</HEAD>

<BODY onLoad=”getData(document.officeData)”>
<H1>Parallel Array Lookup</H1>
<HR>
<FORM NAME=”officeData”>
<P>
Select a regional office:
<SELECT NAME=”offices” onChange=”getData(this.form)”>

<OPTION>New York
<OPTION>Chicago
<OPTION>Houston
<OPTION>Portland

</SELECT>
</P><P>
The manager is:
<INPUT TYPE=”text” NAME=”manager” SIZE=35>

The office quota is:
<INPUT TYPE=”text” NAME=”quota” SIZE=8>
</P>
</FORM>
</BODY>
</HTML>

On the other hand, if the content to be looked up is typed into a text box by the

user, you have to loop through one of the arrays to get the matching index. Listing

37-4 is a variation of Listing 37-3, but instead of the SELECT element, a text field

asks users to type in the name of the region. Assuming that users will always spell

the input correctly (an outrageous assumption), the version of getData() in

Listing 37-4 performs actions that more closely resemble what you may think a

“lookup” should be doing: looking for a match in one array, and displaying corre-

sponding results from the parallel arrays. The for loop iterates through items in

the regionalOffices array. An if condition compares all uppercase versions of

both the input and each array entry. If there is a match, the for loop breaks, with

the value of i still pointing to the matching index value. Outside the for loop,

another if condition makes sure that the index value has not reached the length of

the array, which means that no match is found. Only when the value of i points to

one of the array entries does the script retrieve corresponding entries from the

other two arrays.

Listing 37-4: A Looping Array Lookup

<HTML>
<HEAD>
<TITLE>Parallel Array Lookup II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// the data

Continued

(c) ketabton.com: The Digital Library

994 Part IV ✦ JavaScript Core Language Reference

Listing 37-4 (continued)

var regionalOffices = new Array(“New York”, “Chicago”, “Houston”, “Portland”)
var regionalManagers = new Array(“Shirley Smith”, “Todd Gaston”, “Leslie Jones”,
“Harold Zoot”)
var regOfficeQuotas = new Array(300000, 250000, 350000, 225000)
// do the lookup into parallel arrays
function getData(form) {

// make a copy of the text box contents
var inputText = form.officeInp.value
// loop through all entries of regionalOffices array
for (var i = 0; i < regionalOffices.length; i++) {

// compare uppercase versions of entered text against one entry
// of regionalOffices
if (inputText.toUpperCase() == regionalOffices[i].toUpperCase()) {

// if they’re the same, then break out of the for loop
break

}
}
// make sure the i counter hasn’t exceeded the max index value
if (i < regionalOffices.length) {

// display corresponding entries from parallel arrays
form.manager.value = regionalManagers[i]
form.quota.value = regOfficeQuotas[i]

} else { // loop went all the way with no matches
// empty any previous values
form.manager.value = “”
form.quota.value = “”
// advise user
alert(“No match found for “ + inputText + “.”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>Parallel Array Lookup II</H1>
<HR>
<FORM NAME=”officeData”>
<P>
Enter a regional office:
<INPUT TYPE=”text” NAME=”officeInp” SIZE=35>
<INPUT TYPE=”button” VALUE=”Search” onClick=”getData(this.form)”>
</P><P>
The manager is:
<INPUT TYPE=”text” NAME=”manager” SIZE=35>

The office quota is:
<INPUT TYPE=”text” NAME=”quota” SIZE=8>
</P>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

995Chapter 37 ✦ The Array Object

Multidimensional Arrays
An alternate to parallel arrays is the simulation of a multidimensional array.

While it’s true that JavaScript arrays are one-dimensional, you can create a one-

dimensional array of other arrays or objects. A logical approach is to make an array

of custom objects, because the objects easily allow for naming of object properties,

making references to multidimensional array data more readable (custom objects

are discussed at length in Chapter 41).

Using the same data from the examples of parallel arrays, the following state-

ments define an object constructor for each “data record.” A new object is then

assigned to each of four entries in the main array.

// custom object constructor
function officeRecord(city, manager, quota) {

this.city = city
this.manager = manager
this.quota = quota

}

// create new main array
var regionalOffices = new Array()
// stuff main array entries with objects
regionalOffices[0] = new officeRecord(“New York”, “Shirley Smith”, 300000)
regionalOffices[1] = new officeRecord(“Chicago”, “Todd Gaston”, 250000)
regionalOffices[2] = new officeRecord(“Houston”, “Leslie Jones”, 350000)
regionalOffices[3] = new officeRecord(“Portland”, “Harold Zoot”, 225000)

The object constructor function (officeRecord()) assigns incoming parameter

values to properties of the object. Therefore, to access one of the data points in the

array, you use both array notations to get to the desired entry in the array and the

name of the property for that entry’s object:

var eastOfficeManager = regionalOffices[0].manager

You can also assign string index values for this kind of array, as in

regionalOffices[“east”] = new officeRecord(“New York”, “Shirley Smith”, 300000)

and access the data via the same index:

var eastOfficeManager = regionalOffices[“east”].manager

But if you’re more comfortable with the traditional multidimensional array (from

your experience in other programming languages), you can also implement the

above as an array of arrays with less code:

// create new main array
var regionalOffices = new Array()
// stuff main array entries with arrays
regionalOffices[0] = new Array(“New York”, “Shirley Smith”, 300000)
regionalOffices[1] = new Array(“Chicago”, “Todd Gaston”, 250000)
regionalOffices[2] = new Array(“Houston”, “Leslie Jones”, 350000)
regionalOffices[3] = new Array(“Portland”, “Harold Zoot”, 225000)

(c) ketabton.com: The Digital Library

996 Part IV ✦ JavaScript Core Language Reference

or, for the extreme of unreadable brevity with literal notation:

// create new main array
var regionalOffices = [[“New York”, “Shirley Smith”, 300000],

[“Chicago”, “Todd Gaston”, 250000],
[“Houston”, “Leslie Jones”, 350000],
[“Portland”, “Harold Zoot”, 225000]]

Accessing a single data point of an array of arrays requires a double array refer-

ence. For example, retrieving the manager’s name for the Houston office requires

the following syntax:

var HoustonMgr = regionalOffices[2][1]

The first index in brackets is for the outermost array (regionalOffices); the

second index in brackets points to the item of the array returned by

regionalOffices[2].

Array Object Properties
constructor

See string.constructor (Chapter 34).

length
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

A true array object’s length property reflects the number of entries in the array.

An entry can be any kind of JavaScript value, including null. If an entry is in the

10th cell and the rest are null, the length of that array is 10. Note that because

array index values are zero-based, the index of the last cell of an array is one less

than the length. This characteristic makes it convenient to use the property as an

automatic counter to append a new item to an array:

myArray[myArray.length] = valueOfAppendedItem

Thus, a generic function does not have to know which specific index value to

apply to an additional item in the array.

prototype
Value: Variable or Function Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Array.prototype

(c) ketabton.com: The Digital Library

997Chapter 37 ✦ The Array Object

Inside JavaScript, an array object has its dictionary definition of methods and

length property — items that all array objects have in common. The prototype
property enables your scripts to ascribe additional properties or methods that

apply to all the arrays you create in the currently loaded documents. You can over-

ride this prototype, however, for any individual objects as you want.

To demonstrate how the prototype property works, Listing 37-5 creates a pro-
totype property for all array objects generated from the static Array object. As

the script generates new arrays (instances of the Array object, just as a date object

is an instance of the Date object), the property automatically becomes a part of

those arrays. In one array, c, you override the value of the prototype sponsor prop-

erty. By changing the value for that one object, you don’t alter the value of the pro-

totype for the Array object. Therefore, another array created afterward, d, still gets

the original sponsor property value.

Listing 37-5: Adding a prototype Property

<HTML>
<HEAD>
<TITLE>Array prototypes</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// add prototype to all Array objects
Array.prototype.sponsor = “DG”
a = new Array(5)
b = new Array(5)
c = new Array(5)
// override prototype property for one ‘instance’
c.sponsor = “JS”
// this one picks up the original prototype
d = new Array(5)
</SCRIPT>
<BODY><H2>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“Array a is brought to you by: “ + a.sponsor + “<P>”)
document.write(“Array b is brought to you by: “ + b.sponsor + “<P>”)
document.write(“Array c is brought to you by: “ + c.sponsor + “<P>”)
document.write(“Array d is brought to you by: “ + d.sponsor + “<P>”)
</SCRIPT>
</H2>
</BODY>
</HTML>

You can assign properties and functions to a prototype. To assign a function,

define the function as you normally would in JavaScript. Then assign the function to

the prototype by name:

function newFunc(param1) {
// statements

}
Array.prototype.newMethod = newFunc // omit parentheses in this reference

Array.prototype

(c) ketabton.com: The Digital Library

998 Part IV ✦ JavaScript Core Language Reference

When you need to call upon that function (which has essentially become a new

temporary method for the Array object), invoke it as you would any object

method. Therefore, if an array named CDCollection has been created and a proto-

type method showCoverImage() has been attached to the array, the call to invoke

the method for a tenth listing in the array is

CDCollection.showCoverImage(9)

where the parameter of the function uses the index value to perhaps retrieve an

image whose URL is a property of an object assigned to the 10th item of the array.

Array Object Methods
After you have information stored in an array, JavaScript provides several meth-

ods to help you manage that data. These methods, all of which belong to array

objects you create, have evolved over time, so observe carefully which browser

versions a desired method works with.

array.concat(array2)
Returns: array Object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The array.concat() method allows you to join two array objects into a new,

third array object. The action of concatenating the arrays does not alter the con-

tents or behavior of the two original arrays. To join the arrays, you refer to the first

array object to the left of the period before the method; a reference to the second

array is the parameter to the method. For example:

var array1 = new Array(1,2,3)
var array2 = new Array(“a”,”b”,”c”)
var array3 = array1.concat(array2)

// result: array with values 1,2,3,”a”,”b”,”c”

If an array element is a string or number value (not a string or number object),

the values are copied from the original arrays into the new one. All connection with

the original arrays ceases for those items. But if an original array element is a refer-

ence to an object of any kind, JavaScript copies a reference from the original array’s

entry into the new array. So if you make a change to either array’s entry, the change

occurs to the object, and both array entries reflect the change to the object.

Example (with Figure 37-1 and Listing 37-6) on the CD-ROM

Related Items: array.join() method.

On the
CD-ROM

array.concat()

(c) ketabton.com: The Digital Library

999Chapter 37 ✦ The Array Object

array.join(separatorString)
Returns: String of entries from the array delimited by the separatorString value.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

You cannot view data in an array when it’s in that form. Nor can you put an array

into a form element for transmittal to a server CGI program. To make the transition

from discrete array elements to string, the array.join() method handles what

would otherwise be a nasty string manipulation exercise.

The sole parameter for this method is a string of one or more characters that

you want to act as a delimiter between entries. For example, if you want commas

between array items in their text version, the statement is

var arrayText = myArray.join(“,”)

Invoking this method does not change the original array in any way. Therefore,

you need to assign the results of this method to another variable or a value prop-

erty of a form element.

Example (with Listing 37-7) on the CD-ROM

Related Items: string.split() method.

array.pop()
array.push(valueOrObject)
array.shift()
array.unshift(valueOrObject)

Returns: One array entry value.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The notion of a stack is well known to experienced programmers, especially

those who know about the inner workings of assembly language at the CPU level.

Even if you’ve never programmed a stack before, you have encountered the con-

cept in real life many times. The classic analogy is the spring-loaded pile of cafete-

ria trays. If the pile were created one tray at a time, each tray would be pushed into

the stack of trays. When a customer comes along, the topmost tray (the last one to

be pushed onto the stack) gets popped off. The last one to be put on the stack is

the first one to be taken off.

On the
CD-ROM

array.pop()

(c) ketabton.com: The Digital Library

1000 Part IV ✦ JavaScript Core Language Reference

JavaScript in NN4+ and IE5.5 lets you turn an array into one of these spring-

loaded stacks. But instead of placing trays on the pile, you can place any kind of

data at either end of the stack, depending on which method you use to do the

stacking. Similarly, you can extract an item from either end.

Perhaps the most familiar terminology for this is push and pop. When you

push() a value onto an array, the value is appended as the last entry in the array.

When you issue the array.pop() method, the last item in the array is removed

from the stack and is returned, and the array shrinks in length by one. In the follow-

ing sequence of statements, watch what happens to the value of the array used as a

stack:

var source = new Array(“Homer”,”Marge”,”Bart”,”Lisa”,”Maggie”)
var stack = new Array()

// stack = <empty>
stack.push(source[0])

// stack = “Homer”
stack.push(source[2])

// stack = “Homer”,”Bart”
var Simpson1 = stack.pop()

// stack = “Homer” ; Simpson1 = “Bart”
var Simpson2 = stack.pop()

// stack = <empty> ; Simpson2 = “Homer”

While push() and pop() work at the end of an array, another pair of methods

works at the front. Their names are not as picturesque as push() and pop(). To

insert a value at the front of an array, use the array.unshift() method; to grab

the first element and remove it from the array, use array.shift(). Of course, you

are not required to use these methods in matching pairs. If you push() a series of

values onto the back end of an array, you can shift() them off from the front end

without complaint. It all depends on how you need to process the data.

Related Items: array.concat(), array.slice() method.

array.reverse()
Returns: Array of entries in the opposite order of the original.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Occasionally, you may find it more convenient to work with an array of data in

reverse order. Although you can concoct repeat loops to count backward through

index values, a CGI program on the server may prefer the data in a sequence oppo-

site to the way it was most convenient for you to script it.

You can have JavaScript switch the contents of an array for you: Whatever ele-

ment was last in the array becomes the 0 index item in the array. Bear in mind that

if you do this, you’re restructuring the original array, not copying it, even though

the method also returns a copy of the reversed version. A reload of the document

restores the order as written in the HTML document.

array.reverse()

(c) ketabton.com: The Digital Library

1001Chapter 37 ✦ The Array Object

Example (with Listing 37-8) on the CD-ROM

Related Items: array.sort() method.

array.slice(startIndex [, endIndex])
Returns: Array.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Behaving as its like-named string method, array.slice() lets you extract a con-

tiguous series of items from an array. The extracted segment becomes an entirely

new array object. Values and objects from the original array have the same kind of

behavior as arrays created with the array.concat() method.

One parameter is required — the starting index point for the extraction. If you

don’t specify a second parameter, the extraction goes all the way to the end of the

array; otherwise the extraction goes to, but does not include, the index value sup-

plied as the second parameter. For example, extracting Earth’s neighbors from an

array of planet names looks as the following.

var solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”)

var nearby = solarSys.slice(1,4)
// result: new array of “Venus”, “Earth”, “Mars”

Related Items: array.splice(), string.slice() methods.

array.sort([compareFunction])
Returns: Array of entries in the order as determined by the compareFunction
algorithm.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

JavaScript array sorting is both powerful and a bit complex to script if you

haven’t had experience with this kind of sorting methodology. The purpose, obvi-

ously, is to let your scripts sort entries of an array by almost any kind of criterion

that you can associate with an entry. For entries consisting of strings, the criterion

may be their alphabetical order or their length; for numeric entries, the criterion

may be their numerical order.

On the
CD-ROM

array.sort()

(c) ketabton.com: The Digital Library

1002 Part IV ✦ JavaScript Core Language Reference

Look first at the kind of sorting you can do with the array.sort() method by

itself (for example, without calling a comparison function). When no parameter is

specified, JavaScript takes a snapshot of the contents of the array and converts

items to strings. From there, it performs a string sort of the values. ASCII values of

characters govern the sort, which means that numbers are sorted by their string

values, not their numeric values. This fact has strong implications if your array con-

sists of numeric data: The value 201 sorts before 88, because the sorting mecha-

nism compares the first characters of the strings (“2” versus “8”) to determine the

sort order. For simple alphabetical sorting of string values in arrays, the plain

array.sort() method does the trick.

Fortunately, additional intelligence is available that you can add to array sorting.

The key tactic is to define a function that helps the sort() method compare items in

the array. A comparison function is passed two values from the array (what you don’t

see is that the array.sort() method rapidly sends numerous pairs of values from

the array to help it sort through all entries). The comparison function lets the sort()
method know which of the two items comes before the other, based on the value the

function returns. Assuming that the function compares two values, a and b, the

returned value reveals information to the sort() method, as shown in Table 37-1.

Table 37-1 Comparison Function Return Values

Return Value Range Meaning

< 0 Value b should sort later than a

0 The order of a and b should not change

> 0 Value a should sort later than b

Consider the following example:

myArray = new Array(12, 5, 200, 80)
function compare(a,b) {

return a - b
}
myArray.sort(compare)

The array has four numeric values in it. To sort the items in numerical order, you

define a comparison function (arbitrarily named compare()), which is called from

the sort() method. Note that unlike invoking other functions, the parameter of the

sort() method uses a reference to the function, which lacks parentheses.

When the compare() function is called, JavaScript automatically sends two

parameters to the function in rapid succession until each element has been com-

pared with the others. Every time compare() is called, JavaScript assigns two of

the array’s values to the parameter variables (a and b). In the preceding example,

the returned value is the difference between a and b. If a is larger than b, then a

positive value goes back to the sort() method, telling it to sort a later than b (that

is, position a at a higher value index position than b). Therefore, b may end up at

myArray[0], whereas a ends up at a higher index-valued location. On the other

array.sort()

(c) ketabton.com: The Digital Library

1003Chapter 37 ✦ The Array Object

hand, if a is smaller than b, then the returned negative value tells sort() to put a in

a lower index value spot than b.

Evaluations within the comparison function can go to great lengths, as long as

some data connected with array values can be compared. For example, instead of

numerical comparisons, as just shown, you can perform string comparisons. The

following function sorts alphabetically by the last character of each array string

entry:

function compare(a,b) {
// last character of array strings
var aComp = a.charAt(a.length - 1)
var bComp = b.charAt(b.length - 1)
if (aComp < bComp) {return -1}
if (aComp > bComp) {return 1}
return 0

}

First, this function extracts the final character from each of the two values

passed to it. Then, because strings cannot be added or subtracted like numbers,

you compare the ASCII values of the two characters, returning the corresponding

values to the sort() method to let it know how to treat the two values being

checked at that instant.

When an array’s entries happen to be objects, you can even sort by properties of

those objects. If you bear in mind that the a and b parameters of the sort function

are references to two array entries, then by extension you can refer to properties of

those objects. For example, if an array contains objects whose properties define

information about employees, one of the properties of those objects can be the

employee’s age as a string. You can then sort the array based on the numeric equiv-

alent of age property of the objects by way of the following comparison function:

function compare(a,b) {
return parseInt(a.age) - parseInt(b.age)

}

Array sorting, unlike sorting routines you may find in other scripting languages,

is not a stable sort. Not being stable means that succeeding sort routines on the

same array are not cumulative. Also, remember that sorting changes the sort order

of the original array. If you don’t want the original array harmed, make a copy of it

before sorting or reload the document to restore an array to its original order.

Should an array element be null, the method sorts such elements at the end of

the sorted array starting with Navigator 4 (instead of leaving them in their original

places as in Navigator 3).

Unfortunately, this powerful method does not work in the Macintosh version of
Navigator 3. Starting with Navigator 4, all platforms have the feature.

JavaScript array sorting is extremely powerful stuff. Array sorting is one reason

why it’s not uncommon to take the time during the loading of a page containing an

IE XML data island to make a JavaScript copy of the data as an array of objects (see

Chapter 57). Converting the XML to JavaScript arrays makes the job of sorting the

data much easier and faster than cobbling together your own sorting routines on

the XML elements.

Note

array.sort()

(c) ketabton.com: The Digital Library

1004 Part IV ✦ JavaScript Core Language Reference

Example (with Listing 37-9) on the CD-ROM

Related Items: array.reverse() method.

As I show you in Chapter 38, many regular expression object methods generate
arrays as their result (for example, an array of matching values in a string). These
special arrays have a custom set of named properties that assist your script in ana-
lyzing the findings of the method. Beyond that, these regular expression result
arrays behave like all others.

array.splice(startIndex , deleteCount[,
item1[, item2[,...itemN]]])

Returns: Array.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

If you need to remove items from the middle of an array, the array.splice()
method (not implemented in IE5/Mac) simplifies a task that would otherwise

require assembling a new array from selected items of the original array. The first of

two required parameters is a zero-based index integer that points to the first item

to be removed from the current array. The second parameter is another integer that

indicates how many sequential items are to be removed from the array. Removing

array items affects the length of the array, and those items that are removed are

returned by the splice() method as their own array.

You can also use the splice() method to replace array items. Optional parame-

ters beginning with the third let you provide data elements that are to be inserted

into the array in place of the items being removed. Each added item can be any

JavaScript data type, and the number of new items does not have to be equal to the

number of items removed. In fact, by specifying a second parameter of zero, you

can use splice() to insert one or more items into any position of the array.

Example on the CD-ROM

Related Items: array.slice() method.

On the
CD-ROM

Note

On the
CD-ROM

array.splice()

(c) ketabton.com: The Digital Library

1005Chapter 37 ✦ The Array Object

array.toLocaleString()
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

array.toString()
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

The array.toLocaleString() and the older, more compatible

array.toString() are methods to retrieve the contents of an array in string form.

Browsers use the toString() method on their own whenever you attempt to dis-

play an array in text boxes, in which case the array items are comma-delimited.

The precise string conversion of the toLocaleString() is left up to the specific

browser implementation. That IE5.5 and NN6 differ in some details is not surprising,

even in the U.S. English versions of operating systems and browsers. For example, if

the array contains integer values, IE5.5’s toLocaleString() method returns the

numbers comma-and-space-delimited, formatted with two digits to the right of the

decimal (as if dollars and cents). NN6, on the other hand, returns just the integers,

but these are also comma-and-space-delimited.

If you need to convert an array to a string for purposes of passing array data to

other venues (for example, as data in a hidden text box submitted to a server or as

search string data conveyed to another page), use the array.join() method

instead. Array.join() gives you more reliable and flexible control over the item

delimiters, and you are assured of the same results regardless of locale.

Related Items: array.join() method.

✦ ✦ ✦

array.toString()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The Regular
Expression and
RegExp Objects

Web programmers who have worked in Perl (and other

Web application programming languages) know the

power of regular expressions for processing incoming data

and formatting data for readability in an HTML page or for

accurate storage in a server database. Any task that requires

extensive search and replacement of text can greatly benefit

from the flexibility and conciseness of regular expressions.

Navigator 4 and Internet Explorer 4 (more fully fleshed out in

IE5.5) bring that power to JavaScript.

Most of the benefit of JavaScript regular expressions

accrues to those who script their CGI programs on servers

that support a JavaScript version that contains regular

expressions. But that’s not to exclude the client-side from

application of this “language within a language.” If your

scripts perform client-side data validations or any other

extensive text entry parsing, then consider using regular

expressions, rather than cobbling together comparatively

complex JavaScript functions to perform the same tasks.

Regular Expressions and Patterns
In several chapters earlier in this book, I describe expres-

sions as any sequence of identifiers, keywords, and/or opera-

tors that evaluate to some value. A regular expression follows

that description, but has much more power behind it. In

essence, a regular expression uses a sequence of characters

and symbols to define a pattern of text. Such a pattern is used

to locate a chunk of text in a string by matching up the pat-

tern against the characters in the string.

An experienced JavaScript writer may point out the avail-

ability of the string.indexOf() and string.lastIndexOf()
methods that can instantly reveal whether a string contains a

substring and even where in the string that substring begins.

These methods work perfectly well when the match is exact,

3838C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What regular
expressions are

How to use regular
expressions for text
search-and-replace

How to apply regular
expressions to string
object methods

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1008 Part IV ✦ JavaScript Core Language Reference

character for character. But if you want to do more sophisticated matching (for

example, does the string contain a five-digit ZIP code?), you’d have to cast aside

those handy string methods and write some parsing functions. That’s the beauty of a

regular expression: It lets you define a matching substring that has some intelligence

about it and can follow guidelines you set as to what should or should not match.

The simplest kind of regular expression pattern is the same kind you use in the

string.indexOf() method. Such a pattern is nothing more than the text that you

want to match. In JavaScript, one way to create a regular expression is to surround

the expression by forward slashes. For example, consider the string

Oh, hello, do you want to play Othello in the school play?

This string and others may be examined by a script whose job it is to turn formal

terms into informal ones. Therefore, one of its tasks is to replace the word “hello”

with “hi.” A typical brute force search-and-replace function starts with a simple pat-

tern of the search string. In JavaScript, you define a pattern (a regular expression)

by surrounding it with forward slashes. For convenience and readability, I usually

assign the regular expression to a variable, as in the following example:

var myRegExpression = /hello/

In concert with some regular expression or string object methods, this pattern

matches the string “hello” wherever that series of letters appears. The problem is

that this simple pattern causes problems during the loop that searches and

replaces the strings in the example string: It finds not only the standalone word

“hello,” but also the “hello” in “Othello.”

Trying to write another brute force routine for this search-and-replace operation

that looks only for standalone words would be a nightmare. You can’t merely

extend the simple pattern to include spaces on either or both sides of “hello,”

because there could be punctuation — a comma, a dash, a colon, or whatever —

before or after the letters. Fortunately, regular expressions provide a shortcut way

to specify general characteristics, including a feature known as a word boundary.

The symbol for a word boundary is \b (backslash, lowercase b). If you redefine the

pattern to include these specifications on both ends of the text to match, the regu-

lar expression creation statement looks like

var myRegExpression = /\bhello\b/

When JavaScript uses this regular expression as a parameter in a special string

object method that performs search-and-replace operations, it changes only the

standalone word “hello” to “hi,” and passes over “Othello” entirely.

If you are still learning JavaScript and don’t have experience with regular expres-

sions in other languages, you have a price to pay for this power: Learning the regu-

lar expression lingo filled with so many symbols means that expressions sometimes

look like cartoon substitutions for swear words. The goal of this chapter is to intro-

duce you to regular expression syntax as implemented in JavaScript rather than

engage in lengthy tutorials for this language. Of more importance in the long run is

understanding how JavaScript treats regular expressions as objects and distinc-

tions between instances of regular expression objects and the RegExp static object.

I hope the examples in the following sections begin to reveal the powers of regular

expressions. An in-depth treatment of the possibilities and idiosyncrasies of regular

expressions can be found in Mastering Regular Expressions by Jeffrey E.F. Friedl

(1997, O’Reilly & Associates, Inc.).

(c) ketabton.com: The Digital Library

1009Chapter 38 ✦ The Regular Expression and RegExp Objects

Language Basics
To cover the depth of the regular expression syntax, I divide the subject into

three sections. The first covers simple expressions (some of which you’ve already

seen). Then I get into the wide range of special characters used to define specifica-

tions for search strings. Last comes an introduction to the usage of parentheses in

the language, and how they not only help in grouping expressions for influencing

calculation precedence (as they do for regular math expressions), but also how

they temporarily store intermediate results of more complex expressions for use in

reconstructing strings after their dissection by the regular expression.

Simple patterns
A simple regular expression uses no special characters for defining the string to

be used in a search. Therefore, if you wanted to replace every space in a string with

an underscore character, the simple pattern to match the space character is

var re = / /

A space appears between the regular expression start-end forward slashes. The

problem with this expression, however, is that it knows only how to find a single

instance of a space in a long string. Regular expressions can be instructed to apply

the matching string on a global basis by appending the g modifier:

var re = / /g

When this re value is supplied as a parameter to the replace() method that

uses regular expressions (described later in this chapter), the replacement is per-

formed throughout the entire string, rather than just once on the first match found.

Notice that the modifier appears after the final forward slash of the regular expres-

sion creation statement.

Regular expression matching — like a lot of other aspects of JavaScript — is case-

sensitive. But you can override this behavior by using one other modifier that lets

you specify a case-insensitive match. Therefore, the following expression

var re = /web/i

finds a match for “web,” “Web,” or any combination of uppercase and lowercase

letters in the word. You can combine the two modifiers together at the end of a reg-

ular expression. For example, the following expression is both case-insensitive and

global in scope:

var re = /web/gi

In compliance with the ECMA-262 Edition 3 standard, IE5.5 and NN6 also allow a

flag to force the regular expression to operate across multiple lines (meaning a car-

riage-return-delimited string) of a larger string. That modifier is the letter m.

Special characters
The regular expression in JavaScript borrows most of its vocabulary from the

Perl regular expression. In a few instances, JavaScript offers alternatives to simplify

the syntax, but also accepts the Perl version for those with experience in that

arena.

(c) ketabton.com: The Digital Library

1010 Part IV ✦ JavaScript Core Language Reference

Significant programming power comes from the way regular expressions allow

you to include terse specifications about such facets as types of characters to

accept in a match, how the characters are surrounded within a string, and how

often a type of character can appear in the matching string. A series of escaped

one-character commands (that is, letters preceded by the backslash) handle most

of the character issues; punctuation and grouping symbols help define issues of fre-

quency and range.

You saw an example earlier how \b specified a word boundary on one side of a

search string. Table 38-1 lists the escaped character specifiers in JavaScript regular

expressions. The vocabulary forms part of what are known as metacharacters —

characters in expressions that are not matchable characters themselves, but act

more as commands or guidelines of the regular expression language.

Table 38-1 JavaScript Regular Expression
Matching Metacharacters

Character Matches Example

\b Word boundary /\bor/ matches “origami” and “or”
but not “normal”

/or\b/ matches “traitor” and “or” but
not “perform”

/\bor\b/ matches full word “or” and
nothing else

\B Word non-boundary /\Bor/ matches “normal” but not
“origami”

/or\B/ matches “normal” and
“origami” but not “traitor”

/\Bor\B/ matches “normal” but not
“origami” or “traitor”

\d Numeral 0 through 9 /\d\d\d/ matches “212” and “415”
but not “B17”

\D Non-numeral /\D\D\D/ matches “ABC” but not
“212” or “B17”

\s Single white space /over\sbite/ matches “over bite” but
not “overbite” or “over bite”

\S Single non-white space /over\Sbite/ matches “over-bite”
but not “overbite” or “over bite”

\w Letter, numeral, or underscore /A\w/ matches “A1” and “AA” but not
“A+”

\W Not letter, numeral, or underscore /A\W/ matches “A+” but not “A1” and
“AA”

. Any character except newline /.../ matches “ABC”, “1+3”, “A 3”, or
any three characters

(c) ketabton.com: The Digital Library

1011Chapter 38 ✦ The Regular Expression and RegExp Objects

Character Matches Example

[...] Character set /[AN]BC/ matches “ABC” and “NBC”
but not “BBC”

[^...] Negated character set /[^AN]BC/ matches “BBC” and “CBC”
but not “ABC” or “NBC”

Not to be confused with the metacharacters listed in Table 38-1 are the escaped

string characters for tab (\t), newline (\n), carriage return (\r), formfeed (\f), and

vertical tab (\v).

Let me further clarify about the [...] and [^...] metacharacters. You can specify

either individual characters between the brackets (as shown in Table 38-1) or a con-

tiguous range of characters or both. For example, the \d metacharacter can also be

defined by [0-9], meaning any numeral from zero through nine. If you only want to

accept a value of 2 and a range from 6 through 8, the specification would be [26-8].

Similarly, the accommodating \w metacharacter is defined as [A-Za-z0-9_], remind-

ing you of the case-sensitivity of regular expression matches not otherwise modified.

All but the bracketed character set items listed in Table 38-1 apply to a single

character in the regular expression. In most cases, however, you cannot predict how

incoming data will be formatted — the length of a word or the number of digits in a

number. A batch of extra metacharacters lets you set the frequency of the occur-

rence of either a specific character or a type of character (specified like the ones in

Table 38-1). If you have experience in command-line operating systems, you can see

some of the same ideas that apply to wildcards also apply to regular expressions.

Table 38-2 lists the counting metacharacters in JavaScript regular expressions.

Table 38-2 JavaScript Regular Expression Counting
Metacharacters

Character Matches Last Character Example

* Zero or more times /Ja*vaScript/ matches “JvaScript”,
“JavaScript”, and “JaaavaScript” but not
“JovaScript”

? Zero or one time /Ja?vaScript/ matches “JvaScript” or
“JavaScript” but not “JaaavaScript”

+ One or more times /Ja+vaScript/ matches “JavaScript” or
“JaavaScript” but not “JvaScript”

{n} Exactly n times /Ja{2}vaScript/ matches “JaavaScript”
but not “JvaScript” or “JavaScript”

{n,} n or more times /Ja{2,}vaScript/ matches
“JaavaScript” or “JaaavaScript” but not
“JavaScript”

{n,m} At least n, at most m times /Ja{2,3}vaScript/ matches
“JaavaScript” or “JaaavaScript” but not
“JavaScript”

(c) ketabton.com: The Digital Library

1012 Part IV ✦ JavaScript Core Language Reference

Every metacharacter in Table 38-2 applies to the character immediately preced-

ing it in the regular expression. Preceding characters may also be matching

metacharacters from Table 38-1. For example, a match occurs for the following

expression if the string contains two digits separated by one or more vowels:

/\d[aeiouy]+\d/

The last major contribution of metacharacters is helping the regular expression

search a particular position in a string. By position, I don’t mean something such as

an offset — the matching functionality of regular expressions can tell me that. But,

rather, whether the string to look for should be at the beginning or end of a line (if

that is important) or whatever string is offered as the main string to search. Table

38-3 shows the positional metacharacters for JavaScript’s regular expressions.

Table 38-3 JavaScript Regular Expression Positional
Metacharacters

Character Matches Located Example

^ At beginning of a string or line /^Fred/ matches “Fred is OK” but not
“I’m with Fred” or “Is Fred here?”

$ At end of a string or line /Fred$/ matches “I’m with Fred” but
not “Fred is OK” or “Is Fred here?”

For example, you may want to make sure that a match for a roman numeral is

found only when it is at the start of a line, rather than when it is used inline some-

where else. If the document contains roman numerals in an outline, you can match

all the top-level items that are flush left with the document with a regular expres-

sion, such as the following:

/^[IVXMDCL]+\./

This expression matches any combination of roman numeral characters followed

by a period (the period is a special character in regular expressions, as shown in

Table 38-1, so that you have to escape the period to offer it as a character), pro-

vided the roman numeral is at the beginning of a line and has no tabs or spaces

before it. There would also not be a match in a line that contains, for example, the

phrase “see Part IV” because the roman numeral is not at the beginning of a line.

Speaking of lines, a line of text is a contiguous string of characters delimited by a

newline and/or carriage return (depending on the operating system platform). Word

wrapping in TEXTAREA elements does not affect the starts and ends of true lines of

text.

Grouping and backreferencing
Regular expressions obey most of the JavaScript operator precedence laws with

regard to grouping by parentheses and the logical Or operator. One difference is

that the regular expression Or operator is a single pipe character (|) rather than

JavaScript’s double pipe.

Parentheses have additional powers that go beyond influencing the precedence

of calculation. Any set of parentheses (that is, a matched pair of left and right)

(c) ketabton.com: The Digital Library

1013Chapter 38 ✦ The Regular Expression and RegExp Objects

stores the results of a found match of the expression within those parentheses.

Parentheses can be nested inside one another. Storage is accomplished automati-

cally, with the data stored in an indexed array accessible to your scripts and to

your regular expressions (although through different syntax). Access to these stor-

age bins is known as backreferencing, because a regular expression can point back-

ward to the result of an expression component earlier in the overall expression.

These stored subcomponents come in handy for replace operations, as demon-

strated later in this chapter.

Object Relationships
JavaScript has a lot going on behind the scenes when you create a regular

expression and perform the simplest operation with it. As important as the regular

expression language described earlier in this chapter is to applying regular expres-

sions in your scripts, the JavaScript object interrelationships are perhaps even

more important if you want to exploit regular expressions to the fullest.

The first concept to master is that two entities are involved: a regular expression

instance object and the RegExp static object. Both objects are core objects of

JavaScript and are not part of the document object model. Both objects work

together, but have entirely different sets of properties that may be useful to your

application.

When you create a regular expression (even via the /.../ syntax), JavaScript

invokes the new RegExp() constructor, much the way a new Date() constructor

creates a date object around one specific date. The regular expression instance

object returned by the constructor is endowed with several properties containing

details of its data. At the same time, the single, static RegExp object maintains its

own properties that monitor regular expression activity in the current window (or

frame).

To help you see the typically unseen operations, I step you through the creation

and application of a regular expression. In the process, I show you what happens to

all of the related object properties when you use one of the regular expression

methods to search for a match.

Several properties of both the regular expression instance object and the static
RegExp object shown in the following “walk-through” are not available in IE until
version 5.5. All are available in NN4+. See the individual property listings later in
this chapter for compatibility ratings.

The starting text that I use to search through is the beginning of Hamlet’s solilo-

quy (assigned to an arbitrary variable named mainString):

var mainString = “To be, or not to be: That is the question:”

If my ultimate goal is to locate each instance of the word “be,” I must first create

a regular expression that matches the word “be.” I set the regular expression up to

perform a global search when eventually called upon to replace itself (assigning the

expression to an arbitrary variable named re):

var re = /\bbe\b/g

Note

(c) ketabton.com: The Digital Library

1014 Part IV ✦ JavaScript Core Language Reference

To guarantee that only complete words “be” are matched, I surround the letters

with the word boundary metacharacters. The final “g” is the global modifier. The

variable to which the expression is assigned, re, represents a regular expression

object whose properties and values are as follows:

Object.PropertyName Value

re.source “\bbe\bg”

re.global true

re.ignoreCase false

re.lastIndex 0

A regular expression’s source property is the string consisting of the regular

expression syntax (less the literal forward slashes). Each of the two possible modi-

fiers, g and i, have their own properties, global and ignoreCase, whose values

are Booleans indicating whether the modifiers are part of the source expression.

The final property, lastIndex, indicates the index value within the main string at

which the next search for a match should start. The default value for this property

in a newly hatched regular expression is zero so that the search starts with the first

character of the string. This property is read/write, so your scripts may want to

adjust the value if they must have special control over the search process. As you

see in a moment, JavaScript modifies this value over time if a global search is indi-

cated for the object.

The RegExp constructor does more than just create regular expression objects.

Like the Math object, the RegExp object is always “around” — one RegExp per win-

dow or frame — and tracks regular expression activity in a script. Its properties

reveal what, if any, regular expression pattern matching has just taken place in the

window. At this stage of the regular expression creation process, the RegExp object

has only one of its properties set:

Object.PropertyName Value

RegExp.input

RegExp.multiline false

RegExp.lastMatch

RegExp.lastParen

RegExp.leftContext

RegExp.rightContext

RegExp.$1

...

RegExp.$9

The last group of properties ($1 through $9) is for storage of backreferences. But

because the regular expression I define above doesn’t have any parentheses in it,

(c) ketabton.com: The Digital Library

1015Chapter 38 ✦ The Regular Expression and RegExp Objects

these properties are empty for the duration of this examination and omitted from

future listings in this “walk-through” section.

With the regular expression object ready to go, I invoke the exec() regular

expression method, which looks through a string for a match defined by the regular

expression. If the method is successful in finding a match, it returns a third object

whose properties reveal a great deal about the item it found (I arbitrarily assign the

variable foundArray to this returned object):

var foundArray = re.exec(mainString)

JavaScript includes a shortcut for the exec() method if you turn the regular

expression object into a method:

var foundArray = re(mainString)

Normally, a script would check whether foundArray is null (meaning that there

was no match) before proceeding to inspect the rest of the related objects. Because

this is a controlled experiment, I know at least one match exists, so I first look into

some other results. Running this simple method has not only generated the

foundArray data, but also altered several properties of the RegExp and regular

expression objects. The following shows you the current stage of the regular

expression object:

Object.PropertyName Value

re.source “\bbe\bg”

re.global true

re.ignoreCase false

re.lastIndex 5

The only change is an important one: The lastIndex value has bumped up to 5.

In other words, this one invocation of the exec() method must have found a match

whose offset plus length of matching string shifts the starting point of any succes-

sive searches with this regular expression to character index 5. That’s exactly

where the comma after the first “be” word is in the main string. If the global (g)

modifier had not been appended to the regular expression, the lastIndex value

would have remained at zero, because no subsequent search would be anticipated.

As the result of the exec() method, the RegExp object has had a number of its

properties filled with results of the search:

Object.PropertyName Value

RegExp.input

RegExp.multiline false

RegExp.lastMatch “be”

RegExp.lastParen

RegExp.leftContext “To “

RegExp.rightContext “, or not to be: That is the question:”

(c) ketabton.com: The Digital Library

1016 Part IV ✦ JavaScript Core Language Reference

From this object you can extract the string segment that was found to match the

regular expression definition. The main string segments before and after the match-

ing text are also available individually (in this example, the leftContext property

has a space after “To”). Finally, looking into the array returned from the exec()
method, some additional data is readily accessible:

Object.PropertyName Value

foundArray[0] “be”

foundArray.index 3

foundArray.input “To be, or not to be: That is the question:”

The first element in the array, indexed as the zeroth element, is the string seg-

ment found to match the regular expression, which is the same as the

RegExp.lastMatch value. The complete main string value is available as the input

property. A potentially valuable piece of information to a script is the index for the

start of the matched string found in the main string. From this last bit of data, you

can extract from the found data array the same values as RegExp.leftContext
(with foundArray.input.substring(0, foundArray.index)) and RegExp.
rightContext (with foundArray.input.substring(foundArray.index,
foundArray[0].length)).

Because the regular expression suggested a multiple execution sequence to fulfill

the global flag, I can run the exec() method again without any change. While the

JavaScript statement may not be any different, the search starts from the new

re.lastIndex value. The effects of this second time through ripple through the

resulting values of all three objects associated with this method:

var foundArray = re.exec(mainString)

Results of this execution are as follows (changes are in boldface).

Object.PropertyName Value

re.source “\bbe\bg”

re.global true

re.ignoreCase false

re.lastIndex 19

RegExp.input

RegExp.multiline false

RegExp.lastMatch “be”

RegExp.lastParen

RegExp.leftContext “, or not to “

RegExp.rightContext “: That is the question:”

(c) ketabton.com: The Digital Library

1017Chapter 38 ✦ The Regular Expression and RegExp Objects

Object.PropertyName Value

foundArray[0] “be”

foundArray.index 17

foundArray.input “To be, or not to be: That is the
question:”

Because there was a second match, foundArray comes back again with data. Its

index property now points to the location of the second instance of the string

matching the regular expression definition. The regular expression object’s

lastIndex value points to where the next search would begin (after the second

“be”). And the RegExp properties that store the left and right contexts have

adjusted accordingly.

If the regular expression were looking for something less stringent than a hard-

coded word, some other properties may also be different. For example, if the regu-

lar expression defined a format for a ZIP code, the RegExp.lastMatch and

foundArray[0] values would contain the actual found ZIP codes, which would

likely be different from one match to the next.

Running the same exec() method once more does not find a third match in my

original mainString value, but the impact of that lack of a match is worth noting.

First of all, the foundArray value is null— a signal to our script that no more

matches are available. The regular expression object’s lastIndex property reverts

to zero, ready to start its search from the beginning of another string. Most impor-

tantly, however, the RegExp object’s properties maintain the same values from the

last successful match. Therefore, if you put the exec() method invocations in a

repeat loop that exits after no more matches are found, the RegExp object still has

the data from the last successful match, ready for further processing by your

scripts.

Using Regular Expressions
Despite the seemingly complex hidden workings of regular expressions,

JavaScript provides a series of methods that make common tasks involving regular

expressions quite simple to use (assuming you figure out the regular expression

syntax to create good specifications). In this section, I present examples of syntax

for specific kinds of tasks for which regular expressions can be beneficial in your

pages.

Is there a match?
I said earlier that you can use string.indexOf() or string.lastIndexOf() to

look for the presence of simple substrings within larger strings. But if you need the

matching power of regular expression, you have two other methods to choose

from:

regexObject.test(string)
string.search(regexObject)

The first is a regular expression object method, the second a string object

method. Both perform the same task and influence the same related objects, but

(c) ketabton.com: The Digital Library

1018 Part IV ✦ JavaScript Core Language Reference

they return different values: a Boolean value for test() and a character offset

value for search() (or -1 if no match is found). Which method you choose

depends on whether you need only a true/false verdict on a match or the location

within the main string of the start of the substring.

Listing 38-1 demonstrates the search() method on a page that lets you get the

Boolean and offset values for a match. Some default text and regular expression is

provided (it looks for a five-digit number). You can experiment with other strings

and regular expressions. Because this script creates a regular expression object

with the new RegExp() constructor method, you do not include the literal forward

slashes around the regular expression.

Listing 38-1: Looking for a Match

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function findIt(form) {

var re = new RegExp(form.regexp.value)
var input = form.main.value
if (input.search(re) != -1) {

form.output[0].checked = true
} else {

form.output[1].checked = true
}

}
function locateIt(form) {

var re = new RegExp(form.regexp.value)
var input = form.main.value
form.offset.value = input.search(re)

}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to test for the existence of a string:
<HR>
<FORM>
Enter some text to be searched:

<TEXTAREA NAME=”main” COLS=40 ROWS=4 WRAP=”virtual”>
The most famous ZIP code on Earth may be 90210.
</TEXTAREA>

Enter a regular expression to search:

<INPUT TYPE=”text” NAME=”regexp” SIZE=30 VALUE=”\b\d\d\d\d\d\b”><P>
<INPUT TYPE=”button” VALUE=”Is There a Match?” onClick=”findIt(this.form)”>
<INPUT TYPE=”radio” NAME=”output”>Yes
<INPUT TYPE=”radio” NAME=”output”>No <P>
<INPUT TYPE=”button” VALUE=”Where is it?” onClick=”locateIt(this.form)”>
<INPUT TYPE=”text” NAME=”offset” SIZE=4><P>
<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1019Chapter 38 ✦ The Regular Expression and RegExp Objects

Getting information about a match
For the next application example, the task is not only to verify that a one-field

date entry is in the desired format, but also to extract match components of the

entry and use those values to perform further calculations in determining the day

of the week. The regular expression in the example that follows is a fairly complex

one, because it performs some rudimentary range checking to make sure the user

doesn’t enter a month over 12 or a date over 31. What it does not take into account

is the variety of lengths of each month. But the regular expression and method

invoked with it extract each date object component in such a way that you can per-

form additional validation on the range to make sure the user doesn’t try to give

September 31 days. Also be aware that this is not the only way to perform date vali-

dations in forms. Chapter 43 offers additional thoughts on the matter that work

without regular expressions for backward compatibility.

Listing 38-2 contains a page that has a field for date entry, a button to process

the date, and an output field for display of a long version of the date, including the

day of the week. At the start of the function that does all the work, I create two

arrays (using the JavaScript 1.2 literal array creation syntax) to hold the plain lan-

guage names of the months and days. These arrays are used only if the user enters

a valid date.

Next comes the regular expression to be matched against the user entry. If you

can decipher all the symbols, you see that three components are separated by

potential hyphen or forward slash entries ([\-\/]). These symbols must be

escaped in the regular expression. Importantly, each of the three component defini-

tions is surrounded by parentheses, which are essential for the various objects cre-

ated with the regular expression to remember their values for extraction later.

Here is a brief rundown of what the regular expression is looking for:

✦ A string beginning after a word break

✦ A string value for the month that contains a 1 plus a 0 through 2; or an

optional 0 plus a 1 through 9

✦ A hyphen or forward slash

✦ A string value for the date that starts with a 0 plus a 1 through 9; or starts with

a 1 or 2 and ends with a 0 through 9; or starts with a 3 and ends with 0 or 1

✦ Another hyphen or forward slash

✦ A string value for the year that begins with 19 or 20, followed by two digits

An extra pair of parentheses must surround the 19|20 segment to make sure

that either one of the matching values is attached to the two succeeding digits.

Without the parentheses, the logic of the expression attaches the digits only to 20.

For invoking the regular expression action, I select the exec() method, assigning

the returned object to the variable matchArray. I can also use the string.match()
method here. Only if the match is successful (that is, all conditions of the regular

expression specification are met) does the major processing continue in the script.

(c) ketabton.com: The Digital Library

1020 Part IV ✦ JavaScript Core Language Reference

The parentheses around the segments of the regular expression instruct

JavaScript to assign each found value to a slot in the matchArray object. The

month segment is assigned to matchArray[1], the date to matchArray[2], and

the year to matchArray[3] (matchArray[0] contains the entire matched string).

Therefore, the script can extract each component to build a plain-language date

string with the help of the arrays defined at the start of the function. I even use the

values to create a new date object that calculates the day of the week for me. After I

have all pieces, I concatenate them and assign the result to the value of the output

field. If the regular expression exec() method doesn’t match the typed entry with

the expression, the script provides an error message in the field.

Listing 38-2: Extracting Data from a Match

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function extractIt(form) {

var months = [“January”,”February”,”March”,”April”,”May”,”June”,”July”,
“August”,”September”,”October”,”November”,”December”]

var days = [“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,
“Saturday”]

var re = /\b(1[0-2]|0?[1-9])[\-\/](0?[1-9]|[12][0-9]|3[01])[\-
\/]((19|20)\d{2})/

var input = form.entry.value
var matchArray = re.exec(input)
if (matchArray) {

var theMonth = months[matchArray[1] - 1] + “ “
var theDate = matchArray[2] + “, “
var theYear = matchArray[3]
var dateObj = new Date(matchArray[3],matchArray[1]-1,matchArray[2])
var theDay = days[dateObj.getDay()] + “ “
form.output.value = theDay + theMonth + theDate + theYear

} else {
form.output.value = “An invalid date.”

}
}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to extract data from a string:
<HR>
<FORM>
Enter a date in the format mm/dd/yyyy or mm-dd-yyyy:

<INPUT TYPE=”text” NAME=”entry” SIZE=12><P>
<INPUT TYPE=”button” VALUE=”Extract Date Components”
onClick=”extractIt(this.form)”><P>
The date you entered was:

<INPUT TYPE=”text” NAME=”output” SIZE=40><P>
<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1021Chapter 38 ✦ The Regular Expression and RegExp Objects

String replacement
To demonstrate using regular expressions for performing search-and-replace

operations, I choose an application that may be of value to many page authors who

have to display and format large numbers. Databases typically store large integers

without commas. After five or six digits, however, such numbers are difficult for

users to read. Conversely, if the user needs to enter a large number, commas help

ensure accuracy.

Helping the procedure in JavaScript regular expressions is the string.replace()
method (see Chapter 34). The method requires two parameters, a regular expression

to search the string and a string to replace any match found in the string. The

replacement string can be properties of the RegExp object as it stands after the most

recent exec() method.

Listing 38-3 demonstrates how only a handful of script lines can do a lot of work

when regular expressions handle the dirty work. The page contains three fields.

Enter any number you want in the first one. A click of the Insert Commas button

invokes the commafy() function in the page. The result is displayed in the second

field. You can also enter a comma-filled number in the second field and click the

Remove Commas button to see the inverse operation executed through the

decommafy() function.

Specifications for the regular expression accept any positive or negative string of

numbers. The keys to the action of this script are the parentheses around two seg-

ments of the regular expression. One set encompasses all characters not included

in the second group: a required set of three digits. In other words, the regular

expression is essentially working from the rear of the string, chomping off three-

character segments and inserting a comma each time a set is found.

A while repeat loop cycles through the string and modifies the string (in truth,

the string object is not being modified, but, rather, a new string is generated and

assigned to the old variable name). I use the test() method because I don’t need

the returned value of the exec() method. The test() method impacts the regular

expression and RegExp object properties the same way as the exec() method, but

more efficiently. The first time the test() method runs, the part of the string that

meets the first segment is assigned to the RegExp.$1 property; the second seg-

ment, if any, is assigned to the RegExp.$2 property. Notice that I’m not assigning

the results of the exec() method to any variable, because for this application I

don’t need the array object generated by that method.

Next comes the tricky part. I invoke the string.replace() method, using the

current value of the string (num) as the starting string. The pattern to search for is

the regular expression defined at the head of the function. But the replacement

string may look strange to you. The replacement string is replacing whatever the

regular expression matches with the value of RegExp.$1, a comma, and the value

of RegExp.$2. The RegExp object should not be part of the references used in the

replace() method parameter. Because the regular expression matches the entire

num string, the replace() method is essentially rebuilding the string from its com-

ponents, plus adding a comma before the second component (the last free-standing

three-digit section). Each replace() method invocation sets the value of num for

the next time through the while loop and the test() method.

(c) ketabton.com: The Digital Library

1022 Part IV ✦ JavaScript Core Language Reference

Looping continues until no matches occur — meaning that no more freestanding

sets of three digits appear in the string. Then the results are written to the second

field on the page.

Listing 38-3: Replacing Strings via Regular Expressions

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function commafy(form) {

var re = /(-?\d+)(\d{3})/
var num = form.entry.value
while (re.test(num)) {

num = num.replace(re, “$1,$2”)
}
form.commaOutput.value = num

}
function decommafy(form) {

var re = /,/g
form.plainOutput.value = form.commaOutput.value.replace(re,””)

}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to add/delete commas from numbers:
<HR>
<FORM>
Enter a large number without any commas:

<INPUT TYPE=”text” NAME=”entry” SIZE=15><P>
<INPUT TYPE=”button” VALUE=”Insert commas” onClick=”commafy(this.form)”><P>
The comma version is:

<INPUT TYPE=”text” NAME=”commaOutput” SIZE=20><P>
<INPUT TYPE=”button” VALUE=”Remove commas” onClick=”decommafy(this.form)”><P>
The un-comma version is:

<INPUT TYPE=”text” NAME=”plainOutput” SIZE=15><P>
<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

Removing the commas is an even easier process. The regular expression is a

comma with the global flag set. The replace() method reacts to the global flag by

repeating the process until all matches are replaced. In this case, the replacement

string is an empty string. For further examples of using regular expressions with

string objects, see the discussions of the string.match(), string.replace(),

and string.split() methods in Chapter 34.

(c) ketabton.com: The Digital Library

1023Chapter 38 ✦ The Regular Expression and RegExp Objects

Regular Expression Object

Properties Methods

constructor compile()

global exec()

ignoreCase test()

lastIndex

multilane

source

Syntax
Accessing regular expression properties or methods:

regularExpressionObject.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

About this object
The regular expression object is created on the fly by your scripts. Each regular

expression object contains its own pattern and other properties. Deciding which

object creation style to use depends on the way the regular expression will be used

in your scripts.

When you create a regular expression with the literal notation (that is, with the

two forward slashes), the expression is automatically compiled for efficient pro-

cessing as the assignment statement executes. The same is true when you use the

new RegExp() constructor and specify a pattern (and optional modifier flags) as a

parameter. Whenever the regular expression is fixed in the script, use the literal

notation; when some or all of the regular expression is derived from an external

source (for example, user input from a text field), assemble the expression as a

parameter to the new RegExp() constructor. A compiled regular expression should

be used at whatever stage the expression is ready to be applied and reused within

the script. Compiled regular expressions are not saved to disk or given any more

permanence beyond the life of a document’s script (that is, it dies when the page

unloads).

However, there may be times in which the specification for the regular expres-

sion changes with each iteration through a loop construction. For example, if state-

ments in a while loop modify the content of a regular expression, compile the

regularExpressionObject

(c) ketabton.com: The Digital Library

1024 Part IV ✦ JavaScript Core Language Reference

expression inside the while loop, as shown in the following skeletal script

fragment:

var srchText = form.search.value
var re = new RegExp() // empty constructor
while (someCondition) {

re.compile(“\\s+” + srchText + “\\s+”, “gi”)
statements that change srchText

}

Each time through the loop, the regular expression object is both given a new

expression (concatenated with metacharacters for one or more white spaces on

both sides of some search text whose content changes constantly) and compiled

into an efficient object for use with any associated methods.

Properties
constructor

See string.constructor (Chapter 34).

global
ignoreCase

Value: Booleans Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

These two properties reflect the regular expression g and i modifier flags, if any,

associated with a regular expression. Settings are read-only and are determined as

the object is created. Each property is independent of the other.

Related Items: None.

lastIndex
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The lastIndex property indicates the index counter of the main string to be

searched against the current regular expression object. When a regular expression

object is created, this value is zero, meaning that there have been no searches with

this object, and the default behavior of the first search is to start at the beginning of

the string.

regularExpressionObject.lastIndex

(c) ketabton.com: The Digital Library

1025Chapter 38 ✦ The Regular Expression and RegExp Objects

If the regular expression has the global modifier specified, the lastIndex prop-

erty value advances to some higher value after the object is used in a method to

match within a main string. The value is the position in the main string immediately

after the previous matched string (and not including any character of the matched

string). After locating the final match in a string, the method resets the lastIndex
property to zero for the next time. You can also influence the behavior of matches

by setting this value on the fly. For example, if you want the expression to begin its

search at the fourth character of a target string, you change the setting immediately

after creating the object, as follows:

var re = /somePattern/
re.lastIndex = 3 // fourth character in zero-based index system

Related Items: Match result object index property.

multiline
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The multiline property reveals whether searches extend across multiple lines of

a target string, as directed by the optional m modifier flag for a regular expression.

NN4+ also includes the same-named property for the RegExp object (see the follow-

ing section).

Related Items: RegExp.multiline property.

source
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The source property is simply the string representation of the regular expres-

sion used to define the object. This property is read-only.

Related Items: None.

Methods
compile(“pattern”, [“g” | “i” | “m”])

Returns: Regular expression object.

regularExpressionObject.compile()

(c) ketabton.com: The Digital Library

1026 Part IV ✦ JavaScript Core Language Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Use the compile() method to compile on the fly a regular expression whose

content changes continually during the execution of a script. See the discussion

earlier about this object for an example. Other regular expression creation state-

ments (the literal notation and the new RegExp() constructor that passes a regular

expression) automatically compile their expressions. The m pattern modifier is

available in IE5.5+ and NN6+.

Related Items: None.

exec(“string”)
Returns: Match array object or null.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The exec() method examines the string passed as its parameter for at least one

match of the specification defined for the regular expression object. The behavior

of this method is similar to that of the string.match() method (although the

match() method is more powerful in completing global matches). Typically, a call

to the exec() method is made immediately after the creation of a regular expres-

sion object, as in the following example.

var re = /somePattern/
var matchArray = re.exec(“someString”)

Much happens as a result of the exec() method. Properties of both the regular

expression object and window’s RegExp object are updated based on the success of

the match. The method also returns an object that conveys additional data about

the operation. Table 38-4 shows the properties of this returned object.

Table 38-4 Match Found Array Object Properties

Property Description

index Zero-based index counter of the start of the match inside the string

input Entire text of original string

[0] String of most recent matched characters

[1],...[n] Parenthesized component matches

Some of the properties in this returned object echo properties in the RegExp
object. The value of having them in the regular expression object is that their

regularExpressionObject.exec()

(c) ketabton.com: The Digital Library

1027Chapter 38 ✦ The Regular Expression and RegExp Objects

contents are safely stowed in the object while the RegExp object and its properties

may be modified soon by another call to a regular expression method. Items the two

objects have in common are the [0] property (mapped to the RegExp.lastMatch
property) and the [1],. . .[n] properties (the first nine of which map to

RegExp.$1. . .RegExp.$9). While the RegExp object stores only nine parenthe-

sized subcomponents, the returned array object stores as many as are needed to

accommodate parenthesis pairs in the regular expression.

If no match turns up between the regular expression specification and the string,

the returned value is null. See Listing 38-2 for an example of how this method can

be applied. An alternate shortcut syntax may be used for the exec() method. Turn

the regular expression into a function, as in

var re = /somePattern/
var matchArray = re(“someString”)

Related Items: string.match() method.

test(“string”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

The most efficient way to find out if a regular expression has a match in a string

is to use the test() method. Returned values are true if a match exists and false
if not. In case you need more information, a companion method, string.search(),

returns the starting index value of the matching string. See Listing 38-1 for an exam-

ple of this method in action.

Related Items: string.search() method.

RegExp Object
Properties Methods

input

lastMatch

lastParen

leftContext

multilane

prototype

rightContext

$1, ... $9

RegExp

(c) ketabton.com: The Digital Library

1028 Part IV ✦ JavaScript Core Language Reference

Syntax
Accessing RegExp properties:

RegExp.property

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

About this object
Beginning with Navigator 4 and Internet Explorer 4, the browser maintains a sin-

gle instance of a RegExp object for each window or frame. The object oversees the

action of all methods that involve regular expressions (including the few related

string object methods). Properties of this object are exposed not only to JavaScript

in the traditional manner, but also to a parameter of the method

string.replace() for some shortcut access (see Listing 38-3).

With one RegExp object serving all regular expression-related methods in your

document’s scripts, you must exercise care in accessing or modifying this object’s

properties. You must make sure that the RegExp object has not been affected by

another method. Most properties are subject to change as the result of any method

involving a regular expression. This may be reason enough to use the properties of

the array object returned by most regular expression methods instead of the

RegExp properties. The former stick with a specific regular expression object even

after other regular expression objects are used in the same script. The RegExp
properties reflect the most recent activity, irrespective of the regular expression

object involved.

In the following listings, I supply the long, JavaScript-like property names. But

each property also has an abbreviated, Perl-like manner to refer to the same prop-

erties. You can use these shortcut property names in the string.replace()
method if you need the values.

Properties
input

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The RegExp.input property is the main string against which a regular expres-

sion is compared in search of a match. In all of the example listings earlier in this

chapter, the property was null. Such is the case when the main string is supplied

as a parameter to the regular expression-related method.

RegExp.input

(c) ketabton.com: The Digital Library

1029Chapter 38 ✦ The Regular Expression and RegExp Objects

But many text-related document objects have an unseen relationship with the

RegExp object. If a text, TEXTAREA, SELECT, or link object contains an event han-

dler that invokes a function containing a regular expression, the RegExp.input
property is set to the relevant textual data from the object. You don’t have to spec-

ify any parameters for the event handler call or in the function called by the event

handler. For text and TEXTAREA objects, the input property value becomes the

content of the object; for the SELECT object, it is the text (not the value) of the

selected option; and for a link, it is the text highlighted in the browser associated

with the link (and reflected in the link’s text property).

Having JavaScript set the RegExp.input property for you may simplify your

script. You can invoke either of the regular expression methods without having to

specify the main string parameter. When that parameter is empty, JavaScript

applies the RegExp.input property to the task. You can also set this property on

the fly if you want. The short version of this property is $_ (dollar sign underscore).

Related Items: Matching array object input property.

multiline
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The RegExp.multiline property determines whether searches extend across

multiple lines of a target string. This property is automatically set to true as an

event handler of a TEXTAREA triggers a function containing a regular expression.

You can also set this property on the fly if you want. The short version of this prop-

erty is $*. This version of the property (as distinct from the multiline property of

an instance of a regular expression) is not defined in the ECMA-262 specification

and is supported only in NN4+.

Related Items: Regular expression instance object multiline property.

lastMatch
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

After execution of a regular expression-related method, any text in the main

string that matches the regular expression specification is automatically assigned

to the RegExp.lastMatch property. This value is also assigned to the [0] property

of the object array returned after the exec() and string.match() methods find a

match. The short version of this property is $&.

Related Items: Matching array object [0] property.

RegExp.lastMatch

(c) ketabton.com: The Digital Library

1030 Part IV ✦ JavaScript Core Language Reference

lastParen
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

When a regular expression contains many parenthesized subcomponents, the

RegExp object maintains a list of the resulting strings in the $1,...$9 properties.

You can also extract the value of the last matching parenthesized subcomponent

with the RegExp.lastParen property, which is a read-only property. The short ver-

sion of this property is $+.

Related Items: RegExp.$1,...$9 properties.

leftContext
rightContext

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

After a match is found in the course of one of the regular expression methods,

the RegExp object is informed of some key contextual information about the match.

The leftContext property contains the part of the main string to the left of (up to

but not including) the matched string. Be aware that the leftContext starts its

string from the point at which the most recent search began. Therefore, for second

or subsequent times through the same string with the same regular expression, the

leftContext substring varies widely from the first time through.

The rightContext consists of a string starting immediately after the current

match and extending to the end of the main string. As subsequent method calls

work on the same string and regular expression, this value obviously shrinks in

length until no more matches are found. At this point, both properties revert to

null. The short versions of these properties are $` and $’ for leftContext and

rightContext, respectively.

Related Items: None.

prototype
See String.prototype (Chapter 34).

RegExp.prototype

(c) ketabton.com: The Digital Library

1031Chapter 38 ✦ The Regular Expression and RegExp Objects

$1...$9
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

As a regular expression method executes, any parenthesized result is stored in

RegExp’s nine properties reserved for just that purpose (called backreferences).

The same values (and any beyond the nine that RegExp has space for) are stored in

the array object returned with the exec() and string.match() methods. Values

are stored in the order in which the left parenthesis of a pair appears in the regular

expression, regardless of nesting of other components.

You can use these backreferences directly in the second parameter of the

string.replace() method, without using the RegExp part of their address. The

ideal situation is to encapsulate components that need to be rearranged or recom-

bined with replacement characters. For example, the following script function turns

a name that is last name first into first name last:

function swapEm() {
var re = /(\w+),\s*(\w+)/
var input = “Lincoln, Abraham”
return input.replace(re,”$2 $1”)

}

In the replace() method, the second parenthesized component (just the first

name) is placed first, followed by a space and the first component. The original

comma is discarded. You are free to combine these shortcut references as you like,

including multiple times per replacement, if it makes sense to your application.

Related Items: Matching array object [1]. . .[n] properties.

✦ ✦ ✦

RegExp.$1. . . $9

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Control
Structures and
Exception
Handling

You get up in the morning, go about your day’s business,

and then turn out the lights at night. That’s not much

different from what a program does from the time it starts to

the time it ends. But along the way, both you and a program

take lots of tiny steps, not all of which advance the “process-

ing” in a straight line. At times, you have to control what’s

going on by making a decision or repeating tasks until the

whole job is finished. Control structures are the facilities that

make these tasks possible in JavaScript.

JavaScript control structures follow along the same lines of

many programming languages, particularly with additions

made in Navigator 4 and Internet Explorer 4. Basic decision-

making and looping constructions satisfy the needs of just

about all programming tasks.

Another vital program control mechanism — error (or

exception) handling — is formally addressed in Edition 3 of

the ECMA-262 language standard. The concept of exception

handling is new to the JavaScript version that comes in IE5.5

and NN6, but it is well known to programmers in many other

environments. Adopting exception handling techniques in

your code can greatly enhance recovery from processing

errors caused by errant user input or network glitches.

3939C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Branching script
execution down
multiple paths

Looping through
ordered collections of
data

Applying exception
handling techniques

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1034 Part IV ✦ JavaScript Core Language Reference

If and If. . .Else Decisions

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

JavaScript programs frequently have to make decisions based on the current val-

ues of variables or object properties. Such decisions can have only two possible

outcomes at a time. The factor that determines the path that the program takes at

these decision points is the truth of some statement. For example, when you enter a

room of your home at night, the statement under test is something such as “It is too

dark to see without a light.” If that statement is true, you switch on the light; if that

statement is false, you carry on with your primary task.

Simple decisions
JavaScript syntax for this kind of simple decision always begins with the key-

word if, followed by the condition to test, and then the statements that execute if

the condition yields a true result. JavaScript uses no “then” keyword (as some

other languages do); the keyword is implied by the way parentheses and braces

surround the various components of this construction. The formal syntax is

if (condition) {
statementsIfTrue

}

This construction means that if the condition is true, program execution takes a

detour to execute statements inside the braces. No matter what happens, the pro-

gram continues executing statements beyond the closing brace (}). If household

navigation were part of the scripting language, the code would look as this:

if (tooDark == true) {
feel for light switch
turn on light switch

}

If you’re not used to C/C++, the double equals sign may have caught your eye.

You learn more about this type of operator in the next chapter, but for now, know

that this operator compares the equality of items on either side of it. In other

words, the condition statement of an if construction must always yield a Boolean

(true or false) value. Some object properties, you may recall, are Booleans, so

you can stick a reference to that property into the condition statement by itself.

Otherwise, the condition statement consists of two values separated by a compar-

ison operator, such as == (equals) or != (does not equal).

Next, look at some real JavaScript. The following function receives a form object

containing a text object called entry:

function notTooHigh(form) {
if (parseInt(form.entry.value) > 100) {

alert(“Sorry, the value you entered is too high. Try again.”)

if

(c) ketabton.com: The Digital Library

1035Chapter 39 ✦ Control Structures and Exception Handling

return false
}
return true

}

The condition (in parentheses) tests the contents of the field against a hard-

wired value of 100. If the entered value is larger than that, the function alerts you

and returns a false value to the calling statement elsewhere in the script. But if the

value is less than 100, all intervening code is skipped and the function returns

true.

About (condition) expressions
A lot of condition testing for control structures compares a value against some

very specific condition, such as a string’s being empty or a value’s being null. You

can use a couple of shortcuts to take care of many circumstances. Table 39-1 details

the values that evaluate to a true or false (or equivalent) to satisfy a control

structure’s condition expression.

Table 39-1 Condition Value Equivalents

True False

Nonempty string Empty string

Nonzero number 0

Nonnull value Null

Object exists Object doesn’t exist

Property is defined Undefined property

Instead of having to spell out an equivalency expression for a condition involving

these kinds of values, you can simply supply the value to be tested. For example, if

a variable named myVal may reach an if construction with a value of null, an

empty string, or a string value for further processing, you can use the following

shortcut:

if (myVal) {
// do processing on myVal

}

All null or empty string conditions evaluate to false, so that only the cases of

myVal’s being a processable value get inside the if construction. This mechanism

is the same that you have seen elsewhere in this book to employ object detection

for browser branching. For example, the code nested inside the following code seg-

ment executes only if the document object has an images array property:

if (document.images) {
// do processing on image objects

}

if

(c) ketabton.com: The Digital Library

1036 Part IV ✦ JavaScript Core Language Reference

Complex decisions
The simple type of if construction described earlier is fine when the decision is

to take a small detour before returning to the main path. But not all decisions — in

programming or in life — are like that. To present two alternate paths in a

JavaScript decision, you can add a component to the construction. The syntax is

if (condition) {
statementsIfTrue

} else {
statementsIfFalse

}

By appending the else keyword, you give the if construction a path to follow in

case the condition evaluates to false. The statementsIfTrue and

statementsIfFalse do not have to be balanced in any way: One statement can be

one line of code, the other one hundred lines. But when either one of those

branches completes, execution continues after the last closing brace. To demon-

strate how this construction can come in handy, the following example is a script

fragment that assigns the number of days in February based on whether or not the

year is a leap year (using modulo arithmetic, explained in Chapter 40, to determine

if the year is evenly divisible by four, and setting aside all other leap year calcula-

tion details for the moment):

var howMany = 0
var theYear = 2002
if (theYear % 4 == 0) {

howMany = 29
} else {

howMany = 28
}

Here is a case where execution has to follow only one of two possible paths to

assign the number of days to the howMany variable. Had I not used the else por-

tion, as in

var howMany = 0
var theYear = 2002
if (theYear % 4 == 0) {

howMany = 29
}
howMany = 28

if...else

What’s with the Formatting?

Indentation of the if construction and the further indentation of the statements executed
on a true condition are not required by JavaScript. What you see here, however, is a con-
vention that most JavaScript scripters follow. As you write the code in your text editor, you
can use the Tab key to make each indentation level. The browser ignores these tab charac-
ters when loading the HTML documents containing your scripts.

(c) ketabton.com: The Digital Library

1037Chapter 39 ✦ Control Structures and Exception Handling

then the variable would always be set to 28, occasionally after momentarily

being set to 29. The else construction is essential in this case.

Nesting if. . .else statements
Designing a complex decision process requires painstaking attention to the logic

of the decisions your script must process and the statements that must execute for

any given set of conditions. The need for many complex constructions disappears

with the advent of switch construction in NN4+ and IE4+ (described later in this

chapter), but there may still be times when you must fashion complex decision

behavior out of a series of nested if. . .else constructions. Without a

JavaScript-aware text editor to help keep everything properly indented and prop-

erly terminated (with closing braces), you have to monitor the authoring process

very carefully. Moreover, the error messages that JavaScript provides when a mis-

take occurs (see Chapter 45) may not point directly to the problem line but only to

the region of difficulty.

Another important point to remember about nesting if. . .else statements in
JavaScript before Version 1.2 is that the language does not provide a mechanism
for script execution to break out of a nested part of the construction. For that rea-
son, you have to construct complex assemblies with extreme care to make sure
only the desired statement executes for each set of conditions. Extensive testing,
of course, is also required (see Chapter 45).

To demonstrate a deeply nested set of if. . .else constructions, Listing 39-1

presents a simple user interface to a complex problem. A single text object asks the

user to enter one of three letters — A, B, or C. The script behind that field processes

a different message for each of the following conditions:

✦ The user enters no value.

✦ The user enters A.

✦ The user enters B.

✦ The user enters C.

✦ The user enters something entirely different.

Listing 39-1: Deeply Nested if. . .else Constructions

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function testLetter(form){

inpVal = form.entry.value // assign to shorter variable name
if (inpVal != “”) { // if entry is not empty then dive in...

if (inpVal == “A”) { // Is it an “A”?
alert(“Thanks for the A.”)

} else if (inpVal == “B”) { // No. Is it a “B”?

Continued

Note

if...else

(c) ketabton.com: The Digital Library

1038 Part IV ✦ JavaScript Core Language Reference

Listing 39-1 (continued)

alert(“Thanks for the B.”)
} else if (inpVal == “C”) { // No. Is it a “C”?

alert(“Thanks for the C.”)
} else { // Nope. None of the above

alert(“Sorry, wrong letter or case.”)
}

} else { // value was empty, so skipped all other stuff above
alert(“You did not enter anything.”)

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Please enter A, B, or C:
<INPUT TYPE=”text” NAME=”entry” onChange=”testLetter(this.form)”>
</FORM>
</BODY>
</HTML>

Each condition executes only the statements that apply to that particular condi-

tion, even if it takes several queries to find out what the entry is. You do not need to

break out of the nested construction because when a true response is found, the

relevant statement executes, and no other statements occur in the execution path

to run.

Even if you understand how to construct a hair-raising nested construction, such

as the one in Listing 39-1, the trickiest part is making sure that each left brace has a

corresponding right brace. My technique for ensuring this pairing is to enter the

right brace immediately after I type the left brace. I typically type the left brace,

press Enter twice (once to open a free line for the next statement, once for the line

that is to receive the right brace); tab, if necessary, to the same indentation as the

line containing the left brace; and then type the right brace. Later, if I have to insert

something indented, I just push down the right braces that I entered earlier. If I keep

up this methodology throughout the process, the right braces appear at the desired

indentation after I’m finished, even if the braces end up being dozens of lines below

their original spot.

Conditional Expressions

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

While I’m showing you decision-making constructions in JavaScript, now is a

good time to introduce a special type of expression that you can use in place of an

if...else

(c) ketabton.com: The Digital Library

1039Chapter 39 ✦ Control Structures and Exception Handling

if. . .else control structure for a common type of decision — the instance

where you want to assign one of two values to a variable, depending on the out-

come of some condition. The formal definition for the conditional expression is as

follows:

variable = (condition) ? val1 : val2

This expression means that if the Boolean result of the condition statement is

true, JavaScript assigns val1 to the variable; otherwise, it assigns val2 to the vari-

able. Like other instances of condition expressions, this one must also be written

inside parentheses. The question mark is key here, as is the colon separating the

two possible values.

A conditional expression, though not particularly intuitive or easy to read inside

code, is very compact. Compare an if. . .else version of an assignment deci-

sion that follows

var collectorStatus
if (CDCount > 500) {

collectorStatus = “fanatic”
} else {

collectorStatus = “normal”
}

with the conditional expression version:

var collectorStatus = (CDCount > 500) ? “fanatic” : “normal”

The latter saves a lot of code lines (although the internal processing is the same

as that of an if. . .else construction). Of course, if your decision path contains

more statements than just one setting the value of a variable, the if. . .else or

switch construction is preferable. This shortcut, however, is a handy one to

remember if you need to perform very binary actions, such as setting a true-or-false

flag in a script.

Repeat (for) Loops

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

As you have seen in numerous examples throughout other chapters, the capabil-

ity to cycle through every entry in an array or through every item of a form element

is vital to many JavaScript scripts. Perhaps the most typical operation is inspecting

a property of many similar items in search of a specific value, such as to determine

which radio button in a group is selected. One JavaScript structure that allows for

these repetitious excursions is the for loop, so named after the keyword that

begins the structure. Two other structures, called the while loop and do-while
loop, are covered in following sections.

for

(c) ketabton.com: The Digital Library

1040 Part IV ✦ JavaScript Core Language Reference

The JavaScript for loop lets a script repeat a series of statements any number of

times and includes an optional loop counter that can be used in the execution of

the statements. The following is the formal syntax definition:

for ([initial expression]; [condition]; [update expression]) {
statements

}

The three statements inside the parentheses (parameters to the for statement)

play a key role in the way a for loop executes.

An initial expression in a for loop is executed one time, the first time the for
loop begins to run. The most common application of the initial expression is to

assign a name and starting value to a loop counter variable. Thus, seeing a var
statement that both declares a variable name and assigns an initial value (generally

0 or 1) to it is not uncommon. An example is

var i = 0

You can use any variable name, but conventional usage calls for the letter i,

which is short for index. If you prefer the word counter or another word that

reminds you of what the variable represents, that’s fine, too. In any case, the impor-

tant point to remember about this statement is that it executes once at the outset

of the for loop.

The second statement is a condition, precisely like the condition statement you

saw in if constructions earlier in this chapter. When a loop-counting variable is

established in the initial expression, the condition statement usually defines how

high the loop counter should go before the looping stops. Therefore, the most com-

mon statement here is one that compares the loop counter variable against some

fixed value — is the loop counter less than the maximum allowed value? If the con-

dition is false at the start, the body of the loop is not executed. But if the loop does

execute, then every time execution comes back around to the top of the loop,

JavaScript reevaluates the condition to determine the current result of the expres-

sion. If the loop counter increases with each loop, eventually the counter value

goes beyond the value in the condition statement, causing the condition state-

ment to yield a Boolean value of false. The instant that happens, execution drops

out of the for loop entirely.

The final statement, the update expression, is executed at the end of each loop

execution — after all statements nested inside the for construction have run.

Again, the loop counter variable can be a factor here. If you want the counter value

to increase by one the next time through the loop (called incrementing the value),

you can use the JavaScript operator that makes that happen: the ++ operator

appended to the variable name. That task is the reason for the appearance of all

those i++ symbols in the for loops that you’ve seen already in this book. You’re

not limited to incrementing by one. You can increment by any multiplier you want

or even drive a loop counter backward by decrementing the value (i--).

Now, take this knowledge and beef up the formal syntax definition with one that

takes into account a typical loop-counting variable, i, and the common ways to use

it:

// incrementing loop counter
for (var i = minValue; i <= maxValue; i++) {

statements

for

(c) ketabton.com: The Digital Library

1041Chapter 39 ✦ Control Structures and Exception Handling

}
// decrementing loop counter
for (var i = maxValue; i >= minValue; i--) {

statements
}

In the top format, the variable, i, is initialized at the outset to a value equal to

that of minValue. Variable i is immediately compared against maxValue. If i is less

than or equal to maxValue, processing continues into the body of the loop. At the

end of the loop, the update expression executes. In the top example, the value of i
is incremented by 1. Therefore, if i is initialized as 0, then the first time through the

loop, the i variable maintains that 0 value during the first execution of statements

in the loop. The next time around, the variable has the value of 1.

As you may have noticed in the formal syntax definition, each of the parameters

to the for statement is optional. For example, the statements that execute inside

the loop may control the value of the loop counter based on data that gets manipu-

lated in the process. Therefore, the update statement would probably interfere

with the intended running of the loop. But I suggest that you use all three parame-

ters until such time as you feel absolutely comfortable with their roles in the for
loop. If you omit the condition statement, for instance, and you don’t program a

way for the loop to exit on its own, your script may end up in an infinite loop —

which does your users no good.

Putting the loop counter to work
Despite its diminutive appearance, the i loop counter (or whatever name you

want to give it) can be a powerful tool for working with data inside a repeat loop.

For example, examine a version of the classic JavaScript function that creates a

Navigator 2–compatible array while initializing entries to a value of 0:

// initialize array with n entries
function MakeArray(n) {

this.length = n
for (var i = 1; i <= n; i++) {

this[i] = 0
}
return this

}

The loop counter, i, is initialized to a value of 1, because you want to create an

array of empty entries (with value 0) starting with the one whose index value is 1
(the zeroth entry is assigned to the length property) in the previous line. In the

condition statement, the loop continues to execute as long as the value of the

counter is less than or equal to the number of entries being created (n). After each

loop, the counter increments by 1. In the nested statement that executes within the

loop, you use the value of the i variable to substitute for the index value of the

assignment statement:

this[i] = 0

The first time the loop executes, the value expression evaluates to

this[1] = 0

for

(c) ketabton.com: The Digital Library

1042 Part IV ✦ JavaScript Core Language Reference

The next time, the expression evaluates to

this[2] = 0

and so on, until all entries are created and stuffed with 0.

Recall the HTML page in Listing 37-3, where a user chooses a regional office from

a SELECT list (triggering a script to look up the manager’s name and sales quota for

that region). Because the regional office names are stored in an array, the page

could be altered so that a script populates the SELECT element’s options from the

array. That way, if there is ever a change to the alignment of regional offices, there

need be only one change to the array of offices, and the HTML doesn’t have to be

modified. As a reminder, here is the definition of the regional offices array, created

while the page loads:

var regionalOffices = new Array(“New York”, “Chicago”, “Houston”, “Portland”)

A script inside the HTML form can be used to dynamically generate the SELECT

list as follows:

<SCRIPT LANGUAGE=”JavaScript”>
var elem = “” // start assembling next part of page and form
elem += “<P>Select a regional office: “
elem += “<SELECT NAME=’offices’ onChange=’getData(this.form)’>”
// build options list from array office names
for (var i = 0; i < regionalOffices.length; i++) {

elem += “<OPTION” // OPTION tags
if (i == 0) { // pre-select first item in list

elem += “ SELECTED”
}
elem += “>” + regionalOffices[i]

}
elem += “</SELECT></P>” // close SELECT item tag
document.write(elem) // write element to the page
</SCRIPT>

Notice one important point about the condition statement of the for loop:

JavaScript extracts the length property from the array to be used as the loop

counter boundary. From a code maintenance and stylistic point of view, this

method is preferable to hard-wiring a value there. If the company added a new

regional office, you would make the addition to the array “database,” whereas

everything else in the code would adjust automatically to those changes, including

creating a longer pop-up menu in this case.

Notice, too, that the operator for the condition statement is less-than (<): The

zero-based index values of arrays mean that the maximum index value we can use

is one less than the actual count of items in the array. This is vital information,

because the index counter variable (i) is used as the index to the

regionalOffices array each time through the loop to read the string for each

item’s entry. You also use the counter to determine which is the first option, so that

you can take a short detour (via the if construction) to add the SELECTED attribute

to the first option’s definition.

The utility of the loop counter in for loops often influences the way you design

data structures, such as two-dimensional arrays (see Chapter 37) for use as

databases. Always keep the loop-counter mechanism in the back of your mind when

for

(c) ketabton.com: The Digital Library

1043Chapter 39 ✦ Control Structures and Exception Handling

you begin writing JavaScript script that relies on collections of data that you embed

in your documents.

Breaking out of a loop
Some loop constructions perform their job as soon as a certain condition is met,

at which point they have no further need to continue looping through the rest of

the values in the loop counter’s range. A common scenario for this is the cycling of

a loop through an entire array in search of a single entry that matches some crite-

rion. That criterion test is set up as an if construction inside the loop. If that crite-

rion is met, you break out of the loop and let the script continue with the more

meaningful processing of succeeding statements in the main flow. To accomplish

that exit from the loop, use the break statement. The following schematic shows

how the break statement may appear in a for loop:

for (var i = 0; i < array.length; i++) {
if (array[i].property == magicValue) {

statements that act on entry array[i]
break

}
}

The break statement tells JavaScript to bail out of the nearest for loop (in case

you have nested for loops). Script execution then picks up immediately after the

closing brace of the for statement. The variable value of i remains whatever it was

at the time of the break, so that you can use that variable later in the same script to

access, say, that same array entry.

I use a construction similar to this in Chapter 24. There, the discussion of radio

buttons demonstrates this construction, where, in Listing 24-8, you see a set of radio

buttons whose VALUE attributes contain the full names of four members of the Three

Stooges. A function uses a for loop to find out which button was selected and then

uses that item’s index value — after the for loop breaks out of the loop — to alert the

user. Listing 39-2 (not on the CD-ROM) shows the relevant function.

Listing 39-2: Breaking Out of a for Loop

function fullName(form) {
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) {
break

}
}
alert(“You chose “ + form.stooges[i].value + “.”)

}

In this case, breaking out of the for loop was for more than mere efficiency; the

value of the loop counter (frozen at the break point) is used to summon a different

property outside of the for loop. In NN4+ and IE4+, the break statement assumes

additional powers in cooperation with the new label feature of control structures.

This subject is covered later in this chapter.

break

(c) ketabton.com: The Digital Library

1044 Part IV ✦ JavaScript Core Language Reference

Directing loop traffic with continue
One other possibility in a for loop is that you may want to skip execution of the

nested statements for just one condition. In other words, as the loop goes merrily on

its way round and round, executing statements for each value of the loop counter,

one value of that loop counter may exist for which you don’t want those statements

to execute. To accomplish this task, the nested statements need to include an if
construction to test for the presence of the value to skip. When that value is

reached, the continue command tells JavaScript to immediately skip the rest of the

body, execute the update statement, and loop back around to the top of the loop

(also skipping the condition statement part of the for loop’s parameters).

To illustrate this construction, you create an artificial example that skips over

execution when the counter variable is the superstitious person’s unlucky 13:

for (var i = 0; i <= 20; i++) {
if (i == 13) {

continue
}
statements

}

In this example, the statements part of the loop executes for all values of i
except 13. The continue statement forces execution to jump to the i++ part of the

loop structure, incrementing the value of i for the next time through the loop. In

the case of nested for loops, a continue statement affects the for loop in whose

immediate scope the if construction falls. The continue statement is enhanced in

NN4+ and IE4+ in cooperation with the new label feature of control structures.

This subject is covered later in this chapter.

The while Loop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The for loop is not the only kind of repeat loop you can construct in JavaScript.

Another statement, called a while statement, sets up a loop in a slightly different

format. Rather than providing a mechanism for modifying a loop counter, a while
repeat loop assumes that your script statements will reach a condition that forcibly

exits the repeat loop.

The basic syntax for a while loop is

while (condition) {
statements

}

The condition expression is the same kind that you saw in if constructions

and in the middle parameter of the for loop. You introduce this kind of loop if some

condition exists in your code (evaluates to true) before reaching this loop. The

loop then performs some action, which affects that condition repeatedly until that

while

(c) ketabton.com: The Digital Library

1045Chapter 39 ✦ Control Structures and Exception Handling

condition becomes false. At that point, the loop exits, and script execution contin-

ues with statements after the closing brace. If the statements inside the while loop

do not affect the values being tested in condition, your script never exits, and it

becomes stuck in an infinite loop.

Many loops can be rendered with either the for or while loops. In fact, Listing 39-3

(not on the CD-ROM) shows a while loop version of the for loop from Listing 39-2.

Listing 39-3: A while Loop Version of Listing 39-2

function fullName(form) {
var i = 0
while (!form.stooges[i].checked) {

i++
}
alert(“You chose “ + form.stooges[i].value + “.”)

}

One point you may notice is that if the condition of a while loop depends on the

value of a loop counter, the scripter is responsible for initializing the counter prior

to the while loop construction and managing its value within the while loop.

Should you need their powers, the break and continue control statements work

inside while loops as they do in for loops. But because the two loop styles treat

their loop counters and conditions differently, be extra careful (do lots of testing)

when applying break and continue statements to both kinds of loops.

No hard-and-fast rules exist for which type of loop construction to use in a

script. I generally use while loops only when the data or object I want to loop

through is already a part of my script before the loop. In other words, by virtue of

previous statements in the script, the values for any condition or loop counting (if

needed) are already initialized. But if I need to cycle through an object’s properties

or an array’s entries to extract some piece of data for use later in the script, I favor

the for loop.

Another point of style, particularly with the for loop, is where a scripter should

declare the i variable. Some programmers prefer to declare (or initialize if initial val-

ues are known) all variables in the opening statements of a script or function. That is

why you tend to see a lot of var statements in those positions in scripts. If you have

only one for loop in a function, for example, nothing is wrong with declaring and ini-

tializing the i loop counter in the initial expression part of the for loop (as demon-

strated frequently in the previous sections). But if your function utilizes multiple for
loops that reuse the i counter variable (that is, the loops run completely indepen-

dently of one another), then you can declare the i variable once at the start of the

function and simply assign a new initial value to i in each for construction.

The do-while Loop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

do-while

(c) ketabton.com: The Digital Library

1046 Part IV ✦ JavaScript Core Language Reference

JavaScript in NN4+ and IE4+ brings you one more looping construction, called

the do-while loop. The formal syntax for this construction is as follows:

do {
statements

} while (condition)

An important difference distinguishes the do-while loop from the while loop. In

the do-while loop, the statements in the construction always execute at least one

time before the condition can be tested; in a while loop, the statements may never

execute if the condition tested at the outset evaluates to false.

Use a do-while loop when you know for certain that the looped statements are

free to run at least one time. If the condition may not be met the first time, use the

while loop. For many instances, the two constructions are interchangeable,

although only the while loop is compatible with all scriptable browsers.

Looping through Properties (for-in)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

JavaScript includes a variation of the for loop, called a for-in loop, which has

special powers of extracting the names and values of any object property currently

in the browser’s memory. The syntax looks like this:

for (var in object) {
statements

}

The object parameter is not the string name of an object but a reference to the

object itself. JavaScript delivers an object reference if you provide the name of the

object as an unquoted string, such as window or document. Using the var variable,

you can create a script that extracts and displays the range of properties for any

given object.

Listing 39-4 shows a page containing a utility function that you can insert into

your HTML documents during the authoring and debugging stages of designing a

JavaScript-enhanced page. In the example, the current window object is examined

and its properties are presented in the page.

Listing 39-4: Property Inspector Function

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function showProps(obj,objName) {

var result = “”

for-in

(c) ketabton.com: The Digital Library

1047Chapter 39 ✦ Control Structures and Exception Handling

for (var i in obj) {
result += objName + “.” + i + “ = “ + obj[i] + “
”

}
return result

}
</SCRIPT>
</HEAD>
<BODY>
Here are the properties of the current window:<P>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(showProps(window, “window”))
</SCRIPT>
</BODY>
</HTML>

For debugging purposes, you can revise the function slightly to display the

results in an alert dialog box. Replace the
 HTML tag with the \n carriage

return character for a nicely formatted display in the alert dialog box. You can call

this function from anywhere in your script, passing both the object reference and a

string to it to help you identify the object after the results appear in an alert dialog

box. If the showProps() function looks familiar to you, it is because it closely

resembles the property inspector routines of The Evaluator (see Chapter 13). In

Chapter 45, you can see how to embed functionality of The Evaluator into a page

under construction so that you can view property values while debugging your

scripts.

The with Statement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

A with statement enables you to preface any number of statements by advising

JavaScript on precisely which object your scripts will be talking about, so that you

don’t have to use full, formal addresses to access properties or invoke methods of

the same object. The formal syntax definition of the with statement is as follows:

with (object) {
statements

}

The object reference is a reference to any valid object currently in the browser’s

memory. An example of this appears in Chapter 35’s discussion of the Math object.

By embracing several Math-encrusted statements inside a with construction, your

scripts can call the properties and methods without having to make the object part

of every reference to those properties and methods.

with

(c) ketabton.com: The Digital Library

1048 Part IV ✦ JavaScript Core Language Reference

An advantage of the with structure is that it can make heavily object-dependent

statements easier to read and understand. Consider this long version of a function

that requires multiple calls to the same object (but different properties):

function seeColor(form) {
newColor = (form.colorsList.options[form.colorsList.selectedIndex].text)
return newColor

}

Using the with structure, you can shorten the long statement:

function seeColor(form) {
with (form.colorsList) {

newColor = (options[selectedIndex].text)
}
return newColor

}

When JavaScript encounters an otherwise unknown identifier inside a with
statement, it tries to build a reference out of the object specified as its parameter

and that unknown identifier. You cannot, however, nest with statements that build

on one another. For instance, in the preceding example, you cannot have a with
(colorsList) nested inside a with (form) statement and expect JavaScript to cre-

ate a reference to options out of the two object names.

As clever as the with statement may seem, be aware that it introduces some

inherent performance penalties in your script (because of the way the JavaScript

interpreter must artificially generate references). You probably won’t notice

degradation with occasional use of this construction, but if it’s used inside a loop

that must iterate many times, processing speed will almost certainly be affected

negatively.

Labeled Statements

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Crafting multiple nested loops can sometimes be difficult when the final condi-

tion your script is looking for is met deep inside the nests. The problem is that the

break or continue statement by itself has scope only to the nearest loop level.

Therefore, even if you break out of the inner loop, the outer loop(s) continue to exe-

cute. If all you want to do is exit the function after the condition is met, a simple

return statement performs the same job as some other languages’ exit command.

But if you also need some further processing within that function after the condi-

tion is met, you need the NN4+ and IE4+ facility that lets you assign labels to blocks

of JavaScript statements. Your break and continue statements can then alter their

scope to apply to a labeled block other than the one containing the statement.

A label is any identifier (that is, name starting with a letter and containing

no spaces or odd punctuation other than an underscore) followed by a colon

label

(c) ketabton.com: The Digital Library

1049Chapter 39 ✦ Control Structures and Exception Handling

preceding a logical block of executing statements, such as an if. . .then or loop

construction. The formal syntax looks like the following:

labelID:
statements

For a break or continue statement to apply itself to a labeled group, the label is

added as a kind of parameter to each statement, as in

break labelID
continue labelID

To demonstrate how valuable this can be in the right situation, Listing 39-5 con-

tains two versions of the same nested loop construction. The goal of each version

is to loop through two different index variables until both values equal the target

values set outside the loop. When those targets are met, the entire nested loop con-

struction should break off and continue processing afterward. To help you visualize

the processing that goes on during the execution of the loops, the scripts output

intermediate and final results to a textarea.

In the version without labels, when the targets are met, only the simple break
statement is issued. This breaks the inner loop at that point, but the outer loop

picks up on the next iteration. By the time the entire construction has ended, a lot

of wasted processing has gone on. Moreover, the values of the counting variables

max themselves out, because the loops execute in their entirety several times after

the targets are met.

But in the labeled version, the inner loop breaks out of the labeled outer loop as

soon as the targets are met. Far fewer lines of code are executed, and the loop

counting variables are equal to the targets, as desired. Experiment with Listing 39-5

by changing the break statements to continue statements. Then closely analyze

the two results in the Results textarea to see how the two versions behave.

Listing 39-5: Labeled Statements

<HTML>
<HEAD>
<TITLE>Breaking Out of Nested Labeled Loops</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var targetA = 2
var targetB = 2
var range = 5
function run1() {

var out = document.forms[0].output
out.value = “Running WITHOUT labeled break\n”
for (var i = 0; i <= range; i++) {

out.value += “Outer loop #” + i + “\n”
for (var j = 0; j <= range; j++) {

out.value += “ Inner loop #” + j + “\n”
if (i == targetA && j == targetB) {

out.value += “**BREAKING OUT OF INNER LOOP**\n”
break

}

Continued

label

(c) ketabton.com: The Digital Library

1050 Part IV ✦ JavaScript Core Language Reference

Listing 39-5 (continued)

}
}
out.value += “After looping, i = “ + i + “, j = “ + j + “\n”

}
function run2() {

var out = document.forms[0].output
out.value = “Running WITH labeled break\n”
outerLoop:
for (var i = 0; i <= range; i++) {

out.value += “Outer loop #” + i + “\n”
innerLoop:
for (var j = 0; j <= range; j++) {

out.value += “ Inner loop #” + j + “\n”
if (i == targetA && j == targetB) {

out.value += “**BREAKING OUT OF OUTER LOOP**\n”
break outerLoop

}
}

}
out.value += “After looping, i = “ + i + “, j = “ + j + “\n”

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Breaking Out of Nested Labeled Loops</H1>
<HR>
<P>Look in the Results field for traces of these button scripts:</P>
<FORM>
<P><INPUT TYPE=”button” VALUE=”Execute WITHOUT Label” onClick=”run1()”></P>
<P><INPUT TYPE=”button” VALUE=”Execute WITH Label” onClick=”run2()”></P>
<P>Results:</P>
<TEXTAREA NAME=”output” ROWS=43 COLS=60> </TEXTAREA>
</FORM>
</BODY>
</HTML>

The switch Statement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

In some circumstances, a binary — true or false — decision path is not enough to

handle the processing in your script. An object property or variable value may

contain any one of several values, and a separate execution path is required for

switch

(c) ketabton.com: The Digital Library

1051Chapter 39 ✦ Control Structures and Exception Handling

each one. In the past, the way to accommodate this was with a series of if. . .else
constructions. The more conditions you must test, the less efficient the processing

is, because each condition must be tested. Moreover, the sequence of clauses and

braces can get very confusing.

In NN4+ and IE4+, a control structure in use by many languages comes to

JavaScript. The implementation is similar to that of Java and C, using the switch

and case keywords. The basic premise is that you can create any number of execu-

tion paths based on the value of some expression. At the beginning of the structure,

you identify what that expression is and then, for each execution path, assign a

label matching a particular value.

The formal syntax for the switch statement is

switch (expression) {
case label1:

statements
[break]

case label2:
statements
[break]

...
[default:

statements]
}

The expression parameter of the switch statement can evaluate to any string or

number value. Labels are not surrounded by quotes, even if the labels represent

string values of the expression. Notice that the break statements are optional. A

break statement forces the switch expression to bypass all other checks of succeed-

ing labels against the expression value. Another option is the default statement,

which provides a catchall execution path when the expression value does not match

any of the case statement labels. If you’d rather not have any execution take place

with a non-matching expression value, omit the default part of the construction.

To demonstrate the syntax of a working switch statement, Listing 39-6 provides

the skeleton of a larger application of this control structure. The page contains two

separate arrays of different product categories. Each product has its name and

price stored in its respective array. A SELECT list displays the product names. After

a user chooses a product, the script looks up the product name in the appropriate

array and displays the price.

The trick behind this application is the values assigned to each product in the

select list. While the displayed text is the product name, the VALUE attribute of

each <OPTION> tag is the array category for the product. That value is the expres-

sion used to decide which branch to follow. Notice, too, that I assign a label to the

entire switch construction. The purpose of that is to let the deeply nested repeat

loops for each case completely bail out of the switch construction (via a labeled

break statement) whenever a match is made. You can extend this example to any

number of product category arrays with additional case statements to match.

switch

(c) ketabton.com: The Digital Library

1052 Part IV ✦ JavaScript Core Language Reference

Listing 39-6: The switch Construction in Action

<HTML>
<HEAD>
<TITLE>Switch Statement and Labeled Break</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
// build two product arrays, simulating two database tables
function product(name, price) {

this.name = name
this.price = price

}
var ICs = new Array()
ICs[0] = new product(“Septium 900MHz”,”$149”)
ICs[1] = new product(“Septium Pro 1.0GHz”,”$249”)
ICs[2] = new product(“Octium BFD 750MHz”,”$329”)
var snacks = new Array
snacks[0] = new product(“Rays Potato Chips”,”$1.79”)
snacks[1] = new product(“Cheezey-ettes”,”$1.59”)
snacks[2] = new product(“Tortilla Flats”,”$2.29”)

// lookup in the ‘table’ associated with the product
function getPrice(selector) {

var chipName = selector.options[selector.selectedIndex].text
var outField = document.forms[0].cost
master:

switch(selector.options[selector.selectedIndex].value) {
case “ICs”:

for (var i = 0; i < ICs.length; i++) {
if (ICs[i].name == chipName) {

outField.value = ICs[i].price
break master

}
}
break

case “snacks”:
for (var i = 0; i < snacks.length; i++) {

if (snacks[i].name == chipName) {
outField.value = snacks[i].price
break master

}
}
break

default:
outField.value = “Not Found”

}
}
</SCRIPT>
</HEAD>
<BODY>
Branching with the switch Statement
<HR>
Select a chip for lookup in the chip price tables:<P>
<FORM>

switch

(c) ketabton.com: The Digital Library

1053Chapter 39 ✦ Control Structures and Exception Handling

Chip:<SELECT NAME=”chips” onChange=”getPrice(this)”>
<OPTION>
<OPTION VALUE=”ICs”>Septium 900MHz
<OPTION VALUE=”ICs”>Septium Pro 1.0GHz
<OPTION VALUE=”ICs”>Octium BFD 750MHz
<OPTION VALUE=”snacks”>Rays Potato Chips
<OPTION VALUE=”snacks”>Cheezey-ettes
<OPTION VALUE=”snacks”>Tortilla Flats
<OPTION>Poker Chipset

</SELECT>
Price:<INPUT TYPE=”text” NAME=”cost” SIZE=10>
</FORM>
</BODY>
</HTML>

If you need this kind of functionality in your script but your audience is not all

running level 4 or later browsers, see Listing 39-1 for ways to simulate the switch
statement with if. . .else constructions.

Exception Handling
The subject of exception handling is relatively new to JavaScript. Formalized in

Edition 3 of ECMA-262, parts of the official mechanism are implemented in IE5, with

a more complete implementation in NN6. As you see in the rest of this chapter, both

IE5+ and NN6 follow many of the same rules with respect to controlling execution

paths (the primary subject of this chapter). But IE’s departure from the ECMA-262

specification on some of the details can force scripters to take some extra steps to

make exception handling work smoothly across browsers. More on that later. First,

an overview of exception handling.

Exceptions and errors
If you’ve done any scripting, you are certainly aware of JavaScript errors,

whether they be from syntax errors in your code, or what are known as runtime
errors — errors that occur while scripts are processing information. Ideally, a pro-

gram should be aware of when an error occurs and handle it as gracefully as possi-

ble. This self-healing can prevent lost data (usually not a big problem in Web

applications) and prevent users from seeing the ugliness of error messages. In

Chapter 16, you learn about the onError event handler (and window.onerror
property), which were early attempts at letting scripts gain a level of control over

runtime errors. This event-driven mechanism works on a global level (that is, in the

window object) and processes every error that occurs throughout the page. This

event handler ends up being used primarily as a last-ditch defense against display-

ing any error message to the user and is a long way from what programmers con-

sider to be exception handling.

In the English language, the term “exception” can mean the same as something

out of the ordinary, or something abnormal. This definition seems quite distant

from the word “error,” which usually means a mistake. In the realm of programming

languages, however, the two words tend to be used interchangeably, and the differ-

ence between the two depends primarily on one’s point of view.

Exceptions

(c) ketabton.com: The Digital Library

1054 Part IV ✦ JavaScript Core Language Reference

Consider, for example, a simple script whose job is to multiply numbers that the

user enters into two text fields on the page. The script is supposed to display the

results in a third text box. If the script contains no data entry validation, JavaScript

will attempt to multiply whatever values are entered into the text boxes. If the user

enters two numbers, JavaScript is smart enough to recognize that even though the

value properties of the two input text fields are strings, the strings contain num-

bers that can be converted to number types for the proper multiplication. Without

complaint, the product of the two numbers gets calculated and displayed into the

results.

But what if the user types a letter into one of the text boxes? Again, without any

entry validation in the script, JavaScript has a fixed way of responding to such a

request: The result of the multiplication operation is the NaN (not a number) con-

stant. If you are an untrained user, you have no idea what NaN means, but your

experience with computers tells you that some kind of error has occurred. You may

blame the computer or you may blame yourself.

To shift the point of view to the programmer, however, the script was designed

to be run by a user who never makes a typing mistake, intentional or not. That, of

course, is not very good programming practice. Users make mistakes. Therefore,

anticipating user input that is not what would be expected is the programmer’s

job — input that is an exception to the rules your program wants to operate by. You

must include some additional code that handles the exceptions gracefully so as to

not confuse the user with unintelligible output and perhaps even help the user

repair the input to get a result. This extra programming code handles the undesir-

able and erroneous input.

As it turns out, JavaScript and the W3C Document Object Model liberally mix

terms of exception and error within the vocabulary used to handle exceptions. As

you see shortly, an exception creates an error object, which contains information

about the exception. It is safe to say that you can think of exceptions and errors as

the same things.

The exception mechanism
Newcomers to JavaScript (or any programming environment, for that matter)

may have a difficult time at first creating a mental model of how all this stuff runs

within the context of the browser. It may be easy enough to understand how pages

load and create object models, and how event handlers (or listeners in the W3C

DOM terminology) cause script functions to run. But a lot of action also seems to

be going on in the background. For example, the event object that is generated

automatically with each event action (see Chapter 29) seems to sit “somewhere”

while event handler functions run so that they can retrieve details about the event.

After the functions finish their processing, the event object disappears, without

even leaving behind a Cheshire Cat smile. Mysterious.

Browsers equipped for exception handling have more of this “stuff” running in

the background, ready for your scripts when you need it. Because you have cer-

tainly viewed the details of at least one scripting error, you have already seen some

of the exception handling mechanism that is built into browsers. If a script error

occurs, the browser creates in its memory an error object, whose properties con-

tain details about the error. The precise details (described later in this chapter)

vary from one browser brand to the next, but what you see in the error details read-

out is the default way the browser handles exceptions/errors. As browsers have

Exceptions

(c) ketabton.com: The Digital Library

1055Chapter 39 ✦ Control Structures and Exception Handling

matured, their makers have gone to great lengths to tone down the intrusion of

script errors. For example in NN4+, errors appear in a separate JavaScript Console

window (which must be invoked in NN4 by typing javascript: into the Location

field; or opened directly via the Tools menu in NN6), while users see only a message

about the existence of an error in the statusbar. In IE4+ for Windows, the statusbar

comes into play again, as the icon at the bottom-left corner turns into an alert icon:

Double-clicking the icon displays more information about the error. IE/Mac users

can turn off scripting error alerts altogether.

True exception handling, however, goes further than just displaying error mes-

sages. It also provides a uniform way to let scripts guard against unusual occur-

rences. Ideally, the mechanism makes sure that all runtime errors get funneled

through the same mechanism to help simplify the scripting of exception handling.

The mechanism is also designed to be used intentionally as a way for your own

code to generate errors in a uniform way so that other parts of your scripts can

handle them quietly and intelligently. In other words, you can use the exception

handling mechanism as a kind of “back channel” to communicate from one part of

your scripts to another.

The JavaScript exception handling mechanism is built around two groups of pro-

gram execution statements. The first group consists of the try-catch-finally
statement triumvirate; the second group is the single throw statement.

Using try-catch-finally constructions
The purpose of the try-catch-finally group of related statements is to provide

a controlled environment in which script statements that may encounter runtime

errors can run, such that if an exception occurs, your scripts can act upon the

exception without alarming the rest of the browser’s error mechanisms. Each of the

three statements precedes a block of code in the following syntax:

try {
statements to run

}
catch (errorInfo) {

statements to run if exception occurs in try block
}
finally {

statements to run whether or not an exception occurred [optional]
}

Each try block must be mated with a catch and/or finally block at the same

nesting level, with no intervening statements. For example, a function can have a

one-level try-catch construction inside it as follows:

function myFunc() {
try {

statements
}
catch (e) {

statements
}

}

try-catch-finally

(c) ketabton.com: The Digital Library

1056 Part IV ✦ JavaScript Core Language Reference

But if there were another try block nested one level deeper, a balancing catch
or finally block would also have to be present at that deeper level:

function myFunc() {
try {

statements
try {

statements
}
catch (e) {

statements
}

}
catch (e) {

statements
}

}

The statements inside the try block include statements that you believe are

capable of generating a runtime error because of user input errors, the failure of

some page component to load, or a similar error. The presence of the catch block

prevents errors from appearing in the browser’s regular script error reporting sys-

tem (for example, the JavaScript Console of NN6).

An important term to know about exception handling of this type is throw. The

convention is that when an operation or method call triggers an exception, it is said

to “throw an exception.” For example, if a script statement attempts to invoke a

method of a string object, but that method does not exist for the object (perhaps

you mistyped the method name), JavaScript throws an exception. Exceptions have

names associated with them — a name that sometimes, but not always, reveals

important information about the exception. In the mistyped method example just

cited, the name of that exception is a TypeError (yet more evidence of how “excep-

tion” and “error” become intertwined).

The JavaScript language (in IE5+ and NN6+) is not the only entity that can throw

exceptions. The W3C DOM also defines categories of exceptions for DOM objects. For

example, according to the Level 2 specification, the appendChild() method (see

Chapter 15) can throw (or raise, in the W3C terminology) one of three exceptions:

Exception Name When Thrown

HIERARCHY_REQUEST_ERR If the current node is of a type that does not allow
children of the type of the newChild node, or if the
node to append is one of this node’s ancestors

WRONG_DOCUMENT_ERR If newChild was created from a different document
than the one that created the current node

NO_MODIFICATION_ALLOWED_ERR If the current node is read-only

Because the appendChild() method is capable of throwing exceptions, a

JavaScript statement that invokes this method should ideally be inside a try block.

try-catch-finally

(c) ketabton.com: The Digital Library

1057Chapter 39 ✦ Control Structures and Exception Handling

If an exception is thrown, then script execution immediately jumps to the catch or

finally block associated with the try block. Execution does not come back to the

try block.

A catch block has special behavior. Its format looks similar to a function in a

way, because the catch keyword is followed by a pair of parentheses and an arbi-

trary variable that is assigned a reference to the error object whose properties are

filled by the browser when the exception occurs. One of the properties of that error

object is the name of the error. Therefore, the code inside the catch block can

examine the name of the error and perhaps include some branching code to take

care of a variety of different errors that are caught.

To see how this construction may look in code, look at a hypothetical generic

function whose job is to create a new element and append it to some other node.

Both the type of element to be created and a reference to the parent node are

passed as parameters. To take care of potential misuses of this function through the

passage of improper parameter values, it includes extra error handling to treat all

possible exceptions from the two DOM methods: createElement() and

appendChild(). Such a function looks like Listing 39-7.

Listing 39-7: A Hypothetical try-catch Routine

// generic appender
function attachToEnd(theNode, newTag) {

try {
var newElem = document.createElement(newTag)
theNode.appendChild(newElem)

}
catch (e) {

switch (e.name) {
case “INVALID_CHARACTER_ERR” :

statements to handle this createElement() error
break

case “HIERARCHY_REQUEST_ERR” :
statements to handle this appendChild() error
break

case “WRONG_DOCUMENT_ERR” :
statements to handle this appendChild() error
break

case “NO_MODIFICATION_ALLOWED_ERR” :
statements to handle this appendChild() error
break

default:
statements to handle any other error

}
return false

}
return true

}

try-catch-finally

(c) ketabton.com: The Digital Library

1058 Part IV ✦ JavaScript Core Language Reference

The single catch block in Listing 39-7 executes only if one of the statements in

the try block throws an exception. The exceptions may be not only one of the four

specific ones named in the catch block but also syntax or other errors that could

occur inside the try block. That’s why you have a last-ditch case to handle truly

unexpected errors. Your job as scripter is to not only anticipate errors but also to

provide clean ways for the exceptions to be handled, whether they be through judi-

ciously worded alert dialog boxes or perhaps even some self-repair. For example, in

the case of the invalid character error for createElement(), your script may

attempt to salvage the data passed to the attachToEnd() function and reinvoke

the method passing theNode value as-is and the repaired value originally passed to

newTag. If your repairs were successful, the try block would execute without error

and carry on with the user’s being completely unaware that a nasty problem had

been averted.

A finally block contains code that always executes after a try block, whether

or not the try block succeeds without throwing an error. Unlike the catch block, a

finally block does not receive an error object as a parameter, so it operates very

much in the dark about what transpires inside the try block. If you include both

catch and finally blocks after a try block, the execution path depends on

whether an exception is thrown. If no exception is thrown, the finally block exe-

cutes after the last statement of the try block runs. But if the try block throws an

exception, program execution runs first to the catch block. After all processing

within the catch block finishes, the finally block executes. In development envi-

ronments that give programmers complete control over resources, such as memory

allocation, a finally block may be used to delete some temporary items generated

in the try block, whether or not an exception occurs in the try block. Currently,

JavaScript has less need for that kind of maintenance, but you should be aware of

the program execution possibilities of the finally block in the try-catch-finally
context.

Real-life exceptions
The example shown in Listing 39-6 is a bit idealized. The listing assumes that the

browser dutifully reports every W3C DOM exception precisely as defined in the for-

mal specification. Unfortunately, that’s not how it is (yet) in browsers through IE5.5

and NN6. Both browsers implement additional error naming conventions and layers

between actual DOM exceptions and what gets reported with the error object at the

time of the exception.

If you think these discrepancies make cross-browser exception handling difficult,

you’re right. Even simple errors are reported differently among the two major

browser brands and the W3C DOM specification. Until the browsers exhibit a

greater unanimity in exception reporting, the smoothest development road will be

for those scripters who have the luxury of writing for one of the browser platforms,

such as IE5 for Windows or NN6.

That said, however, one aspect of exception handling can still be used in both

IE5+ and NN6. You can take advantage of try-catch constructions to throw your

own exceptions — a practice that is quite common in advanced programming

environments.

try-catch-finally

(c) ketabton.com: The Digital Library

1059Chapter 39 ✦ Control Structures and Exception Handling

Throwing Exceptions
The last exception handling keyword not covered yet —throw— makes it possi-

ble to utilize exception handling facilities for your own management of processes,

such as data entry validation. At any point inside a try block, you can manually

throw an exception that gets picked up by the associated catch block. The details

of the specific exception are up to you.

Syntax for the throw statement is as follows:

throw value

The value you throw can be of any type, but good practice suggests that the

value be an error object (described more fully later in this chapter). Whatever

value you throw is assigned to the parameter of the catch block. Look at the fol-

lowing two examples. In the first, the value is a string message; in the second, the

value is an error object.

Listing 39-8 presents one input text box for a number between 1 and 5. Clicking a

button looks up a corresponding letter in an array and displays the letter in a sec-

ond text box. The lookup script has two simple data validation routines to make

sure the entry is a number and is in the desired range. Error checking here is done

manually by script. If either of the error conditions occurs, throw statements force

execution to jump to the catch block. The catch block assigns the incoming

string parameter to the variable e. The design here assumes that the message

being passed is text for an alert dialog box. Not only does a single catch block take

care of both error conditions (and conceivably any others to be added later), but

the catch block runs within the same variable scope as the function, so that it can

use the reference to the input text box to focus and select the input text if there is

an error.

Listing 39-8: Throwing String Exceptions

<HTML>
<HEAD>
<TITLE>Throwing a String Exception</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”)
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10)
if (isNaN(inp)) {

throw “Entry was not a number.”
}
if (inp < 1 || inp > 5) {

throw “Enter only 1 through 5.”
}
fld.form.output.value = letters[inp]

}
catch (e) {

alert(e)
fld.form.output.value = “”

Continued

throw

(c) ketabton.com: The Digital Library

1060 Part IV ✦ JavaScript Core Language Reference

Listing 39-8 (continued)

fld.focus()
fld.select()

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Throwing a String Exception</H1>
<HR>
<FORM>
Enter a number from 1 to 5:
<INPUT TYPE=”text” NAME=”input” SIZE=5>
<INPUT TYPE=”button” VALUE=”Get Letter” onClick=getLetter(this.form.input)>
Matching Letter is:<INPUT TYPE=”text” NAME=”output” SIZE=5>
</FORM>
</BODY>
</HTML>

The flaw with Listing 39-8 is that if some other kind of exception were thrown

inside the try block, the value passed to the catch block would be an error object,

not a string. The alert dialog box displayed to the user would be meaningless.

Therefore, it is better to be uniform in your throw-catch constructions and pass an

error object.

Listing 39-9 is an updated version of Listing 39-8, demonstrating how to create an

error object that gets sent to the catch block via throw statements. The one glitch

in generating an error object comes in IE5 and IE5.5. The ECMA-262 standard allows

a script statement to set the message property of an error object to directly by

passing a string as the parameter to the new Error() constructor. This is how NN6

works. But the error object in IE5 does not have the message property at all, and in

IE5.5, the parameter is not assigned to the message property. Therefore, Listing

39-9 contains a separate utility function (getErrorObj()) that fills the gap when an

error object does not have the message property to begin with or doesn’t have the

property set automatically. If a future version of IE adopts the ECMA standard way,

then the extra branch is avoided, just as it is for NN6.

Listing 39-9: Throwing an Error Object Exception

<HTML>
<HEAD>
<TITLE>Throwing an Error Object Exception</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”)
function getErrorObj(msg) {

var err = new Error(msg)
// take care of IE5/5.5
if (!err.message) {

throw

(c) ketabton.com: The Digital Library

1061Chapter 39 ✦ Control Structures and Exception Handling

err.message = msg
}
return err

}
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10)
if (isNaN(inp)) {

throw getErrorObj(“Entry was not a number.”)
}
if (inp < 1 || inp > 5) {

throw getErrorObj(“Enter only 1 through 5.”)
}
fld.form.output.value = letters[inp]

}
catch (e) {

alert(e.message)
fld.form.output.value = “”
fld.focus()
fld.select()

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Throwing an Error Object Exception</H1>
<HR>
<FORM>
Enter a number from 1 to 5:
<INPUT TYPE=”text” NAME=”input” SIZE=5>
<INPUT TYPE=”button” VALUE=”Get Letter” onClick=getLetter(this.form.input)>
Matching Letter is:<INPUT TYPE=”text” NAME=”output” SIZE=5>
</FORM>
</BODY>
</HTML>

The only difference to the catch block is that it now reads the message property

of the incoming error object. This means that if some other exception is thrown

inside the try block, the browser-generated message will be displayed in the alert

dialog box.

In truth, however, the job really isn’t complete. In all likelihood, if a browser-

generated exception is thrown, the message in the alert dialog box won’t mean

much to the user. The error message will probably be some kind of syntax or type

error — the kind of meaningless error message you often get from your favorite

operating system. A better design is to branch the catch block so that “intentional”

exceptions thrown by your code are handled through the alert dialog box messages

you’ve put there, but other types are treated differently. To accomplish this, you

can take over one of the other properties of the error object —name— so that your

catch block treats your custom messages separately.

throw

(c) ketabton.com: The Digital Library

1062 Part IV ✦ JavaScript Core Language Reference

In Listing 39-10, the getErrorObj() function adds a custom value to the name
property of the newly created error object. The name you assign can be any name,

but you want to avoid exception names used by JavaScript or the DOM. Even if you

don’t know what all of those are, you can probably conjure up a suitably unique

name for your error. Down in the catch block, a switch construction branches to

treat the two classes of errors differently. Notice that because IE5’s error object

does not have a name property, the switch expression (e.name) evaluates to

undefined, which forces the default case to execute whenever a native exception

is thrown (and you have to be careful about which error object properties you use

in the default case statements). In this simplified example, about the only possi-

ble problem other than the ones being trapped for explicitly in the try block would

be some corruption to the page during downloading. Therefore, for this example,

the branch for all other errors simply asks that the user reload the page and try

again. The point is, however, that you can have as many classifications of custom

and system errors as you want and handle them in a single catch block accordingly.

Listing 39-10: A Custom Object Exception

<HTML>
<HEAD>
<TITLE>Throwing a Custom Error Object Exception</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”)
function getErrorObj(msg) {

var err = new Error(msg)
// take care of IE5/5.5
if (!err.message) {

err.message = msg
}
err.name = “MY_ERROR”
return err

}
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10)
if (isNaN(inp)) {

throw getErrorObj(“Entry was not a number.”)
}
if (inp < 1 || inp > 5) {

throw getErrorObj(“Enter only 1 through 5.”)
}
fld.form.output.value = letters[inp]

}
catch (e) {

switch (e.name) {
case “MY_ERROR” :

alert(e.message)
fld.form.output.value = “”
fld.focus()
fld.select()

throw

(c) ketabton.com: The Digital Library

1063Chapter 39 ✦ Control Structures and Exception Handling

break
default :

alert(“Reload the page and try again.”)
}

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Throwing a Custom Error Object Exception</H1>
<HR>
<FORM>
Enter a number from 1 to 5:
<INPUT TYPE=”text” NAME=”input” SIZE=5>
<INPUT TYPE=”button” VALUE=”Get Letter” onClick=getLetter(this.form.input)>
Matching Letter is:<INPUT TYPE=”text” NAME=”output” SIZE=5>
</FORM>
</BODY>
</HTML>

If you want to see how the alternative branch of Listing 39-10 looks, copy the list-

ing file from the CD-ROM to your hard disk and modify the last line of the try block

so that one of the letters is dropped from the name of the array:

fld.form.output.value = letter[inp]

This may simulate the faulty loading of the page. If you enter one of the allowable

values, the reload alert appears, rather than the actual message of the error object:

letter is undefined. Your users will thank you.

All that’s left now on this subject are the details on the error object.

Error Object

Properties Methods

Error.prototype errorObject.toString()

errorObject.constructor

errorObject.description

errorObject.filename

errorObject.lineNumber

errorObject.message

errorObject.name

errorObject.number

errorObject

(c) ketabton.com: The Digital Library

1064 Part IV ✦ JavaScript Core Language Reference

Syntax
Creating an error object:

var myError = new Error(“message”)
var myError = Error(“message”)

Accessing static Error object property:

Error.property

Accessing error object properties and methods:

errorObject.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

About this object
An error object instance is created whenever an exception is thrown or when

you invoke either of the constructor formats for creating an error object. Properties

of the error object instance contain information about the nature of the error so

that catch blocks can inspect the error and process error handling accordingly.

IE5 implemented an error object in advance of the ECMA-262 formal error object,

and the IE5 version ends up having its own set of properties that are not part of the

ECMA standard. Those proprietary properties are still part of IE5.5, which includes

the ECMA properties as well. NN6, on the other hand, starts with the ECMA proper-

ties and adds two proprietary properties of its own. The browser uses these addi-

tional properties in its own script error reporting. The unfortunate bottom line for

cross-browser developers is that no properties in common among all browsers sup-

port the error object. However, two common denominators (name and message) are

between IE5.5 and NN6.

As described earlier in this chapter, you are encouraged to create an error object

whenever you use the throw statement for your own error control. See the discus-

sion surrounding Listing 39-9 about handling missing properties in IE.

Properties
constructor

See string.constructor (Chapter 34).

description
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

errorObject.description

(c) ketabton.com: The Digital Library

1065Chapter 39 ✦ Control Structures and Exception Handling

The description property contains a descriptive string that provides some

level of detail about the error. For errors thrown by the browser, the description is

the same text that appears in the script error dialog box in IE. Although this prop-

erty continues to be supported, the message property in IE5.5 and NN6 is preferred.

Related Items: message property.

fileName
lineNumber

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The NN6 browser uses the fileName and lineNumber properties of an error

object for its own internal script error processing — these values appear as part of

the error messages that are listed in the JavaScript Console. The fileName is the

URL of the document causing the error; the lineNumber is the source code line

number of the statement that threw the exception. These properties are exposed to

JavaScript, as well, so that your error processing may use this information if it is

meaningful to your application.

Both of these properties (along with the message property) have been in the

Navigator vernacular since NN3. See the discussion of the window.error property

in Chapter 16 for further ideas on how to use this information for bug reporting

from users.

Related Items: window.error property.

message
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The message property contains a descriptive string that provides some level of

detail about the error. For errors thrown by the browser, the message is the same

text that appears in the script error dialog box in IE and the JavaScript Console in

NN6. By and large, these messages are more meaningful to scripters than to users.

Unfortunately, there are no standards for the wording of a message for a given error.

Therefore, it is hazardous at best to use the message content in a catch block as a

means of branching to handle particular kinds of errors. You may get by with this

approach if you are developing for a single browser platform, but you have no

assurances that the text of a message for a particular exception may not change in

future browser versions.

errorObject.message

(c) ketabton.com: The Digital Library

1066 Part IV ✦ JavaScript Core Language Reference

Custom messages for errors that your code explicitly throws can be in user-

friendly language if you intend to display such messages to users. See Listings 39-8

through 39-10 for examples of this usage.

Related Items: description property.

name
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The name property generally contains a word that identifies the type of error

that has been thrown. The most general kind of error (and the one that is created

via the new Error() constructor) has a name Error. But JavaScript errors can be

of several varieties: EvalError, RangeError, ReferenceError, SyntaxError,

TypeError, and URIError. Some of these error types are not necessarily intended

for exposure to scripters (they’re used primarily in the inner workings of the

JavaScript engine), but some browsers do expose them. Unfortunately, there are

some discrepancies as to the specific name supplied to this property for script

errors.

When JavaScript is being used in a browser environment that employs the W3C

DOM, some DOM exception types are returned via the name property. But browsers

frequently insert their own error types for this property, and, as is common in this

department, little uniformity exists among browser brands.

For custom exceptions that your code explicitly throws, you can assign names as

you want. As shown in Listings 39-9 and 39-10, this information can assist a catch
block in handling multiple categories of errors.

Related Items: message property.

number
Value: Number Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

IE5+ assigns unique numbers to each error description or message. The number
property, however, is problematical. While Microsoft documents a sequence of syn-

tax and runtime errors and their numbers, in practice, IE browsers do not report

the numbers shown in Microsoft’s own documentation. This is unfortunate,

because the number can be a language-independent way of branching catch block

code based on the error number, rather than the description or message. And,

errorObject.number

(c) ketabton.com: The Digital Library

1067Chapter 39 ✦ Control Structures and Exception Handling

because the number property was born at the same time as the description prop-

erty (now superseded by the message property), it is unknown how reliable the

number values (if you can figure them out) will be going forward.

Related Items: description property.

Methods
toString()

Returns: String (see text).

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

The toString() method for an error object should return a string description of

the error. In IE5 and 5.5, however, the method returns a reference to the very same

error object. In NN6, the method returns the message property string, preceded by

the string Error: (with a space after the colon). Most typically, if you want to

retrieve a human-readable expression of an error object, read its message (or, in

IE5, description) property.

Related Items: message property.

✦ ✦ ✦

errorObject.toString()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript
Operators

JavaScript is rich in operators: words and symbols in

expressions that perform operations on one or two values

to arrive at another value. Any value on which an operator

performs some action is called an operand. An expression may

contain one operand and one operator (called a unary operator)
or two operands separated by one operator (called a binary
operator). Many of the same symbols are used in a variety of

operators. The combination and order of those symbols are

what distinguish their powers.

The vast majority of JavaScript operators have been in the
language since the very beginning. But, as you may expect
from an evolving language, some new entries have been
added to the lexicon. In the rest of this chapter, compatibility
charts typically govern an entire category of operator. If
there are version anomalies for a particular operator within
a category, they are covered in the text.

Operator Categories
To help you grasp the range of JavaScript operators, I

group them into seven categories. I assign a wholly untradi-

tional name to the second group — but a name that I believe

better identifies its purpose in the language. Table 40-1 shows

the operator types.

Table 40-1: JavaScript Operator Categories

Type What It Does

Comparison Compares the values of two operands,
deriving a result of either true or false
(used extensively in condition state-
ments for if...else and for loop
constructions)

Continued

Note

4040C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
operator categories

Exploring the role of
operators in script
statements

Recognizing operator
precedence

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1070 Part IV ✦ JavaScript Core Language Reference

Table 40-1 (continued)

Type What It Does

Connubial Joins together two operands to produce a single value that is a
result of an arithmetical or other operation on the two

Assignment Stuffs the value of the expression of the right-hand operand
into a variable name on the left-hand side, sometimes with
minor modification, as determined by the operator symbol

Boolean Performs Boolean arithmetic on one or two Boolean operands

Bitwise Performs arithmetic or column-shifting actions on the binary
(base-2) representations of two operands

Object Helps scripts examine the heritage and capabilities of a
particular object before they need to invoke the object and
its properties or methods

Miscellaneous A handful of operators that have special behaviors

Any expression that contains an operator evaluates to a value of some kind.

Sometimes the operator changes the value of one of the operands; other times the

result is a new value. Even this simple expression

5 + 5

shows two integer operands joined by the addition operator. This expression

evaluates to 10. The operator is what provides the instruction for JavaScript to

follow in its never-ending drive to evaluate every expression in a script.

Doing an equality comparison on two operands that, on the surface, look very

different is not at all uncommon. JavaScript doesn’t care what the operands look

like — only how they evaluate. Two very dissimilar-looking values can, in fact, be

identical when they are evaluated. Thus, an expression that compares the equality

of two values, such as

fred == 25

does, in fact, evaluate to true if the variable fred has the number 25 stored in it

from an earlier statement.

Comparison Operators

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Any time you compare two values in JavaScript, the result is a Boolean true or

false value. You have a wide selection of comparison operators to choose from,

Comparison Operators

(c) ketabton.com: The Digital Library

1071Chapter 40 ✦ JavaScript Operators

depending on the kind of test you want to apply to the two operands. Table 40-2

lists all comparison operators.

Table 40-2: JavaScript Comparison Operators

Syntax Name Operand Types Results

== Equals All Boolean

!= Does not equal All Boolean

=== Strictly equals All Boolean (IE4+, NN4+)

!== Strictly does not equal All Boolean (IE4+, NN4+)

> Is greater than All Boolean

>= Is greater than or equal to All Boolean

< Is less than All Boolean

<= Is less than or equal to All Boolean

For numeric values, the results are the same as those you’d expect from your

high school algebra class. Some examples follow, including some that may not be

obvious.

10 == 10 // true
10 == 10.0 // true
9 != 10 // true
9 > 10 // false
9.99 <= 9.98 // false

Strings can also be compared on all of these levels:

“Fred” == “Fred” // true
“Fred” == “fred” // false
“Fred” > “fred” // false
“Fran” < “Fred” // true

To calculate string comparisons, JavaScript converts each character of a string

to its ASCII value. Each letter, beginning with the first of the left-hand operator, is

compared to the corresponding letter in the right-hand operator. With ASCII values

for uppercase letters being less than those of their lowercase counterparts, an

uppercase letter evaluates to being less than its lowercase equivalent. JavaScript

takes case-sensitivity very seriously.

Values for comparison can also come from object properties or values passed to

functions from event handlers or other functions. A common string comparison

used in data-entry validation is the one that sees if the string has anything in it:

form.entry.value != “” // true if something is in the field

Comparison Operators

(c) ketabton.com: The Digital Library

1072 Part IV ✦ JavaScript Core Language Reference

Equality of Disparate Data Types
For all versions of JavaScript before 1.2, when your script tries to compare string

values consisting of numerals and real numbers (for example, “123” == 123 or

“123” != 123), JavaScript anticipates that you want to compare apples to apples.

Internally it does some data type conversion that does not affect the data type of

the original values (for example, if the values are in variables). But the entire situa-

tion is more complex, because other data types, such as objects, need to be dealt

with. Therefore, prior to JavaScript 1.2, the rules of comparison are as shown in

Table 40-3.

Table 40-3: Equality Comparisons for JavaScript 1.0 and 1.1

Operand A Operand B Internal Comparison Treatment

Object reference Object reference Compare object reference evaluations

Any data type Null Convert nonnull to its object type and
compare against null

Object reference String Convert object to string and compare strings

String Number Convert string to number and compare
numbers

The logic to what goes on in equality comparisons from Table 40-3 requires a lot

of forethought on the scripter’s part, because you have to be very conscious of the

particular way data types may or may not be converted for equality evaluation

(even though the values themselves are not converted). In this situation, supplying

the proper conversion where necessary in the comparison statement is best. This

ensures that what you want to compare — for example, the string versions of two

values or the number versions of two values — is compared, rather than leaving the

conversion up to JavaScript.

Backward compatible conversion from a number to string entails concatenating

an empty string to a number:

var a = “09”
var b = 9
a == “” + b // result: false, because “09” does not equal “9”

For converting strings to numbers, you have numerous possibilities. The

simplest is subtracting zero from a numeric string:

var a = “09”
var b = 9
a-0 == b // result: true because number 9 equals number 9

Comparison Operators

(c) ketabton.com: The Digital Library

1073Chapter 40 ✦ JavaScript Operators

You can also use the parseInt() and parseFloat() functions to convert

strings to numbers:

var a = “09”
var b = 9
parseInt(a, 10) == b // result: true because number 9 equals number 9

To clear up the ambiguity of JavaScript’s equality internal conversions,

JavaScript 1.2 in NN4 and IE4 adds two more operators to force the equality

comparison to be extremely literal in its comparison. The strictly equals (===)

and strictly does not equal (!==) operators compare both the data type and value.

The only time the === operator returns true is if the two operands are of the same

data type (for example, both are numbers) and the same value. Therefore, no

number is ever automatically equal to a string version of that same number. Data

and object types must match before their values are compared.

JavaScript 1.2 also provides some convenient global functions for converting

strings to numbers and vice versa: String() and Number(). To demonstrate these

methods, the following examples use the typeof operator to show the data type of

expressions using these functions:

typeof 9 // result: number
typeof String(9) // result: string
typeof “9” // result: string
typeof Number(“9”) // result: number

None of these functions alters the data type of the value being converted. But

the value of the function is what gets compared in an equality comparison:

var a = “09”
var b = 9
a == String(b) // result: false, because “09” does not equal “9”
typeof b // result: still a number
Number(a) == b // result: true, because 9 equals 9
typeof a // result: still a string

This discussion should impress upon you the importance of considering data

types when testing the equality of two values.

Connubial Operators

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Connubial operators is my terminology for those operators that join two

operands to yield a value related to the operands. Table 40-4 lists the connubial

operators in JavaScript.

Connubial Operators

(c) ketabton.com: The Digital Library

1074 Part IV ✦ JavaScript Core Language Reference

Table 40-4: JavaScript Connubial Operators

Syntax Name Operand Types Results

+ Plus Integer, float, string Integer, float, string

- Minus Integer, float Integer, float

* Multiply Integer, float Integer, float

/ Divide Integer, float Integer, float

% Modulo Integer, float Integer, float

++ Increment Integer, float Integer, float

-- Decrement Integer, float Integer, float

+val Positive Integer, float, string Integer, float

-val Negation Integer, float, string Integer, float

The four basic arithmetic operators for numbers are straightforward. The plus

operator also works on strings to join them together, as in

“Howdy “ + “Doody” // result = “Howdy Doody”

In object-oriented programming terminology, the plus sign is considered

overloaded, meaning that it performs a different action depending on its context.

Remember, too, that string concatenation does not do anything on its own to

monitor or insert spaces between words. In the preceding example, the space

between the names is part of the first string.

Modulo arithmetic is helpful for those times when you want to know if one

number divides evenly into another. You used it in an example in Chapter 39 to

figure out if a particular year was a leap year. Although some other leap year

considerations exist for the turn of each century, the math in the example simply

checked whether the year was evenly divisible by four. The result of the modulo

math is the remainder of division of the two values: When the remainder is 0, one

divides evenly into the other. Here are some samples of years evenly divisible by four:

2002 % 4 // result = 2
2003 % 4 // result = 3
2004 % 4 // result = 0 (Bingo! Leap year!)

Thus, I used this modulo operator in a condition statement of an if. . .else
structure:

var howMany = 0
today = new Date()
var theYear = today.getYear()
if (theYear % 4 == 0) {

howMany = 29
} else {

howMany = 28
}

Connubial Operators

(c) ketabton.com: The Digital Library

1075Chapter 40 ✦ JavaScript Operators

Some other languages offer an operator that results in the integer part of a division

problem solution: integral division, or div. Although JavaScript does not have an

explicit operator for this behavior, you can recreate it reliably if you know that your

operands are always positive numbers. Use the Math.floor() or Math.ceil()
methods with the division operator, as in

Math.floor(4/3) // result = 1

In this example, Math.floor() works only with values greater than or equal to

0; Math.ceil() works with values less than 0.

The increment operator (++) is a unary operator (only one operand) and displays

two different behaviors, depending on the side of the operand on which the symbols

lie. Both the increment and decrement (--) operators can be used in conjunction

with assignment operators, which I cover next.

As its name implies, the increment operator increases the value of its operand by

one. But in an assignment statement, you have to pay close attention to precisely

when that increase takes place. An assignment statement stuffs the value of the right

operand into a variable on the left. If the ++ operator is located in front of the right

operand (prefix), the right operand is incremented before the value is assigned to

the variable; if the ++ operator is located after the right operand (postfix), the

previous value of the operand is sent to the variable before the value is incremented.

Follow this sequence to get a feel for these two behaviors:

var a = 10 // initialize a to 10
var z = 0 // initialize z to zero
z = a // a = 10, so z = 10
z = ++a // a becomes 11 before assignment, so a = 11 and z becomes 11
z = a++ // a is still 11 before assignment, so z = 11; then a becomes 12
z = a++ // a is still 12 before assignment, so z = 12; then a becomes 13

The decrement operator behaves the same way, except that the value of the

operand decreases by one. Increment and decrement operators are used most

often with loop counters in for and while loops. The simpler ++ or -- symbology

is more compact than reassigning a value by adding 1 to it (such as, z = z + 1 or

z += 1). Because these are unary operators, you can use the increment and decre-

ment operators without an assignment statement to adjust the value of a counting

variable within a loop:

function doNothing() {
var i = 1
while (i < 20) {

++i
}
alert(i) // breaks out at i = 20

}

The last pair of connubial operators are also unary operators (operating on one

operand). Both the positive and negation operators can be used as shortcuts to the

Number() global function, converting a string operand consisting of number char-

acters to a number data type. The string operand is not changed, but the operation

returns a value of the number type, as shown in the following sequence:

var a = “123”
var b = +a // b is now 123

Connubial Operators

(c) ketabton.com: The Digital Library

1076 Part IV ✦ JavaScript Core Language Reference

typeof a // result: string
typeof b // result: number

The negation operator (-val) has additional power. By placing a minus sign in

front of any numeric value (no space between the symbol and the value), you

instruct JavaScript to evaluate a positive value as its corresponding negative value,

and vice versa. The operator does not change the operand’s value, but the expres-

sion returns the modified value. The following example provides a sequence of

statements to demonstrate:

var x = 2
var y = 8
var z = -x // z equals -2, but x still equals 2
z = -(x + y) // z equals -10, but x still equals 2 and y equals 8
z = -x + y // z equals 6, but x still equals 2 and y equals 8

To negate a Boolean value, see the Not (!) operator in the discussion of Boolean

operators.

Assignment Operators

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Assignment statements are among the most common statements you write in

your JavaScript scripts. These statements appear everywhere you copy a value or

the results of an expression into a variable for further manipulation of that value.

You assign values to variables for many reasons, even though you could proba-

bly use the original values or expressions several times throughout a script. Here is

a sampling of reasons why you should assign values to variables:

✦ Variable names are usually shorter

✦ Variable names can be more descriptive

✦ You may need to preserve the original value for later in the script

✦ The original value is a property that cannot be changed

✦ Invoking the same method several times in a script is not efficient

Newcomers to scripting often overlook the last reason. For instance, if a script is

writing HTML to a new document, it’s more efficient to assemble the string of large

chunks of the page into one variable before invoking the document.write()
method to send that text to the document. This approach is more efficient than

literally sending out one line of HTML at a time with multiple document.
writeln() method statements. Table 40-5 shows the range of assignment opera-

tors in JavaScript.

Assignment Operators

(c) ketabton.com: The Digital Library

1077Chapter 40 ✦ JavaScript Operators

Table 40-5: JavaScript Assignment Operators

Syntax Name Example Means

= Equals x = y x = y

+= Add by value x += y x = x + y

-= Subtract by value x -= y x = x - y

*= Multiply by value x *= y x = x * y

/= Divide by value x /= y x = x / y

%= Modulo by value x %= y x = x % y

<<= Left shift by value x <<= y x = x << y

>= Right shift by value x >= y x = x > y

>>= Zero fill by value x >>= y x = x >> y

>>>= Right shift by value x >>>= y x = x >>> y

&= Bitwise AND by value x &= y x = x & y

|= Bitwise OR by value x |= y x = x | y

^= Bitwise XOR by value x ^= y x = x ^ y

As clearly demonstrated in the top group (see “Bitwise Operators” later in the

chapter for information on the bottom group), assignment operators beyond the

simple equals sign can save some characters in your typing, especially when you

have a series of values that you’re trying to bring together in subsequent state-

ments. You’ve seen plenty of examples in previous chapters, where you used the

add-by-value operator (+=) to work wonders with strings as you assemble a long

string variable that you eventually send to a document.write() method. Look at

this variation of a segment of Listing 37-3, where you could use JavaScript to create

the HTML content of a SELECT element on the fly:

var elem = “” // start assembling next part of page and form
elem += “<P>Select a regional office: “
elem += “<SELECT NAME=’offices’ onChange=’getData(this.form)’>”
// build options list from array office names
for (var i = 0; i < regionalOffices.length; i++) {

elem += “<OPTION” // OPTION tags
if (i == 0) { // pre-select first item in list

elem += “ SELECTED”
}
elem += “>” + regionalOffices[i]

}
elem += “</SELECT></P>” // close SELECT item tag
document.write(elem) // write element to the page

The script segment starts with a plain equals assignment operator to initialize

the elem variable as an empty string. In many of the succeeding lines, you use the

Assignment Operators

(c) ketabton.com: The Digital Library

1078 Part IV ✦ JavaScript Core Language Reference

add-by-value operator to tack additional string values onto whatever is in the elem
variable at the time. Without the add-by-value operator, you are forced to use the

plain equals assignment operator for each line of code to concatenate new string

data to the existing string data. In that case, the first few lines of code look as shown:

var elem = “” // start assembling next part of page and form
elem = elem + “<P>Select a regional office: “
elem = elem + “<SELECT NAME=’offices’ onChange=’getData(this.form)’>”

Within the for loop, the repetition of elem + makes the code very difficult to

read, trace, and maintain. These enhanced assignment operators are excellent

shortcuts that you should use at every turn.

Boolean Operators

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Because a great deal of programming involves logic, it is no accident that the

arithmetic of the logic world plays an important role. You’ve already seen dozens

of instances where programs make all kinds of decisions based on whether a state-

ment or expression is the Boolean value true or false. What you haven’t seen

much of yet is how to combine multiple Boolean values and expressions — a quality

that scripts with slightly above average complexity may need to have in them.

In the various condition expressions required throughout JavaScript (such as in

an if construction), the condition that the program must test for may be more

complicated than, say, whether a variable value is greater than a certain fixed value

or whether a field is not empty. Look at the case of validating a text field entry for

whether the entry contains all the numbers that your script may want. Without

some magical JavaScript function to tell you whether or not a string consists of all

numbers, you have to break apart the entry character by character and examine

whether each character falls within the range of 0 through 9. But that examination

actually comprises two tests: You can test for any character whose ASCII value is

less than 0 or greater than 9. Alternatively, you can test whether the character is

greater than or equal to 0 and is less than or equal to 9. What you need is the

bottom-line evaluation of both tests.

Boolean math
That’s where the wonder of Boolean math comes into play. With just two

values —true and false— you can assemble a string of expressions that yield

Boolean results and then let Boolean arithmetic figure out whether the bottom line

is true or false.

But you don’t add or subtract Boolean values the same way you add or subtract

numbers. Instead, you use one of three JavaScript Boolean operators at your

disposal. Table 40-6 shows the three operator symbols. In case you’re unfamiliar

with the characters in the table, the symbols for the Or operator are created by

typing Shift-backslash.

Boolean Operators

(c) ketabton.com: The Digital Library

1079Chapter 40 ✦ JavaScript Operators

Table 40-6: JavaScript Boolean Operators

Syntax Name Operands Results

&& And Boolean Boolean

|| Or Boolean Boolean

! Not One Boolean Boolean

Using Boolean operators with Boolean operands gets tricky if you’re not used

to it, so I have you start with the simplest Boolean operator: Not. This operator

requires only one operand. The Not operator precedes any Boolean value to switch

it back to the opposite value (from true to false, or from false to true). For

instance:

!true // result = false
!(10 > 5) // result = false
!(10 < 5) // result = true
!(document.title == “Flintstones”) // result = true

As shown here, enclosing the operand of a Not expression inside parentheses is

always a good idea. This forces JavaScript to evaluate the expression inside the

parentheses before flipping it around with the Not operator.

The And (&&) operator joins two Boolean values to reach a true or false value

based on the results of both values. This brings up something called a truth table,
which helps you visualize all the possible outcomes for each value of an operand.

Table 40-7 is a truth table for the And operator.

Table 40-7: Truth Table for the And Operator

Left Operand And Operator Right Operand Result

True && True True

True && False False

False && True False

False && False False

Only one condition yields a true result: Both operands must evaluate to true.

Which side of the operator a true or false value lives doesn’t matter. Here are

examples of each possibility:

5 > 1 && 50 > 10 // result = true
5 > 1 && 50 < 10 // result = false
5 < 1 && 50 > 10 // result = false
5 < 1 && 50 < 10 // result = false

Boolean Operators

(c) ketabton.com: The Digital Library

1080 Part IV ✦ JavaScript Core Language Reference

In contrast, the Or (||) operator is more lenient about what it evaluates to true.

The reason is that if one or the other (or both) operands is true, the operation

returns true. The Or operator’s truth table is shown in Table 40-8.

Table 40-8: Truth Table for the Or Operator

Left Operand Or Operator Right Operand Result

True || True True

True || False True

False || True True

False || False False

Therefore, if a true value exists on either side of the operator, a true value is

the result. Take the previous examples and swap the And operators with Or

operators so that you can see the Or operator’s impact on the results:

5 > 1 || 50 > 10 // result = true
5 > 1 || 50 < 10 // result = true
5 < 1 || 50 > 10 // result = true
5 < 1 || 50 < 10 // result = false

Only when both operands are false does the Or operator return false.

Boolean operators at work
Applying Boolean operators to JavaScript the first time just takes a little time

and some sketches on a pad of paper to help you figure out the logic of the expres-

sions. Earlier I talked about using a Boolean operator to see whether a character

fell within a range of ASCII values for data-entry validation. Listing 40-1 (not on the

CD-ROM) is a function discussed in more depth in Chapter 43. This function accepts

any string and sees whether each character of the string has an ASCII value less

than 0 or greater than 9— meaning that the input string is not a number.

Listing 40-1: Is the Input String a Number?

function isNumber(inputStr) {
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.substring(i, i + 1)
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numerals only.”)
return false

}
}
return true

}

Boolean Operators

(c) ketabton.com: The Digital Library

1081Chapter 40 ✦ JavaScript Operators

Combining a number of JavaScript powers to read individual characters

(substrings) from a string object within a for loop, the statement that you’re

interested in is the condition of the if construction:

(oneChar < “0” || oneChar > “9”)

In one condition statement, you use the Or operator to test for both possibilities.

If you check the Or truth table (Table 40-8), you see that this expression returns true
if either one or both tests returns true. If that happens, the rest of the function alerts

the user about the problem and returns a false value to the calling statement.

Only if both tests within this condition evaluate to false for all characters of the

string does the function return a true value.

From the simple Or operator, I go to the extreme, where the function checks — in

one condition statement — whether a number falls within several numeric ranges.

The script in Listing 40-2 comes from the array lookup application in Chapter 50, in

which a user enters the first three digits of a U.S. Social Security number.

Listing 40-2: Is a Number within Discontiguous Ranges?

// function to determine if value is in acceptable range for this application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || (num > 586 && num < 596) || (num > 599 && num < 700) ||num >

728) {
alert(“Sorry, the number you entered is not part of our database. Try

another three-digit number.”)
return false

}
return true

}

By the time this function is called, the user’s data entry has been validated

enough for JavaScript to know that the entry is a number. Now the function must

check whether the number falls outside of the various ranges for which the

application contains matching data. The conditions that the function tests here

are whether the number is

✦ Less than 1

✦ Greater than 586 and less than 596 (using the And operator)

✦ Greater than 599 and less than 700 (using the And operator)

✦ Greater than 728

Each of these tests is joined by an Or operator. Therefore, if any one of these

conditions proves true, the whole if condition is true, and the user is alerted

accordingly.

The alternative to combining so many Boolean expressions in one condition
statement would be to nest a series of if constructions. But such a construction

requires not only a great deal more code but also much repetition of the alert dialog

Boolean Operators

(c) ketabton.com: The Digital Library

1082 Part IV ✦ JavaScript Core Language Reference

box message for each condition that could possibly fail. The combined Boolean

condition is, by far, the best way to go.

Bitwise Operators

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

For scripters, bitwise operations are an advanced subject. Unless you’re dealing

with external processes on CGIs or the connection to Java applets, it’s unlikely that

you will use bitwise operators. Experienced programmers who concern themselves

with more specific data types (such as long integers) are quite comfortable in this

arena, so I simply provide an explanation of JavaScript capabilities. Table 40-9 lists

JavaScript bitwise operators.

Table 40-9: JavaScript’s Bitwise Operators

Operator Name Left Operand Right Operand

& Bitwise And Integer value Integer value

| Bitwise Or Integer value Integer value

^ Bitwise XOR Integer value Integer value

~ Bitwise Not (None) Integer value

<< Left shift Integer value Shift amount

>> Right shift Integer value Shift amount

>>> Zero fill right shift Integer value Shift amount

The numeric value operands can appear in any of the JavaScript language’s three

numeric literal bases (decimal, octal, or hexadecimal). As soon as the operator has

an operand, the value is converted to binary representation (32 bits long). For the

first three bitwise operations, the individual bits of one operand are compared with

their counterparts in the other operand. The resulting value for each bit depends

on the operator:

✦ Bitwise And: 1 if both digits are 1

✦ Bitwise Or: 1 if either digit is 1

✦ Bitwise Exclusive Or: 1 if only one digit is a 1

Bitwise Not, a unary operator, inverts the value of every bit in the single

operand. The bitwise shift operators operate on a single operand. The second

operand specifies the number of positions to shift the value’s binary digits in the

Bitwise Operators

(c) ketabton.com: The Digital Library

1083Chapter 40 ✦ JavaScript Operators

direction of the arrows of the operator symbols. For example, the left shift (<<)

operator has the following effect:

4 << 2 // result = 16

The reason for this shifting is that the binary representation for decimal 4 is

00000100 (to eight digits, anyway). The left shift operator instructs JavaScript to

shift all digits two places to the left, giving the binary result 00010000, which

converts to 16 in decimal format. If you’re interested in experimenting with these

operators, use The Evaluator (Chapter 13) to evaluate sample expressions for

yourself. More advanced books on C and C++ programming are also of help.

Object Operators
The next group of operators concern themselves with objects (including native

JavaScript, DOM, and custom objects) and data types. Most of these have been

implemented after the earliest JavaScript browsers, so each one has its own

compatibility rating.

delete

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Array objects do not contain a method to remove an element from the collection,

nor do custom objects offer a method to remove a property. You can always empty

the data in an array item or property by setting its value to an empty string or null,

but the array element or property remains in the object. With the delete operator,

you can completely remove the element or property.

There is special behavior about deleting an array item that you should bear in

mind. If your array uses numeric indices, a deletion of a given index removes that

index value from the total array but without collapsing the array (which would alter

index values of items higher than the deleted item). For example, consider the

following simple dense array:

var oceans = new Array(“Atlantic”, “Pacific”, “Indian”,”Arctic”)

This kind of array automatically assigns numeric indices to its entries for

addressing later in constructions, such as for loops:

for (var i = 0; i < oceans.length; i++) {
if (oceans[i] == form.destination.value) {

statements
}

}

If you then issue the statement

delete oceans[2]

the array undergoes significant changes. First, the third element is removed from

the array. Note that the length of the array does not change. Even so, the index

delete

(c) ketabton.com: The Digital Library

1084 Part IV ✦ JavaScript Core Language Reference

value (2) is removed from the array, such that schematically the array looks as the

following:

oceans[0] = “Atlantic”
oceans[1] = “Pacific”
oceans[3] = “Arctic”

If you try to reference oceans[2] in this collection, the result is undefined.

The delete operator works best on arrays that have named indices. Your scripts

will have more control over the remaining entries and their values, because they

don’t rely on what could be a missing entry of a numeric index sequence.

One aspect of this deletion action that JavaScript doesn’t provide is absolute con-

trol over memory utilization. All garbage collection is managed by the JavaScript

interpreter engine, which tries to recognize when items occupying memory are no

longer needed, at which time the unused browser’s application memory may be

recovered. But you cannot force the browser to perform its garbage collection task.

in

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The in operator lets a script statement inspect an object to see if it has a named

property or method. The operand to the left of the operator is a string reference to

the property or method (just the method name, without parentheses); the operand

to the right of the operator is the object being inspected. If the object knows the

property or method, the expression returns true. Thus, you can use the in opera-

tor in expressions used for conditional expressions.

You can experiment with this operator in The Evaluator. For example, to prove

that the write() method is implemented for the document object, the expression

you type into the top text box of The Evaluator is:

“write” in document

But compare the implementation of the W3C DOM document.createAttribute()
method in IE5.5 and NN6:

“createAttribute” in document

In NN6, the result is true, while in IE5.5, the result is false.

Having this operator around for conditional expressions lets you go much

beyond simple object detection for branching code. For example, if you intend to

use document.createAttribute() in your script, you can make sure that the

method is supported before invoking it (assuming your users all have browsers

that know the in operator).

instanceof

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

instanceof

(c) ketabton.com: The Digital Library

1085Chapter 40 ✦ JavaScript Operators

The instanceof operator (not implemented in IE5/Mac) lets a script test

whether an object is an instance of a particular JavaScript native object or DOM

object (in NN6). The operand to the left side of the operator is the value under test;

the value to the right of the operand is a reference to the root class from which the

value is suspected of being constructed.

For native JavaScript classes, the kinds of object references to the right of the

operator include such static objects as Date, String, Number, Boolean, Object,

Array, and RegExp. You sometimes need to be mindful of how native JavaScript

classes can sometimes be children of other native classes, which means that a

value may be an instance of two different static objects. For example, consider

the following sequence (which you can follow along in The Evaluator):

a = new Array(1,2,3)
a instanceof Array

The second statement yields a result of true, because the Array constructor

was used to generate the object. But the JavaScript Array is, itself, an instance of

the root Object object. Therefore both of the following statements evaluate to

true:

a instanceof Object
Array instanceof Object

NN6 also supports this functionality for W3C DOM objects to some degree. For

instance, you can see that the document node is an instance of the root Node
object:

document instanceof Node

But NN6 also erroneously reports instances of a variety of nodes and elements

outside the strict inheritance hierarchy of the W3C DOM (for instance, NN6 also

reports that document is an instance of HTMLElement, which it clearly is not).

new

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Most JavaScript core objects have constructor functions built into the language.

To access those functions, you use the new operator along with the name of the

constructor. The function returns a reference to the object instance, which your

scripts can then use to get and set properties or invoke object methods. For example,

creating a new date object requires invoking the Date object’s constructor, as follows:

var today = new Date()

Some object constructor functions require parameters to help define the object.

Others, as in the case of the Date object, can accept a number of different parame-

ter formats, depending on the format of date information you have to set the initial

object. The new operator can be used with the following core language objects:

new

(c) ketabton.com: The Digital Library

1086 Part IV ✦ JavaScript Core Language Reference

JavaScript 1.0 JavaScript 1.1 JavaScript 1.2 JavaScript 1.5

Date Array RegExp Error

Object Boolean

(Custom object) Function

Number

String

this

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

JavaScript includes an operator that allows script statements to refer to the very

object in which they are located. The self-referential operator is this.

The most common application of the this operator is in event handlers that

pass references of themselves to functions for further processing, as in

<INPUT TYPE=”text” NAME=”entry” onChange=”process(this)”>

A function receiving the value assigns it to a variable that can be used to

reference the sender, its properties, and its methods.

Because the this operator references an object, that object’s properties can be

exposed with the aid of the operator. For example, to send the value property of a

text input object to a function, the this operator stands in for the current object

reference and appends the proper syntax to reference the value property:

<INPUT TYPE=”text” NAME=”entry” onChange=”process(this.value)”>

The this operator also works inside other objects, such as custom objects.

When you define a constructor function for a custom object, using the this
operator to define properties of the object and assign values to those properties is

common practice. Consider the following example of an object creation sequence:

function bottledWater(brand, ozSize, flavor) {
this.brand = brand
this.ozSize = ozSize
this.flavor = flavor

}
var myWater = new bottledWater(“Crystal Springs”, 16, “original”)

When the new object is created via the constructor function, the this operators

define each property of the object and then assign the corresponding incoming

value to that property. Using the same names for the properties and parameter

variables is perfectly fine and makes the constructor easy to maintain.

By extension, if you assign a function as an object’s property (to behave as a

method for the object), the this operator inside that function refers to the object

invoking the function, offering an avenue to the object’s properties. For example, if I

this

(c) ketabton.com: The Digital Library

1087Chapter 40 ✦ JavaScript Operators

add the following function definition and statement to the myWater object created

just above, the function can directly access the brand property of the object:

function adSlogan() {
return “Drink “ + this.brand + “, it’s wet and wild!”

}
myWater.getSlogan = adSlogan

When a statement invokes the myWater.getSlogan() method, the object

invokes the adSlogan() function, but all within the context of the myWater object.

Thus, the this operator applies to the surrounding object, making the brand prop-

erty available via the this operator (this.brand).

Miscellaneous Operators
The final group of operators doesn’t fit into any of the previous categories, but

they are no less important.

,

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

The comma operator indicates a series of expressions that are to be evaluated in

left-to-right sequence. Most typically, this operator is used to permit multiple vari-

able initializations. For example, you can combine the declaration of several vari-

ables in a single var statement, as follows:

var name, address, serialNumber

Another situation where you could use this operator is within the expressions of

a for loop construction. In the following example, two different counting variables

are initialized and incremented at different rates. When the loop begins, both vari-

ables are initialized at zero (they don’t have to be, but this example starts that

way); for each subsequent trip through the loop, one variable is incremented by

one, while the other is incremented by 10:

for (var i=0, j=0; i < someLength; i++, j+10) {
...

}

Don’t confuse the comma operator with the semi-colon delimiter between

statements.

? :

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

? : (conditional)

(c) ketabton.com: The Digital Library

1088 Part IV ✦ JavaScript Core Language Reference

The conditional operator is a shortcut way of expressing an if. . .else
conditional construction covered in Chapter 39. This operator is typically used

in concert with an assignment operator to assign one of two values to a variable

based on the result of a condition expression. The formal syntax for the conditional

operator is:

condition ? expressionIfTrue : expressionIfFalse

If used with an assignment operator, the syntax is:

var = condition ? expressionIfTrue : expressionIfFalse

No matter how you use the operator, the important point to remember is that

an expression that contains this operator evaluates to one of the two expressions

following the question mark symbol. In truth, either expression could invoke any

JavaScript, including calling other functions or even nesting further conditional

operators within one of the expressions to achieve the equivalent of nested if. .
.else constructions. To assure proper resolution of nested conditionals, surround

inner expressions with parentheses to make sure that they evaluate before the

outer expression evaluates. As an example, the following statement assigns one

of three strings to a variable depending on the date within a month:

var monthPart = (dateNum <= 10) ? “early” : ((dateNum <= 20) ? “middle” : “late”)

When the statement is evaluated, the inner conditional expression at the right

of the first colon is evaluated, returning either middle or late; then the outer

conditional expression is evaluated, returning either early or the result of the

inner conditional expression.

typeof

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � �

Unlike most other operators, which are predominantly concerned with arithmetic

and logic, the unary typeof operator defines the kind of value to which a variable

or expression evaluates. Typically, this operator is used to identify whether a variable

value is one of the following types: number, string, boolean, object, function, or

undefined.

Having this investigative capability in JavaScript is helpful because variables

cannot only contain any one of those data types but can change their data type on

the fly. Your scripts may need to handle a value differently based on the value’s

type. The most common use of the typeof property is as part of a condition. For

example:

if (typeof myVal == “number”) {
myVal = parseInt(myVal)

}

The evaluated value of the typeof operation is, itself, a string.

typeof

(c) ketabton.com: The Digital Library

1089Chapter 40 ✦ JavaScript Operators

void

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

In all scriptable browsers you can use the javascript: pseudo-protocol to

supply the parameter for HREF and SRC attributes in HTML tags, such as links. In

the process, you have to be careful that the function or statement being invoked by

the URL does not return or evaluate to any values. If a value comes back from such

an expression, then that value or sometimes the directory of the client’s hard disk

often replaces the page content. To avoid this possibility use the void operator in

front of the function or expression being invoked by the javascript: URL.

The best way to use this construction is to place the operator before the

expression or function and separate them by a space, as in

javascript: void doSomething()

On occasion, you may have to wrap the expression inside parentheses after the

void operator. Using parantheses is necessary only when the expression contains

operators of a lower precedence than the void operator (see the following section,

“Operator Precedence”). But don’t automatically wrap all expressions in parenthe-

ses, because some browsers can experience problems with these. Even so, it is

common practice to assign the following URL to the HREF attribute of an A link

whose onClick event handler does all of the work:

HREF=”javascript: void (0)”

The void operator makes sure the function or expression returns no value that

the HTML attribute can use. Such a link’s onClick event handler should also inhibit

the natural behavior of a clicked link (for example, by evaluating to return false).

Operator Precedence
When you start working with complex expressions that hold a number of opera-

tors (for example, Listing 40-2), knowing the order in which JavaScript evaluates

those expressions is vital. JavaScript assigns different priorities or weights to types

of operators in an effort to achieve uniformity in the way it evaluates complex

expressions.

In the following expression

10 + 4 * 5 // result = 30

JavaScript uses its precedence scheme to perform the multiplication before the

addition — regardless of where the operators appear in the statement. In other

words, JavaScript first multiplies 4 by 5, and then adds that result to 10 to get a

result of 30. That may not be the way you want this expression to evaluate. Perhaps

your intention was to add the 10 and 4 first and then to multiply that sum by 5. To

make that happen, you have to override JavaScript’s natural operator precedence.

To do that, you must use parentheses to enclose an operator with lower precedence.

void

(c) ketabton.com: The Digital Library

1090 Part IV ✦ JavaScript Core Language Reference

The following statement shows how you adjust the previous expression to make it

behave differently:

(10 + 4) * 5 // result = 70

That one set of parentheses has a great impact on the outcome. Parentheses

have the highest precedence in JavaScript, and if you nest parentheses in an

expression, the innermost set evaluates first.

For help in constructing complex expressions, refer to Table 40-10 for JavaScript’s

operator precedence. My general practice: When in doubt about complex precedence

issues, I build the expression with lots of parentheses according to the way I want

the internal expressions to evaluate.

Table 40-10: JavaScript Operator Precedence

Precedence Level Operator Notes

1 () From innermost to outermost

[] Array index value

function() Any remote function call

2 ! Boolean Not

~ Bitwise Not

- Negation

++ Increment

-- Decrement

new

typeof

void

delete Delete array or object entry

3 * Multiplication

/ Division

% Modulo

4 + Addition

- Subtraction

5 << Bitwise shifts

>

>>

6 < Comparison operators

<=

(c) ketabton.com: The Digital Library

1091Chapter 40 ✦ JavaScript Operators

Precedence Level Operator Notes

>

>=

7 == Equality

!=

8 & Bitwise And

9 ^ Bitwise XOR

10 | Bitwise Or

11 && Boolean And

12 || Boolean Or

13 ? Conditional expression

14 = Assignment operators

+=

-=

*=

/=

%=

<<=

>=

>>=

&=

^=

|=

15 , Comma (parameter delimiter)

This precedence scheme is devised to help you avoid being faced with two

operators from the same precedence level that often appear in the same expression.

When it happens (such as with addition and subtraction), JavaScript begins evalu-

ating the expression from left to right.

One related fact involves a string of Boolean expressions strung together for a

condition statement (Listing 40-2). JavaScript follows what is called short-circuit
evaluation. As the nested expressions are evaluated left to right, the fate of the

entire condition can sometimes be determined before all expressions are evaluated.

Any time JavaScript encounters an And operator, if the left operand evaluates to

false, the entire expression evaluates to false without JavaScript’s even bothering

to evaluate the right operand. For an Or operator, if the left operand is true,

JavaScript short-circuits that expression to true. This feature can trip you up if you

don’t perform enough testing on your scripts: If a syntax error or other error exists

(c) ketabton.com: The Digital Library

1092 Part IV ✦ JavaScript Core Language Reference

in a right operand, and you fail to test the expression in a way that forces that right

operand to evaluate, you may not know that a bug exists in your code. Users of

your page, of course, will find the bug quickly. Do your testing to head bugs off at

the pass.

Notice, too, that all math and string concatenation is performed prior to any
comparison operators. This enables all expressions that act as operands for
comparisons to evaluate fully before they are compared.

The key to working with complex expressions is to isolate individual expressions

and to try them out by themselves, if you can. See additional debugging tips in

Chapter 45.

✦ ✦ ✦

Note

(c) ketabton.com: The Digital Library

Functions and
Custom Objects

By now, you’ve seen dozens of JavaScript functions in

action and probably have a pretty good feel for the way

they work. This chapter provides the function object

specification and delves into the fun prospect of creating

objects in your JavaScript code. (That includes objects that

have properties and methods, just like the big boys.)

Function Object

Properties Methods

arguments apply()

arity call()

caller toString()

constructor valueOf()

length

prototype

Syntax
Creating a function object:

function functionName([arg1,...[,argN]]) {
statement(s)

}
var funcName = new Function([“argName1”,...[,”argNameN”],
“statement1;...[;statementN]”])
object.eventHandlerName = function([arg1,...[,argN]])
{statement(s)}

Accessing function object properties and methods:

functionObject.property | method([parameters])

4141C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating function
blocks

Passing parameters
to functions

Creating your own
objects

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1094 Part IV ✦ JavaScript Core Language Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � (�) � � � �

About this object
JavaScript accommodates what other languages might call procedures, subrou-

tines, and functions all in one type of structure: the custom function. A function may

return a value (if programmed to do so with the return keyword), but it does not

have to return any value. Except for JavaScript code that executes as the document

loads, all deferred processing takes place in functions.

While you can create functions that are hundreds of lines long, I recommend you

break up longer processes into shorter functions. Among the reasons for doing so:

smaller chunks are easier to write and debug; building blocks make it easier to visu-

alize the entire script; you can make functions generalizable and reusable for other

scripts; and other parts of the script or other open frames can use the functions.

Learning how to write good, reusable functions takes time and experience. But

the earlier you understand the importance of this concept, the more you will be on

the lookout for good examples in other people’s scripts on the Web.

Creating functions
The standard way of defining a function in your script means following a simple

pattern and then filling in the details. The formal syntax definition for a function is:

function functionName([arg1] ... [, argN]) {
statement(s)

}

The task of assigning a function name helps you determine the precise scope of

activity of the function. If you find that you can’t reduce the planned task for the

function to a simple one- to three-word name (which is then condensed into one

contiguous sequence of characters for the functionName), perhaps you’re asking

the function to do too much. A better idea may be to break the job into two or more

functions. As you start to design a function, be on the lookout for functions that

you can call from the one you’re writing. If you find yourself copying and pasting

lines of code from one part of a function to another because you’re performing the

same operation in different spots within the function, it may be time to break that

segment out into its own function.

Starting with Navigator 3 (and Internet Explorer 3 with JScript.dll version2), you

can also create what is called an anonymous function using the new Function()
constructor. In reality, you assign a name to this “anonymous” function as follows:

var funcName = new Function([“argName1”,...[,”argNameN”],
“statement1;...[;statementN]”])

This other way of building a function is particularly helpful when your scripts

need to create a function after a document loads. All the components of a function

are present in this definition. Each function parameter name is supplied as a string

value, separated from each other by commas. The final parameter string consists of

functionObject

(c) ketabton.com: The Digital Library

1095Chapter 41 ✦ Functions and Custom Objects

the statements that execute whenever the function is called. Separate each

JavaScript statement with a semicolon, and enclose the entire sequence of state-

ments inside quotes, as in the following:

var willItFit = new Function(“width”,”height”,
“var sx = screen.availWidth; var sy = screen.availHeight; return (sx >= width &&
sy >= height)”)

The willItFit() function takes two parameters; the body of the function

defines two local variables (sx and sy) and then returns a Boolean value of true if

the incoming parameters are smaller than the local variables. In traditional form,

this function is defined as follows:

function willItFit(width, height) {
var sx = screen.availWidth
var sy = screen.availHeight
return (sx >= width && sy >= height)

}

Once this function exists in the browser’s memory, you can invoke it like any

other function:

if (willItFit(400,500)) {
statements to load image

}

One last function creation format is available in NN4+. This advanced technique,

called a lambda expression, provides a shortcut for creating a reference to an

anonymous function (truly anonymous because the function has no name that you

can reference later). The common application of this technique is to assign function

references to event handlers when the NN event object also must be passed. The

following is an example of how to assign an anonymous function to an onChange
event handler for a form control:

document.forms[0].age.onchange = function(event)
{isNumber(document.forms[0].age)}

Nesting functions
NN4+ and IE4+ also provide for nesting functions inside one another. In all prior

scripting, each function definition is defined at the global level whereby every func-

tion is exposed and available to all other scripting. With nested functions, you can

encapsulate the exposure of a function inside another and make that nested func-

tion private to the enclosing function. Of course I don’t recommend reusing names

in this fashion, but you can create nested functions with the same name inside mul-

tiple global level functions, as the following skeletal structure shows:

function outerA() {
statements
function innerA() {

statements
}
statements

}

functionObject

(c) ketabton.com: The Digital Library

1096 Part IV ✦ JavaScript Core Language Reference

function outerB() {
statements
function innerA() {

statements
}
function innerB() {

statements
}
statements

}

A good time to apply a nested function is when a sequence of statements need to

be invoked in multiple places within a large function but those statements have

meaning only within the context of the larger function. In other words, rather than

break out the repeated sequence as a separate global function, you keep it all

within the scope of the larger function.

You can access a nested function only from statements in its containing function

(and in any order). Moreover, all variables defined in the outer function (including

parameter variables) are accessible to the inner function; but variables defined in

an inner function are not accessible to the outer function. See the section, “Variable

Scope: Globals and Locals” later in this chapter for details on how variables are

visible to various components of a script.

Function parameters
The function definition requires a set of parentheses after the functionName. If

the function does not rely on any information arriving with it when invoked, the

parentheses can be empty. But when some kind of data is arriving with a call to the

function, you need to assign names to each parameter. Virtually any kind of value

can be a parameter: strings, numbers, Booleans, and even complete object refer-

ences such as a form or form element. Choose names for these variables that help

you remember the content of those values; also, avoid reusing existing object

names as variable names because it’s easy to get confused when objects and

variables with the same name appear in the same statements. You must avoid using

JavaScript keywords (including the reserved words listed in Appendix B) and any

global variable name defined elsewhere in your script. (See more about global

variables in the following sections.)

JavaScript is forgiving about matching the number of parameters in the function

definition with the number of parameters passed along from the calling statement.

If you define a function with three parameters and the calling statement specifies

only two, the third parameter variable value in that function is assigned a null
value. For example:

function oneFunction(a, b, c) {
statements

}
oneFunction(“George”,”Gracie”)

In the preceding example, the values of a and b inside the function are “George”
and “Gracie”, respectively; the value of c is null.

functionObject

(c) ketabton.com: The Digital Library

1097Chapter 41 ✦ Functions and Custom Objects

At the opposite end of the spectrum, JavaScript also doesn’t balk if you send

more parameters from the calling statement than the number of parameter

variables specified in the function definition. In fact, the language includes a

mechanism — the arguments property — that you can add to your function to

gather any extraneous parameters that should read your function.

Properties
arguments

Value: Array of arguments Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

When a function receives parameter values from the statement that invokes the

function, those parameter values are silently assigned to the arguments property

of the function object. This property is an array of the values, with each parameter

value assigned to a zero-based index entry in the array — whether or not parame-

ters are defined for it. You can find out how many parameters are sent by extracting

functionName.arguments.length. For example, if four parameters are passed,

functionName.arguments.length returns 4. Then, you can use array notation

(functionName.arguments[i]) to extract the values of any parameter(s) you

want.

Theoretically, you never have to define parameter variables for your functions

by extracting the desired arguments array entry instead. Well-chosen parameter

variable names, however, are much more readable, so I recommend them over the

arguments property in most cases. But you may run into situations in which a sin-

gle function definition needs to handle multiple calls to the function when each call

may have a different number of parameters. The function knows how to handle any

arguments over and above the ones given names as parameter variables.

See Listings 41-1 and 41-2 for a demonstration of both the arguments and

caller properties.

arity
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

See the discussion of the length property later in this chapter.

functionObject.arity

(c) ketabton.com: The Digital Library

1098 Part IV ✦ JavaScript Core Language Reference

caller
Value: Function Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

The caller property, not part of the ECMA-262 standard, was removed from NN
for version 6.

When one function invokes another, a chain is established between the two pri-

marily so that a returned value knows where to go. Therefore, a function invoked by

another maintains a reference to the function that called it. Such information is

automatically stored in a function object as the caller property. This relationship

reminds me a bit of a subwindow’s opener property, which points to the window or

frame responsible for the subwindow’s creation. The value is valid only while the

called function is running at the request of another function; when a function isn’t

running, its caller property is null.

The value of the caller property is a reference to a function object, so you can

inspect its arguments and caller properties (in case it was called by yet another

function). Thus, a function can look back at a calling function to see what values it

was passed.

The functionName.caller property reveals the contents of an entire function

definition if the current function was called from another function (including an

event handler). If the call for a function comes from a regular JavaScript statement

not originating from inside a function, the functionName.caller property is null.

To help you grasp all that these two properties yield, study Listing 41-1.

Listing 41-1: A Function’s arguments and caller Properties

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function hansel(x,y) {

var args = hansel.arguments
document.write(“<P>hansel.caller is “ + hansel.caller + “
”)
document.write(“hansel.arguments.length is “ + hansel.arguments.length +

“
”)
for (var i = 0; i < args.length; i++) {

document.write(“argument “ + i + “ is “ + args[i] + “
”)
}
document.write(“</P>”)

}

Note

functionObject.caller

(c) ketabton.com: The Digital Library

1099Chapter 41 ✦ Functions and Custom Objects

function gretel(x,y,z) {
today = new Date()
thisYear = today.getFullYear()
hansel(x,y,z,thisYear)

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
hansel(1, “two”, 3);
gretel(4, “five”, 6, “seven”);
</SCRIPT>
</BODY>
</HTML>

When you load this page, the following results appear in the browser window

(although the caller property values show undefined for NN6):

hansel.caller is null
hansel.arguments.length is 3
argument 0 is 1
argument 1 is two
argument 2 is 3

hansel.caller is function gretel(x, y, z) { today = new Date(); thisYear =
today.getFullYear(); hansel(x, y, z, thisYear); }

hansel.arguments.length is 4
argument 0 is 4
argument 1 is five
argument 2 is 6
argument 3 is 2001 (or whatever the current year is)

As the document loads, the hansel() function is called directly in the body

script. It passes three arguments, even though the hansel() function defines only

two. The hansel.arguments property picks up all three arguments just the same.

The main body script then invokes the gretel() function, which, in turn, calls

hansel() again. But when gretel() makes the call, it passes four parameters. The

gretel() function picks up only three of the four arguments sent by the calling

statement. It also inserts another value from its own calculations as an extra

parameter to be sent to hansel(). The hansel.caller property reveals the entire

content of the gretel() function, whereas hansel.arguments picks up all four

parameters, including the year value introduced by the gretel() function.

Neither the caller nor arguments properties of a function object appear in

the ECMA-262 Edition 3 specification. While NN6 dropped the caller property, it

continues to support the arguments property probably because a lot of scripters

use it.

functionObject.caller

(c) ketabton.com: The Digital Library

1100 Part IV ✦ JavaScript Core Language Reference

constructor
See string.constructor (Chapter 34).

length
Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

As the arguments property of a function proves, JavaScript is very forgiving

about matching the number of parameters passed to a function with the number of

parameter variables defined for the function. But a script can examine the length
property of a function object to see precisely how many parameter variables are

defined for a function. A reference to the property starts with the function name rep-

resenting the object. For example, consider the following function definition shell:

function identify(name, rank, serialNum) {
...

}

A script statement anywhere outside of the function can read the number of

parameters with the reference:
identify.length

The value of the property in the preceding example is 3. The length property

supercedes the NN-only arity property.

prototype
See Array.prototype (Chapter 37).

Methods
apply([thisObj[, argumentsArray]])
call([thisObj[, arg1[, arg2[,...argN]]]])

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The apply() and call() methods of a function object invoke the function. This

may seem redundant to the normal way in which script statements invoke func-

tions by simply naming the function, following it with parentheses, passing parame-

ters, and so on. The difference with these methods is that you can invoke the

functionObject.apply()

(c) ketabton.com: The Digital Library

1101Chapter 41 ✦ Functions and Custom Objects

function if your script has only a reference to the function. For example, if your

script defines a function via the new Function() constructor (or other anonymous

shortcut supported by the browser), you receive a reference to the function as a

result of the constructor. To invoke the function later using only that reference

(presumably preserved in a global variable), use either the apply() or call()
method. Both of these methods achieve the same result, but choosing one method

over the other depends on the form in which the function’s parameters are con-

veyed (more about that in a moment).

The first parameter of both methods is a reference to the object that the function

treats as the current object. For garden-variety functions defined in your script, use

the keyword this, which means that the function’s context becomes the current

object (just like a regular function). In fact, if there are no parameters to be sent to

the function, you can omit parameters to both methods altogether.

The object reference comes into play when the function being invoked is one

that is normally defined as a method to a custom object. (I cover some of these

concepts later in this chapter, so you may need to return here after you are familiar

with custom objects.) Consider the following code that generates a custom object

and assigns a method to the object to display an alert about properties of the

object:

// function to be invoked as a method from a ‘car’ object
function showCar() {

alert(this.make + “ : “ + this.color)
}
// ‘car’ object constructor function
function car(make, color) {

this.make = make
this.color = color
this.show = showCar

}
// create instance of a ‘car’ object
var myCar = new car(“Ford”, “blue”)

The normal way of getting the myCar object to display an alert about its proper-

ties is:

myCar.show()

At that point, the showCar() function runs, picking up the current car object as

the context for the this references in the function. In other words, when the

showCar() function runs as a method of the object, the function treats the object

as the “current object.”

With the call() or apply() methods, however, you don’t have to bind the

showCar() function to the myCar object. You can omit the statement in the car()
constructor that assigns the showCar function to a method name for the object.

Instead, a script can invoke the showCar() method and instruct it to treat myCar as

the current object:

showCar.call(myCar)

The showCar() function operates just as before, and the object reference in the

call() method’s first parameter slot is treated as the current object for the

showCar() function.

functionObject.apply()

(c) ketabton.com: The Digital Library

1102 Part IV ✦ JavaScript Core Language Reference

As for succeeding parameters, the apply() method’s second parameter is an

array of values to be passed as parameters to the current function. The order of the

values must match the order of parameter variables defined for the function. The

call() method, on the other hand, enables you to pass individual parameters in a

comma-delimited list. Your choice depends on how the parameters are carried

along in your script. If they’re already in array form, then use the apply() method;

otherwise, use the call() method. The (ECMA) recommended way to invoke a

function through this mechanism when no parameters need to be passed is via the

call() method.

toString()
valueOf()

Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Scripts rarely, if ever, summon the toString() and valueOf() methods of a

function object. They work internally to allow debugging scripts to display a string

version of the function definition. For example, when you enter the name of a func-

tion defined in The Evaluator into the top text box, JavaScript automatically con-

verts the function to a string so that its “value” can be displayed in the Results box.

Using these methods or parsing the text they return has little, if any, practical

application.

Function Application Notes
Understanding the ins and outs of JavaScript functions is the key to successful

scripting, especially for complex applications. Additional topics covered in this

chapter include the ways to invoke functions, variable scope in and around func-

tions, recursion, and the design of reusable functions.

Invoking Functions
A function doesn’t perform any work until a script calls it by name or reference.

Scripts invoke functions (that is, get functions to do something) via four routes:

document object event handlers; JavaScript statements; HREF attributes pointing to

a javascript: URL; and the more recent call() and apply() methods of function

objects. The one approach not discussed at length yet in this book is the

javascript: URL (some say pseudo-URL).

Several HTML tags have HREF attributes that normally point to Internet URLs for

navigating to another page or loading a MIME file that requires a helper application

or plug-in. These HTML tags are usually tags for clickable objects, such as links and

client-side image map areas.

functionObject.toString()

(c) ketabton.com: The Digital Library

1103Chapter 41 ✦ Functions and Custom Objects

A JavaScript-enabled browser has a special, built-in URL pseudo-protocol —

javascript:— that lets the HREF attribute point to a JavaScript function or method

rather than to a URL out on the Net. For example, it is common practice to use the

javascript: URL to change the contents of two frames from a single link. Because

the HREF attribute is designed to point to only a single URL, you’d be out of luck

without a convenient way to put multiframe navigation into your hands. Implement

multiframe navigation by writing a function that sets the location.href properties

of the two frames; then invoke that function from the HREF attribute. The following

example shows what the script may look like:

function loadPages() {
parent.frames[1].location.href = “page2.html”
parent.frames[2].location.href = “instrux2.html”

}
...
Next

These kinds of function invocations can include parameters, and the functions can
do anything you want. One potential side effect to watch out for occurs when the
function returns a value (perhaps the function is also invoked from other script
locations where a returned value is expected). Because the HREF attribute sets the
TARGET window to whatever the attribute evaluates to, the returned value is
assigned to the TARGET window — probably not what you want.

To prevent the assignment of a returned value to the HREF attribute, prefix the

function call with the void operator:

If you don’t want the HREF attribute to do anything (that is, let the onClick
event handler do all the work), then assign a blank function after the operator:

Experienced programmers of many other languages recognize this operator as a

way of indicating that no values are returned from a function or procedure. The

operator has that precise functionality here, but in a nontraditional location.

Variable Scope: Globals and Locals
A variable can have two scopes in JavaScript. As you might expect, any variable

initialized within the main flow of a script (not inside a function) is a global variable
in that any statement in the same document’s script can access it by name. You

can, however, also initialize variables inside a function (in a var statement) so the

variable name applies only to statements inside that function. By limiting the scope

of the variable to a single function, you can reuse the same variable name in multi-

ple functions thereby enabling the variables to carry very different information in

each function. Listing 41-2 demonstrates the various possibilities.

Note

(c) ketabton.com: The Digital Library

1104 Part IV ✦ JavaScript Core Language Reference

Listing 41-2: Variable Scope Workbench Page

<HTML>
<HEAD>
<TITLE>Variable Scope Trials</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var headGlobal = “Gumby”
function doNothing() {

var headLocal = “Pokey”
return headLocal

}
</SCRIPT>
</HEAD>

<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
// two global variables
var aBoy = “Charlie Brown”
var hisDog = “Snoopy”
function testValues() {

var hisDog = “Gromit” // initializes local version of “hisDog”
var page = “”
page += “headGlobal is: “ + headGlobal + “
”
// page += “headLocal is: “ + headLocal + “
” // headLocal not defined
page += “headLocal value returned from head function is: “ + doNothing() +

“<P>”
page += “ aBoy is: “ + aBoy + “
” // picks up global
page += “local version of hisDog is: “ + hisDog + “<P>” // “sees” only local
document.write(page)

}
testValues()
document.write(“global version of hisDog is intact: “ + hisDog)
</SCRIPT>
</BODY>
</HTML>

In this page, you define a number of variables — some global, others local — that

are spread out in the document’s Head and Body sections. When you load this

page, it runs the testValues() function, which accounts for the current values of

all the variable names. The script then follows up with one more value extraction

that was masked in the function. The results of the page look like this:

headGlobal is: Gumby
headLocal value returned from head function is: Pokey

aBoy is: Charlie Brown
local version of hisDog is: Gromit

global version of hisDog is intact: Snoopy

(c) ketabton.com: The Digital Library

1105Chapter 41 ✦ Functions and Custom Objects

Examine the variable initialization throughout this script. In the Head, you define

the first variable (headGlobal) as a global style outside of any function definition.

The var keyword for the global variable is optional but often helpful for enabling

you to see at a glance where you initialize your variables. You then create a short

function, which defines a variable (headLocal) that only statements in the function

can use.

In the Body, you define two more global variables: aBoy and hisDog. Inside the

Body’s function (for purposes of demonstration), you reuse the hisDog variable

name. By initializing hisDog with the var statement inside the function, you tell

JavaScript to create a separate variable whose scope is only within the function.

This initialization does not disturb the global variable of the same name. It can,

however, make things confusing for you as the script author.

Statements in this script attempt to collect the values of variables scattered

around the script. Even from within this script, JavaScript has no problem extract-

ing global variables directly — including the one defined in the Head. But JavaScript

cannot get the local variable defined in the other function — that headLocal vari-

able is private to its own function. Trying to run a script that references that vari-

able value will result in an error message saying that the variable name is not

defined. In the eyes of everyone else outside of the doNothing() function, that’s

true. If you really need that value, you can have the function return the value to a

calling statement as you do in the testValues() function.

Near the end of the function, the script reads the aBoy global value without a

hitch. But because you initialized a separate version of hisDog inside that function,

only the localized version is available to the function. If you reassign a global vari-

able name inside a function, you cannot access the global version from inside that

function.

As proof that the global variable — whose name was reused inside the

testValues() function — remains untouched, the script writes that value to the

end of the page for all to see. Charlie Brown and his dog are reunited.

A benefit of this variable-scoping scheme is that you can reuse “throw-away”

variable names in any function you like. For instance, you can use the i loop count-

ing variable in every function that employs loops. (In fact, you can reuse it in multi-

ple for loops of the same function because the for loop reinitializes the value at

the start of the loop.) If you pass parameters to a function, you can assign to those

parameter variables the same names to aid in consistency. For example, a common

practice is to pass an entire form object reference as a parameter to a function

(using a this.form parameter in the event handler). For every function that

catches one of these objects, you can use the variable name form in the parameter:

function doSomething(form) {
statements

}
...
<INPUT TYPE=”button” VALUE=”Do Something” onClick=”doSomething(this.form)”>

If five buttons on your page pass their form objects as parameters to five differ-

ent functions, each function can assign form (or whatever you want to use) to that

parameter value.

(c) ketabton.com: The Digital Library

1106 Part IV ✦ JavaScript Core Language Reference

I recommend reusing variable names only for these “throwaway” variables. In

this case, the variables are all local to functions, so the possibility of a mix-up with

global variables does not exist. But the thought of reusing a global variable name

as, say, a special case inside a function sends shivers up my spine. Such a tactic is

doomed to cause confusion and error.

Some programmers devise naming conventions to avoid reusing global variables

as local variables. A popular scheme puts a lowercase “g” in front of any global vari-

able name. In the example from Listing 41-2, you can name the global variables

gHeadGlobal
gABoy
gHisDog

Then, if you define local variables, don’t use the leading “g.” Any scheme you

employ to prevent the reuse of variable names in different scopes is fine as long as

it does the job.

In a multiframe or multiwindow environment, your scripts can also access global

variables from any other document currently loaded into the browser. For details

about this level of access, see Chapter 16.

Variable scoping rules apply equally to nested functions in NN4+ and IE4+. Any

variables defined in an outer function (including parameter variables) are exposed

to all functions nested inside. But if you define a new local variable inside a nested

function, that variable is not available to the outer function. Instead, you can return

a value from the nested function to the statement in the outer function that invokes

the nested function.

Parameter variables
When a function receives data in the form of parameters, remember that the

values may be copies of the data (in the case of run-of-the-mill data values) or refer-

ences to real objects (such as a form object). In the latter case, you can change the

object’s modifiable properties in the function when the function receives the object

as a parameter, as shown in the following example:

function validateCountry (form) {
if (form.country.value == “”) {

form.country.value = “USA”
}

}

Therefore, whenever you pass an object reference as a function parameter, be

aware that the changes you make to that object in its “passed” form affect the real

object.

As a matter of style, if my function needs to extract properties or results of meth-

ods from passed data (such as object properties or string substrings), I like to do

that at the start of the function. I initialize as many variables as needed for each

piece of data used later in the function. This task enables me to assign meaningful

names to the data chunks, rather than rely on potentially long references within

the working part of the function (such as using a variable like inputStr instead of

form.entry.value).

(c) ketabton.com: The Digital Library

1107Chapter 41 ✦ Functions and Custom Objects

Recursion in functions
Functions can call themselves — a process known as recursion. The classic exam-

ple of programmed recursion is the calculation of the factorial (the factorial for a

value of 4 is 4 * 3 * 2 * 1), shown in Listing 41-3 (not on the CD-ROM).

In the third line of this function, the statement calls itself, passing along a param-

eter of the next lower value of n. As this function executes, diving ever deeper into

itself, JavaScript watches intermediate values and performs the final evaluations of

the nested expressions. Be sure to test any recursive function carefully. In particu-

lar, make sure that the recursion is finite: that a limit exists for the number of times

it can recurse. In the case of Listing 41-3, that limit is the initial value of n. Failure to

watch out for this limit may cause the recursion to overpower the limits of the

browser’s memory and even lead to a crash.

Listing 41-3: A JavaScript Function Utilizing Recursion

function factorial(n) {
if (n > 0) {

return n * (factorial(n-1))
} else {

return 1
}

}

Turning functions into libraries
As you start writing functions for your scripts, be on the lookout for ways to

make functions generalizable (written so that you can reuse the function in other

instances, regardless of the object structure of the page). The likeliest candidates

for this kind of treatment are functions that perform specific kinds of validation

checks (see examples in Chapter 43), data conversions, or iterative math problems.

To make a function generalizable, don’t let it make any references to specific

objects by name. Object names generally change from document to document.

Instead, write the function so that it accepts a named object as a parameter. For

example, if you write a function that accepts a text object as its parameter, the

function can extract the object’s data or invoke its methods without knowing

anything about its enclosing form or name. Look again, for example, at the

factorial() function in Listing 41-4 — but now as part of an entire document.

Listing 41-4: Calling a Generalizable Function

<HTML>
<HEAD>
<TITLE>Variable Scope Trials</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

Continued

(c) ketabton.com: The Digital Library

1108 Part IV ✦ JavaScript Core Language Reference

Listing 41-4 (continued)

function factorial(n) {
if (n > 0) {

return n * (factorial(n - 1))
} else {

return 1
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter an input value: <INPUT TYPE=”text” NAME=”input” VALUE=0>
<P><INPUT TYPE=”button” VALUE=”Calc Factorial”

onClick=”this.form.output.value = factorial(this.form.input.value)”>
<P>Results: <INPUT TYPE=”text” NAME=”output”>
</FORM>
</BODY>
</HTML>

This function is designed to be generalizable, accepting only the input value (n)

as a parameter. In the form, the onClick event handler of the button sends only the

input value from one of the form’s fields to the factorial() function. The returned

value is assigned to the output field of the form. The factorial() function is

totally ignorant about forms, fields, or buttons in this document. If I need this func-

tion in another script, I can copy and paste it into that script knowing that it has

been pretested. Any generalizable function is part of my personal library of

scripts — from which I can borrow — and saves me time in future scripting tasks.

You cannot always generalize a function. Somewhere along the line in your

scripts, you must have references to JavaScript or custom objects. But if you find

that you’re frequently writing functions that perform the same kind of actions, see

how you can generalize the code and put the results in your library of ready-made

functions. And if your audience uses browsers from Navigator 3 onward (and later

versions of Internet Explorer 3 onward), consider placing these library functions in

an external .js library file. See Chapter 13 for details on this convenient way to

share utility functions among many documents.

Custom Objects
In all the previous chapters of this book, you’ve seen how conveniently the

browser document object models organize all the information about the browser

window and its document. What may not be obvious from the scripting you’ve done

so far is that JavaScript enables you to create your own objects in memory —

objects with properties and methods. These objects are not user-interface elements

on the page but rather the kinds of objects that may contain data and script func-

tions (behaving as methods) whose results the user can see displayed in the

browser window.

(c) ketabton.com: The Digital Library

1109Chapter 41 ✦ Functions and Custom Objects

You actually had a preview of this power in Chapter 37’s discussion about arrays.

An array, you recall, is an ordered collection of data. You can create a JavaScript

array in which entries are labeled just like properties that you access via the now-

familiar dot syntax (arrayName[index].propertyName). An object typically con-

tains different kinds of data. It doesn’t have to be an ordered collection of data —

although your scripts can use objects in constructions that strongly resemble

arrays. Moreover, you can attach any number of custom functions as methods for

that object. You are in total control of the object’s structure, data, and behavior.

An example — planetary objects
Building on your familiarity with the planetary data array created in Chapter 37,

this chapter shows you how convenient it is to use the data when it is constructed

in the form of custom objects. The application goal for the extended example in this

section is to present a pop-up list of the nine planets of the solar system and dis-

play data about the selected planet. From a user-interface perspective (and for

more exposure to multiframe environments), the resulting data displays in a sepa-

rate frame of a two-frame window. This means your object method builds HTML on

the fly and plugs it into the display frame. If you implement this application strictly

for IE4+ and NN6, you can apply the same data to reconstruct the displayed table

data for each user selection. The example as shown, however, is fully backward-

compatible for all scriptable browsers.

In this chapter, instead of building arrays to hold the data, you build objects —

one object for each planet. The design of your object has five properties and one

method. The properties of each planet are: name, diameter, distance from the sun,

year length, and day length. To assign more intelligence to these objects, you give

each of them the capability to display their data in the lower frame of the window.

You can conveniently define one function that knows how to behave with any of

these planet objects, rather than having to define nine separate functions.

Listing 41-5 shows the source code for the document that creates the frameset

for your planetary explorations; Listing 41-6 shows the entire HTML page for the

object-oriented planet document, which appears in the top frame.

Listing 41-5: Framesetting Document for a Two-Frame Window

<HTML>
<HEAD>
<TITLE>Solar System Viewer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function blank() {

return “<HTML><BODY></BODY></HTML>”
}
</SCRIPT>
</HEAD>
<FRAMESET ROWS=”50%,50%”
onLoad=”Frame1.doDisplay(Frame1.document.forms[0].planetsList)”>

<FRAME NAME=”Frame1” SRC=”lst41-06.htm”>
<FRAME NAME=”Frame2” SRC=”javascript:parent.blank()”>

</FRAMESET>
</HTML>

(c) ketabton.com: The Digital Library

1110 Part IV ✦ JavaScript Core Language Reference

One item to point out in Listing 41-5 is that because the lower frame isn’t filled

until the upper frame’s document loads, you need to assign some kind of URL for the

SRC attribute of the second frame. Rather than add the extra transaction and file

burden of a blank HTML document, here you use the javascript: URL to invoke a

function. In this instance, I want the value returned from the function (a blank HTML

page) to be reflected into the target frame (no void operator here). This method

provides the most efficient way of creating a blank frame in a frameset.

Listing 41-6: Object-Oriented Planetary Data Presentation

<HTML>
<HEAD>
<TITLE>Our Solar System</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start script
// method definition
function showPlanet() {

var result = “<HTML><BODY><CENTER><TABLE BORDER=2>”
result += “<CAPTION ALIGN=TOP>Planetary data for: ” + this.name +

“</CAPTION>”
result += “<TR><TD ALIGN=RIGHT>Diameter:</TD><TD>” + this.diameter +

“</TD></TR>”
result += “<TR><TD ALIGN=RIGHT>Distance from Sun:</TD><TD>” + this.distance +

“</TD></TR>”
result += “<TR><TD ALIGN=RIGHT>One Orbit Around Sun:</TD><TD>” + this.year +

“</TD></TR>”
result += “<TR><TD ALIGN=RIGHT>One Revolution (Earth Time):</TD><TD>” +

this.day + “</TD></TR>”
result += “</TABLE></CENTER></BODY></HTML>”
// display results in a second frame of the window
parent.Frame2.document.write(result)
parent.Frame2.document.close()

}

// definition of planet object type;
// ‘new’ will create a new instance and stuff parameter data into object
function planet(name, diameter, distance, year, day) {

this.name = name
this.diameter = diameter
this.distance = distance
this.year = year
this.day = day
this.showPlanet = showPlanet // make showPlanet() function a planet method

}

// create new planet objects, and store in a series of variables
var Mercury = new planet(“Mercury”,”3100 miles”, “36 million miles”, “88 days”,
“59 days”)
var Venus = new planet(“Venus”, “7700 miles”, “67 million miles”, “225 days”,
“244 days”)

(c) ketabton.com: The Digital Library

1111Chapter 41 ✦ Functions and Custom Objects

var Earth = new planet(“Earth”, “7920 miles”, “93 million miles”, “365.25
days”,”24 hours”)
var Mars = new planet(“Mars”, “4200 miles”, “141 million miles”, “687 days”,
“24 hours, 24 minutes”)
var Jupiter = new planet(“Jupiter”,”88,640 miles”,”483 million miles”,
“11.9 years”,”9 hours, 50 minutes”)
var Saturn = new planet(“Saturn”, “74,500 miles”,”886 million miles”,
“29.5 years”,”10 hours, 39 minutes”)
var Uranus = new planet(“Uranus”, “32,000 miles”,”1.782 billion miles”,
“84 years”, “23 hours”)
var Neptune = new planet(“Neptune”,”31,000 miles”,”2.793 billion miles”,
“165 years”,”15 hours, 48 minutes”)
var Pluto = new planet(“Pluto”, “1500 miles”, “3.67 billion miles”, “248 years”,
“6 days, 7 hours”)

// called from push button to invoke planet object method
function doDisplay(popup) {

i = popup.selectedIndex
eval(popup.options[i].text + “.showPlanet()”)

}
// end script -->
</SCRIPT>
<BODY>
<H1>The Daily Planet</H1>
<HR>
<FORM>
<P>Select a planet to view its planetary data:
<SELECT NAME=’planetsList’ onChange=’doDisplay(this)’>

<OPTION>Mercury
<OPTION>Venus
<OPTION SELECTED>Earth
<OPTION>Mars
<OPTION>Jupiter
<OPTION>Saturn
<OPTION>Uranus
<OPTION>Neptune
<OPTION>Pluto

</SELECT></P>
</FORM>
</BODY>
</HTML>

The first task in the Head is to define the function that becomes a method in

each of the objects. You must do this task before scripting any other code that

adopts the function as its method. Failure to define the function ahead of time

results in an error — the function name is not defined. If you compare the data

extraction methodology with the function in the array version, notice that the

parameter for the index value is gone and the reference to each property begins

with this. Later, I return to the custom method after giving you a look at the rest of

the Head code.

(c) ketabton.com: The Digital Library

1112 Part IV ✦ JavaScript Core Language Reference

Next comes the object constructor function, which performs several important

tasks. For one, everything in this function establishes the structure of your custom

object: the properties available for data storage and retrieval and any methods that

the object can invoke. The name of the function is the name you use later to create

new instances of the object. Therefore, choosing a name that truly reflects the

nature of the object is important. And, because you probably want to stuff some

data into the function’s properties to get one or more instances of the object loaded

and ready for the page’s user, the function definition includes parameters for each

of the properties defined in this object definition.

Inside the function, you use the this keyword to assign data that comes in as

parameters to labeled properties. For this example, I use the same names for both

the incoming parameter variables and the properties. That’s primarily for conve-

nience (and is very common practice), but you can assign any variable and prop-

erty names you want and connect them any way you like. In the planet()
constructor function, five property slots are reserved for every instance of the

object whether or not any data actually is placed in every property (any unas-

signed slot has a value of null).

The last entry in the planet() constructor function is a reference to the

showPlanet() function defined earlier. Notice that the assignment statement

doesn’t refer to the function with its parentheses — just to the function name. When

JavaScript sees this assignment statement, it looks back through existing defini-

tions (those functions defined ahead of the current location in the script) for a

match. If it finds a function (as it does here), JavaScript knows to assign the func-

tion to the identifier on the left side of the assignment statement. In doing this task

with a function, JavaScript automatically sets up the identifier as a method name

for this object. As you do in every JavaScript method you encounter, you must

invoke a method by using a reference to the object, a period, and the method name

followed by a set of parentheses. You see that syntax in a minute.

The next long block of statements creates the individual objects according to the

definition established in the planet() constructor. Similar to an array, an assign-

ment statement and the keyword new create an object. I assign names that are not

only the real names of planets (the Mercury object name is the Mercury planet

object) but that also can come in handy later when the doDisplay() function

extracts names from the pop-up list in search of a particular object’s data.

The act of creating a new object sets aside space in memory (associated with the

current document) for this object and its properties. In this script, you create nine

object spaces, each with a different set of properties. Notice that no parameter is

sent (or expected at the function) that corresponds to the showPlanet() method.

Omitting that parameter here is fine because the specification of that method in the

object definition means that the script automatically attaches the method to every

version (instance) of the planet object that it creates.

The last function definition, doDisplay(), is invoked whenever the user makes a

choice from the list of planets in the upper frame. This function is also invoked via

the frameset’s onLoad event handler so that an initial table is displayed from the

default selected item (see Figure 41-1). Invoking the function from the upper frame’s

onLoad event handler can cause problems (such as the failure of the other frame) if

the frameset is not completely loaded.

(c) ketabton.com: The Digital Library

1113Chapter 41 ✦ Functions and Custom Objects

Figure 41-1: An external and internal face-lift for an earlier application

The onChange event handler in the SELECT list passes that SELECT element’s

reference to the doDisplay() function. In that function, the SELECT object is

assigned to a variable called popup to help you visualize that the object is the pop-

up list. The first statement extracts the index value of the selected item. Using that

index value, the script extracts the text. But things get a little tricky because you

need to use that text string as a variable name — the name of the planet — and

append it to the call to the showPlanet() method. To make the disparate data

types come together, use the eval() function. Inside the parentheses, extract the

string for the planet name and concatenate a string that completes the reference to

the object’s showPlanet() method. The eval() function evaluates that string,

which turns it into a valid method call. Therefore, if the user selects Jupiter from

the pop-up list, the method call becomes Jupiter.showPlanet().

Now it’s time to look back to the showPlanet() function/method definition at

the top of the script. When that method runs in response to a user selection of the

planet Jupiter, the method’s only scope is of the Jupiter object. Therefore, all ref-

erences to this.propertyName in showPlanet() refer to Jupiter only. The only

possibility for this.name in the Jupiter object is the value assigned to the name
property for Jupiter. The same goes for the rest of the properties extracted in the

function/method.

Creating an array of objects
In Listing 41-6, each of the planet objects is assigned to a global variable whose

name is that of the planet. If the idea of custom objects is new to you, this idea

probably doesn’t sound so bad because it’s easy to visualize each variable repre-

senting an object. But, as shown in the doDisplay() function, accessing an object

by name requires use of the eval() function to convert a string representation to a

valid object reference. While it’s not too important in this simple example, the

eval() function is not particularly efficient in JavaScript. If you find yourself using

(c) ketabton.com: The Digital Library

1114 Part IV ✦ JavaScript Core Language Reference

an eval() function, look for ways to improve efficiency such that you can reference

an object by string. The way to accomplish that streamlining for this application is

to place the objects in an array whose index values are the planet names.

To assign the custom objects in Listing 41-6 to an array, first create an empty

array and then assign the result of each object constructor call to an entry in the

array. The modified code section looks like the following (formatted to fit this

printed page):

// create array
var planets = new Array()
// populate array with new planet objects
planets[“Mercury”] =

new planet(“Mercury”,”3100 miles”, “36 million miles”,
“88 days”, “59 days”)

planets[“Venus”] =
new planet(“Venus”, “7700 miles”, “67 million miles”,
“225 days”, “244 days”)

planets[“Earth”] =
new planet(“Earth”, “7920 miles”, “93 million miles”,
“365.25 days”,”24 hours”)

planets[“Mars”] =
new planet(“Mars”, “4200 miles”, “141 million miles”,
“687 days”, “24 hours, 24 minutes”)

planets[“Jupiter”] =
new planet(“Jupiter”,”88,640 miles”,”483 million miles”,
“11.9 years”, “9 hours, 50 minutes”)

planets[“Saturn”] =
new planet(“Saturn”, “74,500 miles”,”886 million miles”,
“29.5 years”, “10 hours, 39 minutes”)

planets[“Uranus”] =
new planet(“Uranus”, “32,000 miles”,”1.782 billion miles”,
“84 years”, “23 hours”)

planets[“Neptune”] =
new planet(“Neptune”,”31,000 miles”,”2.793 billion miles”,
“165 years”, “15 hours, 48 minutes”)

planets[“Pluto”] =
new planet(“Pluto”, “1500 miles”, “3.67 billion miles”,
“248 years”, “6 days, 7 hours”)

The supreme advantage to this approach comes in a modified doDisplay()
function, which can use the string value from the SELECT element directly without

any conversion to an object reference:

// called from push button to invoke planet object method
function doDisplay(popup) {

i = popup.selectedIndex
planets[popup.options[i].text].showPlanet()

}

The presence of so many similar objects cries out for their storage as an array.

Because the names play a key role in their choice for this application, the named

index values work best; in other situations, you may prefer to use numeric indexes

to facilitate looping through the array.

(c) ketabton.com: The Digital Library

1115Chapter 41 ✦ Functions and Custom Objects

Adding a custom method
You’re approaching advanced subject matter at this point, so I merely mention

and briefly demonstrate an additional power of defining and using custom objects.

A custom object can have a reference to another custom object as a property. Let’s

extend the planet example to help you understand the implications.

Say that you want to beef up the planet page with a photo of each planet. Each

photo has a URL for the photo file; each photo also contains other information,

such as the copyright notice and a reference number, which displays on the page

for the user. One way to handle this additional information is to create a separate

object definition for a photo database. Such a definition may look like this:

function photo(name, URL, copyright, refNum) {
this.name = name
this.URL = URL
this.copyright = copyright
this.refNum = refNum

}

You then need to create individual photo objects for each picture. One such defi-

nition may look like this:

mercuryPhoto = new photo(“Planet Mercury”, “/images/merc44.gif”, “(c)1990 NASA”,
28372)

Attaching a photo object to a planet object requires modifying the planet con-

structor function to accommodate one more property. The new planet constructor

looks like this:

function planet(name, diameter, distance, year, day, photo) {
this.name = name
this.diameter = diameter
this.distance = distance
this.year = year
this.day = day
this.showPlanet = showPlanet
this.photo = photo // add photo property

}

Once the photo objects are created, you can then create each planet object by

passing one more parameter — a photo object you want associated with that

object:

// create new planet objects, and store in a series of variables
Mercury = new planet(“Mercury”,”3100 miles”, “36 million miles”, “88 days”,
“59 days”, mercuryPhoto)

To access a property of an photo object, your scripts then have to assemble a

reference that works its way through the connection with the planet object:

copyrightData = Mercury.photo.copyright

The potential of custom objects of this type is enormous. For example, you can

embed all the copy elements and image URLs for an online catalog in a single docu-

ment. As the user selects items to view (or cycles through them in sequence), a

(c) ketabton.com: The Digital Library

1116 Part IV ✦ JavaScript Core Language Reference

new JavaScript-written page displays the information in an instant. This requires

only the image to be downloaded — unless the image was precached, as described

in the image object discussion in Chapter 18. In this case, everything works instan-

taneously — no waiting for page after page of catalog.

If, by now, you think you see a resemblance between this object-within-an-object

construction and a relational database, give yourself a gold star. Nothing prevents

multiple objects from having the same subobject as their properties — like multiple

business contacts having the same company object property.

More ways to create objects
The examples in Listings 41-5 and 41-6 show a way of creating objects that works

with all scriptable browsers. If your audience is limited to users with more modern

browsers, additional ways of creating custom objects exist.

From NN3+ and IE4+, you can use the new Object() constructor to generate a

blank object. From that point on, you can define property and method names by

simple assignment, as in the following:

var Earth = new Object()
Earth.diameter = “7920 miles”
Earth.distance = “93 million miles”
Earth.year = “365.25”
Earth.day = “24 hours”
Earth.showPlanet = showPlanet // function reference

When you create a lot of like-structured objects, the custom object constructor

shown in Listing 41-6 is more efficient. But for single objects, the new Object()
constructor is more efficient.

NN4+ and IE4+ scripters can also benefit from a shortcut literal syntax for creat-

ing a new object. You can set pairs of property names and their values inside a set

of curly braces, and you can assign the whole construction to a variable that

becomes the object name. The following script shows how to organize this kind of

object constructor:

var Earth = {diameter:”7920 miles”, distance:”93 million miles”, year:”365.25”,
day:”24 hours”, showPlanet:showPlanet}

Colons link name/value pairs, and commas separate multiple name/value pairs.

The value portion of a name/value pair can even be an array (using the [...] con-

structor shortcut) or a nested object (using another pair of curly braces). In fact,

you can nest arrays and objects to your heart’s content to create exceedingly com-

plex objects. All in all, this is a very compact way to embed data in a page for script

manipulation. If your CGI, XML, and database skills are up to the task, consider

using a server program to convert XML data into this compact JavaScript version

with each XML record being its own JavaScript object. For multiple records, assign

the curly-braced object definitions to an array entry. Then your scripts on the client

can iterate through the data and generate the HTML to display the data in a variety

of forms and sorted according to different criteria (thanks to the JavaScript array-

sorting powers).

(c) ketabton.com: The Digital Library

1117Chapter 41 ✦ Functions and Custom Objects

Object watcher methods
NN4+ includes two special functions for objects that were designed primarily for

use with external debugging tools: watch() and unwatch(). The watch() method

instructs JavaScript to keep an eye on a particular property in an object (any

JavaScript-accessible object) and execute a function when the value of the property

changes by assignment (that is, not by user interaction).

You can see how this works in the simplified example of Listing 41-7. Three but-

tons set the value property of a text box. You can turn on the watch() method,

which calls a handler and passes the name of the property, the old value, and the

new value. An alert in the listing’s function demonstrates what those values contain.

Listing 41-7: Object Watching in NN4+

<HTML>
<HEAD>
<TITLE>Object Watching</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function setIt(msg) {

document.forms[0].entry.value = msg
}
function watchIt(on) {

var obj = document.forms[0].entry
if (on) {

obj.watch(“value”,report)
} else {

obj.unwatch(“value”)
}

}
function report(id, oldval, newval) {

alert(“The field’s “ + id + “ property on its way from \n’” + oldval +
“‘\n to \n’” + newval + “‘.”)

return newval
}
</SCRIPT>
<BODY>
Watching Over You
<HR>
<FORM>
Enter text here:
<INPUT TYPE=”text” NAME=”entry” SIZE=50 VALUE=”Default Value”><P>
<INPUT TYPE=”button” VALUE=”Set to Phrase I” onClick=”setIt(‘Four score and
seven years ago...’)”>

<INPUT TYPE=”button” VALUE=”Set to Phrase 2” onClick=”setIt(‘When in the course
of human events...’)”>

<INPUT TYPE=”reset” onClick=”setIt(‘Default Value’)”><P>
<INPUT TYPE=”button” VALUE=”Watch It” onClick=”watchIt(true)”>
<INPUT TYPE=”button” VALUE=”Don’t Watch It” onClick=”watchIt(false)”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1118 Part IV ✦ JavaScript Core Language Reference

Better ways exist to intercept and preprocess user input, but the watch() func-

tion can be a helpful debugging tool when you want to monitor the hidden workings

of scripts.

Defining object property getters and setters
A future version of the ECMA-262 language specification will likely include a pair

of facilities called getter and setter. Until such time as the formal syntax is finalized,

you can begin to experiment with this technique in NN6 using temporary syntax

that adheres to the likely format (but intentionally uses different keywords until the

standard is adopted). When the standard is adopted, a subsequent version of NN

will include the standard keywords.

I introduced the idea of creating a getter and setter for an object briefly in

Chapter 14, where the NN6 syntax style extended properties of some W3C DOM

objects to include some of the Microsoft-specific (and very convenient) DOM syn-

tax. Most notably, you can define a getter for any container to return an array of

nested elements just like the IE-only document.all collection.

The purpose of a getter is to assign a new property to the prototype of an object

and to define how the value returned by the property should be evaluated. A setter

does the same, but it also defines how a new value assigned to the property should

apply the value to the object. Both definitions are written in the form of anonymous

functions, such that reading or writing an object’s property value can include

sophisticated processing for either operation.

Getters and setters are assigned to the prototype property of an object, thus

enabling you to customize native and DOM objects. The NN6 syntax fashions get-

ters, setters, and methods of an object’s prototype with the following syntax:

object.prototype.__defineGetter__(“propName”, function)
object.prototype.__defineSetter__(“propName”, function)

Note that the underscores before and after the method names are actually pairs

of underscore characters (that is, _, _, defineGetter, _, _). This double under-

score was chosen as a syntax that the ECMA standard will not use, so it will not

conflict with the eventual syntax for this facility.

The first parameter of the method is the name of the property for which the get-

ter or setter is defined. This can be an existing property name that you want to

override. The second parameter can be a function reference; but more likely it will

be an anonymous function defined in place. By using an anonymous function, you

can take advantage of the context of the object for which the property is defined.

For each property, define both a getter and setter — even if the property is meant to

be read-only or write-only.

To see how this mechanism works, let’s use the getter and setter shown in

Chapter 14 to add an innerText property to HTML elements in NN6. This property

is read/write, so functions are defined for both the getter and setter. The getter defi-

nition is as follows:

HTMLElement.prototype.__defineGetter__(“innerText”, function () {
var rng = document.createRange()
rng.selectNode(this)
return rng.toString()

})

(c) ketabton.com: The Digital Library

1119Chapter 41 ✦ Functions and Custom Objects

The modified object is the basic HTMLElement object — the object that NN6 uses

to create instances of every HTML element for the page. After the statement above

executes, every HTML element on the page inherits the new innerText property.

Each time the innerText property is read for an element, the anonymous function

in this getter executes. Thus, after a text range object is created, the range is set to

the node that is the current element. This is an excellent example of how the con-

text of the current object allows the use of the this keyword to refer to the very

same object. Finally, the string version of the selected range is returned. It is essen-

tial that a getter function include a return statement and that the returned value is

of the desired data type. Also take notice of the closing of the function’s curly brace

and the getter method’s parenthesis.

By executing this function each time the property is read, the getter always

returns the current state of the object. If content of the element has changed since

the page loaded, you are still assured of getting the current text inside the element.

This is far superior to simply running the statements inside this function once as

the page loads to capture a static view of the element’s text.

The corresponding setter definition is as follows:

HTMLElement.prototype.__defineSetter__(“innerText”, function (txt) {
var rng = document.createRange()
rng.selectNodeContents(this)
rng.deleteContents()
var newText = document.createTextNode(txt)
this.appendChild(newText)
return txt

})

To assign a value to an object’s property, the setter function requires that a

parameter variable receive the assigned value. That parameter variable plays a role

somewhere within the function definition. For this particular setter, the current

object (this) also manipulates the text range object. The contents of the current

element are deleted, and a text node comprising the text passed as a parameter is

inserted into the element. To completely simulate the IE behavior of setting the

innerText property, the text is returned. While setters don’t always return values,

this one does so that the expression that assigns a value to the innerText prop-

erty evaluates to the new text.

If you want to create a read-only property, you still define a setter for the prop-

erty but you also assign an empty function, as in:

Node.prototype.__defineSetter__(“all”, function() {})

This prevents assignment statements to a read-only property from generating

errors. A write-only property should also have a getter that returns null or an

empty string, as in:

HTMLElement.prototype.__defineGetter__(“outerHTML”, function() {return “”})

Because the getter and setter syntax shown here is unique to NN6, you must

obviously wrap such statements inside object detection or browser version

detection statements. And, to reiterate, this syntax will change in future browser

versions once ECMA adopts the formal syntax.

(c) ketabton.com: The Digital Library

1120 Part IV ✦ JavaScript Core Language Reference

Using custom objects
There is no magic to knowing when to use a custom object instead of an array in

your application. The more you work with and understand the way custom objects

work, the more likely you will think about your data-carrying scripts in these

terms — especially if an object can benefit from having one or more methods asso-

ciated with it. This avenue is certainly not one for beginners, but I recommend that

you give custom objects more than a casual perusal once you gain some

JavaScripting experience.

Object-Oriented Concepts
As stated several times throughout this book, JavaScript is object-based rather

than object-oriented. Instead of adhering to the class, subclass, and inheritance

schemes of object-oriented languages such as Java, JavaScript uses what is called

prototype inheritance. This scheme works not only for native and DOM objects but

also for custom objects.

Adding a prototype
A custom object is frequently defined by a constructor function, which typically

parcels out initial values to properties of the object, as in the following example:

function car(plate, model, color) {
this.plate = plate
this.model = model
this.color = color

}
var car1 = new car(“AB 123”, “Ford”, “blue”)

NN4+ and IE4+ offer a handy shortcut, as well, to stuff default values into proper-

ties if none are provided (the supplied value is null, 0, or an empty string). The OR
operator (||) can let the property assignment statement apply the passed value, if

present, or a default value you hard-wire into the constructor. Therefore, you can

modify the preceding function to offer default values for the properties:

function car(plate, model, color) {
this.plate = plate || “missing”
this.model = model || “unknown”
this.color = color || “unknown”

}
var car1 = new car(“AB 123”, “Ford”, “”)

After the preceding statements run, the car1 object has the following properties:

car1.plate // value = “AB 123”
car1.model // value = “Ford”
car1.color // value = “unknown”

If you then add a new property to the constructor’s prototype property, as in

car.prototype.companyOwned = true

(c) ketabton.com: The Digital Library

1121Chapter 41 ✦ Functions and Custom Objects

any car object you already created or are about to create automatically inherits

the new companyOwned property and its value. You can still override the value of

the companyOwned property for any individual car object. But if you don’t override

the property for instances of the car object, the car objects whose companyOwned
property is not overridden automatically inherit any change to the prototype.
companyOwned value. This has to do with the way JavaScript looks for prototype
property values.

Prototype inheritance
Each time your script attempts to read or write a property of an object,

JavaScript follows a specific sequence in search of a match for the property name.

The sequence is as follows:

1. If the property has a value assigned to the current (local) object, this is the

value to use.

2. If there is no local value, check the value of the property’s prototype of the

object’s constructor.

3. Continue up the prototype chain until either a match of the property is found

(with a value assigned to it) or the search reaches the native Object object.

Therefore, if you change the value of a constructor’s prototype property and

you do not override the property value in an instance of that constructor,

JavaScript returns the current value of the constructor’s prototype property.

Nested objects and prototype inheritance
When you begin nesting objects, especially when one object invokes the con-

structor of another, there is an added wrinkle to the prototype inheritance chain.

Let’s continue with the car object defined earlier. In this scenario, consider the car
object to be akin to a root object that has properties shared among two other types

of objects. One of the object types is a company fleet vehicle, which needs the

properties of the root car object (plate, model, color) but also adds some prop-

erties of its own. The other object that shares the car object is an object represent-

ing a car parked in the company garage — an object that has additional properties

regarding the parking of the vehicle. This explains why the car object is defined on

its own.

Now look at the constructor function for the parking record, along with the con-

structor for the basic car object:

function car(plate, model, color) {
this.plate = plate || “missing”
this.model = model || “unknown”
this.color = color || “unknown”

}
function carInLot(plate, model, color, timeIn, spaceNum) {

this.timeIn = timeIn
this.spaceNum = spaceNum
this.carInfo = car
this.carInfo(plate, model, color)

}

(c) ketabton.com: The Digital Library

1122 Part IV ✦ JavaScript Core Language Reference

The carInLot constructor not only assigns values to its unique properties

(timeIn and spaceNum), but it also includes a reference to the car constructor

arbitrarily assigned to a property called carInfo. This property assignment is

merely a conduit that allows property values intended for the car constructor to be

passed within the carInLot constructor function. To create a carInLot object, use

a statement like the following:

var car1 = new carInLot(“AA 123”, “Ford”, “blue”, “10:02AM”, “31”)

After this statement, the car1 object has the following properties and values:

car1.timeIn // value = “10:02AM”
car1.spaceNum // value = “31”
car1.carInfo // value = reference to car object constructor function
car1.plate // value = “AA 123”
car1.model // value = “Ford”
car1.color // value = “blue”

Let’s say that five carInLot objects are created in the script (car1 through

car5). The prototype wrinkle comes into play if, for example, you assign a new

property to the car constructor prototype:

car.prototype.companyOwned = true

Even though the carInLot objects use the car constructor, the instances of

carInLot objects do not have a prototype chain back to the car object. As the pre-

ceding code stands, even though you’ve added a companyOwned property to the

car constructor, no carInLot object inherits that property (even if you were to

create a new carInLot object after defining the new prototype property for car).

To get the carInLot instances to inherit the prototype.companyOwned property,

you must explicitly connect the prototype of the carInLot constructor to the car
constructor prior to creating instances of carInLot objects:

carInLot.prototype = new car()

The complete sequence, then, is as follows:

function car(plate, model, color) {
this.plate = plate || “missing”
this.model = model || “unknown”
this.color = color || “unknown”

}
function carsInLot(plate, model, color, timeIn, spaceNum) {

this.timeIn = timeIn
this.spaceNum = spaceNum
this.carInfo = car
this.carInfo(plate, model, color)

}
carsInLot.prototype = new car()
var car1 = new carsInLot(“123ABC”, “Ford”,”blue”,”10:02AM”, “32”)
car.prototype.companyOwned = true

After this stretch of code runs, the car1 object has the following properties and

values:

(c) ketabton.com: The Digital Library

1123Chapter 41 ✦ Functions and Custom Objects

car1.timeIn // value = “10:02AM”
car1.spaceNum // value = “31”
car1.carInfo // value = reference to car object constructor function
car1.plate // value = “AA 123”
car1.model // value = “Ford”
car1.color // value = “blue”
car1.companyOwned // value = true

NN4+ provides one extra, proprietary bit of syntax in this prototype world. The

__proto__ property (that’s with double underscores before and after the word

“proto”) returns a reference to the object that is next up the prototype chain. For

example, if you inspect the properties of car1.__proto__ after the preceding code

runs, you see that the properties of the object next up the prototype chain are as

follows:

car1.__proto__.plate // value = “AA 123”
car1.__proto__.model // value = “Ford”
car1.__proto__.color // value = “blue”
car1.__proto__.companyOwned // value = true

This property can be helpful in debugging custom objects and prototype inheri-

tance chain challenges, but the property is not part of the ECMA standard.

Therefore, I discourage you from using the property in your production scripts.

Object Object

Properties Methods

constructor hasOwnProperty()

prototype isPrototypeOf()

propertyIsEnumerable()

toLocaleString()

toString()

valueOf()

Syntax
Creating an object object:

function constructorName([arg1,...[,argN]]) {
statement(s)

}
var objName = new constructorName([“argName1”,...[,”argNameN”])
var objName = new Object()
var objName = {propName1:propVal1[, propName2:propVal2[,...N]}}

objectObject

(c) ketabton.com: The Digital Library

1124 Part IV ✦ JavaScript Core Language Reference

Accessing an object object properties and methods:

objectReference.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � (�) � � � �

About this object
While it might sound like doubletalk, the Object object is a vital native object in

the JavaScript environment. It is the root object on which all other native objects —

such as Date, Array, String, and the like — are based. This object also provides

the foundation for creating custom objects, as described earlier in this chapter.

By and large, your scripts do not access the properties of the native Object
object. The same is true for many of its methods, such as toString() and

valueOf(), which internally allow debugging alert dialog boxes (and The

Evaluator) to display something when referring to an object or its constructor.

You can use a trio of methods, described next, in IE5.5 and NN6 to perform some

inspection of the prototype environment of an object instance. They are of interest

primarily to advanced scripters who are building extensive, simulated object-

oriented applications.

Methods
hasOwnProperty(“propName”)

Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The hasOwnProperty() method returns true if the current object instance has

the property defined in its constructor or in a related constructor function. But if

this property is defined externally, as via assignment to the object’s prototype
property, the method returns false.

Using the example of the car and carInLot objects from earlier in this chapter,

the following expressions evaluate to true:

car1.hasOwnProperty(“spaceNum”)
car1.hasOwnProperty(“model”)

Even though the model property is defined in a constructor that is invoked by

another constructor, the property belongs to the car1 object. The following state-

ment, however, evaluates to false:

car1.hasOwnProperty(“companyOwned”)

This property is defined by way of the prototype of one of the constructor func-

tions and is not a built-in property for the object instance.

objectObject.hasOwnProperty()

(c) ketabton.com: The Digital Library

1125Chapter 41 ✦ Functions and Custom Objects

isPrototypeOf(objRef)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The isPrototypeOf() method is intended to reveal whether or not the current

object has a prototype relation with an object passed as a parameter. In practice,

the IE5.5 and NN6 versions of this method not only operate differently, but they also

do not appear in either browser to report prototype relationships correctly

between objects. If any updated information is available for this method within

these browsers, I will post it to the JavaScript Bible Support Center at

http://www.dannyg.com/update.html.

propertyIsEnumerable(“propName”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

In the terminology of the ECMA-262 language specification, a value is enumerable

if constructions such as the for-in property inspection loop (Chapter 39) can

inspect it. Enumerable properties include values such as arrays, strings, and virtu-

ally every kind of object. According to the ECMA specification, this method is not

supposed to work its way up the prototype chain. IE5.5 appears to adhere to this,

whereas NN6 treats a property inherited from an object’s prototype as a valid

parameter value.

✦ ✦ ✦

objectObject.propertyIsEnumerable()

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Global Functions
and Statements

In addition to all the objects and other language constructs

described in the preceding chapters of this reference part

of the book, several language items need to be treated on a

global scale. These items apply to no particular objects (or

any object), and you can use them anywhere in a script. If you

read earlier chapters, you were introduced to many of these

functions and statements. This chapter serves as a conve-

nient place to highlight these all-important items that are oth-

erwise easily forgotten. At the end of the chapter, note the

brief introduction to several objects that are built into the

Windows-only versions of Internet Explorer. Some of these

objects have pointers to more details at Microsoft’s Web site.

This chapter begins with coverage of the following global

functions and statements that are part of the core JavaScript

language:

Functions Statements

decodeURI() // and /*...*/ (comment)

decodeURIComponent() const

encodeURI() var

encodeURIComponent()

escape()

eval()

isFinite()

isNaN()

Number()

parseFloat()

parseInt()

toString()

unescape()

unwatch()

watch()

4242C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Converting strings
into object references

Creating URL-friendly
strings

Adding comments to
scripts

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1128 Part IV ✦ JavaScript Core Language Reference

Global functions are not tied to the document object model. Instead, they typi-

cally enable you to convert data from one type to another type. The list of global

statements is short, but a couple of them appear extensively in your scripting.

Functions
decodeURI(“encodedURI”)
decodeURIComponent(“encodedURIComponent”)
encodeURI(“URIString”)
encodeURIComponent(“URIComponentString”)

Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

The ECMA-262 Edition 3 standard, as implemented in IE5.5 and NN6, provides

utility functions that perform a more rigorous conversion of strings to valid URI

strings and vice versa than was achieved earlier via the escape() and unescape()
functions (described later in this chapter). The purpose of the encoding functions

is to convert any string to a version that you can use as a Uniform Resource

Identifier, such as a Web page address or an invocation of a server CGI script. While

Latin alphanumeric characters pass through the encoding process untouched, you

must use the encoding functions to convert some symbols and other Unicode char-

acters to a form (hexadecimal representations of the character numbers) that the

Internet can pass from place to place. The space character, for example, must be

encoded to its hex version: %20.

Perhaps the biggest difference between the encodeURI() and escape() func-

tions (and their decodeURI() and unescape() counterparts) is that the more mod-

ern versions do not encode a wide range of symbols that are perfectly acceptable

as URI characters according to the syntax recommended in RFC2396

(http://www.ietf.org/rfc/rfc2396.txt). Thus, the following characters are

not encoded via the encodeURI() function:

; / ? : @ & = + $, - _ . ! ~ * ‘ () #

Use the encodeURI() and decodeURI() functions only on complete URIs.

Applicable URIs can be relative or absolute, but these two functions are wired espe-

cially so symbols that are part of the protocol (://), search string (? and =, for

instance), and directory level delimiters (/) are not encoded. The decodeURI()
function should work with URIs that arrive from servers as page locations, but be

aware that some server CGIs encode spaces into plus symbols (+) that are not

decoded back to spaces by the JavaScript function. If the URIs your script needs to

decode contain plus symbols in place of spaces, you need to run your decoded URI

through a string replacement method to finish the job (regular expressions come in

decodeURI()

(c) ketabton.com: The Digital Library

1129Chapter 42 ✦ Global Functions and Statements

handy here). If you are decoding URI strings that your scripts encoded, use the

decode functions only on URIs that were encoded via the corresponding encode

function. Do not attempt to decode a URI that was created via the old escape()
function because the conversion processes work according to different rules.

The difference between a URI and a URI component is that a component is a sin-

gle piece of a URI, generally not containing delimiter characters. For example, if you

use the encodeURIComponent() function on a complete URI, almost all of the sym-

bols (other than things such as periods) are encoded into hexadecimal versions —

including directory delimiters. Therefore, you should use the component-level con-

version functions only on quite granular pieces of a URI. For example, if you assem-

ble a search string that has a name/value pair, you can use the

encodeURIComponent() function separately on the name and on the value. But if

you use that function on the pair that is already in the form name=value, the func-

tion encodes the equal symbol to a hexadecimal equivalent.

Use The Evaluator (Chapter 13) to experiment with the differences between

encoding a full URI and a component and encoding and escaping a URI string. For

example, compare the results of the following three statements:

escape(“http://www.giantco.com/index.html?code=42”)
encodeURI(“http://www.giantco.com/index.html?code=42”)
encodeURIComponent(“http://www.giantco.com/index.html?code=42”)

Because the sample URI string is valid as is, the encodeURI() version makes no

changes. Experiment further by making the search string value into a string with a

space, and see how each function treats that character.

escape(“URIString” [,1])
unescape(“escapedURIString”)

Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

If you watch the content of the Location field in your browser, you may occasion-

ally see URLs that include a lot of % symbols plus some numbers. The format you

see is URL encoding (more accurately called URI encoding — Uniform Resource

Identifier rather than Uniform Resource Locator). This format allows even multiple

word strings and nonalphanumeric characters to be sent as one contiguous string

of a very low, common-denominator character set. This encoding turns a character,

such as a space, into its hexadecimal equivalent value preceded by a percent sym-

bol. For example, the space character (ASCII value 32) is hexadecimal 20, so the

encoded version of a space is %20.

All characters, including tabs and carriage returns, can be encoded in this way

and sent as a simple string that can be decoded on the receiving end for recon-

struction. You can also use this encoding to preprocess multiple lines of text that

must be stored as a character string in databases. To convert a plain-language

escape()

(c) ketabton.com: The Digital Library

1130 Part IV ✦ JavaScript Core Language Reference

string to its encoded version, use the escape() method. This function returns a

string consisting of the encoded version. For example:

var theCode = escape(“Hello there”)
// result: “Hello%20there”

Most, but not all, nonalphanumeric characters are converted to escaped ver-

sions with the escape() function. One exception is the plus sign, which URLs use

to separate components of search strings. If you must encode the plus symbol, too,

then add the optional second parameter to the function to make the plus symbol

convert to its hexadecimal equivalent (2B):

var a = escape(“Adding 2+2”)
// result: “Adding%202+2

var a = escape(“Adding 2+2”,1)
// result: “Adding%202%2B2

To convert an escaped string back into plain language, use the unescape() func-

tion. This function returns a string and converts all URL-encoded strings — includ-

ing those encoded with the optional parameter.

The escape() function operates in a way that is approximately midway between

the newer functions encodeURI() and encodeComponentURI(). The escape()
function is best used on portions of URIs, such as the search string. If your scripts

bounce back and forth between escaped and unescaped strings, be sure to balance

the functions of the same type; use unescape() only on URI strings that are

encoded via the escape() function.

Finally, be aware of slightly different behavior with regard to the @ symbol in var-

ious browsers. This character is not encoded in IE, but it is encoded (to %40) in NN.

eval(“string”)
Returns: Object reference.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Expression evaluation, as you probably are well aware by now, is an important

concept to grasp in scripting with JavaScript (and programming in general). An

expression evaluates to some value. But occasionally you need to force an addi-

tional evaluation on an expression to receive the desired results. The eval() func-

tion acts on a string value to force an evaluation of that string expression.

Perhaps the most common application of the eval() function is to convert a

string version of an object reference to a genuine object reference. For example,

one technique for creating a Dynamic HTML script that accommodates the different

ways that IE and NN4 reference positionable objects is to assemble references out

of the comparable pieces of references. In the following function, the name of a

positionable object is passed as a parameter. This example assumes that global

eval()

(c) ketabton.com: The Digital Library

1131Chapter 42 ✦ Global Functions and Statements

variable flags are set elsewhere for isNav4 and isIE4. The function must create a

valid reference to the object depending on which browser the user runs:

function getReference(objName) {
if (navigator.appVersion.charAt(0) == “4”) {

if (navigator.appName == “Netscape”) {
var range = “”
var styleObj = “”

} else {
var range = “.all”
var styleObj = “.style”

}
var theObj = eval(“document” + range + “.” + objName + styleObj)
return theObj

}
return null

}

In the NN4 branch of the preceding example, the variables range and styleObj
are assigned empty strings; for the Microsoft branch, each variable assumes the

components that must be inserted into an object reference for the Microsoft syntax.

If the components are concatenated without the eval() function, the result simply

is a concatenated string (which is not the same as the object reference). By forcing

an additional evaluation with the eval() function, the script invokes JavaScript to

see if one more level of evaluation is needed. If JavaScript finds that the evaluation

of that string is a valid object reference, it returns the reference as the result; other-

wise, the function returns undefined.

The eval() function can evaluate any JavaScript statement or expression stored

as a string. This includes string equivalents of arithmetic expressions, object value

assignments, and object method invocation.

I do not recommend that you rely on the eval() function, however, because this

function is inherently inefficient (from the standpoint of performance). Fortunately,

you may not need the eval() function to get from a string version of an object’s

name to a valid object reference. For example, if your script loops through a series of

objects whose names include serial numbers, you can use the object names as array

indices rather than use eval() to assemble the object references. The inefficient way

to set the value of a series of fields named data0, data1, and so on, is as follows:

function fillFields() {
var theObj
for (var i = 0; i < 10; i++) {

theObj = eval(“document.forms[0].data” + i)
theObj.value = i

}
}

A more efficient way is to perform the concatenation within the index brackets

for the object reference:

function fillFields() {
for (var i = 0; i < 10; i++) {

document.forms[0].elements[“data” + i].value = i
}

}

eval()

(c) ketabton.com: The Digital Library

1132 Part IV ✦ JavaScript Core Language Reference

Whenever you are about to use an eval() function, look for ways to use string
index values of arrays of objects instead. The W3C DOM (in IE5+ and NN6) makes
it even easier with the help of the document.getElementById() method,
which takes a string as a parameter and returns a reference to the named object.

isFinite(number)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

It is unlikely that you will ever need the isFinite() function, but its purpose is

to advise whether a number is beyond the absolute minimum or maximum values

that JavaScript can handle. If a number is outside of that range, the function returns

false. The parameter to the function must be a number data type.

isNaN(expression)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � � � � � �

For those instances in which a calculation relies on data coming from a text field

or other string-oriented source, you frequently need to check whether the value is a

number. If the value is not a number, the calculation may result in a script error.

Use the isNaN() function to test whether a value is a number prior to passing

the value onto the operation. The most common use of this function is to test the

result of a parseInt() or parseFloat() function. If the strings submitted for con-

version to those functions cannot be converted to a number, the resulting value is

NaN (a special symbol indicating “not a number”). The isNaN() function returns

true if the value is not a number.

A convenient way to use this function is to intercept improper data before it can

do damage, as follows:

function calc(form) {
var inputValue = parseInt(form.entry.value)
if (isNaN(inputValue)) {

alert(“You must enter a number to continue.”)
} else {

statements for calculation
}

}

Tip

isNaN()

(c) ketabton.com: The Digital Library

1133Chapter 42 ✦ Global Functions and Statements

Probably the biggest mistake scripters make with this function is failing to

observe the case of all the letters in the function name. The trailing uppercase “N”

is easy to miss.

The isNaN() function works in Navigator 2 only on UNIX platforms. It is available
on all platforms in Navigator 3+ and Internet Explorer 3+.

Number(“string”)
parseFloat(“string”)
parseInt(“string” [,radix])

Returns: Number.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) (�) � � (�) (�) � � �

All three of these functions convert a string value into a numeric value. The

parseInt() and parseFloat() functions are compatible across all versions of all

browsers; the Number() function is new with NN4 and IE4.

Use the Number() function when your script is not concerned with the precision

of the value and prefers to let the source string govern whether the returned value

is a floating-point number or an integer. The function takes a single parameter — a

string to convert to a number value.

The parseFloat() function also lets the string source value determine whether

the returned value is a floating-point number or an integer. If the source string

includes any non-zero value to the right of the decimal, the result is a floating-point

number. But if the string value were, say, “3.00”, the returned value would be an

integer value.

An extra, optional parameter for parseInt() enables you to define the number

base for use in the conversion. If you don’t specify a radix parameter, JavaScript

tries to look out for you; but in doing so, JavaScript may cause some difficulty for

you. The primary problem arises when the string parameter for parseInt() starts

with a zero, which a text box entry or database field might do. In JavaScript, num-

bers starting with zero are treated as octal (base-8) numbers. Therefore,

parseInt(“010”) yields the decimal value 8.

When you apply the parseInt() function, always specify the radix of 10 if you

are working in base-10 numbers. You can, however, specify any radix value from 2

through 36. For example, to convert a binary number string to its decimal equiva-

lent, assign a radix of 2 as follows:

var n = parseInt(“011”,2)
// result: 3

Similarly, you can convert a hexadecimal string to its decimal equivalent by

specifying a radix of 16:

var n = parseInt(“4F”,16)
// result: 79

Note

parseFloat()

(c) ketabton.com: The Digital Library

1134 Part IV ✦ JavaScript Core Language Reference

Both parseInt() and parseFloat() exhibit a very useful behavior: If the string

passed as a parameter starts with at least one number followed by, say, letters, the

functions do their jobs on the numeric part of the string and ignore the rest. This is

why you can use parseFloat() on the navigator.appVersion string to extract

just the reported version number without having to parse the rest of the string. For

example, NN6 for Windows reports a navigator.appVersion value as

5.0 (Windows; en-US)

But you can get just the numeric part of the string via parseFloat():

var ver = parseFloat(navigator.appVersion)

Because the result is a number, you can perform numeric comparisons to see,

for instance, whether the version is greater than or equal to 4.

toString([radix])
Returns: String.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � (�) � � � �

Every JavaScript core language object and every DOM document object has a

toString() method associated with it. This method is designed to render the con-

tents of the object in as meaningful a way as possible. Table 42-1 shows the result of

applying the toString() method on each of the convertible core language object

types.

Table 42-1 toString() Method Results for Object Types

Object Type Result

String The same string

Number String equivalent (but numeric literals cannot be converted)

Boolean “true” or “false”

Array Comma-delimited list of array contents (with no spaces after commas)

Function Decompiled string version of the function definition

Many DOM objects can be converted to a string. For example, a location object

returns its URL. But when an object has nothing suitable to return for its content as

a string, it usually returns a string in the following format:

[object objectType]

The toString() method is available on all versions of all browsers. However, a

convenient improvement to toString() for NN3 and IE3/J2 is the optional radix

toString()

(c) ketabton.com: The Digital Library

1135Chapter 42 ✦ Global Functions and Statements

parameter. By setting this parameter between 2 and 16, you can convert numbers

to string equivalents in different number bases. Listing 42-1 calculates and draws a

conversion table for decimal, hexadecimal, and binary numbers between 0 and 20.

In this case, the source of each value is the value of the index counter variable each

time the for loop’s statements execute.

Listing 42-1: Using toString() with Radix Values

<HTML>
<HEAD>
<TITLE>Number Conversion Table</TITLE>
</HEAD>
<BODY>
Using toString() to convert to other number bases:
<HR>
<TABLE BORDER=1>
<TR>
<TH>Decimal</TH><TH>Hexadecimal</TH><TH>Binary</TH></TR>
<SCRIPT LANGUAGE=”JavaScript”>
var content = “”
for (var i = 0; i <= 20; i++) {

content += “<TR>”
content += “<TD>” + i.toString(10) + “</TD>”
content += “<TD>” + i.toString(16) + “</TD>”
content += “<TD>” + i.toString(2) + “</TD></TR>”

}
document.write(content)
</SCRIPT>
</TABLE>
</BODY>
</HTML>

The toString() method of user-defined objects does not convert the object

into a meaningful string, but you can create your own method to do just that. For

example, if you want to make your custom object’s toString() method behave like

an array’s method, then define the action of the method and assign that function to

a property of the object (as shown in Listing 42-2).

Listing 42-2: Creating a Custom toString() Method

<HTML>
<HEAD>
<TITLE>Custom toString()</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function customToString() {

var dataArray = new Array()
var count = 0
for (var i in this) {

dataArray[count++] = this[i]

Continued

toString()

(c) ketabton.com: The Digital Library

1136 Part IV ✦ JavaScript Core Language Reference

Listing 42-2 (continued)

if (count > 2) {
break

}
}
return dataArray.join(“,”)

}
var book = {title:”The Aeneid”, author:”Virgil”, pageCount:543}
book.toString = customToString
</SCRIPT>
</HEAD>
<BODY>
A user-defined toString() result:
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(book.toString())
</SCRIPT>
</BODY>
</HTML>

When you run Listing 42-2, you can see how the custom object’s toString()
handler extracts the values of all elements of the object except for the last one,

which is the function handler reference. You can customize how the data should be

labeled and/or formatted.

unwatch(property)
watch(property, handler)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

To supply the right kind of information to external debuggers, JavaScript in NN4+

implements two global functions that belong to every object — including user-

defined objects. The watch() function keeps an eye on a desired object and prop-

erty. If that property is set by assignment, the function invokes another

user-defined function that receives information about the property name, its old

value, and its new value. The unwatch() function turns off the watch functionality

for a particular property. See Listing 41-7 in Chapter 41 for an example of how to

use these functions that you can assign to any object.

unwatch()

(c) ketabton.com: The Digital Library

1137Chapter 42 ✦ Global Functions and Statements

Statements
//
/*...*/

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Comments are statements that the JavaScript interpreter (or server-side com-

piler) ignores. However, these statements enable authors to leave notes about how

things work in their scripts. While lavish comments are useful to authors during a

script’s creation and maintenance, the full content of a client-side comment is

downloaded with the document. Every byte of non-operational content of the page

takes a bit more time to download. Still, I recommend lots of comments — particu-

larly as you create a script.

JavaScript offers two styles of comments. One style consists of two forward

slashes (no spaces between them). JavaScript ignores any characters to the right of

those slashes on the same line, even if they appear in the middle of a line. You can

stack as many lines of these single-line comments as is necessary to convey your

thoughts. I typically place a space between the second slash and the beginning of

my comment. The following are examples of valid, one-line comment formats:

// this is a comment line usually about what’s to come
var a = “Fred” // a comment about this line
// You may want to capitalize the first word of a comment
// sentence if it runs across multiple lines.
//
// And you can leave a completely blank line, like the one above.

For longer comments, it is usually more convenient to enclose the section in the

other style of comment. The following comment opens with a forward slash and

asterisk (/*) and ends with an asterisk and forward slash (*/). JavaScript ignores

all statements in between — including multiple lines. If you want to comment out

briefly a large segment of your script for debugging purposes, it is easiest to

bracket the segment with these comment symbols. To make these comment blocks

easier to find, I generally place these symbols on their own lines as follows:

/*
some
commented-out
statements

*/

If you are developing rather complex documents, you might find using comments

a convenient way to help you organize segments of your scripts and make each

// (comment)

(c) ketabton.com: The Digital Library

1138 Part IV ✦ JavaScript Core Language Reference

segment easier to find. For example, you can define a comment block above each

function and describe what the function is about, as in the following example.

/*---
calculate()
Performs a mortgage calculation based on
parameters blah, blah, blah. Called by blah
blah blah.

---*/
function calculate(form) {

statements
}

const

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

The const keyword initializes a constant. Unlike a variable, whose data is sub-

ject to change while a page loads, a constant’s value cannot be modified once it is

assigned. It is common practice in many programming languages to define constant

identifiers with all uppercase letters, usually with underscore characters to delimit

multiple words. This style makes it easier to see a constant’s application later in the

program.

Listing 42-3 shows how you can use a constant. The page conveys temperature

data for several cities. (Presumably, this data is updated on the server and fash-

ioned into an array of data when the user requests the page.) For temperatures

below freezing, the temperature is shown in a distinctive text style. Because the

freezing temperature is a constant reference point, it is assigned as a constant.

Listing 42-3: Using the const Keyword

<HTML>
<HEAD>
<TITLE>const(ant)</TITLE>
<STYLE TYPE=”text/css”>
.cold {font-weight:bold; color:blue}
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
const FREEZING_F = 32
var cities = [“London”, “Moscow”, “New York”, “Tokyo”, “Sydney”]
var tempsF = [33, 12, 20, 40, 75]
function showData() {

var tableData = “”
for (var i = 0; i < cities.length; i++) {

tableData += “<TR><TD>” + cities[i] + “</TD><TD “
tableData += (tempsF[i] < FREEZING_F) ? “CLASS=’cold’” : “”
tableData += “>” + tempsF[i] + “</TR>”

const

(c) ketabton.com: The Digital Library

1139Chapter 42 ✦ Global Functions and Statements

}
document.getElementById(“display”).innerHTML = tableData

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showData()”>
<H1>The const keyword</H1>
<HR>
<TABLE ID=”temps”>
<TR><TH>City<TH>Temperature</TR>
<TBODY ID=”display”>
</TBODY>
</TABLE>
</BODY>
</HTML>

The const keyword likely will be adopted in the next version of the ECMA-262

standard and will become part of the JavaScript vernacular in future browsers.

var

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Before using any variable, you should declare it (and optionally initialize it with a

value) via the var statement. If you omit the var keyword, the variable is automati-

cally assigned as a global variable within the current document. To keep a variable

local to a function, you must declare or initialize the variable with the var keyword

inside the function’s braces.

If you assign no value to a variable, it evaluates to null. Because a JavaScript

variable is not limited to one variable type during its lifetime, you don’t need to ini-

tialize a variable to an empty string or zero unless that initial value helps your

scripting. For example, if you initialize a variable as an empty string, you can then

use the add-by-value operator (+=) to append string values to that variable in a

future statement in the document.

To save statement lines, you can declare and/or initialize multiple variables with

a single var statement. Separate each varName=value pair with a comma, as in

var name, age, height // declare as null
var color=”green”, temperature=85.6 // initialize

Variable names (also known as identifiers) must be one contiguous string of

characters, and the first character must be a letter. Many punctuation symbols are

also banned, but the underscore character is valid and often is used to separate

multiple words in a long variable name. All variable names (like most identifiers in

JavaScript) are case-sensitive, so you must name a particular variable identically

throughout the variable’s scope.

var

(c) ketabton.com: The Digital Library

1140 Part IV ✦ JavaScript Core Language Reference

IE/Windows Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Microsoft prides itself on the integration between Web browser functionality and

the Windows operating system. The linkage between browser and OS is most appar-

ent in IE’s facilities for accessing ActiveX objects. Microsoft has fashioned several

such objects for access to scripters — again, provided the deployment is intended

only for Windows versions of Internet Explorer. Some objects also exist as a way to

expose some Visual Basic Script (VBScript) functionality to JavaScript. Because

these objects are more within the realm of Windows and ActiveX programming, the

details and quirks of working with them from IE/Windows is best left to other

venues. But in case you are not familiar with these facilities, the following discus-

sions introduce the basic set of IE/Windows objects. You can find more details at

the Microsoft Developer Network (MSDN) Web site; in addition, I provide appropri-

ate URLs for your further exploration.

The objects mentioned here are the ActiveXObject, Dictionary, Enumerator,

FileSystemObject, and VBArray objects. Microsoft documents these objects as if

they are part of the native JScript language. However, you can be sure that they will

remain proprietary certainly to Internet Explorer, if not exclusively for Windows-

only versions.

ActiveXObject
ActiveXObject is a generic object that allows your script to open and access

what Microsoft sometimes calls automation objects. An automation object is an exe-

cutable program that might run on the client or be served from a server. This can

include local applications, such as applications from the Microsoft Office suite, exe-

cutable DLLs (dynamic-link libraries), and so on.

Use the constructor for the ActiveXObject to obtain a reference to the object

according to the following syntax:

var objRef = new ActiveXObject(appName.className[, remoteServerName])

This JScript syntax is the equivalent of the VBScript CreateObject() method.

You need to know a bit about Windows programming to determine the application

name and the classes or types available for that application. For example, to obtain

a reference to an Excel worksheet, use this constructor:

var mySheet = new ActiveXObject(“Excel.Sheet”)

Once you have a reference to the desired object, you must also know the names

of the properties and methods of the object you’ll be addressing. You can access

much of this information via Microsoft’s developer tools, such as Visual InterDev or

the tools that come with Visual Basic. These tools enable you to query an object to

discover its properties and methods. Unfortunately, an ActiveXObject’s proper-

ties are not enumerable through a typical JavaScript for-in property inspector.

ActiveXObject

(c) ketabton.com: The Digital Library

1141Chapter 42 ✦ Global Functions and Statements

Accessing an ActiveXObject, especially one on the client, involves some seri-

ous security considerations. The typical security setup for an IE client prevents

scripts from accessing client applications, at least not without asking the user if it’s

okay to do so. While it’s foolhardy to state categorically that you cannot perform

surreptitious inspection or damage to a client without the user’s knowledge (hack-

ers find holes from time to time), it is highly unlikely. In a corporate environment,

where some level of access to all clients is desirable, the client may be set up to

accept instructions to work with ActiveX objects when they come from trusted

sources. The bottom line is that unless you are well versed in Windows program-

ming, don’t expect the ActiveXObject to become some kind of magic portal that

enables you to invade the privacy or security of unsuspecting users.

For more details, visit http://msdn.microsoft.com/scripting/
jscript/doc/jsobjActiveXObject.htm.

Dictionary
While the Dictionary object is very helpful to VBScript authors, JavaScript

already provides the equivalent functionality natively. A Dictionary object

behaves very much like a JavaScript array that has string index values (similar to a

Java hash table), although numeric index values are also acceptable in the

Dictionary. Indexes are called keys in this environment. VBScript arrays do not

have this facility natively, so the Dictionary object supplements the language for

the sake of convenience. Unlike a JavaScript array, however, you must use the vari-

ous properties and methods of the Dictionary object to add, access, or remove

items from it.

You create a Dictionary object via ActiveXObject as follows:

var dict = new ActiveXObject(“Scripting.Dictionary”)

You must create a separate Dictionary object for each array. Table 42-2 lists the

properties and methods of the Dictionary object. After you create a blank

Dictionary object, populate it via the Add() method for each entry. For example,

the following statements create a Dictionary object to store U.S. state capitals:

var stateCaps = new ActiveXObject(“Scripting.Dictionary”)
stateCaps.Add(“Illinois”, “Springfield”)

You can then access an individual item via the Key property (which, thanks to its

VBScript heritage, looks more like a JavaScript method). One convenience of the

Dictionary object is the Keys() method, which returns an array of all the keys in

the dictionary — something that a string-indexed JavaScript array could use.

Table 42-2 Dictionary Object Properties and Methods

Property Description

Count Integer number of entries in the dictionary (read-only)

Item(“key”) Reads or writes a value for an entry whose name is key

Key(“key”) Assigns a new key name to an entry

Continued

Dictionary

(c) ketabton.com: The Digital Library

1142 Part IV ✦ JavaScript Core Language Reference

Table 42-2 (continued)

Method Description

Add(“key”, value) Adds a value associated with a unique key name

Exists(“key”) Returns Boolean true if key exists in dictionary

Items() Returns VBArray of values in dictionary

Keys() Returns VBArray of keys in dictionary

Remove(“key”) Removes key and its value

RemoveAll() Removes all entries

For more details, visit http://msdn.microsoft.com/scripting/jscript/
doc/jsobjDictionary.htm.

Enumerator
An Enumerator object provides JavaScript with access to collections that other-

wise do not allow direct access to their items via index number or name. This

object isn’t necessary when working with DOM collections, such as document.all,

because you can use the item() method to obtain a reference to any member of

the collection. But if you are scripting ActiveX objects, some of these objects’ meth-

ods or properties may return collections that cannot be accessed through this

mechanism or the JavaScript for-in property inspection technique. Instead, you

must wrap the collection inside an Enumerator object.

To wrap a collection in an Enumerator, invoke the constructor for the object,

passing the collection as the parameter:

var myEnum = new Enumerator(someCollection)

This enumerator instance must be accessed via one of its four methods to posi-

tion a “pointer” to a particular item and then extract a copy of that item. In other

words, you don’t access a member directly (that is, by diving into the collection

with an item number to retrieve). Instead, you move the pointer to the desired posi-

tion and then read the item value. As you can see from the list of methods in Table

42-3, this object is truly intended for looping through the collection. Pointer control

is limited to positioning it at the start of the collection and incrementing its position

along the collection by one:

myEnum.moveFirst()
for (; !myEnum.atEnd(); myEnum.moveNext()) {

val = myEnum.item()
// more statements that work on value

}

Enumerator

(c) ketabton.com: The Digital Library

1143Chapter 42 ✦ Global Functions and Statements

Table 42-3 Enumerator Object Methods

Method Description

atEnd() Returns true if pointer is at end of collection

item() Returns value at current pointer position

moveFirst() Moves pointer to first position in collection

moveNext() Moves pointer to next position in collection

For more details, visit http://msdn.microsoft.com/scripting/jscript/
doc/jsobjEnumerator.htm.

FileSystemObject
Of all the IE/Windows objects, the one whose capabilities most scripters want to

have as a cross-browser native object is FileSystemObject. A common wish

among scripters is to be able to save some user-entered data on the client in file

form rather than as a cookie. Of course, there can’t be wide-open access to the file

system because unscrupulous scripters could wreak havoc with a user’s system

and privacy — especially in such a well-documented and constant OS file structure

as Windows. Netscape Navigator can accomplish many of these same operations

via direct access to Java classes and signed scripts (which obtain the user’s permis-

sion before accessing the file system).

FileSystemObject has a large library of methods (and one property) that

scripts with the proper security clearance and permission can use to read and write

files, create and delete files and directories, and, essentially, have its way with the

contents of the client’s hard disk. Table 42-4 shows a summary of these methods.

FileSystemObject

(c) ketabton.com: The Digital Library

1144 Part IV ✦ JavaScript Core Language Reference

Table 42-4 FileSystemObject Property and Methods

Property Description

Drives Returns a collection of (disk) Drive objects
(a Drive object has 15 properties)

Method Description

BuildPath(path, name) Appends name to existing path

CopyFile(src, dest[,
overwrite]) Copies file at src path to dest path, optionally

to automatically overwrite existing dest file of
same name

CopyFolder(src, dest[, Copies directory at src path to dest path,
overwrite]) optionally to automatically overwrite existing

dest directory of same name

CreateFolder(path) Creates folder with name specified in path

CreateTextFile(path[, Returns TextStream object after opening an
overwrite[, unicode]]) empty file at path, optionally to overwrite

existing file at path and optionally to save
characters in Unicode (instead of ASCII)

DeleteFile(path[, force]) Deletes file at path, optionally to force deletion
of read-only file

DeleteFolder(path[, force]) Deletes directory at path, optionally to force
deletion of read-only directory

DriveExists(drivespec) Returns true if specified drive exists on client

FileExists(filespec) Returns true if specified file exists

FolderExists(folderspec) Returns true if specified directory exists

GetAbsolutePathName(pathspec) Returns full path based on parameters supplied
in pathspec

GetBaseName(filespec) Returns base name of rightmost item in
filespec but without file extension

GetDrive(drivespec) Returns Drive object referenced by drivespec
(for example, c:\)

GetDriveName(path) Returns name of the drive for a given path

GetExtensionName(path) Returns file extension for rightmost item in the
path

GetFile(filespec) Returns File object (a File object has 12
properties and 4 methods of its own)

FileSystemObject

(c) ketabton.com: The Digital Library

1145Chapter 42 ✦ Global Functions and Statements

Method Description

GetFileName(filespec) Returns the full filename of rightmost item in
pathspec

GetFileVersion(filespec) Returns version number associated with a file

GetFolder(folderspec) Returns Folder object (a Folder object has 15
properties and 4 methods of its own)

GetParentFolderName(path) Returns name of parent directory of path

GetSpecialFolder(type) Returns Folder object of type 0 (Windows), 1
(Windows\System), or 2 (Windows\Temp)

GetTempName() Returns a nonsense name for use as a temp
filename

MoveFile(src, dest) Moves src file(s) to dest

MoveFolder(src, dest) Moves src folder(s) to dest

OpenTextFile(path[, iomode[, Returns a TextStream object after opening a file
create[, format]]]) at path for mode (ForReading, ForWriting,

ForAppending); optionally to create file if not
existing; optionally to treat characters as Unicode
(TristateTrue), ASCII (TristateFalse), or
system default (TristateUseDefault)

As for the basic task of writing some data to a hard disk, the sequence involves

creating an instance of FileSystemObject, opening an output stream for text,

writing content to the file, and closing the file. Such a sequence might look like the

following:

function saveLocalData(theData) {
var fsObj = new ActiveXObject(“Scripting.FileSystemObject”)
var theFile = fsObj.CreateTextFile(“c:\\giantco.txt”, true)
theFile.WriteLine(theData)
theFile.Close()

}

The WriteLine() method belongs to the TextStream object, which is returned

by FileSystemObject’s CreateTextFile() method. You can read more about the

TextStream object and the details of the FileSystemObject at

http://msdn.microsoft.com/scripting/jscript/doc/jsobjtextstream.htm
and http://msdn.microsoft.com/scripting/jscript/doc/
jsobjFileSystem.htm.

VBArray
The VBArray object provides JavaScript access to Visual Basic safe arrays. Such

an array is read-only and is commonly returned by ActiveX objects. Such arrays can

be composed in VBScript sections of client-side scripts. Visual Basic arrays by their

VBArray

(c) ketabton.com: The Digital Library

1146 Part IV ✦ JavaScript Core Language Reference

very nature can have multiple dimensions. For example, the following code creates

a three-by-two VB array:

<SCRIPT LANGUAGE=”VBScript”>
Dim myArray(2, 1)
myArray(0, 0) = “A”
myArray(0, 1) = “a”
myArray(1, 0) = “B”
myArray(1, 1) = “b”
myArray(2, 1) = “C”
myArray(2, 2) = “c”
</SCRIPT>

Once you have a valid VB array, you can convert it to an object that the JScript

interpreter can’t choke on:

<SCRIPT LANGUAGE=”JavaScript”>
var theVBArray = new VBArray(myArray)
</SCRIPT>

Global variables from one script language block can be accessed by another

block, even in a different language. But at this point, the array is not in the form of a

JavaScript array yet. You can either convert it to such via the VBArray.toArray()
method or access information about the VBArray object through its other methods

(described briefly in Table 42-5). Once you convert a VBArray to a JavaScript array,

you can then iterate through the values just like any JavaScript array.

Table 42-5 VBArray Object Methods

Method Description

dimensions() Returns number of dimensions of the
original array

getItem(dim1[, dim2[,...dimN]]) Returns value at array location defined by
dimension addresses

ibound(dim) Returns lowest index value for a given
dimension

toArray() Returns JavaScript array version of VBArray

ubound(dim) Returns highest index value for a given
dimension

When you use the toArray() method and the source array has multiple dimen-

sions, values from dimensions after the first “row” are simply appended to the

JavaScript array with no nesting structure. IE through version 5.5 provides no back-

ward conversion from a JavaScript array to a VB array.

For more details, visit http://msdn.microsoft.com/scripting/jscript/
doc/jsobjVBArray.htm.

✦ ✦ ✦

VBArray

(c) ketabton.com: The Digital Library

Putting
JavaScript
to Work

✦ ✦ ✦ ✦

In This Part

Chapter 43
Data-Entry Validation

Chapter 44
Scripting Java Applets and
Plug-ins

Chapter 45
Debugging Scripts

Chapter 46
Security and Netscape
Signed Scripts

Chapter 47
Cross-Browser Dynamic
HTML Issues

Chapter 48
Internet Explorer Behaviors

Chapter 49
Application: Tables and
Calendars

Chapter 50
Application: A Lookup Table

Chapter 51
Application: A “Poor
Man’s” Order Form

Chapter 52
Application: Outline-Style
Table of Contents

Chapter 53
Application: Calculations
and Graphics

Chapter 54
Application: Intelligent
“Updated” Flags

Chapter 55
Application: Decision
Helper

Chapter 56
Application: Cross-Browser
DHTML Map Puzzle

Chapter 57
Application: Transforming
XML Data Islands

✦ ✦ ✦ ✦

P A R T

VV

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Data-Entry
Validation

Give users a field in which to enter data and you can be

sure that some users will enter the wrong kind of data.

Often the “mistake” is accidental — a slip of the pinkie on the

keyboard; other times, users intentionally type the incorrect

entry to test the robustness of your application. Whether you

solicit a user’s entry for client-side scripting purposes or for

input into a server-based CGI or database, you should use

JavaScript on the client to handle validation of the user’s

entry. Even for a form connected to a CGI script, it’s far more

efficient (from the perspective of bandwidth, server load, and

execution speed) to let client-side JavaScript get the data

straight before your server program deals with it.

Real-Time Versus Batch Validation
You have two opportunities to perform data-entry valida-

tion in a form: as the user enters data into a form and just

before the form is submitted. I recommend you take advan-

tage of both of these opportunities.

Real-time validation triggers
The most convenient time to catch an error is immediately

after the user makes it — especially for a long form that

requests a wide variety of information. You can make the

user’s experience less frustrating if you catch an entry mis-

take just after the user enters the information: his or her

attention is already focused on the nature of the content (or

some paper source material may already be in front of the

user). It is much easier for the user to address the same infor-

mation entry right away.

A valid question for the page author is how to trigger the

real-time validation. Backward-compatible text boxes have

two potential event handlers for this purpose: onChange and

onBlur. I personally avoid onBlur event handlers, especially

ones that can display an alert dialog box (as a data-entry vali-

dation is likely to do). Because a good validation routine

brings focus to the errant text box, you can get some odd

behavior with the interaction of the focus() method and the

4343C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Validating data as it
is being entered

Validating data
immediately prior to
submission

Organizing complex
data-validation tasks

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1150 Part V ✦ Putting JavaScript to Work

onBlur event handler. Users who wish to continue past an invalid field are locked

in a seemingly endless loop.

The problem with using onChange as the validation trigger is that a user can

defeat the validation. A change event occurs only when the text of a field indeed

changes when the user tabs or clicks out of the field. If the user is alerted about

some bad entry in a field and doesn’t fix the error, the change event doesn’t fire

again. In some respects, this is good because a user may have a legitimate reason

for passing by a particular form field initially with the intention of returning to the

entry later. Because a user can defeat the onChange event handler trigger, I recom-

mend you also perform batch validation prior to submission.

In NN4+ and IE4+, you also have the luxury of letting keyboard events trigger vali-

dations. This is most helpful when you want to prevent some character(s) from

being entered into a field. For example, if a field is supposed to contain only a posi-

tive integer value, you can use the onKeyPress event handler of the text box to ver-

ify that the character just typed is a number. If the character is not a number, the

event is trapped and no character reaches the text box. You should also alert the

user in some way about what’s going on. Listing 43-1 demonstrates a simplified ver-

sion of this kind of keyboard trapping, compatible with NN4+ and IE4+ event mod-

els. The message to the user is displayed in the statusbar. Displaying the message

there has the advantage of being less intrusive than an alert dialog box (and keeps

the text insertion cursor in the text box), but it also means that users might not see

the message. The onSubmit event handler in the listing prevents a press of the

Enter key in this one-field form from reloading this sample page.

Listing 43-1: Allowing Only Numbers into a Text Box

<HTML>
<HEAD>
<TITLE>Letting Only Numbers Pass to a Form Field</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkIt(evt) {

evt = (evt) ? evt : window.event
var charCode = (evt.which) ? evt.which : evt.keyCode
if (charCode > 31 && (charCode < 48 || charCode > 57)) {

status = “This field accepts numbers only.”
return false

}
status = “”
return true

}
</SCRIPT>
</HEAD>

<BODY>
<H1>Letting Only Numbers Pass to a Form Field</H1>
<HR>
<FORM onSubmit=”return false”>
Enter any positive integer: <INPUT TYPE=”text” NAME=”numeric”

onKeyPress=”return checkIt(event)”>
</FORM>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1151Chapter 43 ✦ Data-Entry Validation

Keyboard event monitoring isn’t practical for most validation actions, however.

For example, if the user is supposed to enter an e-mail address, you need to vali-

date the complete entry for the presence of an @ symbol (via the onChange event

handler). On the other hand, you can be granular about your validations and use

both the onChange and onKeyPress event handlers; you employ the latter for

blocking invalid characters in e-mail addresses (such as spaces).

Batch mode validation
In all scriptable browsers, the onSubmit event handler cancels the submission if

the handler evaluates to return false. Additional submission event cancelers

include setting the IE4+ event.returnValue property to false and invoking the

evt.preventDefault() method in NN6 (see Chapter 29 on event objects for

details). You can see an example of the basic return false behavior in Listing

23-4 of Chapter 23. That example uses the results of a window.confirm() dialog

box to determine the return value of the event handler. But you can also use a

return value from a series of individual text box validation functions. If any one of

the validations fails, the user is alerted and the submission is canceled.

Before you worry about two versions of validation routines loading down the

scripts in your page, you’ll be happy to know that you can reuse the same valida-

tion routines in both the real-time and batch validations. Later in this chapter, I

demonstrate what I call “industrial-strength” data-entry validation adapted from a

real intranet application. But before you get there, you should learn about general

validation techniques that you can apply to both types of validations.

Designing Filters
The job of writing data-validation routines essentially involves designing filters

that weed out characters or entries that don’t fit your programming scheme.

Whenever your filter detects an incorrect entry, it should alert the user about the

nature of the problem and enable the user to correct the entry.

Before you put a text or TEXTAREA object into your document that invites users

to enter data, you must decide if any possible entry can disturb the execution of

the rest of your scripts. For example, if your script must have a number from that

field to perform calculations, you must filter out any entry that contains letters or

punctuation — except for periods if the program can accept floating-point numbers.

Your task is to anticipate every possible entry users can make and allow only those

entries your scripts can use.

Not every entry field needs a data-validation filter. For example, you may prompt

a user for information that is eventually stored as a document.cookie or in a string

database field on the server for future retrieval. If no further processing takes place

on that information, you may not have to worry about the specific contents of that

field.

One other design consideration is whether a text field is even the proper user

interface element for the data required of the user. If the range of choices for a user

entry is small (a dozen or fewer), a more sensible method is to avoid the data-entry

problem altogether by turning that field into a SELECT element. Your HTML

attributes for the object ensure that you control the kind of entry made to that

object. As long as your script knows how to deal with each of the options defined

for that object, you’re in the clear.

(c) ketabton.com: The Digital Library

1152 Part V ✦ Putting JavaScript to Work

Building a Library of Filter Functions
A number of basic data-validation processes function repeatedly in form-inten-

sive HTML pages. Filters for integers only, numbers only, empty entries, alphabet

letters only, and the like are put to use every day. If you maintain a library of

generalizable functions for each of your data-validation tasks, you can drop these

functions into your scripts at a moment’s notice and be assured that they will work.

For NN3+ and IE4+, you can also create the library of validation functions as a sepa-

rate .js library file and link the scripts into any HTML file that needs them.

Making validation functions generalizable requires careful choice of wording and

logic so that they return Boolean values that make syntactical sense when called

from elsewhere in your scripts. As you see later in this chapter, when you build a

larger framework around smaller functions, each function is usually called as part

of an if...else conditional statement. Therefore, assign a name that fits logically

as part of an if clause in plain language. For example, you can name a function

that checks whether an entry is empty isEmpty(). The calling statement for this

function is:

if (isEmpty(value)) { ... }

From a plain-language perspective, the expectation is that the function returns

true if the passed value is empty. With this design, the statements nested in the if
construction handle empty entry fields. I revisit this design later in this chapter

when I start stacking multiple-function calls together in a larger validation routine.

To get you started with your library of validation functions, this chapter pro-

vides some building blocks that you can learn from and use as starting points for

more specific filters of your own design. Some of these functions are put to use in

the JavaScript application in Chapter 50.

isEmpty()
This first function, shown in Listing 43-2, checks to see if the incoming value is

either empty or null. Adding a check for null means that you can use this func-

tion for purposes other than just text-object validation. For example, if another

function defines three parameter variables, but the calling function passes only

two, the third variable is set to null. If the script then performs a data-validation

check on all parameters, the isEmpty() function responds that the null value is

devoid of data.

Listing 43-2: Is an Entry Empty or Null?

// general purpose function to see if an input value has been
// entered at all
function isEmpty(inputStr) {

if (inputStr == null || inputStr == “”) {
return true

}
return false

}

(c) ketabton.com: The Digital Library

1153Chapter 43 ✦ Data-Entry Validation

This function uses a Boolean OR operator (||) to test for the existence of a null
value or an empty string in the value passed to the function. Because the name of

the function implies a true response if the entry is empty, that value is the one that

returns to the calling statement if either condition is true. Because a return state-

ment halts further processing of a function, the return false statement lies out-

side of the if construction. If processing reaches this statement, the inputStr
value has failed the test.

If this seems like convoluted logic —return true when the value is empty —

you can also define a function that returns the inverse values. You can name it

isNotEmpty(). As it turns out, however, typical processing of an empty entry is

better served when the test returns a true than when the value is empty — aiding

the if construction that calls the function in the first place.

isPosInteger()
This next function examines each character of the value to make sure that only

numbers from 0 through 9 with no punctuation or other symbols exist. The goal of

the function in Listing 43-3 is to weed out any value that is not a positive integer.

Listing 43-3: Test for Positive Integers

// general purpose function to see if a suspected numeric input
// is a positive integer
function isPosInteger(inputVal) {

inputStr = inputVal.toString()
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i)
if (oneChar < “0” || oneChar > “9”) {

return false
}

}
return true

}

Notice that this function makes no assumption about the data type of the value

that is passed as a parameter. If the value had come directly from a text object, it

would already be a string and the line that forced data conversion to a string would

be unnecessary. But to generalize the function, the conversion is included to

accommodate the possibility that it may be called from another statement that has

a numeric value to check.

The function requires you to convert the input value to a string because it per-

forms a character-by-character analysis of the data. A for loop picks apart the

value one character at a time. Rather than force the script to invoke the

string.charAt() method twice for each time through the loop (inside the if con-

dition), one statement assigns the results of the method to a variable, which is then

used twice in the if condition. Placing the results of the charAt() method into a

variable makes the if condition shorter and easier to read and also is microscopi-

cally more efficient.

(c) ketabton.com: The Digital Library

1154 Part V ✦ Putting JavaScript to Work

In the if condition, the ASCII value of each character is compared against the

range of 0 through 9. This method is safer than comparing numeric values of the

single characters because one of the characters can be nonnumeric. (You can

encounter all kinds of other problems trying to convert that character to a number

for numeric comparison.) The ASCII value, on the other hand, is neutral about the

meaning of a character: If the ASCII value is less than 0 or greater than 9, the char-

acter is not valid for a genuine positive integer. The function bounces the call with a

false reply. On the other hand, if the for loop completes its traversal of all charac-

ters in the value without a hitch, the function returns true.

You may wonder why this validation function doesn’t use the parseInt() global

function (Chapter 42). That function returns NaN only if the first character of the

input string is not a number. But because parseInt() and parseFloat() peel off

any initial numeric values from a string, neither returns NaN if the input string is, for

example, 35a.

isInteger()
The next possibility includes the entry of a negative integer value. Listing 43-4

shows that you must add an extra check for a leading negation sign.

Listing 43-4: Checking for Leading Minus Sign

// general purpose function to see if a suspected numeric input
// is a positive or negative integer
function isInteger(inputVal) {

inputStr = inputVal.toString()
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i)
if (i == 0 && oneChar == “-”) {

continue
}
if (oneChar < “0” || oneChar > “9”) {

return false
}

}
return true

}

When a script can accept a negative integer, the filter must enable the leading

minus sign to pass unscathed. You cannot just add the minus sign to the if condi-

tion of Listing 43-3 because you can accept that symbol only when it appears in the

first position of the value — anywhere else makes the value an invalid number. To

handle the possibility of a leading minus sign, you add another if statement whose

condition looks for a special combination: the first character of the string (as

indexed by the loop-counting variable) and the minus character. If both of these

conditions are met, execution immediately loops back around to the update expres-

sion of the for loop (because of the continue statement) rather than carrying out

the second if statement, which would obviously fail. By putting the i == 0 com-

parison operation at the front of the condition, you ensure the entire condition

short circuits to false for all subsequent iterations through the loop.

(c) ketabton.com: The Digital Library

1155Chapter 43 ✦ Data-Entry Validation

isNumber()
The final numeric filter function in this series enables any integer or floating-

point number to pass while filtering out all others (Listing 43-5). All that distin-

guishes an integer from a floating-point number for data-validation purposes is the

decimal point.

Listing 43-5: Testing for a Decimal Point

// general purpose function to see if a suspected numeric input
// is a positive or negative number
function isNumber(inputVal) {

oneDecimal = false
inputStr = inputVal.toString()
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i)
if (i == 0 && oneChar == “-”) {

continue
}
if (oneChar == “.” && !oneDecimal) {

oneDecimal = true
continue

}
if (oneChar < “0” || oneChar > “9”) {

return false
}

}
return true

}

Anticipating the worst, however, the function cannot simply treat a decimal point

at any position within the string as a valid character. Such an act assumes that no

one would ever enter more than one decimal point into a numeric text field. Only

one decimal point is allowed for this function (as well as for JavaScript math).

Therefore, you add a Boolean flag variable (oneDecimal) to the function and a sep-

arate if condition that sets that flag to true when the function encounters the first

decimal point. Should another decimal point appear in the string, the final if state-

ment gets a crack at the character. Because the character falls outside the ASCII

range of 0 through 9, it fails the entire function.

If you want to accept only positive floating-point numbers, you can make a new

version of this function by removing the statement that lets the leading minus sign

through. Be aware that this function works only for values that are not represented

in exponential notation.

Custom validation functions
The listings shown so far in this chapter should give you plenty of source mate-

rial to use in writing customized validation functions for your applications. Listing

43-6 shows an example of such an application-specific variation (extracted from the

application in Chapter 50).

(c) ketabton.com: The Digital Library

1156 Part V ✦ Putting JavaScript to Work

Listing 43-6: A Custom Validation Function

// function to determine if value is in acceptable range
// for this application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || num > 586 && num < 596 || num > 599 && num < 700 || num >

728) {
return false

}
return true

}

For this application, you need to see if an entry falls within multiple ranges of

acceptable numbers. The first statement of the inRange() function converts the

incoming value to a number (via the parseInt() function) so that the value can be

compared numerically against maximum and minimum values of several ranges

within the database. Following the logic of the previous validation functions, the if
condition looks for values outside the acceptable range, so it can alert the user and

return a false value.

The if condition is quite a long sequence of operators. As you noticed in the list

of operator precedence (Chapter 40), the Boolean AND operator (&&) has prece-

dence over the Boolean OR operator (||). Therefore, the AND expressions evaluate

first, followed by the OR expressions. Parentheses may help you better visualize

what’s going on in that monster condition:

if (num < 1 || (num > 586 && num < 596) ||(num > 599 && num < 700) || num > 728)

In other words, you exclude four possible ranges from consideration:

✦ Values less than 1

✦ Values between 586 and 596

✦ Values between 599 and 700

✦ Values greater than 728

Any value for which any one of these tests is true yields a Boolean false from

this function. Combining all these tests into a single condition statement eliminates

the need to construct an otherwise complex series of nested if constructions.

Combining Validation Functions
When you design a page that requests a particular kind of text input from a user,

you often need to call more than one data-validation function to handle the entire

job. For example, if you merely want to test for a positive integer entry, your valida-

tion should test for the presence of any entry as well as the validation as an integer.

After you know the kind of permissible data that your script will use after valida-

tion, you’re ready to plot the sequence of data validation. Because each page’s vali-

dation task is different, I supply some guidelines to follow in this planning rather

than prescribe a fixed route for all to take.

(c) ketabton.com: The Digital Library

1157Chapter 43 ✦ Data-Entry Validation

My preferred sequence is to start with examinations that require less work and

increase the intensity of validation detective work with succeeding functions. I bor-

row this tactic from real life: When a lamp fails to turn on, I look for a pulled plug or

a burned-out lightbulb before tearing the lamp’s wiring apart to look for a short.

Using the data-validation sequence from the data-entry field (which must be a

three-digit number within a specified range) in Chapter 50, I start with the test that

requires the least amount of work: Is there an entry at all? After my script is

ensured an entry of some kind exists, it next checks whether that entry is “all num-

bers as requested of the user.” If so, the script compares the number against the

ranges of numbers in the database.

To make this sequence work together efficiently, I create a master validation

function consisting of nested if...else statements. Each if condition calls one of

the generalized data-validation functions. Listing 43-7 shows the master validation

function.

Listing 43-7: Master Validation Function

// Master value validator routine
function isValid(inputStr) {

if (isEmpty(inputStr)) {
alert(“Please enter a number into the field before clicking the

button.”)
return false

} else {
if (!isNumber(inputStr)) {

alert(“Please make sure entries are numbers only.”)
return false

} else {
if (!inRange(inputStr)) {

var msg = “Sorry, the number you entered is not part of our
database.”

msg += “Try another three-digit number.”
alert(msg)
return false

}
}

}
return true

}

This function, in turn, is called by the function that controls most of the work in

this application. All that the main function wants to know is whether the entered

number is valid. The details of validation are handed off to the isValid() function

and its special-purpose validation testers.

I construct the logic in Listing 43-7 so that if the input value fails to be valid, the

isValid() function alerts the user of the problem and returns false. That means I

have to watch my trues and falses very carefully.

In the first validation test, an empty value is a bad thing; thus, when the

isEmpty() function returns true, the isValid() function returns false because

an empty string is not a valid entry. In the second test, a number value is good so

the logic has to flip 180 degrees. The isValid() function returns false only if the

(c) ketabton.com: The Digital Library

1158 Part V ✦ Putting JavaScript to Work

isNumber() function returns false. But because isNumber() returns true when

the value is a number, I switch the condition to test for the opposite results of the

isNumber() function by negating the function name (preceding the function with

the Boolean NOT (!) operator). This operator works only with a value that evalu-

ates to a Boolean expression — which the isNumber() function always does. The

final test for being within the desired range works on the same basis as

isNumber(), using the Boolean NOT operator to turn the results of the inRange()
function into the method that works best for this sequence.

Finally, if all validation tests fail to find bad or missing data, the entire

isValid() function returns true. The statement that calls this function can now

proceed with processing, ensured that the value entered by the user will work.

There is one additional point worth reinforcing, especially for newcomers.

Although all these functions seem to be passing around the same input string as a

parameter, notice that any changes made to the value (such as converting it to a

string or number) are kept private to each function. These subfunctions never

touch the original value in the calling function — they work only with copies of the

original value. Therefore, even after the data validation takes place, the original

value is in its original form and ready to go.

Date and Time Validation
You can scarcely open a bigger can of cultural worms than when trying to pro-

gram around the various date and time formats in use around the world. If you have

ever looked through the possible settings in your computer’s operating system, you

can begin to understand the difficulty of this issue.

Trying to write JavaScript that accommodates all of the world’s date and time

formats for validation is an enormous, if not wasteful, challenge. It’s one thing to

validate that a text box contains data in the form xx/xx/xxxx, but there are also

valid value concerns that can get very messy on an international basis. For exam-

ple, while North America typically uses the mm/dd/yyyy format, a large portion of

the rest of the world uses dd/mm/yyyy (with different delimiter characters, as well).

Therefore, how should your validation routine treat the entry 20/03/2002? Is it

incorrect because there are not 20 months in a year; or is it correct as March 20th?

To query a user for this kind of information, I suggest you divide the components

into individually validated fields (separate text objects for hours and minutes) or

make SELECT element entries whose individual values can be assembled at submit

time into a hidden date field for processing by the database that needs the date

information. (Alternately, you can let your server CGI handle the conversion.)

Despite my encouragement to “divide and conquer” date entries, there may be

situations in which you feel it’s safe to provide a single text box for date entry (per-

haps for a form that is used on a corporate intranet strictly by users in one coun-

try). You see some more sophisticated code later in this chapter, but a

“quick-and-dirty” solution runs along these lines:

1. Use the entered data (for example, in mm/dd/yyyy format) as a value passed

to the new Date() constructor function.

2. From the newly created date object, extract each of the three components

(month, day, and year) into separate numeric values (with the help of

parseInt()).

(c) ketabton.com: The Digital Library

1159Chapter 43 ✦ Data-Entry Validation

3. Compare each of the extracted values against the corresponding date, month,

and year values returned by the date object’s getDate(), getMonth(), and

getFullYear() methods (adjusting for zero-based values of getMonth()).

4. If all three pairs of values match, then the entry is apparently valid.

Listing 43-8 puts this action sequence to work. The validDate() function

receives a reference to the field being checked. A copy of the field’s value is made

into a date object, and its components are read. If any part of the date conversion

or component extraction fails (because of improperly formatted data or unex-

pected characters), one or more of the variable values becomes NaN. This code

assumes that the user enters a date in the mm/dd/yyyy format, which is the

sequence that the Date object constructor expects its data. If the user enters

dd/mm/yyyy, the validation fails for any day beyond the twelfth.

Listing 43-8: Simple Date Validation

<HTML>
<HEAD>
<TITLE>Simple Date Validation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function validDate(fld) {

var testMo, testDay, testYr, inpMo, inpDay, inpYr, msg
var inp = fld.value
status = “”
// attempt to create date object from input data
var testDate = new Date(inp)
// extract pieces from date object
testMo = testDate.getMonth() + 1
testDay = testDate.getDate()
testYr = testDate.getFullYear()
// extract components of input data
inpMo = parseInt(inp.substring(0, inp.indexOf(“/”)), 10)
inpDay = parseInt(inp.substring((inp.indexOf(“/”) + 1),

inp.lastIndexOf(“/”)), 10)
inpYr = parseInt(inp.substring((inp.lastIndexOf(“/”) + 1), inp.length), 10)
// make sure parseInt() succeeded on input components
if (isNaN(inpMo) || isNaN(inpDay) || isNaN(inpYr)) {

msg = “There is some problem with your date entry.”
}
// make sure conversion to date object succeeded
if (isNaN(testMo) || isNaN(testDay) || isNaN(testYr)) {

msg = “Couldn’t convert your entry to a valid date. Try again.”
}
// make sure values match
if (testMo != inpMo || testDay != inpDay || testYr != inpYr) {

msg = “Check the range of your date value.”
}
if (msg) {

// there’s a message, so something failed
alert(msg)

Continued

(c) ketabton.com: The Digital Library

1160 Part V ✦ Putting JavaScript to Work

Listing 43-8 (continued)

// work around IE timing problem with alert by
// invoking a focus/select function through setTimeout();
// must pass along reference of fld (as string)
setTimeout(“doSelection(document.forms[‘“ +
fld.form.name + “‘].elements[‘“ + fld.name + “‘])”, 0)
return false

} else {
// everything’s OK; if browser supports new date method,
// show just date string in status bar
status = (testDate.toLocaleDateString) ? testDate.toLocaleDateString() :

“Date OK”
return true

}
}

// separate function to accommodate IE timing problem
function doSelection(fld) {

fld.focus()
fld.select()

}
</SCRIPT>
</HEAD>

<BODY>
<H1>Simple Date Validation</H1>
<HR>
<FORM NAME=”entryForm” onSubmit=”return false”>
Enter any date (mm/dd/yyyy): <INPUT TYPE=”text” NAME=”startDate”

onChange=”validDate(this)”>
</FORM>
</BODY>
</HTML>

Selecting Text Fields for Reentry
During both real-time and batch validations, it is especially helpful to the user if

your code — upon discovering an invalid entry — not only brings focus to the sub-

ject text field, but also selects the content for the user. By preselecting the entire

field, you make it easy for the user to just retype the data into the field for another

attempt (or to begin using the left and right arrow keys to move the insertion cur-

sor for editing). The reverse type on the field text also helps bring attention to the

field. (Not all operating systems display a special rectangle around a focused text

field.)

Form fields have both focus() and select() methods, which you should

invoke for the subject field in that order. IE for Windows, however, exhibits undesir-

able behavior when trying to focus and select a field immediately after you close an

alert dialog box. In most cases, the field does not keep its focus or selection. This is

a timing problem, but one that you can cure by processing the focus and select

(c) ketabton.com: The Digital Library

1161Chapter 43 ✦ Data-Entry Validation

actions through a setTimeout() method. The bottom of the script code of Listing

43-9 demonstrates how to do this.

Method calls to the form field reside in a separate function (called

doSelection() in this example). Obviously, the methods need a reference to the

desired field, so the doSelection() function requires access to that reference. You

can use a global variable to accomplish this (set the value in the validation func-

tion; read it in the doSelection() function), but globals are not elegant solutions

to passing transient data. Even though the validation function receives a reference

to the field, that is an object reference, and the setTimeout() function’s first

parameter cannot be anything but a string value. Therefore, the reference to the

text field provides access to names of both the form and field. The names fill in as

index values for arrays so that the assembled string (upon being invoked) evaluates

to a valid object reference:

“doSelection(document.forms[‘“ + fld.form.name + “‘].elements[‘“ + fld.name +
“‘])”

Notice the generous use of built-in forms and elements object arrays, which allow

the form and field names to assemble the reference without resorting to the oner-

ous eval() function.

For timing problems such as this one, no additional time is truly needed to let IE

recover from whatever ails it. Thus, the time parameter is set to 0 milliseconds. Using

the setTimeout() portal is enough to make everything work. There is no penalty for

using this construction with NN or IE/Mac, even though they don’t need it.

An “Industrial-Strength” Validation Solution
I had the privilege of working on a substantial intranet project that included

dozens of forms, often with two or three different kinds of forms displayed simulta-

neously within a frameset. Data-entry accuracy was essential to the validity of the

entire application. My task was to devise a data-entry validation strategy that not

only ensured accurate entry of data types for the underlying (SQL) database, but

also intelligently prompted users who made mistakes in their data entry.

Structure
From the start, the validation routines were to be in a client-side library linked in

from an external .js file. That would allow all forms to share the validation func-

tions. Because there were multiple forms displayed in a frameset, it would prove

too costly in download time and memory requirements to include the validations.
js file in every frame’s document. Therefore, the library was moved to load in with

the frameset. The <SCRIPT SRC=”validations.js”></SCRIPT> tag set went in

the Head portion of the framesetting document.

This logical placement presented a small challenge for the workings of the vali-

dations because there had to be two-way conversations between a validation func-

tion (in the frameset) and a form element (nested in a frame). The mechanism

required that a reference to the frame containing the form element be passed as

part of the validation routine so that the validation script could make corrections,

automatic formatting, and erroneous field selections from the frameset document’s

script. (In other words, the frameset script needed a path back to the form element

making the validation call.)

(c) ketabton.com: The Digital Library

1162 Part V ✦ Putting JavaScript to Work

Dispatch mechanism
From the specification drawn up for the application, it is clear that there are

more than two dozen specific types of validations across all the forms. Moreover,

multiple programmers work on different forms. It is helpful to standardize the way

validations are called, regardless of the validation type (number, string, date, phone

number, and so on).

My idea was to create one validate() function that contained parameters for

the current frame, the current form element, and the type of validation to perform.

This would make it clear to anyone reading the code later that an event handler

calling validate() performed validation, and the details of the code were in the

validations.js library file.

In validations.js, I converted a string name of a validation type into the name

of the function that performs the validation in order to make this idea work. As a

bridge between the two, I created what I called a dispatch lookup table for all the

primary validation routines that would be called from the forms. Each entry of the

lookup table had a label consisting of the name of the validation and a method that

invoked the function. Listing 43-9 shows an excerpt of the entire lookup table cre-

ation mechanism.

Listing 43-9: Creating the Dispatch Lookup Table

/*
Begin validation dispatching mechanism

*/
function dispatcher(validationFunc) {

this.doValidate = validationFunc
}
var dispatchLookup = new Array()
dispatchLookup[“isNotEmpty”] = new dispatcher(isNotEmpty)
dispatchLookup[“isPositiveInteger”] = new dispatcher(isPositiveInteger)
dispatchLookup[“isDollarsOnly8”] = new dispatcher(isDollarsOnly8)
dispatchLookup[“isUSState”] = new dispatcher(isUSState)
dispatchLookup[“isZip”] = new dispatcher(isZip)
dispatchLookup[“isExpandedZip”] = new dispatcher(isExpandedZip)
dispatchLookup[“isPhone”] = new dispatcher(isPhone)
dispatchLookup[“isConfirmed”] = new dispatcher(isConfirmed)
dispatchLookup[“isNY”] = new dispatcher(isNY)
dispatchLookup[“isNum16”] = new dispatcher(isNum16)
dispatchLookup[“isM90_M20Date”] = new dispatcher(isM90_M20Date)
dispatchLookup[“isM70_0Date”] = new dispatcher(isM70_0Date)
dispatchLookup[“isM5_P10Date”] = new dispatcher(isM5_P10Date)
dispatchLookup[“isDateFormat”] = new dispatcher(isDateFormat)

Each entry of the array is assigned a dispatcher object, whose custom object

constructor assigns a function reference to the object’s doValidate() method. For

these assignment statements to work, their corresponding functions must be

defined earlier in the document. You can see some of these functions later in this

section.

(c) ketabton.com: The Digital Library

1163Chapter 43 ✦ Data-Entry Validation

The link between the form elements and the dispatch lookup table is the

validate() function, shown in Listing 43-10. A call to validate() requires a mini-

mum of three parameters, as shown in the following example:

<INPUT TYPE=”text” NAME=”phone” SIZE=”10”
onChange=”parent.validate(window, this, ‘isPhone’)”>

The first is a reference to the frame containing the document that is calling the

function (passed as a reference to the current window). The second parameter is a

reference to the form control element itself (using the this operator). After that,

you see one or more individual validation function names as strings. This last

design allows more than one type of validation to take place with each call to vali-
date() (for example, in case a field must check for a data type and check that the

field is not empty).

Listing 43-10: Main Validation Function

// main validation function called by form event handlers
function validate(frame, field, method) {

gFrame = frame
gField = window.frames[frame.name].document.forms[0].elements[field.name]
var args = validate.arguments
for (i = 2; i < args.length; i++) {

if (!dispatchLookup[args[i]].doValidate()) {
return false

}
}
return true

}

In the validate() function, the frame reference is assigned to a global variable

that is declared at the top of the validations.js file. Validation functions in this

library need this information to build a reference back to a companion field

required of some validations (explained later in this section). A second global vari-

able contains a reference to the calling form element. Because the form element ref-

erence by itself does not contain information about the frame in which it lives, the

script must build a reference out of the information passed as parameters. The ref-

erence must work from the framesetting document down to the frame, its form, and

form element name. Therefore, I use the frame and field object references to get

their respective names (within the frames and elements arrays) to assemble the

text field’s object reference; the resulting value is assigned to the gField global

variable. I choose to use global variables in this case because passing these two val-

ues to numerous nested validation functions could be difficult to track reliably.

Instead, the only parameter passed to specific validation functions is the value

under test.

Next, the script creates an array of all arguments passed to the validate()
function. A for loop starts with an index value of 2, the third parameter containing

the first validation function name. For each one, the named item’s doValidate()
method is called. If the validation fails, this function returns false; but if all

(c) ketabton.com: The Digital Library

1164 Part V ✦ Putting JavaScript to Work

validations succeed, then this function returns true. Later you see that this func-

tion’s returned value is the one that allows or disallows a form submission.

Sample validations
Above the dispatching mechanism in the validations.js are the validation

functions themselves. Many of the named validation functions have supporting util-

ity functions that other named validation functions often use. Because of the even-

tual large size of this library file (the production version was about 40KB), I

organized the functions into two groups: the named functions first, and the utility

functions below them (but still before the dispatching mechanism at the bottom of

the document).

To demonstrate how some of the more common data types are validated for this

application, I show several validation functions and, where necessary, their sup-

porting utility functions. Figure 43-1 shows a sample form that takes advantage of

these validations. (You have a chance to try it later in this chapter.) When you are

dealing with critical corporate data, you must go to extreme lengths to ensure valid

data. And to help users see their mistakes quickly, you need to build some intelli-

gence into validations where possible.

Figure 43-1: Sample form for industrial-strength validations

U.S. state name
The design specification for forms that require entry of a U.S. state calls for entry

of the state’s two-character abbreviation. A companion field to the right displays

the entire state name as user feedback verification. The onChange event handler

not only calls the validation, but it also feeds the focus to the field following the

expanded state field so users are less likely to type into it.

(c) ketabton.com: The Digital Library

1165Chapter 43 ✦ Data-Entry Validation

Before the validation can even get to the expansion part, it must first validate

that the entry is a valid, two-letter abbreviation. Because I need both the abbrevia-

tion and the full state name for this validation, I create an array of all the states

using each state abbreviation as the index label for each entry. Listing 43-11 shows

that array creation.

Listing 43-11: Creating a U.S. States Array

// States array
var USStates = new Array(51)
USStates[“AL”] = “ALABAMA”
USStates[“AK”] = “ALASKA”
USStates[“AZ”] = “ARIZONA”
USStates[“AR”] = “ARKANSAS”
USStates[“CA”] = “CALIFORNIA”
USStates[“CO”] = “COLORADO”
USStates[“CT”] = “CONNECTICUT”
USStates[“DE”] = “DELAWARE”
USStates[“DC”] = “DISTRICT OF COLUMBIA”
USStates[“FL”] = “FLORIDA”
USStates[“GA”] = “GEORGIA”
USStates[“HI”] = “HAWAII”
USStates[“ID”] = “IDAHO”
USStates[“IL”] = “ILLINOIS”
USStates[“IN”] = “INDIANA”
USStates[“IA”] = “IOWA”
USStates[“KS”] = “KANSAS”
USStates[“KY”] = “KENTUCKY”
USStates[“LA”] = “LOUISIANA”
USStates[“ME”] = “MAINE”
USStates[“MD”] = “MARYLAND”
USStates[“MA”] = “MASSACHUSETTS”
USStates[“MI”] = “MICHIGAN”
USStates[“MN”] = “MINNESOTA”
USStates[“MS”] = “MISSISSIPPI”
USStates[“MO”] = “MISSOURI”
USStates[“MT”] = “MONTANA”
USStates[“NE”] = “NEBRASKA”
USStates[“NV”] = “NEVADA”
USStates[“NH”] = “NEW HAMPSHIRE”
USStates[“NJ”] = “NEW JERSEY”
USStates[“NM”] = “NEW MEXICO”
USStates[“NY”] = “NEW YORK”
USStates[“NC”] = “NORTH CAROLINA”
USStates[“ND”] = “NORTH DAKOTA”
USStates[“OH”] = “OHIO”
USStates[“OK”] = “OKLAHOMA”
USStates[“OR”] = “OREGON”
USStates[“PA”] = “PENNSYLVANIA”
USStates[“RI”] = “RHODE ISLAND”
USStates[“SC”] = “SOUTH CAROLINA”

Continued

(c) ketabton.com: The Digital Library

1166 Part V ✦ Putting JavaScript to Work

Listing 43-11 (continued)

USStates[“SD”] = “SOUTH DAKOTA”
USStates[“TN”] = “TENNESSEE”
USStates[“TX”] = “TEXAS”
USStates[“UT”] = “UTAH”
USStates[“VT”] = “VERMONT”
USStates[“VA”] = “VIRGINIA”
USStates[“WA”] = “WASHINGTON”
USStates[“WV”] = “WEST VIRGINIA”
USStates[“WI”] = “WISCONSIN”
USStates[“WY”] = “WYOMING”

The existence of this array comes in handy in determining if the user enters a

valid, two-state abbreviation. Listing 43-12 shows the actual isUSState() valida-

tion function that puts this array to work.

The function’s first task is to assign an uppercase version of the entered value to

a local variable (inputStr), which is the value being analyzed throughout the rest

of the function. If the user enters something in the field (length > 0) but no entry

in the USStates array exists for that value, the entry is not a valid state abbrevia-

tion. Time to go to work to help out the user.

Listing 43-12: Validation Function for U.S. States

// input value is a U.S. state abbreviation; set entered value to all uppercase
// also set companion field (NAME=”<xxx>_expand”) to full state name
function isUSState() {

var inputStr = gField.value.toUpperCase()
if (inputStr.length > 0 && USStates[inputStr] == null) {

var msg = “”
var firstChar = inputStr.charAt(0)
if (firstChar == “A”) {

msg += “\n(Alabama = AL; Alaska = AK; Arizona = AZ; Arkansas = AR)”
}
if (firstChar == “D”) {

msg += “\n(Delaware = DE; District of Columbia = DC)”
}
if (firstChar == “I”) {

msg += “\n(Idaho = ID; Illinois = IL; Indiana = IN; Iowa = IA)”
}
if (firstChar == “M”) {

msg += “\n(Maine = ME; Maryland = MD; Massachusetts = MA; “ +
“Michigan = MI; Minnesota = MN; Mississippi = MS; “ +
“Missouri = MO; Montana = MT)”

}
if (firstChar == “N”) {

msg += “\n(Nebraska = NE; Nevada = NV)”
}
alert(“Check the spelling of the state abbreviation.” + msg)
gField.focus()
gField.select()
return false

(c) ketabton.com: The Digital Library

1167Chapter 43 ✦ Data-Entry Validation

}
gField.value = inputStr
var expandField =

window.frames[gFrame.name].document.forms[0].elements[gField.name + “_expand”]
expandField.value = USStates[inputStr]
return true

}

The function assumes that the user tried to enter a valid state abbreviation but

either had incorrect source material or momentarily forgot a particular state’s

abbreviation. Therefore, the function examines the first letter of the entry. If that

first letter is any one of the five identified as causing the most difficulty, a legend for

all states beginning with that letter is assigned to the msg variable (for running on

newer browsers only, a switch construction is preferred). An alert message dis-

plays the generic alert, plus any special legend if one is assigned to the msg vari-

able. When the user closes the alert, the field has focus and its text is selected.

(This application runs solely on Navigator, so the IE setTimeout() workaround

isn’t needed — but you can add it very easily, especially thanks to the global vari-

able reference for the field.) The function returns false at this point.

If, on the other hand, the abbreviation entry is a valid one, the field is handed the

uppercase version of the entry. The script then uses the two global variables set in

validate() to create a reference to the expanded display field (whose name must

be the same as the entry field plus “_expand”). That expanded display field is then

supplied the USStates array entry value corresponding to the abbreviation label.

All is well with this validation, so it returns true.

You can see here that the so-called validation routine is doing far more than sim-

ply checking validity of the data. By communicating with the field, converting its

contents to uppercase, and talking to another field in the form, a simple call to the

validation function yields a lot of mileage.

Date validation
Many of the forms in this application have date fields. In fact, dates are an impor-

tant part of the data maintained in the database behind the forms. All users of this

application are familiar with standard date formats in use in the United States, so I

don’t have to worry about the possibility of cultural variations in date formats.

Even so, I want the date entry to accommodate the common date formats, such as

mmddyyyy, mm/dd/yyyy, and mm-dd-yyyy (as well as accommodate two-digit year

entries spanning 1930 to 2029).

The plan also calls for going further in helping users enter dates within certain

ranges. For example, a field used for a birth date (the listings are for medical profes-

sionals) should recommend dates starting no more than 90 years, and no less than

20 years, from the current date. And to keep this application running well into the

future, the ranges should be on a sliding scale from the current year, no matter

when it might be. Whatever the case, the date range validation is only a recommen-

dation and not a transaction stopper.

Rather than create separate validation functions for each date field, I create a

system of reusable validation functions for each date range (several fields on differ-

ent forms require the same date ranges). Each one of these individual functions

calls a single, generic date-validation function that handles the date-range checking.

Listing 43-13 shows a few examples of these individual range-checking functions.

(c) ketabton.com: The Digital Library

1168 Part V ✦ Putting JavaScript to Work

Listing 43-13: Date Range Validations

// Date Minus 90/Minus 20
function isM90_M20Date() {

if (gField.value.length == 0) return true
var thisYear = getTheYear()
return isDate((thisYear - 90),(thisYear - 20))

}

// Date Minus 70/Minus 0
function isM70_0Date() {

if (gField.value.length == 0) return true
var thisYear = getTheYear()
return isDate((thisYear - 70),(thisYear))

}

// Date Minus 5/Plus 10
function isM5_P10Date() {

if (gField.value.length == 0) return true
var thisYear = getTheYear()
return isDate((thisYear - 5),(thisYear + 10))

}

The naming convention I create for the functions includes the two range compo-

nents relative to the current date. A letter “M” means the range boundary is minus a

number of years from the current date; “P” means the range is plus a number of

years. If the boundary should be the current year, a zero is used. Therefore, the

isM5_P10Date() function performs range checking for boundaries between 5 years

before and 10 years after the current year.

Before performing any range checking, each function makes sure there is some

value to validate. If the field entry is empty, the function returns true. This is fine

here because dates are not required when the data is unknown.

Next, the functions get the current four-digit year. The code here had to work

originally with browsers that did not have the getFullYear() method available

yet. Therefore, the Y2K fix described in Chapter 36 was built into the application:

function getTheYear() {
var thisYear = (new Date()).getYear()
thisYear = (thisYear < 100)? thisYear + 1900: thisYear
return thisYear

}

The final call from the range validations is to a common isDate() function,

which handles not only the date range validation but also the validation for valid

dates (for example, making sure that September has only 30 days). Listing 43-14

shows this monster-sized function. Because of the length of this function, I interlace

commentary within the code listing.

(c) ketabton.com: The Digital Library

1169Chapter 43 ✦ Data-Entry Validation

Listing 43-14: Primary Date Validation Function

// date field validation (called by other validation functions that specify
minYear/maxYear)
function isDate(minYear,maxYear,minDays,maxDays) {

var inputStr = gField.value

To make it easier to work with dates supplied with delimiters, I first convert

hyphen delimiters to slash delimiters. The pre-regular expression replaceString()
function is the same one described in Chapter 34; it is located in the utility func-

tions part of the validations.js file.

// convert hyphen delimiters to slashes
while (inputStr.indexOf(“-”) != -1) {

inputStr = replaceString(inputStr,”-”,”/”)
}

For validating whether the gross format is OK, I check whether zero or two

delimiters appear. If the value contains only one delimiter, then the overall format-

ting is not acceptable. The error alert shows models for acceptable date-entry

formats.

var delim1 = inputStr.indexOf(“/”)
var delim2 = inputStr.lastIndexOf(“/”)
if (delim1 != -1 && delim1 == delim2) {

// there is only one delimiter in the string
alert(“The date entry is not in an acceptable format.\n\nYou can enter

dates in the following formats: mmddyyyy, mm/dd/yyyy, or mm-dd-yyyy. (If the
month or date data is not available, enter \’01\’ in the appropriate
location.)”)

gField.focus()
gField.select()
return false

}

If there are two delimiters, I tear apart the string into components for month,

day, and year. Because two-digit entries can begin with zeros, I make sure the

parseInt() functions specify base-10 conversions.

if (delim1 != -1) {
// there are delimiters; extract component values
var mm = parseInt(inputStr.substring(0,delim1),10)
var dd = parseInt(inputStr.substring(delim1 + 1,delim2),10)
var yyyy = parseInt(inputStr.substring(delim2 + 1, inputStr.length),10)

For no delimiters, I tear apart the string and assume two-digit entries for the

month and day and two or four digits for the year.

} else {
// there are no delimiters; extract component values
var mm = parseInt(inputStr.substring(0,2),10)
var dd = parseInt(inputStr.substring(2,4),10)
var yyyy = parseInt(inputStr.substring(4,inputStr.length),10)

}

(c) ketabton.com: The Digital Library

1170 Part V ✦ Putting JavaScript to Work

The parseInt() functions reveal whether any entry is not a number by return-

ing NaN, so I check whether any of the three values is not a number. If so, then an

alert signals the formatting problem and supplies acceptable models.

if (isNaN(mm) || isNaN(dd) || isNaN(yyyy)) {
// there is a non-numeric character in one of the component values
alert(“The date entry is not in an acceptable format.\n\nYou can enter

dates in the following formats: mmddyyyy, mm/dd/yyyy, or mm-dd-yyyy.”)
gField.focus()
gField.select()
return false

}

Next, I perform some gross range validation on the month and date to make sure

that months are entered from 1 to 12 and dates from 1 to 31. I take care of aligning

exact month lengths later.

if (mm < 1 || mm > 12) {
// month value is not 1 thru 12
alert(“Months must be entered between the range of 01 (January) and 12

(December).”)
gField.focus()
gField.select()
return false

}
if (dd < 1 || dd > 31) {

// date value is not 1 thru 31
alert(“Days must be entered between the range of 01 and a maximum of 31

(depending on the month and year).”)
gField.focus()
gField.select()
return false

}

// validate year, allowing for checks between year ranges
// passed as parameters from other validation functions

Before getting too deep into the year validation, I convert any two-digit year

within the specified range to its four-digit equivalent.

if (yyyy < 100) {
// entered value is two digits, which we allow for 1930-2029
if (yyyy >= 30) {

yyyy += 1900
} else {

yyyy += 2000
}

}

var today = new Date()

I designed this function to work with a pair of year ranges or date ranges (so

many days before and/or after today). If the function is passed date ranges, then

the first two parameters must be passed as null. This first batch of code works

with the date ranges (because the minYear parameter is null).

(c) ketabton.com: The Digital Library

1171Chapter 43 ✦ Data-Entry Validation

if (!minYear) {
// function called with specific day range parameters
var dateStr = new String(monthDayFormat(mm) + “/” + monthDayFormat(dd) +
“/” + yyyy)
var testDate = new Date(dateStr)
if (testDate.getTime() < (today.getTime() + (minDays * 24 * 60 * 60 *

1000))) {
alert(“The most likely range for this entry begins “ + minDays +
“ days from today.”)

}
if (testDate.getTime() > today.getTime() + (maxDays * 24 * 60 * 60 *

1000)) {
alert(“The most likely range for this entry ends “ + maxDays +
“ days from today.”)

}

You can also pass hard-wired, four-digit years as parameters. The following

branch compares the entered year against the range specified by those passed year

values.

} else if (minYear && maxYear) {
// function called with specific year range parameters
if (yyyy < minYear || yyyy > maxYear) {

// entered year is outside of range passed from calling function
alert(“The most likely range for this entry is between the years “ +

minYear + “ and “ + maxYear + “. If your source data indicates a date outside
this range, then enter that date.”)

}
} else {

For year parameters passed as positive or negative year differences, I begin pro-

cessing by getting the four-digit year for today’s date. Then I compare the entered

year against the passed range values. If the entry is outside the desired range, an

alert reveals the preferred year range within which the entry should fall. But the

function does not return any value here because an out-of-range value is not critical

for this application.

// default year range (now set to (this year - 100) and (this year +
25))

var thisYear = today.getYear()
if (thisYear < 100) {
thisYear += 1900
}
if (yyyy < minYear || yyyy > maxYear) {

alert(“It is unusual for a date entry to be before “ + minYear + “
or after “ + maxYear + “. Please verify this entry.”)

}
}

One more important validation is to make sure that the entered date is valid for

the month and year. Therefore, the various date components are passed to func-

tions to check against month lengths, including the special calculations for the

varying length of February. Listing 43-15 shows these functions. The alert messages

they display are smart enough to inform the user what the maximum date is for the

entered month and year.

(c) ketabton.com: The Digital Library

1172 Part V ✦ Putting JavaScript to Work

if (!checkMonthLength(mm,dd)) {
gField.focus()
gField.select()
return false

}
if (mm == 2) {

if (!checkLeapMonth(mm,dd,yyyy)) {
gField.focus()
gField.select()
return false

}
}

The final task is to reassemble the date components into a format that the

database wants for its date storage and stuff it into the form field. If the user enters

an all-number or hyphen-delimited date, it is automatically reformatted and dis-

played as a slash-delimited, four-digit-year date.

// put the Informix-friendly format back into the field
gField.value = monthDayFormat(mm) + “/” + monthDayFormat(dd) + “/” + yyyy
return true

}

A utility function invoked multiple times in the previous function converts a sin-

gle-digit month or day number to a string that might have a leading zero:

// convert month or day number to string,
// padding with leading zero if needed
function monthDayFormat(val) {

if (isNaN(val) || val == 0) {
return “01”

} else if (val < 10) {
return “0” + val

}
return “” + val

}

Listing 43-15: Functions to Check Month Lengths

// check the entered month for too high a value
function checkMonthLength(mm,dd) {

var months = new Array(“”,”January”,”February”,”March”,”April”,”May”,”June”,
”July”,“August”,”September”,”October”,”November”,”December”)

if ((mm == 4 || mm == 6 || mm == 9 || mm == 11) && dd > 30) {
alert(months[mm] + “ has only 30 days.”)
return false

} else if (dd > 31) {
alert(months[mm] + “ has only 31 days.”)
return false

}
return true

}

(c) ketabton.com: The Digital Library

1173Chapter 43 ✦ Data-Entry Validation

// check the entered February date for too high a value
function checkLeapMonth(mm,dd,yyyy) {

if (yyyy % 4 > 0 && dd > 28) {
alert(“February of “ + yyyy + “ has only 28 days.”)
return false

} else if (dd > 29) {
alert(“February of “ + yyyy + “ has only 29 days.”)
return false

}
return true

}

This is a rather extensive date-validation routine, but it demonstrates how thor-

ough you must be when a database relies on accurate entries. The more prompting

and assistance you can give to users to ferret out problems with invalid entries, the

happier those users will be.

Cross-confirmation fields
The final validation type that I cover here is probably not a common request, but

it demonstrates how the dispatch mechanism created at the outset expands so eas-

ily to accommodate this enhanced client request. The situation is that some fields

(mostly dates in this application) are deemed critical pieces of data because this

data triggers other processes from the database. As a further check to ensure entry

of accurate data, a number of values are set up for entry twice in separate fields —

and the fields have to match exactly. In many ways, this mirrors the two passes you

are often requested to make when you set a password: enter two copies and let the

computer compare them to make sure you typed what you intended to type.

I established a system that places only one burden on the many programmers

working on the forms: while you can name the primary field anything you want (to

help alignment with database column names, for example), you must name the sec-

ondary field the same plus “_xcfm”— which stands for cross-confirm. Then, pass

the isConfirmed validation name to the validate() function after the date range

validation name, as follows:

onChange=”parent.validate(window, this, ‘isM5_P10Date’,’isConfirmed’)”

In other words, after the entered value is initially checked against a required date

range, the isConfirmed() validation function compares the fully vetted, properly

formatted date in the current field against its parallel entry.

Listing 43-16 shows the one function in validations.js that handles the confir-

mation in both directions. After assigning a copy of the entry field value to the

inputStr variable, the function next sets a Boolean flag (primary) that lets the

rest of the script know if the entry field is the primary or secondary field. If the

string “_xcfm” is missing from the field name, then the entry field is the primary

field.

For the primary field branch, the script assembles the name of the secondary

field and compares the content of the secondary field’s value against the inputStr
value. If they are not the same, the user is entering a new value into the primary

field, and the script empties the secondary field to force reentry to verify that the

user enters the proper data.

(c) ketabton.com: The Digital Library

1174 Part V ✦ Putting JavaScript to Work

For the secondary field entry branch, the script assembles a reference to the pri-

mary field by stripping away the final five characters of the secondary field’s name.

I can use the lastIndexOf() string method instead of the longer way involving the

string’s length; but after experiencing so many platform-specific problems with

lastIndexOf() in Navigator, I decided to play it safe. Finally, the two values are

compared, with an appropriate alert displayed if they don’t match.

Listing 43-16: Cross-Confirmation Validation

// checks an entry against a parallel, duplicate entry to
// confirm that correct data has been entered
// Parallel field name must be the main field name plus “_xcfm”
function isConfirmed() {

var inputStr = gField.value
// flag for whether field under test is primary (true) or confirmation field
var primary = (gField.name.indexOf(“_xcfm”) == -1)
if (primary) {

// clear the confirmation field if primary field is changed
var xcfmField =

window.frames[gFrame.name].document.forms[0].elements[gField.name + “_ xcfm”]
var xcfmValue = xcfmField.value
if (inputStr != xcfmValue) {

xcfmField.value = “”
return true

}
} else {

var xcfmField =
window.frames[gFrame.name].document.forms[0].elements[gField.name.substring(0,(g
Field.name.length-5))]
var xcfmValue = xcfmField.value

if (inputStr != xcfmValue) {
alert(“The main and confirmation entry field contents do not match.

Both fields must have EXACTLY the same content to be accepted by the database.”)
gField.focus()
gField.select()
return false

}
}
return true

}

Last-minute check
Every validation event handler is designed to return true if the validation suc-

ceeds. This comes in handy for the batch validation that performs one final check

of the entries triggered by the form’s onSubmit event handler. This event handler

calls a checkForm() function and passes the form control object as a parameter.

That parameter helps create a reference to the form element that is passed to each

validation function.

(c) ketabton.com: The Digital Library

1175Chapter 43 ✦ Data-Entry Validation

Because successful validations return true, you can nest consecutive validation

tests so that the most nested statement of the construction is return true
because all validations have succeeded. The form’s onSubmit event handler is as

follows:

onSubmit=”return checkForm(this)”

And the following code fragment is an example of a checkForm() function. A

separate isDateFormat() validation function called here checks whether the field

contains an entry in the proper format — meaning that it has likely survived the

range checking and format shifting of the real-time validation check.

function checkForm(form) {
if (parent.validate(window, form.birthdate, “isDateFormat”)) {

if (parent.validate(window, form.phone, “isPhone”)) {
if (parent.validate(window, form.name, “isNotEmpty”)) {

return true
}

}
}
return false

}

If any one validation fails, the field is given focus and its content is selected (con-

trolled by the individual validation function). In addition, the checkForm() function

returns false. This, in turn, cancels the form submission.

Try it out
Listing 43-17 is a definition for a frameset that not only loads the validation rou-

tines described in this section, but also loads a page with a form that exercises the

validations in real-time and batch mode just prior to submission. The form appears

earlier in this chapter in Figure 43-1.

Listing 43-17: Frameset for Trying validation.js

<HTML>
<HEAD>
<TITLE>GiantCo Contractor Database</TITLE>
<SCRIPT LANGUAGE=”JavaScript” SRC=”validation.js”></SCRIPT>
<SCRIPT LANGUAGE=”JavaScript”>
function blank() {

return “<HTML><BODY BGCOLOR=’lightsteelblue’></BODY></HTML>”
}
</SCRIPT>
</HEAD>

<FRAMESET FRAMEBORDER COLS=”20%,80%”>
<FRAME NAME=”toc” SRC=”javascript:parent.blank()”>
<FRAME NAME=”entries” SRC=”lst43-18.htm”>

</FRAMESET>
</FRAMESET>
</HTML>

(c) ketabton.com: The Digital Library

1176 Part V ✦ Putting JavaScript to Work

The application scenario for the form is the entry of data into a company’s con-

tractor database. Some fields are required, and the date field must be cross-con-

firmed with a second entry of the same data. If the form passes its final validation

prior to submission, the form reloads and you see a readout of the form data that

would have been submitted from the previous form had the ACTION been set to a

server CGI program URI.

Plan for Data Validation
I devoted this entire chapter to the subject of data validation because it repre-

sents the one area of error checking that almost all JavaScript authors should be

concerned with. If your scripts (client-side or server-side) perform processing on

user entries, you want to prevent script errors at all costs.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Scripting Java
Applets and
Plug-ins

Netscape was the first to implement the facility enabling

JavaScript scripts, Java applets, and plug-ins to com-

municate with each other under one technology umbrella,

called LiveConnect (first implemented in NN3). Microsoft met

the challenge and implemented a large part of that technology

for IE4/Windows, but of course without using the Netscape-

trademarked name for the technology. The name is a conve-

nient way to refer to the capability, so you find it used

throughout this chapter applying to both NN and IE browsers

that support such facilities. This chapter focuses on the

scripting side of LiveConnect: approaching applets and plug-

ins from scripts and accessing scripts from Java applets.

Except for the part about talking to scripts from inside a

Java applet, I don’t assume you have any knowledge of Java

programming. The primary goal here is to help you under-

stand how to control applets and plug-ins (including ActiveX

controls in IE/Windows) from your scripts. If you’re in a posi-

tion to develop specifications for applets, you also learn what

to ask of your Java programmers. But if you are also a Java

applet programmer, you learn the necessary skills to get your

applets in touch with HTML pages and scripts.

LiveConnect Overview
Before you delve too deeply into the subject, you should be

aware that LiveConnect features are not available in all mod-

ern browsers, much to the chagrin of many. The following

browsers do not support this technology:

✦ IE/Macintosh (at least through Version 5)

✦ NN4.6 (due to an oversight when the version was

released)

✦ NN6.0 (work is afoot to include it in later versions)

4444C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Communicating with
Java applets from
scripts

Accessing scripts and
objects from Java
applets

Controlling scriptable
plug-ins

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1178 Part V ✦ Putting JavaScript to Work

Such a broad swath of browsers not supporting the feature (especially the IE for

Macintosh, which has been factory-installed as the default browser on millions of

Macs), makes it difficult to design a public Web application that relies on

LiveConnect features. Design your pages accordingly.

The internal mechanisms that allow scripts to communicate with applets and

plug-ins are quite different for NN and IE. NN3 and NN4 relied exclusively on the

Java virtual machine (JVM) that shipped with most OS platform versions of the

browsers. In NN4+, the JVM doesn’t load until it is needed, sometimes causing a

brief delay in initial execution. For the most part, though, the underlying Java

engine is invisible to the scripter (you) and certainly to the visitors of your sites. At

most, visitors see statusbar messages about applets loading and running.

IE/Windows, on the other hand, has its own internal architecture for communi-

cating between processes. To Windows, most processes are treated as components

that have properties and methods accessible to other components.

Whether you use the technology to communicate with a Java applet or an

ActiveX control, the advantage to you as an author is that LiveConnect extends the

document object model to include objects and data types that are not a part of the

HTML world. HTML, for instance, does not have a form element that displays real-

time stock ticker data; nor does HTML have the capability to treat a sound file like

anything more than a URL to be handed off to a helper application. With

LiveConnect, however, your scripts can treat the applet that displays the stock

ticker as an object whose properties and methods can be modified after the applet

loads; scripts can also tell the sound when to play or pause by controlling the plug-

in that manages the incoming sound file.

Why Control Java Applets?
A question I often hear from experienced Java programmers is, “Why bother con-

trolling an applet via a script when you can build all the interactivity you want into

the applet itself?” This question is valid if you come from the Java world, but it

takes a viewpoint from the HTML and scripting world to fully answer it.

Java applets exist in their own private rectangles, remaining largely oblivious to

the HTML surroundings on the page. Applet designers who don’t have extensive

Web page experience tend to regard their applets as the center of the universe

rather than as components of HTML pages.

As a scripter, on the other hand, you may want to use those applets as powerful

components to spiff up the overall presentation. Using applets as prewritten

objects enables you to make simple changes to the HTML pages — including the

geographic layout of elements and images — at the last minute, without having to

rewrite and recompile Java program code. If you want to update the look with an

entirely new graphical navigation or control bar, you can do it directly via HTML

and scripting.

When it comes to designing or selecting applets for inclusion into my scripted

page, I prefer using applet interfaces that confine themselves to data display,

putting any control of the data into the hands of the script, rather than using

onscreen buttons in the applet rectangle. I believe this setup enables much greater

last-minute flexibility in the page design — not to mention consistency with HTML

form element interfaces — than putting everything inside the applet rectangle.

(c) ketabton.com: The Digital Library

1179Chapter 44 ✦ Scripting Java Applets and Plug-ins

A Little Java
If you plan to look at a Java applet’s scripted capabilities, you can’t escape hav-

ing to know a little about Java applets and some terminology. The discussion goes

more deeply into object orientation than you have seen with JavaScript, but I’ll try

to be gentle.

Java building blocks classes
One part of Java that closely resembles JavaScript is that Java programming

deals with objects, much the way JavaScript deals with a page’s objects. Java

objects, however, are not the familiar HTML objects but rather more basic building

blocks, such as tools that draw to the screen and data streams. But both languages

also have some non-HTML kinds of objects in common: strings, arrays, numbers,

and so on.

Every Java object is known as a class — a term from the object-orientation world.

When you use a Java compiler to generate an applet, that applet is also a class,

which happens to incorporate many Java classes, such as strings, image areas, font

objects, and the like. The applet file you see on the disk is called a class file, and its

file extension is .class. This file is the one you specify for the CODE attribute of an

<APPLET> tag.

Java methods
Most JavaScript objects have methods attached to them that define what actions

the objects are capable of performing. A string object, for instance, has the

toUpperCase() method that converts the string to all uppercase letters. Java

classes also have methods. Many methods are predefined in the base Java classes

embedded inside the virtual machine. But inside a Java applet, the author can write

methods that either override the base method or deal exclusively with a new class

created in the program. These methods are, in a way, like the functions you write in

JavaScript for a page.

Not all methods, however, are created the same. Java lets authors determine

how visible a method is to outsiders. The types of methods that you, as a scripter,

are interested in are the ones declared as public methods. You can access such

methods from JavaScript via a syntax that falls very much in line with what you

already know. For example, a common public method in applets stops an applet’s

main process. Such a Java method may look such as this:

public void stop() {
if(thread != null) {

thread.stop();
thread = null;

}
}

The void keyword simply means that this method does not return any values

(compilers need to know this stuff). Assuming that you have one applet loaded in

your page, the JavaScript call to this applet method is

document.applets[0].stop()

(c) ketabton.com: The Digital Library

1180 Part V ✦ Putting JavaScript to Work

Listing 44-1 shows how all this works with the <APPLET> tag for a scriptable digi-

tal clock applet example. The script includes calls to two of the applet’s methods:

to stop and to start the clock.

Listing 44-1: Stopping and Starting an Applet

<HTML>
<HEAD>
<TITLE>A Script That Could Stop a Clock</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function pauseClock() {

document.clock1.stop()
}
function restartClock() {

document.clock1.start()
}
</SCRIPT>
<BODY>
<H1>Simple control over an applet</H1>
<HR>
<APPLET CODE=”ScriptableClock.class” NAME=”clock1” WIDTH=500 HEIGHT=45>
<PARAM NAME=bgColor VALUE=”Green”>
<PARAM NAME=fgColor VALUE=”Blue”>
</APPLET>
<P>
<FORM NAME=”widgets1”>
<INPUT TYPE=”button” VALUE=”Pause Clock” onClick=”pauseClock()”>
<INPUT TYPE=”button” VALUE=”Restart Clock” onClick=”restartClock()”>
</FORM>
</BODY>
</HTML>

The syntax for accessing the method (in the two functions) is just like JavaScript

in that the references to the applet’s methods include the applet object (clock1 in

the example), which is contained by the document object.

Java applet “properties”
The Java equivalents of JavaScript object properties are called public instance

variables. These variables are akin to JavaScript global variables. If you have access

to some Java source code, you can recognize a public instance variable by its pub-

lic keyword:

public String fontName

Java authors must specify a variable’s data type when declaring any variable.

That’s why the String data type appears in the preceding example.

Your scripts can access these variables with the same kind of syntax that you

use to access JavaScript object properties. If the fontName variable in

ScriptableClock.class had been defined as a public variable (it is not), you

could access or set its value directly, as shown in the following example.

var theFont = document.applets[0].fontName
document.applets[0].fontName = “Courier”

(c) ketabton.com: The Digital Library

1181Chapter 44 ✦ Scripting Java Applets and Plug-ins

Accessing Java fields
In a bit of confusing lingo, public variables and methods are often referred to as

fields. These elements are not the kind of text entry fields that you see on the

screen; rather, they’re like slots (another term used in Java) where you can slip in

your requests and data. Remember these terms, because they may appear from

time to time in error messages as you begin scripting applets.

Scripting Applets in Real Life
Because the purpose of scripting an applet is to gain access to the inner sanctum

of a compiled program, the program should be designed to handle such rummaging

around by scripters. If you can’t acquire a copy of the source code or don’t have

any other documentation about the scriptable parts of the applet, you may have a

difficult time knowing what to script and how to do it.

Although the applet’s methods are reflected as properties in an applet object,

writing a for...in loop to examine these methods tells you perhaps too much.

Figure 44-1 shows a partial listing of such an examination of the ScriptableClock

applet. This applet has only public methods (no variables), but the full listing

shows the dozens of fields accessible in the applet. What you probably won’t recog-

nize, unless you have programmed in Java, is that within the listing are dozens of

fields belonging to the Java classes that automatically become a part of the applet

during compilation. From this listing, you have no way to distinguish the fields

defined or overridden in the applet code from the base Java fields.

Figure 44-1: Partial listing of fields from ScriptableClock

Getting to scriptable methods
If you write your own applets or are fortunate enough to have the source code

for an existing applet, the safest way to modify the applet variable settings or the

running processes is through applet methods. Although setting a public variable

value may enable you to make a desired change, you don’t know how that change

may impact other parts of the applet. An applet designed for scriptability should

(c) ketabton.com: The Digital Library

1182 Part V ✦ Putting JavaScript to Work

have a number of methods defined that enable you to make scripted changes to

variable values.

To view a sample of an applet designed for scriptability, open the Java source

code file for Listing 44-2 from the CD-ROM. A portion of that program listing is

shown in the following example.

Listing 44-2: Partial Listing for ScriptableClock.java

/*
Begin public methods for getting
and setting data via LiveConnect

*/
public void setTimeZone(String zone) {

stop();
timeZone = (zone.startsWith(“GMT”)) ? true : false;
start();

}

public void setFont(String newFont, String newStyle, String newSize) {
stop();
if (newFont != null && newFont != “”)

fontName = newFont;
if (newStyle != null && newStyle != “”)

setFontStyle(newStyle);
if (newSize != null && newSize != “”)

setFontSize(newSize);
displayFont = new Font(fontName, fontStyle, fontSize);
start();

}

public void setColor(String newbgColor, String newfgColor) {
stop();
bgColor = parseColor(newbgColor);
fgColor = parseColor(newfgColor);
start();

}

public String getInfo() {
String result = “Info about ScriptableClock.class\r\n”;
result += “Version/Date: 1.0d1/2 May 1996\r\n”;
result += “Author: Danny Goodman (dannyg@dannyg.com)\r\n”;
result += “Public Variables:\r\n”;
result += “ (None)\r\n\r\n”;
result += “Public Methods:\r\n”;
result += “ setTimeZone(\”GMT\” | \”Locale\”)\r\n”;
result += “ setFont(\”fontName\”,\”Plain\” |\”Bold\” | \”Italic\”,

\”fontSize\”)\r\n”;
result += “ setColor(\”bgColorName\”, \”fgColorName\”)\r\n”;
result += “ colors: Black, White, Red, Green, Blue, Yellow\r\n”;
return result;

}
/*

End public methods for scripted access.
*/

(c) ketabton.com: The Digital Library

1183Chapter 44 ✦ Scripting Java Applets and Plug-ins

The methods shown in Listing 44-2 are defined specifically for scripted access. In

this case, they safely stop the applet thread before changing any values. The last

method is one I recommend to applet authors. The method returns a small bit of

documentation containing information about the kind of methods that the applet

likes to have scripted and what you can have as the passed parameter values.

Now that you see the amount of scriptable information in this applet, look at

Listing 44-3, which takes advantage of that scriptability by providing several HTML

form elements as user controls for the clock. The results are shown in Figure 44-2.

Listing 44-3: A More Fully Scripted Clock

<HTML>
<HEAD>
<TITLE>Clock with Lots o’ Widgets</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>

function setTimeZone(popup) {
var choice = popup.options[popup.selectedIndex].value
document.clock2.setTimeZone(choice)

}

function setColor(form) {
var bg =

form.backgroundColor.options[form.backgroundColor.selectedIndex].value
var fg =

form.foregroundColor.options[form.foregroundColor.selectedIndex].value
document.clock2.setColor(bg, fg)

}

function setFont(form) {
var fontName = form.theFont.options[form.theFont.selectedIndex].value
var fontStyle = form.theStyle.options[form.theStyle.selectedIndex].value
var fontSize = form.theSize.options[form.theSize.selectedIndex].value
document.clock2.setFont(fontName, fontStyle, fontSize)

}
function getAppletInfo(form) {

form.details.value = document.clock2.getInfo()
}
function showSource() {

var newWindow = window.open(“ScriptableClock.java”,””,
“WIDTH=450,HEIGHT=300,RESIZABLE,SCROLLBARS”)

}

</SCRIPT>
</HEAD>
<BODY>
<APPLET CODE=”ScriptableClock.class” NAME=”clock2” WIDTH=500 HEIGHT=45>
<PARAM NAME=bgColor VALUE=”Black”>
<PARAM NAME=fgColor VALUE=”Red”>
</APPLET>

Continued

(c) ketabton.com: The Digital Library

1184 Part V ✦ Putting JavaScript to Work

Listing 44-3 (continued)

<P>
<FORM NAME=”widgets2”>
Select Time Zone:
<SELECT NAME=”zone” onChange=”setTimeZone(this)”>

<OPTION SELECTED VALUE=”Locale”>Local Time
<OPTION VALUE=”GMT”>Greenwich Mean Time

</SELECT><P>
Select Background Color:
<SELECT NAME=”backgroundColor” onChange=”setColor(this.form)”>

<OPTION VALUE=”White”>White
<OPTION SELECTED VALUE=”Black”>Black
<OPTION VALUE=”Red”>Red
<OPTION VALUE=”Green”>Green
<OPTION VALUE=”Blue”>Blue
<OPTION VALUE=”Yellow”>Yellow

</SELECT>
Select Color Text Color:
<SELECT NAME=”foregroundColor” onChange=”setColor(this.form)”>

<OPTION VALUE=”White”>White
<OPTION VALUE=”Black”>Black
<OPTION SELECTED VALUE=”Red”>Red
<OPTION VALUE=”Green”>Green
<OPTION VALUE=”Blue”>Blue
<OPTION VALUE=”Yellow”>Yellow

</SELECT><P>
Select Font:
<SELECT NAME=”theFont” onChange=”setFont(this.form)”>

<OPTION SELECTED VALUE=”TimesRoman”>Times Roman
<OPTION VALUE=”Helvetica”>Helvetica
<OPTION VALUE=”Courier”>Courier
<OPTION VALUE=”Arial”>Arial

</SELECT>

Select Font Style:
<SELECT NAME=”theStyle” onChange=”setFont(this.form)”>

<OPTION SELECTED VALUE=”Plain”>Plain
<OPTION VALUE=”Bold”>Bold
<OPTION VALUE=”Italic”>Italic

</SELECT>

Select Font Size:
<SELECT NAME=”theSize” onChange=”setFont(this.form)”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”18”>18
<OPTION SELECTED VALUE=”24”>24
<OPTION VALUE=”30”>30

</SELECT><P>
<HR>
<INPUT TYPE=”button” NAME=”getInfo” VALUE=”Applet Info...”
onClick=”getAppletInfo(this.form)”>
<P>
<TEXTAREA NAME=”details” ROWS=11 COLS=70></TEXTAREA>

(c) ketabton.com: The Digital Library

1185Chapter 44 ✦ Scripting Java Applets and Plug-ins

</FORM>
<HR>
</BODY>
</HTML>

Very little of the code here controls the applet — only the handful of functions

near the top. The rest of the code makes up the HTML user interface for the form

element controls. After you open this document from the CD-ROM, be sure to click

the Applet Info button to see the methods that you can script and the way that the

parameter values from the JavaScript side match up with the parameters on the

Java method side.

Figure 44-2: Scripting more of the ScriptableClock applet

Applet limitations
Because of concerns about security breaches via LiveConnect, Netscape clamps

down on some powers that would be nice to have via a scripted applet. The most

noticeable barrier is the one that prevents applets from accessing the network

under scripted control. Therefore, even though a Java applet has no difficulty read-

ing or writing text files from the server, such capabilities — even if built into an

applet of your own design — won’t be carried out if triggered by a JavaScript call to

the applet.

Some clever hacks used to be posted on the Web, but they were rather cumber-

some to implement and may no longer work on more modern browsers. You can

also program the Java applet to fetch a text file after it starts up and then script the

access of that value from JavaScript (as described in the following section). Signed

scripts (Chapter 46) and applets can break through these security barriers after the

user has given explicit permission to do so.

(c) ketabton.com: The Digital Library

1186 Part V ✦ Putting JavaScript to Work

Faceless applets
Until LiveConnect came along, Java applets were generally written to show off

data and graphics — to play a big role in the presentation on the page. But if you

prefer to let an applet do the heavy algorithmic lifting for your pages while the

HTML form elements and images (or Dynamic HTML facilities of newer browsers)

do the user interface, you essentially need what I call a faceless applet.
The method for embedding a faceless applet into your page is the same as

embedding any applet: Use the <APPLET> tag. But specify only 1 pixel for both the

HEIGHT and WIDTH attributes (0 has strange side effects). This setting creates a dot

on the screen, which, depending on your page’s background color, may be com-

pletely invisible to page visitors. Place it at the bottom of the page, if you like.

To show how nicely this method can work, Listing 44-4 provides the Java source

code for a simple applet that retrieves a specific text file and stores the results in a

Java variable available for fetching by the JavaScript shown in Listing 44-5. The

HTML even automates the loading process by triggering the retrieval of the Java

applet’s data from an onLoad event handler.

Listing 44-4: Java Applet Source Code

import java.net.*;
import java.io.*;

public class FileReader extends java.applet.Applet implements Runnable {

Thread thread;
URL url;
String output;
String fileName = “Bill of rights.txt”;

public void getFile(String fileName) throws IOException {
String result, line;
InputStream connection;
DataInputStream dataStream;
StringBuffer buffer = new StringBuffer();

try {
url = new URL(getDocumentBase(),fileName);

}
catch (MalformedURLException e) {

output = “AppletError “ + e;
}

try {
connection = url.openStream();
dataStream = new DataInputStream(new

BufferedInputStream(connection));

while ((line = dataStream.readLine()) != null) {
buffer.append(line + “\n”);

}
result = buffer.toString();

}

(c) ketabton.com: The Digital Library

1187Chapter 44 ✦ Scripting Java Applets and Plug-ins

catch (IOException e) {
result = “AppletError: “ + e;

}
output = result;

}

public String fetchText() {
return output;

}

public void init() {
}

public void start() {
if (thread == null) {

thread = new Thread(this);
thread.start();

}
}
public void stop() {

if (thread != null) {
thread.stop();

thread = null;
}

}

public void run(){
try {

getFile(fileName);
}
catch (IOException e) {

output = “AppletError: “ + e;
}

}
}

All the work of actually retrieving the file is performed in the getFile() method

(which runs immediately after the applet loads). Notice that the name of the file to

be retrieved, Bill of Rights.txt, is stored as a variable near the top of the code,

making it easy to change for a recompilation, if necessary. You can also modify the

applet to accept the file name as an applet parameter, specified in the HTML code.

Meanwhile, the only hook that JavaScript needs is the one public method called

fetchText(), which merely returns the value of the output variable, which in turn

holds the file’s contents.

This Java source code must be compiled into a Java class file (already compiled

and included on the CD-ROM as FileReader.class) and placed in the same direc-

tory as the HTML file that loads this applet. Also, no explicit pathname for the text

file is supplied in the source code, so the text file is assumed to be in the same

directory as the applet.

(c) ketabton.com: The Digital Library

1188 Part V ✦ Putting JavaScript to Work

Listing 44-5: HTML Asking Applet to Read Text File

<HTML>
<HEAD>
<TITLE>Letting an Applet Do The Work</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function getFile(form) {

var output = document.readerApplet.fetchText()
form.fileOutput.value = output

}
function autoFetch() {

var output = document.readerApplet.fetchText()
if (output != null) {

document.forms[0].fileOutput.value = output
return

}
var t = setTimeout(“autoFetch()”,1000)

}
</SCRIPT>
</HEAD>
<BODY onLoad=”autoFetch()”>

<H1>Text from a text file...</H1>
<FORM NAME=”reader”>
<INPUT TYPE=”button” VALUE=”Get File” onClick=”getFile(this.form)”>
<P>
<TEXTAREA NAME=”fileOutput” ROWS=10 COLS=60 WRAP=”hard”></TEXTAREA>
<P>
<INPUT TYPE=”Reset” VALUE=”Clear”>
</FORM>
<APPLET CODE=”FileReader.class” NAME=”readerApplet” WIDTH=1 HEIGHT=1>
</APPLET>
</BODY>
</HTML>

Because an applet is usually the last detail to finish loading in a document, you

can’t use an applet to generate the page immediately. At best, an HTML document

can display a pleasant welcome screen while the applet finishes loading itself and

running whatever it does to prepare data for the page’s form elements. In IE4+, the

page can then be dynamically constructed out of the retrieved data; for NN4, you

can create a new layer object, and use document.write() to install content into

that layer. Notice in Listing 44-5 that the onLoad event handler calls a function that

checks whether the applet has supplied the requested data. If not, then the same

function is called repeatedly in a timer loop until the data is ready and the textarea

can be set. The <APPLET> tag is located at the bottom of the Body, set to 1 pixel

square — invisible to the user. No user interface exists for this applet, so you have

no need to clutter up the page with any placeholder or bumper sticker.

(c) ketabton.com: The Digital Library

1189Chapter 44 ✦ Scripting Java Applets and Plug-ins

Figure 44-3 shows the page generated by the HTML and applet working together.

The Get File button is merely a manual demonstration of calling the same applet

method that the onLoad event handler calls.

Figure 44-3: The page with text retrieved from a server file

A faceless applet may be one way for Web authors to hide what may otherwise

be JavaScript code that is open to any visitor’s view. For example, if you want to

deliver a small data collection lookup with a document, but don’t want the array of

data to be visible in the JavaScript code, you can create the array and lookup func-

tionality inside a faceless applet. Then use form controls and JavaScript to act as

query entry and output display devices (or dynamically generate a table in IE4+).

Because the parameter values passed between JavaScript and Java applets must be

string, numeric, or Boolean values, you won’t be able to pass arrays without per-

forming some amount of conversion either within the applet or the JavaScript code

(JavaScript’s string.split() and array.join() methods help a great deal here).

Data type conversions
The example in this chapter does not pass any parameters to the applet’s meth-

ods, but you are free to do so. You need to pay attention to the way in which values

are converted to Java data types. JavaScript strings and Boolean values are con-

verted to Java String and Boolean objects. All JavaScript numbers, regardless of

their subtype (that is, integer or floating-point number), are converted to Float

objects. Therefore, if a method must accept a numeric parameter from a script, the

parameter variable in the Java method must be defined as a Float type.

(c) ketabton.com: The Digital Library

1190 Part V ✦ Putting JavaScript to Work

The distinction between JavaScript string values and string objects can impact

data being passed to an applet. If an applet method requires a string object as a

parameter, you may have to explicitly convert a JavaScript string value (for exam-

ple, a string from a text field) to a string object via the new String() constructor

(Chapter 34).

You can also pass references to objects, such as form control elements. Such

objects get wrapped with a JSObject type (see discussion about this class later in

the chapter). Therefore, parameter variables must be established as type JSObject
(and the netscape.javascript.JSObject class must be imported into the

applet).

Applet-to-Script Communication
The flip side of scripted applet control is having an applet control script and

HTML content in the page. Before you undertake this avenue in page design, you

must bear in mind that any calls made from the applet to the page are hard-wired

for the specific scripts and HTML elements in the page. If this level of tight integra-

tion and dependence suits the application, the link up will be successful.

The discussion of applet-to-script communication assumes you have experience
writing Java applets. I use Java jargon quite freely in this discussion.

What your applet needs
NN3 and NN4 come with a zipped set of special class files tailored for use in

LiveConnect. In NN3, the file is named java_30 or java_301, the latter one being

the latest version; in NN4, the file is named java40.jar. For NN6, the class files are

located in an archive called jaws.jar (Windows) or MRJPlugin.jar (Mac). Use

the file search facility of the OS to locate the relevant file on your system. Microsoft

versions of these class files are also included in IE4+, buried in one of the large .zip
files in the Windows\Java\Packages directory (the files you need are in one of the

multi-megabyte .zip files, whose gibberish names change from version to

version — open each with an unzip utility and look for the two packages mentioned

next). The browser must see these class files (and have both Java and JavaScript

enabled in the preferences screens) for LiveConnect to work.

These zipped class library files contain two vital classes in a netscape package

(yes, even in IE):

netscape.javascript.JSObject
netscape.javascript.JSException

Both classes must be imported to your applet via the Java import compiler

directive:

import netscape.javascript.*;

When the applet runs, the LiveConnect-aware browser knows how to find the two

classes, so that the user doesn’t have to do anything special as long as the support-

ing files are in their default locations.

Perhaps the biggest problem applet authors have with LiveConnect is importing

these class libraries for applet compilation. Your Java compiler must be able to see

Note

(c) ketabton.com: The Digital Library

1191Chapter 44 ✦ Scripting Java Applets and Plug-ins

these class libraries for compilation to be successful. The prescribed method is to

include the path to the zipped class file (either the Netscape .jar archive or

Microsoft .zip file) in the class path for the compiler.

Problems frequently occur when the Java compiler you use (perhaps inside an

integrated development environment, such as Cafe) doesn’t recognize either of the

Netscape files as a legitimate zipped class file. You can make your compilation life

simpler if you extract the netscape package from the .jar or .zip file, and place

it in the same directory in which your compiler looks for the basic Java classes. For

example, although the precise details may change in newer versions, Cafe stores

the default Java class files inside zipped collections whose class paths (in

Windows) are

C:\CAFE\BIN\..\JAVA\LIB\CLASSES.ZIP
C:\CAFE\BIN\..\JAVA\LIB\SYMCLASS.ZIP

These two class paths are inserted into new projects by default. Extract the two

netscape.javascript class files and store them in the same LIB directory as

CLASSES.ZIP and SYMCLASS.ZIP. In other words, in the LIB directory is a directory

named netscape; inside the netscape directory is another directory named

javascript; inside the javascript directory are the JSObject.class and

JSException.class files. Then I add the following class path to the project’s class

path setting:

C:\CAFE\BIN\..JAVA\LIB\

This path instructs Cafe to start looking for the netscape package (which contains

the javascript package, which, in turn, contains the class files) in that directory.

Depending on the unzipping utility and operating system you use, you may have

to force the utility to recognize .jar files as zip archive files. If necessary, instruct

the utility’s file open dialog box to locate all file types in the directory. Both files

will open as zipped archives. Sort the long list of files by name. Then select and

extract only the two class files into the same directory as your compiler’s Java

class files. The utility should take care of creating the package directories for you.

What your HTML needs
As a security precaution, an <APPLET> tag requires one extra attribute to give

the applet permission to access the HTML and scripting inside the document. That

attribute is the single word MAYSCRIPT, and it can go anywhere inside the

<APPLET> tag, as follows:

<APPLET CODE=”myApplet.class” HEIGHT=”200” WIDTH=”300” MAYSCRIPT>

Permission is not required for JavaScript to access an applet’s methods or proper-

ties, but if the applet initiates contact with the page, this attribute is required.

About JSObject class
The portal between the applet and the HTML page that contains it is the

netscape.javascript.JSObject class. This object’s methods let the applet con-

tact document objects and invoke JavaScript statements. Table 44-1 shows the

object’s methods and one static method.

(c) ketabton.com: The Digital Library

1192 Part V ✦ Putting JavaScript to Work

Table 44-1 JSObject Class Methods

Method Description

call(String functionName, Invokes JavaScript function, argument(s)
Object args[]) passed as an array

eval(String expression) Invokes a JavaScript statement

getMember(String elementName) Retrieves a named object belonging to a
container

getSlot(Int index) Retrieves indexed object belonging to a
container

getWindow(Applet applet) Static method retrieves applet’s containing
window

removeMember(String elementName) Removes a named object belonging to a
container

setMember(String elementName, Sets value of a named object belonging to
Object value) a container

setSlot(int index, Object value) Sets value of an indexed object belonging
to a container

toString() Returns string version of JSObject

Just as the window object is the top of the document object hierarchy for

JavaScript references, the window object is the gateway between the applet code

and the scripts and document objects. To open that gateway, use the JSObject.
getWindow() method to retrieve a reference to the document window. Assign that

object to a variable that you can use throughout your applet code. The following

code fragment shows the start of an applet that assigns the window reference to a

variable named mainwin:

import netscape.javascript.*;

public class myClass extends java.applet.Applet {
private JSObject mainwin;

public void init() {
mainwin = JSObject.getWindow(this);
}

}

If your applet will be making frequent trips to a particular object, you may want

to create a variable holding a reference to that object. To accomplish this, the

applet needs to make progressively deeper calls into the document object hierar-

chy with the getMember() method. For example, the following sequence assumes

mainwin is a reference to the applet’s document window. Eventually the statements

set a form’s field object to a variable for use elsewhere in the applet:

(c) ketabton.com: The Digital Library

1193Chapter 44 ✦ Scripting Java Applets and Plug-ins

JSObject doc = (JSObject) mainwin.getMember(“document”);
JSObject form = (JSObject) doc.getMember(“entryForm”);
JSObject phonefld = (JSObject) form.getMember(“phone”);

Another option is to use the Java eval() method to execute an expression from

the point of view of any object. For example, the following statement gets the same

field object from the preceding fragment:

JSObject phonefld = mainwin.eval(“document.entryForm.phone”);

As soon as you have a reference to an object, you can access its properties via

the getMember() method, as shown in the following example, which reads the

value property of the text box, and casts the value into a Java String object:

String phoneNum = (String) phonefld.getMember(“value”);

Two JSObject class methods let your applet execute arbitrary JavaScript

expressions and invoke object methods: the eval() and call() methods. Use

these methods with any JSObject. If a value is to be returned from the executed

statement, you must cast the result into the desired object type. The parameter for

the eval() method is a string of the expression to be evaluated by JavaScript.

Scope of the expression depends on the object attached to the eval() method. If

you use the window object, the expression would exist as if it were a statement in

the document script (not defined inside a function).

Using the call() method is convenient for invoking JavaScript functions in the

document, although it requires a little more preparation. The first parameter is a

string of the function name. The second parameter is an array of arguments for the

function. Parameters can be of mixed data types, in which case the array would be

of type Object. If you don’t need to pass a parameter to the function call, you can

define an array of a single empty string value (for example, String arg[] = {“”})

and pass that array as the second parameter.

Data type conversions
The strongly typed Java language is a mismatch for loosely typed JavaScript. As

a result, with the exception of Boolean and string objects (which are converted to

their respective JavaScript objects), you should be aware of the way LiveConnect

adapts data types to JavaScript.

Any Java object that contains numeric data is converted to a JavaScript number

value. Because JavaScript numbers are IEEE doubles, they can accommodate just

about everything Java can throw its way.

If the applet extracts an object from the document and then passes that

JSObject type back to JavaScript, that passed object is converted to its original

JavaScript object type. But objects of other classes are passed as their native

objects wrapped in JavaScript “clothing.” JavaScript can access the applet object’s

methods and properties as if the object were a JavaScript object. Finally, Java

arrays are converted to the same kind of JavaScript array created via the new
Array() constructor. Elements can be accessed by integer index values (not

named index values). All other JavaScript array properties and methods apply to

this object as well.

Example applet-to-script application
To demonstrate several techniques for communicating from an applet to both

JavaScript scripts and document objects, I present an applet that displays two simple

(c) ketabton.com: The Digital Library

1194 Part V ✦ Putting JavaScript to Work

buttons (see Figure 44-4). One button generates a new window, spawned from the

main window, filling the window with dynamically generated content from the applet.

The second button communicates from the applet to that second window by invok-

ing a JavaScript function in the document. One last part of the demonstration shows

the applet changing the value of a text box when the applet starts up.

Figure 44-4: The applet displays two buttons seamlessly on the page.

Listing 44-6 shows the source code for the Java applet. For backward compatibil-

ity, it uses the JDK 1.02 event-handling model.

Because the applet generates two buttons, the code begins by importing the AWT
interface builder classes. I also import the netscape.javascript package to get

the JSObject class. The name of this sample class is JtoJSDemo. I declare four

global variables: two for the windows, two for the applet button objects.

Listing 44-6: Java Applet Source Code

import java.awt.*;
import netscape.javascript.*;

public class JtoJSDemo extends java.applet.Applet {
private JSObject mainwin, subwin;
private Button newWinButton, toggleButton;
void doNewWindow() {

subwin = (JSObject)
mainwin.eval(“window.open(‘’,’fromApplet’,’HEIGHT=200,WIDTH=200’)”);

subwin.eval(“document.write(‘<HTML><BODY BGCOLOR=white>Howdy from the
applet!</BODY></HTML>’)”);

subwin.eval(“document.close()”);
}

(c) ketabton.com: The Digital Library

1195Chapter 44 ✦ Scripting Java Applets and Plug-ins

The applet’s init() method establishes the user interface elements for this sim-

ple applet. A white background is matched in the HTML with a white document

background color, making the applet appear to blend in with the page. I use this

opportunity to set the mainwin variable to the browser window that contains the

applet.

public void init() {
setBackground(Color.white);
newWinButton = new Button(“New Browser Window”);
toggleButton = new Button(“Toggle SubWindow Color”);
this.add(newWinButton);
this.add(toggleButton);
mainwin = JSObject.getWindow(this);

}

As soon as the applet starts, it changes the value property of a text box in the

HTML form. Because this is a one-time access to the field, I elected to use the

eval() method from the point of view of the main window, rather than build suc-

cessive object references through the object hierarchy with the getMember()
method.

public void start() {
mainwin.eval(“document.indicator.running.value = ‘Yes’”);

}

Event handling is quite simple in this application. A click of the first button

invokes doNewWindow(); a click of the second invokes toggleColor(). Both meth-

ods are defined later in the applet.

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {

if (evt.target == newWinButton) {
doNewWindow();

} else if (evt.target == toggleButton) {
toggleColor();

}
}
return true;

}

One of the applet’s buttons calls the doNewWindow() method defined here. I use

the eval() method to invoke the JavaScript window.open() method. The string

parameter of the eval() method is exactly like the statement that appears in the

page’s JavaScript to open a new window. The window.open() method returns a ref-

erence to that subwindow, so that the statement here captures the returned value,

casting it as a JSObject type for the subwin variable. That subwin variable can

then be used as a reference for another eval() method that writes to that second

window. Notice that the object to the left of the eval() method governs the recipi-

ent of the eval() method’s expression. The same is true for closing the writing

stream to the subwindow.

(c) ketabton.com: The Digital Library

1196 Part V ✦ Putting JavaScript to Work

Unfortunately, the IE4+ implementation of JSObject does not provide a suitable
reference to the external window after it is created. Therefore, the window does
not receive its content or respond to color changes in this example. Due to other
anomalies with subwindows, I advise against using LiveConnect powers with mul-
tiple windows in IE4+.

The second button in the applet calls the toggleColor() method. In the HTML

document, a JavaScript function named toggleSubWindowColor() takes a window
object reference as an argument. Therefore, I first assemble a one-element array of

type JSObject consisting of the subwin object. That array is the second parameter

of the call() method, following a string version of the JavaScript function name

being called.

void toggleColor() {
if (subwin != null) {

JSObject arg[] = {subwin};
mainwin.call(“toggleSubWindowColor”, arg);

}
}

}

Now onto the HTML that loads the above applet class and is the recipient of its

calls. The document is shown in Listing 44-7. One function is called by the applet. A

text box in the form is initially set to “No” but gets changed to “Yes” by the applet

after it has finished its initialization. The only other item of note is that the

<APPLET> tag includes a MAYSCRIPT attribute to allow the applet to communicate

with the page.

Listing 44-7: HTML Document Called by Applet

<HTML>
<HEAD><TITLE>Java-to-JavaScript Demo</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleSubWindowColor(wind) {

if (wind.closed) {
alert(“The subwindow is closed. Can’t change it’s color.”)

} else {
wind.document.bgColor = (wind.document.bgColor == “#ffffff”) ? “red” :

“white”
}

}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#FFFFFF”>
Here’s the applet:

Note

(c) ketabton.com: The Digital Library

1197Chapter 44 ✦ Scripting Java Applets and Plug-ins

<APPLET CODE=”JtoJSDemo.class” NAME=”demoApplet” HEIGHT=150 WIDTH=200 MAYSCRIPT>
</APPLET>

<FORM NAME=”indicator”>
Is the applet running yet?<INPUT TYPE=”text” NAME=”running” SIZE=”4” VALUE=”No”>
</FORM>
</BODY>
</HTML>

Scripting Plug-ins
Controlling a plug-in (or Windows ActiveX control in IE) from JavaScript is much

like controlling a Java applet. But you have more browser-specific concerns to

worry about, even at the HTML level. Not all plug-ins are scriptable, of course, nor

do all browsers permit such scripting, as described at the start of this chapter. Yet

even when you have found the right combination of browser version(s) and plug-

in(s), you must also learn what the properties and/or methods of the plug-in are so

that your scripts can control them. For common plug-in duties, such as playing

audio, the likelihood that all users will have the same audio playback plug-in

installed in a particular browser brand and operating system is perhaps too small

to entrust your programming to a single plug-in. If, on the other hand, you are using

a plug-in that works only with a special data type, then your page need check only

that the plug-in is installed (and that it is the desired minimum version).

In this section of the chapter, you’ll begin to understand the HTML issues and

then examine two separate audio playback examples. One example lets users

change tunes being played back; the other arrives with five sounds, each of which

is controlled by a different onscreen interface element. Both of these audio play-

back examples employ a library that has been designed to provide basic audio play-

back interfaces to the three most popular scriptable audio playback plug-ins:

✦ Windows Media Player 6.4

✦ Apple QuickTime 4.1 or later

✦ Netscape LiveAudio (for NN3 and NN4)

The main goal of the library is to act as an API (Application Programming

Interface) between your scripts and the three plug-ins. Your scripts issue one com-

mand, and the library figures out which plug-in is installed and how that particular

command must be communicated to the installed plug-in. Additional verification

takes place in the initialization routine to verify that a valid plug-in is installed in

the user’s browser.

The HTML side
Depending on the browser and operating system that you’re using, one of two

tags can be used to put the plug-in’s powers into the page. With the plug-in embed-

ded within the page (even if you don’t see it), the plug-in becomes part of the docu-

ment’s object model, which means that your scripts can address it.

(c) ketabton.com: The Digital Library

1198 Part V ✦ Putting JavaScript to Work

Using EMBED
The preferred way to embed such content into a page for NN (all OSes) and

IE/Mac is to use the <EMBED> tag. Even though the W3C HTML standard does not

recognize the EMBED element, it has been a part of browser implementations since

the first embeddable media. The element is also a bit of a chameleon, because

beyond a common set of recognized attributes, such as the SRC attribute that

points to the content file to be loaded into the plug-in, its attributes are extensible

to include items that apply only to a given plug-in. Uncovering the precise lists of

attributes and values for a plug-in is not always easy, and frequently requires dig-

ging deeply into the developer documentation of the plug-in’s producer. It is not

unusual for a page author to anticipate that multiple plug-ins could play a particular

kind of data (as is the case in the audio examples later in this chapter). Therefore, a

single EMBED element may include attributes that apply to more than one plug-in.

You have to hope that the plug-ins’ developers chose unique names for their

attributes or that like-named attributes mean the same thing in multiple plug-ins.

Any attributes that a plug-in doesn’t recognize are ignored.

Typical behavior for a plug-in is to display some kind of controller or other panel

in a rectangle associated with the media. You definitely need to specify the HEIGHT
and WIDTH attribute values of such an EMBED element if it is to display visual media

(some video plug-ins let you hide the controls, while still showing the viewing area).

For audio, however, you can specify a one-pixel value for both dimensions, and

leave the controls to your HTML content. Browsers that recognize style sheets can

also set EMBED elements to be invisible.

As an example of what an EMBED element may look like, the following is adapted

from Listing 44-9. The example includes attributes that apply to QuickTime and

LiveAudio and is formatted here for ease of readability.

<EMBED NAME=”jukebox”
HEIGHT=1
WIDTH=1
SRC=”Beethoven.aif”
HIDDEN=TRUE
AUTOSTART=FALSE
AUTOPLAYT=FALSE
ENABLEJAVASCRIPT=TRUE
MASTERSOUND>

</EMBED>

After the page loads and encounters this tag, the browser reaches out to the

server and loads the sound file into the plug-in, where it sits quietly until the plug-in

is instructed to play it.

IE/Windows OBJECT
In the IE/Windows camp, the preferred way to get external media into the docu-

ment is to load the plug-in (ActiveX control) as an object via the <OBJECT> tag. The

OBJECT element is endorsed by the W3C HTML standard. In many ways the

<OBJECT> tag works like the <APPLET> tag in that aside from specifying attributes

that load the plug-in, additional nested PARAM elements let you make numerous

settings to the plug-in while it loads, including the name of the file to pre-load. As

with a plug-in’s attributes, an object’s parameters are unique to the object and are

documented (somewhere) for every object intended to be put into an HTML page.

(c) ketabton.com: The Digital Library

1199Chapter 44 ✦ Scripting Java Applets and Plug-ins

IE/Windows has a special (that is, far from intuitive) way it refers to the plug-in

program: through its class ID (also known as a GUID). You must know this long

string of numbers and letters in order to embed the object into your page. If you are

having difficulty getting this information from a vendor, see Chapter 32 for tips on

how to hunt for the information yourself. There, you also discover how to find out

what parameters apply to an object.

The following example is an OBJECT element that loads the Windows Media

Player 6.x plug-in (ActiveX control) into a page. The example is adapted from

Listing 44-9.

<OBJECT ID=”jukebox” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”Beethoven.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>
</OBJECT>

When you compare the EMBED and OBJECT approaches, you can see many simi-

lar properties and values, which are just expressed differently (for example,

attributes versus PARAM elements).

Using EMBED and OBJECT together
Because a public Web page must usually appeal to a broad range of browsers,

you should design such a page to work with as many browsers as possible. For the

convenience of your scripting (and especially if you use the audio playback API

described later in this chapter), referring to a plug-in object by the same identifier

is helpful, whether it is loaded via an EMBED or OBJECT element.

To the rescue comes a handy behavior of the OBJECT element. It is designed in

such a way that you can nest the associated EMBED element inside the OBJECT ele-

ment’s tag set. If the browser doesn’t know about the OBJECT element, that element

is ignored, but the EMBED element is picked up. Similarly, if the browser that knows

about the OBJECT element fails to load the plug-in identified in its attributes, the

nested EMBED elements also get picked up. Therefore, you can combine the

OBJECT and EMBED elements as shown in the following example, which combines

the two previous examples:

<OBJECT ID=”jukebox” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”Beethoven.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>

<EMBED NAME=”jukebox”
HEIGHT=1
WIDTH=1
SRC=”Beethoven.aif”
HIDDEN=TRUE
AUTOSTART=FALSE
AUTOPLAYT=FALSE
ENABLEJAVASCRIPT=TRUE
MASTERSOUND>

</EMBED>
</OBJECT>

(c) ketabton.com: The Digital Library

1200 Part V ✦ Putting JavaScript to Work

Notice that the identifier assigned to the ID of the OBJECT element and to the

NAME of the EMBED element are the same. Because only one of these two elements

will be valid in the document, you have no conflict of like-named elements.

Validating the plug-in
As described at length in Chapter 32, you may need to validate the installation of

a particular plug-in before the external media will play. This validation is even more

vital if you want to control the plug-in from scripts, because you must have the

right controlling vocabulary for each scriptable plug-in.

The coordination of plug-in and data type is not a big issue in IE/Windows,

because your OBJECT element explicitly loads a known plug-in, even if the com-

puter is equipped to play the same data type through a half-dozen different ActiveX

controls. But in NN (and IE/Mac, although plug-ins are not scriptable there at least

through Version 5), the association of a plug-in with a particular MIME type (data

type of the incoming media) is perhaps a bit too automatic. It is not uncommon for

plug-in installation programs to gobble up the associations of numerous MIME

types. Knowledgeable users, who can fathom the nether worlds of browser prefer-

ences, can manually change these associations, but your scripts cannot direct a

browser to use a specific plug-in to play your media unless the plug-in is already

enabled for your media’s MIME type. The more common and open your media’s

MIME type is (particularly audio and video), the more of a potential problem this

presents to you. Caveat scriptor.
With these warnings in mind, review the approaches to checking the presence of

a plug-in and its enabled status by way of the mimeTypes and plugIns objects

described in Chapter 32. You see some of the routines from that chapter put to use

in a moment.

The API approach
In this section, you see one version of an API that can be used to accomplish

simple audio playback activities in a page through three different plug-in technolo-

gies (Windows Media Player 6, Apple QuickTime, and Netscape LiveAudio). Your

scripts issue one command (for example, play(1)), and the API sends the precise

command to the plug-in being used in the user’s browser. At the same time, the API

has its own initialization routine, which it uses not only to validate the plug-in being

used, but alerts users of ill-equipped browsers with a relevant message about why

their browser can’t get the most out of the page.

This API is far from the be-all, end-all library, although you will see that it does

quite a bit as-is. The code is offered as a starting point for your further develop-

ment. Such development may take the shape of adding more operations to the API

or adding capabilities for additional scriptable plug-ins. For example, while the API

as shown supports Windows Media Player 6, Microsoft continues to upgrade the

Player to new versions (with new GUIDs for your OBJECT tags) that have new com-

mand vocabularies. There is no reason that the API cannot be extended for new

generations of Windows Media Player, while maintaining backward compatibility for

the Version 6 generation.

You can find the complete API code on the CD-ROM within the folder of example

listings for this chapter. The API file is named DGAudioAPI.js. Check out the fol-

lowing high points of this library.

(c) ketabton.com: The Digital Library

1201Chapter 44 ✦ Scripting Java Applets and Plug-ins

Loading the library
Adding the library to your page is no different from any external .js library file.

Include the following tag in the HEAD of your page:

<SCRIPT LANGUAGE=”JavaScript” SRC=”DGAudioAPI.js”></SCRIPT>

Except for two global variable initializations, no immediate code runs from the

library. All of its activity is invoked from event handlers or other script statements

in the main page.

Initializing the library
The first job for the library is to validate that your sounds have one of the three

known plug-in technologies available. Before the library can do this, all loading of

the OBJECT or EMBED elements must be concluded so that the objects exist for the

initialization routine to examine. Therefore, use the onLoad event handler in the

BODY to invoke the initAudioAPI() function. Parameters to be passed to this

function are vital pieces of information.

Parameter values consist of one or more two-element arrays. The first value is a

string of the identifier, which is assigned to the OBJECT and EMBED elements

(recall that they are the same identifiers); the second value is a string of the MIME

type. Getting the desired value may take some trial and error if you aren’t familiar

with MIME type terminology. Use the Edit/Preferences/Applications dialog box win-

dow listings in NN as a guide in finding the name of a MIME type based on the file

name extension of the media file.

The following is an excerpt from Listing 44-9, which shows how the jukebox
player object is initialized for the audio/x-aiff MIME type (all sound files for

examples in this chapter have the .aif file name extension):

onLoad=”initAudioAPI([‘jukebox’, ‘audio/x-aiff’])”

Notice how the square bracket literal array syntax is used both to create the array

of two values while passing them as parameters to the function. NN uses the MIME

type to make sure that the plug-in that fired up as a result of the EMBED element is

enabled for the MIME type.

As you see in Listing 44-10 (much later in this chapter), the initAudioAPI()
function lets you initialize multiple player objects, each one with its own MIME

type, if necessary. Each object and MIME type pair are passed as their own array.

For example, the following initializes the library for two different embedded plug-in

objects, although both have the same MIME type:

onLoad=”initAudioAPI([‘cNatural’,’audio/x-aiff’],[‘cSharp’,’audio/x-aiff’])”

When the function receives multiple arrays, it loops through them, performing

the initializations in sequence. The initAudioAPI() function follows:

function initAudioAPI() {
var args = initAudioAPI.arguments
var id, mime
for (var i = 0; i < args.length; i++) {

// don’t init any more if browser lacks scriptable sound
if (OKToTest) {

id = args[i][0]
mime = args[i][1]

(c) ketabton.com: The Digital Library

1202 Part V ✦ Putting JavaScript to Work

players[id] = new API(id, mime)
players[id].type = setType(id, mime)

}
}

}

Notice that parameter variables are not explicitly declared for the function, but

are, instead, retrieved via the arguments property of the function. The global

OKToTest flag, initialized to true when the library loads, is set to false if the valida-

tion of a plug-in fails. The conditional construction here prevents multiple alerts

from appearing when multiple plug-in and MIME type parameters are passed to the

initialization function.

Sound player API objects
One of the jobs of the initialization routine is to create a player object for each

plug-in identifier. The object’s constructor is as follows:

// AudioAPI object constructor
function API(id, mime) {

this.id = id
this.type = “” // values can be “isLA”,”isMP”,”isQT”
this.mimeType = mime
this.play = API_play
this.stop = API_stop
this.pause = API_pause
this.rewind = API_rewind
this.load = API_load
this.getVolume = API_getVolume
this.setVolume = API_setVolume

}

The object becomes a convenient place to preserve properties for each sound

controller, including which type of plug-in it uses (described in a moment). But the

bulk of the object is reserved for assigning methods — the methods that your main

page’s scripts invoke to play and stop the player, adjust its volume, and so on. The

method names to the left of the assignment statements in the object constructor

are the names your scripts use; the functions in the library (for example,

API_play()) are the ones that send the right command to the right plug-in.

Each of these objects (even if there is only one for the page) is maintained in a

hash table-like array (named players[]) in the library. The plug-in object’s identi-

fier is the string index for the array entry. This provides the gateway to your page’s

scripts. For example, if you initialize the library with a single identifier, jukebox,

you access the methods of the library’s jukebox-related player object through the

array and the identifier:

players[“jukebox”].rewind()

Plug-in checking
One more part of the initialization routine inside the library is a call to the

setType() function, which ultimately assigns a value to the players[] object

type property. For a valid plug-in, the value of the type property can be isLA
(LiveAudio), isMP (Windows Media Player), isQT (QuickTime), or an empty string.

Listing 44-8 shows code for the setType() function and some supporting functions.

(c) ketabton.com: The Digital Library

1203Chapter 44 ✦ Scripting Java Applets and Plug-ins

Listing 44-8: setType() and Supporting Functions from
DGAudioAPI.js

function setType(id, mime) {
var type = “”
var errMsg = “This browser is not equipped for scripted sound.\n\n”
var OS = getOS()
var brand = getBrand()
var ver = getVersion(brand)
if (brand == “IE”) {

if (ver > 4) {
if (document.all(id) && document.all(id).HasError) {

errMsg = document.all(id).ErrorDescription
} else {

if (OS == “Win”) {
if (document.all(id) && document.all(id).CreationDate != “”) {

return “isMP”
} else {

errMsg += “Expecting Windows Media Player Version 6.4.”
}

} else {
errMsg += “Only Internet Explorer for Windows is supported.”

}
}

} else {
errMsg += “Only Internet Explorer 4 or later for Windows is

supported.”
}

} else if (brand == “NN”) {
if ((ver >= 3 && ver < 4.6) || (ver >= 4.7 && ver < 6)) {

if (mimeAndPluginReady(mime, “LiveAudio”)) {
return “isLA”

}
if (mimeAndPluginReady(mime, “QuickTime”)) {

qtVer = parseFloat(document.embeds[id].GetPluginVersion(), 10)
if (qtVer >= 4.1) {

return “isQT”
} else {

errMsg += “QuickTime Plugin 4.1 or later is required.”
}

} else {
errMsg += “Sound control requires QuickTime Plugin 4.1 “
errMsg += “(or later) or LiveAudio “
errMsg += “enabled for MIME type: \’” + mime + “\’.”

}
} else {

errMsg += “Requires Navigator 3.x, 4.0-4.5, or 4.7-4.9.”
}

} else {
errMsg += “This page is certified only for versions of Internet Explorer“

Continued

(c) ketabton.com: The Digital Library

1204 Part V ✦ Putting JavaScript to Work

Listing 44-8 (continued)

errMsg == “and Netscape Navigator.”
}
alert(errMsg)
OKToTest = false
return type

}

function getOS() {
var ua = navigator.userAgent
if (ua.indexOf(“Win”) != -1) {

return “Win”
}
if (ua.indexOf(“Mac”) != -1) {

return “Mac”
}
return “Other”

}

function getBrand() {
var name = navigator.appName
if (name == “Netscape”) {

return “NN”
}
if (name.indexOf(“Internet Explorer”) != -1) {

return “IE”
}
return “Other”

}

function getVersion(brand) {
var ver = navigator.appVersion
var ua = navigator.userAgent
if (brand == “NN”) {

if (parseInt(ver, 10) < 5) {
return parseFloat(ver, 10)

} else {
// get full version for NN6+
return parseFloat(ua.substring(ua.lastIndexOf(“/”)+1))

}
}
if (brand == “IE”) {

var IEOffset = ua.indexOf(“MSIE “)
return parseFloat(ua.substring(IEOffset + 5, ua.indexOf(“;”, IEOffset)))

}
return 0

}

The setType() function is an extensive decision tree that uses clues from the

navigator.userAgent and navigator.appVersion properties to determine what

environment is currently running. For each environment, plug-in detection takes

(c) ketabton.com: The Digital Library

1205Chapter 44 ✦ Scripting Java Applets and Plug-ins

place to verify that either the desired Windows ActiveX object is installed in IE or

that one of the acceptable plug-ins is running in NN. All of the detection code is

taken from Chapter 32. One of the advantages of such a detailed decision tree is

that if a decision branch fails, it is for a reasonably specific reason — enough detail

to advise the user intelligently about why the current browser can’t do what the

page author wants it to do.

Invoking methods
Establishing the players[] object type is a critical operation of this library,

because all subsequent operation depends on the type being set. For example, to

perform the action of rewinding the sound to the beginning, your script invokes the

following statement:

players[“jukebox”].rewind()

This, in turn invokes the library’s API_rewind() function:

function API_rewind() {
switch (this.type) {

case “isLA” :
document.embeds[this.id].stop()
document.embeds[this.id].start_at_beginning()
break

case “isQT” :
document.embeds[this.id].Stop()
document.embeds[this.id].Rewind()
break

case “isMP” :
if (document.embeds[this.id]) {

document.embeds[this.id].Stop()
document.embeds[this.id].CurrentPosition = 0

} else {
document.all(this.id).Stop()
document.all(this.id).CurrentPosition = 0

}
break

default:
}

}

Each of the three plug-ins covered in this API has an entirely different way to per-

form (or simulate) a rewinding of the current sound to the beginning. The type
property of the players[] object invoked by your script determines which branch

of the switch statement to follow. For each plug-in type, the appropriate document

object model reference and the plug-in-specific property or method is accessed.

The identifier passed as a parameter to the initialization routine continues to play a

role, providing the identifier to the actual DOM object that is the plug-in controller

(for example, an index to the document.embeds[] array).

The library contains a function just as the one you just saw for each of the seven

methods assigned to players[] objects. They remain invisible to the user and to

you as well, because you work only with the simpler players[] object method

calls, regardless of plug-in.

(c) ketabton.com: The Digital Library

1206 Part V ✦ Putting JavaScript to Work

If the Windows Media Player detects a problem with the audio hardware, it does-
n’t always reflect the error in the object until after all onLoad event handler func-
tions finish executing. This weirdness prevents the error checking from being
performed where it should be, in the setType() function. Therefore, error check-
ing for this possibility is performed in the API branch that commands the Media
Player to play the currently loaded sound.

Extending the library
Adding more plug-in types to the library requires modification in two areas. The

first is to the setType() function’s decision tree. You have to determine where in

the tree the plug-in is best detected. For another Windows Media Player, for

instance, it would be along the same branch that looks for the Version 6 player.

You then need to locate the properties and methods of the new plug-in for basic

operations covered in the library (play, stop, and so on). For each of the action

functions, you add another case for your newly defined type. Your main Web page

scripts should not require any modification (although your OBJECT and/or EMBED

tag attributes may change to accommodate the new plug-in).

Building a jukebox
The first example that utilizes the DGAudioAPI.js library is a jukebox that pro-

vides an interface (admittedly not pretty — that’s for you to whip up) for selecting

and controlling multiple sound files with a single plug-in tag set. The assumption for

this application is that only one sound at a time need be handy for immediate play-

ing.

Listing 44-9 shows the code for the jukebox. All sound files specified in the exam-

ple are in the same folder as the listing on the companion CD-ROM (the AIFF-format

files sound better in some plug-ins than others, so don’t worry about the audio

quality of these demo sounds).

Listing 44-9: A Scripted Jukebox

<HTML>
<HEAD>
<TITLE>Oldies but Goody’s</TITLE>
<SCRIPT LANGUAGE=”JavaScript” SRC=”DGAudioAPI.js”></SCRIPT>
<SCRIPT>
// make sure currently selected tune is preloaded
function loadFirst(id) {

var choice = document.forms[0].musicChoice
var sndFile = choice.options[choice.selectedIndex].value
players[id].load(sndFile)

}
// swap tunes
function changeTune(id, choice) {

players[id].load(choice.options[choice.selectedIndex].value)
}
// control and display volume setting
function raiseVol(id) {

var currLevel = players[id].getVolume()
currLevel += Math.ceil(Math.abs(currLevel)/10)
players[id].setVolume(currLevel)

Note

(c) ketabton.com: The Digital Library

1207Chapter 44 ✦ Scripting Java Applets and Plug-ins

displayVol(id)
}
function lowerVol(id) {

var currLevel = players[id].getVolume()
currLevel -= Math.floor(Math.abs(currLevel)/10)
players[id].setVolume(currLevel)
displayVol(id)

}
function displayVol(id) {

document.forms[0].volume.value = players[id].getVolume()
}
</SCRIPT>
</HEAD>

<BODY onLoad=”initAudioAPI([‘jukebox’, ‘audio/x-aiff’]); loadFirst(‘jukebox’);
displayVol(‘jukebox’)”>
<FORM>
<TABLE BORDER=2 ALIGN=”center”>
<CAPTION ALIGN=top>Classical Piano Jukebox</CAPTION>
<TR><TD COLSPAN=2 ALIGN=center>
<SELECT NAME=”musicChoice” onChange=”changeTune(‘jukebox’, this)”>

<OPTION VALUE=”Beethoven.aif” SELECTED>Beethoven’s Fifth Symphony (Opening)
<OPTION VALUE=”Chopin.aif”>Chopin Ballade #1 (Opening)
<OPTION VALUE=”Scriabin.aif”>Scriabin Etude in D-sharp minor (Finale)

</SELECT></TD></TR>
<TR><TH ROWSPAN=4>Action:</TH>
<TD>

<INPUT TYPE=”button” VALUE=”Play”
onClick=”players[‘jukebox’].play(parseInt(this.form.frequency[
this.form.frequency.selectedIndex].value))”>
<SELECT NAME=”frequency”>
<OPTION VALUE=1 SELECTED>Once
<OPTION VALUE=2>Twice
<OPTION VALUE=3>Three times
<OPTION VALUE=TRUE>Continually
</SELECT></TD></TR>
<TR><TD>

<INPUT TYPE=”button” VALUE=”Stop” onClick=”players[‘jukebox’].stop()”>
</TD></TR>
<TR><TD>

<INPUT TYPE=”button” VALUE=”Pause” onClick=”players[‘jukebox’].pause()”>
</TD></TR
<TR><TD>

<INPUT TYPE=”button” VALUE=”Rewind” onClick=”players[‘jukebox’].rewind()”>
</TD></TR>
<TR><TH ROWSPAN=3>Volume:</TH>
<TD>Current Setting:<INPUT TYPE=”text” SIZE=10 NAME=”volume”
onFocus=”this.blur()”></TD></TR>
<TR><TD>

<INPUT TYPE=”button” VALUE=”Higher” onClick=”raiseVol(‘jukebox’)”>
</TD></TR>
<TR><TD>

<INPUT TYPE=”button” VALUE=”Lower” onClick=”lowerVol(‘jukebox’)”>

Continued

(c) ketabton.com: The Digital Library

1208 Part V ✦ Putting JavaScript to Work

Listing 44-9 (continued)

</TD></TR>
</TABLE>
</FORM>

<OBJECT ID=”jukebox” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”AutoStart” VALUE=”false”>

<EMBED NAME=”jukebox” HEIGHT=2 WIDTH=2 SRC=”Beethoven.aif”
HIDDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRIPT=TRUE MASTERSOUND>

</EMBED>
</OBJECT>

</BODY>
</HTML>

You can see the user interface in Figure 44-5. One SELECT element contains a list

of three possible choices. Most of the interface, however, consists of buttons that

ultimately invoke methods of the current plug-in.

Figure 44-5: The jukebox page

(c) ketabton.com: The Digital Library

1209Chapter 44 ✦ Scripting Java Applets and Plug-ins

Two functions are invoked by the onLoad event handler besides the initialization

routine of the library. The loadFirst() function finds out which of the items in the

SELECT element is chosen when the page loads, and it makes sure that the file is

pre-loaded into the plug-in. This functionality is provided in case the user makes a

choice and should use the Back button or history to return to the page. In some

browsers, the SELECT element will be set to its most recent setting, so the

loadFirst() function simply gets everything ready.

The second onLoad function call is to displayVol(). This function works its

way through the library to read the volume setting of the plug-in and displays the

resulting value in a text box in the form. Not all plug-ins use the same scale or num-

bering system for their volume controls. Windows Media Player 6, for instance,

uses very large negative numbers, while QuickTime and LiveAudio are on different,

positive scales. The other volume-related functions simply increase or decrease the

current setting by 10 percent in response to clicking the associated buttons in the

interface.

All functions defined for this page are designed to be as generalizable as possi-

ble. Thus, the identifier of the plug-in is passed as a parameter to each. If another

plug-in were added to this page, the same functions could be used without modifi-

cation, provided calls to the functions passed the identifier of the other plug-in.

All of the button controls are pretty straightforward except the Play button’s

onClick event handler. It invokes the players[id].play() method, but that

method requires a parameter of how many times the sound should be played. In

this user interface, a SELECT element controls that information. Getting the value of

the selected item creates a lengthy reference, but that’s what is taking up so much

space in the parameter slot of the play() method call.

Embedding multiple sounds
The final example of embedded media serves as a base on which you can build a

page that needs to play multiple sounds without the user explicitly loading them.

For example, you may have buttons generate different sounds after users click

them (I’m not recommending this interface, but that won’t necessarily stop you).

Figure 44-6 shows you the simple five-key piano keyboard. The page loads five dif-

ferent sounds into the page, one for each note (actual piano sounds in this case).

Each sound was recorded for about four seconds, so that you can get the action of

attack and delay, just like a real piano. If you mouse down on a key, the sound plays

for up to four seconds (getting softer all the time) or until you mouse up on the key

(the attack time on the sample sounds on the CD-ROM is not instantaneous, so you

may have to hold a key down for a fraction of a second to start the sound). The col-

ors of the keys also change slightly to provide further user feedback to the action.

(c) ketabton.com: The Digital Library

1210 Part V ✦ Putting JavaScript to Work

Figure 44-6: Controller for five sounds

Thanks to the DGAudioAPI.js library, very little code in this page is associated

with the sounds. Far more is involved with the image swaps and the loading of the

five plug-ins. Listing 44-10 shows the code for the page.

Listing 44-10: Scripting Multiple Sounds

<HTML>
<HEAD>
<TITLE>Tickling the Ivories</TITLE>
<STYLE TYPE=”text/css”>
OBJECT {visibility:hidden}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript” SRC=”DGAudioAPI.js”></SCRIPT>
<SCRIPT>
// pre-cache 10 images
var onImages = new Array()
onImages[“c”] = new Image(35, 140)
onImages[“c”].src = “whiteDown.gif”
onImages[“d”] = new Image(35, 140)
onImages[“d”].src = “whiteDown.gif”
onImages[“e”] = new Image(35, 140)
onImages[“e”].src = “whiteDown.gif”
onImages[“cHalf”] = new Image(26, 90)
onImages[“cHalf”].src = “blackDown.gif”
onImages[“dHalf”] = new Image(26, 90)
onImages[“dHalf”].src = “blackDown.gif”

(c) ketabton.com: The Digital Library

1211Chapter 44 ✦ Scripting Java Applets and Plug-ins

var offImages = new Array()
offImages[“c”] = new Image(35, 140)
offImages[“c”].src = “whiteUp.gif”
offImages[“d”] = new Image(35, 140)
offImages[“d”].src = “whiteUp.gif”
offImages[“e”] = new Image(35, 140)
offImages[“e”].src = “whiteUp.gif”
offImages[“cHalf”] = new Image(26, 90)
offImages[“cHalf”].src = “blackUp.gif”
offImages[“dHalf”] = new Image(26, 90)
offImages[“dHalf”].src = “blackUp.gif”

// swap images (on)
function imgOn(img) {

if (document.images) {
// handle NN4 layers that hold images
if (document.layers) {

if (img.length == 1) {
document.ivories.document.images[img].src = onImages[img].src

} else {
document.ivories.document.layers[“ivory” +

img].document.images[img].src = onImages[img].src
}

} else {
document.images[img].src = onImages[img].src

}
}}

// swap images (off)
function imgOff(img) {

if (document.images) {
// handle NN4 layers that hold images
if (document.layers) {

if (img.length == 1) {
document.ivories.document.images[img].src = offImages[img].src

} else {
document.ivories.document.layers[“ivory” +

img].document.images[img].src = offImages[img].src
}

} else {
document.images[img].src = offImages[img].src

}
}

}

// play a note (mousedown)
function playNote(id) {

players[id].rewind()
players[id].play(1)

}

Continued

(c) ketabton.com: The Digital Library

1212 Part V ✦ Putting JavaScript to Work

Listing 44-10 (continued)

// stop playing (mouseup)
function stopNote(id) {

players[id].stop()
players[id].rewind()

}
</SCRIPT>
</HEAD>

<BODY onLoad=”initAudioAPI([‘cNatural’,’audio/x-aiff’],[‘cSharp’,’audio/x-
aiff’],[‘dNatural’,’audio/x-aiff’],[‘dSharp’,’audio/x-aiff’],[‘eNatural’,
’audio/x-aiff’])”>
<H1>Playing Multiple Sounds</H1>
<HR>
<TABLE ALIGN=”center”>
<TR><TD>
<DIV ID=”ivories” STYLE=”position:relative”>
<A HREF=”#” onMouseDown=”playNote(‘cNatural’);imgOn(‘c’);return false”

onMouseUp=”imgOff(‘c’);stopNote(‘cNatural’)”><IMG
NAME=”c” SRC=”whiteUp.gif”
HEIGHT=”140” WIDTH=”35” BORDER=0><A HREF=”#”
onMouseDown=”playNote(‘dNatural’);imgOn(‘d’);return false”
onMouseUp=”imgOff(‘d’);stopNote(‘dNatural’)”><IMG
NAME=”d” SRC=”whiteUp.gif”
HEIGHT=”140” WIDTH=”35” BORDER=0><A HREF=”#”
onMouseDown=”playNote(‘eNatural’);imgOn(‘e’);return false”
onMouseUp=”imgOff(‘e’);stopNote(‘eNatural’)”><IMG
NAME=”e” SRC=”whiteUp.gif”
HEIGHT=”140” WIDTH=”35” BORDER=0>

<A HREF=”#” onMouseDown=”playNote(‘cSharp’);imgOn(‘cHalf’);return false”

onMouseUp=”imgOff(‘cHalf’);stopNote(‘cSharp’)”><IMG
NAME=”cHalf” SRC=”blackUp.gif”
HEIGHT=”90” WIDTH=”26” BORDER=0>

<A HREF=”#” onMouseDown=”playNote(‘dSharp’);imgOn(‘dHalf’);return false”

onMouseUp=”imgOff(‘dHalf’);stopNote(‘dSharp’)”><IMG
NAME=”dHalf” SRC=”blackUp.gif”
HEIGHT=”90” WIDTH=”26” BORDER=0>

</DIV>
</TD>
</TR>
</TABLE>
<OBJECT ID=”cNatural” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”c.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>
<PARAM NAME=”BufferingTime” VALUE=”30”>

<EMBED NAME=”cNatural” HEIGHT=2 WIDTH=2 SRC=”c.aif”
HIDDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRIPT=TRUE MASTERSOUND>

</EMBED>
</OBJECT>

(c) ketabton.com: The Digital Library

1213Chapter 44 ✦ Scripting Java Applets and Plug-ins

<OBJECT ID=”cSharp” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”cSharp.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>
<PARAM NAME=”BufferingTime” VALUE=”30”>

<EMBED NAME=”cSharp” HEIGHT=2 WIDTH=2 SRC=”cSharp.aif”
HIDDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRIPT=TRUE MASTERSOUND>

</EMBED>
</OBJECT>

<OBJECT ID=”dNatural” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”d.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>
<PARAM NAME=”BufferingTime” VALUE=”30”>

<EMBED NAME=”dNatural” HEIGHT=2 WIDTH=2 SRC=”d.aif”
HIDDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRIPT=TRUE MASTERSOUND>

</EMBED>
</OBJECT>

<OBJECT ID=”dSharp” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”dSharp.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>
<PARAM NAME=”BufferingTime” VALUE=”30”>

<EMBED NAME=”dSharp” HEIGHT=2 WIDTH=2 SRC=”dSharp.aif”
HIDDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRIPT=TRUE MASTERSOUND>

</EMBED>
</OBJECT>

<OBJECT ID=”eNatural” WIDTH=”1” HEIGHT=”1”
CLASSID=”CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95”
CODEBASE=”#Version=6,0,0,0”>
<PARAM NAME=”FileName” VALUE=”e.aif”>
<PARAM NAME=”AutoStart” VALUE=”false”>
<PARAM NAME=”BufferingTime” VALUE=”30”>

<EMBED NAME=”eNatural” HEIGHT=2 WIDTH=2 SRC=”e.aif”
HIDDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRIPT=TRUE MASTERSOUND>

</EMBED>
</OBJECT>
</BODY>
</HTML>

Perhaps the trickiest part of this entire demonstration lies in the way the

keyboard art and user interface are created. Because the white keys are not

(c) ketabton.com: The Digital Library

1214 Part V ✦ Putting JavaScript to Work

rectangular, the black key art is dropped atop the white keys by way of positioned

elements (which become layer objects in NN4). The visual reward is worth the

extra pain of managing references to the images within NN4 layers.

When you use the page, you may notice a slight delay in getting the sound to be

heard after pressing down on a key. On older, slower machines, this delay is even

more noticeable. Take this behavior into account when designing interactive sound.

Scripting Java Classes Directly
LiveConnect, as implemented in NN3 and NN4, allows scripts to access Java

classes as if they were part of the JavaScript environment. Because you need to

know your way around Java before programming Java classes directly from

JavaScript, I won’t get into too much detail in this book. Fortunately, the designers

of JavaScript have done a good job of creating JavaScript equivalents for the most

common Java language functionality, so there is not a strong need to access Java

classes on a daily basis.

To script Java classes, it helps to have a good reference guide to the classes built

into Java. Though intended for experienced Java programmers, Java in a Nutshell
(O’Reilly & Associates, Inc.) offers a condensed view of the classes, their construc-

tors, and their methods.

Java’s built-in classes are divided into major groups (called packages) to help

programmers find the right class and method for any need. Each package focuses

on one particular aspect of programming, such as classes for user interface design

in application and applet windows, network access, and basic language constructs,

such as strings, arrays, and numbers. References to each class (object) defined in

Java are “dot” references, just as in JavaScript. Each item following a dot helps zero-

in on the desired item. As an example, consider one class that is part of the base

language class. The base language class is referred to as

java.lang

One of the objects defined in java.lang is the String object, whose full reference

is

java.lang.String

To access one of its methods, you use an invocation syntax with which you are

already familiar:

java.lang.String.methodName([parameters])

To demonstrate accessing Java from JavaScript, I call upon one of Java’s String
object methods, java.lang.String.equalsIgnoreCase(), to compare two

strings. Equivalent ways are available for accomplishing the same task in JavaScript

(for example, comparing both strings in their toUpperCase() or toLowerCase()
versions), so don’t look to this Java demonstration for some great new powers

along these lines.

Before you can work with data in Java, you have to construct a new object. Of

the many ways to construct a new String object in Java, you use the one that

accepts the actual string as the parameter to the constructor:

var mainString = new java.lang.String(“TV Guide”)

(c) ketabton.com: The Digital Library

1215Chapter 44 ✦ Scripting Java Applets and Plug-ins

At this point, your JavaScript variable, mainString, contains a reference to the

Java object. From here, you can call this object’s Java methods directly:

var result = mainString.equalsIgnoreCase(“tv Guide”)

Even from JavaScript, you can use Java classes to create objects that are Java

arrays and access them via the same kind of array references (with square brack-

ets) as JavaScript arrays. In a few cases, you can use Java classes to obtain addi-

tional information about the user environment, such as the user’s IP address (but

not e-mail address). The process involves a couple of Java class calls, as follows:

var localHost = java.net.InetAddress.getLocalHost()
var IP = localhost.getHostAddress()

The more you work with these two languages, the more you see how much Java and

JavaScript have in common.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Debugging
Scripts

One of the first questions that an experienced program-

mer asks about a programming environment is what

support is there for debugging code. Even the best coders in

the world make mistakes when they draft programs.

Sometimes, the mistakes are a mere slip of a finger on the key-

board; other times, they result from not being careful with

expression evaluation or object references. The cause of the

mistake is not the issue: finding the mistake and getting help

to fix it is.

Some debugging tools are available for the latest browsers.

For the most part, they have come from the browser makers

themselves, or they are tied very closely to a particular

authoring environment. Some of these tools are very quirky;

others require significant investments in authoring environ-

ments. Discussion about debugging tools in this chapter, how-

ever, focuses on simple tools provided on the companion

CD-ROM. By understanding the true meaning of error mes-

sages and working out the problem with the tools provided

here, you should be able to overcome your bugs.

Syntax versus Runtime Errors
As a page loads into a JavaScript-enabled browser, the

browser attempts to create an object model out of the HTML

and JavaScript code in the document. Some types of errors

crop up at this point. These are mostly syntax errors, such as

failing to include a closing brace after a function’s statements.

Such errors are structural in nature, rather than about values

or object references.

Runtime errors involve failed connections between func-

tion calls and their functions, mismatched data types, and

undeclared variables located on the wrong side of assignment

operators. Such runtime errors can occur as the page loads if

the script lines run immediately as the page loads. Runtime

errors located in functions won’t crop up until the functions

are called — either as the page loads or in response to user

action.

4545C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Identifying the type of
error plaguing a
script

Interpreting error
messages

Preventing problems
before they occur

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1218 Part V ✦ Putting JavaScript to Work

Because of the interpreted nature of JavaScript, the distinction between syntax

and runtime errors blurs. But as you work through whatever problem halts a page

from loading or a script from running, you have to be aware of differences between

true errors in language and your errors in logic or evaluation.

Error Message Notification
As the browsers have evolved through several generations, the ways in which

script errors are reported to the user (and to you as the author) have also changed.

The biggest changes came in IE4/Windows and NN4.5. Prior to those versions,

script errors always displayed some kind of alert dialog box with information about

the error. Because these alerts could confuse non-technical users, the newer

browsers (except for IE/Mac) are much more subtle about the presence of errors. In

fact the notification mechanism is so subtle, that it is easy to miss the fact that a

script error has occurred. Even if you do notice, you must then exercise your

mouse a bit more to view the details.

When a script error occurs in IE4+/Windows, the statusbar displays a yellow

alert icon plus a brief text message indicating that an error has occurred. A syntax

error that occurs while the page loads usually signifies that the page has loaded,

but with errors. A runtime error’s message simply indicates that an error occurred.

To view details about the error, you must double-click the yellow icon in the status-

bar. The default appearance of the error message alert dialog box window includes

a button named Show Details. Clicking this button expands the window to reveal

whatever details the browser is reporting about the error. If you leave the window

expanded, the next time it opens, it will also be expanded. It is a good idea for

scripters to also check the box that forces the browser to show the error dialog box

whenever an error occurs. This is simply a shortcut to manually double-clicking the

statusbar error icon.

Netscape console windows
For NN4 browsers starting with NN4.5, a user receives error notification through

a message in the statusbar. The instructions there indicate how to view the error

details: If you type

javascript:

into the toolbar’s Location box or into the dialog box that lets you open a new

page, an entirely new, non-modal window appears. This window is called the

Communicator Console. In contrast to the one message per window approach of

IE, the Communicator Console window continues to record all script errors in

sequence (in a scrolling frame), even when the Console window is closed. You can

keep this window open all the time, and simply bring it to the front whenever you

need to view errors. If you are developing on a large video monitor, you can let the

Console window stick out to the right of the browser window. If an error occurs, not

only does the message appear in the browser statusbar, but you’ll also see the

scrollbar of the Console window’s top frame appear — an even more explicit indica-

tion that an error occurred (assuming you click the Clear Console button every

time you are ready to try another test run).

(c) ketabton.com: The Digital Library

1219Chapter 45 ✦ Debugging Scripts

Netscape changed the name of the window for NN6, now calling it the JavaScript

Console. Opening this window is less cryptic than before: Choose Tasks/Tools/

JavaScript Console from the menu bar. NN6 does not provide notification of errors

in the statusbar, so it is up to you to be vigilant for something running amok. This is

all the more reason to keep the JavaScript Console window open while you are writ-

ing and debugging your scripts. Even if things appear to be OK, periodically check

the Console window to be sure.

Multiple error messages
The modality of IE error message alert dialog boxes tends to force just one mes-

sage to appear. In other words, when the first error occurs, the browser stops

recording further errors. In NN, however, it is not uncommon for multiple errors to

be listed (or, in older versions, multiple error windows to show up). But you need

to understand how to treat these multiple errors to get to the root of the problem.

The usual reaction is to look at the last message to appear in the sequence. That,

however, is usually the error message least likely to lead you to the true problem.

Error messages are dumped to the NN Console window in the order in which they

occur. This means that the first error in the list is the most important error message

of them all. More than likely, the first error points to a problem that throws off the

rest of the script, thus triggering all of the other error messages. For example, if a

statement that initializes a variable has a syntax error in it, all other statements

that rely on that variable will fail, because the variable appears to be undefined.

When you encounter multiple errors, don’t start any serious debugging until you

locate the first error message. You must tackle this one before any others. The solu-

tion to the first one may cause the other errors to go away. This is all the more rea-

son, when authoring in NN4.5+, to keep the Console window open, and clear it

before loading any page or executing any scripts.

Error Message Details
Error reporting comes in three flavors depending on the browser: NN, IE/

Windows, IE/Mac. One of these groups may be better (that is, more accurate and

explicit) at reporting some kinds of errors than the other groups. By and large,

however, you can count on error details to include three basic clues to help you

track down the error: the file in which the error occurred, the location of the error

within the source code, and a textual description of the error.

Error file name
Although IE/Mac error messages do not explicitly reveal the name of the file

whose source code contains the error, in practice, only the NN browsers do the

best job of telling the truth. Of course, when the script and HTML are all on one

page, it doesn’t require a brain surgeon to know that the error occurs from that

page’s source code. But if you link in external .js libraries, the NN browsers pro-

vide the URL to the .js file. IE/Windows, on the other hand, indicates the HTML

page that loads the external library, making it difficult to know precisely where the

error is.

(c) ketabton.com: The Digital Library

1220 Part V ✦ Putting JavaScript to Work

Error location
All browsers provide a source code line number and character position where

the error supposedly occurs. For self-contained pages with no dynamically created

content, the reporting tends to be accurate (also see the IE “Object expected” error

message details described later in this chapter), but the accuracy is much closer in

NN browsers than IE. And if your page links in an external library, the line number

provided by IE/Windows and IE/Mac is practically useless. The sense you get is that

the lines of the .js file become embedded within the main page’s script, but how

that is supposed to help an author find the precise problem line is a mystery —

even the most feature-laden text editor knows only how to display line numbers for

a single document.

NN browsers, however, not only point to the correct .js file, but to the line num-

ber within that file. You are much more likely to get to the root of a problem, espe-

cially in an external .js file, through NN error messages.

Line number reporting has improved with each browser generation, but anoma-

lies still exist. Perhaps the most egregious is the tendency for IE to report a problem

at a line number whose source code is HTML with an event handler. The problem, it

turns out, will be somewhere in the function being invoked by the event handler.

Another possibility in all browsers is that the line number being reported is below

the line that contains the problem. Consider the following simple source code list-

ing (with line numbers from the source code editor) that intentionally contains a

syntax error:

1: <HTML>
2: <HEAD>
3: <SCRIPT LANGUAGE=”JavaScript”>
4: function tarzan() {
5: var x = 1
6:
7: function jane() {
8: var y = 3
9: }
10: </SCRIPT>
11: </HEAD>
12: <BODY>
13: Hello.
14: </BODY>
15: </HTML>

When you load this page into browsers, all of them report a problem with a miss-

ing right brace (NN is a bit more explicit with its message, indicating that a right

brace is missing after a function body). But where do the browsers point to the

error? By looking at the code as a human, you can see that the missing brace

belongs in Line 6. But now examine the code from the point of view of a script inter-

preter engine: It sees the opening brace on Line 4, and then a new function declara-

tion starting on Line 7. To the interpreter, this means that the jane() function is

probably nested inside the tarzan() function, and it is the tarzan() function that

is lacking the right brace following the jane() function. Therefore, the error line

number comes in at Line 10 (although IE5/Mac reports Line 9). Your scripts won’t

likely be this simple, so the distance between the reported error line number and

the location of the actual problem can be substantial and difficult to spot without

using some of the tips and tools described later in this chapter.

(c) ketabton.com: The Digital Library

1221Chapter 45 ✦ Debugging Scripts

IE sometimes has a nasty habit of identifying the location of the problem at Line

1, Character 1. All this means is that you need to put your detective skills to work

that much harder. Common causes for this behavior are references to HTML

objects that don’t exist (or there is a mismatch between the identifier of the ele-

ment and your script reference to it) and errors that affect global functions or win-

dow methods. To find the genuine problem line, you can use tracing techniques

described later in this chapter.

Error message text
Because so many permutations exist of the potential errors you can make in

scripts and the ways the JavaScript interpreters in different browsers regard these

errors, presenting hard-and-fast solutions to every JavaScript error message is

impossible. What I can do, however, is list the most common and head-scratch-

inducing error messages and relate the kinds of non-obvious problems that can trig-

ger such messages.

“Object expected”
This error message is often one of the least helpful that you see in IE. The line

number associated with the message typically points to a line in the source code that

invokes a function. If you define event handlers as attributes of element tags, the line

number being reported may correspond to the line containing that HTML tag.

The most obvious problem is that the function being invoked is not regarded as

a valid function in the page (the “object” referred to here is the function object).

This problem can be the result of an HTML or script error earlier in the document.

The problem can also be the result of some error in the function itself that failed to

let the interpreter treat the function as a genuine function object. Most typically,

these kinds of problems are detected as syntax errors while the page loads (for

example, an imbalanced set of parentheses or braces), but not always.

As a first-strike tactic, you need to determine if the function is being invoked at

all. By placing an alert in the first line of the function and triggering the function,

you can see if script execution is reaching that point. If that works okay, then move

the alert downward through the function to find out where the error is actually

being triggered. The line before the alert that fails is the likely culprit.

“Expected <something>”
This message usually points straight at the problem line. Most of the “things”

that the statement expects are self-explanatory. If a right parenthesis is missing

from a pair, that is the “thing” shown to be expected. Detecting in the message the

difference between a brace and parenthesis isn’t always easy, so look at the mes-

sage carefully. Not quite as intuitive is when the message says “Expected identifier”.

This error refers to an expression that typically is trying to use a reserved word as

a variable name. Look into Appendix B for a list of reserved words, none of which

you may use as names of things or variables.

“<Something> is undefined”
This message is fairly easy to understand, yet at times difficult to diagnose. For

variable names, the message usually means that you have an uninitialized variable

name sitting in the position of a right-hand operand or a unary operand. This vari-

able name has not been declared or assigned with any value prior to this erroneous

statement. Perhaps you’re attempting to use a variable name that has been initial-

ized only as a local variable in another function. You may also have intended the

(c) ketabton.com: The Digital Library

1222 Part V ✦ Putting JavaScript to Work

right-hand value to be a string, but you forgot to enclose it in quotes, forcing

JavaScript to look upon it as a reference to something. Another possibility is that

you misspelled the name of a previously declared variable. JavaScript rightly

regards this item as a new, undeclared variable. Misspellings, you will recall,

include errors in upper- and lowercase in the very case-sensitive JavaScript world.

If the item is a function name, you may have to perform a bit of detective work.

Though the function may be defined properly, a problem in the script above the

function (for example, imbalanced braces) makes JavaScript fail to see the function.

In other cases, you may be trying to invoke a function in another window or frame

but forgot to include the reference to that distant spot in the call to the function.

A less likely case, but a confusing one to diagnose, is when you are assembling

string versions of function calls or array references out of literal strings and vari-

able values. The following simplified example is assembling a string that is a func-

tion call to be triggered by setTimeout():

function doA() {
var x = “joe”
setTimeout(“doB(“ + x + “)”, 5000)

}

Even though the value of x is a string when it is concatenated to the call to the

doB() function, the value gets evaluated as if it were a variable name. An error

crops up saying that “joe is undefined”. Because you want to pass the value of x as

a parameter, you must nest its value inside a pair of quotes, as follows:

function doA() {
var x = “joe”
setTimeout(“doB(‘“ + x + “‘)”, 5000)

}

The difference in the code is extremely subtle, but absolutely necessary.

“<Something> is not a function”
As with the preceding one, this error message can be one of the most frustrating,

because when you look at the script, it appears as though you have clearly defined

a function by that name, and you’re simply having an event handler or other run-

ning statement call that function. The first problems to look for are mismatched

case of letters in the calling statement and function and the reuse of a variable or

HTML object name by the function name.

This latter item is a no-no — it confuses JavaScript into thinking that the function

doesn’t exist, even though the object name doesn’t have parentheses appended to

it and the function does. I’ve also seen this error appear when other problems

existed in the script above the function named in the error message, and the named

function was the last one in a script.

In NN, this message appears when you attempt to invoke a function that is not

implemented for a particular object. For example, if you attempt to use a W3C DOM

method in NN4, the error reports that the method you tried to invoke “is not a

function.”

“Object doesn’t support this property or method”
This IE message reports that a valid object does not provide support for a

method you just attempted to invoke. In practice, this message rarely appears as

the result of referencing an object’s nonexistent property, because the language

(c) ketabton.com: The Digital Library

1223Chapter 45 ✦ Debugging Scripts

allows for extending an object’s list of properties by assignment. If you do a lot of

development in IE5+ for Windows, you may see a lot of this message when testing

the page in IE5 for the Macintosh, whose complement of implemented object meth-

ods is somewhat smaller.

“Unterminated string literal”
“Unterminated string constant”

NN is far more helpful with this type of message, because along with the error

message, it displays the code fragment that tripped the error. You will see the

beginning (or all) of the string that is the culprit. If you simply forgot to close a

string quote pair, the error most frequently appears when you try to concatenate

strings or nest quoted strings. Despite the claim that you can nest alternating dou-

ble and single quotes, I often have difficulties using this nesting method beyond the

second nested level (single quotes inside a double-quoted string). At different

times, I’ve gotten away with using a pair of \” inline quote symbols for a third layer.

If that syntax fails, I break up the string so that nesting goes no deeper than two lay-

ers. If necessary, I even back out the most nested string and assign it to a variable

in the preceding line — concatenating it into the more complex string in the next

line.

In the Windows 3.1 versions of Navigator, you may also see this error if a string

value is longer than about 250 characters. But you can divide such a string into

smaller segments and concatenate these strings later in the script with the add-

by-value (+=) operator.

And in all versions of Navigator through NN4, avoid statements in scripts that

extend for more than 255 characters. If you use a text editor that counts the column

number as you type, use this measure as a guide for long statements. Break up long

statements into shorter lines.

“Missing } after function body”
“Expected }”

This error usually is easy to recognize in a simple function definition because the

closing brace is missing at the end of the function. But when the function includes

additional nested items, such as if...else or for loop constructions, you begin

dealing with multiple pairs of braces within the function. The JavaScript interpreter

doesn’t always determine exactly where the missing brace belongs, and thus it sim-

ply defaults to the end of the function. This location is a natural choice, I guess,

because from a global perspective of the function, one or more of the right braces

that ripple down to the end of the function usually are missing.

In any case, this error message means that a brace is missing somewhere in a

function above the referenced line number. Do an inventory count for left and right

braces and see whether a discrepancy occurs in the counts. One of those nested

constructions is probably missing a closing brace. Some programmer-oriented text

editors also include tools for finding balanced pairs of braces and parentheses.

“<Something> is not a number”
The variable name singled out in this error message is most likely a string or null

value. The line of JavaScript that trips it up has an operator that demands a num-

ber. When in doubt about the data type of a variable destined for a math operation,

use the parseInt() or parseFloat() functions to convert strings to numbers.

(c) ketabton.com: The Digital Library

1224 Part V ✦ Putting JavaScript to Work

I have also encountered this error when it provides no clue about what isn’t a

number — the error message simply says, “is not a number.” The root of the prob-

lem ended up having nothing to do with numbers. A structural imbalance in the

script triggered this bogus error message.

“<Something> has no property named . . .”
“<Something> has no properties”

When a statement trips this error message, an object reference has usually gone

awry in an assignment or comparison expression. You probably attempted to refer-

ence a property of an object, but something is wrong with the object reference, or

you’re trying to retrieve a property that doesn’t exist for that object. If the refer-

ence is an extended one, you may have to dig to find the precise problem with the

reference. Consider the following two statements that attempt to access the value
property of a button named calcMe:

document.forms.calcme.value
document.forms[0].calcme.value

The NN errors for these two statements would read “document.forms.calcme has

no properties” and “document.forms[0].calcme has no properties”. Causes for the

two errors are quite different. The obvious problem with them both may seem to be

that the button’s name is incorrectly referenced as calcme instead of calcMe. That,

indeed, is the error for the second statement. But a more fundamental problem also

plagues the first statement: the document.forms reference (a valid object, return-

ing an array of forms) needs an array index in this instance, because it needs to

look into a particular form for one of its objects. Unfortunately, both error mes-

sages look alike at first glance, and you cannot tell from them which statement has

two errors and which has one.

But what you can do when this kind of error appears is use the reference that is

returned with the error message to check your work. Start verifying the accuracy of

your references from left to right. Later in this chapter, you see how to use the

embeddable Evaluator tool to verify the existence of object references.

“<Something> is null or not an object”
This message is the IE version of the previous NN error message. A big difference

is that the reference returned as part of the error message includes the complete

reference. Therefore, a reference to a nonexistent calcme button in a form yields

the error message “‘document.forms[0].calcme.value’ is null or not an object”. Your

first instinct is to be suspicious of the value property part of the reference. The

detective work to find the problem is the same as in the NN version: verify the refer-

ence piece by piece, working from left to right. Again, the embeddable Evaluator

can assist in this task.

“<Something> has no property indexed by [i]”
Look carefully at the object reference in this error message. The last item has an

array index in the script, but the item is not an array value type. Users commonly

make this mistake within the complex references necessary for radio buttons and

SELECT options. Make sure that you know which items in those lengthy references

are arrays and which are simply object names that don’t require array values.

(c) ketabton.com: The Digital Library

1225Chapter 45 ✦ Debugging Scripts

“<Something> can’t be set by assignment”
This error message tells you either that the property shown is read-only or that

the reference points to an object, which must be created via a constructor function

rather than by simple assignment.

“Test for equality (= =) mistyped as assignment (=)? Assuming
equality test.”

The first time I received this error, I was amazed by JavaScript’s intelligence. I

had, indeed, meant to use the equality comparison function (==) but had entered

only a single equal sign. JavaScript is good at picking out these situations where

Boolean values are required. In NN6, this message has been demoted to just a warn-

ing rather than an error.

“Function does not always return a value”
Often while designing deeply nested if...else constructions, your mind fol-

lows a single logic path to make sure that a particular series of conditions is met,

and that the function returns the desired values under those conditions. What is

easy to overlook is that there may be cases in which the decision process may “fall

through” all the way to the bottom without returning any value, at which point the

function must indicate a value that it returns, even if it is a 0 or empty (but most

likely a Boolean value). JavaScript checks the organization of functions to make

sure that each condition has a value returned to the calling statement. The error

message doesn’t tell you where you’re missing the return statement, so you have to

do a bit of logic digging yourself.

“Access disallowed from scripts at <URL> to documents at <URL>”
“Access is denied”

These messages (NN and IE versions, respectively) indicate that a script in one

frame or window is trying to access information in another frame or window that

has been deemed a potential security threat. Such threats include any location

object property or other information about the content of the other frame when the

other frame’s document comes from a protocol, server, or host that is different

from the one serving up the document doing the fetching.

Even the best of intentions can be thwarted by these security restrictions. For

example, you may be developing an application that blends data in cooperation

with another site. Security restrictions, of course, don’t know that you have a coop-

erative agreement with the other Web site, and you have no workaround for access-

ing a completely different domain unless you use signed scripts for NN (see Chapter

46) or an IE user has browser security levels set dangerously loose.

Another possible trigger for these errors is that you are using two different

servers in the same domain or different protocols (for example, using https: for

the secure part of your commerce site, while all catalog info uses the http: proto-

col). If the two sites have the same domain (for example, giantco.com) but differ-

ent server names or protocols, you can set the document.domain properties of

documents so that they recognize each other as equals. See Chapter 46 for details

on these issues and the restrictions placed on scripts that mean well, but that can

be used for evil purposes.

(c) ketabton.com: The Digital Library

1226 Part V ✦ Putting JavaScript to Work

IE, especially Windows versions, frequently clamps down too severely on inter-

window and inter-frame communication. Don’t be surprised to encounter security

problems trying to communicate between a main window and another window

whose content is dynamically generated by scripts in the main window. This error

can be incredibly frustrating. Sometimes, serving the main page from a server

(instead of reading it from a local hard disk) can solve the problem, but not always.

You are safest if the content of both windows or frames are HTML documents

served from the same server and domain.

“Lengthy JavaScript still running. Continue?”
Although not a genuine error message, this NN3 alert dialog box provides a safe-

guard against inadvertent infinite loops and intentional ones triggered by

JavaScript tricksters. Instead of permanently locking up the browser, NN3 — after

processing a large number of rapidly executing script cycles — asks the user

whether the scripts should continue. This error was not adopted in later versions

of NN or ever implemented in IE.

“Unspecified error”
This completely unhelpful IE error message is not a good sign because it means

that whatever error is occurring is not part of the well-traveled decision tree that

the browser uses to report errors. All is not lost, however. That the browser has not

crashed means that you can still attempt to get at the root of the problem through

various tracing tactics described later in this chapter.

“Uncaught exception”
You may encounter these messages in NN6, although usually not as a result of

your scripts unless you are using some of the browser’s facilities to dive into inner

workings of the browser. These messages are triggered by the browser’s own pro-

gramming code, and indicate a processing error that was not properly wrapped

inside error trapping mechanisms. The details associated with such an error point

to NN6’s own source code modules and internal routines. If you can repeat the error

and can do so in a small test case page, you are encouraged to submit a report to

http://bugzilla.mozilla.org, the bug tracking site for the engine inside NN6.

“Too many JavaScript errors”
You may see this message in NN if it detects a runaway train generating errors

uncontrollably. This message was far more important in the days of separate error

windows, because a buggy repeat loop could cause NN to generate more error win-

dows than it could do safely.

Sniffing Out Problems
It doesn’t take many error-tracking sessions to get you in the save-switch-reload

mode quickly. Assuming that you know this routine (described in Chapter 3), the

following are some techniques I use to find errors in my scripts when the error mes-

sages aren’t being helpful in directing me right to the problem.

Check the HTML tags
Before I look into the JavaScript code, I review the document carefully to make

sure that I’ve written all my HTML tags properly. That includes making sure that all

tags have closing angle brackets and that all tag pairs have balanced opening and

(c) ketabton.com: The Digital Library

1227Chapter 45 ✦ Debugging Scripts

closing tags. Digging deeper, especially in tags near the beginning of scripts, I make

sure that all tag attributes that must be enclosed in quotes have the quote pairs in

place. A browser may be forgiving about sloppy HTML as far as layout goes, but the

JavaScript interpreter isn’t as accommodating. Finally, I ensure that the <SCRIPT>
tag pairs are in place (they may be in multiple locations throughout my document)

and that the LANGUAGE=”JavaScript” attribute value has both of its quotes.

View the source
Your success in locating bugs by viewing the source in the browser varies widely

with the kind of content on the page and the browser you use. Very frequently,

authors place perhaps too much importance to what they see in the source window.

For a straight, no-frame HTML page, viewing the source provides a modicum of

comfort by letting you know that the entire page has arrived from the server. Some

versions of NN might flash a questionable HTML construction, but don’t expect

miracles.

Note: NN4 exhibits a notorious bug in the source view if your HTML tags include

STYLE attributes for element-specific style sheets. You may “see double” in these

lines, whereby the STYLE attribute appears to be repeated (although usually begin-

ning with “TTYLE...”) in what looks to be gibberish. This problem is a bug in the

source viewer and does not accurately represent what the browser-rendering

engine is using as source code.

Examining the source code for framesetting documents or individual frames, you

must first give focus to the desired element. For an individual frame, click in the

frame, and then right-click (or click and hold on the Mac) on the frame’s back-

ground to get the contextual menu. One of the items should indicate a source view

of the frame. To view the framesetter’s source, press the Tab key until the

Address/Location field of the browser is selected. Then choose to view the source

from the Edit menu.

Where the source view would be most helpful, but often fails, is to display

dynamically generated HTML. Your best chance will be for pages whose entire

content is generated by script. This is about the only place you can appreciate the

difference between document.write() and document.writeln(), because the

latter puts carriage returns after the end of each string passed as a parameter to

the method. The result is a more readable source view. Most recent browsers, with

the exception of NN6, display the HTML as written by your script. NN4 does this in

a window whose URL indicates the wysiwyg: protocol — an internal indication of

dynamically generated content.

But when only part of the page is generated by script, few browsers combine the

hard-wired and dynamic code in the source view. Instead, you see only the hard-

wired HTML and scripts. To work around this for IE4+ and NN6, you can use the

embeddable Evaluator and read the innerHTML property of any elements you want.

Intermittent scripts
Without question, the most common bug in Navigator 2.0x is the one that makes

scripts behave intermittently. Buttons, for example, won’t fire onClick event han-

dlers unless the page is reloaded. Or, as a result of the same bug, sometimes a script

runs and sometimes it doesn’t. The problem here is that NN2 requires all tags

to include HEIGHT and WIDTH attributes, even when the images are not scripted.

Because doing so is good HTML practice anyway (it helps the browser’s layout per-

formance and is technically required according to the formal HTML specification), if

(c) ketabton.com: The Digital Library

1228 Part V ✦ Putting JavaScript to Work

you include these attributes without fail throughout your HTML documents, you

won’t be plagued by intermittent behavior.

Scripts not working in tables
Tables have been a problem for scripts through NN3. The browser has difficulty

when a <SCRIPT> tag is included inside a <TD> tag pair for a table cell. The

workaround for this is to put the <SCRIPT> tag outside the table cell tag and use

document.write() to generate the <TD> tag and its contents. I usually go one step

further, and use document.write() to generate the entire table’s HTML. This step

is necessary only when executable statements are needed in cells (for example, to

generate content for the cell). If a cell contains a form element whose event handler

calls a function, you don’t have to worry about this problem.

Timing problems
One problem category that is very difficult to diagnose is the so-called timing

problem. There are no hard-and-fast rules that govern when you are going to experi-

ence such a problem. Very experienced scripters develop an instinct about when

timing is causing a problem that has no other explanation.

A timing problem usually means that one or more script statements are execut-

ing before the complete action of an earlier statement has finished its task.

JavaScript runs within a single thread inside the browser, meaning that only one

statement can run at a time. But there are times when a statement invokes some

browser service that operates in its own thread and therefore doesn’t necessarily

finish before the next JavaScript statement runs. If the next JavaScript statement

relies on the previous statement’s entire task having been completed, the script

statement appears to fail, even though it actually runs as it should.

These problems crop up when scripts work with another browser window, and

especially in IE for Windows (ironic in a way). In discussions in this book about

form field validation, for example, I recommend that after an instructive alert dialog

box notifies the user of the problem with the form, the affected text field should be

given focus and its content selected. In IE/Windows, however, after the user closes

the alert dialog box, the script statements that focus and select operate before the

operating system has finished putting the alert away and refreshing the screen. The

result is that the focused and selected text box loses its focus by the time the alert

has finally disappeared.

The solution is to artificially slow down the statements that perform the focus

and select operations. By placing these statements in a separate function, and

invoking this function via the window.setTimeout() method, the browser catches

its breath before executing the separate function — even when the delay parameter

is set to zero. A similar delay is utilized when opening and writing to a new window,

as shown in the example for window.open() in Chapter 16.

Reopen the file
If I make changes to the document that I truly believe should fix a problem, but

the same problem persists after a reload, I reopen the file via the File menu.

Sometimes, when you run an error-filled script more than once, the browser’s inter-

nals get a bit confused. Reloading does not clear the bad stuff, although sometimes

an unconditional reload (clicking Reload while holding Shift) does the job.

(c) ketabton.com: The Digital Library

1229Chapter 45 ✦ Debugging Scripts

Reopening the file, however, clears the old file entirely from the browser’s memory

and loads the most recently fixed version of the source file. I find this situation to

be especially true with documents involving multiple frames and tables and those

that load external .js script library files. In severe cases, you may even have to

restart the browser to clear its cobwebs, but this is less necessary in recent

browsers. You should also consider turning off the cache in your development

browser(s).

Find out what works
When an error message supplies little or no clue about the true location of a run-

time problem, or when you’re faced with crashes at an unknown point (even during

document loading), you need to figure out which part of the script execution works

properly.

If you have added a lot of scripting to the page without doing much testing, I sug-

gest removing (or commenting out) all scripts except the one(s) that may get called

by the document’s onLoad event handler. This is primarily to make sure that the

HTML is not way out of whack. Browsers tend to be quite lenient with bad HTML,

so that this tactic won’t necessarily tell the whole story. Next, add back the scripts

in batches. Eventually, you want to find where the problem really is, regardless of

the line number indicated by the error message alert.

To narrow down the problem spot, insert one or more alert dialog boxes into the

script with a unique, brief message that you will recognize as reaching various

stages (such as alert(“HERE-1”)). Start placing alert dialog boxes at the begin-

ning of any groups of statements that execute and try the script again. Keep moving

these dialog boxes deeper into the script (perhaps into other functions called by

outer statements) until the error or crash occurs. You now know where to look for

problems. See also an advanced tracing mechanism described later in this chapter.

Comment out statements
If the errors appear to be syntactical (as opposed to errors of evaluation), the

error message may point to a code fragment several lines away from the problem.

More often than not, the problem exists in a line somewhere above the one quoted

in the error message. To find the offending line, begin commenting out lines one at a

time (between reloading tests), starting with the line indicated in the error mes-

sage. Keep doing this until the error message clears the area you’re working on and

points to some other problem below the original line (with the lines commented

out, some value is likely to fail below). The most recent line you commented out is

the one that has the beginning of your problem. Start looking there.

Check runtime expression evaluation
I’ve said many times throughout this book that one of the two most common

problems scripters face is an expression that evaluates to something you don’t

expect (the other common problem is an incorrect object reference). In lieu of a

debugger that would let you step through scripts one statement at a time while

watching the values of variables and expressions, you have a few alternatives to

displaying expression values while a script runs.

(c) ketabton.com: The Digital Library

1230 Part V ✦ Putting JavaScript to Work

The simplest approaches to implement are an alert box and the statusbar. Both

the alert dialog box and statusbar show you almost any kind of value, even if it is

not a string or number. An alert dialog box can even display multiple-line values.

Because most expression evaluation problems come within function definitions,

start such explorations from the top of the function. Every time you assign an

object property to a variable or invoke a string, math, or date method, insert a line

below that line with an alert() method or window.status assignment statement

(window.status = someValue) that shows the contents of the new variable value.

Do this one statement at a time, save, switch, and reload. Study the value that

appears in the output device of choice to see if it’s what you expect. If not, some-

thing is amiss in the previous line involving the expression(s) you used to achieve

that value.

This process is excruciatingly tedious for debugging a long function, but it’s

absolutely essential for tracking down where a bum object reference or expression

evaluation is tripping up your script. When a value comes back as being undefined

or null, more than likely the problem is an object reference that is incomplete (for

example, trying to access a frame without the parent.frames[i] reference), using

the wrong name for an existing object (check case), or accessing a property or

method that doesn’t exist for that object.

When you need to check the value of an expression through a long sequence of

script statements or over the lifetime of a repeat loop’s execution, you are better off

with a listing of values along the way. In the section “A Simple Trace Utility” later in

this chapter, I show you how to capture trails of values through a script.

Using the embeddable Evaluator
As soon as a page loads or after some scripts run, the window contains objects

whose properties very likely reveal a lot about the environment at rest (that is, not

while scripts are running). Those values are normally disguised from you, and the

only way to guarantee successful access to view those values is through scripting

within the same window or frame. That’s where the embeddable Evaluator comes in

handy.

As you probably recall from Chapter 13 and the many example sections of Parts

III and IV of this book, the code within the standalone Evaluator provides two text

boxes for entry of expressions (in the top box) and object references (the bottom

box). Results of expression evaluation and object property dumps are displayed in

the Results textarea between the two input boxes. A compact version of The

Evaluator is contained by a separate library version called evaluator.js (located

in the Chapter 45 folder of listings on the companion CD-ROM). As you embark on

any substantial page development project, you should link in the library with the

following tag at the top of your HEAD section:

<SCRIPT LANGUAGE=”JavaScript” SRC=”evaluator.js”></SCRIPT>

Be sure to either have a copy of the evaluator.js file in the same directory as

the document under construction or specify a complete file: URL to the library file

on your hard drive for the SRC attribute.

Immediately above the closing BODY tag of your document, include the following:

<SCRIPT LANGUAGE=”JavaScript”>
printEvaluator()
</SCRIPT>

(c) ketabton.com: The Digital Library

1231Chapter 45 ✦ Debugging Scripts

The printEvaluator() function draws a horizontal rule (HR) followed by the

complete control panel of The Evaluator, including the codebase principle support

for NN4+. From this control panel, you can reference any document object sup-

ported by the browser’s object model or global variable. You can even invoke func-

tions located in other scripts of the page by entering them into the top text box.

Whatever references are available to other scripts on the page are also available to

The Evaluator, including references to other frames of a frameset and even other

windows (provided a reference to the newly opened window has been preserved as

a global variable, as recommended in Chapter 16).

If you are debugging a page on multiple browsers, you can switch between the

browsers and enter property references into The Evaluator on each browser and

make sure all browsers return the same values. Or, you can verify that a DOM

object and property are available on all browsers under test. If you are working on

W3C DOM compatible browsers, invoke the walkChildNodes() function of The

Evaluator to make sure that modifications your scripts make to the node tree are

achieving the desired goals. Experiment with direct manipulation of the page’s

objects and node tree by invoking DOM methods as you watch the results on the

page.

You should be aware of only two small cautions when you embed The Evaluator

into the page. First, The Evaluator declares its own one-letter lowercase global vari-

able names (a through z) for use in experiments. Your own code should therefore

avoid one-letter global variables (but local variables, such as the i counter of a for
loop, are fine provided they are initialized inside a function with a var keyword).

Second, while embedding The Evaluator at the bottom of the page should have the

least impact on the rest of your HTML and scripts, any scripts that rely on the length

of the document.forms array will end up including the form that is part of The

Evaluator. You can always quickly turn off The Evaluator by commenting out the

printEvaluator() statement in the bottom script to test your page on its own.

The embeddable Evaluator is without question the most valuable and frequently

used debugging tool in my personal arsenal. It provides x-ray vision into the object

model of the page at any resting point.

Emergency evaluation
Using The Evaluator assumes that you thought ahead of time that you want to

view property values of a page. But what if you haven’t yet embedded The

Evaluator, and you encounter a state that you’d like to check out without disturbing

the currently loaded page?

To the rescue comes the javascript: URL and the Location/Address box in

your browser’s toolbar. By invoking the alert() method through this URL, you can

view the value of any property. For example, to find out the content of the cookie

for the current document, enter the following into the Location/Address box in the

browser:

javascript: alert(document.cookie)

Object methods or script functions can also be invoked this way, but you must

be careful to prevent return values from causing the current page to be eliminated.

If the method or function is known to return a value, you can display that value in

an alert dialog box. The syntax for a function call is:

javascript:alert(myFunction(“myParam1”))

(c) ketabton.com: The Digital Library

1232 Part V ✦ Putting JavaScript to Work

And if you want to invoke a function that does not necessarily return a value, you

should also protect the current page by using the void operator, as follows:

javascript:void myFunction(“myParam1”)

A Simple Trace Utility
Single-stepping through running code with a JavaScript debugger is a valuable

aid when you know where the problem is. But when the bug location eludes you,

especially in a complex script, you may find it more efficient to follow a rapid trace

of execution and viewing intermediate values along the way. The kinds of questions

that this debugging technique addresses include:

✦ How many times is that loop executing?

✦ What are the values being retrieved each time through the loop?

✦ Why won’t the while loop exit?

✦ Are comparison operators behaving as I’d planned in if...else
constructions?

✦ What kind of value is a function returning?

A bonus feature of the embeddable Evaluator is a simple trace utility that lets

you control where in your running code values can be recorded for viewing after

the scripts run. The resulting report you get after running your script can answer

questions like these and many more.

The trace() function
Listing 45-1 shows the trace() function that is built into the evaluator.js

library file. By embedding the Evaluator into your page under construction, you can

invoke the trace() function wherever you want to capture an interim value.

Listing 45-1: trace() function

function trace(flag, label, value) {
if (flag) {

var msg = “”
if (trace.caller) {
var funcName = trace.caller.toString()
funcName = funcName.substring(9, funcName.indexOf(“)”) + 1)
msg += “In “ + funcName + “: “

}
msg += label + “=” + value + “\n”
document.forms[“ev_evaluator”].ev_output.value += msg

}
}

(c) ketabton.com: The Digital Library

1233Chapter 45 ✦ Debugging Scripts

The trace() function takes three parameters. The first, flag, is a Boolean value

that determines whether the trace should proceed (I show you a shortcut for set-

ting this flag later). The second parameter is a string used as a plain-language way

for you to identify the value being traced. The value to be displayed is passed as

the third parameter. Virtually any type of value or expression can be passed as the

third parameter — which is precisely what you want in a debugging aid.

Only if the flag parameter is true does the bulk of the trace() function execute.

The first task is to extract the name of the function from which the trace() func-

tion was called. Unfortunately, the caller property of a function is missing from

NN6 (and ECMAScript), so this information is made part of the result only if the

browser running the trace supports the property. By retrieving the rarely used

caller property of a function, the script grabs a string copy of the entire function

that has just called trace(). A quick extraction of a substring from the first line

yields the name of the function. That information becomes part of the message text

that records each trace. The message identifies the calling function followed by a

colon; after that comes the label text passed as the second parameter plus an

equals sign and the value parameter. The format of the output message adheres to

the following syntax:

In <funcName>: <label>=<value>

The results of the trace — one line of output per invocation — are appended to

the Results textarea in The Evaluator. It’s a good idea to clear the textarea before

running a script that has calls to trace() so that you can get a clean listing.

Preparing documents for trace.js
As you build your document and its scripts, you need to decide how granular

you want tracing to be: global or function-by-function. This decision affects at what

level you place the Boolean “switch” that turns tracing on and off.

You can place one such switch as the first statement in the first script of the

page. For example, specify a clearly named variable and assign either false or zero

to it so that its initial setting is off:

var TRACE = 0

To turn debugging on at a later time, simply edit the value assigned to TRACE
from zero to one:

var TRACE = 1

Be sure to reload the page each time you edit this global value.

Alternatively, you can define a local TRACE Boolean variable in each function for

which you intend to employ tracing. One advantage of using function-specific trac-

ing is that the list of items to appear in the Results textarea will be limited to those

of immediate interest to you, rather than all tracing calls throughout the document.

You can turn each function’s tracing facility on and off by editing the values

assigned to the local TRACE variables.

(c) ketabton.com: The Digital Library

1234 Part V ✦ Putting JavaScript to Work

Invoking trace()
All that’s left now is to insert the one-line calls to trace() according to the fol-

lowing syntax:

trace(TRACE,<”label”>,<value>)

By passing the current value of TRACE as a parameter, you let the library function

handle the decision to accumulate and display the trace. The impact on your run-

ning code is kept to a one-line statement that is easy to remember. To demonstrate

how to make the calls to trace(), Listing 45-2 shows a pair of related functions

that convert a time in milliseconds to the string format “hh:mm”. To help verify that

values are being massaged correctly, the script inserts a few calls to trace().

Listing 45-2: Calling trace()

function timeToString(input) {
var TRACE = 1
trace(TRACE,”input”,input)
var rawTime = new Date(eval(input))
trace(TRACE,”rawTime”,rawTime)
var hrs = twoDigitString(rawTime.getHours())
var mins = twoDigitString(rawTime.getMinutes())
trace(TRACE,”result”, hrs + “:” + mins)
return hrs + “:” + mins

}

function twoDigitString(val) {
var TRACE = 1
trace(TRACE,”val”,val)
return (val < 10) ? “0” + val : “” + val

}

After running the script, the Results box in The Evaluator shows the following

trace:

In timeToString(input): input=976767964655
In timeToString(input): rawTime=Wed Dec 13 20:26:04 GMT-0800 2000
In twoDigitString(val): val=20
In twoDigitString(val): val=26
In timeToString(input): result=20:26

Having the name of the function in the trace is helpful in cases in which you might

justifiably reuse variable names (for example, i loop counters). You can also see

more clearly when one function in your script calls another.

One of the most valuable applications of the trace() function comes when your

scripts accumulate HTML that gets written to other windows or frames, or replaces

HTML segments of the current page. Because the source view may not display the

precise HTML that you assembled, you can output it via the trace() function to

the Results box. From there, you can copy the HTML and paste it into a fresh docu-

ment to test in the browser by itself. You can also verify that the HTML content is

being formatted the way that you want it.

(c) ketabton.com: The Digital Library

1235Chapter 45 ✦ Debugging Scripts

Browser Crashes
Each new browser generation is less crash-prone than its predecessor, which is

obviously good news for everyone. It seems that most crashes, if they occur, do so

as the page loads. This can be the result of some ill-advised HTML, or something

happening as the result of script statements that either run immediately as the

page loads or in response to the onLoad event handler.

Finding the root of a crash problem is perhaps more time consuming because

you must relaunch the browser each time (and in some cases, even reboot your

computer). But the basic tactics are the same. Reduce the page’s content to the

barest minimum HTML by commenting out both scripts and all but HEAD and

BODY tags. Then begin enabling small chunks to test reloading of the page. Be sus-

picious of META tags inserted by authoring tools. Their removal can sometimes

clear up all crash problems. Eventually you will add something into the mix that

will cause the crash. It means that you are close to finding the culprit.

Preventing Problems
Even with help of authoring and debugging tools, you probably want to avoid

errors in the first place. I offer a number of suggestions that can help in this regard.

Getting structure right
Early problems in developing a page with scripts tend to be structural: knowing

that your objects are displayed correctly on the page; making sure that your

<SCRIPT> tags are complete; completing brace, parenthesis, and quoted pairs. I

start writing my page by first getting down the HTML parts — including all form def-

initions. Because so much of a scripted page tends to rely on the placement and

naming of interface elements, you will find it much easier to work with these items

after you lay them out on the page. At that point, you can start filling in the

JavaScript.

When you begin defining a function, repeat loop, or if construction, fill out the

entire structure before entering any details. For example, when I define a function

named verifyData(), I enter the entire structure for it:

function verifyData() {

}

I leave a blank line between the beginning of the function and the closing brace in

anticipation of entering at least one line of code.

After I decide on a parameter to be passed and assign a variable to it, I may want

to insert an if construction. Again, I fill in the basic structure:

function verifyData(form) {
if (form.checkbox.checked) {

}
}

(c) ketabton.com: The Digital Library

1236 Part V ✦ Putting JavaScript to Work

This method automatically pushes the closing brace of the function lower, which

is what I want — putting it securely at the end of the function where it belongs. It

also ensures that I line up the closing brace of the if statement with that grouping.

Additional statements in the if construction push down the two closing braces.

If you don’t like typing or don’t trust yourself to maintain this kind of discipline

when you’re in a hurry to test an idea, you should prepare a separate document

that has templates for the common constructions: <SCRIPT> tags, function, if,

if...else, for loop, while loop, and conditional expressions. Then if your editor

and operating system support it, drag and drop the necessary segments into your

working script.

Build incrementally
The worst development tactic you can follow is to write tons of code before try-

ing any of it. Error messages may point to so many lines away from the source of

the problem that it could take hours to find the true source of difficulty. The save-

switch-reload sequence is not painful, so the better strategy is to try your code

every time you have written a complete thought — or even enough to test an inter-

mediate result in an alert dialog box — to make sure that you’re on the right track.

Test expression evaluation
Especially while you are learning the ins and outs of JavaScript, you may feel

unsure about the results that a particular string, math, or date method yields on a

value. The longer your scripted document gets, the more difficult it will be to test

the evaluation of a statement. You’re better off trying the expression in a more con-

trolled, isolated environment, such as The Evaluator. By doing this kind of testing in

the browser, you save a great deal of time experimenting by going back and forth

between the source document and the browser.

Build function workbenches
A similar situation exists for building and testing functions, especially generaliz-

able ones. Rather than test a function inside a complex scripted document, drop it

into a skeletal document that contains the minimum number of user interface ele-

ments that you need to test the function. This task gets difficult when the function

is closely tied to numerous objects in the real document, but it works wonders for

making you think about generalizing functions for possible use in the future.

Display the output of the function in a text or textarea object or include it in an

alert dialog box.

Testing Your Masterpiece
If your background strictly involves designing HTML pages, you probably think

of testing as determining your user’s ability to navigate successfully around your

site. But a JavaScript-enhanced page — especially if the user enters input into fields

or implements Dynamic HTML techniques — requires a substantially greater

amount of testing before you unleash it to the online masses.

(c) ketabton.com: The Digital Library

1237Chapter 45 ✦ Debugging Scripts

A large part of good programming is anticipating what a user can do at any point

and then being sure that your code covers that eventuality. With multiframe win-

dows, for example, you need to see how unexpected reloading of a document

affects the relationships between all the frames — especially if they depend on each

other. Users will be able to click Reload at any time or suspend document loading in

the middle of a download from the server. How do these activities affect your

scripting? Do they cause script errors based on your current script organization?

The minute you enable a user to type an entry into a form, you also invite the

user to enter the wrong kind of information into that form. If your script expects

only a numeric value from a field, and the user (accidentally or intentionally) types

a letter, is your script ready to handle that “bad” data? Or no data? Or a negative

floating-point number?

Just because you, as author of the page, know the “proper” sequence to follow

and the “right” kind of data to enter into forms, your users will not necessarily fol-

low your instructions. In days gone by, such mistakes were relegated to “user

error.” Today, with an increasingly consumer-oriented Web audience, any such

faults rest solely on the programmer — you.

If I sound as though I’m trying to scare you, I have succeeded. I was serious in

the early chapters of this book when I said that writing JavaScript is programming.

Users of your pages are expecting the same polish and smooth operation (no script

errors and certainly no crashes) from your site as from the most professional soft-

ware publisher on the planet. Don’t let them or yourself down. Test your pages

extensively on as many browsers and as many operating systems as you can and

with as wide an audience as possible before putting the pages on the server for all

to see.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Security and
Netscape Signed
Scripts

The paranoia levels about potential threats to security and

privacy on the Internet are at an all-time high. As more

people rely on e-mail and Web site content for their daily lives

and transactions, the fears will only increase for the foresee-

able future (an indeterminate number of Web Weeks). As a

jokester might say, though, “I may be paranoid, but how do I

know someone really isn’t out to get me?” The answer to that

question is that you don’t know, and such a person may be

out there.

But Web software developers are doing their darnedest to

put up roadblocks to those persons out to get you — hence,

the many levels of security that pervade browsers.

Unfortunately, these roadblocks also get in the way of

scripters who have completely honest intentions. Designing a

Web site around these barriers is one of the greatest chal-

lenges that many scripters face.

Battening Down the Hatches
When Navigator 2 first shipped to the world (way back in

February 1996), it was the first browser released to include

support for Java applets and scripting — two entirely different

but often confused technologies. It didn’t take long for clever

programmers in the Internet community to find the ways in

which one or the other technology provided inadvertent

access to client computer information (such as reading file

directories) and Web surfer activities (such as histories of

where you’ve been on the Net and even the passwords you

may have entered to access secure sites).

JavaScript, in particular, was the avenue that many of these

programmers used to steal such information from Web site

visitors’ browsers. The sad part is that the same features that

provide the access to the information were intentionally made

a part of the initial language to aid scripters who would put

4646C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Exploring browser
security policies

Applying JavaScript
to Navigator security
mechanisms

Using Netscape
signed scripts

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1240 Part V ✦ Putting JavaScript to Work

those features to beneficial use in controlled environments, such as intranets. But

out in the Wild Wide Web, a scripter could capture a visitor’s e-mail address by hav-

ing the site’s home page surreptitiously send a message to the site’s author without

the visitor even knowing it.

Word of security breaches of this magnitude not only circulated throughout the

Internet, but also reached both the trade and mainstream press. As if the security

issues weren’t bad enough on their own, the public relations nightmare com-

pounded the sense of urgency to fix the problem. To that end, Netscape released

two revised editions of Navigator 2. The final release of that generation of browser,

Navigator 2.02, took care of the scriptable security issues by turning off some of the

scripted capabilities that had been put into the original 2.0 version. No more cap-

turing visitors’ browser histories; no more local file directory listings; no more

silent e-mail. Users could even turn off JavaScript support entirely if they so

desired.

The bottom line on security is that scripts are prevented from performing auto-

mated processes that invade the private property of a Web author’s page or a

client’s browser. Thus, any action that may be suspect, such as sending an e-mail

message, requires an explicit action on the part of the user — clicking a Submit but-

ton, in this case — to carry it out. Security restrictions must also prevent a Web site

from tracking your activity beyond the boundaries of that Web site.

When Worlds Collide
If a script tries to do something that is not allowed or is a potential personal

security breach, the browser reports the situation to the user. Figure 46-1, for

instance, shows an IE/Windows warning a user gets from clicking a Submit button

located in a form whose ACTION is set to a mailto: URL.

Another security error message often confuses scripters who don’t understand

the possible privacy invasions that can accrue from one window or frame having

access to the URL information in another window or frame. In IE5/Windows, for

example, an ominous error message — “Permission denied” — warns users of an

attempt to access URL information from another frame if that URL is from a differ-

ent Web site.

Despite the fact that a scripted Web site may have even loaded the foreign URL

into the other frame, the security restrictions guard against unscrupulous usage of

the ability to snoop in other windows and frames.

Figure 46-1: IE/Windows e-mail warning

(c) ketabton.com: The Digital Library

1241Chapter 46 ✦ Security and Netscape Signed Scripts

The Java Sandbox
Much of the security model for JavaScript is similar to that originally defined for

Java applets. Applets had a potentially dangerous facility of executing Java code on

the client machine. That is a far cry from the original deployment of the World Wide

Web as a read-only publishing medium on the Internet. Here were mini-programs

downloaded into a client computer that, if unchecked, could have the same access

to the system as a local software program.

Access of this type would clearly be unacceptable. Imagine the dismay caused

by someone clicking a link that said “Free Money,” only to have the linked page

download an applet that read or damaged local disk files unbeknownst to the user.

In anticipation of pranksters, the designers of Java and the Java virtual machine

built in a number of safeguards to prevent applets from gaining access to local

machines. This mechanism is collectively referred to as the sandbox, a restricted

area in which applets can operate. Applets cannot extend their reach outside of the

sandbox to access local file systems and many sensitive system preferences. Any

applet runs only while its containing page is still loaded in the browser. When the

page goes away, so does the applet, without being saved to the local disk cache.

JavaScript adopted similar restrictions. The language provided no read or write

access to local files beyond the highly regulated cookie file. Moreover, because

JavaScript works more closely with the browser and its documents than applets

typically do, the language had to build in extra restrictions to prevent browser-spe-

cific privacy invasions. For example, it was not possible for a script in one window

to monitor the user’s activity in another window, including the URL of the other

window, if the page didn’t come from the same server as the first window.

Sometimes the restrictions on the JavaScript side are even more severe than in

Java. For example, while a Java applet is permitted to access the network anytime

after the applet is loaded, an applet is prevented from reaching out to the Net if the

trigger for that transaction comes from JavaScript via LiveConnect (see Chapter

44). Only partial workarounds are available.

Neither the Java nor JavaScript security blankets were fully bug-free at the out-

set. Some holes were uncovered by the languages’ creators and others in the com-

munity. To their credit, Sun and Netscape (and Microsoft for that matter) are quick

to plug any holes that are discovered. While the plugs don’t necessarily fix existing

copies of insecure browsers out there, it means that a Bad Guy can’t count on every

browser to offer the same security hole for exploitation. That generally makes the

effort not worth the bother.

Security Policies
Netscape describes security mechanisms under the collective term policies. This

usage of the word mirrors that of institutions and governments: A policy defines the

way potentially insecure or invasive requests are handled by the browser or script-

ing language. NN4+ includes two different security policies: same origin and signed
script policies. The same origin policy dates back to Navigator 2, although some

additional rules have been added to that policy as Navigator has matured. The

signed script policy started with NN4 and utilizes the state of the art in crypto-

graphic signatures of executable code inside a browser, whether that code is a

(c) ketabton.com: The Digital Library

1242 Part V ✦ Putting JavaScript to Work

plug-in, a Java applet, or a JavaScript script. Because of the signed script facilities,

NN4+ was designed to allow scripts to have wider range of control over the

browser’s interior working parts, provided the user granted permission for such

activity (more about this later in the chapter). NN3 included a partially implemented

prototype of another policy known as data tainting. Signed scripts supersede data

tainting, so if you encounter any writings about data tainting, you can ignore them

because the technology is not being further developed.

By and large, the same origin policy is in force inside IE3 and after. Precise

details may not match up with NN one-for-one, but the most common features are

identical. The signed script policy is implemented only in NN4+. While Microsoft

offers digital signatures for some items that may be embedded within an HTML

page (such as ActiveX controls and other components), scripts that are in an HTML

page’s source code or linked in as a .js library cannot be signed for IE. While

everything you read in this chapter about signed scripts applies only to NN4+, you

should find the next couple of sections informative even if you develop solely for IE.

The Same Origin Policy
The “origin” of the same origin policy means the protocol and domain of a

source document. If all of the source files currently loaded in the browser come

from the same server and domain, scripts in any one part of the environment can

poke around the other documents. Restrictions come into play when the script

doing the poking and the document being poked come from different origins. The

potential security and privacy breaches this kind of access can cause put this

access out of bounds within the same origin policy.

An origin is not the complete URL of a document. Consider the two popular URLs

for Netscape’s Web sites:

http://home.netscape.com
http://developer.netscape.com

The protocol for both sites is http:. Both sites also share the same domain

name: netscape.com. But the sites run on two different servers: home and

developer (at least this is how the sites appear to browsers accessing them; the

physical server arrangement may be quite different).

If a frameset contains documents from the same server at netscape.com, and all

frames are using the same protocol, then they have the same origin. Completely

open and free access to information, such as location object properties, is avail-

able to scripts in any frame’s document. But if one of those frames contains a docu-

ment from the other server, their origins don’t match. A script in a document from

one server would display an “access disallowed” or “permission denied” error mes-

sage if it tried to get the location property of that other document.

A similar problem occurs if you were creating a Web-based shopping service that

displays the product catalog in one window and displays the order form from a

secure server in another window. The order form, whose protocol might be https:,

would not be granted access to the location object properties in a catalog page

whose protocol is http:, even though both share the same server and domain

name.

(c) ketabton.com: The Digital Library

1243Chapter 46 ✦ Security and Netscape Signed Scripts

Setting the document.domain
When both pages in an origin-protected transaction are from the same domain

(but different servers or protocols), you can instruct JavaScript to set the docu-
ment.domain properties of both pages to the domain that they share. When this

property is set to that domain, the pages are treated as if from the same origin.

Making this adjustment is safe, because JavaScript doesn’t allow setting the docu-
ment.domain property to any domain other than the origin of the document mak-

ing the setting. See the document.domain property entry in Chapter 18 for further

details.

Origin checks
Scattered throughout the language reference chapters are notes about items that

undergo what you now know to be origin checks. For the sake of convenience, I list

them all here to help you get a better feeling for the kind of information that is pro-

tected. The general rule is that any object property or method that exposes a local

file in a user’s system or can trace Web surfing activity in another window or frame

undergoes an origin check. Failure to satisfy the same origin rule yields an “access

disallowed” or “permission denied” error message on the client’s machine.

Window object checks
The document object models of windows and frames that don’t share the same

origin are not available to each other. Each separate origin window or frame is its

own little world that has very little ability to communicate with another window or

frame. IE sometimes takes this to the extreme, causing problems between a main

window and a subwindow whose content is entirely dynamically generated from

the main window’s scripts.

Location object checks
All location object properties are restricted to same origin access. Of all same

origin policy restrictions, this one seems to interfere with well-meaning page

authors’ plans when they want to provide a frame for users to navigate around the

Web. Such access, however, would allow spying on your users.

Document object checks
A document object’s properties are by necessity loaded with information about

the content of that document. Just about every property other than the ones that

specify color properties are off-limits if the origin of the target document is different

from the one making the request:

anchors[] lastModified
applets[] length
cookie links[]
domain referrer
embeds title
forms[] URL

In addition, no normally modifiable document property can be modified if the

origin check fails. This, of course, does not prevent you from using

document.write() to write an entirely new page of content to the frame to replace

(c) ketabton.com: The Digital Library

1244 Part V ✦ Putting JavaScript to Work

a document from a different origin. But in IE4+ and W3C DOM browsers, scripts

from one origin won’t be able to modify (or even copy) partial content from a frame

whose content comes from another origin.

NN4 layer object checks
While most of a NN4 layer’s content is protected by the restrictions that apply to

the document object inside, a layer object also has a potentially revealing src prop-

erty. This is essentially similar to the location.href property of a frame. Thus the

src property requires an origin check before yielding its information.

Form object checks
Form data is generally protected by the restriction to a document’s forms[]

array. But should a script in another window or frame also know the name of the

form, that, too, won’t enable access unless both documents come from the same

origin.

Applet object checks
The same goes for named Java applets. A script cannot retrieve information

about the class file name unless both documents are from the same origin

(although the applet can be from anywhere).

LiveConnect access from a Java applet to JavaScript is not an avenue to other

windows and frames from other origins. Any calls from the applet to the objects

and protected properties described here undergo origin checks when those objects

are in other frames and windows. The applet assumes the origin of the document

that contains the applet, not the applet codebase.

Image object checks
While image objects are accessible from other origins, their src and lowsrc

properties are not. These URLs could reveal some or all the URL info about the doc-

ument containing them.

Linked script library checks
To prevent a network-based script from hijacking a local script library file, NN4+

prevents a page from loading a file: protocol library in the SRC attribute of a

<SCRIPT> tag unless the main document also comes from a file: protocol source.

If you are beginning to think that security engineers are a suspicious and paranoid

lot, you are starting to get the idea. It’s not easy to curb potential abuses of Bad

Guys in a networked environment initially established for openness and free

exchange of information among trusted individuals.

The Netscape Signed Script Policy
Just as there are excellent reasons to keep Web pages from poking around your

computer and browser, there are equally good reasons to allow such access to a

Web site you trust not to be a Bad Guy. To permit trusted access to the client

machine and browser, Sun Microsystems and Netscape (in cooperation with other

sources) have developed a way for Web application authors to identify themselves

officially as authors of the pages and to request permission of the user to access

well-defined parts of the computer system and browser.

The technology is called object signing. In broad terms, object signing means

that an author can electronically lock down a chunk of computer code (whether it

(c) ketabton.com: The Digital Library

1245Chapter 46 ✦ Security and Netscape Signed Scripts

be a Java applet, a plug-in, or a script) with the electronic equivalent of a wax seal

stamped by the author’s signet ring. At the receiving end, a user is informed that a

sealed chunk of code is requesting some normally protected access to the com-

puter or browser. The user can examine the “seal” to see who authored the code

and the nature of access being requested. If the user trusts the author not to be a

Bad Guy, the user grants permission for that code to execute; otherwise the code

does not run at all. Additional checks take place before the code actually runs. That

electronic “seal” contains an encrypted, reduced representation of the code as it

was locked by the author. If the encrypted representation cannot be re-created at

the client end (it takes only a fraction of a second to check), it means the code has

been modified in transit and will not run.

In truth, nothing prevents an author from being a Bad Guy, including someone

you may normally trust. The point of the object signing system, however, is that a

trail leads back to the Bad Guy. An author cannot use this technology to sneak into

your computer or browser without your explicit knowledge and permission.

Signed objects and scripts
A special version of the signed object technology is the one that lets scripts be

locked down by their author and electronically signed. Virtually any kind of script

in a document can be signed: a linked .js library, scripts in the document, event

handlers, and JavaScript entities. As described later in this chapter, you must pre-

pare your scripts for being signed, and then run the entire page through a special

tool that attaches your electronic signature to the scripts within that page.

What you get with signed scripts
If you sign your scripts and the user grants your page permission to do its job,

signed scripts open up your application to a long list of capabilities, some of which

border on acting like genuine local applications. Because the designers of NN4+

know that signed scripts are available to authors, a huge number of properties and

actions are exposed to authors.

The most obvious power you get with signed scripts is freedom from the restric-

tions of the same origin policy. All object properties and methods that perform ori-

gin checks for access in other frames and windows become available to your

scripts without any special interaction with the user beyond the dialog box that

requests the one-time permission for the page.

Some operations that normally display warnings about impending actions —

sending a form to a mailto: URL or closing the main browser window under script

control — lose those warning dialog boxes if the user grants the appropriate per-

mission to a signed script. Object properties considered private information, such

as individual URLs stored in the history object and browser preferences, are

opened up, including the possibility of altering browser preferences. Existing win-

dows can have their chrome elements hidden. New windows can be set to be

always raised or lowered, sized to very small sizes, or positioned offscreen. The

dragDrop event of a window reveals its URL. All of these are powerful points of

access, provided the user grants permission.

Again, however, I emphasize that these capabilities are accessible via Netscape’s

signed script policy only. Internet Explorer, at least through Version 5.5, does not

support Netscape’s signed script policy.

(c) ketabton.com: The Digital Library

1246 Part V ✦ Putting JavaScript to Work

The Digital Certificate
Before you can sign a script or other object, you must apply for a digital certifi-

cate. A digital certificate (also called a digital ID) is a small piece of software that

gets downloaded and bound to the developer’s Navigator browser on a particular

computer. Each downloaded digital certificate appears in the list of certificates

under the “Mine” category in Navigator 6’s Security Manager window (accessible

through the Tasks menu). If you have not yet applied for a certificate, the list is

empty. When you sign a page with the certificate, information about the certificate

is included in the file generated by the signing tool.

Possession of a certificate makes you what is known as a principal. If a user

loads a page that has signed “stuff” in it, a security alert advises the user that a Web

site is requesting enhanced privileges.

Certificates are issued by organizations established as certificate authorities. A

certificate authority (known as a CA for short), or a certificate server authorized by

a CA, registers applicants and issues certificates to individuals and software devel-

opers. When you register for a certificate, the CA queries you for identification

information, which it verifies as best it can. The certificate that is issued to you

identifies you as the holder of the certificate. Under the “Authorities” category of

the Security Manager window are the certificate authorities loaded into the

browser when you installed the browser. These are organizations that issue certifi-

cates. The CA of the organization that issues your certificate must be listed for you

to sign scripts.

How to get a certificate
You must visit a certificate vendor to obtain your certificate. The cost ranges

from about $20 to many hundreds of dollars depending on the vendor and the type

of certificate you want to obtain. One vendor that is aware of the needs of Netscape

object signing is Thawte Digital Certificate Services (www.thawte.com). This CA

offers a certificate expressly for developers performing Netscape object signing.

Verisign (www.verisign.com) is also recommended.

Because one of the foundations of a certificate is the identity of the certificate

owner, registration requires submitting documentation that proves the identity of

your organization. Each CA has different requirements, so check the latest informa-

tion at the CA’s enrollment Web site. After the CA processes your application, the

company sends you an e-mail message with a code number to pick up your certifi-

cate at the CA’s Web site. The act of picking up the certificate is actually download-

ing the certificate into your browser. Therefore, be sure you are using the Navigator

browser on the computer with which you will use to sign your pages.

Activating the codebase principal
If you want to try out the capabilities available to signed scripts from a server

without purchasing a certificate (or without going through the signing process

described later in this chapter during script development and debugging), you can

set up your copy of Navigator to accept what is called a codebase principal in place

of a genuine certificate. A codebase principal means that the browser accepts the

source file as a legitimate principal, although it contains no identification as to the

owner or certificate.

(c) ketabton.com: The Digital Library

1247Chapter 46 ✦ Security and Netscape Signed Scripts

Depending on which version of Navigator you are running, if you set up your

browser for codebase principals, you may not be able to verify a certificate that is

presented to you when accessing someone else’s Web site — even if it is a valid

cryptographic certificate. Therefore, even though secure requests won’t slip past

you silently, your Navigator won’t necessarily have the protective shield it normally

does to identify certificate holders beyond the URL of the code. Enable codebase

principals only on a copy of Navigator that doesn’t venture beyond your develop-

ment environment. To activate codebase principals for your copy of Navigator, fol-

low these steps:

1. Quit Navigator.

2. Search your hard disk for a Navigator 4 support file named prefs.js or

Navigator 6 support file named all.js.

3. Edit the version-specific file in a text editor as follows:

a. For NN4, add the following line to the end of the prefs.js file:

user_pref(“signed.applets.codebase_principal_support”, true);

b. For NN6, change the codebase_principal preference in all.js from false
to true:

pref(“signed.applets.codebase_principal_support”, true);

4. Save the file.

To deactivate codebase principals, quit Navigator and then change the true set-

ting of the affected line to false. Because Navigator 4 rebuilds the preference file

upon quitting, the entry will be in alphabetical order rather than at the end of the

file where you first entered it. This preferences setting does not affect your ability

to sign scripts with your certificate as described in the rest of this article.

Signing Scripts
The process of signing scripts entails some new concepts for even experienced

JavaScript authors. You must use a separate signing tool program. You must also

prepare the page that bears scripts so that the tool and the object signing facilities

of the browser can do their jobs.

Signing tool
Download the latest version of Netscape’s SignTool from links you find at

http://developer.netscape.com:80/software/signedobj/jarpack.html
(you find different versions for a variety of Windows and Unix versions). This tool

includes a utility program called a JAR Packager. A JAR file is a special kind of

zipped file collection that has been designed to work with the Navigator security

infrastructure. The letters of the name stand for Java ARchive, which is a file format

standard developed primarily by Sun Microsystems in cooperation with Netscape

and others.

A JAR file’s extension is .jar, and when it contains signed script information, it

holds at least one file, known as the manifest, or list of items zipped together in the

file. Among the items in the manifest is certificate information and data (a hash

(c) ketabton.com: The Digital Library

1248 Part V ✦ Putting JavaScript to Work

value code) about the content of the signed items at the instant they were signed.

In the case of a single page containing signed scripts, the JAR file contains only the

certificate and hash values of the signed scripts within the document. If the docu-

ment links in an external .js script library file, that library file is also packaged in

the JAR file. Thus, a page with signed scripts occupies space on the server for the

HTML file and its companion JAR file.

The SignTool program combines the JAR Packager with the script signing func-

tions (originally a separate program called zigbert.exe). Follow links on the

SignTool download page to the latest instructions on packaging and signing your

finished files from the command line (there is no GUI for this tool). But before you

reach that point, you need to compose your pages in a way that the security mecha-

nism can protect your scripts.

Preparing scripts for signing
Signifying which items in a page are script items that require signing is up to the

page author. It is important to remember that if you want to sign even one script

element in a document, every script in the document must be signed. By “docu-

ment,” I mean an object model document. Because the content of an NN4-only

<LAYER> tag exists in its own document, you don’t have to sign its scripts if they

don’t require it, nor communicate with the signed scripts in the main document.

The first concept you have to master is recognizing what a script is. For signing

purposes, a script is more than just the set of statements between a <SCRIPT> and

</SCRIPT> tag boundary. An event handler — even one that calls a function living

in a <SCRIPT> tag — is also a script that needs signing. So, too, is a JavaScript entity

used to supply a value to an HTML tag attribute. Each one of these items is a script

as far as script signing is concerned.

Your job is to mark up the file with special tag attributes that do two things: 1)

help SignTool know what items to sign in a file; and 2) help the browser loading the

signed document know what items to run through the hash routine again to com-

pare against the values stored in the JAR file.

The ARCHIVE attribute
The first attribute goes in the first <SCRIPT> tag of the file, preferably near the

very top of the document in the <HEAD> portion. This attribute is the ARCHIVE
attribute, and its value is the name of the JAR file to be associated with the HTML

file. For example

<SCRIPT LANGUAGE=”JavaScript” ARCHIVE=”myArchive.jar” ID=”1”>

You can add script statements to this tag or immediately end it with a </SCRIPT>
tag.

SignTool utility uses the ARCHIVE attribute to assign a name to its archive output

file. After the signed page loads into the visitor’s browser, the attribute points to

the file containing signed script information. Having more than one JAR archive file

associated with a signed page is possible. Typically, such a situation calls for a sec-

ond JAR archive overseeing a confined portion of the page. That second archive file

may even be embedded in the primary archive file, allowing a script segment

signed by one principal to be combined with scripts signed by a different principal.

(c) ketabton.com: The Digital Library

1249Chapter 46 ✦ Security and Netscape Signed Scripts

The ID attribute
More perplexing to scripters coming to script signing for the first time is the ID

attribute. The ID attribute is merely a label for each script. Each script must have a

label that is unique among all labels specified for a JAR archive file.

As with the ARCHIVE attribute, the ID plays a dual role. When you run your page

through SignTool, the utility scans the page for these ID attributes. When SignTool

encounters one, it calculates a hash value (something like a checksum) on the

content of the script. For a <SCRIPT> tag set, it is for the entire content of the tag

set; for an event handler, it is for the event handler text. The hash value is associated

with the ID attribute label and stored inside the JAR file. After the document loads

into the client’s browser, the browser also scans for the ID attributes and performs

the same hash calculations on the script items. Then the browser can compare the

ID/hash value pairs against the list in the JAR file. If they match, then the file has

arrived without being modified by a Bad Guy (or a dropped bit in the network).

Most examples show ID attribute values to be numbers, but the attributes are

actually strings. No sequence or relationship exists among ID attribute values: you

can use the names of your favorite cartoon show characters, as long as no two ID
attributes are given the same name. The only time the same ID attribute value may

appear in a document is if another JAR file is embedded within the main JAR file.

Even so, I recommend avoiding reusing names inside the same HTML file, no matter

how many JAR files are embedded.

With one exception, each script item in a document must have its own ID
attribute. The exception is a <SCRIPT> tag that specifies a SRC attribute for an

external .js file. That file is part of the JAR file, so the browser knows it’s a signed

script.

For other <SCRIPT> tags, include the ID attribute anywhere within the opening

tag, as follows:

<SCRIPT LANGUAGE=”JavaScript” ID=”3”>
statements

</SCRIPT>

For a function handler, the ID attribute comes after the event handler inside the

object tag, as follows:

<INPUT TYPE=”button” VALUE=”Calculate” onClick=”doCalc(this.form)” ID=”bart”>

And for a JavaScript entity, the ID attribute must be specified in an empty

<SCRIPT> tag immediately before the tag that includes the entity for an attribute

value, as follows:

<SCRIPT ID=”20”>
<INPUT TYPE=”text” NAME=”date” VALUE=&{getToday()};>

Listing 46-1 shows a skeletal structure of a document that references a single JAR

file and includes five signed scripts: One external .js file and four script items in

the document itself. The fetchFile() function invokes a function imported from

access.js. Notice that the ARCHIVE attribute appears in the very first <SCRIPT>
tag in the document. This also happens to be a tag that imports an external .js file,

so that no ID attribute is required. If there were no external library file for this

(c) ketabton.com: The Digital Library

1250 Part V ✦ Putting JavaScript to Work

page, the ARCHIVE attribute would be located in the main <SCRIPT> tag, which also

has the ID attribute. I arbitrarily assigned increasing numbers as the ID attribute

values, but I could have used any identifiers. Notice, too, that each script has its

own ID value. Just because an event handler invokes a function in a <SCRIPT> tag

that has an ID value doesn’t mean a relationship exists between the ID attribute val-

ues in the <SCRIPT> tag and in the event handler that invokes a function there.

Listing 46-1: Basic Signed Script Structure

<HTML>
<HEAD>
<TITLE>Signed Scripts Testing</TITLE>
<SCRIPT LANGUAGE=”JavaScript” ARCHIVE=”myArchive.jar” SRC=”access.js”></SCRIPT>
<SCRIPT LANGUAGE=”JavaScript” ID=”1”>
function fetchFile(form) {

form.output.value = getFile()
}
function newRaisedWindow() {

// statements for this function
}
</SCRIPT>
</HEAD>
<BODY>
A Source Code Example Only
<FORM>
<TEXTAREA NAME=”output” COLS=60 ROWS=10 WRAP=”virtual”></TEXTAREA>

<INPUT TYPE=”button” VALUE=”Read File” onClick=”this.form.output.value = ‘’;
fetchFile(this.form);” ID=”2”>

<TEXTAREA NAME=”input” COLS=60 ROWS=10 WRAP=”virtual”> </TEXTAREA>

<INPUT TYPE=”button” VALUE=”Save File” onClick=”setFile(this.form.input.value);”
ID=”3”><P>
<INPUT TYPE=”button” VALUE=”New Window...” onClick=”newRaisedWindow();” ID=”4”>
</FORM>
</BODY>
</HTML>

Editing and moving signed scripts
The nature of the script signing process requires that even the slightest modifi-

cation you make to a signed script source code requires re-signing the page. For

this reason, enabling codebase principals while you create and debug your early

code is a convenient alternative.

The rigid link between the hash value of a script element at both the signing and

visitor loading times means that you must exercise care when shifting an HTML file

that contains signed script elements between servers of differing operating sys-

tems. Windows, UNIX, and Macintosh have different ways of treating carriage

returns. If you change the representation of an HTML source file when you move

the source from, say, a Windows machine to a UNIX server, then the signature may

(c) ketabton.com: The Digital Library

1251Chapter 46 ✦ Security and Netscape Signed Scripts

no longer work. However, if you perform a purely binary transfer of the HTML files,

every byte is the same, and the signature should work. This operating system-spe-

cific text representation affects only how files are stored on servers, not how vari-

ous client platforms interpret the source code.

Accessing Protected Properties and Methods
For the browser to allow access to protected properties or methods, it must

have its privileges enabled. Only the user can grant permission to enable privileges,

but it is up to your code to request those privileges of the user.

Gaining privileges
NN4+ comes with some Java classes that allow signed scripts and other signed

objects to display the privilege request alert windows, and then turn on the privi-

leges if the user clicks the “OK” or “Grant” button. A lot of these classes show up in

the netscape.security package, but scripters only work directly with one class

and three of its methods:

netscape.security.PrivilegeManager.enablePrivilege([“targetName”])
netscape.security.PrivilegeManager.revertPrivilege([“targetName”])
netscape.security.PrivilegeManager.disablePrivilege([“targetName”])

The enablePrivilege() method is the one that displays the security alert for

the user. In NN4, the specific target named as a parameter influenced the details of

the security alert message; for NN6, the security alert is generic (and far less intimi-

dating).

If the user grants the privilege, script processing continues with the next

statement. But if the user denies access, then processing stops, and the

PrivilegeManager class throws a Java exception that gets displayed as a

JavaScript error message. Later in this chapter I show you how to gracefully handle

the user’s denial of access.

Enabling a privilege in JavaScript is generally not as risky as enabling a Java

applet. The latter can be more easily hijacked by an alien class to piggyback on the

trusted applet’s privileges. Even though the likelihood of such activity taking place

in JavaScript is very low, turning privileges off after the statement that requires

privileges is always a good idea. Use the revertPrivilege() method to temporar-

ily turn off the privilege; another statement that enables the same privilege target

will go right ahead without asking the user again. Disable privileges only when the

script requiring privileged access won’t be run again until the page reloads.

Specifying a target
Rather than opening blanket access to all protected capabilities in one blow, the

Netscape security model defines narrow capabilities that are opened up when privi-

leges are granted. Each set of capabilities is called a target. Netscape defines

dozens of different targets, but not all of them are needed to access the kinds of

methods and properties available to JavaScript. You will likely confine your targets

to the nine discussed here.

(c) ketabton.com: The Digital Library

1252 Part V ✦ Putting JavaScript to Work

Because NN4’s security alerts provided (at times excruciating) detail about the

nature of the privilege being requested by the Web site, targets had various risk lev-

els and categories. These concerns are less of an issue in NN6, but they are pro-

vided here for your more complete understanding of the mechanisms beneath the

Privilege Manager.

Each target has associated with it a risk level (low, medium, or high) and two

plain-language descriptions about the kinds of actions the target exposes to code.

This information appears in the NN4 security privilege dialog box that faces a user

the first time a particular signature requests privileges. All of the targets related to

scripted access are medium or high risk, because they tend to open up local hard

disk files and browser settings.

Netscape has produced two categories of targets: primitive and macro. A primi-
tive target is the most limited target type. It usually confines itself to either reading

or writing of a particular kind of data, such as a local file or browser preference. A

macro target usually combines two or more primitive targets into a single target to

simplify the user experience when your scripts require multiple kinds of access. For

example, if your script must both read and write a local file, it could request privi-

leges for each direction, but the user would be presented with a quick succession

of two similar-looking security dialog boxes. Instead, you can use a macro target

that combines both reading and writing into the privilege. The user sees one secu-

rity dialog box, which, in NN4, explains that the request is for both read and write

access to the local hard disk.

Likely targets for scripted access include a combination of primitive and macro

targets. Table 46-1 shows the most common script-related targets and the informa-

tion that appears in the security dialog box.

For each call to netscape.security.PrivilegeManager.enablePrivilege(),

you specify a single target name as a string, as in

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”)

This specification allows you to enable, revert, and disable individual privileges as

required in your script.

Table 46-1 Scripting-Related Privilege Targets

Target Name

Risk Short Description Long Description

UniversalBrowserAccess

High Reading or modifying Reading or modifying browser data
browser data that may be considered private, such as

a list of Web sites visited or the contents
of Web forms you may have filled in.
Modifications may also include creating
windows that look like they belong to
another program or positioning windows
anywhere on the screen.

(c) ketabton.com: The Digital Library

1253Chapter 46 ✦ Security and Netscape Signed Scripts

Risk Short Description Long Description

UniversalBrowserRead

Medium Reading browser data Access to browser data that may be
considered private, such as a list of Web
sites visited or the contents of Web page
forms you may have filled in.

UniversalBrowserWrite

High Modifying the browser Modifying the browser in a potentially
dangerous way, such as creating
windows that may look like they belong
to another program or positioning
windows anywhere on the screen.

UniversalFileAccess

High Reading, modifying, or This form of access is typically
deleting any of your files required by a program such as a word

processor or a debugger that needs to
create, read, modify, or delete files on
hard disks or other storage media
connected to your computer.

UniversalFileRead

High Reading files stored in Reading any files stored on hard
your computer disks or other storage media connected

to your computer.

UniversalFileWrite

High Modifying files stored in Modifying any files stored on hard
your computer disks or other storage media connected

to your computer.

UniversalPreferencesRead

Medium Reading preferences settings Access to read the current settings of
your preferences.

UniversalPreferencesWrite

High Modifying preferences settings Modifying the current settings of your
preferences.

UniversalSendMail

Medium Sending e-mail messages
on your behalf

(c) ketabton.com: The Digital Library

1254 Part V ✦ Putting JavaScript to Work

Blending Privileges into Scripts
The implementation of signed scripts in Navigator protects scripters from many

of the potential hazards that Java applet and plug-in developers must watch for.

The chance that a privilege enabled in a script can be hijacked by code from a Bad

Guy is very small. Still, exercising safe practices in case you someday work with

other kinds of signed objects is good practice.

Keep the window small
Privilege safety is predicated on limiting exposure according to two techniques.

The first technique is to enable only the level of privilege required for the protected

access your scripts need. For example, if your script only needs to read a normally

protected document object property, then enable the UniversalBrowserRead tar-

get rather than the wider UniversalBrowserAccess macro target.

The second technique is to keep privileges enabled only as long as the scripts

need them enabled. If a statement calls a function that invokes a protected prop-

erty, enable the privilege for that property in the called function, not at the level of

the calling statement. If a privilege is enabled inside a function, the browser auto-

matically reverts the privilege at the end of the function. Even so, if the privilege

isn’t needed all the way to the end of the function, you should explicitly revert it

after you are through with the privilege.

Think of the users
One other deployment concern focuses more on the user’s experience with your

signed page. You should recognize that the call to the Java PrivilegeManager
class is a LiveConnect call from JavaScript in NN4. Because the Java virtual

machine does not start up automatically when Navigator 4 does, a brief delay

occurs the first time a LiveConnect call is made in a session (the statusbar displays

“Starting Java...”). Such a delay may interrupt the user flow through your page if, for

example, a click of a button needs access to a privileged property. Therefore, con-

sider gaining permission for protected access as the page loads. Execute an

enablePrivilege() and revertPrivilege() method in the very beginning. If

Java isn’t yet loaded into the browser, the delay is added to the other loading

delays for images and the rest of the page. Thereafter, when privileges are enabled

again for a specific action, neither the security dialog box nor the startup delay get

in the way for the user.

Also remember that users don’t care for security dialog boxes to interrupt their

navigation. If your page utilizes a couple of related primitive targets, at the outset

enable the macro target that encompasses those primitive targets. The user gets

one security dialog box covering all potential actions in the page. Then let your

script enable and revert each primitive target as needed.

Example
To demonstrate signed scripts in action, I show a page that accesses a typical

target that allows the script to open an always-raised new window. No error check-

ing occurs for the user’s denial of privilege in this example. Therefore, if you experi-

ment with this page (either with codebase principals turned on or signing them

(c) ketabton.com: The Digital Library

1255Chapter 46 ✦ Security and Netscape Signed Scripts

yourself), you will see the JavaScript error that displays the Java exception. Error

detection is covered later in the chapter.

Accessing a protected window property
Listing 46-2 is a small document that contains one button. The button calls a

function that opens a new window with the NN-proprietary alwaysRaised parame-

ter turned on. Setting protected window.open() parameters in NN4+ requires the

UniversalBrowserWrite privilege target. Inside the function, the privilege is

enabled only for the creation of the new window. For this simple example, I do not

enable the privilege when the document loads.

Listing 46-2: Creating an alwaysRaised Window

<HTML>
<HEAD>
<TITLE>Simple Signed Script</TITLE>
<SCRIPT LANGUAGE=”JavaScript” ARCHIVE=”myJar.jar” ID=”1”>
function newRaisedWindow() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
var newWindow = window.open(“”,””,”HEIGHT=100,WIDTH=300,alwaysRaised”)
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
var newContent = “<HTML><BODY>It\’s good to be the King!”
newContent += “<FORM><CENTER><INPUT TYPE=’button’ VALUE=’OK’”
newContent += “onClick=’self.close()’></CENTER></FORM></BODY></HTML>”
newWindow.document.write(newContent)
newWindow.document.close()

}
</SCRIPT>
</HEAD>
<BODY>
This button generates an always-raised new window.
<FORM>
<INPUT TYPE=”button” VALUE=”New ‘Always Raised’ Window”
onClick=”newRaisedWindow()” ID=”2”>
</BODY>
</HTML>

Listing 46-2 has two script items that need signing: the <SCRIPT> tag and the

event handler for the button. Also, the ARCHIVE attribute points to the JAR file that

contains the script signature. Note that this example file is not signed, and there-

fore does not include a companion JAR archive on the companion CD-ROM.

Handling Privilege Manager Errors
The change between the ways NN4 and NN6 allows scripts to intercept errors

causes no small problem if you need to serve both browser versions. The primary

reason you want to handle errors is that when a user denies access to advanced

privileges, the PrivilegeManager generates an error. While the error is not

destructive in any way, and it appears only in the JavaScript Console window

(NN4.5+), accounting for such factors is good coding practice. Unfortunately, the

(c) ketabton.com: The Digital Library

1256 Part V ✦ Putting JavaScript to Work

mechanism that works for NN4 doesn’t work in NN6; the mechanism that works in

NN6 cannot even be placed in a page that loads into NN4 without generating syntax

errors. The bottom line is that you need to serve up different pages for NN4 and

NN6 until such time as the NN4 installed base drops away.

For NN4, you can define an onerror() function that looks for the specific error

message thrown by the PrivilegeManager class through LiveConnect. That func-

tion looks as the following:

function onerror(msg, URL, lineNum) {
var errorMsg = msg
if (msg.indexOf(“ForbiddenTargetException”) != -1) {

errorMsg = “You have elected not to grant privileges to this script.”
}
alert(errorMsg)
return true

}

Of course, you don’t have to display any message, but it may be a good place to

advise users about what they’re missing by not granting privilege.

For NN6, you can use the native try...catch exception handling, which means

that the calls to the enablePrivilege() method of the PrivilegeManager class

must be wrapped inside a try block. The function from Listing 46-2 is modified as

follows:

function newRaisedWindow() {
try {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
}
catch(err) {

alert(“You have elected not to grant privileges to this script.”)
return

}
var newWindow = window.open(“”,””,”HEIGHT=100,WIDTH=300,alwaysRaised”)
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
var newContent = “<HTML><BODY>It\’s good to be the King!”
newContent += “<FORM><CENTER><INPUT TYPE=’button’ VALUE=’OK’”
newContent += “onClick=’self.close()’></CENTER></FORM></BODY></HTML>”
newWindow.document.write(newContent)
newWindow.document.close()
return

}

Signed Script Miscellany
In this last section of the chapter, I list some of the more esoteric issues sur-

rounding signed scripts. Three in particular are: 1) how to allow unsigned scripts in

other frames, windows, or layers to access signed scripts; 2) how to make sure your

signed scripts are not stolen and reused; and 3) special notes about international

text characters.

(c) ketabton.com: The Digital Library

1257Chapter 46 ✦ Security and Netscape Signed Scripts

Exporting and importing signed scripts
JavaScript provides an escape route that lets you intentionally expose functions

from signed scripts for access by unsigned pages. If such a function contains a

trusted privilege without careful controls on how that privilege is used, a page that

is not as well intentioned as yours could hijack the trust.

The command for exposing this function is export. The following example

exports a function named fileAccess():

export fileAccess

A script in another window, frame, or layer can use the import command to bring

that function into its own set of scripts:

import fileAccess

Even though the function is now also a part of the second document, it executes

within the context of the original document, whose signed script governs the privi-

lege. For example, if you exported a function that did nothing but enable a file

access privilege, a Bad Guy who studies your source code could write a page that

imports that function into a page that now has unbridled file access.

If you wish to share functions from signed scripts in unsigned pages loaded into

your own frames or layers, avoid exporting functions that enable privileges. Other

kinds of functions, if hijacked, can’t do the same kind of damage as a privileged

function can.

Locking down your signed pages
Speaking of hijacking scripts, it would normally be possible for someone to

download your HTML and JAR archive files and copy them to another site. When a

visitor comes to that other site and loads your copied page and JAR file, your signa-

ture is still attached to the scripts. While this may sound good from a copyright

point of view, you may not want your signature to appear as coming from someone

else’s Web server. You can, however, employ a quick trick to ensure that your

signed scripts work only on your server. By embedding the domain of the docu-

ment in the code, you can branch execution so that scripts work only if the file

comes from your server.

The following script segment demonstrates one way to employ this technique:

<SCRIPT LANGUAGE=”JavaScript1.2” ARCHIVE=”myPage.jar” ID=”1”>
if (document.URL.match(/^http:\/\/www.myDomain.com\//)) {

privileges statements execute only from my server
}
</SCRIPT>

This technique works only if you specify JavaScript 1.2 as the script language. Even

though this branching code is visible in the HTML file, the hash value of your code

is saved and signed in the archive. If someone modifies the HTML, the hash value

that is recalculated when a visitor loads the page won’t match the JAR file manifest,

and the script signature fails.

(c) ketabton.com: The Digital Library

1258 Part V ✦ Putting JavaScript to Work

International characters
While international characters are fine for HTML content, they should not be

used in signed scripts. The problem is that international characters are often con-

verted to other character sets for display. This conversion invalidates the signa-

ture, because the signed and recalculated hash values don’t match. Therefore, do

not put international characters in any signable script item. If you must include

such a character, you can escape it or, in NN4, put such scripts in unsigned layers.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Cross-Browser
Dynamic HTML
Issues

Level 4 browsers and later — NN4+ and IE4+ — were the

first browsers to include World Wide Web technologies

that gave page authors far more control over the display and

interactive behavior of Web page content. Lumped together

under the heading of Dynamic HTML (DHTML), these tech-

nologies dramatically extended the simple formatting of

standard HTML that page authors had used for years. These

days, scripters and designers coming to Web development

for the first time take DHTML capabilities for granted; they

are probably unaware that plain ol’ HTML is little more than a

specification to format static text and images on a page.

A lot of what the user gets with DHTML had previously

been accomplished only via Java applets and plug-ins, such as

Shockwave. Not that DHTML eliminates these technologies

from the Web author’s arsenal (DHTML doesn’t do sound or

video, for example), but because DHTML can accomplish

much more of what authors look for in assembling page con-

tent and layout without the long downloads of applets or plug-

in content, it becomes an attractive way for nonprogrammers

to spice up Web applications.

Perhaps categorizing DHTML authors as “nonprogram-

mers” is not quite right. DHTML also adds significantly to the

vocabulary required to incorporate dynamic content into

pages. Suddenly HTML becomes a lot more programming than

simply adding tags to existing content. And if you want to do

dynamic positioning of elements, be prepared to put your

JavaScript skills to use.

What Is DHTML?
You can practically find as many definitions of Dynamic

HTML as there are people to ask. This is especially true if you

ask Netscape and Microsoft. Each company defines DHTML in

4747C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing Dynamic
HTML

The common
denominator of
DHTML functionality
across browsers

Upgrading to modern
compatibility
techniques

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1260 Part V ✦ Putting JavaScript to Work

terms of the support its browser has for a variety of technologies. My definition

covers a broad range, because DHTML is not really any one “thing.” Instead it is an

amalgam of several technologies, each of which has a standards effort in varying

stages of readiness. The key technologies are as follows: Cascading Style Sheets;

Document Object Model (DOM); and client-side scripting. To this list I also admit

recent advances in Extensible Markup Language (XML), which opens the door to

author-generated, page-specific HTML extensions that don’t rely on standards bod-

ies or browser support. It will help your authoring skills if you have a little histori-

cal perspective on how the Web arrived at DHTML.

For many years, the HTML standard was intended for the rendering of static

content — not much more than an electronic version of a printed page. The most

interactive part of a page was a form, which included buttons to click and text

boxes to fill in. But for anything to change on the page, the content had to be

served up again from the host computer.

Client-side scripting, as first implemented through JavaScript in NN2, opened the

way for HTML pages to not only contain some “smarts,” but also control individual

pieces of content on the page without fetching a modified page from the server. At

first, only form elements were scriptable. Soon thereafter, images could be

swapped, although the rectangular space for the image was fixed when the page

loaded. More dynamism accrued to pages in NN4 by way of the layer, which acted

like a borderless, transparent or opaque window that could contain its own HTML

document content and be positioned anywhere on the page, including overlapping

content on the main page or other layers. A layer’s entire content could be modified

without touching the rest of the page or other layers.

But the real breakthrough in dynamism came in IE4, whose rendering engine per-

mitted any element to be modified, inserted, or removed on the fly, while the rest of

the page reflowed its content quickly and automatically in response to the change.

At the same time, an accepted standard for style sheets (Cascading Style Sheets)

opened the way for scripts to modify the look of content already on the page. Text

could change colors when a cursor rolled atop it by either adjusting the style sheet

property associated with the text or changing the style sheet rule that applies to

the text.

Development activity at both Netscape and Microsoft eventually led to a stan-

dard for the Document Object Model as a way for scripts to control HTML content

directly. Unfortunately, the browser makers frequently implemented first, and then

tried to establish their implementations as standards. Sometimes the implementa-

tions were not as complete as the standards became, leaving the browsers in states

that only partially implement the standards, while paying homage to legacy imple-

mentations. Netscape used the occasion of developing an entirely new code base

for what became NN6 to try to sever some ties with the past. In many respects that

browser represents the state of the standard art as implemented so far. Newest ver-

sions of IE, on the other hand, must try to cater to both the legacy implementation

and the standards, creating a massive DOM implementation with significant overlap

in functionality with different syntaxes. Thus, the result of proprietary explorations

and industry standards is a choice of modern browsers that permit a wide range of

dynamic activity on content that reaches the browser. Browsers that had started

life as sleepy renderers of a tiny HTML vocabulary have grown into powerful front

ends for server applications, if not self-contained applications of a sort that execute

entirely on the client computer.

(c) ketabton.com: The Digital Library

1261Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

Standards for CSS, DOM, and ECMA scripting have been well covered earlier in

this book. The purpose of this chapter is to demonstrate approaches to accommo-

dating the sometimes vast differences in specific implementations of these tech-

nologies (including browser-specific variations) to produce content that runs on as

many DHTML-capable browsers as possible. Most of the problems, as you are well

aware from Chapters 15 and 31, are caused by page authors trying to develop for

essentially three different document object models: NN4, IE4+, and W3C DOM (as

implemented in IE5+ and NN6).

Striving for Compatibility
With as many as three object models to support (you can, of course, elect to

support only a subset of browsers if you like) you should look for ways to minimize

your pain. If the NN4 object model is in your mix, you will very likely experience

moments of sheer torture, as you try to get even the CSS-supported HTML to

behave as it does in browsers of the other object models. Thankfully, the NN4

browser’s installed base is shrinking, but for some page authors, it can’t disappear

quickly enough.

Two keys to survival are among the object models: knowing each DOM’s limita-

tions and finding common denominators.

In the area of DHTML limitations, NN4 is the clear winner. Compared to the auto-

matic content reflowing of IE4+ and NN6, the NN4 object model is painfully static.

For example, dynamically changing the color of a chunk of text in response to a

rollover is a difficult task in NN4 requiring the careful positioning of a layer atop

main page text; and making any inline modification to content (other than swapping

an image of the same size) is completely out of the question. Between the IE4+ and

W3C DOMs, the biggest differences fall more along operating system and browser

brand lines. Microsoft takes advantage of the integration of the IE browser and the

Windows operating system to such an extent that it can provide IE services that

work only on Windows versions of IE. IE/Mac users are out of luck (for data binding

or text filters, for instance), as are NN6 users.

Looking for areas of commonality — or at least gaining a clear understanding of

where the models diverge — can be a tedious, yet personally rewarding pursuit. For

example, one of the biggest problems facing designers for all three DOMs is the way

scripts must reference elements that are to be moved or hidden (something that all

three object models can do). NN4 requires references that take the layer object

structure into account; IE4+ has the Microsoft syntax of document.all, which pro-

vides a reference avenue to any element whose ID attribute is set; and the W3C

DOM (as implemented in IE5+ and NN6) users a finger-twisting (albeit now industry

standard) document.getElementById() method to obtain a reference to any ID’d

element.

As soon as your script has a valid reference to an element, the next step is to read

or write some property, or invoke some method of that object that governs the ele-

ment’s position (and possibly other style) attributes. Here, again, the object models

diverge, but not quite as severely. NN4 has a singular implementation that provides

properties and methods of positioned elements (layer objects) directly; the IE4+ and

W3C DOMs, on the other hand, work their positioning magic through the style prop-

erty of a positioned element. In some cases the “last-dot” property names are identical

across all three models (for example, document.myLayer.zIndex, document.all.

(c) ketabton.com: The Digital Library

1262 Part V ✦ Putting JavaScript to Work

myLayer.style.zIndex, and document.getElementById(“myLayer”).style.
zIndex). Building a reference to reach that last dot, though, is where some of your

hard work must go.

Each DOM also has its own event model. Whereas IE5+ overlaps its DOM features

with both the IE4+ and to some extent the W3C DOM, the event models don’t follow

the same lines of implementation. As of IE5.5/Windows and IE5/Mac, IE does not

implement any of the W3C DOM event model, although NN6 does.

The bottom line, then, is letting your scripts decide how to perform actions

based on the browser version is not a good idea. Instead, the scripts should be

smart enough to act based on the capabilities of the browser that is currently run-

ning the script. As you see in the rest of this chapter, it is possible to develop fairly

sophisticated DHTML into a page and make it work with all three DOMs without one

iota of browser version detection.

Working Around Incompatibilities
To create DHTML for multiple DOMs, you must find ways to accommodate

incompatible object references and occasionally incompatible property names.

Scripting gives you several alternatives to working your way around these potential

problems. Some of the approaches you can take are now passe, but they are

described here partly for the sake of historical reference, but also because you will

see many instances of these approaches taken in legacy DHTML applications from

the days when authors had to worry about only two DOMS (NN4 and IE4). The real

“meat” of this discussion comes later, when you learn more about object detection

and custom APIs.

Old-fashioned compatibility tricks
In a simpler time (until late 2000), it was possible to write cross-browser DHTML

applications that had to run on only two classes of browser: NN4 and IE4. Two

approaches to writing code for these two DOMs grew in popularity: inline branch-

ing and platform equivalency. They are described here, not for you to apply, but for

you to understand what the pioneers did, in case you encounter their code in your

Web surfing.

Inline branching
The idea behind inline branching is that your scripts will use if...else deci-

sions to execute one branch of code for one browser and another branch for the

other browser. Before you can begin to write code that creates branches for each

browser, you should define two global variables at the top of the page that act as

Boolean flags for your if...else constructions later. Therefore, at the first oppor-

tunity for a <SCRIPT> tag in a page, include the following code fragment to set flags

named is Nav4 and isIE4:

var isNav4, isIE4
if (parseInt(navigator.appVersion) == 4) {

if (navigator.appName == “Netscape”) {
isNav4 = true

} else if (navigator.appVersion.indexOf(“MSIE”) != -1) {
isIE4 = true

}
}

(c) ketabton.com: The Digital Library

1263Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

Version checking here is quite specific. First of all, it intentionally limits access to

browsers whose versions come back as Version 4. This code, written when the

browsers were still at Version 4, was remarkably prescient. My concern at the time

was that DHTML was so volatile that it was unknown if future browser versions

would be backward compatible with the code to be run inside branches governed

by the two global variables. As it turned out, NN6 (whose navigator.appVersion
reports 5) is not backward compatible with the layer structure of NN4, so that lock-

ing the NN4 branches to NN4 became a good thing. On the IE side, the navigator.
appVersion property continues to report 4, even through IE5.5, which is backward

compatible with IE4. Thus, any branch dedicated to IE4 executes under this scheme

and remains syntactically accurate.

Another aspect of the flag-setting script I should mention is that the example

provides no escape route for browsers that aren’t level 4 or aren’t either Navigator

or Internet Explorer (should there be a level 4 browser from another brand). In a

production environment, I would either prefilter access to the page or redirect ill-

equipped users to a page that explains why they can’t view the page. In the struc-

ture of the above script, redirection would have to be made in two places, as

follows:

var isNav4, isIE4
if (parseInt(navigator.appVersion) == 4) {

if (navigator.appName == “Netscape”) {
isNav4 = true

} else if (navigator.appVersion.indexOf(“MSIE”) != -1) {
isIE4 = true

} else {
location = “sorry.html”

}
} else {

location = “sorry.html”
}

Later in this chapter, I discuss the issue of designing DHTML pages that degrade

gracefully in pre-DHTML browsers.

With the global variables defined in the document (and unsupported browsers

redirected elsewhere), you can use them as condition values in branching state-

ments that address an object according to the reference appropriate for each plat-

form. For example, to change the visibility property of an object named

instructions, you use the flags as follows:

if (isNav4) {
document.instructions.visibility = “hidden”

} else {
document.all.instructions.style.visibility = “hidden”

}

As the browser DOMs evolve, expand, and fragment, inline branching becomes

increasingly less practical. With so many permutations of DOM according to

browser brand, browser version, and operating system, you can drive yourself

crazy trying to accommodate them all and maintain the code going forward. This

approach also eliminates from consideration any non-NN or non-IE browser (such

as Opera), which may have the capabilities needed to play your DHTML scripts.

This approach also limits the possibility that future browsers with higher

navigator.appVersion values can take advantage of your scripts.

(c) ketabton.com: The Digital Library

1264 Part V ✦ Putting JavaScript to Work

Platform equivalency
Another technique attempts to limit the concern for the different ways each plat-

form refers to a positionable element (because cross-browser DHTML is pretty

much limited to the properties affecting positionable elements). If you examine the

formats for each platform’s object references, you see that all formats contain a ref-

erence to the document and to the object name or ID. The IE4+ DOM syntax also

includes property words, such as all and style. If you assign these extra property

names to variables for IE4 and leave those variables as empty strings for NN4, you

can assemble an object reference for those two platforms in one statement.

To begin using this technique, set two global variables that store reference com-

ponents for the scope (all in IE4) and the style object (style in IE4):

var range = “”
var styleObj = “”
if (parseInt(navigator.appVersion) == 4) {

if (navigator.appVersion.indexOf(“MSIE”) != -1) {
range = “all.”
styleObj = “.style”

}
}

From this point, you can assemble an object reference with the help of the

JavaScript eval() function, as follows:

var instrux = eval(“document.” + range + “instructions” + styleObj)
instrux.visibility = “hidden”

Or, you can use the eval() function to handle the entire property assignment in

one statement, as follows:

eval(“document.” + range + “instructions” + styleObj + “.visibility = ‘hidden’”)

If your page does not have a lot of objects that your scripts will be adjusting, you

can use this platform equivalency approach to create global variables holding refer-

ences to your positionable objects at load time (triggered by the onLoad event han-

dler so that all objects exist and can be referenced by the eval() function). Then,

use those variables for object references throughout the scripts.

Unfortunately, the platform equivalency methodology breaks down when a NN4

layer object is nested inside another layer. The platform equivalency formulas

assume that each object is directly addressable from the outermost document
object. If your objects have a variety of nested locations, you can use either the

inline branching method described earlier, or batch-assign objects to global vari-

ables at load time using platform branching techniques along the lines of the follow-

ing example:

var instrux
function initObjectVars() {

if (isNav4) {
instrux = document.outerLayer.document.instructions

} else {
instrux = document.all.instructions.style

}
}

(c) ketabton.com: The Digital Library

1265Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

As soon as the variable contains a valid reference to the object for the current

platform, your scripts can treat the object without further concern for platform

when addressing properties that have the same name in both platforms:

instrux.visibility = “hidden”

The nested layer situation is not the only potential problem for the platform

equivalency approach. In fact, the W3C DOM format for referencing objects (using

the document.getElementById() method) makes for some hair-raising string

assembly and global variable assignment. Another truly negative aspect is the fre-

quent usage of the eval() function. As mentioned in Chapter 42, this function is a

performance speed thief.

Modern approaches to compatibility
While in-line branching and platform equivalency were suitable for their genera-

tions, the profusion of browser versions calls for better approaches to simplifying

authoring for multiple DOMs. Techniques more suitable for today — object detec-

tion and custom APIs — are not really new. But these techniques are the preferred

way to build cross-browser scripts with an eye to compatibility both backward and

forward.

Object detection
The subject of object detection has been mentioned in several places in earlier

chapters of this book. The technique has been used for a long time to let a browser

not equipped to handle image objects gracefully skip over image swapping script

segments:

if (document.images) {
// statements to work with image objects

}

If there is no document.images property for a browser, the condition evaluates to

undefined, which the condition treats as being false.

But object detection has also been misused in the past, especially in the DHTML

realm, to substitute for browser version detection. For example, if a browser sup-

ported the document.all collection, a global variable was set to indicate that the

browser was IE4 or later; the existence of document.layers supposedly meant

that the browser was NN4. While both of those assertions are true (as of the

browsers released so far), it was a mistake to link a browser version with the exis-

tence of an object or property. Instead, object detection should be used only if your

script statements will be addressing that object, just as the document.images con-

dition does in the previous example.

To demonstrate this tactic, consider the need to assemble a reference to an

object so that it is ready to have one of its DHTML properties adjusted. Each of the

three DOMs has its own syntax for assembling such a reference, and each syntax

relies on the existence of a particular object or property. The function shown in

Listing 47-1 (not on the CD-ROM by itself, but included in Listing 47-2) lets you pass

the name or ID of a positioned element (either in string form or object form) to

receive back a valid reference to the object with which style-related properties are

associated — all without resorting to the eval() function in any form:

(c) ketabton.com: The Digital Library

1266 Part V ✦ Putting JavaScript to Work

Listing 47-1: Using Object Detection to Assemble an Element
Object Reference

function getObject(obj) {
var theObj
if (document.layers) {

if (typeof obj == “string”) {
// just one layer deep
return document.layers[obj]

} else {
// can be a nested layer
return obj

}
}
if (document.all) {

if (typeof obj == “string”) {
return document.all(obj).style

} else {
return obj.style

}
}
if (document.getElementById) {

if (typeof obj == “string”) {
return document.getElementById(obj).style

} else {
return obj.style

}
}
return null

}

The primary object detection for each of the three sections of this function looks

for the presence of categories of objects (document.layers and document.all) or

a particular method (document.getElementById()), and then — this is the impor-

tant part — the script uses those detected objects in the statements. The script

doesn’t know IE4 from NN6; it does know how to derive valid references for three

different object models, and employs the syntax of the first one for which the asso-

ciated object property or method is supported.

In practice, the order of the three sections should have no bearing on your

scripts, but you should be aware of one subtlety: IE5+ can work with either of the

last two sections, because those browsers detect document.all and document.
getElementById as valid references. If you were to switch the position of the last

two sections, then IE5+ would be using W3C DOM terminology. The results,

however, are the same: A valid reference to the style object associated with an

element.

Custom APIs
Notions of object detection and simplifications of your scripts come together

in the final approach to building cross-browser DHTML: Writing a custom API

(Application Programming Interface). A JavaScript custom API is a library of

(c) ketabton.com: The Digital Library

1267Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

functions you design to act as an intermediary between your scripts and other

scriptable entities. Ideally, an API simplifies access to, or control of, other entities.

In the context of designing a cross-browser DHTML page, an API can offer a single

function that smoothes over the differences in object references and/or property

names among several platforms. Your custom function provides a single access

point that is consistent across all platforms. In essence, you are creating your own

metavocabulary for methods and property settings.

The element object reference maker in Listing 47-1 is a good start for such an

API, because all other functions for moving, hiding, showing, and changing the

stacking order of a positionable element need a valid style-oriented reference to the

element. Now look at a function from an API whose job is to alter the stacking order

of a positionable element:

// set the z-order of an object
function setZIndex(obj, zOrder) {

var theObj = getObject(obj)
theObj.zIndex = zOrder

}

Your main page script would use the ID of the positioned DIV element as the first

parameter to this function, with an integer indicating the value that would be

assigned to the element’s style sheet z-Index attribute:

setZIndex(“myLayer”, 100)

All of the branching for the various DOMs in this function is done in the

getObject() function (Listing 47-1), which returns the valid reference for

whichever of the three supported DOMs is running the script. All three DOMs, it

turns out, have the same zIndex property representing the z-Index style attribute,

so that no further branching is needed here.

As one more example, the next API function offers an interface to incompatible

ways of adjusting the location of a positionable element. In this case, the act of

moving an element has different syntax in different DOMs. One group (NN4 for lay-

ers) uses the moveTo() method; the rest support left and top properties of their

style object:

// position an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

var theObj = getObject(obj)
if (theObj.moveTo) {

theObj.moveTo(x,y)
} else if (typeof theObj.left != “undefined”) {

theObj.left = x
theObj.top = y

}
}

Notice one workaround, which, on the surface, isn’t pretty: The second branch

must perform an odd way of object detection. We’re stuck with having to make a

tradeoff when it comes to checking for the existence of a style property. If the page

uses style sheets defined in <STYLE> tags (or imported into the page from external

style sheet files), the element affected by the rule does not yield the rule’s property

values through the element’s style property. The property exists, but its value in

(c) ketabton.com: The Digital Library

1268 Part V ✦ Putting JavaScript to Work

this case (or until it is set by script) is an empty string. IE5 provides a currentStyle
property to give us the effective values, but that property is not (yet) a part of the

DOM standard. But even if you assign the style sheet via the element’s STYLE
attribute (in which case the style property values come through), detecting the pres-

ence of the property with the conditional expression

if (theObj.left)

is not practical here anyway. If the effective value of the left and top properties

were an empty string (or zero for a numeric style property value), the conditional

expression would evaluate to the equivalent of false, making it appear as though

the property doesn’t exist. To validate the existence of the property, the conditional

expression verifies that the value of a named property has a type other than “unde-

fined.” It may seem like a long way to go to prove the existence of a property, but it

works, even if the value is an empty string or zero.

It is important that both branches perform object detection. Although it is

unlikely (but, as we learned from the transition between NN4 and NN6, not impossi-

ble), if a future browser should completely alter its vocabulary, omitting the objects

being detected here, the function ends gracefully, without generating script errors.

An API is usually best deployed as an external .js file. One such API file is

described later in this chapter. Bear in mind, however, that a lengthy API gets down-

loaded to the browser, no matter how much or how little of it your main scripts use.

Blindly linking in a big library just to use a few of its functions is a mistake. You

serve your users better if you create a subset of the API, and link the subset to the

page (or drop the few functions directly into the page’s scripts if the combination is

not reused on a lot of pages).

Handling non-DHTML browsers
An important question to ask yourself as you embark on a DHTML-enhanced

page is how you intend to treat visitors whose browsers aren’t up to the task. In

many respects the problem is similar to the problem of treating nonscriptable

browsers when your page relies on scripting (see Chapter 13).

The moment your page uses DHTML to position an element, you must remember

that non-DHTML browsers display the content according to traditional HTML ren-

dering rules. No elements are allowed to overlap. Any block-level tag is rendered at

the left margin of the page, unless some other non-DHTML alignment (center or

right) is at work. This goes for elements that you design to be DHTML-positioned to

sit offscreen (perhaps with a clickable tab) until called by the user. An element

defined as being hidden or not displayed in DHTML will be visible. In most cases,

your carefully designed DHTML page will look terrible.

However, a page that does not use too radical a layout strategy may still be

usable in non-DHTML browsers. You should always check your DHTML-enabled

page in an older browser to see how it looks. Perhaps there isn’t too much you

need to do to degrade the DHTML so that the page is acceptable in older browsers.

The ultimate responsibility for deciding your compatibility strategy with older

browsers rests with you and your perceptions about your page visitors. If they are

in need of vital information from your site and that information is readable in

non-DHTML browsers, then that may be enough. Otherwise, you must provide a

(c) ketabton.com: The Digital Library

1269Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

separate content path for both levels of browsers, much as you may be doing for

scriptable versus nonscriptable browsers.

A DHTML API Example
Now it’s time to get to a real DHTML API that you can use and build upon for

your own applications. Listing 47-2 contains the API code, which is most likely to be

deployed as an external .js library file. In fact, this API is used as-is in a map puz-

zle game application in Chapter 56. You can see there how it is used to control ele-

ment positioning, dragging, and layering for the three DOM families. The code in

Listing 47-2 is longer than most listings in this book, so for your convenience, I

interlace commentary amid the long listing.

No global variables are needed for this API. Because all browser branching is

performed via object detection, there is no need for browser version detection.

Instead, the library starts with the getObject() function shown earlier in this

chapter. Virtually every other function in this library makes a trip to getObject()
to convert the name of the object passed as a parameter to an object reference

whose positionable (or other style-related property) can be adjusted.

Listing 47-2: The Custom API (DHTMLapi.js)

// convert object name string or object reference
// into a valid object reference ready for style change
function getObject(obj) {

var theObj
if (document.layers) {

if (typeof obj == “string”) {
return document.layers[obj]

} else {
return obj

}
}
if (document.all) {

if (typeof obj == “string”) {
return document.all(obj).style

} else {
return obj.style

}
}
if (document.getElementById) {

if (typeof obj == “string”) {
return document.getElementById(obj).style

} else {
return obj.style

}
}
return null

}

(c) ketabton.com: The Digital Library

1270 Part V ✦ Putting JavaScript to Work

A pair of functions handles all motion of positionable elements. The first func-

tion, shiftTo() takes three parameters: the ID of the object being moved, and the

horizontal and vertical pixel coordinates of the top-left corner of the element. The

assumption is that the main page script that invokes this library function performs

the calculation of the coordinates. You see that code in Chapter 56. Branches inside

this function handle the NN4 layer.moveTo() method or the setting of style
properties for other DOMs. In these other browsers, moving the element requires

adjusting two positional properties, left and top. Even though the adjustments are

made in separate statements, the action on the screen does not follow the action

statement-by-statement. Between screen buffering and quick execution, the reposi-

tioning appears as a single shift.

// position an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

var theObj = getObject(obj)
if (theObj.moveTo) {

theObj.moveTo(x,y)
} else if (typeof theObj.left != “undefined”) {

theObj.left = x
theObj.top = y

}
}

The shiftBy() function mimics NN4’s layer.moveBy() method. The second

and third parameters represent the number of pixels that the object should be

moved on the page. A positive number means to the right or down; a negative num-

ber means to the left or up; a value of zero means no change to the axis. For NN4,

the script uses the layer.moveBy() method. But for the rest, the passed values are

added to the left and top properties. Notice that because these properties return

strings that include the units for the measurements, the incremental values are

added to integer extractions from the current settings. And because the units being

used here are the default (pixels), no units have to be assigned with the new values

(although they could without penalty).

// move an object by x and/or y pixels
function shiftBy(obj, deltaX, deltaY) {

var theObj = getObject(obj)
if (theObj.moveBy) {

theObj.moveBy(deltaX, deltaY)
} else if (typeof theObj.left != “undefined”) {

theObj.left = parseInt(theObj.left) + deltaX
theObj.top = parseInt(theObj.top) + deltaY

}
}

Both platforms use the same property name for setting the stacking order of

positionable thingies. Therefore, the setZIndex() function does little more than

convert the object reference and assign the incoming value to the zIndex property.

// set the z-order of an object
function setZIndex(obj, zOrder) {

var theObj = getObject(obj)
theObj.zIndex = zOrder

}

(c) ketabton.com: The Digital Library

1271Chapter 47 ✦ Cross-Browser Dynamic HTML Issues

NN4 and browsers with style objects have their own way of referring to the

background color. The setBGColor() function applies the correct syntax based on

whichever property is detected in the object.

// set the background color of an object
function setBGColor(obj, color) {

var theObj = getObject(obj)
if (theObj.bgColor) {

theObj.bgColor = color
} else if (typeof theObj.backgroundColor!= “undefined”) {

theObj.backgroundColor = color
}

}

Allowable values for the visibility property are very unprogrammatic in my

opinion. I expect a Boolean value rather than strings. To accede to reality while

making the process of showing and hiding elements more logical to me, I created

API functions called show() and hide().

// set the visibility of an object to visible
function show(obj) {

var theObj = getObject(obj)
theObj.visibility = “visible”

}

// set the visibility of an object to hidden
function hide(obj) {

var theObj = getObject(obj)
theObj.visibility = “hidden”

}

Although the left and top properties of NN4 layers do not include unit values,

it is still safe to use parseInt() on the values returned from the properties,

whether they be retrieved in NN4 or browsers that have style objects (whose

properties return units). The need for these API functions came from the way the

map puzzle application in Chapter 56 works. For a couple of operations, it calcu-

lates the destination for an object with respect to the position of one of the other

positioned elements. These functions return the values needed for the main pro-

gram’s calculation. This is also an example of how you may need to embellish the

API for your own application.

// retrieve the x coordinate of a positionable object
function getObjectLeft(obj) {

var theObj = getObject(obj)
return parseInt(theObj.left)

}

// retrieve the y coordinate of a positionable object
function getObjectTop(obj) {

var theObj = getObject(obj)
return parseInt(theObj.top)

}

(c) ketabton.com: The Digital Library

1272 Part V ✦ Putting JavaScript to Work

The previous API is generalizable enough to be used as a library with any cross-

platform DHTML application using positioning. The API can even be used with a

platform-specific page. It is more efficient, however, to use a browser’s native

objects, properties, and methods if you know for sure that users will have only one

brand of browser.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Internet
Explorer
Behaviors

Internet Explorer 5 for Windows was the first browser to

deploy what Microsoft calls behaviors. Microsoft and oth-

ers have proposed the behaviors concept to the W3C, and it

could some day become one of the W3C standard recommen-

dations. Such a standard might not be implemented exactly

the way Microsoft currently implements behaviors, but most

of the concepts are the same, and the syntax being discussed

so far is similar. While there is no guarantee that the W3C will

adopt behaviors as a standard, you will see that the concept

seems to be a natural extension to the work that has already

been adopted for both CSS and XML. Even though behaviors

run only on Windows versions of IE5+ (as of this writing any-

way), that browser family and operating system are pervasive

enough to warrant an extended description of how behaviors

work.

The W3C effort is called Behavioral Extensions to CSS. For

the latest document describing the work of the participants of

the standards discussions, visit http://www.w3.org/
TR/becss.

Style Sheets for Scripts
You can best visualize what a behavior is in terms of the

way you use style sheets. Consider a style sheet rule whose

selector is a tag or a class name. The idea behind the style

sheet is that one rule, which can define dozens of rendering

characteristics of a chunk of HTML content, can be applied to

perhaps dozens, if not hundreds, of elements within the docu-

ment. A corporation may design a series of rules for the way

its Web documents will look throughout the Web site. If the

designer decides to alter the font family or color for, say, H1

4848C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing IE
behaviors

Understanding the
structure of behavior
XML files

Exploring behavior
samples

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1274 Part V ✦ Putting JavaScript to Work

elements, then that change is made in one place (the external style sheet file), and

the impact is felt immediately across the entire site. Any page that includes an H1

element renders the header with the newly modified style.

Imagine now that instead of visual styles associated with an element, you want

to define a behavioral style for a particular group of elements. A behavioral style is

the way an element responds to predominantly user interaction with the element.

For example, if the design specifications for a Web site indicate that all links should

have their text colored a certain way when at rest, but on mouse rollovers, the text

color changes to a more contrasting color, the font weight increases to bold, and

the text becomes underlined. Those modifications require scripts to change the

style properties of the element in response to the mouse action of the user. The

scripts that fire in response to specific user actions (events) are written in an exter-

nal file known as a behavior, and a behavior is associated with an element, class, or

tag through the same CSS syntax that you use for other style attributes.

A behavior, of course, assumes that its scripts can work with whatever HTML

element is associated with the behavior. Just as it would be illogical to associate the

tableLayout style attribute with an element that wasn’t a TABLE, so, too, would it

be illogical to associate a behavior, whose scripts employed TABLE object proper-

ties and methods, to a P element. Even so, a well-designed behavior can obtain

details about the element being manipulated through the element object’s proper-

ties. The better you are at writing generalizable JavaScript functions, the more

successful you will be in implementing behaviors.

Embedding Behavior Components
IE treats each behavior as a component, or add-on building block for the

browser. IE5 comes equipped with a handful of behaviors built into the browser

(the so-called default behaviors, which happen to rely on specific XML elements

embedded in a document). Behaviors that you create most likely exist as separate

files on the server, just like external .css and .js files do. The file extension for a

behavior file is .htc (standing for HTML Component).

Linking in a behavior component
To associate a behavior with any single element, class of elements, or tag as the

page loads, use CSS rule syntax and the IE-specific behavior attribute. The basic

syntax is as follows:

selector {behavior:url(componentReference)}

As with any style sheet rule, you can combine multiple rule attributes, delimiting

them with semicolons. The format of the componentReference depends on

whether you are using one of the IE default behaviors or a behavior you’ve written

to an external file. For default behaviors, the reference is in the format:

#default#componentName

For example, if you want to associate the download behavior with any element of

class downloads:

.downloads {behavior:url(#default#download)}

(c) ketabton.com: The Digital Library

1275Chapter 48 ✦ Internet Explorer Behaviors

Relative or absolute URIs to external .htc files can also be specified. For exam-

ple, if your site contains a directory named behaviors and a file named hilite.
htc, the style sheet rule from the root directory is:

.hiliters {behavior:url(behaviors/hilite.htc)}

As with all CSS style sheet rules, behaviors can be specified in a STYLE element of

the page, in the STYLE attribute of an individual element, or in a rule defined inside

an imported .css file.

Enabling and disabling behaviors
In Chapter 15, you can find details of IE5/Windows methods for all HTML ele-

ments that let scripts manage the association of a behavior with an element after

the page has loaded. Invoking the addBehavior() method on an element assigns

an external .htc file to that element. When you no longer need that behavior

associated with the element, invoke the removeBehavior() method.

Component Structure
An .htc behavior file is a text file consisting of script statements inside a

<SCRIPT> tag set and some special XML tags that IE5/Windows knows how to

parse. You create .htc files in the same kind of plain text editor that you use for

external .js or .css files.

Script statements
Unlike external .js files, an .htc behavior file includes <SCRIPT> tags, which

surround any JavaScript (or VBScript, if you like) statements that control the

behavior. Because a behavior most typically is written to control one or more

aspects of the HTML element to which it is connected, statements tend to operate

only on the associated object element. A special reference —element— is used to

refer to the element object itself (much like the way the this keyword in a custom

object’s method self-refers to the object associated with the method).

If your behavior will be modifying either the content or style of the element, use

the element reference as a foundation to the reference to one of that element

object’s properties or methods. For example, if a statement in a behavior needs to

set the style.visibility property so that the element hides itself, the statement

in the behavior script is:

element.style.visibility = “hidden”

Any valid reference from the point of view of the element object is fair game, includ-

ing references to the element’s parentElement, even though the parent element is

not explicitly associated with the behavior.

Variable scope
Except for the special element reference, script content of a behavior is com-

pletely self-contained. You can define global variables in the behavior that are

accessible to any script statement in the behavior. But a global variable in a

behavior does not become a global variable for the main document’s scripts to

(c) ketabton.com: The Digital Library

1276 Part V ✦ Putting JavaScript to Work

use. You can expose variables so that scripts outside of the behavior can get to

them (as described below), but this exposure is not automatic.

Most of the script content of a behavior consists of functions that usually inter-

act in some fashion with the associated element (via the element’s properties

and/or methods). Local variables in functions have the same scope and operate

just like they do in regular script functions. Global variables you define in a behav-

ior, if any, are usually there for the purpose of preserving values between separate

invocations of the functions.

Assigning event handlers
Functions in a behavior are triggered from outside the behavior through two

means: event handlers and direct invocation of functions declared as public

(described in the next section). Event handler binding is performed in a way that is

not used elsewhere in the IE4+ DOM. Each event type (for example, onMouseOver,

onKeyPress) requires its own special XML tag at the top of the behavior file. The

format for the event handler tag is as follows:

<PUBLIC:ATTACH EVENT=”eventName” ONEVENT=”behaviorFunctionName()” />

As the behavior loads, the PUBLIC:ATTACH tag instructs the browser to expose

to the “public” (that is, the world outside of the behavior) an event type (whose

name always begins with the “on” prefix in the IE4+ event model); whenever an

event of that type reaches the behavior’s element, then the function (defined within

the behavior file) is invoked. In XML terminology, the PUBLIC: part of the tag is

known as a namespace, and IE includes a built-in parser for the PUBLIC namespace.

Notice, too, the XML syntax at the end of the tag that allows a single set of angle

brackets to act as a start and end tag set (there is no content for this tag, just the

attributes and their values).

To demonstrate, imagine that a behavior has a function named underlineIt(),

which sets the element.style.textDecoration property to underline. To get the

element to display the underline decoration as the user rolls the mouse atop the

element, bind this function to the element’s onMouseOver event handler as follows:

<PUBLIC:ATTACH EVENT=”onmouseover” ONEVENT=”underlineIt()” />

If you compare the wording of the opening part of the tag, you may recognize a

connection to the IE4+ event model’s attachEvent() method of all HTML elements

(Chapter 15). You can have as many event binding tags as your element needs. To

invoke multiple functions in response to a single event type, simply add the subse-

quent function invocation statements to the ONEVENT attribute, separating the calls

by semicolons (the same as with regular JavaScript statement delimiters).

Exposing properties and methods
XML tags with the PUBLIC: namespace are also used (with different attributes)

to expose a behavior’s global variables as properties of the element and a behav-

ior’s functions as methods of the element. The syntax for both types of “public”

announcements is as follows:

<PUBLIC:PROPERTY NAME=”globalVarName” />
<PUBLIC:METHOD NAME=”functionName” />

(c) ketabton.com: The Digital Library

1277Chapter 48 ✦ Internet Explorer Behaviors

Values for both items are string versions of references to the variable and func-

tion (no parentheses). Again, you can define as many properties and methods for a

behavior as you need.

As soon as a property and/or method is made public in a behavior, scripts from

outside the behavior can access those items as if they were properties or methods

of the element associated with the behavior:

document.all.elementID.behaviorProperty
document.all.elementID.behaviorMethod()

If you associate a behavior with a style sheet class selector, and several docu-

ment elements share that class name, each one of those elements gains the public

properties and methods of that behavior, accessible through references to the indi-

vidual elements. That’s because a behavior’s scripts are written to read or modify

properties of whatever element receives a bound event or is referenced along the

way to the public property or method.

Behavior Examples
The two following examples are intentionally simple to help you grasp the con-

cepts of behaviors if they are new to you. The first example interacts with multiple

elements strictly through event binding; the second example exposes a property

and method that the main page’s scripts access to good effect.

Example 1: Element dragging behavior
This book contains several examples of how to script a page to let a user drag an

element around the browser window (Chapters 31 and 56 in particular). In all those

examples, the dragging code and event handling was embedded in some fashion

into the page’s scripts. The first example of a behavior, however, drives home the

notion of separating an element’s behavior from its content (just as a CSS2 style

sheet separates an element’s appearance from its content).

Imagine that it’s your job to design a page that employs three draggable ele-

ments. Two of the elements are images, while the third is a panel layer that also

includes a form. If you haven’t scripted DHTML before, this may sound like a daunt-

ing task at first, one rife with the possibility of including multiple versions of the

same scripts to accommodate different kinds of draggable elements.

Now imagine that to the rescue comes a scripter who has built a behavior that

takes care of all of the dragging scripting for you. All you do is assign that behavior

by way of one attribute of each draggable element’s style sheet rule. Absolutely no

other scripting is required on the main page to achieve the element dragging.

Listing 48-1 shows the behavior file (drag.htc) that controls basic dragging of a

positionable element on the page. You may recognize some of the code as an IE4+

version of the cross-browser dragging code used elsewhere in this book (for a blow-

by-blow account of these functions, see the description of the map puzzle game in

Chapter 56). The names of the three operative functions and the basic way they do

their jobs are identical to the other dragging scripts. Event binding, however, fol-

lows the behavior format through the XML tags. All interaction with the outside

world occurs through the “public” event handlers.

(c) ketabton.com: The Digital Library

1278 Part V ✦ Putting JavaScript to Work

Listing 48-1: An Element Dragging Behavior

<PUBLIC:ATTACH EVENT=”onmousedown” ONEVENT=”engage()” />
<PUBLIC:ATTACH EVENT=”onmousemove” ONEVENT=”dragIt()” />
<PUBLIC:ATTACH EVENT=”onmouseup” ONEVENT=”release()” />
<PUBLIC:ATTACH EVENT=”onmouseover” ONEVENT=”setCursor()” />
<PUBLIC:ATTACH EVENT=”onmouseout” ONEVENT=”release();restoreCursor()” />

<SCRIPT LANGUAGE=”JScript”>
// global declarations
var offsetX = 0
var offsetY = 0
var selectedObj
var oldZ, oldCursor

// initialize drag action on mousedown
function engage() {

selectedObj = (element == event.srcElement) ? element : null
if (selectedObj) {

offsetX = event.offsetX - element.document.body.scrollLeft
offsetY = event.offsetY - element.document.body.scrollTop
oldZ = element.runtimeStyle.zIndex
element.style.zIndex = 10000
event.returnValue = false

}
}

// move element on mousemove
function dragIt() {

if (selectedObj) {
selectedObj.style.pixelLeft = event.clientX - offsetX
selectedObj.style.pixelTop = event.clientY - offsetY
event.cancelBubble = true
event.returnValue = false

}
}

// restore state on mouseup
function release() {

if (selectedObj) {
selectedObj.style.zIndex = oldZ

}
selectedObj = null

}

// make cursor look draggable on mouseover
function setCursor() {

oldCursor = element.runtimeStyle.cursor
element.style.cursor = “hand”

}

(c) ketabton.com: The Digital Library

1279Chapter 48 ✦ Internet Explorer Behaviors

// restore cursor on mouseout
function restoreCursor() {

element.style.cursor = oldCursor
}
</SCRIPT>

Notice a subtlety in Listing 48-1 that is implied by the element-specific scope of a

behavior. Two statements in the engage() function need to reference scroll-related

properties of the document.body object. Because the only connection between the

behavior and the document is via the element reference, that reference is used

along with the document property (a property of every HTML element object in

IE4+, as shown in Chapter 15). From there, the body object and the required

properties can be accessed.

Listing 48-2 is a simple page that contains three elements that are associated

with the drag.htc behavior through a style sheet rule definition (for the

draggable class). The document is incredibly uncomplicated. Even the drag.htc
file isn’t very big. But together they produce a far more interesting page for the user

than a couple of static images and a form.

Listing 48-2: Three Draggable Elements Using the Behavior

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
.draggable {position:absolute; behavior:url(drag.htc)}
#img1 {left:150px; top:150px}
#img2 {left:170px; top:170px}
#txt1 {left:190px; top:190px; background-color:aqua; width:150px; height:50px;
text-align:center}
</STYLE>
</HEAD>

<BODY>
<H1>IE5+ Behavior Demo (Dragging)</H1>
<HR>

<DIV CLASS=”draggable” ID=”txt1”>A form inside a DIV element.

<FORM>
<INPUT TYPE=”button” VALUE=”Does Nothing”>

</FORM>
</DIV>
</BODY>
</HTML>

Obviously, the dragging example here is very rudimentary. It isn’t clear from the

sample code what the user gets from the page, other than the joy of moving things

around. If you were designing an application that genuinely benefits from draggable

(c) ketabton.com: The Digital Library

1280 Part V ✦ Putting JavaScript to Work

objects (for example, the map puzzle in Chapter 56), you can easily enhance the

behavior to perform actions, such as snapping a dragged element into place when it

is within a few pixels of its proper destination. For such an implementation, the

behavior can be given some extra global variables, akin to the values assigned to

the state objects in Chapter 56, including the pixel coordinates of the ideal destina-

tion for a dragged element. An onLoad event handler for the page can fire a public

init() function in each element’s behavior to assign those coordinate values. Any

event that can bubble (such as mouse events) does so from the behavior to the

target. Therefore, you can extend the event action of the behavior by adding a

handler for the same event to the element outside of the behavior.

Example 2: Text rollover behavior
In the second example, you see how a behavior exposes a global variable and

function as a public property and method, respectively. The demonstration

reinforces the notion that even if a single behavior file is associated with multiple

elements (for example, the elements share the same class, and the behavior is

assigned to the class), each behavior maintains its own variable values, indepen-

dent of the other elements and their behaviors.

The nature of this behavior is to set the color style property of the associated

element to either a default color (red) or to another color that has been passed into

the behavior via one of its public methods. The color setting is preserved in one of

the behavior’s global variables, and that variable is exposed as a public property.

Listing 48-3 shows the .htc behavior file’s content. Only two events are bound

to this behavior: onmouseover and onmouseout— the typical rollover events. The

onMouseOver event invokes the makeHot() function, while the onMouseOut event

invokes the makeNormal() function. Before the makeHot() function makes any

changes to the color and fontWeight style properties of the element, existing set-

tings are preserved in (non-public) global variables in the behavior. This allows the

makeNormal() function to restore the original settings, regardless of what docu-

ment styles may be applied to the element in a variety of pages. That’s something

to keep in mind when you design behaviors: they can be deployed in pages con-

trolled by any number of style sheets. Don’t assume any basic style setting; instead,

use the currentStyle property to read and preserve the effective property values

before touching them with your behavior’s modification scripts.

Neither of the event handler functions are exposed as public methods. This was

a conscious decision for a couple of reasons. The most important reason is that

both functions rely on being triggered by a known event occurring on the element.

If either function were invoked externally, the event object would contain none of

the desired information. Another reason behind this is from a common program-

ming style for components that protects inner workings, while exposing only those

methods and properties that are “safe” for others to invoke. For this code, the

public method does little more than set a property. It’s an important property, to be

sure, and one of the protected functions relies on it. But by allowing the public

method little room to do any damage other than execution of the behavior, the

design makes the behavior component that more robust.

Assigning a color value to the public property and passing one as a parameter to

the public method accomplishes the same result in this code. As you will see, the

property gets used in the demonstration page to retrieve the current value of the

global variable. In a production behavior component, the programmer would proba-

bly choose to expose this value strictly as a read/write property or expose two

(c) ketabton.com: The Digital Library

1281Chapter 48 ✦ Internet Explorer Behaviors

methods, one for getting and one for setting the value. The choice would be at the

whim of the programmer’s style and would likely not be both. Using a method,

however, especially for setting a value, creates a framework in which the program-

mer can also perform validation of the incoming value before assigning it to the

global variable (something the example here does not do).

Listing 48-3: Rollover Behavior (makeHot.htc)

<PUBLIC:ATTACH EVENT=”onmouseover” ONEVENT=”makeHot()” />
<PUBLIC:ATTACH EVENT=”onmouseout” ONEVENT=”makeNormal()” />
<PUBLIC:PROPERTY NAME=”hotColor” />
<PUBLIC:METHOD NAME=”setHotColor” />
<SCRIPT LANGUAGE=”JScript”>
var oldColor, oldWeight
var hotColor = “red”

function setHotColor(color) {
hotColor = color

}

function makeHot() {
if (event.srcElement == element) {

oldColor = element.currentStyle.color
oldWeight = element.currentStyle.fontWeight
element.style.color = hotColor
element.style.fontWeight = “bold”

}
}

function makeNormal() {
if (event.srcElement == element) {

element.style.color = oldColor
element.style.fontWeight = oldWeight

}
}
</SCRIPT>

To put the public information and the behavior, itself, to work, a demonstration

page includes three spans within a paragraph that are associated with the behavior.

Listing 48-4 shows the code for the demo page.

In addition to the text with rollover spans, the page contains two SELECT con-

trols, which let you assign a separate color to each of the three elements associated

with the behavior. The first SELECT element lets you choose one of the three ele-

ments. Making that choice invokes the readColor() function in the same page.

This is the function that reads the hotColor public property of the chosen span.

That color value is used to select the color name for display in the second SELECT

element. If you make a choice in the list of colors, the applyVals() function

invokes the public setHotColor() method of the element currently selected from

the list of elements. Rolling the mouse over that element now highlights in the

newly selected color, while the other elements maintain their current settings.

(c) ketabton.com: The Digital Library

1282 Part V ✦ Putting JavaScript to Work

Listing 48-4: Applying the Rollover Behavior

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
.hotStuff {font-weight:bold; behavior:url(makeHot.htc)}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function readColor(choice) {

var currColor = document.all(choice.value).hotColor
var colorList = choice.form.color
for (var i = 0; i < colorList.options.length; i++) {

if (colorList.options[i].value == currColor) {
colorList.selectedIndex = i
break

}
}

}
function applyVals(form) {

var elem = form.elem.value
document.all(elem).setHotColor(form.color.value)

}
</SCRIPT>
</HEAD>

<BODY>
<H1>IE5+ Behavior Demo (Styles)</H1>
<HR>
<FORM>
Choose Hilited Element:
<SELECT NAME=”elem” onChange=”readColor(this)”>

<OPTION VALUE=”elem1”>First
<OPTION VALUE=”elem2”>Second
<OPTION VALUE=”elem3”>Third

</SELECT>
Choose Hilite Color:
<SELECT NAME=”color” onChange=”applyVals(this.form)”>

<OPTION VALUE=”red” SELECTED>Red
<OPTION VALUE=”blue”>Blue
<OPTION VALUE=”green”>Green

</SELECT>
</FORM>
<P>Lorem ipsum dolor sit amet, <SPAN ID=”elem1”
CLASS=”hotStuff”>consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo
consequat.</P>
</DIV>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1283Chapter 48 ✦ Internet Explorer Behaviors

Behaviors are not the solution for every scripting requirement. As demonstrated

here, they work very well for generic style manipulation, but you are certainly not

limited to that sphere. By having a reference back to the element associated with

the behavior, and then to the document that contains the element, a behavior’s

scripts can have free run over the page — provided the actions are either generic

among any page or generic among a design template that is used to build an entire

Web site or application.

Even if you don’t elect to use behaviors now (perhaps because you must support

browsers other than IE/Windows), they may be in your future. Behaviors are fun to

think about and also instill good programming practice in the art of creating

reusable, generalizable code.

For More Information
In addition to the address of W3C activity on behaviors, Microsoft devotes many

pages of its developer site to behaviors. Here are some useful pointers.

Overview:

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Using DHTML Behaviors:

http://msdn.microsoft.com/workshop/author/behaviors/howto/using.asp

Default Behaviors Reference:

http://msdn.microsoft.com/workshop/author/behaviors/reference/reference.asp

IE5.5 Element Behaviors (an extension to the original behaviors):

http://msdn.microsoft.com/workshop/author/behaviors/overview/elementb_ovw.asp

Each of these locations ends with yet more links to related pages at the Microsoft

Developer Network (MSDN) Web site.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Application:
Tables and
Calendars

Working with HTML tables is a lot of fun, especially if,

like me, you are not a born graphics designer. By

adding a few tags to your page, you can make your data look

more organized, professional, and appealing. Having this

power under scripting control is even more exciting, because

it means that in response to a user action or other variable

information (such as the current date or time), a script can do

things to the table as the table is being built. In IE4+ and W3C

DOMs, scripts can modify the content and structure of a table

even after the page has loaded, allowing the page to almost

“dance.”

You have three options when designing scripted tables for

your pages, although only two are backward compatible with

non-DHTML browsers:

✦ Static tables

✦ Dynamic tables

✦ Dynamic HTML tables

The design path you choose is determined by whether you

need to dynamically update some or all fields of a table (data

inside <TD>...</TD> tags) and which browser levels you

need to support. To highlight the differences among the three

styles, this chapter traces the implementation of a monthly

calendar display in all three formats.

About the Calendars
Because the emphasis here is on the way tables are

scripted and displayed, I quickly pass over structural issues

of the calendar versions described in the following sections.

The first two examples are backward compatible to the earli-

est browsers that didn’t even know genuine Array objects.

4949C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accommodating
older browsers

Scripted tables

Date calculations

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1286 Part V ✦ Putting JavaScript to Work

The final example, however, is a much more modern affair, utilizing table-related

DOM objects and methods to simplify the code. It requires IE4+ for Windows (unfor-

tunately, a bug in IE/Mac causes problems with the amount of TABLE object modifi-

cation the script does) and NN6.

All three calendars follow similar (if not over-simplified) rules for displaying cal-

endar data. English names of the months are coded into the script, so that they can

be plugged into the calendar heading as needed. To make some of the other calen-

dar calculations work (such as figuring out which day of the week is the first day of

a given month in a given year), I define a method for my month objects. The

method returns the JavaScript date object value for the day of the week of a

month’s first date. Virtually everything I do to implement the month objects is

adapted from the custom objects discussion of Chapter 34.

Static Tables
The issue of updating the contents of a table’s fields is tied to the nature of an

HTML document being loaded and fixed in the browser’s memory. Recall that for

early browsers, you can modify precious few elements of a document and its

objects after the document has loaded. That case certainly applies for typical data

points inside a table’s <TD> tag pair. After a document loads — even if JavaScript

has written part of the page — none of its content (except for text and textarea field

contents and a few limited form element properties) can be modified without a

complete reload.

Listing 49-1 contains the static version of a monthly calendar. The scripted table

assembly begins in the Body portion of the document. Figure 49-1 shows the

results.

Listing 49-1: A Static Table Generated by JavaScript

<HTML>
<HEAD>
<TITLE>JavaScripted Static Table</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// function becomes a method for each month object
function getFirstDay(theYear, theMonth){

var firstDate = new Date(theYear,theMonth,1)
return firstDate.getDay() + 1

}
// number of days in the month
function getMonthLen(theYear, theMonth) {

var oneDay = 1000 * 60 * 60 * 24
var thisMonth = new Date(theYear, theMonth, 1)
var nextMonth = new Date(theYear, theMonth + 1, 1)
var len = Math.ceil((nextMonth.getTime() -

thisMonth.getTime())/oneDay)
return len

}
// correct for Y2K anomalies
function getY2KYear(today) {

var yr = today.getYear()
return ((yr < 1900) ? yr+1900 : yr)

}

(c) ketabton.com: The Digital Library

1287Chapter 49 ✦ Application: Tables and Calendars

// create basic array
theMonths = new MakeArray(12)
// load array with English month names
function MakeArray(n) {

this[0] = “January”
this[1] = “February”
this[2] = “March”
this[3] = “April”
this[4] = “May”
this[5] = “June”
this[6] = “July”
this[7] = “August”
this[8] = “September”
this[9] = “October”
this[10] = “November”
this[11] = “December”
this.length = n
return this

}
// end -->
</SCRIPT>
</HEAD>

<BODY>
<H1>Month at a Glance (Static)</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
// initialize some variables for later
var today = new Date()
var theYear = getY2KYear(today)
var theMonth = today.getMonth() // for index into our array

// which is the first day of this month?
var firstDay = getFirstDay(theYear, theMonth)
// total number of <TD>...</TD> tags needed in for loop below
var howMany = getMonthLen(theYear, theMonth) + firstDay

// start assembling HTML for table
var content = “<CENTER><TABLE BORDER>”
// month and year display at top of calendar
content += “<TR><TH COLSPAN=7>” + theMonths[theMonth] + “ “ + theYear +
“</TH></TR>”
// days of the week at head of each column
content += “<TR><TH>Sun</TH><TH>Mon</TH><TH>Tue</TH><TH>Wed</TH>”
content += “<TH>Thu</TH><TH>Fri</TH><TH>Sat</TH></TR>”
content += “<TR>”

// populate calendar
for (var i = 1; i < howMany; i++) {

if (i < firstDay) {
// ‘empty’ boxes prior to first day

Continued

(c) ketabton.com: The Digital Library

1288 Part V ✦ Putting JavaScript to Work

Listing 49-1 (continued)

content += “<TD></TD>”
} else {

// enter date number
content += “<TD ALIGN=’center’>” + (i - firstDay + 1) + “</TD>”

}
// start new row after each week
if (i % 7 == 0 && i != howMany) {

content += “</TR><TR>”
}

}
content += “</TABLE></CENTER>”

// blast entire table’s HTML to the document
document.write(content)
// end -->
</SCRIPT>
</BODY>
</HTML>

Figure 49-1: The static table calendar generated by Listing 49-1

(c) ketabton.com: The Digital Library

1289Chapter 49 ✦ Application: Tables and Calendars

In this page, a little bit of the HTML — the <H1> heading and <HR> divider — is

unscripted. The rest of the page consists entirely of the table definition, all of which

is constructed in JavaScript. Though you may want to interlace straight HTML and

scripted HTML within the table definition, bugs exist in NN2 and NN3 that make this

tactic hazardous. The safest method is to define the entire table from the <TABLE>
to </TABLE> tags in JavaScript and post it to the page in one or more document.
write() methods.

Most of the work for assembling the calendar’s data points occurs inside of the

for loop. Because not every month starts on a Sunday, the script determines the

day of the week on which the current month starts. For all fields prior to that day,

the for loop writes empty <TD></TD> tags as placeholders. After the numbered

days of the month begin, the for loop writes the date number inside the

<TD>...</TD> tags. Whatever the script puts inside the tag pair is written to the

page as flat HTML. Under script control like that in the example, however, the script

can designate what goes into each data point — rather than writing fixed HTML for

each month’s calendar.

The important point to note in this example is that although the content of the

page may change automatically over time (without having to redo any HTML for the

next month), after the page is written, its contents cannot be changed. If you want

to add controls or links that are to display another month or year, you have to

rewrite the entire page. This can be accomplished by passing the desired month

and year as a search string for the current page’s URL and then assigning the com-

bination to the location.href property. You also have to add script statements to

the page that look for a URL search string, extract the passed values, and use those

values to generate the calendar while the page loads (see Chapter 17 for examples

of how to accomplish this feat). But to bring a calendar such as this even more to

life (while avoiding page reloading between views), you can implement it as a

dynamic table.

Dynamic Tables
The only way to make data points of a table dynamically updatable in backward-

compatible browsers is to turn those data points into text (or TEXTAREA) objects.

The approach to this implementation is different from the static table because it

involves the combination of immediate and deferred scripting. Immediate scripting

facilitates the building of the table framework, complete with fields for every modi-

fiable location in the table. Deferred scripting enables users to make choices from

other interface elements, causing a new set of variable data to appear in the table’s

fields.

Listing 49-2 turns the preceding static calendar into a dynamic one by including

controls that enable the user to select a month and year to display in the table. As

testament to the support for absolute backward compatibility, a button triggers

the redrawing of the calendar contents, rather than onChange event handlers in

the SELECT elements. A bug in NN2 for Windows caused that event not to work

for the SELECT object.

(c) ketabton.com: The Digital Library

1290 Part V ✦ Putting JavaScript to Work

Form controls aside, the look of this version is quite different from the static cal-

endar. Compare the appearance of the dynamic version shown in Figure 49-2

against the static version in Figure 49-1.

Listing 49-2: A Dynamic Calendar Table

<HTML>
<HEAD>
<TITLE>JavaScripted Dynamic Table</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
// function becomes a method for each month object
function getFirstDay(theYear, theMonth){

var firstDate = new Date(theYear,theMonth,1)
return firstDate.getDay()

}
// number of days in the month
function getMonthLen(theYear, theMonth) {

var oneDay = 1000 * 60 * 60 * 24
var thisMonth = new Date(theYear, theMonth, 1)
var nextMonth = new Date(theYear, theMonth + 1, 1)
var len = Math.ceil((nextMonth.getTime() -

thisMonth.getTime())/oneDay)
return len

}
// correct for Y2K anomalies
function getY2KYear(today) {

var yr = today.getYear()
return ((yr < 1900) ? yr+1900 : yr)

}
// create basic array
theMonths = new MakeArray(12)
// load array with English month names
function MakeArray(n) {

this[0] = “January”
this[1] = “February”
this[2] = “March”
this[3] = “April”
this[4] = “May”
this[5] = “June”
this[6] = “July”
this[7] = “August”
this[8] = “September”
this[9] = “October”
this[10] = “November”
this[11] = “December”
this.length = n
return this

}
// deferred function to fill fields of table
function populateFields(form) {

// initialize variables for later from user selections
var theMonth = form.chooseMonth.selectedIndex
var theYear = form.chooseYear.options[form.chooseYear.selectedIndex].text

(c) ketabton.com: The Digital Library

1291Chapter 49 ✦ Application: Tables and Calendars

// initialize date-dependent variables

// which is the first day of this month?
var firstDay = getFirstDay(theYear, theMonth)
// total number of <TD>...</TD> tags needed in for loop below
var howMany = getMonthLen(theYear, theMonth)

// set month and year in top field
form.oneMonth.value = theMonths[theMonth] + “ “ + theYear
// fill fields of table
for (var i = 0; i < 42; i++) {

if (i < firstDay || i >= (howMany + firstDay)) {
// before and after actual dates, empty fields
// address fields by name and [index] number
form.oneDay[i].value = “”

} else {
// enter date values
form.oneDay[i].value = i - firstDay + 1

}
}

}

// end -->
</SCRIPT>
</HEAD>

<BODY>
<H1>Month at a Glance (Dynamic)</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
// initialize variable with HTML for each day’s field
// all will have same name, so we can access via index value
// empty event handler prevents
// reverse-loading bug in some platforms
var oneField = “<INPUT TYPE=’text’ NAME=’oneDay’ SIZE=2 onFocus=’’>”
// start assembling HTML for raw table
var content = “<FORM><CENTER><TABLE BORDER>”
// field for month and year display at top of calendar
content += “<TR><TH COLSPAN=7><INPUT TYPE=’text’ NAME=’oneMonth’></TH></TR>”
// days of the week at head of each column
content += “<TR><TH>Sun</TH><TH>Mon</TH><TH>Tue</TH><TH>Wed</TH>”
content += “<TH>Thu</TH><TH>Fri</TH><TH>Sat</TH></TR>”
content += “<TR>”

// layout 6 rows of fields for worst-case month
for (var i = 1; i < 43; i++) {

content += “<TD ALIGN=’middle’>” + oneField + “</TD>”
if (i % 7 == 0) {

content += “</TR><TR>”
}

}

Continued

(c) ketabton.com: The Digital Library

1292 Part V ✦ Putting JavaScript to Work

Listing 49-2 (continued)

content += “</TABLE>”
// blast empty table to the document
document.write(content)

// end -->
</SCRIPT>
<SELECT NAME=”chooseMonth”>
<OPTION SELECTED>January<OPTION>February
<OPTION>March<OPTION>April<OPTION>May
<OPTION>June<OPTION>July<OPTION>August
<OPTION>September<OPTION>October<OPTION>November<OPTION>December
</SELECT>
<SELECT NAME=”chooseYear”>
<OPTION SELECTED>2000<OPTION>2001
<OPTION>2002<OPTION>2003
<OPTION>2004<OPTION>2005
<OPTION>2006<OPTION>2007
</SELECT>
<INPUT TYPE=”button” NAME=”updater” VALUE=”Update Calendar”
onClick=”populateFields(this.form)”>
</FORM>
</BODY>
</HTML>

Figure 49-2: Dynamic calendar generated by Listing 49-2

(c) ketabton.com: The Digital Library

1293Chapter 49 ✦ Application: Tables and Calendars

When you first load Listing 49-2, it creates an empty table. Even so, it may take a

while to load, depending on the platform of your browser and the speed of your

computer’s processor. This page creates numerous text objects. An onLoad event

handler in the Body definition also could easily set the necessary items to load the

current month.

From a cosmetic point of view, the dynamic calendar may not be as pleasing as

the static one in Figure 49-1. Several factors contribute to this appearance.

From a structural point of view, creating a table that can accommodate any pos-

sible layout of days and dates that a calendar may require is essential. That means

a basic calendar consisting of six rows of fields. For many months, the last row

remains completely empty. But because the table definition must be fixed when the

page loads, this layout cannot change on the fly.

The more obvious cosmetic comparison comes from the font and alignment of

data in text objects. Except for capabilities of browsers capable of using style

sheets, you’re stuck with what the browser presents in both categories. In the static

version, you can define different font sizes and colors for various fields, if you want

(such as coloring the entry for today’s date). Not so in text objects in a backward-

compatible program.

This cosmetic disadvantage, however, is a boon to functionality and interactivity

on the page. Instead of the user being stuck with an unchanging calendar month,

this version includes pop-up menus from which the user can select a month and

year of choice. Clicking the Update Calendar button refills the calendar fields with

data from the selected month.

One more disadvantage to this dynamic table surfaces, however: All text objects

can be edited by the user. For many applications, this capability may not be a big

deal. But if you’re creating a table-based application that encourages users to enter

values in some fields, be prepared (in other words, have event handlers in place) to

either handle calculations based on changes to any field or to alert users that the

fields cannot be changed (and restore the correct value).

Hybrids
It will probably be the rare scripted table that is entirely dynamic. In fact, the

one in Figure 49-2 is a hybrid of static and dynamic table definitions. The days of

the week at the top of each column are hard-wired into the table as static elements.

If your table design can accommodate both styles, implement your tables that way.

The fewer the number of text objects defined for a page, the better the performance

for rendering the page, and the less confusion for the page’s users.

Dynamic HTML Tables
If you have the luxury of developing for IE4+ and/or NN6, you have all the

resources of the TABLE and related element objects, as described in Chapter 27.

The resulting application will appear to be much more polished, because not only

does your content flow inside a table (which you can style to your heart’s delight),

but the content is dynamic within the table.

(c) ketabton.com: The Digital Library

1294 Part V ✦ Putting JavaScript to Work

Listing 49-3 blends the calendar calculations from the earlier two calendar ver-

sions with the powers of IE4+/Windows and W3C DOMs. A change to a requested

calendar month or year instantly redraws the body of the table, without disturbing

the rest of the page (see Figure 49-3).

Figure 49-3: DHTML table

Basic date calculations are identical to the other two versions. Because this page

has to be used with more modern browsers, it can use a genuine Array object for

the month names. Also, the way the table must be constructed each time is very

different from two previous versions. In this version, the script creates new table

rows, creates new cells for those rows, and then populates those cells with the date

numbers. Repeat loop logic is quite different, relying on a combination of while
and for loops to get the job done.

Other features made possible by more modern browsers include automatic pop-

ulation of the list of available years. This page will never go out of style (unless

browsers in 2050 no longer use JavaScript). There is also more automation in the

triggers of the function that populates the table.

Listing 49-3: Dynamic HTML Calendar

<HTML>
<HEAD>
<TITLE>JavaScripted Dynamic HTML Table</TITLE>
<STYLE TYPE=”text/css”>
TD, TH {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

(c) ketabton.com: The Digital Library

1295Chapter 49 ✦ Application: Tables and Calendars

/*******************
UTILITY FUNCTIONS

********************/
// day of week of month’s first day
function getFirstDay(theYear, theMonth){

var firstDate = new Date(theYear,theMonth,1)
return firstDate.getDay()

}
// number of days in the month
function getMonthLen(theYear, theMonth) {

var oneDay = 1000 * 60 * 60 * 24
var thisMonth = new Date(theYear, theMonth, 1)
var nextMonth = new Date(theYear, theMonth + 1, 1)
var len = Math.ceil((nextMonth.getTime() -

thisMonth.getTime())/oneDay)
return len

}
// create array of English month names
var theMonths =
[“January”,”February”,”March”,”April”,”May”,”June”,”July”,”August”,
“September”,”October”,”November”,”December”]
// return IE4+ or W3C DOM reference for an ID
function getObject(obj) {

var theObj
if (document.all) {

if (typeof obj == “string”) {
return document.all(obj)

} else {
return obj.style

}
}
if (document.getElementById) {

if (typeof obj == “string”) {
return document.getElementById(obj)

} else {
return obj.style

}
}
return null

}

/************************
DRAW CALENDAR CONTENTS

*************************/
// clear and re-populate table based on form’s selections
function populateTable(form) {

var theMonth = form.chooseMonth.selectedIndex
var theYear =

parseInt(form.chooseYear.options[form.chooseYear.selectedIndex].text)
// initialize date-dependent variables
var firstDay = getFirstDay(theYear, theMonth)
var howMany = getMonthLen(theYear, theMonth)

Continued

(c) ketabton.com: The Digital Library

1296 Part V ✦ Putting JavaScript to Work

Listing 49-3 (continued)

// fill in month/year in table header
getObject(“tableHeader”).innerHTML = theMonths[theMonth] +
“ “ + theYear

// initialize vars for table creation
var dayCounter = 1
var TBody = getObject(“tableBody”)
// clear any existing rows
while (TBody.rows.length > 0) {

TBody.deleteRow(0)
}
var newR, newC
var done=false
while (!done) {

// create new row at end
newR = TBody.insertRow(TBody.rows.length)
for (var i = 0; i < 7; i++) {

// create new cell at end of row
newC = newR.insertCell(newR.cells.length)
if (TBody.rows.length == 1 && i < firstDay) {

// no content for boxes before first day
newC.innerHTML = “”
continue

}
if (dayCounter == howMany) {

// no more rows after this one
done = true

}
// plug in date (or empty for boxes after last day)
newC.innerHTML = (dayCounter <= howMany) ?

dayCounter++ : “”
}

}
}

/*******************
INITIALIZATIONS

********************/
// create dynamic list of year choices
function fillYears() {

var today = new Date()
var thisYear = today.getFullYear()
var yearChooser = document.dateChooser.chooseYear
for (i = thisYear; i < thisYear + 5; i++) {

yearChooser.options[yearChooser.options.length] = new Option(i, i)
}
setCurrMonth(today)

}

(c) ketabton.com: The Digital Library

1297Chapter 49 ✦ Application: Tables and Calendars

// set month choice to current month
function setCurrMonth(today) {

document.dateChooser.chooseMonth.selectedIndex = today.getMonth()
}
</SCRIPT>
</HEAD>

<BODY onLoad=”fillYears(); populateTable(document.dateChooser)”>
<H1>Month at a Glance (Dynamic HTML)</H1>
<HR>
<TABLE ID=”calendarTable” BORDER=1 ALIGN=”center”>
<TR>

<TH ID=”tableHeader” COLSPAN=7></TH>
</TR>
<TR><TH>Sun</TH><TH>Mon</TH><TH>Tue</TH><TH>Wed</TH>
<TH>Thu</TH><TH>Fri</TH><TH>Sat</TH></TR>
<TBODY ID=”tableBody”></TBODY>
<TR>

<TD COLSPAN=7>
<P>
<FORM NAME=”dateChooser”>

<SELECT NAME=”chooseMonth”
onChange=”populateTable(this.form)”>

<OPTION SELECTED>January<OPTION>February
<OPTION>March<OPTION>April<OPTION>May
<OPTION>June<OPTION>July<OPTION>August
<OPTION>September<OPTION>October
<OPTION>November<OPTION>December

</SELECT>
<SELECT NAME=”chooseYear” onChange=”populateTable(this.form)”>
</SELECT>
</FORM>
</P></TD>

</TR>
</TABLE>
</BODY>
</HTML>

Further Thoughts
The best deployment of an interactive calendar requires the kind of Dynamic

HTML currently available in IE4+/Windows and W3C DOMs. Moreover, the cells in

those DOMs can receive mouse events so that a user can click a cell and it will high-

light perhaps in a different color or display some related, but otherwise hidden,

information.

A logical application for such a dynamic calendar would be in a pop-up window

or frame that lets a user select a date for entry into a form date field. It eliminates

typing in a specific date format, thereby ensuring a valid date entry every time.

Without DHTML, you can create a static version of the calendar that renders the

numbers in the calendar cells as HTML links. Those links can use a javascript:
URL to invoke a function call that sets a date field in the main form.

(c) ketabton.com: The Digital Library

1298 Part V ✦ Putting JavaScript to Work

The dynamic calendar in Listing 49-2 assumes that the browser treats like-named
text boxes in a form as an array of fields. While this is true in all versions of NN, IE3
does not follow this behavior. To accommodate this anomaly, you must modify the
script to assign unique names to each field (with an index number as part of the
name) and use the eval() function to assist looping through the fields to popu-
late them. On the CD-ROM is Listing 49-2b, which is a cross-compatible version of
the dynamic calendar.

✦ ✦ ✦

Note

(c) ketabton.com: The Digital Library

Application: A
Lookup Table

One of the first ideas that intrigued me about JavaScript

was the notion of delivering CGI-like functionality along

with an HTML document. On the Web, numerous, small data

collections currently require CGI scripting and a back-end

database engine to drive them. Of course, not everyone who

has information to share has access to the server environ-

ment (or the expertise) to implement such a solution.

JavaScript provides that power.

A Serverless Database
Before you get too carried away with the idea of letting

JavaScript take the place of your SQL database, you need to

recognize several limitations that prevent JavaScript from

being a universal solution. First, any database that you embed

into an HTML document is read-only. Although you can script

an interface and lookup routines for the user, no provisions

are available for writing revised information back to the

server, if that is your intention.

A second consideration is the size of the data collection.

Unlike databases residing on servers, the entire JavaScript

database (or subset you define for inclusion into a single

HTML document) must be downloaded to the user’s browser

before the user can work with the data. As a point of refer-

ence, think about image files. At less than 56 Kbps, how large

an image file would you tolerate downloading? Whatever that

limit may be (anywhere from 10 to 35K, depending on your

patience) is what your database size limit should be. For

many special-purpose collections, this is plenty of space,

assuming one byte per character. Unlike what happens when

the user downloads an embedded image file, the user doesn’t

see special statusbar messages about your database: To the

browser, these messages are all part of the HTML coming in

with the document.

5050C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Severless data
collection lookup

Data-entry validation

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1300 Part V ✦ Putting JavaScript to Work

The kind of data I’m talking about here is obviously text data. That’s not to say

you can’t let your JavaScript-enhanced document act as a front end to data files of

other types on your server. The data in your embedded lookup table can be URLs

to images that get swapped into the page as needed.

The Database
As I was thinking about writing a demonstration of a serverless database, I

encountered a small article in the Wall Street Journal that related information I had

always suspected. The Social Security numbers assigned to virtually every U.S. citi-

zen are partially coded to indicate the state in which you registered for your Social

Security number. This information often reveals the state in which you were born

(another study indicates that two-thirds of U.S. citizens live their entire lives in the

same state). The first three digits of the nine-digit number comprise this code.

When the numbering system was first established, each state was assigned a

block of three-digit numbers. Therefore, if the first three digits fall within a certain

range, the Social Security Administration has you listed as being registered in the

corresponding state or territory. I thought this would be an interesting demonstra-

tion for a couple of reasons: first, the database is not that large, so it can be easily

embedded into an HTML document without making the document too big to down-

load, even on slow Internet connections; second, it offers some challenges to data-

entry validation, as you see in a moment.

Before young people from populous states write to tell me that their numbers are
not part of the database, let me emphasize that I am well aware that several states
have been assigned number blocks not reflected in the database. This example is
only a demonstration of scripting techniques, not an official Social Security
Administration page.

The Implementation Plan
For this demonstration, all I started with was a printed table of data. I figured

that the user interface for this application would probably be very plain: a text field

in which the user can enter a three-digit number, a clickable button to initiate the

search, and a text field to show the results of the lookup. Figure 50-1 shows the

page. Pretty simple by any standards.

Given that user interface (I almost always start a design from the interface — how

my page’s users will experience the information presented on the page), I next

planned the internals. I needed the equivalent of two tables: one for the numeric

ranges, and one for the state names. Because most of the numeric ranges are con-

tiguous, I could get by with a table of the high number of each range. This meant

that the script would have to trap elsewhere for the occasional numbers that fall

outside of the table’s ranges — the job of data validation.

Note

(c) ketabton.com: The Digital Library

1301Chapter 50 ✦ Application: A Lookup Table

Figure 50-1: The Social Security number lookup page

Because the two tables were so closely related to each other, I had the option of

creating two separate arrays, so that any given index value would correspond to

both the numeric and state name entries in both tables (parallel arrays, I call them).

The other option was to create a two-dimensional array (see Chapter 37), in which

each array entry has data points for both the number and state name. For purposes

of demonstration to first-time database builders, I decided to stay with two parallel

arrays. This method makes visualizing how the lookup process works with two sep-

arate arrays a little easier.

The Code
The HTML document starts normally through the definition of the document

title:

<HTML>
<HEAD>
<TITLE>Where Were You Born?</TITLE>

Because I chose to use the Array object of NN3 and IE3/J2, I added a separate

script segment to gracefully handle the click of the button for those who landed at

this page with an earlier scriptable browser. By putting a <SCRIPT LANGUAGE=
”JavaScript”> tag ahead of the <SCRIPT LANGUAGE=”JavaScript1.1”> tag, I

ensure that the one function triggered by the button is treated appropriately for all

scriptable browsers:

(c) ketabton.com: The Digital Library

1302 Part V ✦ Putting JavaScript to Work

<SCRIPT LANGUAGE=”JavaScript”>
<!-- hide from non-scriptable browsers
function search(form) {

alert(“This page a more recent browser version.”)
}
// end hiding -->
</SCRIPT>

Immediately after the starting <SCRIPT> tag comes the HTML beginning com-

ment, so that most non-JavaScript-enabled browsers ignore all statements between

the start and end comments (just before the </SCRIPT> tag). Failure to do this

results in all code lines appearing in non-JavaScript browsers as regular HTML text.

Now we come to the JavaScript 1.1-level scripts, which handle everything from

building the tables of data to looking up data later in response to a button click. I

begin by creating the first array for the top numbers of each entry’s numeric range.

In this application, you will see that I place utility function definitions close to

the top of the script sections and put any action-oriented scripts (functions acting

in response to event handlers) closer to the bottom of the script sections. My pref-

erence is to have all dependencies resolved before the script needs them. This phi-

losophy carries over from the logic that dictates putting as many scripts in the

Head as possible, so that even if the user (or network) should interrupt download-

ing of a page before every line of HTML reaches the browser, any user interface ele-

ment relying on scripts will have those scripts loaded and ready to go. The order of

functions in this example is not critical, because as long as they all reside in the

Head section, they are defined and loaded by the time the field and button appear

at the bottom of the page. But after I develop a style, I find it easier to stick with

it — one less matter to worry about while scripting a complex application.

After creating an array (named ssn) with 57 empty slots, the script populates all

57 data points of the array, starting with the first entry going into the slot numbered

0. These data numbers correspond to the top end of each range in the 57-entry

table. For example, any number greater than 3 but less than or equal to 7 falls into

the range of the second data entry of the array (ssn[1]).

<SCRIPT LANGUAGE=”JavaScript1.1”>
<!-- hide from non-scriptable browsers

// create array that lists the top end of each numeric range
var ssn = new Array(57)
ssn[0] = 3
ssn[1] = 7
ssn[2] = 9
ssn[3] = 34
ssn[4] = 39
ssn[5] = 49
ssn[6] = 134
ssn[7] = 158
ssn[8] = 211
ssn[9] = 220
ssn[10] = 222
ssn[11] = 231
ssn[12] = 236
ssn[13] = 246
ssn[14] = 251
ssn[15] = 260

(c) ketabton.com: The Digital Library

1303Chapter 50 ✦ Application: A Lookup Table

ssn[16] = 267
ssn[17] = 302
ssn[18] = 317
ssn[19] = 361
ssn[20] = 386
ssn[21] = 399
ssn[22] = 407
ssn[23] = 415
ssn[24] = 424
ssn[25] = 428
ssn[26] = 432
ssn[27] = 439
ssn[28] = 448
ssn[29] = 467
ssn[30] = 477
ssn[31] = 485
ssn[32] = 500
ssn[33] = 502
ssn[34] = 504
ssn[35] = 508
ssn[36] = 515
ssn[37] = 517
ssn[38] = 519
ssn[39] = 520
ssn[40] = 524
ssn[41] = 525
ssn[42] = 527
ssn[43] = 529
ssn[44] = 530
ssn[45] = 539
ssn[46] = 544
ssn[47] = 573
ssn[48] = 574
ssn[49] = 576
ssn[50] = 579
ssn[51] = 580
ssn[52] = 584
ssn[53] = 585
ssn[54] = 586
ssn[55] = 599
ssn[56] = 728

I do the same for the array containing the states and territory names. Both of

these array populators seem long but pale in comparison to what you would have

to do with a database of many kilobytes. Unfortunately, JavaScript doesn’t give you

the power to load existing data files into arrays (but see the recommendations at

the end of the chapter), so any time you want to embed a database into an HTML

document, you must go through this array-style assignment frenzy:

// create parallel array listing all the states/territories
// that correspond to the top range values in the first array
var geo = new Array(57)
geo[0] = “New Hampshire”
geo[1] = “Maine”
geo[2] = “Vermont”
geo[3] = “Massachusetts”

(c) ketabton.com: The Digital Library

1304 Part V ✦ Putting JavaScript to Work

geo[4] = “Rhode Island”
geo[5] = “Connecticut”
geo[6] = “New York”
geo[7] = “New Jersey”
geo[8] = “Pennsylvania”
geo[9] = “Maryland”
geo[10] = “Delaware”
geo[11] = “Virginia”
geo[12] = “West Virginia”
geo[13] = “North Carolina”
geo[14] = “South Carolina”
geo[15] = “Georgia”
geo[16] = “Florida”
geo[17] = “Ohio”
geo[18] = “Indiana”
geo[19] = “Illinois”
geo[20] = “Michigan”
geo[21] = “Wisconsin”
geo[22] = “Kentucky”
geo[23] = “Tennessee”
geo[24] = “Alabama”
geo[25] = “Mississippi”
geo[26] = “Arkansas”
geo[27] = “Louisiana”
geo[28] = “Oklahoma”
geo[29] = “Texas”
geo[30] = “Minnesota”
geo[31] = “Iowa”
geo[32] = “Missouri”
geo[33] = “North Dakota”
geo[34] = “South Dakota”
geo[35] = “Nebraska”
geo[36] = “Kansas”
geo[37] = “Montana”
geo[38] = “Idaho”
geo[39] = “Wyoming”
geo[40] = “Colorado”
geo[41] = “New Mexico”
geo[42] = “Arizona”
geo[43] = “Utah”
geo[44] = “Nevada”
geo[45] = “Washington”
geo[46] = “Oregon”
geo[47] = “California”
geo[48] = “Alaska”
geo[49] = “Hawaii”
geo[50] = “District of Columbia”
geo[51] = “Virgin Islands”
geo[52] = “Puerto Rico”
geo[53] = “New Mexico”
geo[54] = “Guam, American Samoa, N. Mariana Isl., Philippines”
geo[55] = “Puerto Rico”
geo[56] = “Long-time or retired railroad workers”

(c) ketabton.com: The Digital Library

1305Chapter 50 ✦ Application: A Lookup Table

Now comes the beginning of the data validation functions. Under control of a

master validation function shown in a minute, the stripZeros() function removes

any leading 0s that the user may have entered. Notice that the instructions tell the

user to enter the first three digits of a Social Security number. For 001 through 099,

that means the numbers begin with one or two 0s. JavaScript, however, treats any

numeric value starting with 0 as an octal value. Because I have to do some numeric

comparisons for the search through the ssn[] array, the script must make sure

that the entries (which are strings to begin with, coming as they do from text

objects) can be converted to decimal numbers. The parseInt() function, with the

all-important second parameter indicating Base 10 numbering, does the job. But

because the remaining validations assume a string value, the integer is reconverted

to a string value before it is returned.

// **BEGIN DATA VALIDATION FUNCTIONS**
// JavaScript sees numbers with leading zeros as octal values,
// so strip zeros
function stripZeros(inputStr) {

return parseInt(inputStr, 10).toString()
}

The next three functions are described in full in Chapter 43, which discusses

data validation. In the last function, a copy of the input value is converted to an

integer to enable the function to make necessary comparisons against the bound-

aries of acceptable ranges.

// general purpose function to see if an input value has been entered
// at all
function isEmpty(inputStr) {

if (inputStr == null || inputStr == “”) {
return true

}
return false

}

// general purpose function to see if a suspected numeric input
// is a positive integer
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i)
if (oneChar < “0” || oneChar > “9”) {

return false
}

}
return true

}

// function to determine if value is in acceptable range for this
// application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || (num > 586 && num < 596) || (num > 599 &&

num < 700) || num > 728) {
return false

}
return true

}

(c) ketabton.com: The Digital Library

1306 Part V ✦ Putting JavaScript to Work

The master validation controller function (named isValid() in this application)

is also covered in depth in Chapter 43. A statement that wants to know if it should

proceed with the lookup process calls this function. If any one validation test fails,

the function returns false, and the search does not proceed.

// Master value validator routine
function isValid(inputStr) {

if (isEmpty(inputStr)) {
alert(“Please enter a number into the field before

clicking the button.”)
return false

} else {
if (!isNumber(inputStr)) {

alert(“Please make sure entries are numbers only.”)
return false

} else {
if (!inRange(inputStr)) {

alert(“Sorry, the number you entered is not part of our
database. Try another three-digit number.”)

return false
}

}
}
return true

}
// **END DATA VALIDATION FUNCTIONS**

The search() function is invoked by two different event handlers (and indi-

rectly by a third). The two direct calls come from the input field’s onChange event

handler and the Search button’s onClick event handler. The handler passes a refer-

ence to the form, which includes the button and both text objects.

To search the database, the script repeatedly compares each succeeding entry

of the ssn[] array against the value entered by the user. For this process to work, a

little bit of preliminary work is needed. First comes an initialization of a variable,

foundMatch, which comes into play later. Initially set to false, the variable is set

to true only if there is a successful match — information you need later to set the

value of the result text object correctly for all possible conditions.

// Roll through ssn database to find index;
// apply index to geography database
function search(form) {

var foundMatch = false
var inputStr = stripZeros(form.entry.value)
if (isValid(inputStr)) {

inputValue = inputStr
for (var i = 0; i < ssn.length; i++) {

if (inputValue <= ssn[i]) {
foundMatch = true
break

}
}

}
form.result.value = (foundMatch) ? geo[i] : “”
form.entry.focus()
form.entry.select()

}

(c) ketabton.com: The Digital Library

1307Chapter 50 ✦ Application: A Lookup Table

Next comes all the data preparation. After the entry is passed through the zero

stripper, a copy is dispatched to the master validation controller, which, in turn,

sends copies to each of its special-purpose minions. If the master validator detects

a problem from the results of any of those minions, it returns false to the condi-

tion that wants to know if the input value is valid. Should the value not be valid,

processing skips past the for loop and proceeds immediately to an important

sequence of three statements.

The first is a conditional statement that relies on the value of the foundMatch
variable that was initialized at the start of this function. If foundMatch is still

false, that means that something is wrong with the entry and it cannot be pro-

cessed. To prevent any incorrect information from appearing in the result field, that

field is set to an empty string if foundMatch is false. The next two statements set

the focus and selection to the entry field, inviting the user to try another number.

On the other hand, if the entry is a valid number, the script finally gets to per-

form its lookup task. Looping through every entry of the ssn[] array starting with

entry 0 and extending until the loop counter reaches the last item (based on the

array’s length property), the script compares the input value against each entry’s

value. If the number is less than or equal to a particular entry, the value of the loop

counter (i) is frozen, the foundMatch variable is set to true, and execution breaks

out of the for loop.

This time through the conditional expression, with foundMatch being true, the

statement plugs the corresponding value of the geo[] array (using the frozen value

of i) into the result field. Focus and selection are set to the entry field to make it

easy to enter another value.

Browsers that recognize keyboard events benefit by allowing the search to be

initiated if the user presses the Enter key after entering a number. An onKeyPress
event handler for the input text box invokes the searchOnReturn() function. This

function employs cross-browser event parsing to find out if the Return key had

been pressed while the text pointer was in the text box. If so, then the search()
function, described earlier, is asked to do its job. Any characters other than the

Return key are allowed to pass unchanged to the input box.

// start search if input field receives a Return character
function searchOnReturn(form, evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
if (evt) {

var theKey = (evt.which) ? evt.which : evt.keyCode
if (theKey == 13) {

search(form)
return false

}
}
return true

}
// end code hiding -->
</SCRIPT>
</HEAD>

The balance of the code is the Body part of the document. The real action takes

place within the Form definition.

<BODY>
<H1>Where Were You Born?</H1>
<HR>

(c) ketabton.com: The Digital Library

1308 Part V ✦ Putting JavaScript to Work

According to an article in the <CITE>Wall Street Journal</CITE>, the first three
digits of a U.S. Social Security number is a code for the state or territory in
which your application stated you were born. For recent immigrants, the number
is supposed to match up with the state or territory in which you were living
when you received proper working papers.<P>
Note: The database in this document is not 100 percent complete. Populous
states have added numeric ranges not contained here.<P>
Instructions:
Enter the first three digits of a U.S. Social Security number in
question.
Click on the Search button.
See the corresponding state or territory in the field.</L1>

<P>For the paranoid: No information you enter here is recorded or
monitored—it stays entirely within your browser.<P>
<HR>

The form’s onSubmit event handler is set to prevent accidental submission (or

pseudo-submission, because no ACTION attribute is specified for the form) that

IE/Mac does from any form’s text box (other browsers submit on Return from only a

single-field form). Each of the text objects is sized to fit the expected data. A hand-

ful of event handlers invoke the search() function (directly and indirectly), pass-

ing a reference to the form as a parameter.

<FORM onSubmit=”return false”>
Enter the first three digits of a Social Security number:<INPUT
TYPE=”text” NAME=”entry” SIZE=4 onKeyPress=”return searchOnReturn(this.form,
event)” onChange=”search(this.form)”>
<INPUT TYPE=”button” VALUE=”Search” onClick=”search(this.form)”>
<P>
The Feds link this number to:<INPUT TYPE=”text” NAME=”result” SIZE=50>
</FORM>
</BODY>
</HTML>

Further Thoughts
If I were doing this type of application for production purposes, I would turn

each pairing of range high number and geographical location into separate objects

and store the objects in an array. Making that technique work requires one extra

function and a different way of populating the data. The following is an example

using the same variable names as the preceding listing:

// specify an array entry with two items
function dataRecord(ssn, geo) {

this.ssn = ssn
this.geo = geo
return this

}

(c) ketabton.com: The Digital Library

1309Chapter 50 ✦ Application: A Lookup Table

// initialize basic array
var numberState = new Array(57)

// populate main array with smaller arrays
numberState[0] = new dataRecord(3,”New Hampshire”)
numberState[1] = new dataRecord(7,”Maine”)
numberState[2] = new dataRecord(9,”Vermont”)

The other changes (marked in boldface) occur in the search() function, which

must address this data in a slightly different way than it did before:

function search(form) {
var foundMatch = false
var inputStr = stripZeros(form.entry.value)
if (isValid(inputStr)) {

inputValue = inputStr
for (var i = 0; i < numberState.length; i++) {

if (inputValue <= numberState[i].ssn) {
foundMatch = true
break

}
}

}
form.result.value = (foundMatch) ? numberState[i].geo :””
form.entry.focus()
form.entry.select()

}

All references to data are to the numberState[] array and properties of its

objects (either ssn or geo). With the data for each record arranged in a comma-

delimited fashion, it may be easier to transfer data exported from an existing

database to your script with less copying and pasting or dragging and dropping.

Another possibility would be to use JavaScript’s capability to load .js files that

have the arrays already populated or have variables preloaded with comma-delim-

ited values. By using the string.split() method (Chapter 34), you can easily

assign data in this format to an array.

From a user interface perspective, the searchOnReturn() function can do more

with the event object. For instance, it could filter data entry so that only numbers

ever reach the input text field. You would still want to perform the data-entry vali-

dation in case someone were to paste some non-numeric text into the text box.

I truly believe that serverless data lookups offer a great opportunity to many cre-

ative JavaScripters.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Application: A
“Poor Man’s”
Order Form

I hesitate to call the application described in this chapter

an “order form” because it is not in any way intended for

use as a client-side shopping cart or some of the more

advanced e-commerce applications you see on the Web. No,

the goal here is to demonstrate how JavaScript can be used to

assist users with column-and-row arithmetic, very much like

the kinds of arithmetic needed to calculate the total for an

order of goods.

While this order form is not linked to any particular online

catalog, some or all of it can be used as a piece for a small

e-commerce site. The form in the example here requires that

users input product descriptions and prices, but there is no

reason that a client-side JavaScript shopping cart can’t accu-

mulate the shopper’s choices from catalog pages, and then

present them in an order form with product descriptions and

prices hard-wired into the table. There still are entry boxes for

quantity and selecting local sales tax rates. But all the arith-

metic products and sums are calculated quickly on the client

with JavaScript.

Along the way, you should also discover how to design

code — more specifically, JavaScript data structures — in such

a way that they are easily editable by non-scripters who are

responsible for updating the embedded data. Therefore, even

if you prefer to leave professional e-commerce order process-

ing to server CGIs, you may still pick up a scripting tip or two

from this “poor man’s” version of an order form.

Defining the Task
I doubt that any two order forms on the Web are executed

precisely the same way. Much of the difference has to do with

the way a CGI program on the server wants to receive the data

on its way to an order-entry system or database. The rest has

5151C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Live math on table
rows and columns

Number formatting

Code reusability

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1312 Part V ✦ Putting JavaScript to Work

to do with how clever the HTML programmer is. To come up with a generalized

demonstration, I had to select a methodology and stay with it.

Because the intended goal of this demonstration is to focus on the rows and

columns of an order form, I omit the usual name-and-address input elements.

Instead, the code deals exclusively with the tabular part of the form, including the

footer “stuff” of a form for subtotals, sales tax, shipping, and the grand total.

Another goal is to design the order form with an eye to as much reusability as

possible. In other words, I may design the form for one page, but I also want to

adapt it to another order form quickly without having to muck around too deeply in

complicated HTML and JavaScript code. One giant annoyance that this approach

eliminates is the normal HTML repetition of row after row of tags for input fields

and table cells. JavaScript can certainly help you out there.

The order form code also demonstrates how to perform math and display results

in two decimal places, use the String.split() method to make it easy to build

arrays of data from comma-delimited lists, and enable JavaScript arrays to handle

tons of repetitive work.

The Form Design
Figure 51-1 shows a rather simplified version of an order form as provided in the

listings. Many elements of the form are readily adjustable by changing only a few

characters near the top of the JavaScript listing. At the end of the chapter, I provide

several suggestions for improving the user experience of a form, such as this one.

Figure 51-1: The order form display

(c) ketabton.com: The Digital Library

1313Chapter 51 ✦ Application: A “Poor Man’s” Order Form

Form HTML and Scripting
Because this form is generated as the document loads, JavaScript writes most of

the document to reflect the variable choices made in the reusable parts of the

script. In fact, in this example, only the document heading is hard-wired in HTML.

The script uses a few JavaScript facilities that aren’t available in the earliest

browsers, so you have to guard against browsers of other levels reaching this page

and receiving script errors when document.write() statements fail to find func-

tions defined inside JavaScript 1.1 language script tags. As part of this defense, I

defined a JavaScript 1.0 function, called initialize(), ahead of any other script.

This function is called later in the Body. Because both types of browsers can invoke

this function, the Head portion of this document contains an initialize() func-

tion in both JavaScript 1.0 and JavaScript 1.1 script tags. For JavaScript 1.0

browsers, the function displays a message alerting the user that this form requires

a more recent browser. Your message could be more helpful and perhaps even pro-

vide a link to another version of the order form. In the JavaScript 1.1 portion, the

initialize() function is empty, sitting ready to catch and ignore the call made by

the document:

<HTML>
<HEAD>
<TITLE>Scripted Order Form</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
// displays notice for non-JavaScript 1.1 browsers
function initialize() {

document.write(“This page a more recent browser version.”)
}
// -->
</SCRIPT>

Global adjustments
The next section is the start of the JavaScript 1.1-level statements and functions

that do most of the work for this document. The script begins by initializing three

very important global variables. This location is where the author defining the

details for the order form also enters information about the column headings, col-

umn widths, and number of data entry rows.

<SCRIPT LANGUAGE=”JavaScript1.1”>
<!--
// ** BEGIN GLOBAL ADJUSTMENTS ** //
// Order form columns and rows specifications
// **Column titles CANNOT CONTAIN PERIODS
var columnHeads = “Qty,Stock#,Description,Price,Total”.split(“,”)
var columnWidths = “3,7,20,7,8”.split(“,”)
var numberOfRows = 5

The first two assignment statements perform double duty. Not only do they pro-

vide the location for customized settings to be entered by the HTML author, but

they use the string.split() method to literally create arrays out of their series

(c) ketabton.com: The Digital Library

1314 Part V ✦ Putting JavaScript to Work

of comma-delimited strings. At first, this may seem to be a roundabout way to gen-

erate an array, because you can also create the array directly with:

var columnHeads = new Array(“Qty”,”Stock”,...)

But the way shown here minimizes the possibility of goofing up the quotes and

commas when modifying the data, especially if modification might be attempted by

a non-scripter.

So much of the repetitive work to come in this application is built around arrays

that it will prove to be extraordinarily convenient to have the column title names

and column widths in parallel arrays. The number-of-rows value also plays a role in

not only drawing the form, but calculating it as well.

Notice the caveat about periods in column heading strings. You will soon see

that these column names are assigned as text object names, which, in turn, are

used to build object references to text boxes. Object names cannot have periods in

them, so for these column headings to perform their jobs, you have to leave peri-

ods out of their names.

As part of the global adjustment area, the extendRow() method requires knowl-

edge about which columns are to be multiplied to reach a total for any row:

// data entry row math
function extendRow(form,rowNum) {

// **change ‘Qty’ and ‘Price’ to match your column names
var rowSum = form.Qty[rowNum].value * form.Price[rowNum].value
// **change ‘Total’ to match your corresponding column name
form.Total[rowNum].value = formatNum(rowSum,2)

}

This example uses the Qty, Price, and Total fields for math calculations. Those

field names are inserted into the references within this function. To calculate the

total for each row, the function receives the form object reference and the row num-

ber as parameters. As described later, the order form is generated as a kind of

array. Each field in a column intentionally has the same name. This scheme enables

scripts to access a given field in that column by row number when using the row

number as an index to the array of objects bearing the same name. For example, for

the first row (row 0), you calculate the total by multiplying the quantity field of row

0 (form.Qty[0].value) times the price field of row 0 (form.Price[0].value).

You then format that value to two places to the right of the decimal and plug that

number into the value of the total field for row 0 (form.Total[0].value).

The final place where you have to worry about customized information is in the

function that adds up the total columns. The function must know the name that you

assigned to the total column:

function addTotals(form) {
var subTotal = 0
for (var i = 0; i < numberOfRows; i++) {

// **change ‘Total’ in both spots to match your column name
subTotal += (form.Total[i].value != “”) ?

parseFloat(form.Total[i].value) : 0
}
form.subtotal.value = formatNum(subTotal,2)
form.tax.value = formatNum(getTax(form,subTotal),2)
form.total.value = “$” + formatNum((parseFloat(form.subtotal.value) +

parseFloat(form.tax.value) + parseFloat(form.shipping.value)),2)
}
// ** END GLOBAL ADJUSTMENTS ** //

(c) ketabton.com: The Digital Library

1315Chapter 51 ✦ Application: A “Poor Man’s” Order Form

The addTotals() function receives the form reference as a parameter, which it

uses to read and write data around the form. The first task is to add up the values

of the total fields from each of the data-entry rows. Here you need to be specific

about the name you assign to that column. To keep code lines to a minimum, you

use a conditional expression inside the for loop to make additions to the subTotal
amount only when a value appears in a row’s total field. Because all values from

text fields are strings, you use parseFloat() to convert the values to floating-point

numbers before adding them to the subTotal variable.

Three more assignment statements fill in the subtotal, tax, and total fields. The

subtotal is nothing more than a formatted version of the amount reached at the end

of the for loop. The task of calculating the sales tax is passed off to another func-

tion (described in a following section), but its value is also formatted before being

plugged into the sales tax field. For the grand total, you add floating-point-con-

verted values of the subtotal, tax, and shipping fields before slapping a dollar sign

in front of the result. Even though the three fields contain values formatted to two

decimal places, any subsequent math on such floating-point values incurs the

minuscule errors that send formatting out to sixteen decimal places. Thus, you

must reformat the results after the addition.

Do the math
As you can see from Figure 51-1, the user interface for entering the sales tax is a

pair of SELECT elements. This type of interface minimizes the possibility of users

entering the value in all kinds of weird formats that, in some cases, would be impos-

sible to parse. The function that calculates the sales tax of the subtotal looks to

these select objects for their current settings.

function getTax(form,amt){
var chosenPercent = form.percent[form.percent.selectedIndex].value
var chosenFraction = form.fraction[form.fraction.selectedIndex].value
var rate = parseFloat(chosenPercent + “.” + chosenFraction) / 100
return amt * rate

}

After receiving the form object reference and subtotal amount as parameters, the

function reads the two values chosen in the SELECT elements. The string value
properties of the SELECT objects are temporarily stored in local variables. To arrive

at the actual rate, you concatenate the two portions of the string (joined by an arti-

ficial decimal point) and parseFloat() the string to get a number that you can

then divide by 100. The product of the subtotal times the rate is returned to the

calling statement (in the preceding addTotals() function).

All of the calculation that ripples through the order form is controlled by a single

calculate() function:

function calculate(form,rowNum) {
extendRow(form,rowNum)
addTotals(form)

}

This function is called by any object that affects the total of any row. Such a

request includes both the form object reference and the row number. This informa-

tion lets the single affected row, and then the totals column, be recalculated.

Changes to some objects, such as the sales tax SELECT objects, affect only the

(c) ketabton.com: The Digital Library

1316 Part V ✦ Putting JavaScript to Work

totals column, so they will call addTotals() function directly rather than this func-

tion (the rows don’t need recalculation).

Number formatting, as explained in Chapter 35, is a detail that scripters must

handle themselves (unless you are designing for IE5.5+ and NN6+, which include the

number.toFixed() method for number formatting). We can borrow the formatting

code from Chapter 35, and use it here as-is:

function formatNum(expr,decplaces) {
var str = (Math.round(parseFloat(expr) *

Math.pow(10,decplaces))).toString()
while (str.length <= decplaces) {

str = “0” + str
}
var decpoint = str.length - decplaces
return str.substring(0,decpoint) + “.” +
str.substring(decpoint,str.length)

}

Being able to pick up this function from a different application should reinforce

the advantage to writing functions to be as generalizable as possible. Rather than

building page-specific references into the formatting function, it accepts parameters

that could come from anywhere. Page specifics are left to another function that

deals with reading and writing text box values.

Cooking up some HTML
As we near the end of the scripting part of the document’s Head section, we

come to two functions that are invoked later to assemble some table-oriented

HTML based on the global settings made at the top. One function assembles the

row of the table that contains the column headings:

function makeTitleRow() {
var titleRow = “<TR>”
for (var i = 0; i < columnHeads.length; i++) {

titleRow += “<TH>” + columnHeads[i] + “</TH>”
}
titleRow += “</TR>”
return titleRow

}

The heart of the makeTitleRow() function is the for loop, which makes simple

<TH> tags out of the text entries in the columnHeads array defined earlier. All this

function does is assemble the HTML. A document.write() method in the Body

puts this HTML into the document.

function makeOneRow(rowNum) {
var oneRow = “<TR>”
for (var i = 0; i < columnHeads.length; i++) {

oneRow += “<TD ALIGN=middle><INPUT TYPE=text SIZE=” +
columnWidths[i] + “ NAME=\’” + columnHeads[i] +
“\’ onChange=’calculate(this.form,” + rowNum + “)’></TD>”

}
oneRow += “</TR>”
return oneRow

}

(c) ketabton.com: The Digital Library

1317Chapter 51 ✦ Application: A “Poor Man’s” Order Form

Creating a row of entry fields is a bit more complex, but not much. Instead of

assigning just a word to each cell, you assemble an entire <INPUT> object defini-

tion. You use the columnWidths array to define the size for each field (which there-

fore defines the width of the table cell in the column). columnHead values are

assigned to the field’s NAME attribute. Each column’s fields have the same name,

no matter how many rows exist. Finally, the onChange event handler invokes the

calculate() method, passing the form and, most importantly, the row number,

which comes into this function as a parameter (see the following section).

Some JavaScript language cleanup
The final function in the Head script is an empty function for initialize().

This function is the one that JavaScript 1.1-level browsers activate after the docu-

ment loads into them:

// do nothing when JavaScript 1.1 browser calls here
function initialize() {}
//-->
</SCRIPT>
</HEAD>
<BODY>
<CENTER>
<H1>ORDER FORM</H1>
<FORM>
<TABLE BORDER=2>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
initialize()
// -->
</SCRIPT>

From there, you start the <BODY> definition, including a simple header. You

immediately go into the form and table definitions. A JavaScript script that will be

run by all versions of JavaScript invokes the initialize() function. JavaScript 1.0–

level browsers execute the initialize() function in the topmost version in the

Head so that they display the warning message in the document’s body; JavaScript

1.1–level browsers execute the empty function you see.

Tedium lost
Believe it or not, all of the rows of data-entry fields in the table are defined by the

handful of JavaScript statements that follow:

<SCRIPT LANGUAGE=”JavaScript1.1”>
document.write(makeTitleRow())
// order form entry rows
for (var i = 0; i < numberOfRows; i++) {

document.write(makeOneRow(i))
}

The first function to be called is the makeTitleRow() function, which returns

the HTML for the table’s column headings. Then a very simple for loop writes as

many rows of the field cells as defined in the global value near the top of the docu-

ment. Notice how the index of the loop, which corresponds to the row number, is

(c) ketabton.com: The Digital Library

1318 Part V ✦ Putting JavaScript to Work

passed to the makeOneRow() function, so that it can assign that row number to its

relevant statements. Therefore, these few statements generate as many entry rows

as you need.

Tedium regained
What follows in the script writes the rest of the form to the screen. To make

these fields as intelligent as possible, the scripts must take the number of columns

into consideration. A number of empty-space cells must also be defined (again, cal-

culated according to the number of columns). Finally, the code-consuming SELECT

element definitions must also be in this segment of the code.

// order form footer stuff (subtotal, sales tax, shipping, total)
var colSpacer = “<TR><TD COLSPAN=” +

(columnWidths.length - 2) + “></TD>”
document.write(colSpacer)
document.write(“<TH>Subtotal:</TH>”)
document.write(“<TD><INPUT TYPE=text SIZE=” +

columnWidths[columnWidths.length - 1] + “ NAME=subtotal></TR>”)
document.write(“<TR><TD COLSPAN=” +

(columnWidths.length - 3) + “></TD>”)
var tax1 = “<SELECT NAME=percent
onChange=’addTotals(this.form)’><OPTION>0<OPTION>1<OPTION>2<OPTION>3”
tax1 += “<OPTION VALUE=1>1<OPTION VALUE=2>2<OPTION VALUE=3>3”
tax1 += “<OPTION VALUE=4>4<OPTION VALUE=5>5<OPTION VALUE=6>6”
tax1 += “<OPTION VALUE=7>7<OPTION VALUE=8>8<OPTION VALUE=9>9”
tax1 += “</SELECT>”
var tax2 = “<SELECT NAME=fraction onChange=’addTotals(this.form)’>”
tax2 += “<OPTION VALUE=0>00<OPTION VALUE=25>25”
tax2 += “<OPTION VALUE=5>50<OPTION VALUE=75>75</SELECT>”
document.write(“<TH ALIGN=RIGHT>” + tax1 + “.” + tax2 + “\%</TH>”)
document.write(“<TH ALIGN=RIGHT>Sales Tax:</TH>”)
document.write(“<TD><INPUT TYPE=text SIZE=” +

columnWidths[columnWidths.length - 1] + “ NAME=tax VALUE=0.00></TR>”)
document.write(colSpacer)
document.write(“<TH>Shipping:</TH>”)
document.write(“<TD><INPUT TYPE=text SIZE=” +

columnWidths[columnWidths.length - 1] + “ NAME=shipping VALUE=0.00
onChange=’addTotals(this.form)’></TR>”)
document.write(colSpacer)
document.write(“<TH>Total:</TH>”)
document.write(“<TD><INPUT TYPE=text SIZE=” +

columnWidths[columnWidths.length - 1] + “ NAME=total></TR>”)
</SCRIPT>

</TABLE></FORM>
</BODY>
</HTML>

To gain a better understanding of how the script assembles the HTML for this

part of the table, start by looking at the colSpacer variable. This variable contains

a table cell definition that must span all but the rightmost two columns. Thus, the

(c) ketabton.com: The Digital Library

1319Chapter 51 ✦ Application: A “Poor Man’s” Order Form

COLSPAN attribute is calculated based on the length of the columnWidths array

(minus two for the columns we need for data). Therefore, to write the line for the

subtotal field, you start by writing one of these column spacers, followed by the

<TH> type of cell with the label in it. For the actual field, you must size it to match

the fields for the rest of the column. That’s why you summon the value of the last

columnWidths value for the SIZE attribute. You use similar machinations for the

Shipping and Total lines of the form footer material.

In between these locations, you define the Sales Tax SELECT objects (and a col-

umn spacer that is one cell narrower than the other one you used). To reduce the

risk of data-entry error and to allow for a wide variety of values without needing a

40-item pop-up list, I divided the choices into two components and then display the

decimal point and percentage symbol in hard copy. Both SELECT objects trigger the

addTotals() function to recalculate the rightmost column of the form.

Sometimes, it seems odd that you can script four lines of code to get 20 rows of a

table, yet it takes twenty lines of code to get only four more complex rows of a

table. Such are the incongruities of the JavaScripter’s life.

Further Thoughts
Depending on the catalog of products or services being sold through this order

form, the first improvement I would make is to automate the entry of stock number

and description. For example, if the list of all product numbers isn’t that large, you

may want to consider dropping a SELECT element into each cell of the Description

column. Then, after a user makes a selection, the onChange event handler performs

a lookup through a product array and automatically plugs in the description and

unit price. In any version of this form, you also need to perform data validation for

crucial calculation fields, such as quantity.

In a CGI-based system that receives data from this form, individual fields do not

have unique names, as mentioned earlier. All Qty fields, for instance, have that

name. But when the form is submitted, the name-value pairs appear in a fixed order

every time. Your CGI program can pull the data apart partly by field name, partly by

position. The same goes for a program you may build to extract form data that is

e-mailed to you rather than sent as a CGI request.

Some of the other online order forms I’ve seen include reset buttons for every

row or a column of checkmarks that lets users select one or more rows for deletion

or resetting. Remember that people make mistakes and change their minds while

ordering online. Give them plenty of opportunity to recover easily. If getting out of

jam is too much trouble, they will head for the History list or Back button, and that

valued order will be, well, history.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Application:
Outline-Style
Table of
Contents

In your Web surfing, you may have encountered sites that

implement an expandable, outline type of table of con-

tents. I’ve long thought that these elements were great ideas,

especially for sites with lots of information. An outline, such

as the Windows Explorer or text-style Macintosh Finder win-

dows, enables the author to present a large table of contents

in a way that doesn’t necessarily take up a ton of page space

or bandwidth. From listings of top-level entries, a user can

drill down to reveal only those items of interest.

No matter how much I like the idea, however, I dislike visit-

ing these sites. A CGI program on the server responds to each

click, chews on my selection, and then sends back a com-

pletely new screen, showing my choice expanded or col-

lapsed. After working with outlines in the operating system

and outliner programs on personal computers, the delays in

this processing seem interminable. It occurred to me that

implementing the outline interface as a client-side JavaScript

can significantly reduce the delay problem and make outlines

a more viable interface to a site’s table of contents. This chap-

ter documents the process that went into an early version of

the outliner, which works with most older browsers. Some

newer versions are also presented.

Design Challenges
The more I looked into implementing an outline in the early

scripting days, the more challenges I found ahead of me.

The first problem was making the little icons (widgets)

clickable so that they respond to user mouse actions. Even

though images are objects in NN3 and IE4+, NN images don’t

have mouse-oriented event handlers until you reach NN6

5252C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Multiple frames

Clickable images

Custom objects

Image caching

Persistent data

Dynamic HTML
positioning

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1322 Part V ✦ Putting JavaScript to Work

(although you can make some mouse events work in some versions of

NN4/Windows). Therefore, it was necessary to surround each image with a link

object whose HREF attribute called a javascript: URL and function to do the job.

This technique also helped solve the next problem.

After a user clicks an outline widget, the script must update the window or frame

containing the outline to expand or collapse a portion of the outline. The original

design predated dynamically updated pages of IE4 and NN6, so the entire page had

to be rewritten. But to make that work, the script needed a way to represent and

temporarily preserve the current state of the outline — a line-by-line rundown on

whether a line was currently expanded or collapsed. If the script could save that

state somewhere, the widget’s link HREF attribute could summon a JavaScript func-

tion whose job is to perform a soft reload of the current page without reopening

it — with the history.go() method. Therefore, as a user clicked a widget, the state

of the outline created by that click would be generated in the script, saved, and

then used to specify the expanded or collapsed state of each line as the page

reloaded.

Just when I was congratulating myself on how clever I was, I realized that any

attempt to save the state of the new outline in a variable was doomed: Even a soft

reload restores variables to their original state. I’d have to find another way to

maintain the data.

The first method I used was to store the outline state (a string of 0s and 1s, in

which a 1 indicated that the item was expanded) in a text box. Text and TEXTAREA

objects maintain their contents even through a document reload (but not a

reopen). Although this method was convenient, it was ugly because it meant that

the field would have to be in the frame. One tactic was to make the frame a non-

scrolling frame and stuff the field out of sight by pushing it to the far right with

padding spaces inside a <PRE>...</PRE> tag.

Next, it was time to try Netscape’s mechanism for storing persistent data on the

client computer: the document.cookie property. Cookies are not unique to

JavaScript. Any CGI can also store data, such as a user’s login name and password

for a site, in a cookie. The cookie did the trick. Information about the outline lasts in

the cookie of any user’s computer only as long as the browser stays running.

Another detail that I wanted to overcome was the initial delay experienced the

first time a user clicked one of the collapsed widgets in the outline. At that point,

only one of three icon image files had been loaded and cached in the browser. In

the very first version of this application for NN2, I arranged to display all three wid-

gets as decoration on the page to get them loaded up front. But with NN3+ and IE4+,

I can precache all the widget art files and deploy them instantly when needed.

The Implementation Plan
I admit to approaching the outline technique the first time without a specific

data-display goal in mind — not always the best way to go about it. In search of

some logical and public domain data that I could use as an example, I came upon

the tables of information about food composition (grams of protein, fat, calories,

and so on) published by the U.S. government. For this demonstration, I created one

HTML document containing data for two hierarchical categories of foods: peas and

pickles. At the beginning of each food category, I assigned an anchor to which the

text entries of the outline point.

(c) ketabton.com: The Digital Library

1323Chapter 52 ✦ Application: Outline-Style Table of Contents

My design for this implementation calls for two frames set up as columns (see

Figure 52-1). The narrower left column houses the outline interface. After the frame-

set loads, the wider right frame initially shows an introductory HTML document.

Clicking any of the links in the outline changes the view of the right-hand frame

from the introductory document to the food data document. A link at the bottom of

the food data document enables the user to view the introductory document again

in the same frame, if desired.

Figure 52-1: The outline in the left frame is dynamic and local.

In addition to image caching, NN3 and IE4 gave me reason to make some other

improvements to the outliner over a version originally created for NN2. They

include

✦ Adjustable indentation spacing

✦ Easier specification of widget art files

✦ Easier way to specify a target frame for the results

✦ Additional array field for statusbar display text

All adapter-adjustable elements appear near the top of the script to make it easy

for scripters without a lot of experience to modify the application for their own

sites.

For this fourth edition of the book, a couple of minor improvements make the

outliner easier to modify and deploy. First, the tedious sequential numbering of

items is gone. Second, performance in NN4 is greatly enhanced with the help of

streamlined cookie handling.

(c) ketabton.com: The Digital Library

1324 Part V ✦ Putting JavaScript to Work

The Code
All files for this implementation of the outline are on the CD-ROM accompanying

this book, so I display here only the code for the framesetting document

(index.htm) and the outline (toc5.htm). Earlier numbered filenames were used for

previous editions of this book.

Setting the frames
To establish the frames, the script creates a two-column format, assigning 35 per-

cent of the page as a column to contain the outline:

<HTML>
<HEAD>
<TITLE>Outline Table of Contents</TITLE>
</HEAD>

<FRAMESET COLS=”35%,65%”>

<NOFRAMES>
<H1>It’s really cool...</H1>
<H2>...but only if you a frames-capable browser</H2>
<HR>
Back
</NOFRAMES>

<FRAME NAME=”Frame1” SRC=”toc4.htm”>
<FRAME NAME=”Frame2” SRC=”intro.htm”>

</FRAMESET>
</HTML>

Because pages designed for multiple frames and JavaScript don’t fare well in

browsers incapable of displaying frames, a good approach is to surround HTML

with a <NOFRAMES> tag for display to users of old browsers. You can substitute any

link you like for the one shown here, which goes back to the main JavaScript page

at my Web site.

The names that I assign to the two frames aren’t very original or clever, but they

help me remember which frame is which. Because the nature of the contents of the

second frame changes (either the introductory document or the data document), I

couldn’t think of a good name to reflect its purpose.

Outline code
Now we come to some lengthy code for the outline (in file toc5.htm). Much of

the code deals with managing the binary representation of the current state of the

outline. For each line of the completely exploded outline, the code designates a 0
for a line that has no nested items showing and a 1 for a line that has a nested item

showing. This sequence of 0s and 1s (as one string) is the road map that the script

follows when redrawing the outline. Cues from the 0 and 1 settings let the script

know whether it should display a nested item (if one exists) or leave that item col-

lapsed.

(c) ketabton.com: The Digital Library

1325Chapter 52 ✦ Application: Outline-Style Table of Contents

To help me visualize the inner workings of these scripts, I developed a conven-

tion that calls any item with nested items beneath it a mother. Any nested item is

that mother’s daughter. A daughter can also be a mother if it has an item nested

beneath it. You see how this plays out in the code shortly.

The food outline document starts out simply enough, with the standard opening

of a JavaScript script. The first specification set apart for easy modification is the

size of the indentation level in pixels.

<HTML>
<HEAD>
<TITLE>Food Selection Outline</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- begin hiding
// ** BEGIN OUTLINE AUTHOR-ADJUSTABLE SPECIFICATIONS **//

// size of horizontal indent per level
var indentPixels = 20

Outline level indentations are controlled by the width of a transparent image file.

Indentation size is uniform throughout the outline, and the value is controlled via

the indentPixels global variable. The image file is actually only a single pixel

large, but by setting the width as needed (see the following example), it occupies a

known amount of space, without affecting the font characteristics of the outline

text.

Two more groups of adjustable items come next. The first group takes care of the

widget images. This group is where you specify the filenames for the three widgets

and provide the script with their height and width measurements:

// art files and sizes for three widget styles
// (all three widgets must have same height/width)
var collapsedWidget = “plus.gif”
var expandedWidget = “minus.gif”
var endpointWidget = “end.gif”
var widgetWidth = 12
var widgetHeight = 12

// Target for documents loaded when user clicks on a link.
// Specify your target frame name here.
var displayTarget = “Frame2”

When you design your widget art (if you don’t like mine), be sure to design all

three to be the same size. This practice prevents scaling of the images later.

If you deploy the outliner for your site, be sure to change the name of the frame

assigned to the displayTarget global variable. This value eventually becomes

part of the text links in the outline. If you want a click of a link to completely replace

the current frameset with a different page, then specify _top as the display target.

Assembling outline content
The last of the easily modifiable areas defines the content of the outline. After

defining the primary array (db), a second dimension is added to create an array of

(c) ketabton.com: The Digital Library

1326 Part V ✦ Putting JavaScript to Work

custom objects. The dbRecord array (defined in the following listing) helps popu-

late the db array with specifics provided in the comma-delimited statements here:

// Create array object containing outline content and attributes.
// To adapt outline for your use, modify this table.
// Start the array with [1], and continue without gaps to your last item.
// The order of the five parameters:
// 1. Boolean (true or false) whether _next_ item is indented.
// 2. String to display in outline entry (including tags).
// 3. URL of link for outline entry; Use empty string (“”) for no link
// 4. Integer of indentation level (0 is leftmost margin level)
// 5. String for status line onMouseOver (apostrophes require \\’)
var db = new Array()
db[db.length] = new dbRecord(true,”Peas”,””,0,””)
db[db.length] = new dbRecord(false,”Boiled”,”foods.htm#boiled”,

1,”Mmm, boiled peas...”)
db[db.length] = new dbRecord(true,”Canned”,”foods.htm#canned”,

1,”Check out canned peas...”)
db[db.length] = new dbRecord(false,”Alaska”,”foods.htm#alaska”,

2,”Alaska\\’s finest...”)
db[db.length] = new dbRecord(false,”Low-Sodium”,”foods.htm#losodium”,

2,”A healthy treat...”)
db[db.length] = new dbRecord(true,”<FONT COLOR=red
SIZE=+2>Pickles”,””,0,””)
db[db.length] = new dbRecord(true,”Cucumber”,”foods.htm#cucumber”,

1,”What\\’s new in cukes...”)
db[db.length] = new dbRecord(false,”Dill”,”foods.htm#dill”,

2,”Pucker up...”)
db[db.length] = new dbRecord(false,”Fresh”,”foods.htm#fresh”,

2,”You\\’d prefer stale?”)
db[db.length] = new dbRecord(false,”Sour”,”foods.htm#sour”,

2,”For sweeties...”)
// add more records to complete your outline
// ** END AUTHOR-ADJUSTABLE SPECIFICATIONS **//

Each record consists of five items. The first item is a Boolean value, which

denotes whether the item is a mother item (that is, the next item in the list is

nested one level deeper). The HTML that displays in the outline comes next. This

text can be multiple-word strings, or any HTML that you like (some users have

assigned tags to show pictures instead of text). For the third item, you can

insert any valid URL, whether it be to a separate site, an anchor in another docu-

ment (as shown here), or even a javascript: URL to execute another function. If

you don’t want an entry in the outline to be a link — just plain, flat text — leave this

third item as an empty string, as I do here for the topmost items in both categories.

The fourth item is a number representing how many nested levels the item has. And

finally, the last item is a string containing the text that appears in the statusbar

when the user rolls the mouse over the item in the outline. Because of a quirk in the

way the statusbar responds to quoted characters, any string literal character (nor-

mally preceded with a backslash) requires two backslashes (one to alert the

browser of the other).

Be sure to keep the items for the db array in the same top-to-bottom order as

you’d expect to see in a fully expanded outline. Notice that the index values of the

array are automatically inserted for you: The length property of an array is always

one more than the highest index. By inserting references to the db.length

(c) ketabton.com: The Digital Library

1327Chapter 52 ✦ Application: Outline-Style Table of Contents

property in the brackets, you instruct JavaScript to “walk the ladder” upward from

zero. If you move things around the outline, however, don’t forget to adjust the

indentation levels if they are affected by the content changes.

The bottom of the array creation section marks the end of the code that you

need to modify after you deploy the outliner. The rest of the JavaScript code works

silently for you, but if you intend to perform further customizations to the outliner,

understanding how it all works will help.

On to the constructor function for the dbRecord entries: This function is the

classic JavaScript way to build a custom object (see Chapter 41):

// object constructor for each outline entry
// (see object-building calls, below)
function dbRecord(mother,display,URL,indent,statusMsg){

this.mother = mother // is this item a parent?
this.display = display // text to display
this.URL = URL // link tied to text; no link for empty string
this.indent = indent // how deeply nested?
this.statusMsg = statusMsg // descriptive text for status bar
return this

}

To preload all the images into the browser’s image cache, you create new Image
objects for each and assign the filenames to their src properties. Notice that these

statements are not in functions, but rather execute as the page loads:

// pre-load all images into cache
var fillerImg = new Image(1,1)
fillerImg.src = “filler.gif”
var collapsedImg = new Image(widgetWidth,widgetHeight)
collapsedImg.src = collapsedWidget
var expandedImg = new Image(widgetWidth,widgetHeight)
expandedImg.src = expandedWidget
var endpointImg = new Image(widgetWidth,widgetHeight)
endpointImg.src = endpointWidget

Cookie storage
To preserve the binary digit string between redraws of the outline, this script

must save the string to a place that won’t be overwritten or emptied during the

document reload. The document.cookie fills that requirement nicely. Excerpting

and adapting parts of Bill Dortch’s cookie functions (see Chapter 18), this script

simplifies the writing of a cookie that disappears when the user quits the browser:

// ** functions that get and set persistent cookie data **
// set cookie data
var mycookie = document.cookie
function setCurrState(setting) {

mycookie = document.cookie = “currState=” + escape(setting)
}
// retrieve cookie data
function getCurrState() {

var label = “currState=”
var labelLen = label.length
var cLen = mycookie.length
var i = 0

(c) ketabton.com: The Digital Library

1328 Part V ✦ Putting JavaScript to Work

while (i < cLen) {
var j = i + labelLen
if (mycookie.substring(i,j) == label) {

var cEnd = mycookie.indexOf(“;”,j)
if (cEnd == -1) {

cEnd = mycookie.length
}
return unescape(mycookie.substring(j,cEnd))

}
i++

}
return “”

}

A global variable is used to act as a speedy intermediary between the actual

browser cookie and the functions here that need to access cookie data. The

setCurrState() function contains a construction that you don’t see much in this

book, but is quite valid. Notice the three-piece assignment statement. Evaluation of

this statement works from right to left. The rightmost expression concatenates a

cookie label and the value passed in as a parameter to the function. Note, too, that

the value is passed through the escape() function to properly URL-encode the

data for the sake of data integrity (so that spaces and odd punctuation don’t mess

up the mechanism). The concatenated value is assigned to the document.cookie
property. With the value safely dropped into the cookie (it may be just one of sev-

eral name/value pairs for this domain), the value of the document.cookie property

(which includes all name/value pairs for the domain) is assigned to the mycookie
global variable.

Retrieving information from the cookie still requires a bit of parsing to be on the

safe side. If other cookie writing were to come from the current server path, more

than one cookie would be available to the current document. Parsing the entire

cookie for just the portion that corresponds to the currState labeled cookie

ensures that the script gets only the data previously saved to that label. In an ear-

lier version of this code, the frequent access to the document.cookie property

inside the while loop of getCurrState() wasn’t a problem until the sluggish

cookie reading performance of NN4 got in the way. Adapting the code to use the

global variable for the repetitive parsing of the cookie value rescued the day.

The focal point
The toggle() function, which is pivotal in this outline scheme, receives as a

parameter the index number of the db array element whose content the user just

clicked. The purpose of this function is to grab a copy of the current outline state

from the cookie, alter the binary representation of the clicked item, and feed the

revised binary number back to the cookie (where it governs the display of the out-

line after the document reloads):

// **function that updates persistent storage of state**
// toggles an outline mother entry, storing new value in the cookie
function toggle(n) {

var newString = “”
var currState = getCurrState()

(c) ketabton.com: The Digital Library

1329Chapter 52 ✦ Application: Outline-Style Table of Contents

var expanded = currState.charAt(n) // of clicked item
newString += currState.substring(0,n)
newString += expanded ^ 1 // Bitwise XOR clicked item
newString += currState.substring(n+1,currState.length)
setCurrState(newString) // write new state back to cookie

}

To make this happen, you must extract two pieces of information before any pro-

cessing: the current state from the cookie and the current setting of the clicked

item. The latter is saved in a local variable named expanded because its 0 or 1
value represents the expanded state of that particular entry in the outline.

With those information morsels in hand, the script starts building the new

binary string that gets written back to the cookie. The new string consists of three

pieces: the front part of the existing string up to (but not including) the digit repre-

senting the clicked item, the changed entry, and the rest of the original string.

Changing the setting of the clicked item from a 0 to a 1, or vice versa, is neces-

sary. Although I can implement this task a few different ways (for example, using a

conditional expression or an if...else construction), I thought I’d exercise an

operator that otherwise gets little use: the bitwise XOR operator (^). Because the

values involved here are 0 and 1, performing an XOR operation with the value of 1
inverts the original value:

0 ^ 1 = 1
1 ^ 1 = 0

Okay, perhaps using an XOR operator is showing off. But the experience forced

me to understand a JavaScript power that may come in handy for the future.

Selecting a widget image for an entry
At this point, the script starts defining functions to help the script statements in

the Body write the HTML for the new version of the outline. The getGIF() function

determines which of the three widget image files needs to be specified for a particu-

lar entry in the outline. The function receives the index value to the db array of

entries created earlier in the script. As the Body script assembles the HTML for the

outline, it calls this function once for each item in the outline. In return, the func-

tion provides a reference to one of three Image objects created earlier:

// **functions used in assembling updated outline**
// returns the proper GIF file name for each entry’s control
function getGIF(n, currState) {

var mom = db[n].mother // is entry a parent?
var expanded = currState.charAt(n) // of clicked item
if (!mom) {

return endpointWidget
} else {

if (expanded == 1) {
return expandedWidget

}
}
return collapsedWidget

}

(c) ketabton.com: The Digital Library

1330 Part V ✦ Putting JavaScript to Work

The decision process for this function first tries to eliminate any item that ends a

mother–daughter chain. Any item that is as deeply nested as it can be (which

means the item is not a mother) automatically gets the endpointWidget image.

Now you’re left with trying to figure out whether the item in the display should

get an expanded or collapsed icon. The holder of this information is the cookie.

Thus, the script extracts the binary setting for the entry under scrutiny. If the

cookie shows that entry to be a 1, it means that the item has nested items showing

and that it should get the expandedWidget image; otherwise, it should get the

collapsedWidget image. Notice that you’re returning references to the Image
objects, not the names of the image files.

A similar excursion through each item determines what status message is

assigned to the onMouseOver event handler for each of the widget images. The

decision tree is identical to that of the getGIF() function:

// returns the proper status line text based on the icon style
function getGIFStatus(n, currState) {

var mom = db[n].mother // is entry a parent
var expanded = currState.charAt(n) // of rolled item
if (!mom) {

return “No further items”
} else {

if (expanded == 1) {
return “Click to collapse nested items”

}
}
return “Click to expand nested items”

}

Initialize the cookie
The final task of the script running in the head is to initialize the cookie if it’s

empty. Using the length of the db array as a counter, you build a string of 0s, with

one 0 for each item in the outline:

// initialize ‘current state’ storage field
if (getCurrState() == “” || getCurrState().length != (db.length)) {

initState = “”
for (i = 0; i < db.length; i++) {

initState += “0”
}
setCurrState(initState)

}

// end -->
</SCRIPT>
</HEAD>

Each of those 0s in the parameter to the setCurrState() function corresponds

to a collapsed setting for an entry in the outline. In other words, the first time the

outline appears, all items are in the collapsed mode. If you modify the outline for

your own use by creating your own db array of data, the initial state of the cookie

will be set for you automatically based on the length of the db array.

(c) ketabton.com: The Digital Library

1331Chapter 52 ✦ Application: Outline-Style Table of Contents

Writing the outline
At last we reach the document Body, where the outline is assembled and written

to the page. Script statements here are immediate, meaning that they execute while

the page loads. I have you begin by initializing some variables that you will need in

a moment. The most important variable is newOutline, which will be used to accu-

mulate the contents of the outline for eventual writing to the page:

<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
// build new outline based on the values of the cookie
// and data points in the outline data array.
// This fires each time the user clicks on a control,
// because the HREF for each one reloads the current document.
var newOutline = “”
var prevIndentDisplayed = 0
var showMyDaughter = 0
var currState = getCurrState() // get whole state string
document.write(“<CENTER><H3>Composition of Selected Foods</H3>”)

The following section is the real beef of this script: the part that assembles the

HTML for the outline that displays as the document loads. In other words, this part

must read the current state data from the cookie and assemble widget images and

text links according to the map of expanded and collapsed items in the cookie data.

These activities take place within a for loop that cycles through every item in the

database. Each value of the i index refers to one listing in the db array. Trace the

logic of one entry:

// cycle through each entry in the outline array
for (var i = 0; i < db.length; i++) {

var theGIF = getGIF(i, currState) // get the image
var theGIFStatus = getGIFStatus(i, currState) // get the status message
var currIndent = db[i].indent // get the indent level
var expanded = currState.charAt(i) // current state

// display entry only if it meets one of three criteria
if (currIndent == 0 || currIndent <= prevIndentDisplayed ||

(showMyDaughter == 1 &&
(currIndent - prevIndentDisplayed == 1))) {
newOutline += “<IMG SRC=\”filler.gif\” HEIGHT = 1 WIDTH =” +

(indentPixels * currIndent) + “>”
newOutline += “<A HREF=\”javascript:history.go(0)\” “ +

“onMouseOver=\”window.status=\’” + theGIFStatus +
“\’;return true;\” onClick=\”toggle(“ + i + “);return “ +
(theGIF != endpointWidget) + “\”>”

newOutline += “<IMG SRC=\”” + theGIF + “\” HEIGHT=” +
widgetHeight + “ WIDTH=” + widgetWidth + “ BORDER=0>”

if (db[i].URL == “” || db[i].URL == null) {
newOutline += “ “ + db[i].display + “
” // no link

} else {
newOutline += “ <A HREF=\”” + db[i].URL + “\” TARGET=\”” +

displayTarget + “\” onMouseOver=\”window.status=\’” +
db[i].statusMsg + “\’;return true;\”>” + db[i].display +
“
”

}

(c) ketabton.com: The Digital Library

1332 Part V ✦ Putting JavaScript to Work

prevIndentDisplayed = currIndent
showMyDaughter = expanded
if (db.length > 25) {

document.write(newOutline)
newOutline = “”

}
}

}

First, you call upon two previously defined functions to grab the widget image

object and corresponding onMouseOver message for the statusbar. Two more vari-

ables contain the indent property for the item (that is, how many steps indented

the item will appear in the outline structure) and the current expanded state, based

on the cookie’s entry for that item.

Not every entry in the outline database is displayed. For instance, a nested item

whose mother is collapsed won’t need to be displayed. To find out if an entry

should be displayed, the script performs a number of tests on some of its values.

An item can be displayed if any of the following conditions are met:

✦ The item is a topmost item, with an indentation factor of 0.

✦ The item is at the same or smaller indentation level as the previous item dis-

played.

✦ The previous item was tagged as being expanded, and the current item is

indented from the previous item by one level.

Over the next few statements, the script pieces together the HTML for the out-

line entry, starting with the width necessary for the transparent filler image (based

on the number of pixels specified for indentations near the top of the script). Next

comes the link definition that wraps around the widget image. The following con-

cepts apply to each link:

✦ The HREF attribute is the javascript: URL to invoke the history.go()
method.

✦ The onMouseOver event handler is set to adjust the status message to the pre-

viously retrieved message (notice the return true statement to make the

setting take effect).

✦ The onClick event handler is set to call the toggle() function, passing the

number of the item within the outline database. An onClick event handler is

carried out before the browser responds to the click of the link by navigating

to the URL. Therefore, the toggle() function changes the setting of the

cookie a fraction of a second before the browser refreshes the document

(which relies on that new cookie setting). But click events on widgets that

have no children do not need to hit the toggle() function. Therefore, the

content of the return statement is influenced by whether or not the widget

image is an endpoint image.

In the next statement, the newOutline string accumulation continues with the

 tag specifications for the widget art. Specifying the HEIGHT and WIDTH
attributes for the image is important, partly to help the browser lay out the page

more quickly, partly to avoid pesky performance inconsistencies.

(c) ketabton.com: The Digital Library

1333Chapter 52 ✦ Application: Outline-Style Table of Contents

Next comes a decision about whether to display the item text as a link or as plain

text. The script inspects the db[i].URL property to see if it is empty. If so, that

means no URL is specified for a link, and the item should be built as plain text.

If a URL is specified for the item, the script instead constructs a link around the

text. In this HTML assembly process, numerous calls to properties of the db array

fetch properties of the entry for the URL, the statusbar message, and the text to dis-

play. Notice, too, that the link sets the target of the link to the frame name assigned

to displayTarget near the top of the script.

As you near the end of the loop, two variable values, prevIndentDisplayed and

showMyDaughter, are updated with settings from the current traversal through the

loop. These values influence the display of nested items for the next entry’s journey

through the loop.

But before looping around again, the script inspects whether the outline is

longer than 25 entries. If so, the script writes the outline entries that have accumu-

lated so far, resetting the newOutline variable to empty for the next time through

the loop. The reasoning behind this last routine is to help long outlines start to dis-

play their goods faster. I have seen Web site authors use this outline for literally

hundreds of entries. At that quantity, the usually fast JavaScript begins to bog down

a bit. By writing lines from a big outline to the page early, the user gets visual feed-

back that something is happening.

Once outside the loop, the script writes whatever last items may have accumu-

lated in the newOutline variable. For outlines with less than 25 items, the whole

outline is written in one push; for longer outlines, the value is empty at this point,

because the intermediate writings have completed the job.

All that’s left is to close up standard tags to finish the document definition:

document.write(newOutline)

// end -->
</SCRIPT>
</BODY>
</HTML>

Notice that the document.write() statement here is not followed by

document.close(). Because this content is being written as the page loads,

the output stream is closed at the end of the page’s HTML.

Customization possibilities
Although this DHTML-free outliner is not the fanciest to be found on the Web, it

is, nevertheless, quite popular probably due to its ease of customizability and back-

ward compatibility to all but the earliest browsers (you can find the very original

version at my Web site). Other page authors have pushed and pulled on this code

to tailor it to a variety of special needs.

Alternative displays
At the root of almost all significant customization jobs lie modifications to the

dbRecord object constructor near the beginning of the page and the HTML assem-

bly portion in the Body. They work hand in hand. For example, one user wants dif-

ferent links in the outline to load pages into different targets. Most links are to load

content into another frame of the same frameset, while others are to replace the

frameset entirely. In the version provided previously, one target is assumed, and it

is set as a global variable. But if you need to provide different targets for each item,

(c) ketabton.com: The Digital Library

1334 Part V ✦ Putting JavaScript to Work

you can add a new property (perhaps named target) to the dbRecord constructor,

and assign the string name of the target (for example, “Frame2”, “_top”) to the prop-

erty for each item. Then, in the HTML accumulation portion, assign the value of

db[i].target to that TARGET attribute (watching out for the necessary pairings of

quote symbols, as shown in other attribute assignments).

Another request asked that the text associated with the plus/minus images be

clickable, not to navigate to another page, but to expand and collapse the nested

content. All the pieces for this variation are already in place. By performing minor

reconstructive surgery on the HTML accumulator script, you can add a branch that

looks for the db[i].mother property. If it’s true, then don’t write the closing
tag after the widget. Instead, branch to write the db[i].display text without its

own URL link, and write the widget’s tag after the text. Now the widget and

text share the same link as the widget originally had.

Cookie-free zones
Not everyone likes to develop with cookies. That’s not a problem for this out-

liner, even though the previous example uses them liberally. The data that pre-

serves the state of the outline is nothing but a string of 1s and 0s. If you are using a

frameset, that string can be preserved as a global variable in the framesetting

document.

To minimize the changes needed to the existing code, you can continue to use

the same functions —setCurrState() and getCurrState()— as the interfaces to

the reading and writing of the state. Begin by defining a global variable in the Head

portion of the framesetting document, initializing it as an empty string:

<SCRIPT LANGUAGE=”JavaScript”>
outlineState = “”
</SCRIPT>

Now you can modify the two functions in the outliner page as follows:

// ** functions that get and set state data **
// set cookie data
var mycookie = document.cookie
function setCurrState(setting) {

mycookie = parent.outlineState = setting
}
// retrieve cookie data
function getCurrState() {

return parent.outlineState
}

Notice that there is no need for the label that has to be assigned to a cookie. The

variable name keeps this data separate from the rest of the script space.

The only downside to not using a cookie is that the outline state is not preserved

if the frameset goes away. If the user revisits the frameset in the same session, the

outline state will be reinitialized at its beginning state.

Expanding/collapsing all at once
If you have an extensive outline, you may want to provide a shortcut to the user

to expand everything at once or close up the entire outline. Because the string of 1s

and 0s maintains the state of the outline, you can use the db array to help you

(c) ketabton.com: The Digital Library

1335Chapter 52 ✦ Application: Outline-Style Table of Contents

create a new state string, and then apply it to the page. Here are two functions that

do the job:

function expandAll() {
expState = “”
for (i = 1; i < db.length; i++) {

expState += (db[i].mother) ? “1” : “0”
}
setCurrState(expState)
history.go(0)

}

function collapseAll() {
collState = “”
for (i = 1; i < db.length; i++) {

collState += “0”
}
setCurrState(collState)
history.go(0)

}

All you need are a couple of buttons to invoke these functions, and you’re in

business.

Reducing server access
Through the lifetime of this outliner application, it has seen wildly different

behaviors of the various browsers with regard to how much the browser reaches

out to the server for each redisplay of the outline. While the history.go(0) type

of reloading is supposed to be the least onerous, some browsers seem to read the

entire file from scratch. This approach is still faster than having a CGI script com-

pletely reconfigure a page, but for an extensive outline and a slow Internet connec-

tion, the results can be objectionable.

One possible solution is to avoid reloading the page at all. Instead, place all of

the code for the outliner management and creation in the framesetting document.

Code that currently writes the outline as the page loads can be encapsulated in a

function that writes to the frame designated as the outline frame (don’t forget the

document.close() for this writing!). Function calls from the outliner (to

toggle(), for instance) have to be modified so that the reference is to the function

in the parent frame (parent.toggle(n)).

Distributing the code around frames may not be as convenient as keeping it all

together, but user experience should weigh more heavily than programmer expedi-

ence. This practice also opens the possibility for putting all of the outliner code,

except for the calls to the constructor functions, in an external .js library. You can

then put multiple outline contents into multiple .js libraries and load the pairs

that you need into a frameset.

Using document.write() to another frame may still not avoid server access

entirely. It is not uncommon for the application of any image file — including those

that have been precached — to check the cached version against the modification

date of the file on the server. This activity is much faster than downloading the

image again, but if you see network activity even after shifting the outliner’s scripts

(c) ketabton.com: The Digital Library

1336 Part V ✦ Putting JavaScript to Work

to the frameset, at least you understand what’s happening. A version of the applica-

tion directed from the parent window is contained on the CD-ROM.

Multiple outlines
The example in this chapter assumes that a site will be using only one outline-

style table of contents. You can, of course, have multiple outlines for different sec-

tions of a Web site or application. But if the outlines all share the same cookie data,

then the state of the most recent outline will be applied to the next one that loads.

Items will be magically opened. And if the number of items between the two out-

lines is different, the cookie data can get a bit messy.

To solve this problem, assign a different cookie label for each outline. That pre-

vents one outline’s state from stepping on another.

Cascading Style Sheet Version
The advent of Cascading Style Sheets (CSS) brought a number of intriguing possi-

bilities for an application, such as the outliner. Not only can style sheets be used to

control the look of the items in the outline, but additional properties make it possi-

ble to hide and show elements, including inserting or removing elements from the

rendered content. Alas, not all of these features work in NN4, so that the version

under discussion in this section resorts to redrawing the outline for NN4. But for

IE4+ and W3C DOMs, the response is very fast, and no page reloading is necessary.

One of the goals, too, in this application was to reuse as much of the code from ear-

lier versions as possible. Note that this version does not work (or work correctly)

with browsers prior to NN4 or IE4.

CSS implementation plan
Many of the compromises in this version resulted from quirky behavior of NN4

with some types of elements and style sheets. I chose to render the outline content

as a series of nested DIV elements. If this were being implemented strictly in more

well behaved browsers, style sheet control over UL and LI elements would be even

more convenient because those elements already have an indentation scheme built

into them. With so much HTML code needed to generate the DIV elements and their

contents, I decide to trade the cleverness of multidimensional array storage of out-

line content for the better performance of straight HTML. Each row of content in

the outline is set in its own <DIV> block tag set. Any row that had children nested

inside contains those items as a nested block.

Style sheets afforded the design a handy behavior. Hiding and showing blocks via

the CSS-Positioning visibility property (see Chapter 30) is not an apt solution

here, because hiding an item does not remove it from the page rendering.

Therefore, unless the page included a ton of positioning code to overlap hidden

items with visible items (which would have worked in NN4, but at the price of sub-

stantial increases in code and inflexibility), the outline would not cinch up if a

branch is collapsed. To the rescue comes the display property of a style. One

value of this property (none) not only hides the block, but it temporarily removes it

from the rendering order of the page. Any items rendered below it that are visible

(that is, whose display property is set to block) scoot up to render after the pre-

vious visible item.

Setting the display property has slightly different results in NN4 and more mod-

ern DOMs. In NN4, you can set the property after the block has been rendered on

(c) ketabton.com: The Digital Library

1337Chapter 52 ✦ Application: Outline-Style Table of Contents

the page, but its appearance does not change; in both the IE4+ and W3C DOMs, the

change is immediate, with the rest of the page reflowing to adjust to the change in

the block’s visibility and presence. Therefore, for NN4, the page still needs to reload

itself and remember the state of the outline between reloads (via the same cookie

mechanism used for the earlier version) so that the page can set the property value

as the page loads. And except for only a couple of places in the code, both the IE4+

and W3C DOMs share positioning code.

The CSS version uses the same cookie value (a sequence of 1 and 0 values) to

represent the visible or hidden state of each item as in the old version. To convey

the change of state, however, the function called by the click of an icon widget must

pass the index values of the child items affected by the expansion or collapse of a

node. This means that more of the HTML — in this case, the parameters of the func-

tions — has to be hard-wired to the structure of the outline, as you see shortly. Less

of this would be necessary if NN4’s implementation of CSS offered the same level of

scriptable introspection into HTML elements as IE4’s implementation: We’d be able

to employ the style property inheritance behavior to simplify the way blocks are

shown and hidden. Because the two classes of browsers supported in this example

are so different in this regard, the scripting reflects the lowest common denomina-

tor for controlling the toggle of expanded and collapsed states.

The CSS code
By putting so much of the content directly into HTML, the scripting component

of the CSS outliner version is significantly smaller than the older version. Where

possible, I stayed with the same function and variable naming schemes of the previ-

ous version.

At the top of the document, I define three styles for the amount of indentation

required by the three indentation levels of my sample outline. If the outline were to

go to more levels, I would add styles accordingly.

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>

DIV.indent0 {margin-left:0}
DIV.indent1 {margin-left:10}
DIV.indent2 {margin-left:20}

</STYLE>

Scripting begins by setting some global variables. Browser-specific branching

comes into play later, but in an effort to stamp out explicit version detection, the

code here relies on object detection to set the requisite flags. Only browsers capa-

ble of the CSS style scripting needed here have a document.styleSheets property,

so flags are set for the two supported browser classes. These flags are set here pri-

marily as a convenience for writing branching code later. Rather than constantly

retesting for the presence of the property, the global flags are shorter and

marginally faster. Two more variables hold their respective browser class state val-

ues, with the NN4 version maintaining a copy of the cookie as a variable for perfor-

mance reasons.

<SCRIPT LANGUAGE=”JavaScript”>
// global variables
var isNN4, isCSS, CSScurrState, NN4Cookie = document.cookie

(c) ketabton.com: The Digital Library

1338 Part V ✦ Putting JavaScript to Work

if (document.styleSheets) {
isCSS = true
isNN4 = false

} else {
isCSS = false
isNN4 = true

}

To each of the cookie storage functions from the original version, I add a branch

to handle the storage and retrieval of state data for CSS browsers, simply setting

and getting the global variable. This may seem to be more indirect than is neces-

sary, but it is essential to allow the reuse of many functions in other parts of the

code so that those areas don’t have to worry about browser platform. Notice that

the label for this outline’s cookie is slightly different from that of the earlier version.

This difference allows you to open both outliners with NN4 in the same session and

not worry about one cookie value overlapping with the other.

// ** functions that get and set persistent data **
// set persistent data
function setCurrState(setting) {

if (isNN4) {
NN4Cookie = document.cookie = “currState2=” + escape(setting)

} else {
// for CSS, data is saved as a global variable instead of cookie
CSScurrState = setting

}
}

// retrieve persistent data
function getCurrState() {

if (isCSS) {
// for CSS, data is in global var instead of cookie
return CSScurrState

}
var label = “currState2=”
var labelLen = label.length
var cLen = NN4Cookie.length
var i = 0
while (i < cLen) {

var j = i + labelLen
if (NN4Cookie.substring(i,j) == label) {

var cEnd = NN4Cookie.indexOf(“;”,j)
if (cEnd == -1) {

cEnd = NN4Cookie.length
}
return unescape(NN4Cookie.substring(j,cEnd))

}
i++

}
return “”

}

The toggle() function is called by the onClick event handler of the links sur-

rounding the widget icon art in the outline. A variable number of parameters are

passed to this function, so that the parameters are extracted and analyzed via the

arguments property of the function. Both browsers with only a few small

(c) ketabton.com: The Digital Library

1339Chapter 52 ✦ Application: Outline-Style Table of Contents

browser-specific branches use a great deal of the code. Inside the large for loop, a

CSS branch dynamically changes the setting of the style.display property. For

NN4, the page is reloaded after all changes to the cookie version of the state are

saved. After the NN4 version goes off to reload the page, the CSS version swaps the

image of the toggled widget. As a final touch, the window is given focus so that

IE/Windows browsers lose the dotted rectangle around the clicked image.

// **function that updates persistent storage of state**
// toggles an outline mother entry, storing new value
function toggle() {

var newString = “”
var expanded, n
// get all <DIV> tag objects in IE4/W3C DOMs
if (document.all) {

var allDivs = document.all.tags(“DIV”)
} else if (document.getElementsByTagName) {

var allDivs = document.getElementsByTagName(“DIV”)
}
var currState = getCurrState() // of whole outline
// assemble new state string based on passed parameters
for (var i = 0; i < arguments.length; i++) {

n = arguments[i]
expanded = currState.charAt(n) // of clicked item
newString += currState.substring(0,n)
newString += expanded ^ 1 // Bitwise XOR clicked item
newString += currState.substring(n+1,currState.length)
currState = newString
newString = “”
if (isCSS) {

// dynamically change display style without reloading
if (expanded == “0”) {

allDivs[n].style.display = “block”
} else {

allDivs[n].style.display = “none”
}

}
}
setCurrState(currState) // write new state back to cookie
if (isNN4) {

location.reload()
}
// swap images in CSS versions
var img = document.images[“widget” + (arguments[0]-1)]
img.src = (img.src.indexOf(“plus.gif”) != -1) ?

“minus.gif” : “plus.gif”
window.focus()

}

A prerequisite for loading the page to begin with is setting the initial value of the

state. This is the only part of the script that must be hard-wired based on the struc-

ture of the outline — string assigned to initState will be different with each out-

line. The goal here is to set each block assigned to the indent0 style class to 1

(c) ketabton.com: The Digital Library

1340 Part V ✦ Putting JavaScript to Work

while all others are set to 0. These settings allow the first display of the outline to

show all the root nodes, with all other items collapsed.

// initialize ‘current state’ storage field
if (!getCurrState()) {

// must be hard-wired to outline structure with “1” for
// each indent0 class item, “0” for all others
initState = “1000010000”
setCurrState(initState)

}

With the initial outline state saved in the above code, the following statements

execute at load time to write a <STYLE> tag set for NN4. This tag sets the display
property of all collapsed blocks to none. As you see in the HTML coming up, blocks

are assigned ID attributes with the letter “a” followed by a sequence number start-

ing with zero.

// for Navigator 4, set display style for flagged IDs to ‘none’
// each time the page (re)loads
if (isNN4) {

document.write(“<STYLE TYPE=’text/css’>”)
var visState = getCurrState()
for (var i = 0; i < visState.length; i++) {

if (visState.charAt(i) == “0”) {
document.write(“#a” + i + “ {display:none}\n”)

}
}
document.write(“</STYLE>”)

}

Initial settings of the display property for IE4+ can be done programmatically

only after the document loads (the tags must exist before their properties can be

adjusted). The following init() function is called from the onLoad event handler.

Each browser class has a different set of initialization tasks. Both branches rely on

the current state setting, so that value is retrieved just once. In the CSS branch, the

style.display properties for hidden blocks are set to none. For NN4, on the other

hand, the style.display properties are set as the page reloads, but this loop

swaps the widget image for expanded blocks to the minus.gif version.

// for CSS, initialize flagged tags to style display = “none”
// for NN4, set affected images to minus.gif
function init() {

var visState = getCurrState()
if (isCSS) {

for (var i = 0; i < visState.length; i++) {
if (visState.charAt(i) == “0”) {

// branch for browser object capability
if (document.all) {

document.all(“a” + i).style.display = “none”
} else if (document.getElementsByTagName) {

document.getElementById(“a” + i).style.display = “none”
}

}
}

} else if (isNN4) {
for (i = 0; i < visState.length; i++) {

(c) ketabton.com: The Digital Library

1341Chapter 52 ✦ Application: Outline-Style Table of Contents

if (visState.charAt(i) == “1”) {
if (i+1 < visState.length && visState.charAt(i+1) == “1”) {

if (document.images[“widget” + i]) {
document.images[“widget” + i].src = “minus.gif”

}
}

}
}

}
}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<CENTER><H3>Composition of Selected Foods</H3><HR></CENTER>

Now begins the HTML that defines the content of the outline. For readability, I

have formatted the <DIV> tag sets to follow the indentation of the outline data (this

listing looks much better if you open the file from the CD-ROM in your text editor

with word wrap turned off). Each tag includes a CLASS attribute pointing to a class

defined in the first <STYLE> tag of the page. Each tag also includes an ID attribute

whose name begins with the letter “a” and a sequential serial number, starting with

zero. Navigator uses the ID attributes to help it assign display property settings

during each reload.

Like the older version of the outliner, each entry includes an image (surrounded

by a clickable link) and a text entry (which may or may not be a link to a docu-

ment). The link around the image includes a javascript: URL for the HREF
attribute. When a link is for a widget that is a mother item, the parameters to the

toggle() function are the serial numbers of the immediate children IDs whose dis-

play properties are to be adjusted in the toggle() function. These passed items

only need to be in the immediate children, because any of their children inherit the

display property of their parents. For example, the first widget toggles items 1 and

2 (ids a1 and a2). Item 2 happens to be a parent to items 3 and 4. But when the

display property of item 2 is set to none, then none of its children (items 3 and 4)

are displayed, no matter how their display properties are set.

IMG elements associated with each toggled DIV are named along similar lines,

with the name starting with “widget” and the same serial number as the containing

DIV. If you look at the end of the toggle() function again, you’ll see that the name

for the IMG element is derived from the first parameter received by the toggle()
function. That first parameter will always be one number higher than the serial

number for the widget image to swap. To help you visualize the numbering scheme

used within the example, the numbered identifiers and methods that relay associ-

ated numbers are shown in boldface.

<DIV CLASS=indent0 ID=”a0”>
<A HREF=”javascript:toggle(1,2)” onMouseOver=
“status=’Click to expand/collapse nested items’;return true”
onMouseOut=”status=’’;return true”>
<IMG NAME=”widget0” SRC=”plus.gif” HEIGHT=12 WIDTH=12
BORDER=0> Peas

<DIV CLASS=indent1 ID=”a1”>

<A HREF=”javascript:void(0)” onMouseOver=
“status=’No further items’;return true”

(c) ketabton.com: The Digital Library

1342 Part V ✦ Putting JavaScript to Work

onMouseOut=”status=’’;return true”>
<IMG SRC=”end.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#boiled”
TARGET=Frame2>Boiled

</DIV>
<DIV CLASS=indent1 ID=”a2”>

<A HREF=”javascript:toggle(3,4)” onMouseOver=
“status=’Click to expand/collapse nested items’;return true”
onMouseOut=”status=’’;return true”>
<IMG NAME=”widget2” SRC=”plus.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#canned”
TARGET=Frame2>Canned

<DIV CLASS=indent2 ID=”a3”>

<A HREF=”javascript:void(0)”
onMouseOver=”status=’No further items’;return true”
onMouseOut=”status=’’;return true”>
<IMG SRC=”end.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#alaska”
TARGET=Frame2>Alaska

</DIV>
<DIV CLASS=indent2 ID=”a4”>

<A HREF=”javascript:void(0)”
onMouseOver=”status=’No further items’;return true”
onMouseOut=”status=’’;return true”>
<IMG SRC=”end.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#losodium”
TARGET=Frame2>Low-Sodium

</DIV>
</DIV>

</DIV>

<DIV CLASS=indent0 ID=”a5”>
<A HREF=”javascript:toggle(6)” onMouseOver=
“status=’Click to expand/collapse nested items’;return true”
onMouseOut=”status=’’;return true”>
<IMG NAME=”widget5” SRC=”plus.gif” HEIGHT=12 WIDTH=12
BORDER=0> Pickles

<DIV CLASS=indent1 ID=”a6”>

<A HREF=”javascript:toggle(7,8,9)” onMouseOver=
“status=’Click to expand/collapse nested items’;return true”
onMouseOut=”status=’’;return true”>
<IMG NAME=”widget6” SRC=”plus.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#cucumber”
TARGET=Frame2>Cucumber

<DIV CLASS=indent2 ID=”a7”>

<A HREF=”javascript:void(0)” onMouseOver=
“status=’Click to expand nested items’;return true”
onMouseOut=”status=’’;return true”>
<IMG SRC=”end.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#dill”
TARGET=Frame2>Dill

</DIV>
<DIV CLASS=indent2 ID=”a8”>

<A HREF=”javascript:void(0)”
onMouseOver=”status=’No further items’;return true”

(c) ketabton.com: The Digital Library

1343Chapter 52 ✦ Application: Outline-Style Table of Contents

onMouseOut=”status=’’;return true”>
<IMG SRC=”end.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#fresh”
TARGET=Frame2>Fresh

</DIV>
<DIV CLASS=indent2 ID=”a9”>

<A HREF=”javascript:void(0)”
onMouseOver=”status=’No further items’;return true”
onMouseOut=”status=’’;return true”>
<IMG SRC=”end.gif” HEIGHT=12 WIDTH=12
BORDER=0> <A HREF=”foods.htm#sour”
TARGET=Frame2>Sour

</DIV>
</DIV>

</DIV>
</BODY>
</HTML>

The CSS version (for the identical outline content) is a slightly smaller file size

than the older, compatible one, but not so big a difference as to influence your

choice. Browser compatibility should be your number one criterion. Ease of modifi-

cation for changing content and improved user experience for browsers following

the CSS branch are tied in second.

A Futuristic (XML) Outline
As XML and its associated technologies head toward a solid standardized foot-

ing, the latest browsers available as this edition is being written provide mixed sup-

port for some of the key features of an ideal environment. As those issues are

sorting themselves out, getting to know portions of XML through the IE5+/Windows

XML data island features is possible. While it’s not normally okay to embed XML in

an HTML document (that is, the two designations specify unique document types),

IE5+/Windows provides an <XML> tag, in which you can insert XML tags. Scripts can

access the elements inside the XML data island, referencing those elements as child

nodes of the XML element. See Chapter 33 for the reference material on the IE XML

element.

Birth of an XML specification
Collapsible outlines provide convenient ways to organize hierarchical informa-

tion all around us. You’d be hard-pressed to find a more active proponent of the

outline than Dave Winer, CEO of UserLand Software, Inc.

(http://www.userland.com). Dave is a veteran software developer, as well as

author and outspoken Web publisher. His www.scripting.com Web site is a popu-

lar destination if you want to find out the latest Internet and computing technology

“buzz.”

As an outgrowth of development for his company’s Web tools, Dave looked to

the XML structure to assist in representing outline content in a shareable, easily

parseable format. The result is a specification called Outline Processor Markup

Language, or OPML for short. You can read all about the formal specification at

http://www.opml.org/spec. Like virtually all XML, OPML is intended to be

(c) ketabton.com: The Digital Library

1344 Part V ✦ Putting JavaScript to Work

written by software, not humans (although humans input the data via a user-

friendly front-end provided by the software). Even so, the format of an OPML out-

line is extremely readable by humans, and, with little more trouble than writing

basic HTML tags manually, you can represent an outline in this format yourself.

A plain OPML file, saved as an .xml file, can be viewed through the native XML

parsers of IE5+ and NN6. These parsers automatically render XML tags in the same

hierarchical fashion as OPML encourages outlines to be structured. But such ren-

dering is under strict control of the browser, unless you also get involved with XML

style sheets (the XSL and XSLT standards), at which point, browser implementation

incompatibilities can make the going tough.

I liked the OPML data format when I first saw it, and I think it’s a convenient way

to convey an outline’s data to the client, at which point JavaScript and the

browser’s DOM can take over to provide interesting visuals for the content and

interaction with the content. Thus was born the last example of this chapter, in

which the outliner’s data is delivered not in the form of scripted arrays or hard-

wired HTML DIV elements. Instead, the data arrives in its native XML (OPML) for-

mat inside an IE5+/Windows XML data island. Rendering of the native XML is

suppressed, and scripts take over to do the rest.

OPML outliner prep
The appearance of widgets and text for the new outliner has changed to more

closely emulate the kinds of outline presentations that you see in some Windows

programs (see Figure 52-2). For demonstration purposes, the same frameset struc-

ture and outline content from earlier examples are used for the OPML version so

that you can more easily see the differences in implementations and grasp new con-

cepts presented here. For example, the comparison of how the outline data is deliv-

ered in the form of JavaScript objects (the first example) and OPML is enlightening.

As you recall, a custom object constructor function generated one JavaScript

object for each outline entry. The properties of the object are completely under

your control, so that you can add properties (such as the target of an entry’s link),

whose values influence the way the entry is rendered and the way it behaves.

OPML has a similar extensibility feature. Each outline entry is nothing more than a

tag. An entry that does not have any nested child nodes can use the XML shortcut

of combining a start and end tag inside one set of angle brackets:

<tagName attribute=”value” ... />

And any entry that has nested nodes contains the nested nodes between its start

and end tags, as shown here with the actual tag names used in OPML (indentation

is optional, but increases readability):

<outline text=”text”>
<outline text=”text”/>
<outline text=”text”/>

</outline

(c) ketabton.com: The Digital Library

1345Chapter 52 ✦ Application: Outline-Style Table of Contents

Figure 52-2: OPML-based outliner style

If you want to associate more information about an entry, simply add an

attribute. For example, if an entry is to behave as a link, you can convey that infor-

mation with an attribute whose name you determine. When it comes time for your

scripts to render the content in HTML, the scripts access the attribute values and

generate the associated HTML for the attributes (you see an example of this in the

code).

The true beauty of the OPML structure (and XML in general) is that the

parent–child relationships are automatically implied by the element containment.

Unlike the JavaScript custom object in the first example, the author does not have

to specify how many levels deep an entry is, or whether it has any child nodes: The

XML containment hierarchy describes all of that information. Suddenly, all of the

W3C DOM gobbledygook about nodes, child nodes, and attributes become your

friend, as your scripts convert the element hierarchy into a renderable hierarchy of

your design.

(c) ketabton.com: The Digital Library

1346 Part V ✦ Putting JavaScript to Work

The XML and HTML code
Because our focus is so tight on the outliner content, you can start the explo-

ration of the outliner code from the HTML BODY element downward, where the out-

line data is embedded in an IE5+/Windows XML element.

<BODY onLoad=”init(‘outlineXML’)”>
<XML ID=”outlineXML”>
<opml version=”1.0”>

<head>
<title>A Modern Outline</title>
<dateCreated>Thu, 16 Nov 2000 02:40:00 GMT</dateCreated>
<dateModified>Fri, 22 Dec 2000 19:35:00 GMT</dateModified>
<ownerName>Danny Goodman</ownerName>
<ownerEmail>dannyg@dannyg.com</ownerEmail>
<expansionState></expansionState>
<vertScrollState>1</vertScrollState>
<windowTop></windowTop>
<windowLeft></windowLeft>
<windowBottom></windowBottom>
<windowRight></windowRight>

</head>
<body>

<outline text=”Peas”>
<outline text=”Boiled” uri=”foods.htm#boiled”/>
<outline text=”Canned” uri=”foods.htm#canned”>

<outline text=”Alaska” uri=”foods.htm#alaska”/>
<outline text=”Low-Sodium” uri=”foods.htm#losodium”/>

</outline>
</outline>
<outline text=”Pickles”>

<outline text=”Cucumber” uri=”foods.htm#cucumber”>
<outline text=”Dill” uri=”foods.htm#dill”/>
<outline text=”Fresh” uri=”foods.htm#fresh”/>
<outline text=”Sour” uri=”foods.htm#sour”/>

</outline>
</outline>

</body>
</opml>
</XML>

<DIV ID=”content”></DIV>
</BODY>
</HTML>

Everything inside the XML element is textbook OPML version 1.0 form. Notice

that the OPML syntax reuses element names that are found in all HTML files (for

example, head, title, body). The XML island behavior isolates these tags from the

browser’s HTML rendering engine, so the browser won’t confuse the two “docu-

ments.” The only other HTML delivered in the document is an empty DIV element,

which is used as the container for the outline HTML that the scripts generate as a

result of the onLoad event handler’s invocation of the init() function.

(c) ketabton.com: The Digital Library

1347Chapter 52 ✦ Application: Outline-Style Table of Contents

Also, go back to the top of the document to see the style sheets, which have an

important place in delivering an XML island:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>

XML {display:none}
.row {vertical-align:middle; font-size:12px; font-family:Arial,sans-serif}
.OLBlock {display:none}
IMG {vertical-align:text-top}

</STYLE>

To prevent the XML block from rendering on the page, the display style prop-

erty is set to none for the XML tag selector. This keeps the page clear for insertion

of script-generated HTML. The other style sheet rules apply to content created by

the scripts.

Setting the scripted stage
All scripts for this page are in the HEAD (although they could also be linked in

from an external .js file). First on the docket is establishing several global vari-

ables that get used a lot within the rest of the code and make it easy to customize

important visible properties, especially widget art. Due to the art choices made for

this version, there are separate versions for items that appear as first, middle, and

end items for different nesting states.

<SCRIPT LANGUAGE=”JavaScript”>
// global variables
// art files and sizes for widget styles and spacers
// (all images must have same height/width)
var collapsedWidget = “oplus.gif”
var collapsedWidgetStart = “oplusStart.gif”
var collapsedWidgetEnd = “oplusEnd.gif”
var expandedWidget = “ominus.gif”
var expandedWidgetStart = “ominusStart.gif”
var expandedWidgetEnd = “ominusEnd.gif”
var nodeWidget = “onode.gif”
var nodeWidgetEnd = “onodeEnd.gif”
var emptySpace = “oempty.gif”
var chainSpace = “ochain.gif”
var widgetWidth = “20”
var widgetHeight = “16”
var currState = “”
var displayTarget = “Frame2”

The init() function, invoked by the onLoad event handler, starts the content

creation in motion. The basic sequence is to first make sure that the browser is

capable of recognizing an XML data island. If the validation is okay, then a reference

to the BODY portion of the outline data is retrieved so that many other functions

are able to dive into the outliner hierarchy. Notice that elements of the XML data

island are disguised from view of the document object’s normal scope. Access must

be made by way of the XML object, which then exposes its elements. The reference

to the OPML BODY element is passed to the makeHTML() function, which returns

(c) ketabton.com: The Digital Library

1348 Part V ✦ Putting JavaScript to Work

the entire outline HTML to be assigned to the innerHTML property of the empty DIV

element delivered with the document.

// initialize first time
function init(outlineID) {

if (supportVerified(outlineID)) {
// demo how to get outline head elements
var hdr =

document.getElementById(outlineID).getElementsByTagName(“head”)[0]
// get outline body elements for iterative conversion to HTML
var ol =

document.getElementById(outlineID).getElementsByTagName(“body”)[0]
// wrap whole outline HTML in a span
var olHTML = “” +

makeHTML(outlineID, ol) + “”
// throw HTML into ‘content’ DIV for display
document.getElementById(“content”).innerHTML = olHTML
initExpand(outlineID)

}
}

Validation of browser support is handled by the supportVerified() function.

This function is in search of the XMLDocument property of the XML element object.

The property’s presence indicates that the browser has what it takes to treat

embedded XML as a data island. Incremental tests are needed so that earlier

browsers don’t choke on the reference to the property.

// verify that browser supports XML islands
function supportVerified(testID) {

if (document.getElementById &&
document.getElementById(testID) &&
document.getElementById(testID).XMLDocument) {

return true
} else {

var reply = confirm(“This example requires a browser with XML data
island support, such as IE5+/Windows. Go back to previous page?”)

if (reply) {
history.back()

} else {
return false

}
}
return false

}

Accumulating the HTML
From the init() function, a call to the makeHTML() function starts the most

complex actions of the scripts on this page. This function walks the node hierarchy

of the outline’s BODY elements, deciphering which ones are containers and which

ones are end points.

Two global variables are used to keep track of how far the node walk progresses

because this function calls itself from time to time to handle nested branches of the

node tree. Because a reflexive call to a function starts out with new values for local

variables, the globals operate as pointers to let statements in the function know

which node is being accessed. The numbers get applied to an ID attribute assigned

to the DIV elements holding the content.

(c) ketabton.com: The Digital Library

1349Chapter 52 ✦ Application: Outline-Style Table of Contents

One of the fine points of the design of this outline is the way space to the left of

each entry is assembled. Unlike the earlier outlines in this chapter, this one dis-

plays vertical dotted lines connecting nodes at the same level. There isn’t a vertical

line for every clickable node appearing above the item, because a clickable node

may have no additional siblings, meaning that the space is blank. To see what I

mean, open the OPML example, and expand the Peas and Canned nodes (or see

Figure 52-2). The Canned node is the end of the second “column,” so the space

beneath the icon is blank. That’s what some of the code in makeHTML() named “pre-

fix” is dealing with: Accumulating just the right combination of dotted line

(chain.gif) and blank (empty.gif) images in sequence before the outline entry.

Another frequent construction throughout this function is a three-level condi-

tional expression. This construction is used to determine whether the image just to

the left of the item’s text should be a start, middle, or end version of the image. The

differences among them are subtle (having to do with how the vertical dotted line

extends above or below the widgets). All of these decisions are made from informa-

tion revealed by the inherent structure of the OPML element nesting. The listing in

the book looks longer than it truly is because so many long or deeply nested lines

must be wrapped to the next line. Viewing the actual file in your text editor should

calm your fears a bit.

// counters for reflexive calls to makeHTML()
var currID = 0
var blockID = 0
// generate HTML for outline
function makeHTML(outlineID, ol, prefix) {

var output = “”
var nestCount, link, nestPrefix
prefix = (prefix) ? prefix : “”
for (var i = 0; i < ol.childNodes.length ; i++) {

nestCount = ol.childNodes[i].childNodes.length
output += “<DIV CLASS=’row’ ID=’line” + currID++ + “‘>\n”
if (nestCount > 0) {

// for entries that are also parents
output += prefix
output += “<IMG ID=’widget” + (currID-1) +

“‘ SRC=’” + ((i== ol.childNodes.length-1) ?
collapsedWidgetEnd : (blockID==0) ?
collapsedWidgetStart : collapsedWidget)

output += “‘ HEIGHT=” + widgetHeight + “ WIDTH=” +
widgetWidth

output += “ TITLE=’Click to expand/collapse nested items.’
onClick=’toggle(this,” + blockID + “)’>”

// if a uri is specified, wrap the text inside a link
link = (ol.childNodes[i].getAttribute(“uri”)) ?

ol.childNodes[i].getAttribute(“uri”) : “”
if (link) {

output += “ <A HREF=’” + link +
“‘ CLASS=’itemTitle’ TITLE=’” + link +
“‘ TARGET=’” + displayTarget + “‘>”

} else {
output += “ <A CLASS=’itemTitle’ TITLE=’” +

link + “‘>”
}
// finally! the actual text of the entry

(c) ketabton.com: The Digital Library

1350 Part V ✦ Putting JavaScript to Work

output += “ ” + ol.childNodes[i].getAttribute(“text”) +
“”

currState += calcBlockState(outlineID, currID-1)
output += “<SPAN CLASS=’OLBlock’ BLOCKNUM=’” + blockID +

“‘ ID=’OLBlock” + blockID++ + “‘>”
// accumulate prefix art for next indented level
nestPrefix = prefix
nestPrefix += (i == ol.childNodes.length - 1) ?

“” :
“”

// reflexive call to makeHTML() for nested elements
output += makeHTML(outlineID, ol.childNodes[i], nestPrefix)
output += “</DIV>\n”

} else {
// for endpoint nodes
output += prefix
output += “<IMG ID=’widget” + (currID-1) + “‘ SRC=’” +

((i == ol.childNodes.length - 1) ?
nodeWidgetEnd : nodeWidget)

output += “‘ HEIGHT=” + widgetHeight + “ WIDTH=” +
widgetWidth + “>”

// check for links for these entries
link = (ol.childNodes[i].getAttribute(“uri”)) ?

ol.childNodes[i].getAttribute(“uri”) : “”
if (link) {

output += “ <A HREF=’” + link +
“‘ CLASS=’itemTitle’ TITLE=’” +

link + “‘ TARGET=’” + displayTarget + “‘>”
} else {

output += “ <A CLASS=’itemTitle’ TITLE=’” +
link + “‘>”

}
// grab the text for these entries
output += ol.childNodes[i].getAttribute(“text”) + “”
output += “</DIV>\n”

}
}
return output

}

As with the HTML assembly code of the first outliner, if you were to add

attributes to OUTLINE elements in an OPML outline (for example, a URL for an icon

to display in front of the text), it is in makeHTML() that the values would be read

and applied to the HTML being created.

The only other function invoked by the makeHTML() function is

calcBlockState(). This function looks into one of the OPML outline’s HEAD ele-

ments, called EXPANSIONSTATE. This element’s values can be set to a comma-

delimited list of numbers corresponding to nodes that are to be shown expanded

when the outline is first displayed. The calcBlockState() function is invoked for

each parent element. The element’s location is compared against values in the

EXPANSIONSTATE element, if there are any, and returns the appropriate 1 or 0 value

for the state string being assembled for the rendered outline.

(c) ketabton.com: The Digital Library

1351Chapter 52 ✦ Application: Outline-Style Table of Contents

// apply default expansion state from outline’s header
// info to the expanded state for one element to help
// initialize currState variable
function calcBlockState(outlineID, n) {

var ol = document.getElementById(outlineID).getElementsByTagName(“body”)[0]
var outlineLen = ol.getElementsByTagName(“outline”).length
// get OPML expansionState data
var expandElem =

document.getElementById(outlineID).getElementsByTagName(“expansionState”)[0]
var expandedData = (expandElem.childNodes.length) ?

expandElem.firstChild.nodeValue.split(“,”) : null
if (expandedData) {

for (var j = 0; j < expandedData.length; j++) {
if (n == expandedData[j] - 1) {

return “1”
}

}
}
return “0”

}

The final act of the initialization process is a call to the initExpand() function.

This function loops through the currState global variable (whose value was writ-

ten in makeHTML() with the help of calcBlockState()) and sets the display
property to block for any element designed to be expanded at the outset. HTML

element construction in makeHTML() is performed in such a way that each parent

DIV has a SPAN nested directly inside of it; and inside that SPAN are all the child

nodes. The display property of the SPAN determines whether all of those children

are seen or not.

// expand items set in expansionState XML tag, if any
function initExpand(outlineID) {

for (var i = 0; i < currState.length; i++) {
if (currState.charAt(i) == 1) {

document.getElementById(“OLBlock” + i).style.display = “block”
}

}
}

By the time the initExpand() function has run — a lot of setup code that exe-

cutes pretty quickly — the rendered outline is in a steady state. Users can now

expand or collapse portions by clicking the widget icons.

Toggling node expansion
All of the widget images in the outline have onClick event handlers assigned to

them. The handlers invoke the toggle() function, passing parameters consisting

of a reference to the IMG element object receiving the event and the serial number

of the SPAN block nested just inside the DIV that holds the image. With these two

pieces of information, the toggle() function sets in motion the act of inverting the

expanded/collapsed state of the element and the plus or minus version of the icon

image. The blockNum parameter corresponds to the position within the currState
string of 1s and 0s holding the flag for the expanded state of the block. With the

current value retrieved from currState, the value is inverted through

(c) ketabton.com: The Digital Library

1352 Part V ✦ Putting JavaScript to Work

swapState(). Then, based on the new setting, the display property of the block is

set accordingly, and widget art is changed through two special-purpose functions.

// toggle an outline mother entry, storing new state value;
// invoked by onClick event handlers of widget image elements
function toggle(img, blockNum) {

var newString = “”
var expanded, n
// modify state string based on parameters passed IMG
expanded = currState.charAt(blockNum)
currState = swapState(currState, expanded, blockNum)
// dynamically change display style
if (expanded == “0”) {

document.getElementById(“OLBlock” + blockNum).style.display =
“block”

img.src = getExpandedWidgetState(img.src)
} else {

document.getElementById(“OLBlock” + blockNum).style.display =
“none”

img.src = getCollapsedWidgetState(img.src)
}

}

Swapping the state of the currState variable utilizes the same XOR operator

employed by the first outliner in this chapter. The entire currState string is

passed as a parameter. The indicated digit is segregated and inverted, and the

string is reassembled before being returned to the calling statement in toggle().

// invert state
function swapState(currState, currVal, n) {

var newState = currState.substring(0,n)
newState += currVal ^ 1 // Bitwise XOR item n
newState += currState.substring(n+1,currState.length)
return newState

}

As mentioned earlier, each of the clickable widget icons (plus and minus) can be

one of three states, depending on whether the widget is at the start, middle, or end

of a vertical-dotted chain. The two image swapping functions find out (by inspect-

ing the URLs of the images currently occupying the IMG element) which version is

currently in place so that, for instance, a starting plus (collapsed) widget is

replaced with a starting minus (expanded) widget. This is a case of going the extra

mile for the sake of an improved user interface.

// retrieve matching version of ‘minus’ images
function getExpandedWidgetState(imgURL) {

if (imgURL.indexOf(“Start”) != -1) {
return expandedWidgetStart

}
if (imgURL.indexOf(“End”) != -1) {

return expandedWidgetEnd
}
return expandedWidget

}

(c) ketabton.com: The Digital Library

1353Chapter 52 ✦ Application: Outline-Style Table of Contents

// retrieve matching version of ‘plus’ images
function getCollapsedWidgetState(imgURL) {

if (imgURL.indexOf(“Start”) != -1) {
return collapsedWidgetStart

}
if (imgURL.indexOf(“End”) != -1) {

return collapsedWidgetEnd
}
return collapsedWidget

}

Wrap up
There’s no question that the amount and complexity of the code involved for the

OPML version of the outliner are significant. The “pain” associated with developing

an application such as this is all up front. After that, the outline content is easily

modifiable in the OPML format (or perhaps by some future editor that produces

OPML output).

Even if you don’t plan to implement an OPML outline, the explanation of how this

example works should drive home the importance of designing data structures that

assist not only the visual design but also the scripting that you use to manipulate

the visual design.

Further Thoughts
The advent of CSS and element positioning has prompted numerous

JavaScripters to develop another kind of hierarchical system of pop-up or drop-

down menus. You can find examples of this interface at many of the JavaScript

source Web sites listed in Appendix D. Making these kinds of menus work well in

NN4, IE4+, and W3C DOMs is a lot of hard work, and if you can adopt code already

ironed out by others, then all the better.

Most of the code you find, however, will require a fair amount of tweaking to

blend the functionality into the visual design that you have or are planning for your

Web site. Finding two implementations on the Web that look or behave the same

way is rare. As long as you’re aware of what you’ll be getting yourself into, you are

encouraged to check out these interface elements. By hiding menu choices except

when needed, valuable screen real estate is preserved for more important, static

content.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Application:
Calculations and
Graphics

When the scripting world had its first pre-release

peeks at JavaScript (while Netscape was still calling

the language LiveScript), the notion of creating interactive

HTML-based calculators captured the imaginations of many

page authors. Somewhere on the World Wide Web, you can

find probably every kind of special-purpose calculation nor-

mally done by scientific calculators and personal computer

programs — leaving only weather-modeling calculations to the

supercomputers of the world.

In the search for my calculator gift to the JavaScript uni-

verse, I looked around for something more graphical.

Numbers, by themselves, are pretty boring; so any way the

math could be enlivened was fine by me. Having been an elec-

tronics hobbyist since I was a kid, I recalled the color-coding

of electronic resistor components. The values of these gizmos

aren’t printed in plain numbers anywhere. You have to know

the code and the meaning of the location of the colored bands

to arrive at the value of each one. I thought that this calcula-

tor would be fun to play with, even if you don’t know what a

resistor is.

The Calculation
To give you an appreciation for the calculation that goes

into determining a resistor’s value, here is the way the system

works. Three closely spaced color bands determine the resis-

tance value in ohms. The first (leftmost) band is the tens digit;

the second (middle) band is the ones digit. Each color has a

number from 0 through 9 assigned to it (black = 0, brown = 1,

5353C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Precached images

Math calculations

CGI-like image
assembly

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1356 Part V ✦ Putting JavaScript to Work

and so on). Therefore, if the first band is brown and the second band is black, the

number you start off with is 10. The third band is a multiplier. Each color deter-

mines the power of ten by which you multiply the first digits. For example, the red

color corresponds to a multiplier of 102, so that 10 × 102 equals 1,000 ohms.

A fourth band, if present, indicates the tolerance of the component — how far,

plus or minus, the resistance measurement can fluctuate due to variations in the

manufacturing process. Gold means a tolerance of plus-or-minus 5 percent; silver

means plus-or-minus 10 percent; and no band means a 20 percent tolerance. A

pinch of extra space typically appears between the main group of three-color bands

and the one tolerance band.

User Interface Ideas
The quick-and-dirty, non-graphical approach for a user interface was to use a sin-

gle frame with four SELECT elements defined as pop-up menus (one for each of the

four color bands on a resistor), a button to trigger calculation, and a field to show

the numeric results.

How dull.

It occurred to me that if I design the art carefully, I can have JavaScript assemble

an updated image of the resistor consisting of different slices of art: static images

for the resistor’s left and right ends, and variable slivers of color bands for the mid-

dle. Rather than use the brute force method of creating an image for every possible

combination of colors (3,600 images total!), a far more efficient approach is to have

one image file for each color (12 colors plus 1 empty) and enable JavaScript to call

them from the server, as needed, in the proper order. If not for client-side

JavaScript, a CGI script on the server would have to handle this kind of intelligence

and user interaction. But with this system, any dumb server can dish up the image

files as called by the JavaScript script.

The first generation of this resistor calculator used two frames, primarily

because I needed a second frame to update the calculator’s art dynamically while

keeping the pop-up color menus stationary. Images couldn’t be swapped back in

those frontier days, so the lower frame had to be redrawn for each color choice.

Fortunately, NN3 and IE4 enabled me to update individual image objects in a loaded

document without any document reloading. Moreover, with all the images pre-

cached in memory, page users experience no (or virtually no) delay in making a

change from one value to another.

The design for the new version is a simple, single-document interface (see Figure

53-1). Four pop-up menus let you match colors of a resistor, whereas the onChange
event handler in each menu automatically triggers an image and calculation update.

To hold the art together on the page, a table border surrounds the images on the

page, whereas the numeric value of the component appears in a text field.

(c) ketabton.com: The Digital Library

1357Chapter 53 ✦ Application: Calculations and Graphics

Figure 53-1: The Resistor Calculator with images inside a table border

The Code
All the action takes place in the file named resistor.htm. A second document is

an introductory HTML text document that explains what a resistor is and why you

need a calculator to determine a component’s value. The article, called The Path of
Least Resistance, can be viewed in a secondary window from a link in the main win-

dow. Here you will be looking only at resistor.htm, which has been updated to

include style sheets.

The document begins in the traditional way. It specifies a JavaScript 1.1-level lan-

guage because you will be using several features of that language version:

<HTML>
<HEAD>
<TITLE>Graphical Resistance Calculator</TITLE>
<STYLE TYPE=”text/css”>
BODY {font-family:Arial, Helvetica, serif}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
<!-- hide script from nonscriptable browsers

(c) ketabton.com: The Digital Library

1358 Part V ✦ Putting JavaScript to Work

Basic arrays
In calculating the resistance, the script needs to know the multiplier value for

each color. If not for the last two multiplier values actually being negative multipli-

ers (for example, 10-1 and 10-2), I could have used the index values without having

to create this array. But the two out-of-sequence values at the end make it easier

to work with an array rather than to try special-casing these instances in later

calculations:

// create array listing all the multiplier values
var multiplier = new Array()
multiplier[0] = 0
multiplier[1] = 1
multiplier[2] = 2
multiplier[3] = 3
multiplier[4] = 4
multiplier[5] = 5
multiplier[6] = 6
multiplier[7] = 7
multiplier[8] = 8
multiplier[9] = 9
multiplier[10] = -1
multiplier[11] = -2
// create object listing all tolerance values
var tolerance = new Array()
tolerance[0] = “+/-5%”
tolerance[1] = “+/-10%”
tolerance[2] = “+/-20%”

Although the script doesn’t do any calculations with the tolerance percentages,

it needs to have the strings corresponding to each color for display in the pop-up

menu. The tolerance array is there for that purpose.

Calculations and formatting
Before the script displays the resistance value, it needs to format the numbers in

values that are meaningful to those who know about these values. Just as measures

of computer storage bytes, high quantities of ohms are preceded with “kilo” and

“meg” prefixes, commonly abbreviated with the “K” and “M” letters. The format()
function determines the order of magnitude of the final calculation (from another

function shown in the following section) and formats the results with the proper

unit of measure:

// format large values into kilo and meg
function format(ohmage) {

if (ohmage >= 1e6) {
ohmage /= 1e6
return “” + ohmage + “ Mohms”

} else {
if (ohmage >= 1e3) {

ohmage /= 1e3
return “” + ohmage + “ Kohms”

(c) ketabton.com: The Digital Library

1359Chapter 53 ✦ Application: Calculations and Graphics

} else {
return “” + ohmage + “ ohms”

}
}

}

The selections from the pop-up menus meet the calculation formulas of resistors

in the calcOhms() function. Because this function is triggered indirectly by each of

the SELECT objects, sending any of their parameters to the function is a waste of

effort. Moreover, the calcOhms() function is invoked by the onLoad event handler,

which is not tied to the form or its controls. Therefore, the function obtains the ref-

erence to the form and then extracts the necessary values of the four SELECT

objects by using explicit (named) references. Each value is stored in a local variable

for convenience in completing the ensuing calculation.

Recalling the rules used to calculate values of the resistor bands, the first state-

ment of the calculation multiplies the “tens” pop-up value times 10 to determine the

tens digit and then adds the ones digit. From there, the combined value is multi-

plied by the exponent value of the selected multiplier value. Notice that the expres-

sion first assembles the value as a string to concatenate the exponent factor and

then evaluates it to a number. Although I try to avoid the eval() function because

of its slow performance, the one call per calculation is not a performance issue at

all. The evaluated number is passed to the format() function for proper formatting

(and setting of order of magnitude). In the meantime, the tolerance value is

extracted from its array, and the combined string is plugged into the result text field

(which is in a separate form, as described later):

// calculate resistance and tolerance values
function calcOhms() {

var form = document.forms[“rescalc”]
var d1 = form.tensSelect.selectedIndex
var d2 = form.onesSelect.selectedIndex
var m = form.multiplierSelect.selectedIndex
var t = form.toleranceSelect.selectedIndex
var ohmage = (d1 * 10) + d2
ohmage = eval(“” + ohmage + “e” + multiplier[m])
ohmage = format(ohmage)
var tol = tolerance[t]
document.forms[“ouput”].result.value = ohmage + “, “ + tol

}

Preloading images
As part of the script that runs when the document loads, the next group of state-

ments precaches all possible images that can be displayed for the resistor art. For

added scripting convenience, the color names are loaded into an array. With the

help of that just-created array of color names, you then create another array

(imageDB), which both generates Image objects for each image file and assigns a

URL to each image. Notice an important subtlety about the index values being used

to create each entry of the imageDB array: Each index is a colorArray entry, which

is the name of the color. As you found out in Chapter 37, if you create an array

(c) ketabton.com: The Digital Library

1360 Part V ✦ Putting JavaScript to Work

element with a named index, you must use that style of index to retrieve the data

thereafter; you cannot switch arbitrarily between numeric indexes and names. As

you see in a moment, this named index provides a critical link between the choices

a user makes in the pop-up lists and the image objects being updated with the

proper image file.

// pre-load all color images into image cache
var colorArray = new Array(“Black”,”Blue”,”Brown”,”Gold”,”Gray”,

“Green”,”None”,”Orange”,”Red”,”Silver”,”Violet”,”White”,”Yellow”)
var imageDB = new Array()
for (i = 0; i < colorArray.length; i++) {

imageDB[colorArray[i]] = new Image(21,182)
imageDB[colorArray[i]].src = colorArray[i] + “.gif”

}

The act of assigning a URL to the src property of an Image object instructs the

browser to pre-load the image file into memory. This pre-loading happens as the

document is loading, so another few seconds of delay won’t be noticed by the user.

Changing images on the fly
The next four functions are invoked by their respective SELECT object’s

onChange event handler. For example, after a user makes a new choice in the first

SELECT object (the “tens” value color selector), that SELECT object reference is

passed to the setTens() function. Its job is to extract the text of the choice and

use that text as the index into the imageDB array. Alternatively, the color name can

also be assigned to the VALUE attribute of each OPTION, and the value property

read here. You need this connection to assign the src property of that array entry

to the src property of the image that you see on the page (defined in the following

section). This assignment is what enables the images of the resistor to be updated

instantaneously — just the one image “slice” affected by the user’s choice in a

SELECT object.

function setTens(choice) {
var tensColor = choice.options[choice.selectedIndex].text
document.tens.src = imageDB[tensColor].src
calcOhms()

}
function setOnes(choice) {

var onesColor = choice.options[choice.selectedIndex].text
document.ones.src = imageDB[onesColor].src
calcOhms()

}
function setMult(choice) {

var multColor = choice.options[choice.selectedIndex].text
document.mult.src = imageDB[multColor].src
calcOhms()

}
function setTol(choice) {

var tolColor = choice.options[choice.selectedIndex].text
document.tol.src = imageDB[tolColor].src
calcOhms()

}

(c) ketabton.com: The Digital Library

1361Chapter 53 ✦ Application: Calculations and Graphics

The rest of the script for the Head portion of the document merely provides the

statements that open the secondary window to display the introductory document:

function showIntro() {
window.open(“resintro.htm”,””,

“WIDTH=400,HEIGHT=320,LEFT=100,TOP=100”)
}
// end script hiding -->
</SCRIPT>
</HEAD>

Creating the SELECT objects
A comparatively lengthy part of the document is consumed with the HTML for

the four SELECT objects. Notice, however, that the document contains an onLoad
event handler in the <BODY> tag. This handler calculates the results of the currently

selected choices whenever the document loads or reloads. If it weren’t for this

event handler, you would not see the resistor art when the document first appears.

Also, because many browsers maintain their form controls’ setting while the page is

in history, a return to the page later must display the images previously selected in

the form.

<BODY onLoad=”calcOhms()”><CENTER>
<H1>Calculate <A HREF=”javascript:showIntro()” onMouseOver=”status=’An
introduction to the resistor electronic component...’;return true”>Resistor
Values from Color Codes</H1>
<FORM NAME=”rescalc”>
<SELECT NAME=”tensSelect” onChange=”setTens(this)”>

<OPTION SELECTED> Black
<OPTION> Brown
<OPTION> Red
<OPTION> Orange
<OPTION> Yellow
<OPTION> Green
<OPTION> Blue
<OPTION> Violet
<OPTION> Gray
<OPTION> White

</SELECT>
<SELECT NAME=”onesSelect” onChange=”setOnes(this)”>

<OPTION SELECTED> Black
<OPTION> Brown
<OPTION> Red
<OPTION> Orange
<OPTION> Yellow
<OPTION> Green
<OPTION> Blue
<OPTION> Violet
<OPTION> Gray
<OPTION> White

(c) ketabton.com: The Digital Library

1362 Part V ✦ Putting JavaScript to Work

</SELECT>
<SELECT NAME=”multiplierSelect” onChange=”setMult(this)”>
<OPTION SELECTED> Black

<OPTION> Brown
<OPTION> Red
<OPTION> Orange
<OPTION> Yellow
<OPTION> Green
<OPTION> Blue
<OPTION> Violet
<OPTION> Gray
<OPTION> White
<OPTION> Gold
<OPTION> Silver

</SELECT>
<SELECT NAME=”toleranceSelect” onChange=”setTol(this)”>

<OPTION SELECTED> Gold
<OPTION> Silver
<OPTION> None

</SELECT>
</FORM>
<HR>

Drawing the initial images
The balance of the document, mostly in JavaScript, is devoted to creating the

table and image objects whose src properties will be modified with each choice of

a SELECT object. The act of assembling the HTML for the image table occurs right

after the SELECT objects have rendered. References to those SELECT elements are

required in order to extract the currently selected values. If the FORM element that

holds the SELECT elements is not closed, you can’t build a valid (and backward

compatible) reference to the SELECT elements. Therefore, the page contains two

forms: One for the SELECT elements; one for the output text box inside the table.

<SCRIPT LANGUAGE=”JavaScript1.1”>
var form = document.forms[“input”]
var tensDigit = form.tensSelect.selectedIndex
var tensColor = form.tensSelect.options[tensDigit].text
var onesDigit = form.onesSelect.selectedIndex
var onesColor = form.onesSelect.options[onesDigit].text
var multDigit = form.multiplierSelect.selectedIndex
var multColor = form.multiplierSelect.options[multDigit].text
var tolDigit = form.toleranceSelect.selectedIndex
var tolColor = form.toleranceSelect.options[tolDigit].text

var table = “<TABLE BORDER=2><FORM NAME=’output’>”
table += “<TR><TH ALIGN=middle>Resistance Value:</TH>”
table += “<TH ALIGN=’middle’><INPUT TYPE=’text’ NAME=’result’ “ +

“SIZE=20 onFocus=’this.blur()’>”
table += “</TH></TR><TR><TD COLSPAN=2>”

(c) ketabton.com: The Digital Library

1363Chapter 53 ✦ Application: Calculations and Graphics

table += “” +
“<IMG SRC=’” + tensColor + “.gif’ NAME=’tens’ WIDTH=21 “ +
“HEIGHT=182><IMG SRC=’” + onesColor +
“.gif’ NAME=’ones’ WIDTH=21 HEIGHT=182>” +
“<IMG SRC=’” + multColor + “.gif’ NAME=’mult’ WIDTH=21 “+
“HEIGHT=182>”+
“<IMG SRC=’” + tolColor + “.gif’ NAME=’tol’ WIDTH=21 “ +
“HEIGHT=182>”

table += “</TD></TR></FORM></TABLE>”
document.write(table)
</SCRIPT>
Illustration Copyright 1996 Danny Goodman. All Rights
Reserved.</CENTER>
</BODY>
</HTML>

As you can see, inside the images appear in one table cell (in the second row)

that contains all seven image objects smashed against each other. To keep the

images flush against each other, there can be no spaces or carriage returns between

 tags.

Further Thoughts
I am very pleased with the improvements to performance and perceived quality

that swappable images and image precaching bring to the current version of this

calculator. Images change crisply. Network latency is no longer an issue.

In the layout department, however, annoying differences still exist among differ-

ent platforms. At one point in the design process, I considered trying to align the

pop-up menus with images of the resistor (or callout line images), but the differ-

ences in platform rendering of pop-up menus made that idea impractical. At best, I

now separate the three left SELECT objects from the right one by way of hard-coded

spaces ().

You should notice from this exercise that I look for ways to blend JavaScript

object data structures with my own data’s structure. For example, the SELECT

objects serve multiple duties in these scripts. Not only does the text of each option

point to an image file of the same name, but the index values of the same options

are applied to the calculations. Things don’t always work out that nicely, but when-

ever your scripts bring together user interface elements and data elements, look for

algorithmic connections involving names or index integers that you can leverage to

create elegant, concise code.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Application:
Intelligent
“Updated” Flags

It happens to every active Web user all the time: You visit a

site periodically and never know for sure what material is

new since your last visit. Often, Web page authors may flag

items with “New” or “Updated” .gif images after they update

those items themselves. But if you fail to visit the site over a

few modification sessions, the only items you find flagged are

those that are new as of the most recent update by the page’s

author. Several new items from a few weeks back may be of

vital interest to you, but you won’t have the time to look

through the whole site in search of material that is more

recent than your last visit. Even if the items display their mod-

ification dates, do you remember for sure the date and time of

your last visit to the page?

As much as I might expect a CGI program and database on

a Web site to keep track of my last visit, that really is asking a

great deal of the Web site. Besides, not every Web site has the

wherewithal to build such a database system — if it can even

put up its own CGIs. Plus, some users won’t visit sites if they

need to identify themselves or register.

After surveying the way scriptable browsers store cookie

information and how time calculations are performed under

NN3+ and IE4+, I found that a feasible alternative is to build

this functionality into HTML documents and let the scripting

manage the feature for users. The goal is to save in the visi-

tor’s cookie file the date and time of the last visit to a page

and then use that point as a measure against items that have

an authorship time stamp in the HTML document.

The Cookie Conundrum
Managing the cookie situation in this application is a bit

more complicated than you may think. The reason is that you

have to take into account the possible ways visitors may

come and go from your site while surfing the Web. You cannot

5454C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Temporary and
persistent cookies

World time
calculations

CGI-like intelligence

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1366 Part V ✦ Putting JavaScript to Work

use just one cookie to store the last time a user visits the site, because you cannot

predict when you should update that information with today’s date and time. For

example, if you have a cookie with the previous visit in it, you eventually need to

store today’s visit. But you cannot afford to overwrite the previous visit immedi-

ately (say in onLoad) because your scripts need that information to compare

against items on the page not only right now, but even after the visitor vectors off

from a link and comes back later. That also means you cannot update that last visit

cookie solely via an onUnload event handler, because that, too, would overwrite

information that you need when the visitor comes back a minute later.

To solve the problem, I devised a system of two cookies. One is written to the

cookie that is given an expiration date of some time out in the future — the hard
cookie, I call it. The other is a temporary soft cookie, which stays in cookie memory

but is never written to the file. Such temporary cookies are automatically erased as

the browser quits.

The hard cookie stores the time stamp when a visitor first loads the page since

the last launch of the browser. In other words, the hard cookie contains a time

stamp of the current visit. Before the previous entry is overwritten, however, it is

copied into the soft cookie. That soft cookie maintains the time stamp of the previ-

ous visit and becomes the measure against which author time stamps in the HTML

document are compared. To guard against inadvertent overwriting of both cookies,

a function triggered by the document’s onLoad event handler looks to see if the soft

cookie has any data in it. If so, then the function knows that the visitor has been to

this page in the current session and leaves the current settings alone. Thus, the vis-

itor can come to the site and see what’s new, vector off to some other location, and

come back to see the same new items flagged and pick up from there.

One potential downside to this system is that if a user never quits the browser

(or if the browser quits only by crashing), the cookies will never be updated. If you

discover that a great deal of your users keep their computers and browsers running

all the time, you can build in a kind of timeout that invalidates the soft cookie if the

hard cookie is more than, say, 12 hours old.

Time’s Not on Your Side
Thanks to over fifteen years’ experience programming applications that involve

tracking time, I am overly sensitive to the way computers and programming lan-

guages treat time on a global basis. This issue is a thorny one, what with the

vagaries of Daylight Savings Time and time zones in some parts of the world that

differ from their neighbors by increments other than whole hours.

In the case of working with time in JavaScript, you’re at the mercy of how the

browser and JavaScript interpreter deal with times as reflected by often imperfect

operating systems. Those scripters who tried to script time-sensitive data in NN2

must have certainly experienced the wide fluctuations in the way each platform

tracked time internally (over and above the outright bugs, especially in the Mac

version of NN2). Fortunately, the situation improved significantly with NN3 and has

only gotten better in all scriptable browsers. That’s not to say all the bugs are gone,

but at least they’re manageable.

(c) ketabton.com: The Digital Library

1367Chapter 54 ✦ Application: Intelligent “Updated” Flags

To accomplish a time tracking scheme for this application, I had to be aware of

two times: the local time of the visitor and the local time of the page author. Making

times match up in what can be widely disparate time zones, I use one time zone —

GMT — as the reference point.

When a visitor arrives at the page, the browser needs to save that moment in

time so that it can be the comparison measure for the next visit. Fortunately, when-

ever you create a new date object in JavaScript, it does so internally as the GMT

date and time. Even though the way you attempt to read the date and time created

by JavaScript shows you the results in your computer’s local time, the display is

actually filtered through the time zone offset as directed by your computer’s time

control panel. In other words, the millisecond value of every date object you create

is maintained in memory in its GMT form. That’s fine for the visitor’s cookie value.

For the page author, however, I was presented with a different problem. Rather

than force the author to convert the time stamps throughout the document to GMT,

I wanted to let the author enter dates and times in local time. Aside from the fact

that many people have trouble doing time zone conversions, looking at an existing

item in the HTML with a local time stamp and instantly recognizing when that was

last updated is much easier.

The problem, then, is how to let the visitor’s browser know what time the

author’s time stamp is in GMT terms. To solve the issue, the author’s time stamp

needs to include a reference to the author’s time zone relative to GMT. An Internet

convention provides a couple of ways to do this: specifying the number of hours

and minutes difference from GMT or, where supported by the browser, the abbrevi-

ation of the time zone. In JavaScript, you can create a new date object out of one of

the specially formatted strings containing the date, time, and time zone. Three

examples follow for the Christmas Eve dinner that starts at 6 p.m. in the Eastern

Standard Time zone of North America:

var myDate = new Date(“24 Dec 1997 23:00:00 GMT”)
var myDate = new Date(“24 Dec 1997 18:00:00 GMT-0500”)
var myDate = new Date(“24 Dec 1997 18:00:00 EST”)

The first assumes you know the Greenwich Mean Time for the date and time that

you want to specify. But if you don’t, you can use the GMT designation and offset

value. The syntax indicates the date and time is in a time zone exactly five hours

west of GMT (values to the east would be positive numbers) in hhmm format.

Browsers also know all of the time zone abbreviations for North America (EST, EDT,

CST, CDT, MST, MDT, PST, and PDT, where “S” is for standard time and “D” is for day-

light time).

When a user visits a page with this application embedded in it, the visitor’s

browser converts the author’s time stamp to GMT (with the help of the author’s

zone offset parameter), so that both the author time stamp and last visit time

stamp (in the soft cookie) are comparing apples to apples.

The Application
All of this discussion may make the application sound complicated. That may be

true, internally. But the goal, as in most of the samples in this book, is to make the

application easy to use in your site, even if you’re not sure how everything works

inside.

(c) ketabton.com: The Digital Library

1368 Part V ✦ Putting JavaScript to Work

The sample page described in this chapter and on the CD-ROM (whatsnew.htm)

is pretty boring to look at, because the power all lies in the scripting that users

don’t see (see Figure 54-1). Though this figure may be the most uninspired graphic

presentation of the book, the functionality may be the most valuable addition that

you make to your Web site.

Figure 54-1: An item flagged as being new since my last visit to the page

When you first open the document (do so from a copy on your hard disk so that

you can modify the author time stamp in a moment), all you see are the two items

on the page without any flags. Although both entries have author time stamps that

pre-date the time you’re viewing the page, a soft cookie does not yet exist against

which to compare those times. But the act of making the first visit to the page has

created a hard cookie of the date and time that you first opened the page.

Quit the browser to get that hard cookie officially written to the cookie file. Then

open the whatsnew.htm file in your script editor. Scroll to the bottom of the docu-

ment, where you see the <BODY> tag and the interlaced scripts that time stamp any-

thing that you want on the page. This application is designed to display a special

.gif image that says “NEW 4U” whenever an item has been updated since your last

visit.

Each interlaced script looks like this:

<SCRIPT LANGUAGE=”JavaScript1.1”>
document.write(newAsOf(“12 Oct 2001 13:36:00 PDT”))
</SCRIPT>

By virtue of all scripts in this page being at the JavaScript 1.1 level, only those

browsers so equipped will bother with the scripting (which also means that others

lose out on this great visitor service). The document.write() method writes to

the page whatever HTML comes back from the newAsOf() function. The parameter

to the newAsOf() function is what holds the author time stamp and zone offset

information. The time stamp value must be in the string format, as shown in the

(c) ketabton.com: The Digital Library

1369Chapter 54 ✦ Application: Intelligent “Updated” Flags

preceding example, with the date and time following the exact order (“dd mmm
yyyy hh:mm:ss”). Month abbreviations are in English (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec).

As you see in the code that follows, the newAsOf() function returns an
tag with the “NEW 4U” image if the author time stamp (after appropriate conver-

sion) is later than the soft cookie value. This image can be placed anywhere in a

document. For example, at my Web site, I sometimes place the image before a con-

tents listing rather than at the end. This means, too, that if part of your page is writ-

ten by document.write() methods, you can just insert the newAsOf() function

call as a parameter to your own document.write() calls.

If you want to see the author time stamping work, edit one of the time stamps in

the whatsnew.htm file to reflect the current time. Save the document and relaunch

the browser to view the page. The item whose author time stamp you modified

should now show the bright “NEW 4U” image.

The Code
The sample page starts by initializing three global variables that are used in the

statements that follow. One variable is a Boolean value indicating whether the visi-

tor has been to the page before. Another variable, lastVisit, holds the value of

the soft cookie whenever the visitor is at this page. One other variable,

dateAdjustment, is (unfortunately) necessary to take into account a date bug that

persists in Macintosh versions of Navigator (times of new date objects can be off by

one hour). I use this variable to automatically handle any discrepancies.

<HTML>
<HEAD>
<TITLE>Showing What’s New</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
<!-- begin hiding

// globals
var repeatCustomer = false
var lastVisit = 0 // to hold date & time of previous access in GMT
milliseconds
var dateAdjustment = 0 // to accommodate date bugs on some platforms

For reading and writing cookie data, I use virtually the same cookie functions

from the outline table of contents (see Chapter 52). The only difference is that the

cookie writing function includes an expiration date, because I want this cookie to

hang around in the cookie file for a while — at least until the next visit, whenever

that may be.

// shared cookie functions
var mycookie = document.cookie
// read cookie data
function getCookieData(name) {

var label = name + “=”
var labelLen = label.length
var cLen = mycookie.length
var i = 0

(c) ketabton.com: The Digital Library

1370 Part V ✦ Putting JavaScript to Work

while (i < cLen) {
var j = i + labelLen
if (mycookie.substring(i,j) == label) {

var cEnd = mycookie.indexOf(“;”,j)
if (cEnd == -1) {

cEnd = mycookie.length
}
return unescape(mycookie.substring(j,cEnd))

}
i++

}
return “”

}

// write cookie data
function setCookieData(name,dateData,expires) {

mycookie = document.cookie = name + “=” +
dateData + “; expires=” + expires

}

Notice that the setCookieData() function still maintains a level of reusability

by requiring a name for the cookie to be passed as a parameter along with the data

and expiration date. I could have hard-wired the name into this function, but that

goes against my philosophy of designing for reusability.

Next comes a function that figures out if any problems with JavaScript date accu-

racy exist on any platform. Essentially, the function creates two date objects, one to

serve as a baseline. Even the baseline date can be bad (as it is on Mac versions of

NN3), so to test against it, you want to use the second object to create another date

using the first date object’s own values as a parameter. If any major discrepancies

occur, they will show up loud and clear.

// set dateAdjustment to accommodate Mac bug in Navigator 3
function adjustDate() {

var base = new Date()
var testDate = base
testDate = testDate.toLocaleString()
testDate = new Date(testDate)
dateAdjustment = testDate.getTime() - base.getTime()

}

In truth, this function always shows some adjustment error, because both the

baseline date and test date cannot be created simultaneously. Even in an accurate

system, the two will vary by some small number of milliseconds. For the purposes

here, this amount of variance is insignificant.

Setting the stage
Functions in the next part of the script get your cookies all in a row. The first

function (saveCurrentVisit()) deals with the visitor’s local time, converting it to

a form that will be useful on the next visit. Although one of the local variables is

called nowGMT, all the variable does is take the new date object and convert it to the

GMT milliseconds value (minus any dateAdjustment value) by invoking the

getTime() method of the date object. I use this name in the variable to help me

remember what the value represents:

(c) ketabton.com: The Digital Library

1371Chapter 54 ✦ Application: Intelligent “Updated” Flags

// write date of current visit (in GMT time) to cookie
function saveCurrentVisit() {

var visitDate = new Date()
var nowGMT = visitDate.getTime() - dateAdjustment
var expires = nowGMT + (180 * 24 * 60 * 60 *1000)
expires = new Date(expires)
expires = expires.toGMTString()
setCookieData(“lastVisit”, nowGMT, expires)

}

From the current time, I create an expiration date for the cookie. The example

shows a date roughly six months (180 days, to be exact) from the current time. I

leave the precise expiration date up to your conscience and how long you want the

value to linger in a user’s cookie file.

The final act of the saveCurrentVisit() function is to pass the relevant values

to the function that actually writes the cookie data. I assign the name lastVisit to

the cookie. If you want to manage this information for several different pages, then

assign a different cookie name for each page. This setup can be important in case a

user gets to only part of your site during a visit. On the next visit, the code can

point to page-specific newness of items.

The bulk of what happens in this application takes place in an initialization func-

tion. All the cookie swapping occurs there, as well as the setting of the

repeatCustomer global variable value:

// set up global variables and establish whether user is a newbie
function initialize() {

var lastStoredVisit = getCookieData(“lastVisit”)
var nextPrevStoredVisit = getCookieData(“nextPrevVisit”)

adjustDate()

if (!lastStoredVisit) {
// never been here before
saveCurrentVisit()
repeatCustomer = false

} else {
// been here before...
if (!nextPrevStoredVisit) {

// but first time this session
// so set cookie only for current session
setCookieData(“nextPrevVisit”,lastStoredVisit,””)
lastVisit = parseFloat(lastStoredVisit)
saveCurrentVisit()
repeatCustomer = true

} else {
// back again during this session (perhaps reload or Back)
lastVisit = parseFloat(nextPrevStoredVisit)
repeatCustomer = true

}
}

}
initialize()

(c) ketabton.com: The Digital Library

1372 Part V ✦ Putting JavaScript to Work

The first two statements retrieve both hard (lastVisit) and soft

(nextPrevVisit) cookie values. After calling the function that sets any necessary

date adjustment, the script starts examining the values of the cookies to find out

where the visitor stands upon coming to the page.

The first test is whether the person has ever been to the page before. You do this

by checking whether a hard cookie value (which would have been set in a previous

visit) exists. If no such cookie value exists, then the current visit time is written to

the hard cookie and repeatCustomer is set to false. These actions prepare the

visitor’s cookie value for the next visit.

Should a user already be a repeat customer, you have to evaluate whether this

visit is the user’s first visit since launching the browser. You do that by checking for

a value in the soft cookie. If that value doesn’t exist, then it means the user is here

for the first time “today.” You then grab the hard cookie and drop it into the soft

cookie before writing today’s visit to the hard cookie.

For repeat customers who have been here earlier in this session, you update the

lastVisit global variable from the cookie value. The variable value will have been

destroyed when the user left the page just a little while ago, whereas the soft cookie

remains intact, enabling you to update the variable value now.

Outside of the function definition, the script automatically executes the

initialize() function by that single statement. This function runs every time the

page loads.

The date comparison
Every interlaced script in the body of the document calls the newAsOf() func-

tion to find out if the author’s time stamp is after the last visit of the user to the

page. This function is where the time zone differences between visitor and author

must be neutralized so that a valid comparison can be made:

function newAsOf(authorDate) {
authorDate = new Date(authorDate)
var itemUpdated = authorDate.getTime()
return ((itemUpdated > lastVisit) && repeatCustomer) ?

“” : “”
}
// end hiding -->
</SCRIPT>
</HEAD>

As you saw earlier, calls to this function require one parameter: a specially for-

matted date string that includes time zone information. The first task in the func-

tion is to re-cast the author’s date string to a date object. You reuse the variable

name (authorDate) because its meaning is quite clear. The date object created

here is stored internally in the browser in GMT time, relative to the time zone data

supplied in the parameter. To assist in the comparison against the lastVisit time

(stored in milliseconds), the getTime() method converts authorDate to GMT

milliseconds.

The last statement of the function is a conditional expression that returns the

 tag definition for the “NEW 4U” image only if the author’s time stamp is later

than the soft cookie value and the visitor has been here before. Otherwise, the

(c) ketabton.com: The Digital Library

1373Chapter 54 ✦ Application: Intelligent “Updated” Flags

function returns an empty string. Any document.write() method that calls this

function and executes via this branch writes an empty string — nothing — to the

page.

A live <BODY>
For the sample document, I have you create a simple bulleted list of two entries,

imaginatively called “First item” and “Second item.” Interlaced into the HTML are

scripts that are ready to insert the “NEW 4U” image if the author time stamp is new

enough:

<BODY>

First item
<SCRIPT LANGUAGE=”JavaScript1.1”>
<!--
document.write(newAsOf(“20 Oct 2000 09:36:00 PDT”))
//-->
</SCRIPT>
Second item
<SCRIPT LANGUAGE=”JavaScript1.1”>
<!--
document.write(newAsOf(“18 Oct 2000 17:40:00 PDT”))
//-->
</SCRIPT>

</BODY>
</HTML>

All these script tags make the HTML a bit hard to read, but I believe the function-

ality is worth the effort. Moreover, by specifying the JavaScript 1.1 language

attribute, the scripts are completely ignored by older JavaScript-enabled browsers.

Only the now very rare, exceedingly brain-dead browsers, which get tripped up on

the SGML comment lines, would know that something out of the ordinary is taking

place.

Further Thoughts
You can, perhaps, go overboard with the way that you use this technique at a

Web site. Like most features in JavaScript, I recommend using it in moderation and

confining the flags to high-traffic areas that repeat visitors frequent. One hazard is

that you can run out of the 20 cookies if you have too many page-specific listings.

You can share the same cookie among documents in related frames. Locate all

the functions from the script in this chapter’s Head section into a Head section of a

framesetting document. Then, modify the call to the newAsOf() function by point-

ing it to the parent:

document.write(parent.newAsOf(“18 Oct 2000 17:40:00 PDT”))

That way, one cookie can take care of all documents that you display in that

frameset.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Application:
Decision Helper

The list of key concepts for this chapter’s application

looks like the grand finale to a fireworks show. As

JavaScript implementations go, the application is, in some

respects, over the top, yet not out of the question for present-

ing a practical interactive application on a Web site without

any server programming.

The Application
I wanted to implement a classic application (listed at the

right) often called a decision support system. My experience

with the math involved here goes back to the first days of

Microsoft Excel. Rather than design a program that had lim-

ited appeal (covering only one possible decision tree), I set

out to make a completely user-customizable decision helper.

All the user has to do is enter values into fields on a series of

screens; the program performs the calculations to let the user

know how the various choices rank against each other.

Although I won’t be delving too deeply into the math inside

this application, you will find it helpful to understand how a

user approaches this program and what the results look like.

The basic scenario is a user who is trying to evaluate how

well a selection of choices measure up to his or her expecta-

tions of performance. User input includes:

✦ The name of the decision

✦ The names of up to five alternatives (people, products,

ideas, and so on)

✦ The factors or features of concern to the user

✦ The importance of each of the factors to the user

✦ A user ranking of the performance of every alternative in

each factor

5555C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Multiple frames

Multiple-document
applications

Multiple windows

Persistent storage
(cookies)

Scripted image maps

Scripted charts

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1376 Part V ✦ Putting JavaScript to Work

What makes this kind of application useful is that it forces the user to rate and

weigh a number of often-conflicting factors. By assigning hard numbers to these ele-

ments, the user leaves the difficult process of figuring out the weights of various

factors to the computer.

Results come in the form of floating-point numbers between 0 and 100. As an

extra touch, I’ve added a graphical charting component to the results display.

The Design
With so much user input necessary for this application, conveying the illusion of

simplicity was important. Rather than lump all text objects on a single scrolling

page, I decided to break them into five pages, each consisting of its own HTML doc-

ument. As an added benefit, I could embed information from early screens into the

HTML of later screens, rather than having to create all changeable items out of text

objects so that the application would work with older browsers. This “good idea”

presented one opportunity and one rather large challenge.

The opportunity was to turn the interface for this application into something

resembling a multimedia application using multiple frames. The largest frame

would contain the forms the user fills out as well as the results page. Another frame

would contain a navigation panel with arrows for moving forward and backward

through the sequence of screens, plus buttons for going back to a home page and

getting information about the program. I also thought a good idea would be to add a

frame that provides instructions or suggestions for the users at each step. And so,

the three-frame window was born, as shown in the first entry screen in Figure 55-1.

Figure 55-1: The Decision Helper window consists of three frames.

(c) ketabton.com: The Digital Library

1377Chapter 55 ✦ Application: Decision Helper

Using a navigation bar also enables me to demonstrate how to script a client-side

image map — not an obvious task with JavaScript.

On the challenge side of this design, finding a way to maintain data globally as

the user navigates from screen to screen was necessary. Every time one of the

entry pages unloads, none of its text fields is available to a script. My first attack at

this problem was to store the data as global variable data (mostly arrays) in the

parent document that creates the frames. Because JavaScript enables you to refer-

ence any parent document’s object, function, or variable (by preceding the refer-

ence with parent), I thought this task would be a snap. A nasty bug in Navigator 2

(the prominent browser when this application was first developed) got in the way

at the time: If a document in any child window unloaded, the variables in the parent

window got jumbled. The other hazard here is that a reload of the frameset could

erase the current state of those variables.

My next hope was to use the document.cookie as the storage bin for the data. A

major problem I faced was that this program needs to store a total of 41 individual

data points, yet no more than 20 uniquely named cookies can be allotted to a given

domain. But the cookie proved to be the primary solution for this application

(although see the “Further Thoughts” section at the end of the chapter about a non-

cookie version on your CD-ROM). For some of the data points (which are related in

an array-like manner), I fashioned my own data structures so that one named cookie

could contain up to five related data points. That reduced my cookie demands to 17.

The Files
Before I get into the code, let me explain the file structure of this application.

Table 55-1 gives a rundown of the files used in the Decision Helper.

Table 55-1 Files Comprising the Decision Helper Application

File Description

index.htm Framesetting parent document

dhNav.htm Navigation bar document which contains some scripting

dhNav.gif Image displayed in dhNav.htm

dh1.htm First Decision Helper entry page

dh2.htm Second Decision Helper entry page

dh3.htm Third Decision Helper entry page

dh4.htm Fourth Decision Helper entry page

dh5.htm Results page

chart.gif Tiny image file used to create bar charts in dh5.htm

dhHelp.htm Sample data and instructions document for lower-right frame

dhAbout.htm Document that loads into a second window

(c) ketabton.com: The Digital Library

1378 Part V ✦ Putting JavaScript to Work

A great deal of interdependence exists among these files. As you see later, assign-

ing the names to some of these files was strategic for the implementation of the

image map.

The Code
With so many JavaScript-enhanced HTML documents in this application, you can

expect a great deal of code. To best grasp what’s going on here, first try to under-

stand the structure and interplay of the documents, especially the way the entry

pages rely on functions defined in the parent document. My goal in describing this

structure is not to teach you how to implement this application, but rather how to

apply the lessons I learned while building this application to the more complex

ideas that may be aching to get out of your head and into JavaScript.

index.htm
Taking a top-down journey through the JavaScript and HTML of the Decision

Helper, start at the document that loads the frames. Unlike a typical framesetting

document, however, this one contains JavaScript code in its Head section — code

that many other documents rely on.

<HTML>
<HEAD>
<TITLE>Decision Helper</TITLE>

An important consideration to remember is that in a multiple-frame environ-

ment, the title of the parent window’s document is the name that appears in the

window’s title bar, no matter how many other documents are open inside its sub-

frames.

The first items of the script control a global variable, currTitle, which is set by

a number of the subsidiary files as the user navigates through the application. This

variable ultimately helps the navigation bar buttons do their jobs correctly.

Because this application relies on the document.cookie so heavily, the cookie

management functions (slightly modified versions of Bill Dortch’s Cookie

Functions — Chapter 18) are located in the parent document so they load only

once. I simplified the cookie writing function because this application uses default

settings for pathname and expiration. With no expiration date, the cookies don’t

survive the current browser session, which is perfect for this application.

<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
// global variable settings of current dh document number
var currTitle = “”
function setTitleVar(titleVal) {

currTitle = “” + titleVal
}
function getCookieVal (offset) {

var endstr = mycookie.indexOf (“;”, offset)
if ((“” + endstr) == “” || endstr == -1)

endstr = mycookie.length
return unescape(mycookie.substring(offset, endstr))

}

(c) ketabton.com: The Digital Library

1379Chapter 55 ✦ Application: Decision Helper

function getCookie (name) {
var arg = name + “=”;
var alen = arg.length;
var clen = mycookie.length;
var i = 0;
while (i < clen) {

var j = i + alen;
if (mycookie.substring(i, j) == arg) {

return getCookieVal (j);
}
i = mycookie.indexOf(“ “, i) + 1;
if (i == 0) break;

}
return null;

}

var mycookie = document.cookie
function setCookie (name, value) {

mycookie = document.cookie = name + “=” + escape (value) + “;”
}

When this application loads (or a user elects to start a new decision), it’s impor-

tant to grab the cookies you need and initialize them to basic values that the entry

screens will use to fill entry fields when the user first visits them. All statements

inside the initializeCookies() function call the setCookie() function, defined

in the preceding listing. The parameters are the name of each cookie and the initial

value — mostly empty strings. Before going on, study the cookie labeling structure

carefully. I refer to it often in discussions of other documents in this application.

function initializeCookies() {
setCookie(“decName”,””)
setCookie(“alt0”,””)
setCookie(“alt1”,””)
setCookie(“alt2”,””)
setCookie(“alt3”,””)
setCookie(“alt4”,””)
setCookie(“factor0”,””)
setCookie(“factor1”,””)
setCookie(“factor2”,””)
setCookie(“factor3”,””)
setCookie(“factor4”,””)
setCookie(“import”,”0”)
setCookie(“perf0”,””)
setCookie(“perf1”,””)
setCookie(“perf2”,””)
setCookie(“perf3”,””)
setCookie(“perf4”,””)

}

The following functions should look familiar to you. They were borrowed either

wholesale or with minor modification from the data-entry validation section of the

(c) ketabton.com: The Digital Library

1380 Part V ✦ Putting JavaScript to Work

Social Security number database lookup in Chapter 50. I’m glad I wrote these as

generic functions, making them easy to incorporate into this script. Because many

of the entry fields on two screens must be integers between 1 and 100, I brought the

data validation functions to the parent document rather than duplicating them in

each of the subdocuments.

// JavaScript sees numbers with leading zeros as octal values, so
// strip zeros
function stripZeros(inputStr) {

return (parseFloat(inputStr, 10)).toString()
}

// general purpose function to see if a suspected numeric input
// is a positive integer
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = charAt(i)
if (oneChar < “0” || oneChar > “9”) {

return false
}

}
return true

}

// function to determine if value is in acceptable range for this
// application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || num > 100) {

return false
}
return true

}

To control the individual data-entry validation functions in the master controller,

I again was able to borrow heavily from the application in Chapter 50.

// Master value validator routine
function isValid(inputStr) {

if (inputStr != “”) {
inputStr = stripZeros(inputStr)
if (!isNumber(inputStr)) {

alert(“Please make sure entries are numbers only.”)
return false

} else {
if (!inRange(inputStr)) {

alert(“Entries must be numbers between 1 and 100. Try another
value.”)

return false
}

}
}
return true

}

(c) ketabton.com: The Digital Library

1381Chapter 55 ✦ Application: Decision Helper

Each of the documents containing entry forms retrieves and stores information

in the cookie. Because all cookie functions are located in the parent document, it

simplifies coding in the subordinate documents to have functions in the parent doc-

ument acting as interfaces to the primary cookie functions. For each category of

data stored as cookies, the parent document has a pair of functions for getting and

setting data. The calling statements pass only the data to be stored when saving

information; the interface functions handle the rest, such as storing or retrieving

the cookie with the correct name.

In the following pair of functions, the decision name (from the first entry docu-

ment) is passed back and forth between the cookie and the calling statements. Not

only must the script store the data, but if the user returns to that screen later for

any reason, the entry field must retrieve the previously entered data.

function setDecisionName(str) {
setCookie(“decName”,str)

}
function getDecisionName() {

return getCookie(“decName”)
}

The balance of the storage and retrieval pairs does the same thing for their

specific cookies. Some cookies are named according to index values (factor1,

factor2, and so on), so their cookie-accessing functions require parameters for

determining which of the cookies to access, based on the request from the calling

statement. Many of the cookie retrieval functions are called to fill in data in tables

of later screens during the user’s trip down the decision path.

// values for alternatives
function setAlternative(i,str) {

setCookie(“alt” + i,str)
}
function getAlternative(i) {

return getCookie(“alt” + i)
}

// values for decision factors
function setFactor(i,str) {

setCookie(“factor” + i,str)
}
function getFactor(i) {

return getCookie(“factor” + i)
}

// values for importance (decision factor weights)
function setImportance(str) {

setCookie(“import”,str)
}
function getImportance(i) {

return getCookie(“import”)
}

(c) ketabton.com: The Digital Library

1382 Part V ✦ Putting JavaScript to Work

// values for performance ratings
function setPerformance(i,str) {

setCookie(“perf” + i,str)
}
function getPerformance(i) {

return getCookie(“perf” + i)
}

One sequence of code that runs when the parent document loads is the one

that looks to see if a cookie structure is set up. If no such structure is set up (the

retrieval of a designated cookie returns a null value), the script initializes all

cookies via the function described earlier.

if (getDecisionName() == null) {
initializeCookies()

}
// end -->
</SCRIPT>
</HEAD>

The balance of the parent document source code defines the frameset for the

browser window. It establishes some hard-wired pixel sizes for the navigation panel.

This ensures that the entire .gif file is visible whenever the frameset loads, with-

out a ton of unwanted white space if the browser window is large.

<FRAMESET ROWS=”250,*”>
<FRAMESET COLS=”104,*”>

<FRAME NAME=”navBar” SRC=”dhNav.htm” SCROLLING=no
MARGINHEIGHT=2 MARGINWIDTH=1>
<FRAME NAME=”entryForms” SRC=”dh1.htm”>

</FRAMESET>
<FRAMESET ROWS=”100%”>

<FRAME NAME=”instructions” SRC=”dhHelp.htm”>
</FRAMESET>

</FRAMESET>
</HTML>

I learned an important lesson about scripting framesets along the way. Older

browsers, especially NN through Version 4, do not respond to changes in frameset-

ting size attributes through a simple reload of the page. I found it necessary to

reopen the frameset file from time to time. I also found it necessary to sometimes

quit early Navigators altogether and relaunch it to make some changes visible.

Therefore, if you seem to be making changes, but reloading the frameset doesn’t

make the changes appear, try reopening or — as a last resort — quitting the

browser.

dhNav.htm
Because of its crucial role in controlling the activity around this program, look

into the navigation bar’s document next. To accomplish the look and feel of a multi-

media program, this document was designed as a client-side image map that has

four regions scripted corresponding to the locations of the four buttons (see Figure

55-1). One function is connected to each button.

(c) ketabton.com: The Digital Library

1383Chapter 55 ✦ Application: Decision Helper

The first function is linked to the graphical Home button. For the listing here, I

just present an alert dialog box replicating the action of navigating back to a real

Web site’s home page.

<HTML>
<HEAD>
<TITLE>Navigation Bar</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
function goHome() {

alert(“Navigate back to home page on a real site.”)
}

Each of the arrow navigation buttons brings the user to the next or previous

entry screen in the sequence. To facilitate this without building tables of document

titles and names, you call upon the currTitle global variable in the parent docu-

ment. This value contains an integer in the range between 1 and 5, corresponding to

the main content documents, dh1.htm, dh2.htm, and so on. As long as the offset

number is no higher than the next-to-last document in the sequence, the goNext()
function increments the index value by one and concatenates a new location for the

frame. At the same time, the script advances the help document (in the bottom

frame) to the anchor corresponding to the chosen entry screen by setting the

location.hash property of that frame. Similar action navigates to the previous

screen of the sequence through the goPrev() function. This time, the index value

is decremented by one, and an alert warns the user if the current page is already

the first in the sequence.

function goNext() {
var currOffset = parseInt(parent.currTitle)
if (currOffset <= 4) {

++currOffset
parent.entryForms.location.href = “dh” + currOffset + “.htm”
parent.instructions.location.hash = “help” + currOffset

} else {
alert(“This is the last form.”)

}
}
function goPrev() {

var currOffset = parseInt(parent.currTitle)
if (currOffset > 1) {

--currOffset
parent.entryForms.location.href = “dh” + currOffset + “.htm”
parent.instructions.location.hash = “help” + currOffset

} else {
alert(“This is the first form.”)

}
}

Clicking the Info button displays a smaller window containing typical About-box

data for the program (see Figure 55-2).

function goInfo() {
var newWindow =

(c) ketabton.com: The Digital Library

1384 Part V ✦ Putting JavaScript to Work

window.open(“dhAbout.htm”,””,”HEIGHT=250,WIDTH=300”)
}
// end -->
</SCRIPT>
</HEAD>

The Body of the navigation document contains the part that enables you to

script a client-side image map. Mouse click events weren’t available to AREA ele-

ments until Version 4 browsers, so to let these image maps work with older ver-

sions, mouse action is converted to script action by assigning a javascript:
pseudo-URL to the HREF attribute for each AREA element. Instead of pointing to an

entirely new URL (as AREA elements usually work), the attributes point to the

JavaScript functions defined in the Head portion of this document. After a user

clicks the rectangle specified by an <AREA> tag, the browser invokes the function

instead.

Figure 55-2: The About Decision Helper screen appears in a separate window.

<BODY>
<MAP NAME=”navigation”>
<AREA SHAPE=”RECT” COORDS=”23,22,70,67” HREF=”javascript:goHome()”>
<AREA SHAPE=”RECT” COORDS=”25,80,66,116” HREF=”javascript:goNext()”>
<AREA SHAPE=”RECT” COORDS=”24,125,67,161” HREF=”javascript:goPrev()”>
<AREA SHAPE=”RECT” COORDS=”35,171,61,211” HREF=”javascript:goInfo()”>
</MAP>
<IMG SRC=”dhNav.gif” BORDER HEIGHT=240 WIDTH=96 ALIGN=”left”
USEMAP=”#navigation”>
</BODY>
</HTML>

Although not shown here, you can assign onMouseOver event handlers to each

AREA element for NN3+ and IE4+ to display a friendly message about the action of

each button.

dh1.htm
Of the five documents that display in the main frame, dh1.htm is the simplest

(refer to Figure 55-1). It contains a single entry field in which the user is invited to

enter the name for the decision.

(c) ketabton.com: The Digital Library

1385Chapter 55 ✦ Application: Decision Helper

Only one function adorns the Head. This function summons one of the cookie

interface functions in the parent window. A test is located here in case there is a

problem with initializing the cookies. Rather than show null in the field, the condi-

tional expression substitutes an empty string.

<HTML>
<HEAD>
<TITLE>DH1</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
function loadDecisionName() {

var result = parent.getDecisionName()
result = (result == null) ? “” : result
document.forms[0].decName.value = result

}
// end -->
</SCRIPT>
</HEAD>

After the document loads, it performs three tasks (in the onLoad event handler).

The first task is to set the global variable in the parent to let it know which number

of the five main documents is currently loaded. Next, the script must fill the field

with the decision name stored in the cookie. This task is important because users

will want to come back to this screen to review what they entered previously. A

third statement in the onLoad event handler sets the focus of the entire browser

window to the one text object. This task is especially important in a multi-frame

environment, such as this design. After a user clicks on the navigation panel, that

frame has the focus. To begin typing into the field, the user has to tab (repeatedly)

or click the text box to give the text box focus for typing. By setting the focus in the

script when the document loads, you save the user time and aggravation.

<BODY onLoad=”parent.setTitleVar(1);loadDecisionName();
document.forms[0].decName.focus()”>
<H2>The Decision Helper</H2>
<HR>
<H4>Step 1 of 5: Type the name of the decision you’re making. Then click the
“Next” arrow.</H4>

In the text field itself, an onChange event handler saves the value of the field in

the parent’s cookie for the decision name. No special Save button or other instruc-

tion is necessary here because any navigation that the user does via the navigation

bar automatically causes the text field to lose focus and triggers the onChange
event handler.

<CENTER>
<FORM>
Decision Name:
<INPUT TYPE=”text” NAME=”decName” SIZE=”40”
onChange=”parent.setDecisionName(this.value)”>
</FORM>
</CENTER>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1386 Part V ✦ Putting JavaScript to Work

The copy of this file on the CD-ROM also has code that allows for plugging in

sample data (as seen on my Web site) and a (commented out) textarea object that

you can use for debugging cookie data.

dh2.htm
For the second data-entry screen (shown in Figure 55-3), five fields invite the

user to enter descriptions of the alternatives under consideration. As with the deci-

sion name screen, the scripting for this page must both retrieve and save data dis-

played or entered in the fields.

Figure 55-3: The second data-entry screen

In one function, the script retrieves the alternative cookies (five total) and stuffs

them into their respective text fields (as long as their values are not null). This

function script uses a for loop to cycle through all five items — a common process

throughout this application. Whenever a cookie is one of a set of five, the parent

function has been written (in the following example) to store or extract a single

cookie, based on the index value. Text objects holding like data (defined in the fol-

lowing listing) are all assigned the same name, so that JavaScript lets you treat

them as array objects — greatly simplifying the placement of values into those

fields inside a for loop.

<HTML>
<HEAD>
<TITLE>DH2</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

(c) ketabton.com: The Digital Library

1387Chapter 55 ✦ Application: Decision Helper

<!-- start
function loadAlternatives() {

for (var i = 0; i < 5; i++) {
var result = parent.getAlternative(i)

result = (result == null) ? “” : result
document.forms[0].alternative[i].value = result

}
}
// end -->
</SCRIPT>
</HEAD>

After the document loads, the document number is sent to the parent’s global

variable, its fields are filled by the function defined in the Head, and the first field is

handed the focus to assist the user in entering data the first time.

<BODY onLoad=”parent.setTitleVar(2);loadAlternatives();
document.forms[0].alternative[0].focus()”>
<H2>The Decision Helper</H2>
<HR>
<H4>Step 2 of 5: Type up to five alternatives you are considering.</H4>

Any change that a user makes to a field is stored in the corresponding cookie.

Each onChange event handler passes its indexed value (relative to all like-named

fields) plus the value entered by the user as parameters to the parent’s cookie-

saving function.

<CENTER>
<FORM>
Alternative 1:
<INPUT TYPE=”text” NAME=”alternative” SIZE=”25”
onChange=”parent.setAlternative(0,this.value)”>

Alternative 2:
<INPUT TYPE=”text” NAME=”alternative” SIZE=”25”
onChange=”parent.setAlternative(1,this.value)”>

Alternative 3:
<INPUT TYPE=”text” NAME=”alternative” SIZE=”25”
onChange=”parent.setAlternative(2,this.value)”>

Alternative 4:
<INPUT TYPE=”text” NAME=”alternative” SIZE=”25”
onChange=”parent.setAlternative(3,this.value)”>

Alternative 5:
<INPUT TYPE=”text” NAME=”alternative” SIZE=”25”
onChange=”parent.setAlternative(4,this.value)”>

</BODY>
</HTML>

dh3.htm
With the third screen, the complexity increases a bit. Two factors contribute to

this increase in difficulty. One is that the limitation on the number of cookies avail-

able for a single domain forces you to join into one cookie the data that might

normally be distributed among five cookies. Second, with the number of text

(c) ketabton.com: The Digital Library

1388 Part V ✦ Putting JavaScript to Work

objects on the page (see Figure 55-4), it becomes more efficient (from the stand-

point of tedious HTML writing) to let JavaScript deploy the fields. The fact that two

sets of five related fields exist facilitates using for loops to lay out and populate

them.

One initial function here is reminiscent of Head functions in previous entry

screens. This function retrieves a single factor cookie from the set of five cookies.

<HTML>
<HEAD>
<TITLE>DH3</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
function getdh3Factor (i) {

var result = parent.getFactor(i)
if (result == null) {

return “”
}
return result

}

Figure 55-4: Screen for entering decision factors and their weights

Values for the five possible weight entries are stored together in a single cookie.

To make this work, I had to determine a data structure for the five “fields” of a sin-

gle cookie “record.” Because all entries are integers, I can choose any nonnumeric

character. I arbitrarily selected the period.

(c) ketabton.com: The Digital Library

1389Chapter 55 ✦ Application: Decision Helper

function setdh3Importance () {
var oneRecord = “”
for (var i = 0; i < 5; i++) {

var dataPoint = document.forms[0].importance[i].value
if (!parent.isValid(dataPoint)) {

document.forms[0].importance[i].focus()
document.forms[0].importance[i].select()
return

}
oneRecord += dataPoint + “.”

}
parent.setImportance(oneRecord)
return

}

The purpose of the setdh3Importance() function is to assemble all five values

from the five Weight entry fields (named “importance”) into a period-delimited

record that is ultimately sent to the cookie for safekeeping. Another of the many

for loops in this application cycles through each of the fields, checking for validity

and then appending the value with its trailing period to the variable (oneRecord)

that holds the accumulated data. As soon as the loop finishes, the entire record is

sent to the parent function for storage.

Although the function shows two return statements, the calling statement does

not truly expect any values to be returned. Instead, I use the return statement

inside the for loop as a way to break out of the for loop without any further execu-

tion whenever an invalid entry is found. Just prior to that, the script sets the focus

and select to the field containing the invalid entry. JavaScript, however, is sensitive

to the fact that a function with a return statement in one possible outcome doesn’t

have a return statement for other outcomes (an error message to this effect

appears in some browsers if you try the function without balanced returns). By

putting a return statement at the end of the function, all other possibilities are

covered to the browser’s satisfaction.

The inverse of storing the weight entries is retrieving them. Because the par-
ent.getImportance() function returns the entire period-delimited record, this

function must break apart the pieces and distribute them into their corresponding

Weight fields. A combination of string methods determines the offset of the period

and how far the data extraction should go into the complete record. Before the for
loop repeats each time, it is shortened by one “field’s” data. In other words, as the

for loop executes, the copy of the cookie data returned to this function is pared

down one entry at a time as each entry is stuffed into its text object for display.

function getdh3Importance () {
var oneRecord = parent.getImportance()
if (oneRecord != null) {

for (var i = 0; i < 5; i++) {
var recLen = oneRecord.length
var offset = oneRecord.indexOf(“.”)
var dataPoint = (offset >= 0) ?

oneRecord.substring(0,offset) : “”
document.forms[0].importance[i].value = dataPoint
oneRecord = oneRecord.substring(offset+1,recLen)

(c) ketabton.com: The Digital Library

1390 Part V ✦ Putting JavaScript to Work

}
}

}

// end -->
</SCRIPT>
</HEAD>

Upon loading the document, the only tasks that the onLoad event handler need

to do are to update the parent global variable about the document number and to

set the focus to the first entry field of the form.

<BODY onLoad=” parent.setTitleVar(3);document.forms[0].factor[0].focus()”>
<H2>The Decision Helper</H2>
<HR>
<H4>Step 3 of 5: List the factors that will influence your decision,
and assign a weight (from 1 to 100) to signify the importance of each factor in
your decision.</H4>

Assembling the HTML for the form and its ten data-entry fields needs only a few

lines of JavaScript code. Performed inside a for loop, the script assembles each

line of the form, which consists of a label for the Factor (and its number), the factor

input field, the importance input field, and the label for the Weight (and its num-

ber). A document.write() method writes each line to the document.

<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
var output = “<CENTER><FORM>”
for (i = 0; i < 5; i++) {

output += “Factor “ + (i+1) +
“--><INPUT TYPE=’text’ NAME=’factor’ SIZE=’25’ “

var eHandler = “ onChange=\’parent.setFactor(“ + i + “,this.value)\’”
output += eHandler + “VALUE=” + getdh3Factor (i) + “>”

output += “<INPUT TYPE=’text’ NAME=’importance’ SIZE=’3’ “
var eHandler = “ onChange=\ setdh3Importance ()\’”
output += eHandler + “VALUE=’’>”
output += “<--Weight “ + (i+1) + “
”
document.write(output)
output = “”

}
document.write(“</FORM></CENTER>”)
getdh3Importance ()
// end -->
</SCRIPT>
</BODY>
</HTML>

Each of the scripted text objects has an event handler. Notice that each event

handler is first defined as a variable on a statement line just above its insertion into

the string being assembled for the INPUT object definition. One reason for this fact

is that the nested quote situation gets quite complex when you are doing these

tasks all in one massive assignment statement. Rather than mess with matching

(c) ketabton.com: The Digital Library

1391Chapter 55 ✦ Application: Decision Helper

several pairs of deeply nested quotes, I found it easier to break out one portion (the

event handler definition) as a variable value and then insert that preformatted

expression into the concatenated string for the INPUT definition.

Notice, too, how the different ways of storing the data in the cookies influence

the ways the existing cookie data is filled into the fields as the page draws itself. For

the factors, which have one cookie per factor, the VALUE attribute of the field is set

with a specific indexed call to the parent factor cookie retriever, one at a time. But

for the importance values, which are stored together in the period-delimited chunk,

a separate function call (getdh3Importance()) executes after the fields are

already drawn (with initial values of empty strings) and fills all the fields in a batch

operation.

dh4.htm
Step 4 of the decision process (shown in Figure 55-5) is the most complex step

because of the sheer number of entry fields: 25 in all. Notice that this screen

retrieves data from two of the previous screens (or rather from the cookies preserv-

ing the entries) and embeds the values into the fixed parts of the table. All these

tasks are possible when you create those tables with JavaScript.

Figure 55-5: A massive table includes label data from earlier screen entries.

Functions for getting and setting performance data are complex because of the

way I was forced to combine data into five “field” records. In other words, one par-

ent cookie exists for each row of data cells in the table. To extract cell data for

storage in the cookie, I use nested for loop constructions. The outer loop counts

(c) ketabton.com: The Digital Library

1392 Part V ✦ Putting JavaScript to Work

the rows of the table, whereas the inner loop (with the j counter variable) works its

way across the columns for each row.

Because all cells are named identically, they are indexed with values from 0 to 24.

Calculating the row (i * 5) plus the column number establishes the cell index

value. After you check for validity, each cell’s value is added to the row’s accumu-

lated data. Each row is then saved to its corresponding cookie. As in the code for

dh3.htm, the return statement is used as a way to break out of the function if an

entry is deemed invalid.

Retrieving the data and populating the cells for the entire table requires an exam-

ination of each of the five performance cookies, and for each labeled cookie’s data,

a parsing for each period-delimited entry. After a given data point is in hand (one

entry for a cell), it must go into the cell with the proper index.

<HTML>
<HEAD>
<TITLE>DH4</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
function getdh4Performance () {

var oneRecord = “”
for (var i = 0; i < 5; i++) {

oneRecord = parent.getPerformance(i)
if (oneRecord == null) {

continue
}
for (var j = 0; j < 5; j++) {

var recLen = oneRecord.length
var offset = oneRecord.indexOf(“.”)
var dataPoint = oneRecord.substring(0,offset)
var cellNum = j + (i * 5)
document.forms[0].ranking[cellNum].value = dataPoint
oneRecord = oneRecord.substring(offset+1,recLen)

}
}

}
// end -->
</SCRIPT>
</HEAD>
function setdh4Performance () {

for (var i = 0; i < 5; i++) {
var oneRecord = “”
for (var j = 0; j < 5; j++) {

var cellNum = j + (i * 5)
var dataPoint = document.forms[0].ranking[cellNum].value
if (!parent.isValid(dataPoint)) {

document.forms[0].ranking[cellNum].focus()
document.forms[0].ranking[cellNum].select()
return

}
oneRecord += dataPoint + “.”

}
parent.setPerformance(i,oneRecord)

}
return

}

(c) ketabton.com: The Digital Library

1393Chapter 55 ✦ Application: Decision Helper

After the document is loaded, the onLoad event handler sends the document

number to the parent global variable and brings focus to the first field of the table.

<BODY
onLoad=” parent.setTitleVar(4);document.forms[0].ranking[0].focus()”>
<H2>The Decision Helper</H2>
<HR>
<H4>Step 4: On a scale of 1 to 100, rank each alternative’s
performance in each factor.</H4>
<P><P>

To lessen the repetitive HTML for all tables, JavaScript again assembles and

writes the HTML that defines the tables. In the first batch, the script uses yet

another for loop to retrieve the factor entries from the parent cookie so that the

words can be embedded into <TH> tags of the first row of the table. If every factor

field is not filled in, the table cell is set to empty.

<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
var output = “<CENTER><FORM NAME=’perfRankings’><TABLE BORDER>”
output += “<TR><TD></TD><TD>”
for (var i = 0; i < 5; i++) {

var oneFactor = parent.getFactor(i)
oneFactor = (oneFactor == null) ? “” : oneFactor
output += “<TH>” + oneFactor + “</TH>”

}
output += “</TD>”

Next comes the assembly of subsequent rows of the table. The first column dis-

plays the name of each alternative (within <TH> tags). The remaining columns are

text boxes, all with the same name and event handler. As each row of table defini-

tion is completed, it is written to the document. After the table and form closing

tags are also written, the getdh4Performance() function retrieves all cookie data

for the fields and distributes it accordingly.

for (var i = 0; i < 5; i++) {
var oneAlt = parent.getAlternative(i)
oneAlt = (oneAlt == null) ? “” : oneAlt
output += “<TR><TD><TH>” + oneAlt + “</TH>”
for (var j = 0; j < 5; j++) {

output += “<TD ALIGN=CENTER><INPUT TYPE=’text’ SIZE=3 “ +
“NAME=’ranking’ VALUE=’’ onChange=’setPerformance()’></TD>”

}
output += “</TR>”
document.write(output)
output = “”

}
document.write(“</TABLE></FORM></CENTER>”)
getdh4Performance ()
// end -->
</SCRIPT>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1394 Part V ✦ Putting JavaScript to Work

dh5.htm
From a math standpoint, dh5.htm’s JavaScript gets pretty complicated. But

because the complexity is attributed to the decision support calculations that turn

the user’s entries into results, I treat the calculation script shown here as a black

box. You’re free to examine the details, if you’re so inclined.

Results appear in the form of a table (see Figure 55-6) with columns showing the

numeric results and an optional graphical chart.

Figure 55-6: The results screen for a decision

For the purposes of this example, you only need to know a couple of things

about the calculate() function. First, this function calls all the numeric data

stored in parent cookies to fulfill values in its formulas. Second, results are tabu-

lated and placed into a five-entry indexed array called itemTotal[i]. This array is

defined as a global variable, so that its contents are available to scripts coming up

in the Body portion of the document.

<HTML>
<HEAD>
<TITLE>DH5</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
<!-- start
var itemTotal = new Array()
function calculate() {

var scratchpad = “”
var importanceSum = 0

(c) ketabton.com: The Digital Library

1395Chapter 55 ✦ Application: Decision Helper

var oneRecord = parent.getImportance()
var weight = new Array()
for (var i = 0; i < 5; i++) {

var recLen = oneRecord.length
var offset = oneRecord.indexOf(“.”)
scratchpad = oneRecord.substring(0,offset)
importanceSum += (scratchpad == “” || scratchpad == “NaN”) ?

0 : parseInt(scratchpad)
oneRecord = oneRecord.substring(offset+1,recLen)

}
oneRecord = parent.getImportance()
for (var i = 0; i < 5; i++) {

recLen = oneRecord.length
offset = oneRecord.indexOf(“.”)
scratchpad = oneRecord.substring(0,offset)
weight[i] = (scratchpad == “” && scratchpad == “NaN”) ?

0 : parseInt(scratchpad)/importanceSum * 100
oneRecord = oneRecord.substring(offset+1,recLen)

}
for (var i = 0; i < 5; i++) {

oneRecord = parent.getPerformance(i)
if (oneRecord == null) {

continue
}
scratchpad = 0
for (var j = 0; j < 5; j++) {

var recLen = oneRecord.length
var offset = oneRecord.indexOf(“.”)
var dataPoint = oneRecord.substring(0,offset)
scratchpad += (dataPoint != “” || dataPoint == “NaN”) ?

parseInt(dataPoint) * weight[j] / 100 : 0
oneRecord = oneRecord.substring(offset+1,recLen)

}
itemTotal[i] = scratchpad

}
}
calculate()
// end -->
</SCRIPT>
</HEAD>

Constructing this function served up many reminders about keeping data types

straight. Because the data stored in cookies was in the form of strings, when it

comes time to do some real math with those values, careful placement of the

parseInt() function is essential for getting the math operators to work.

An onLoad event handler sends the document number to the global variable, as

usual. The results display in this document relies heavily on stored and calculated

values, so the table is constructed entirely out of JavaScript. That also means it can

redisplay the decision name as part of the page.

<BODY onLoad=”parent.setTitleVar(5)”>
<H2>The Decision Helper</H2>
<HR>

(c) ketabton.com: The Digital Library

1396 Part V ✦ Putting JavaScript to Work

<SCRIPT LANGUAGE=”JavaScript”>
<!-- start
document.write(“<H4>” + parent.getDecisionName() + “</H4><P><P>”)
var output = “<CENTER><FORM NAME=’Results’><TABLE BORDER>”
output += “<TR><TD></TD><TD><TH>Results</TH><TH>Ranking</TH>”
output += “</TD>”

I need to break up the discussion of the for loop that produces the results

because there are two distinct parts of this HTML assembly. The first, shown in the

following script segment, assembles the first two cells of each row of the table. The

first cell contains an embedded listing of the alternative name (in <TH> tags). To

highlight the calculated values — and enable the SIZE attribute to do the artificial

job of truncating the floating-point number — the results are shown in text boxes.

For each row, the corresponding result in itemTotal[i] is inserted as the VALUE
attribute of the text box. The SIZE attribute is set to 7, which allows the typical

double-digit results, a decimal point, and four digits to the right of the decimal (an

extra pixel shows on the Macintosh version, however).

for (var i = 0; i < 5; i++) {
var oneAlt = parent.getAlternative(i)
oneAlt = (oneAlt == null) ? “” : oneAlt
itemTotal[i] = (oneAlt == “”) ? 0 : itemTotal[i]
output += “<TR><TD><TH>” + oneAlt + “</TH>”
output += “<TD ALIGN=CENTER><INPUT TYPE=’text’ SIZE=7 “ +

“NAME=’ranking’ VALUE=” + itemTotal[i] + “></TD>”

For extra pizzazz, a third column “draws” a bar chart within a 100-pixel-wide cell.

The bars are actually scalings of a one-pixel-wide .gif file (an orange line, 12 pixels

tall). A single-color .gif image scales to fill whatever width is assigned in the

WIDTH attribute. This method is faster and far better than a more tedious method

(tedious from the Web page author’s point of view) of creating 100 different .gif
files, one for each possible width of the bar. I also could have used a one-pixel

square .gif file with equal ease.

output += “<TD WIDTH=100>”
chartWidth = Math.round(itemTotal[i])
if (chartWidth > 0) {

output += “<IMG SRC=’chart.gif’ HEIGHT=12 WIDTH=” +
chartWidth + “>”

}
output += “</TD></TR>”
document.write(output)
output = “”

}
document.write(“</TABLE></FORM></CENTER>”)
// end -->
</SCRIPT>
</BODY>
</HTML>

dhHelp.htm
The only other code worth noting in this application is in the dhHelp.htm

document, which appears in the lower-right frame of the window. At the end of this

(c) ketabton.com: The Digital Library

1397Chapter 55 ✦ Application: Decision Helper

document are two links that call separate JavaScript functions in this document’s

Head section. The Head functions are as follows:

<HEAD>
<TITLE>Decision Helper Help</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function goFirst() {

parent.entryForms.location = “dh1.htm”
self.location.hash = “help1”

}
function restart() {

if (confirm(“Erase current decision and start a new one?”)) {
parent.initializeCookies()
parent.entryForms.location = “dh1.htm”
self.location.hash = “help1”

}
}

// -->
</SCRIPT>
</HEAD>

One function merely returns the user to the beginning of the sequences for both

the entry screens and the help screen. The second function is a rare instance in

which a confirm dialog box makes sense: It is about to erase all entered data. If the

user says it’s okay to go ahead, the parent window’s function for initializing all

cookies is called, and the navigation for both the entry and help screens goes back

to the beginning.

The links at the bottom of the document (see Figure 55-6) are coded to trigger

JavaScript functions (rather than navigate to URLs) and include onMouseOver
event handlers to provide more information about the link in the statusbar:

<A HREF=”javascript:goFirst()” onMouseOver=”window.status=’Go back
to beginning to review data...’;return true””>Review This Decision
||<A HREF=”javascript:restart()”
onMouseOver=”window.status=’Erase current data and start over...’;return true”>
Start a New Decision...

Further Thoughts
If you’ve managed to follow through with this application’s discussions, you will

agree that it’s quite a JavaScript workout. But this application proves that, without

a ton of code, JavaScript provides enough functionality to add a great deal of inter-

activity and pseudo-intelligence to an otherwise flat HTML document.

As an alternative to using cookies for data storage, I have also implemented a

version of the application that uses text boxes defined in a frame defined with a row

height of 0. This technique further challenges the synchronization of frames during

reloading when a user resizes the browser window or navigates with the Back or

Forward browser buttons. This alternate version is located on the CD-ROM for your

own investigation and comparison.

(c) ketabton.com: The Digital Library

1398 Part V ✦ Putting JavaScript to Work

Dynamic HTML also offers some possibilities for this application. The entire pro-

gram can be presented in a no-frame window, with the navigation, interactive con-

tent, and instructions frames incorporated into individual positionable objects. The

interactive content area can be treated almost like a slide show, with successive

pages flying in from one edge.

Not only is this application instructive for many JavaScript techniques, but it is

also fun to play with as a user. Some financial Web sites have adapted it to assist

visitors with investment decisions. You can use it to dream about where to go on a

dream vacation, or help you decide the most ethical of a few paths confronting you

in a personal dilemma. There’s something about putting in data, turning a crank,

and watching results (with a bar chart to boot!) magically appear on the screen.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Application:
Cross-Browser
DHTML Map
Puzzle

Dynamic HTML allows scripts to position, overlap, and

hide or show elements under the control of style sheets

and scripting. To demonstrate modern cross-browser DHTML

development techniques, this chapter describes the details of

a jigsaw puzzle game using pieces of a map of the “lower 48”

United States (I think everyone would guess where Alaska and

Hawaii go on a larger map of North America). I chose this

application because it allows me to demonstrate several typi-

cal tasks you might want to script in DHTML: hiding and

showing elements; handling events for multiple elements;

tracking the position of an element with the mouse cursor;

absolute positioning of elements; changing the z-order of ele-

ments; changing element colors; and animating movement of

elements.

As with virtually any programming task, the example code

here is not laid out as the quintessential way to accomplish a

particular task. Each author brings his or her own scripting

style, experience, and implementation ideas to a design. Very

often, you have available several ways to accomplish the

same end. If you find other strategies or tactics for the opera-

tions performed in these examples, it means you are gaining a

good grasp of both JavaScript and Dynamic HTML.

The Puzzle Design
Figure 56-1 shows the finished map puzzle with the game in

progress. To keep the code to a reasonable length, the exam-

ple provides positionable state maps for only seven western

states. Also, the overall design is intentionally Spartan so as

to place more emphasis on the positionable elements and

their scripting, rather than on fancy design.

5656C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Applying a DHTML
API

Scripting, dragging,
and layering of
multiple elements

Event handling for
three DOMs at once

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1400 Part V ✦ Putting JavaScript to Work

Figure 56-1: The map puzzle game DHTML example (Images courtesy Map Resources —
www.mapresources.com)

When the page initially loads, all the state maps are presented across the top of

the puzzle area. The state labels all have a red background, and the silhouette of

the continental United States has no features in it. To the right of the title is a ques-

tion mark icon. A click of this icon causes a panel of instructions to glide to the cen-

ter of the screen from the right edge of the browser window. That panel has a

button that hides the panel.

To play the game (no scoring or time keeping is in this simplified version), a user

clicks and drags a state with the goal of moving it into its rightful position on the sil-

houette. While the user drags the state, its label background to the right of the main

map turns yellow to highlight the name of the state being worked on. To release the

state in its trial position, the user releases the mouse button. If the state is within a

four-pixel square region around its true location, the state snaps into its correct

position and the corresponding label background color turns green. If the state is

not dropped close enough to its destination, the label background reverts to red,

meaning that the state still needs to be placed.

After the last state map is dropped into its proper place, all the label back-

grounds will be green, and a congratulatory message is displayed where the state

map pieces originally lay. Should a user then pick up a state and drop it out of posi-

tion, the congratulatory message disappears.

I had hoped that all versions of the application would look the same on all plat-

forms. They do, with one small exception. Because the labels are generated as posi-

tioned DIV elements for all browsers, NN4 (especially on the Windows version)

(c) ketabton.com: The Digital Library

1401Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

doesn’t do as good a rendering job as other browsers. If I were to use genuine

LAYER elements for the labels just for NN4, they’d look better. And, while the code

could use scripts to generate LAYERs for NN4 and DIVs for others, the choice here

was to stay with DIV elements alone. If you try this game on NN4 and other DHTML

browsers, you will see minor differences in the way the labels are colored (red, yel-

low, and green) during game play. All other rendering and behavior is identical

(although a rendering bug in NN6 is discussed later).

Implementation Details
Due to the number of different scripted properties being changed in this applica-

tion, I decided to implement a lot of the cross-platform scripting as a custom API

loaded from an external .js file library. The library, whose code is dissected and

explained in Chapter 47, contains functions for most of the scriptable items you can

access in DHTML. Having these functions available simplified what would have

been more complex functions in the main part of the application.

Although I frown on using global variables except where absolutely necessary, I

needed to assign a few globals for this application. All of them store information

about the state map currently picked up by the user and the associated label. This

information needs to survive the invocations of many functions between the time

the state is picked up until it is dropped and checked against the “database” of

state data.

That database is another global object — a global that I don’t mind using at all.

Constructed as a multidimensional array, each “record” in the database stores sev-

eral fields about the state, including its destination coordinates inside the outline

map and a Boolean field to store whether the state has been correctly placed in

position.

Out of necessity for NN4, the state map images are encased in individual DIV ele-

ments. This makes their positionable characteristics more stable, as well as making

it possible to capture mouse events that NN4’s image objects do not recognize. If the

application were being done only for IE4+ and W3C DOMs, the images themselves

could be positionable, and the DHTML API could be used without modification.

The custom API
To begin the analysis of the code, you should be familiar with the API that is

linked in from an external .js library file. Listing 47-2 contains that code and its

description.

The main program
Code for the main program is shown in Listing 56-1. The listing is a long docu-

ment, so I interlace commentary throughout the listing. Before diving into the code,

however, allow me to present a preview of the structure of the document. With two

exceptions (the map silhouette and the help panel), all positionable elements have

their styles set via style sheets in the HEAD of the document. Notice the way class

and id selectors are used to minimize the repetitive nature of the styles across so

many similar items. After the style sheets come the scripts for the page. All of this

(c) ketabton.com: The Digital Library

1402 Part V ✦ Putting JavaScript to Work

material is inside the <HEAD> tag section. I leave the <BODY> section to contain the

visible content of the page. This approach is an organization style that works well

for me, but you can adopt any style you like, provided various elements that sup-

port others on the page are loaded before the dependent items (for example, define

a style before assigning its name to the corresponding content tag’s ID attributes).

Listing 56-1: The Main Program (mapgame.htm)

<HTML>
<HEAD><TITLE>Map Game</TITLE>

Most of the positionable elements have their CSS properties established in the

<STYLE> tag at the top of the document. Positionable elements whose styles are

defined here include a text label for each state, a map for each state, and a congrat-

ulatory message. Notice that the names of the label and state map objects begin

with a two-letter abbreviation of the state. This labeling comes in handy in the

scripts when synchronizing the selected map and its label.

The label objects are nested inside the background map object. Therefore, the

coordinates for the labels are relative to the coordinate system of the background

map, not the page. That’s why the first label has a top property of zero.

While both the background map and help panel are also positionable elements,

scripts need to read the positions of these elements without first setting the values.

Recall that in the IE4+ and W3C DOMs, the style property of an object does not

reveal property values that are set in remote style sheet rules. While IE5 offers a

currentStyle property to obtain the effective property attributes, neither IE4 nor

the W3C DOM afford that luxury. Therefore, the style sheet rules for the back-

ground map and help panel are specified as STYLE attributes in those two elements’

tags later in the listing.

<STYLE TYPE=”text/css”>
.labels {position:absolute;

background-color:red; layer-background-color:red;
width:100; height:28; border:none; text-align:center}

#azlabel {left:310; top:0}
#calabel {left:310; top:29}
#orlabel {left:310; top:58}
#utlabel {left:310; top:87}
#walabel {left:310; top:116}
#nvlabel {left:310; top:145}
#idlabel {left:310; top:174}

#camap {position:absolute; left:20; top:100; width:1;}
#ormap {position:absolute; left:60; top:100; width:1;}
#wamap {position:absolute; left:100; top:100; width:1;}
#idmap {position:absolute; left:140; top:100; width:1;}
#nvmap {position:absolute; left:180; top:100; width:1;}
#azmap {position:absolute; left:220; top:100; width:1;}
#utmap {position:absolute; left:260; top:100; width:1;}

(c) ketabton.com: The Digital Library

1403Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

#congrats {position:absolute; visibility:hidden; left:20; top:100; width:1;
color:red}
</STYLE>

The next statement loads the external .js library file that contains the API

described in Chapter 47. I tend to load external library files before listing any other

JavaScript code in the page, just in case the main page code relies on global vari-

ables or functions in its initializations.

<SCRIPT LANGUAGE=”JavaScript” SRC=”DHTMLapi.js”></SCRIPT>

Now comes the main script, which contains all the document-specific functions

and global variables. Global variables here are ready to hold information about the

selected state object (and associated details), as well as the offset between the

position of a click inside a map object and the top-left corner of that map object.

You will see that this offset is important to allow the map to track the cursor at the

same offset position within the map. And because the tracking is done by repeated

calls to a function (triggered by numerous mouse events), these offset values must

have global scope.

// global declarations
var offsetX = 0
var offsetY = 0
var selectedObj
var states = new Array()
var statesIndexList = new Array()
var selectedStateLabel

As you will see later in the code, an onLoad event handler for the document

invokes an initialization function, whose main job is to build the array of objects

containing information about each state. The fields for each state object record

are for the two-letter state abbreviation, the full name (not used in this application,

but included for use in a future version), the x and y coordinates (within the coordi-

nate system of the background map) for the exact position of the state, and a

Boolean flag to be set to true whenever a user correctly places a state. I come back

to the last two statements of the constructor function in a moment.

Getting the data for the x and y coordinates required some legwork during devel-

opment. As soon as I had the pieces of art for each state and the code for dragging

them around the screen, I disengaged the part of the script that tested for accuracy.

Instead, I added a statement to the code that revealed the x and y position of the

dragged item in the statusbar (rather than being bothered by alerts). When I care-

fully positioned a state in its destination, I copied the coordinates from the status-

bar into the statement that created that state record. Sure, it was tedious, but after I

had that info in the database, I could adjust the location of the background map and

not have to worry about the destination coordinates, because they were based on

the coordinate system inside the background map.

// object constructor for each state; preserves destination
// position; invokes assignEvents()
function state(abbrev, fullName, x, y) {

this.abbrev = abbrev
this.fullName = fullName

(c) ketabton.com: The Digital Library

1404 Part V ✦ Putting JavaScript to Work

this.x = x
this.y = y
this.done = false
assignEvents(this)
statesIndexList[statesIndexList.length] = abbrev

}
// initialize array of state objects
function initArray() {

states[“ca”] = new state(“ca”, “California”, 7, 54)
states[“or”] = new state(“or”, “Oregon”, 7, 24)
states[“wa”] = new state(“wa”, “Washington”, 23, 8)
states[“id”] = new state(“id”, “Idaho”, 48, 17)
states[“az”] = new state(“az”, “Arizona”, 45, 105)
states[“nv”] = new state(“nv”, “Nevada”, 27, 61)
states[“ut”] = new state(“ut”, “Utah”, 55, 69)

}

The act of creating each state object causes all statements in the constructor

function to execute. Moreover, they were executing within the context of the object

being created. That opened up channels for two important processes in this appli-

cation. One was to maintain a list of abbreviations as its own array. This becomes

necessary later on when the script needs to loop through all objects in the states
array to check their done properties. Because the array is set up like a hash table

(with string index values), a for loop using numeric index values is out of the ques-

tion. So, this extra statesIndexList array provides a numerically indexed array

that can be used in a for loop; values of that array can then be used as index val-

ues of the states array. Yes, it’s a bit of indirection, but other parts of the applica-

tion benefit greatly by having the state information stored in a hash-table-like array.

One more act of creating each state object is the invocation of the assignEvents()
function. Because each call to the constructor function bears a part of the name of a

positionable map object (composed of the state’s lowercase abbreviation and “map”),

that value can be passed to the assignEvents() function, whose job is to assign

event handlers to each of the map layers. While the actual assignment statements are

the same for all supported browsers, assembling the references to the objects in each

of the three DOM categories required object detection and associated syntax, very

similar to the getObject() function of the API. In fact, if it weren’t for the NN4-specific

mechanism for turning on event capture, this function could have used getObject()
from the library.

Here you can see the three primary user events that control state map dragging:

Engage the map on mousedown; drag it on mousemove; release it on mouseup. These

functions are described in a moment.

// assign event handlers to each map layer
function assignEvents(layer) {

var obj
if (document.layers) {

obj = document.layers[layer.abbrev + “map”]
obj.captureEvents(Event.MOUSEDOWN | Event.MOUSEMOVE | Event.MOUSEUP)

} else if (document.all) {
obj = document.all(layer.abbrev + “map”)

} else if (document.getElementById) {

(c) ketabton.com: The Digital Library

1405Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

obj = document.getElementById(layer.abbrev + “map”)
}
if (obj) {

obj.onmousedown = engage
obj.onmousemove = dragIt
obj.onmouseup = release

}
}

The engage() function invokes the following function, setSelectedMap(). It

receives as its sole parameter an event object that is of the proper type for the

browser currently running (that’s done in the engage() function, described next).

This function has three jobs to do, two of which set global variables. The first

global variable, selectedObj, maintains a reference to the layer being dragged by

the user. At the same time, the selectedStateLabel variable holds onto a refer-

ence to the layer that holds the label (recall that its color changes during dragging

and release). All of this requires DOM-specific references that are generated

through the aid of object detecting branches of the function. The last job of this

function is to set the stacking order of the selected map to a value higher than the

others so that while the user drags the map, it is in front of everything else on the

page.

To assist in establishing references to the map and label layers, naming conven-

tions of the HTML objects (shown later in the code) play an important role. Despite

the event handlers being assigned to the DIVs that hold the images, the mouse

events are actually targeted at the image objects. The code must associate some

piece of information about the event target with the DIV that holds it (“parent”

types of references don’t work across all browsers, so we have to make the associa-

tion the hard way). To prevent conflicts with so many objects on this page named

with the lowercase abbreviations of the states, the image objects are assigned

uppercase abbreviations of the state names. As setSelectedMap() begins to exe-

cute, it uses object detection to extract a reference to the element object regarded

as the target of the event (target in NN4 and NN6, srcElement in IE). To make

sure that the event being processed comes from an image, the next statement

makes sure that the target has both name and src properties, in which case a lower-

case version of the name is assigned to the abbrev local variable (if only IE4+ and

W3C DOMs were in play here, a better verification is checking that the tagName
property of the event target is IMG). That abbrev variable then becomes the basis

for element names used in references to objects assigned to selectedObj and

selectedStateLabel. Notice how the NN4 version requires a double-layer nesting

to the reference for the label because labels are nested inside the bgmap layer.

The presence of a value assigned to selectedObj becomes an important case

for all three drag-related functions later. That’s why the setSelectedMap() func-

tion nulls out the value if the event comes from some other source.

/***
BEGIN INTERACTION FUNCTIONS
**/

(c) ketabton.com: The Digital Library

1406 Part V ✦ Putting JavaScript to Work

// set global reference to map being engaged and dragged
function setSelectedMap(evt) {

var target = (evt.target) ? evt.target : evt.srcElement
var abbrev = (target.name && target.src) ?

target.name.toLowerCase() : “”
if (abbrev) {

if (document.layers) {
selectedObj = document.layers[abbrev + “map”]
selectedStateLabel = document.layers[“bgmap”].document.

layers[abbrev + “label”]
} else if (document.all) {

selectedObj = document.all(abbrev + “map”)
selectedStateLabel = document.all(abbrev + “label”)

} else if (document.getElementById) {
selectedObj = document.getElementById(abbrev + “map”)
selectedStateLabel = document.getElementById(abbrev + “label”)

}
setZIndex(selectedObj, 100)
return

}
selectedObj = null
selectedStateLabel = null
return

}

Next comes the engage() function definition. This function is invoked by

mousedown events inside any of the state map layers. NN4 and NN6 pass an event

object as the sole parameter to the function (picked up by the evt parameter vari-

able). If that parameter contains a value, then it stands as the event object for the

rest of the processing; but for IE, the window.event object is assigned to the evt
variable. After setting the necessary object globals through setSelectedMap(),

the next major task for engage() is to calculate and preserve in global variables

the number of pixels within the state map layer at which the mousedown event

occurred. By preserving these values, the dragIt() function makes sure that the

motion of the state map layer keeps in sync with the mouse cursor at the very same

point within the state map. If it weren’t for taking the offset into account, the layer

would jump unexpectedly to bring the top-left corner of the layer underneath the

cursor. That’s not how users expect to drag items on the screen.

The calculations for the offsets require a variety of DOM-specific properties. For

example, both NN4 and NN6 offer pageX and pageY properties of the event object,

but the coordinates of the layer itself require left/top properties for NN4 and

offsetLeft/offsetTop properties for NN6. A nested object detection takes place

in each assignment statement. The IE branch has some additional branching within

each of the assignment statements. These extra branches cover a disparity in the

way IE/Windows and IE/Mac report the offset properties of an event. IE/Windows

ignores window scrolling, while IE/Mac takes scrolling into account. Later calcula-

tions for positioning must take window scrolling into account, so that scrolling is

factored into the preserved offset global values if there are indications that the win-

dow has scrolled and the values are being affected by the scroll (in which case the

offset values go very negative). The logic is confusing, and it won’t make much

sense until you see later how the positioning is invoked. Conceptually, all of these

offset value calculations may seem like a can of worms, but they are essential, and

are performed amazingly compactly.

(c) ketabton.com: The Digital Library

1407Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

After the offsets are established, the state’s label layer’s background color is set

to yellow. The function ends with return false to make sure that the mousedown
event doesn’t propagate through the page (causing a contextual menu to appear on

the Macintosh, for instance).

// set relevant globals onmousedown; set selected map
// object global; preserve offset of click within
// the map coordinates; set label color to yellow
function engage(evt) {

evt = (evt) ? evt : event
setSelectedMap(evt)
if (selectedObj) {

if (evt.pageX) {
offsetX = evt.pageX - ((selectedObj.offsetLeft) ?

selectedObj.offsetLeft : selectedObj.left)
offsetY = evt.pageY - ((selectedObj.offsetTop) ?
selectedObj.offsetTop : selectedObj.top)

} else if (evt.offsetX || evt.offsetY) {
offsetX = evt.offsetX - ((evt.offsetX < -2) ?

0 : document.body.scrollLeft)
offsetY = evt.offsetY - ((evt.offsetY < -2) ?

0 : document.body.scrollTop)
}
setBGColor(selectedStateLabel,”yellow”)
return false

}
}

The dragIt() function, compact as it is, provides the main action in the applica-

tion by keeping a selected state object under the cursor as the user moves the

mouse. This function is called repeatedly by the mousemove events, although the

actual event handling methodology varies with platform (precisely the same way as

with engage(), as shown previously). Regardless of the event property detected,

event coordinates (minus the previously preserved offsets) are passed the

shiftTo() function in the API.

Before the dragging action branch of the function ends, the event object’s

cancelBubble property is set to true. In truth, only the IE4+ and W3C DOM event

objects have such a property, but assigning a value to a nonexistent object prop-

erty for NN4 does no harm. It’s important that this function operate as quickly as

possible, because it must execute with each mousemove event. Canceling event bub-

bling helps in a way, but more important, the cancellation allows the mousemove
event to be used for other purposes, as described in a moment.

// move DIV on mousemove
function dragIt(evt) {

evt = (evt) ? evt : event
if (selectedObj) {

if (evt.pageX) {
shiftTo(selectedObj, (evt.pageX - offsetX), (evt.pageY - offsetY))

} else if (evt.clientX || evt.clientY) {
shiftTo(selectedObj, (evt.clientX - offsetX), (evt.clientY -

offsetY))

(c) ketabton.com: The Digital Library

1408 Part V ✦ Putting JavaScript to Work

}
evt.cancelBubble = true
return false

}
}

When a user drops the currently selected map object, the release() function

invokes the onTarget() function to find out if the current location of the map is

within range of the desired destination. If it is in range, the background color of the

state label object is set to green, and the done property of the selected state’s

database entry is set to true. One additional test (the isDone() function call)

looks to see if all the done properties are true in the database. If so, the congrats
object is shown. But if the object is not in the right place, the label reverts to its

original red color. In case the user moves a state that was previously okay, its

database entry is also adjusted. No matter what the outcome, however, the user

has dropped the map, so key global variables are set to null and the layer order

for the item is set to zero (bottom of the heap) so that it doesn’t interfere with the

next selected map.

One more condition is possible in the release() function. As shown later in the

initialization function, the document object’s onmousemove event handler is

assigned to the release() function (to compare the onmousemove events for the

state maps go to dragIt()). The reasoning behind this document-level event

assignment is that no matter how streamlined the dragging function may be, it is

possible for the user to move the mouse so fast that the map can’t keep up. At that

point, mousemove events are firing at the document (or other object, eventually

bubbling up to the document), and not the state map. If that happens while a state

map is registered as the selected object, but the image is no longer the target of the

event, the code performs the same act as if the user had released the map. The

label reverts to red, and all relevant globals are set to null, preventing any further

interaction with the map until the user mouses down again on the map.

// onmouseup, see if dragged map is near its destination
// coordinates; if so, mark it as ‘done’ and color label green
function release(evt) {

evt = (evt) ? evt : event
var target = (evt.target) ? evt.target : evt.srcElement
var abbrev = (target.name && target.src) ?

target.name.toLowerCase() : “”
if (abbrev && selectedObj) {

if (onTarget(evt)) {
setBGColor(selectedStateLabel, “green”)
states[abbrev].done = true
if (isDone()) {

show(“congrats”)
}

} else {
setBGColor(selectedStateLabel, “red”)
states[abbrev].done = false
hide(“congrats”)

}

(c) ketabton.com: The Digital Library

1409Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

setZIndex(selectedObj, 0)
} else if (selectedStateLabel) {

setBGColor(selectedStateLabel, “red”)
}
selectedObj = null
selectedStateLabel = null

}

To find out if a dropped map is in (or near) its correct position, the onTarget()
function first calculates the target spot on the page by adding the location of

the bgmap object to the coordinate positions stored in the states database.

Because the bgmap object doesn’t come into play in other parts of this script, it

is convenient to pass merely the object name to the two API functions that get

the object’s left and top coordinate points.

Next, the script uses platform-specific properties to get the recently dropped

state map object’s current location. A large if condition checks whether the state

map object’s coordinate point is within a four-pixel square region around the target

point. If you want to make the game easier, you can increase the cushion values

from 2 to 3 or 4.

If the map is within the range, the script calls the shiftTo() API function to

snap the map into the exact destination position and reports back to the

release() function the appropriate Boolean value.

// compare position of dragged element against the destination
// coordinates stored in corresponding state object; after shifting
// element to actual destination, return true if item is within
// 2 pixels.
function onTarget(evt) {

evt = (evt) ? evt : event
var target = (evt.target) ? evt.target : evt.srcElement
var abbrev = (target.name && target.src) ?

target.name.toLowerCase() : “”
if (abbrev && selectedObj) {

var x = states[abbrev].x + getObjectLeft(“bgmap”)
var y = states[abbrev].y + getObjectTop(“bgmap”)
var objX, objY
if (selectedObj.pageX) {

objX = selectedObj.pageX
objY = selectedObj.pageY

} else if (selectedObj.style) {
objX = parseInt(selectedObj.style.left)
objY = parseInt(selectedObj.style.top)

}
if ((objX >= x-2 && objX <= x+2) &&

(objY >= y-2 && objY <= y+2)) {
shiftTo(selectedObj, x, y)
return true

}
return false

}
return false

}

(c) ketabton.com: The Digital Library

1410 Part V ✦ Putting JavaScript to Work

A for loop cycles through the states database (with the help of the hash table

values stored indirectly in the statesIndexList array) to see if all of the done

properties are set to true. When they are, the release() function (which calls the

isDone() function) displays the congratulatory object. Do note that NN6.0 may

exhibit rendering difficulties when hiding and showing the congrats object. This

problem should be fixed in a subsequent release of the browser.

// test whether all state objects are marked ‘done’
function isDone() {

for (var i = 0; i < statesIndexList.length; i++) {
if (!states[statesIndexList[i]].done) {

return false
}

}
return true

}

The help panel is created differently than the map and label objects (details com-

ing up in a moment). When the user clicks the Help button at the top of the page,

the instructions panel flies in from the right edge of the window (see Figure 56-2).

The showHelp() function begins the process by setting its location to the current

right window edge, bringing its layer to the very front of the heap, showing the

object. To assist moveHelp() in calculating the center position on the screen, the

showHelp() function retrieves (just once per showing) the DOM-specific property

for the width of the help panel. That value is passed as a parameter to moveHelp()
as it is repeatedly invoked through the setInterval() mechanism.

Figure 56-2: Instructions panel “flies” in from left to center screen.

(c) ketabton.com: The Digital Library

1411Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

/***
BEGIN HELP ELEMENT FUNCTIONS
**/
// initiate show action
function showHelp() {

var objName = “help”
var helpWidth = 0
shiftTo(objName, insideWindowWidth, 80)
setZIndex(objName,1000)
show(objName)
if (document.layers) {

helpWidth = document.layers[objName].document.width
} else if (document.all) {

helpWidth = document.all(objName).offsetWidth
} else if (document.getElementById) {

if (document.getElementById(objName).offsetWidth >= 0) {
helpWidth = document.getElementById(objName).offsetWidth

}
}
intervalID = setInterval(“moveHelp(“ + helpWidth + “)”, 1)

}

In the moveHelp() function, the help object is shifted in five-pixel increments to

the left. The ultimate destination is the spot where the object is in the middle of the

browser window. That midpoint must be calculated each time the page loads,

because the window may have been resized. The width of the help object, received

as a parameter to the function, gets a workout in the mid-point calculation.

This function is called repeatedly under the control of a setInterval() method

in showHelp(). But when the object reaches the middle of the browser window, the

interval ID is canceled, which stops the animation.

The help object processes a mouse event to hide the object. An extra

clearInterval() method is called here in case the user clicks the object’s Close

button before the object has reached mid-window (where moveHelp() cancels the

interval). The script also shifts the position to the right edge of the window, but it

isn’t absolutely necessary, because the showHelp() method positions the window

there.

// iterative move help DIV to center of window
function moveHelp(w) {

shiftBy(“help”,-5,0)
var objectLeft = getObjectLeft(“help”)
if (objectLeft <= (insideWindowWidth/2) - w/2) {

clearInterval(intervalID)
}

}
// hide the help DIV
function hideMe() {

clearInterval(intervalID)
hide(“help”)
shiftTo(“help”, insideWindowWidth, 80)

}

(c) ketabton.com: The Digital Library

1412 Part V ✦ Putting JavaScript to Work

The document’s onLoad event handler invokes the init() function, which, in

turn, calls two functions and assigns the document object’s onmousemove event

handler. The first is initArray(), which builds the states[] database and assigns

event handlers to the state map layers. Because the layers are defined so late in the

document, initializing their events after the page has loaded is safest.

For convenience in moving the help window to the center of the browser win-

dow, the setWinWidth() function sets a global variable (insideWindowWidth) to

hold the width of the browser window. This function is also invoked by the

onResize event handler for the window to keep the value up to date.

// calculate center of window for help DIV
function setWinWidth() {

if (window.innerWidth) {
insideWindowWidth = window.innerWidth

} else if (document.body.scrollWidth) {
insideWindowWidth = document.body.scrollWidth

} else if (document.width) {
insideWindowWidth = document.width

}
}

/***
INITIALIZE THE APPLICATION
**/
// initialize application
function init() {

initArray()
setWinWidth()
document.onmousemove = release

}
</SCRIPT>
</HEAD>

Now comes the part of the document that generates the visible content. The

<BODY> tag contains the two event handlers just discussed. An image rollover for

the help icon simply displays a message in the statusbar.

<BODY onLoad=”init()” onResize=”setWinWidth()”>
<H1>”Lower 48” U.S. Map Puzzle <A HREF=”javascript:void showHelp()”
onMouseOver=”status=’Show help panel...’;return true”
onMouseOut=”status=’’;return true”><IMG SRC=”info.gif” HEIGHT=22 WIDTH=22
BORDER=0></H1>
<HR>

Next come tags for all of the DIV elements. The STYLE attribute for the bgmap DIV

lets scripts read the positioned values to assist in calculating positions in the

onTarget() function, as shown previously. The bgmap layer also contains all labels

so that if the design calls for moving the map to another part of the page, the labels

follow automatically. Notice how the lowercase state abbreviations are part of the

names of both the label and map layers. As you saw in a few functions shown previ-

ously, a systematic approach to object naming can offer powerful shortcuts in

determining references to elements.

(c) ketabton.com: The Digital Library

1413Chapter 56 ✦ Application: Cross-Browser DHTML Map Puzzle

<DIV ID=bgmap STYLE=”position:absolute; left:100; top:180; width:406”>
<DIV CLASS=”labels” ID=azlabel>Arizona</DIV>
<DIV CLASS=”labels” ID=calabel>California</DIV>
<DIV CLASS=”labels” ID=orlabel>Oregon</DIV>
<DIV CLASS=”labels” ID=utlabel>Utah</DIV>
<DIV CLASS=”labels” ID=walabel>Washington</DIV>
<DIV CLASS=”labels” ID=nvlabel>Nevada</DIV>
<DIV CLASS=”labels” ID=idlabel>Idaho</DIV>
</DIV>

<DIV ID=camap></DIV>
<DIV ID=ormap></DIV>
<DIV ID=wamap></DIV>
<DIV ID=idmap></DIV>
<DIV ID=azmap></DIV>
<DIV ID=nvmap></DIV>
<DIV ID=utmap></DIV>

<DIV ID=congrats><H1>Congratulations!</H1></DIV>

In developing this application, I encountered an unfriendly NN4 bug. When defin-

ing the help panel as a positioned DIV element in NN4, the browser exhibited

unwanted behavior after the instruction panel was shown and flown into place

under script control. Even after hiding the help layer, the page no longer received

mouse events, making it impossible to pick up a state map after the instructions

appeared. The problem did not surface, however, if the help object was defined in

the document with a <LAYER> tag.

Therefore, I did what I don’t like to do unless absolutely necessary: I created

branches in the content that used document.write() to create the same content

with different HTML syntax, depending on the browser. For non-LAYER browsers,

the page creates the same kind of block (with the <DIV> tag pair) used elsewhere in

the document. Positioning properties are assigned to this block via a STYLE

attribute in the <DIV> tag. You cannot assign a style in the <STYLE> tag that is visi-

ble to the entire document, because that specification and a like-named <LAYER>
tag get confused.

For NN4, the page uses the <LAYER> tag and loads the content of the object from

a separate HTML file (instrux.htm). One advantage I had with the <LAYER> tag

was that I could assign an initial horizontal position of the help object with a

JavaScript entity. The entity reaches into the window.innerWidth property to set

the LEFT attribute of the layer.

<SCRIPT LANGUAGE=”JavaScript”>
var output = “”
if (document.layers) {

output = “<LAYER ID=’help’ TOP=80 LEFT=&{window.innerWidth}; WIDTH=300
VISIBILITY=’HIDDEN’ SRC=’instrux.htm’></LAYER>”
} else {

output = “<DIV ID=’help’ onClick=’hideMe()’ STYLE=’position:absolute;
visibility:hidden; top:80; width:300; border:none; background-
color:#98FB98;’>\n”

(c) ketabton.com: The Digital Library

1414 Part V ✦ Putting JavaScript to Work

output += “<P STYLE=’margin-
top:5’><CENTER>Instructions</CENTER></P>\n”

output += “<HR COLOR=’seagreen’>\n<OL STYLE=’margin-right:20’>”
output += “Click on a state map to pick it up. The label color turns

yellow.\n”
output += “Drag the map into position, and release the mouse to drop the

state map.\n”
output += “If you are close to the actual location, the state snaps into

place and the label color turns green.\n”
output += “\n<FORM>\n<CENTER><INPUT TYPE=’button’

VALUE=’Close’>\n</FORM></DIV>”
}
document.write(output)
</SCRIPT>
</BODY>
</HTML>

This page has a lot of code to digest in one reading. Run the application, study

the structure of the source code listing file, and re-read the previous explanations.

It may take several readings for a mental picture of the application to form.

Lessons Learned
As soon as the external cross-platform API was in place, it helped frame a lot of

the other code in the main program. The APIs provided great comfort in that they

encouraged me to reference a complex object fully in the main code as a platform-

shared value (for example, the selectedObj and selectedStateLabel global vari-

ables). At the same time, I could reference top-level elements (that is, non-nested

objects) simply by their names when passing them to API functions.

In many respects, the harder task was defining the style sheet attributes and syn-

tax that both browsers would treat similarly. In the case of the label objects, I

couldn’t reach complete parity in a cross-platform environment (the labels look dif-

ferent in NN4), and in the case of the help object, I had to code the HTML sepa-

rately for each platform. Therefore, when approaching this kind of project, work

first with the HTML and CSS syntax to build the look that works best for all plat-

forms. Then start connecting the scripted wires. You may have to adjust the CSS

code if you find odd behavior in one platform or the other with your scripting, but

starting with a good layout is still easier.

But without a doubt the biggest lesson you learn from working on a project like

this is how important it is to test an application on as many browsers and operating

systems as possible. Designing a cross-platform application on one browser and

having it run flawlessly on the other the first time is nearly impossible. Be prepared

to go back and forth among multiple browsers, breaking and repairing existing

working code along the way until you eventually reach a version that works on

every browser that you can test.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Application:
Transforming
XML Data
Islands

Chapter 52 ends with an example of an interactive out-

liner whose data arrives in XML format. The data is

embedded in an HTML document inside an XML data island,

which is thus far supported only on the Windows versions of

IE5 and later. The application described in this chapter picks

up from there.

As you recall from the Chapter 52 outline, the node struc-

ture of the XML data was used as a guide to the structure for a

one-time rendering of HTML elements. There was a one-to-one

correlation between XML element nesting and the HTML ele-

ment nesting. Adjusting style sheet properties for displaying

or hiding elements controlled all interactivity. What you’re

about to see here is a case for converting XML into JavaScript

objects that can be used multiple times as a convenient data

source for HTML that is displayed in any number of formats.

In particular, you see how JavaScript’s array sorting prowess

supplies XML-supplied data with extraordinary flexibility in

presentation.

You will see a lot of code in this chapter. The code is pre-

sented here as a way to demonstrate the potential for rich

data handling. At the same time, the code may provide ideas

for server-side processing of XML data being output to the

client. If a server program can convert the XML data into the

shortcut object and array notation of Version 4 browsers or

later, suddenly a broader range of browsers is capable of deal-

ing with data stored as XML on the server.

5757C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Designing XML data
islands

Complex JavaScript
data structures

Advanced array
sorting

Dynamic tables

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1416 Part V ✦ Putting JavaScript to Work

Application Overview
Understanding the data is a good place to start in describing this application.

The scenario is a small American company (despite its grandiose name: GiantCo)

that has divided the country into three sales regions. Two of the regions have two

sales representatives, while the third region has three reps. The time is at the end

of a fiscal year, at which point the management wants to review and present the

performance of each salesperson. An XML report delivers the sales forecast and

actual sales per quarter for each sales rep. A single HTML and JavaScript page

(with the XML data embedded as a data island inside an IE <XML> tag) is charged

with not only displaying the raw tabular data, but also allowing for a variety of

views and sorting possibilities so that management can analyze performance by

sales rep and region, as well as by quarter.

A server-based searching and reporting program collects the requested data and

outputs each sales rep’s record in an XML structure, such as the following one:

<SALESREP>
<EMPLOYEEID>12345</EMPLOYEEID>
<CONTACTINFO>

<FIRSTNAME>Brenda</FIRSTNAME>
<LASTNAME>Smith</LASTNAME>
<EMAIL>brendas@giantco.com</EMAIL>
<PHONE>312-555-9923</PHONE>
<FAX>312-555-9901</FAX>

</CONTACTINFO>
<MANAGER>

<EMPLOYEEID>02934</EMPLOYEEID>
<FIRSTNAME>Alistair</FIRSTNAME>
<LASTNAME>Renfield</LASTNAME>

</MANAGER>
<REGION>Central</REGION>
<SALESRECORD>

<PERIOD>
<ID>Q1_2000</ID>
<FORECAST>300000</FORECAST>
<ACTUAL>316050</ACTUAL>

</PERIOD>
<PERIOD>

<ID>Q2_2000</ID>
<FORECAST>280000</FORECAST>
<ACTUAL>285922</ACTUAL>

</PERIOD>
<PERIOD>

<ID>Q3_2000</ID>
<FORECAST>423000</FORECAST>
<ACTUAL>432930</ACTUAL>

</PERIOD>
<PERIOD>

<ID>Q4_2000</ID>
<FORECAST>390000</FORECAST>
<ACTUAL>399200</ACTUAL>

</PERIOD>
</SALESRECORD>

</SALESREP>

(c) ketabton.com: The Digital Library

1417Chapter 57 ✦ Application: Transforming XML Data Islands

As you can see, the data consists of several larger blocks, such as contact infor-

mation, a pointer to the rep’s manager, and then the details of each quarterly

period’s forecast and actual sales. The goal is to present the data in table form

with a structure similarly shown in Figure 57-1. Not only is the raw data presented,

but numerous calculations are also made on the results, such as the percentage

of quota attained for each reporting period, plus totals along each axis of the

spreadsheet-like table.

Figure 57-1: One view of the XML data output

Just above the table are two SELECT elements. These controls’ labels indicate

that the table’s data can be sorted by a number of criteria and the results of each

sort can be ordered in different ways. Sorting in the example offers the following

possibilities:

Representative’s Name
Sales Region
Q1 Forecast
Q1 Actual
Q1 Performance
[the last three also for Q2, Q3, Q4]
Total Forecast
Total Actual
Total Performance

Ordering of the sorted results is a choice between “Low to High” or “High to

Low.” While ordering of most sort categories is obviously based on numeric value,

the sorting of the representatives’ names is based on the alphabetical order of the

last names. One other point about the user interface is that the design needs to

signify via table cell background color the sales region of each representative. The

(c) ketabton.com: The Digital Library

1418 Part V ✦ Putting JavaScript to Work

colors aren’t easily distinguishable in Figure 57-1, but if you open the actual exam-

ple listing in IE5+/Windows on your computer, you will see the coloration.

Implementation Plan
Clearly all the data needed for numerous sorted and ordered views arrives in one

batch in the XML island. Despite the element and node referencing properties and

methods of the W3C DOM, trying to use the XML elements as the sole data store for

scripts to sort the data each time would be impractical. For one thing, none of the

elements have ID attributes — there’s no need for it in the XML stored on the server

database. And even if they did have IDs, how would scripts that you desire to write

for generalizability make use of them unless the IDs were generated in a well-known

sequence? Moreover, after a sales rep’s record is rendered in the table, how easy

would it be to dive back into that record and drill down for further information,

such as the name of a representative’s manager?

A solution that can empower the page author in this case is to use the node-

walking properties and methods of the W3C DOM to assemble a JavaScript-

structured database while the page loads. In other words, the conversion is per-

formed just once during page loading, and the JavaScript version is preserved in

an array (of XML “records” in this case) as a global variable. Any transformations

on the data can be done from the JavaScript database with the help of additional

powers of the language.

Given that route, the basic operation of the scripting of the page is schematically

simple:

1. Convert the XML into an array of objects at load time.

2. Predefine all necessary sorting functions based on properties of those

objects.

3. Provide a function that rebuilds the HTML table each time data is sorted.

With this sequence in mind, now look into the code that does the job.

The Code
Rather than work through the long document in source code order, the following

descriptions follow a more functional order. You can open the actual source code

file to see where the various functions are positioned. To best understand this

application, seeing the “how” rather than the “where” is more important. Also,

many of the code lines (even some single expressions) are too wide for the printed

page and therefore break unnaturally in the listings that follow. Trust the formatting

of the source file on the CD-ROM.

Style sheets
For the example provided on the CD-ROM, one set of style sheet rules is embed-

ded in the HTML document. As you can see from the rule selectors, many are tied

to very specific classes of table-related elements used to render the content. In a

(c) ketabton.com: The Digital Library

1419Chapter 57 ✦ Application: Transforming XML Data Islands

production version of this application, I would expect that there would be more and

quite different views of the data available to the users, such as bar charts for each

salesperson or region. Each view would likely require its own unique set of style

sheet rules. In such a scenario, the proper implementation would be to use the

LINK element to bring in a different external style sheet file for each view type. All

could be linked in at the outset, but only the current styleSheet object would be

enabled.

<STYLE TYPE=”text/css”>
XML {display:none}
TD {text-align:right}
TD.rep, TD.grandTotalLabel {text-align:center}
TR.East {background-color:#FFFFCC}
TR.Central {background-color:#CCFFFF}
TR.West {background-color:#FFCCCC}
TR.QTotal {background-color:#FFFF00}
TD.repTotal {background-color:#FFFF00}
TD.grandTotal{background-color:#00FF00}
H1 {font-family:”Comic Sans MS”,Helvetica,sans-serif}
</STYLE>

One style sheet rule is essential: The one that suppresses the rendering of any

XML element. That data is hidden from the user’s view.

Initialization sequence
An onLoad event handler invokes the init() function, which sets a lot of

machinery in motion to get the document ready for user interaction. Its most

important job is running a for loop that builds the JavaScript database from the

XML elements. Next, it sorts the database based on the current choice in the sort-

ing SELECT element. The sorting function ends by triggering the rendering of the

table. These three actions correspond to the fundamental operation of the entire

application.

// initialize global variable that stores JavaScript data
var db = new Array()

// Initialization called by onLoad
function init() {

for (var i = 0;
i <

document.getElementById(“reports”).getElementsByTagName(“SALESREP”).length;
i++) {

db[db.length] = getOneSalesRep(i)
}
selectSort(document.getElementById(“sortChooser”))

}

Converting the data
The controlling factor for creating the JavaScript database is the structure of the

XML data island. As you may recall, the elements inside the XML data island can be

accessed only through a reference to the XML container. The ID of that element in

(c) ketabton.com: The Digital Library

1420 Part V ✦ Putting JavaScript to Work

this application is reports. Data for each sales rep is contained by a SALESREP

element. The number of SALESREP elements determines how many records

(JavaScript objects) are to be added to the db array. A call to the

getOneSalesRep() function creates an object for each sales representative’s data.

Despite the length of the getOneSalesRep() function, its operation is very

straightforward. Most of the statements do nothing more than retrieve the data

inside the various XML elements within a SALESREP container and assign that data

to a like-named property of the custom object. Following the structure of the XML

example shown earlier in this chapter, you can see where some properties of a

JavaScript object representing the data are, themselves, objects or arrays. For

example, one of the properties is called manager, corresponding to the MANAGER

element. But that element has nested items inside. Then, making those nested ele-

ments properties of a manager object is only natural. Similarly, the repetitive nature

of the data within each of the four quarterly periods calls for even greater nesting:

The object property named sales is an array, with each item of the array corre-

sponding to one of the periods. Each period also has three properties (a period ID,

forecast sales, and actual sales). Thus, the sales property is an array of objects.

function getOneSalesRep(i) {
// create new, empty object
var oneRecord = new Object()
// get a shortcut reference to one SALESREP element
var oneElem =

document.getElementById(“reports”).getElementsByTagName(“SALESREP”)[i]
// start assigning element data to oneRecord object properties
oneRecord.id =

oneElem.getElementsByTagName(“EMPLOYEEID”)[0].firstChild.data
var contactInfoElem =

oneElem.getElementsByTagName(“CONTACTINFO”)[0]
oneRecord.firstName =

contactInfoElem.getElementsByTagName(“FIRSTNAME”)[0].firstChild.data
oneRecord.lastName =

contactInfoElem.getElementsByTagName(“LASTNAME”)[0].firstChild.data
oneRecord.eMail =

contactInfoElem.getElementsByTagName(“EMAIL”)[0].firstChild.data
oneRecord.phone =

contactInfoElem.getElementsByTagName(“PHONE”)[0].firstChild.data
oneRecord.fax =

contactInfoElem.getElementsByTagName(“FAX”)[0].firstChild.data
// make the manager property its own object
oneRecord.manager = new Object()

// get a shortcut reference to the MANAGER element
var oneMgrElem = oneElem.getElementsByTagName(“MANAGER”)[0]
// start assigning element data to manager object properties
oneRecord.manager.id =

oneMgrElem.getElementsByTagName(“EMPLOYEEID”)[0].firstChild.data
oneRecord.manager.firstName =

oneMgrElem.getElementsByTagName(“FIRSTNAME”)[0].firstChild.data
oneRecord.manager.lastName =

oneMgrElem.getElementsByTagName(“LASTNAME”)[0].firstChild.data
oneRecord.region =

(c) ketabton.com: The Digital Library

1421Chapter 57 ✦ Application: Transforming XML Data Islands

oneElem.getElementsByTagName(“REGION”)[0].firstChild.data

// make the sales property a new array
oneRecord.sales = new Array()
// get a shortcut reference to the collection of
// periods in the SALESRECORD element
var allPeriods =

oneElem.getElementsByTagName(“SALESRECORD”)[0].childNodes
var temp
var accumForecast = 0, accumActual = 0
// loop through periods
for (var i = 0; i < allPeriods.length; i++) {

if (allPeriods[i].nodeType == 1) {
// make new object for a period’s data
temp = new Object()
// start assigning period data to the new object
temp.period =

allPeriods[i].getElementsByTagName(“ID”)[0].firstChild.data
temp.forecast =

parseInt(allPeriods[i].getElementsByTagName(“FORECAST”)[0].firstChild.data)
temp.actual =

parseInt(allPeriods[i].getElementsByTagName(“ACTUAL”)[0].firstChild.data)
// run analysis on two properties and preserve result
temp.quotaPct = getPercentage(temp.actual, temp.forecast)
oneRecord.sales[temp.period] = temp
// accumulate totals for later
accumForecast += temp.forecast
accumActual += temp.actual

}
}
// preserve accumulated totals as oneRecord properties
oneRecord.totalForecast = accumForecast
oneRecord.totalActual = accumActual
// run analysis on accumulated totals
oneRecord.totalQuotaPct = getPercentage(accumActual, accumForecast)
// hand back the stuffed object to be put into the db array
return oneRecord

}
// calculate percentage of actual/forecast
function getPercentage(actual, forecast) {

var pct = (actual/forecast * 100) + “”
pct = pct.match(/\d*\.\d/)
return parseFloat(pct)

}

Assuming that the raw XML database stores only the sales forecast and actual

dollar figures, it is up to analysis programs to perform their own calculations, such

as how the actual sales compare against the forecasts. As you saw in the illustration

of the rendered table, this application not only displays the percentage differences

between the pairs of values, but it also provides sorting facilities on those percent-

ages. To speed the sorting, the percentages are calculated as the JavaScript

database is being accumulated, and the percentages are stored as properties of

each object. Percentage calculation is called upon in two different statements of the

(c) ketabton.com: The Digital Library

1422 Part V ✦ Putting JavaScript to Work

getOneSalesRep() function, so that the calculation is broken out to its own func-

tion, getPercentage(). In that function, the two passed values are massaged to

calculate the percentage value, and then the string result is formatted to no more

than one digit to the right of the decimal (by way of a regular expression). The

value returned for the property assignment is converted to a number data type,

because sorting on these values needs to be done according to numeric sorting,

rather than string sorting.

You can already get a glimpse at the contribution JavaScript is making to the

scripted representation of the data transmitted in XML form. By virtue of planning

for subsequent calculations, the JavaScript object contains considerably more

information than was originally delivered, yet all the properties are derived from

“hard” data supplied by the server database.

Sorting the JavaScript database
With so many sorting keys for the user to choose from, it’s no surprise that sort-

ing code occupies a good number of script lines in this application. All sorting code

consists of two major blocks: dispatching and sorting.

The dispatching portion is nothing more than one gigantic switch construction

that sends execution to one of the seventeen (!) sorting functions that match

whichever sort key is chosen in the SELECT element on the page. This dispatcher

function, selectSort(), is also invoked from the init() function at load time.

Thus, if the user makes a choice in the page, navigates to another page, and then

returns with the page still showing the previous selection, the onLoad event han-

dler will reconstruct the table precisely as it was. When sorting is completed, the

table is drawn, as you see shortly.

// begin sorting routines
function selectSort(chooser) {

switch (chooser.value) {
case “byRep” :

db.sort(sortDBByRep)
break

case “byRegion” :
db.sort(sortDBByRegion)
break

case “byQ1Fcst” :
db.sort(sortDBByQ1Fcst)
break

case “byQ1Actual” :
db.sort(sortDBByQ1Actual)
break

case “byQ1Quota” :
db.sort(sortDBByQ1Quota)
break

case “byQ2Fcst” :
db.sort(sortDBByQ2Fcst)
break

case “byQ2Actual” :
db.sort(sortDBByQ2Actual)
break

(c) ketabton.com: The Digital Library

1423Chapter 57 ✦ Application: Transforming XML Data Islands

case “byQ2Quota” :
db.sort(sortDBByQ2Quota)
break

case “byQ3Fcst” :
db.sort(sortDBByQ3Fcst)
break

case “byQ3Actual” :
db.sort(sortDBByQ3Actual)
break

case “byQ3Quota” :
db.sort(sortDBByQ3Quota)
break

case “byQ4Fcst” :
db.sort(sortDBByQ4Fcst)
break

case “byQ4Actual” :
db.sort(sortDBByQ4Actual)
break

case “byQ4Quota” :
db.sort(sortDBByQ4Quota)
break

case “byTotalFcst” :
db.sort(sortDBByTotalFcst)
break

case “byTotalActual” :
db.sort(sortDBByTotalActual)
break

case “byTotalQuota” :
db.sort(sortDBByTotalQuota)
break

}
drawTextTable()

}

Each specific sorting routine is a function that automatically works repeatedly

on pairs of entries of an array (see Chapter 37). Array entries here (from the db
array) are objects — and rather complex objects at that. The benefit of using

JavaScript array sorting is that the sorting can be performed on any property of

objects stored in the array. For example, sorting on the lastName property of each

db array object is based on a comparison of the lastName property for each of the

pairs of array entries passed to the sortDBByRep() sort function. But looking down

a little further, you can see that the mechanism allows sorting on even more deeply

nested properties, such as the sales.Q1_2000.forecast property of each array

entry. If a property in an object can be referenced, it can be used as a sorting prop-

erty inside one of these functions.

function sortDBByRep(a, b) {
if (document.getElementById(“orderChooser”).value == “inc”) {

return (a.lastName < b.lastName) ? -1 : 1
} else {

return (a.lastName > b.lastName) ? -1 : 1
}

}

(c) ketabton.com: The Digital Library

1424 Part V ✦ Putting JavaScript to Work

function sortDBByRegion(a, b) {
if (document.getElementById(“orderChooser”).value == “inc”) {

return (a.region < b.region) ? -1 : 1
} else {

return (a.region > b.region) ? -1 : 1
}

}
function sortDBByQ1Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q1_2000.forecast - b.sales.Q1_2000.forecast)

} else {
return (b.sales.Q1_2000.forecast - a.sales.Q1_2000.forecast)

}
}
function sortDBByQ1Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q1_2000.actual - b.sales.Q1_2000.actual)

} else {
return (b.sales.Q1_2000.actual - a.sales.Q1_2000.actual)

}
}
function sortDBByQ1Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q1_2000.quotaPct - b.sales.Q1_2000.quotaPct)

} else {
return (b.sales.Q1_2000.quotaPct - a.sales.Q1_2000.quotaPct)

}
}
function sortDBByQ2Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q2_2000.forecast - b.sales.Q2_2000.forecast)

} else {
return (b.sales.Q2_2000.forecast - a.sales.Q2_2000.forecast)

}
}
function sortDBByQ2Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q2_2000.actual - b.sales.Q2_2000.actual)

} else {
return (b.sales.Q2_2000.actual - a.sales.Q2_2000.actual)

}
}
function sortDBByQ2Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q2_2000.quotaPct - b.sales.Q2_2000.quotaPct)

} else {
return (b.sales.Q2_2000.quotaPct - a.sales.Q2_2000.quotaPct)

}
}
function sortDBByQ3Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q3_2000.forecast - b.sales.Q3_2000.forecast)

(c) ketabton.com: The Digital Library

1425Chapter 57 ✦ Application: Transforming XML Data Islands

} else {
return (b.sales.Q3_2000.forecast - a.sales.Q3_2000.forecast)

}
}
function sortDBByQ3Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q3_2000.actual - b.sales.Q3_2000.actual)

} else {
return (b.sales.Q3_2000.actual - a.sales.Q3_2000.actual)

}
}
function sortDBByQ3Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q3_2000.quotaPct - b.sales.Q3_2000.quotaPct)

} else {
return (b.sales.Q3_2000.quotaPct - a.sales.Q3_2000.quotaPct)

}
}
function sortDBByQ4Fcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q4_2000.forecast - b.sales.Q4_2000.forecast)

} else {
return (b.sales.Q4_2000.forecast - a.sales.Q4_2000.forecast)

}
}
function sortDBByQ4Actual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q4_2000.actual - b.sales.Q4_2000.actual)

} else {
return (b.sales.Q4_2000.actual - a.sales.Q4_2000.actual)

}
}
function sortDBByQ4Quota(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.sales.Q4_2000.quotaPct - b.sales.Q4_2000.quotaPct)

} else {
return (b.sales.Q4_2000.quotaPct - a.sales.Q4_2000.quotaPct)

}
}
function sortDBByTotalFcst(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.totalForecast - b.totalForecast)

} else {
return (b.totalForecast - a.totalForecast)

}
}
function sortDBByTotalActual(a, b) {

if (document.getElementById(“orderChooser”).value == “inc”) {
return (a.totalActual - b.totalActual)

} else {
return (b.totalActual - a.totalActual)

}
}

(c) ketabton.com: The Digital Library

1426 Part V ✦ Putting JavaScript to Work

function sortDBByTotalQuota(a, b) {
if (document.getElementById(“orderChooser”).value == “inc”) {

return (a.totalQuotaPct - b.totalQuotaPct)
} else {

return (b.totalQuotaPct - a.totalQuotaPct)
}

}

For this application, all sorting functions branch in their execution based on the

choice made in the “Ordered” SELECT element on the page. The relative position of

the two array elements under test in these simple subtraction comparison state-

ments reverses when the sort order is from low to high (increasing) and when it is

from high to low (decreasing). This kind of array sorting is extremely powerful in

JavaScript and probably escapes the attention of most scripters.

Constructing the table
As recommended back in Chapter 27’s discussion of TABLE and related ele-

ments, it is best to manipulate the structure of a TABLE element by way of the spe-

cialized methods for tables, rather than mess with nodes and elements. The

drawTextTable() function is devoted to employing those methods to create the

rendered contents of the table below the headers (which are hard-wired in the doc-

ument’s HTML). Composing an eleven-column table requires a bit of code, and the

drawTextTable()’s length attests to that fact. You can tell by just glancing at the

code, however, that for big chunks of it, there is a comfortable regularity that is

aided by the JavaScript object that holds the data.

Additional calculations take place while the table’s elements are being added to

the TABLE element. Column totals are accumulated during the table assembly (row

totals are calculated as the object is generated and preserved as properties of the

object). A large for loop cycles through each (sorted) row of the db array; each

row of the db array corresponds to a row of the table. Class names are assigned to

various rows or cells so that they will pick up the style sheet rules defined earlier in

the document. Another subtlety of this version is that the region property of a

sales rep is assigned to the title property of a row. If the user pauses the mouse

pointer anywhere in that row, the name of the region pops up briefly.

function drawTextTable() {

var newRow
var accumQ1F = 0, accumQ1A = 0, accumQ2F = 0, accumQ2A = 0
var accumQ3F = 0, accumQ3A = 0, accumQ4F = 0, accumQ4A = 0
deleteRows(document.getElementById(“mainTableBody”))
for (var i = 0; i < db.length; i++) {

newRow = document.getElementById(“mainTableBody”).insertRow(i)
newRow.className = db[i].region
newRow.title = db[i].region + “ Region”
appendCell(newRow, “rep”, db[i].firstName + “ “ + db[i].lastName)
appendCell(newRow, “Q1”, db[i].sales.Q1_2000.forecast + “
” +

db[i].sales.Q1_2000.actual)
appendCell(newRow, “Q1”, db[i].sales.Q1_2000.quotaPct + “%”)
appendCell(newRow, “Q2”, db[i].sales.Q2_2000.forecast + “
” +

db[i].sales.Q2_2000.actual)

(c) ketabton.com: The Digital Library

1427Chapter 57 ✦ Application: Transforming XML Data Islands

appendCell(newRow, “Q2”, db[i].sales.Q2_2000.quotaPct + “%”)
appendCell(newRow, “Q3”, db[i].sales.Q3_2000.forecast + “
” +

db[i].sales.Q3_2000.actual)
appendCell(newRow, “Q3”, db[i].sales.Q3_2000.quotaPct + “%”)
appendCell(newRow, “Q4”, db[i].sales.Q4_2000.forecast + “
” +

db[i].sales.Q4_2000.actual)
appendCell(newRow, “Q4”, db[i].sales.Q4_2000.quotaPct + “%”)
accumQ1F += db[i].sales.Q1_2000.forecast
accumQ1A += db[i].sales.Q1_2000.actual
accumQ2F += db[i].sales.Q2_2000.forecast
accumQ2A += db[i].sales.Q2_2000.actual
accumQ3F += db[i].sales.Q3_2000.forecast
accumQ3A += db[i].sales.Q3_2000.actual
accumQ4F += db[i].sales.Q4_2000.forecast
accumQ4A += db[i].sales.Q4_2000.actual
appendCell(newRow, “repTotal”, db[i].totalForecast + “
” +

db[i].totalActual)
appendCell(newRow, “repTotal”, db[i].totalQuotaPct + “%”)

}
newRow = document.getElementById(“mainTableBody”).insertRow(i)
newRow.className = “QTotal”
newRow.title = “Totals”
appendCell(newRow, “grandTotalLabel”, “Grand Total”)
appendCell(newRow, “Q1”, accumQ1F + “
” + accumQ1A)
appendCell(newRow, “Q1”, getPercentage(accumQ1A, accumQ1F) + “%”)
appendCell(newRow, “Q2”, accumQ2F + “
” + accumQ2A)
appendCell(newRow, “Q2”, getPercentage(accumQ2A, accumQ2F) + “%”)
appendCell(newRow, “Q3”, accumQ3F + “
” + accumQ3A)
appendCell(newRow, “Q3”, getPercentage(accumQ3A, accumQ3F) + “%”)
appendCell(newRow, “Q4”, accumQ4F + “
” + accumQ4A)
appendCell(newRow, “Q4”, getPercentage(accumQ4A, accumQ4F) + “%”)
var grandTotalFcst = accumQ1F + accumQ2F + accumQ3F + accumQ4F
var grandTotalActual = accumQ1A + accumQ2A + accumQ3A + accumQ4A
appendCell(newRow, “grandTotal”, grandTotalFcst + “
” + grandTotalActual)
appendCell(newRow, “grandTotal”,

getPercentage(grandTotalActual, grandTotalFcst) + “%”)
}
// insert a cell and its content to a recently added row
function appendCell(Trow, Cclass, txt) {

var newCell = Trow.insertCell(Trow.cells.length)
newCell.className = Cclass
newCell.innerHTML = txt

}
// clear previous table content if there is any
function deleteRows(tbl) {

while (tbl.rows.length > 0) {
tbl.deleteRow(0)

}
}

Many standalone statements at the end of the drawTextTable() function are

devoted exclusively to generating the Grand Total row, in which the accumulated

column totals are entered. At the same time, the getPercentage() function,

(c) ketabton.com: The Digital Library

1428 Part V ✦ Putting JavaScript to Work

described earlier, is invoked several times again to derive the quota percentage for

the accumulated grand total values in each quarter as well as the complete year.

SELECT controls
To round out the code listing for this application, the values assigned to the two

SELECT elements obviously have a lot to do with the execution of numerous func-

tions in this application. Nothing magic takes place here, but you can see the extent

of the detail required in assigning script-meaningful hidden values, and human-

meaningful text for both SELECT elements. For example, dividing lines help orga-

nize the long sort key list into three logical blocks.

<P>Sort by: <SELECT ID=”sortChooser” onChange=”selectSort(this)”>
<OPTION VALUE=”byRep”>Representative
<OPTION VALUE=”byRegion”>Sales Region
<OPTION VALUE=””>---------------------
<OPTION VALUE=”byQ1Fcst”>Q1 Forecast
<OPTION VALUE=”byQ1Actual”>Q1 Actual
<OPTION VALUE=”byQ1Quota”>Q1 Performance
<OPTION VALUE=”byQ2Fcst”>Q2 Forecast
<OPTION VALUE=”byQ2Actual”>Q2 Actual
<OPTION VALUE=”byQ2Quota”>Q2 Performance
<OPTION VALUE=”byQ3Fcst”>Q3 Forecast
<OPTION VALUE=”byQ3Actual”>Q3 Actual
<OPTION VALUE=”byQ3Quota”>Q3 Performance
<OPTION VALUE=”byQ4Fcst”>Q4 Forecast
<OPTION VALUE=”byQ4Actual”>Q4 Actual
<OPTION VALUE=”byQ4Quota”>Q4 Performance
<OPTION VALUE=””>---------------------
<OPTION VALUE=”byTotalFcst”>Total Forecast
<OPTION VALUE=”byTotalActual”>Total Actual
<OPTION VALUE=”byTotalQuota”>Total Performance

</SELECT>

Ordered: <SELECT ID=”orderChooser” onChange=”selectOrder()”>

<OPTION VALUE=”inc”>Low to High
<OPTION VALUE=”dec”>High to Low

</SELECT>
</P>

Dreams of Other Views
Confining the example to just one type of view — a table of numbers — should

help you grasp the important processes taking place. But with the XML data con-

verted to JavaScript objects, you can build many other views of the same data into

the same page. For example, a script could completely hide the numeric table, and

generate a different one that draws bar charts for each sales representative or each

region (see Chapter 55 for a scripted bar chart example). The horizontal axis would

be the four quarters, and the vertical axis would be dollars or quota percentages.

Clicking a bar opens a small window or layer to reveal more detail from the sales

representative’s record, such as the name of the person’s manager. More SELECT

(c) ketabton.com: The Digital Library

1429Chapter 57 ✦ Application: Transforming XML Data Islands

elements can let the user select any combination of subsets of the data in either bar

chart or numeric table form to facilitate visual comparisons. You might be even

more creative and devise ways of showing the data by way of overlapping posi-

tioned elements.

The point is that despite the kinds of rendering opportunities afforded by the

XSL Transform mechanism (even if you can get comfortable in the syntax and men-

tal model it presents to authors), JavaScript’s detailed access to the DOM offers far

more potential. Eventually plenty of content authors will mix the two technologies

by embedding JavaScript into XSL style sheets to supplement XSL features.

What About NN6?
Microsoft’s XML data islands are not (yet anyway) part of the W3C DOM. As NN6

was being readied for release, there was little imperative to implement this feature

in the browser (very few convenience features of the IE4+ DOM were adopted in

NN6). And, as mentioned elsewhere, without the XML data islands, combining XML

and HTML in the same document is not strictly “legal.” Oddly enough, the example

in this chapter works in NN6, but it is an accident. For one thing, the tag names in

the XML data do not overlap with any HTML tag names. But don’t take this to mean

you can get away with these kinds of constructions. Even if you can force fit your

XML into an HTML document to get it to work, you have no guarantee it will work in

subsequent browser versions.

To combine the powers of JavaScript and the W3C DOM to operate on XML data

in NN6, we have to keep our eyes on availability of the browser’s built-in capabili-

ties for standard XSL Transform facilities. Some of it works even in the earliest

releases of the new browser, but what works in NN6 doesn’t work (or work well) in

IE5+, and vice versa. Veteran scripters, who bear scars from battles with DOM

incompatibilities, may choose to delay deployments of such content until there is

more unanimity among the latest browsers. Browser incompatibilities are responsi-

ble for a massive inflation of object model vocabulary (not to mention the thickness

of this book). Perhaps the day will come when the code we write for even complex

applications will run cleanly on a broad range of installed browsers on a broad

range of devices. Don’t give up on the dream.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Appendixes
✦ ✦ ✦ ✦

In This Part

Appendix A
JavaScript and
Browser Object
Quick Reference

Appendix B
JavaScript Reserved
Words

Appendix C
Answers to Tutorial
Exercises

Appendix D
JavaScript and DOM
Internet Resources

Appendix E
What’s on the
CD-ROM

✦ ✦ ✦ ✦

P A R T

VIVI

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript and
Browser Object
Quick Reference

The following pages contain reduced printouts of a handy

pamphlet whose Adobe Acrobat (.pdf) file you can find

on the companion CD-ROM. I modified the arrangement of the

following material for printing in this appendix. The .pdf files

on the CD-ROM, which you can print for quick reference, con-

tain all of the pages you see in this appendix.

This compact guide enables you to see at a glance the

breadth of each object’s properties, methods, and event han-

dlers. The core JavaScript language section applies to all

scriptable browsers. The document object model, however, is

divided into the three basic model types that developers must

support:

✦ Fully compatible with all browsers

✦ Internet Explorer proprietary object model

✦ W3C DOM-compatible browsers

As a measure of how much the language — and especially

the object models — have grown in recent times, the same

quick reference for the previous edition of this book

amounted to four printable sides. This edition requires no

fewer than 12 sides.

The large vocabularies and divisive nature of the existing

object models (complicated ever further in the IE browser

due to operating system incompatibilities) create a major

challenge in designing a portable, quick reference like the one

shown on the following pages. Object model groupings in the

Quick Reference are designed to be as consistent as possible

across the three models; so if you attempt to build applica-

tions for multiple object models, you can find, say, the

document object’s property listings in similar positions in

each of the three model references. Development for the IE4+

and W3C DOM environments still requires knowledge about

the original object model because that legacy model persists

in current practice.

AAA P P E N D I X

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1434 Part VI ✦ Appendixes

To conserve space in the IE4+ and W3C DOM sections, I do not list all HTML ele-

ment objects (even though I cover them in chapters of this book). A large percent-

age of HTML elements share the same properties, methods, and event handlers —

all of which are listed in each object model’s section (in a box labeled “All HTML

Elements”). For example, the DIV element has a specific role and behavior from the

point of view of the HTML rendering engine; however, as a scriptable object, it has

no properties, methods, or event handlers beyond the ones it shares with all HTML

elements. Therefore, the only HTML elements that I list within the IE4+ and W3C

DOM sections are those that have one or more properties, methods, and event han-

dlers that are either unique to that object or are shared by only a few related ele-

ments. Once you are acquainted with the items in common with all elements, it is

easier to find the items that are special to a listed object.

If you choose to print the Acrobat files, first read the CD-ROM file Choose a
Version.txt to determine the format you’d like to print. Then read the

howtoprt.txt file in the folder dedicated to your chosen format. This file contains

printing and assembly directions for optimum convenience with respect to the for-

mat you choose.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

1435Appendix A ✦ JavaScript and Browser Object Quick Reference

(1
)M

et
ho

d
of

 th
e

st
at

ic
 S

tr
in

g
ob

je
ct

.
(2

)A
dd

ed
 b

eh
av

io
r

in
 N

4
in

cl
ud

es
: a

bi
lit

y
to

 a
cc

ep
t a

 r
eg

ex
p

pa
ra

m
et

er
; s

ec
on

d
pa

ra
m

et
er

 (
lim

it
in

te
ge

r)
 to

 li
m

it
th

e
nu

m
be

r
of

sp

lit
s

to
 b

e
in

cl
ud

ed
; a

 s
pa

ce
 s

tr
in

g
pa

ra
m

et
er

 s
ig

ni
fy

in
g

an
y

w
hi

te

sp
ac

e
ch

ar
ac

te
r.

co
ns

tr
uc

to
rN

4,
 IE

4

le
ng

th
pr

ot
ot

yp
e

N
4,

 J
2

an
ch

or
("

an
ch

or
N

am
e

")
bi

g(
)

bl
in

k(
)

bo
ld

()
ch

ar
A

t(
in

de
x

)
ch

ar
C

od
eA

t(
[i

])N
4,

 IE
4

co
nc

at
(s

tr
in

g2
)N

4,
 IE

4

fix
ed

()
fo

nt
co

lo
r(

#
rr

gg
bb

)
fo

nt
si

ze
(1

to
7)

fr
om

C
ha

rC
od

e(
n1

...
)(

1)
,N

4,
 IE

4

in
de

xO
f(

"s
tr

"
[,i

])
ita

lic
s(

)
la

st
In

de
xO

f(
"s

tr
"

[,i
])

lin
k(

U
R

L)
lo

ca
le

C
om

pa
re

()
N

6,
 IE

5.
5

m
at

ch
(r

eg
ex

p
)N

4,
 IE

4

re
pl

ac
e(

re
ge

xp
,s

tr
)N

4,
 IE

4

se
ar

ch
(r

eg
ex

p
)N

4,
 IE

4

sl
ic

e(
i,j

)N
4,

 IE
4

sm
al

l()
sp

lit
(c

ha
r)

N
3,

 (
2)

, I
E

4

st
rik

e(
)

su
b(

)
su

bs
tr

(s
ta

rt
,le

ng
th

)N
4,

 IE
4

su
bs

tr
in

g(
in

tA
, i

nt
B

)
su

p(
)

to
Lo

ca
le

Lo
w

er
C

as
e(

)N
6,

 IE
5.

5

to
Lo

ca
le

U
pp

er
C

as
e(

)N
6,

 IE
5.

5

to
Lo

w
er

C
as

e(
)

to
S

tr
in

g(
)N

4,
 IE

4

to
U

pp
er

C
as

e(
)

va
lu

eO
f(

)N
4,

 IE
4

S
tr

in
g

(1
)P

ro
pe

rt
y

of
 th

e
st

at
ic

 R
eg

E
xp

 o
bj

ec
t.

(2
)R

et
ur

ns
 a

n
ar

ra
y

w
ith

 p
ro

pe
rt

ie
s:

 in
de

x,
 in

pu
t,

[0
],

[1
],.

..[
n]

.

gl
ob

al
ig

no
re

C
as

e
in

pu
t(

1)
, I

E
5.

5

la
st

In
de

x
m

ul
til

in
e

(1
),

 IE
5.

5

la
st

M
at

ch
(1

),
 IE

5.
5

la
st

P
ar

en
(1

),
 IE

5.
5

le
ftC

on
te

xt
(1

),
 IE

5.
5

pr
ot

ot
yp

e
rig

ht
C

on
te

xt
(1

)

so
ur

ce
$1

...
$9

co
m

pi
le

(r
eg

ex
p

)
ex

ec
("

st
rin

g
")(

2)

te
st

("
st

rin
g

")
st

r.
m

at
ch

(r
eg

ex
p

)
st

r.
re

pl
ac

e(
re

ge
xp

,s
tr

)
st

r.
se

ar
ch

(r
eg

ex
p

)
st

r.
sp

lit
(r

eg
ex

p
[,l

im
it

])

R
eg

ul
ar

 E
xp

re
ss

io
ns

N
4,

IE
4

(1
)D

is
co

nt
in

ue
d

fo
r

N
6.

ar
gu

m
en

ts
ar

ity
N

4

ca
lle

r(
1)

co
ns

tr
uc

to
rN

4,
 IE

4

le
ng

th
pr

ot
ot

yp
e

ap
pl

y(
th

is
, a

rg
sA

rr
ay

)N
6,

 IE
5.

5

ca
ll(

th
is

[,a
rg

1[
,..

.a
rg

N
]])

N
6,

 IE
5.

5

to
S

tr
in

g(
)

va
lu

eO
f(

)

F
un

ct
io

nN
3,

J2

pr
ot

ot
yp

e
co

ns
tr

uc
to

r
de

sc
rip

tio
n

W
5

fil
eN

am
e

N
6

lin
eN

um
be

rN
6

m
es

sa
ge

N
6,

 IE
5.

5

na
m

e
N

6,
 IE

5.
5

nu
m

be
rW

5

to
S

tr
in

g(
)

E
rr

or
N

6,
W

5

co
ns

tr
uc

to
rN

4,
 IE

4

M
A

X
_V

A
LU

E
M

IN
_V

A
LU

E
N

aN
N

E
G

A
T

IV
E

_I
N

F
IN

IT
Y

P
O

S
IT

IV
E

_I
N

F
IN

IT
Y

pr
ot

ot
yp

e

to
E

xp
on

en
tia

l(
n)

N
6,

 IE
5.

5

to
F

ix
ed

(n
)N

6,
 IE

5.
5

to
Lo

ca
le

S
tr

in
g(

)N
6,

 IE
5.

5

to
S

tr
in

g(
[r

ad
ix

])N
4,

 IE
4

to
P

re
ci

si
on

(
n)

N
6,

 IE
5.

5

va
lu

eO
f(

)N
4,

 IE
4

N
um

be
rN

3,
J2

co
ns

tr
uc

to
rN

4,
 IE

4

pr
ot

ot
yp

e
N

3,
 IE

4
ge

tF
ul

lY
ea

r(
)N

4,
 J

2

ge
tY

ea
r(

)
ge

tM
on

th
()

ge
tD

at
e(

)
ge

tD
ay

()
ge

tH
ou

rs
()

ge
tM

in
ut

es
()

ge
tS

ec
on

ds
()

ge
tT

im
e(

)
ge

tM
ill

is
ec

on
ds

()
N

4,
 J

2

ge
tU

T
C

F
ul

lY
ea

r(
)N

4,
 J

2

ge
tU

T
C

M
on

th
()

N
4,

 J
2

ge
tU

T
C

D
at

e(
)N

4,
 J

2

ge
tU

T
C

D
ay

()
N

4,
 J

2

ge
tU

T
C

H
ou

rs
()

N
4,

 J
2

ge
tU

T
C

M
in

ut
es

()
N

4,
 J

2

ge
tU

T
C

S
ec

on
ds

()
N

4,
 J

2

ge
tU

T
C

M
ill

is
ec

on
ds

()
N

4,
 J

2

se
tY

ea
r(

va
l)

se
tF

ul
lY

ea
r(

va
l)

N
4,

 J
2

se
tM

on
th

(v
al

)
se

tD
at

e(
va

l)
se

tD
ay

(v
al

)
se

tH
ou

rs
(v

al
)

se
tM

in
ut

es
(

va
l)

se
tS

ec
on

ds
(

va
l)

se
tM

ill
is

ec
on

ds
(

va
l)

N
4,

 J
2

se
tT

im
e(

va
l)

se
tU

T
C

F
ul

lY
ea

r(
va

l)
N

4,
 J

2

se
tU

T
C

M
on

th
(v

al
)N

4,
 J

2

se
tU

T
C

D
at

e(
va

l)
N

4,
 J

2

se
tU

T
C

D
ay

(v
al

)N
4,

 J
2

se
tU

T
C

H
ou

rs
(v

al
)N

4,
 J

2

se
tU

T
C

M
in

ut
es

(v
al

)N
4,

 J
2

se
tU

T
C

S
ec

on
ds

(v
al

)N
4,

 J
2

se
tU

T
C

M
ill

is
ec

on
ds

(
va

l)
N

4,
 J

2

ge
tT

im
ez

on
eO

ffs
et

()
to

D
at

eS
tr

in
g(

)I
E

5.
5

to
G

M
T

S
tr

in
g(

)
to

Lo
ca

le
D

at
eS

tr
in

g(
)

IE
5.

5,
 N

6

to
Lo

ca
le

S
tr

in
g(

)
to

Lo
ca

le
T

im
eS

tr
in

g(
)

IE
5.

5,
 N

6

to
S

tr
in

g(
)

to
T

im
eS

tr
in

g(
)I

E
5.

5

to
U

T
C

S
tr

in
g(

)N
4,

 J
2

D
at

e.
pa

rs
e(

"d
at

eS
tr

in
g

")
D

at
e.

U
T

C
(d

at
e

va
lu

es
)

D
at

e

co
ns

tr
uc

to
rN

4,
 IE

4

pr
ot

ot
yp

e
to

S
tr

in
g(

)N
4,

 IE
4

va
lu

eO
f(

)N
4,

 IE
4

B
oo

le
an

N
3,

J2

co
ns

tr
uc

to
rN

4,
 IE

4

le
ng

th
pr

ot
ot

yp
e

co
nc

at
(a

rr
ay

2)
N

4,
 IE

4

jo
in

("
ch

ar
")

pu
sh

()
N

4,
 IE

5.
5

po
p(

)N
4,

 IE
5.

5

re
ve

rs
e(

)
sh

ift
()

N
4,

 IE
5.

5

sl
ic

e(
i,[

j])
N

4,
 IE

4

so
rt

(c
om

pa
re

F
un

c
)

sp
lic

e(
i,j

[,
ite

m
s

])N
4,

 IE
5.

5

to
Lo

ca
le

S
tr

in
g(

)N
6,

 IE
5.

5

to
S

tr
in

g(
)

un
sh

ift
()

N
4,

 IE
5.

5

A
rr

ay
N

3,
J2

(1
)A

ll
pr

op
er

tie
s

&
 m

et
ho

ds
 a

re
 o

f t
he

 s
ta

tic
 M

at
h

ob
je

ct
.

E LN
2

LN
10

LO
G

2E
LO

G
10

E
P

I
S

Q
R

T
1_

2
S

Q
R

T
2

ab
s(

va
l)

ac
os

(v
al

)
as

in
(v

al
)

at
an

(v
al

)
at

an
2(

va
l1

, v
al

2
)

ce
il(

va
l)

co
s(

va
l)

ex
p(

va
l)

flo
or

(v
al

)
lo

g(
va

l)
m

ax
(v

al
1

, v
al

2
)

m
in

(v
al

1
, v

al
2

)
po

w
(v

al
1

, p
ow

er
)

ra
nd

om
()

ro
un

d(
va

l)
si

n(
va

l)
sq

rt
(v

al
)

ta
n(

va
l)

M
at

h
(1

)

F
u

n
ct

io
n

s
de

co
de

U
R

I(
"e

nc
od

ed
U

R
I"

)N
6,

 IE
5.

5

de
co

de
U

R
IC

om
po

ne
nt

("
en

cC
om

p
")N

6,
 IE

5.
5

en
co

de
U

R
I(

"U
R

IS
tr

in
g

")N
6,

 IE
5.

5

en
co

de
U

R
IC

om
po

ne
nt

("
co

m
pS

tr
in

g
")N

6,
 IE

5.
5

es
ca

pe
("

st
rin

g
"

[,1
])

ev
al

("
st

rin
g

")

is
F

in
ite

(n
um

be
r)

N
4,

 IE
4

is
N

aN
(e

xp
re

ss
io

n
)

N
um

be
r(

st
rin

g
)N

4,
 IE

4

pa
rs

eF
lo

at
("

st
rin

g
")

pa
rs

eI
nt

("
st

rin
g

"
[,r

ad
ix

])
to

S
tr

in
g(

[r
ad

ix
])

un
es

ca
pe

("
st

rin
g

")
un

w
at

ch
(p

ro
p)

N
4

w
at

ch
(p

ro
p,

 h
an

dl
er

)N
4

G
lo

ba
ls S

ta
te

m
en

ts
//

/*

...
*/

co
ns

tN
6

va
r

if
(c

on
di

tio
n

)
 {

st
at

em
en

ts
IfT

ru
e

} if
(c

on
di

tio
n

)
 {

st
at

em
en

ts
IfT

ru
e

}
el

se
 {

st
at

em
en

ts
IfF

al
se

} re
su

lt
 =

 c
on

di
tio

n
 ?

 e
xp

r1
 :

ex
pr

2

fo
r

([i
ni

t e
xp

r]
; [

co
nd

iti
on

];
[u

pd
at

e
 e

xp
r]

)
{

st
at

em
en

ts
} fo

r
(v

ar
 in

 o
bj

ec
t)

 {

st

at
em

en
ts

} w
hi

le
 (

co
nd

iti
on

)
{

st
at

em
en

ts
} sw

itc
h

(e
xp

re
ss

io
n

)
{

 c

as
e

la
be

lN
 :

st
at

em
en

ts

 [
br

ea
k]

 .

..

 [
de

fa
ul

t :

st

at
em

en
ts

]
}N

4,
 IE

4

la
be

l :
 N

4,
 IE

4

co
nt

in
ue

 [
la

be
l]

N
4,

 IE
4

br
ea

k
[la

be
l]

N
4,

 IE
4

tr
y

{

st

at
em

en
ts

 to
 te

st
} [c

at
ch

 (
er

ro
rI

nf
o)

 {

st

at
em

en
ts

 if
 e

xc
ep

tio
n

oc
cu

rs
 in

 tr
y

bl
oc

k
}] [fi

na
lly

 {

st

at
em

en
ts

 to
 r

un
, e

xc
ep

tio
n

or
 n

ot
}]N

6,
 W

5

th
ro

w
 v

al
ue

N
6,

 W
5

C
on

tr
ol

 S
ta

te
m

en
ts

w
ith

 (
ob

je
ct

)
{

st
at

em
en

ts
}

do
 {

st

at
em

en
ts

}
w

hi
le

 (
co

nd
iti

on
)N

4,
 IE

4

C
or

e
Ja

va
Sc

ri
pt

/J
Sc

ri
pt

/E
C

M
A

Sc
ri

pt
 (

N
N

2+
, I

E
3+

)
Q

ui
ck

 R
ef

er
en

ce
' 2

00
1

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

4

37 36

34 38 35

35

35 41 42

3939

(c) ketabton.com: The Digital Library

1436 Part VI ✦ Appendixes

C
o

m
p

ar
is

o
n

=
=

E

qu
al

s
=

=
=

 N
4,

 IE
4

S
tr

ic
tly

 e
qu

al
s

!=

D
oe

s
no

t e
qu

al
!=

=
 N

4,
 IE

4
S

tr
ic

tly
 d

oe
s

no
t e

qu
al

>

Is
 g

re
at

er
 th

an
>

=

Is
 g

re
at

er
 th

an
 o

r
eq

ua
l t

o
<

Is

 le
ss

 th
an

<
=

Is

 le
ss

 th
an

 o
r

eq
ua

l t
o

A
ri

th
m

et
ic

+

P
lu

s
(a

nd
 s

tr
in

g
co

nc
at

.)
-

M
in

us
*

M
ul

tip
ly

/
D

iv
id

e
%

M

od
ul

o
+

+

In
cr

em
en

t
--

D

ec
re

m
en

t
-v

al

N
eg

at
io

n

A
ss

ig
n

m
en

t
=

E

qu
al

s
+

=

A
dd

 b
y

va
lu

e
-=

S

ub
tr

ac
t b

y
va

lu
e

*=

M
ul

tip
ly

 b
y

va
lu

e
/=

D

iv
id

e
by

 v
al

ue
%

=

M
od

ul
o

by
 v

al
ue

<
<

=

Le
ft

sh
ift

 b
y

va
lu

e
>

>
=

R

ig
ht

 s
hi

ft
by

 v
al

ue
>

>
>

=

Z
er

o
fil

l b
y

va
lu

e
&

=

B
itw

is
e

A
N

D
 b

y
va

lu
e

|=

B
itw

is
e

O
R

 b
y

va
lu

e
^=

B

itw
is

e
X

O
R

 b
y

va
lu

e

B
o

o
le

an
&

&

A
N

D
||

O
R

!
N

O
T

B
it

w
is

e
&

B

itw
is

e
A

N
D

|
B

itw
is

e
O

R
^

B
itw

is
e

X
O

R
~

B

itw
is

e
N

O
T

<
<

Le

ft
sh

ift
>

>

R
ig

ht
 s

hi
ft

>
>

>

Z
er

o
fil

l r
ig

ht
 s

hi
ft

M
is

ce
lla

n
eo

u
s

,

 S
er

ie
s

de
lim

ite
r

de
le

te
N

4,
 IE

4

P

ro
pe

rt
y

de
st

ro
ye

r
in

N
6,

 IE
5.

5

 It
em

 in
 o

bj
ec

t
in

st
an

ce
of

N
6,

W
5

 In
st

an
ce

 o
f

ne
w

 O
bj

ec
t c

re
at

or
th

is

 O

bj
ec

t s
el

f-
re

fe
re

nc
e

ty
pe

of
N

3,
 IE

3

 V

al
ue

 ty
pe

vo
id

N
3,

 IE
3

 R

et
ur

n
no

 v
al

ue

O
pe

ra
to

rs
T

ex
t

&
 F

o
n

ts
co

lo
rI

E
4,

 N
6

fo
nt

IE
4,

 N
6

fo
nt

F
am

ily
IE

4,
 N

6

fo
nt

S
iz

e
IE

4,
 N

6

fo
nt

S
iz

eA
dj

us
t

M
5,

 N
6

fo
nt

S
tr

et
ch

M
5,

 N
6

fo
nt

S
ty

le
IE

4,
 N

6

fo
nt

V
ar

ia
nt

IE
4,

 N
6

fo
nt

W
ei

gh
tI

E
4,

 N
6

le
tte

rS
pa

ci
ng

IE
4,

 N
6

lin
eB

re
ak

IE
5

lin
eH

ei
gh

tI
E

4,
 N

6

qu
ot

es
M

5,
 N

6

ru
by

A
lig

n
IE

5

ru
by

O
ve

rh
an

g
IE

5

ru
by

P
os

iti
on

IE
5

te
xt

A
lig

n
IE

4,
 N

6

te
xt

A
lig

nL
as

t
IE

5.
5

te
xt

A
ut

os
pa

ce
W

5

te
xt

D
ec

or
at

io
n

IE
4,

 N
6

te
xt

D
ec

or
at

io
nB

lin
k

IE
-O

nl
y

te
xt

D
ec

or
at

io
nL

in
eT

hr
ou

gh
IE

-O
nl

y

te
xt

D
ec

or
at

io
nN

on
e

IE
-O

nl
y

te
xt

D
ec

or
at

io
nO

ve
rli

ne
IE

-O
nl

y

te
xt

D
ec

or
at

io
nU

nd
er

lin
e

IE
-O

nl
y

te
xt

In
de

nt
IE

4,
 N

6

te
xt

Ju
st

ify
IE

5

te
xt

Ju
st

ify
T

rim
IE

5

te
xt

K
as

hi
da

S
pa

ce
IE

5.
5

te
xt

S
ha

do
w

M
5,

 N
6

te
xt

T
ra

ns
fo

rm
IE

4,
 N

6

te
xt

U
nd

er
lin

eP
os

iti
on

IE
5.

5

un
ic

od
eB

id
i

IE
5,

 N
6

w
hi

te
S

pa
ce

IE
4,

 N
6

w
or

dB
re

ak
W

5

w
or

dS
pa

ci
ng

IE
4,

 N
6

w
or

dW
ra

pI
E

5.
5

w
rit

in
gM

od
e

IE
5.

5

st
yl

e
IE

4,
N

6

In
lin

e
D

is
p

la
y

&
 L

ay
o

u
t

cl
ea

rI
E

4,
 N

6

cl
ip

IE
4,

 N
6

cl
ip

B
ot

to
m

W
5

cl
ip

Le
ft

W
5

cl
ip

R
ig

ht
W

5

cl
ip

T
op

W
5

co
nt

en
tM

5,
 N

6

co
un

te
rI

nc
re

m
en

tM
5,

 N
6

co
un

te
rR

es
et

M
5,

 N
6

cs
sF

lo
at

M
5,

 N
6

cu
rs

or
IE

4,
 N

6

di
re

ct
io

n
IE

5,
 N

6

di
sp

la
y

IE
4,

 N
6

fil
te

rW
4

flo
at

S
ty

le
M

4

la
yo

ut
G

rid
W

5

la
yo

ut
G

rid
C

ha
rW

5

la
yo

ut
G

rid
Li

ne
W

5

la
yo

ut
G

rid
M

od
e

W
5

la
yo

ut
G

rid
T

yp
e

W
5

m
ar

ke
rO

ffs
et

M
5,

 N
6

m
ar

ks
M

5,
 N

6

m
ax

H
ei

gh
tM

5,
 N

6

m
ax

W
id

th
M

5,
 N

6

m
in

H
ei

gh
tM

5,
 N

6

m
in

W
id

th
M

5,
 N

6

ov
er

flo
w

IE
4,

 N
6

ov
er

flo
w

X
W

5

ov
er

flo
w

Y
W

5

st
yl

eF
lo

at
IE

-O
nl

y

ve
rt

ic
al

A
lig

n
IE

4,
 N

6

vi
si

bi
lit

y
IE

4,
 N

6

w
id

th
IE

4,
 N

6

zo
om

IE
5.

5

L
is

ts
lis

tS
ty

le
IE

4,
 N

6

lis
tS

ty
le

Im
ag

e
IE

4,
 N

6

lis
tS

ty
le

P
os

iti
on

IE
4,

 N
6

lis
tS

ty
le

T
yp

e
IE

4,
 N

6

S
cr

o
llb

ar
s

sc
ro

llb
ar

3d
Li

gh
tC

ol
or

IE
5.

5

sc
ro

llb
ar

A
rr

ow
C

ol
or

IE
5.

5

sc
ro

llb
ar

B
as

eC
ol

or
IE

5.
5

sc
ro

llb
ar

D
ar

kS
ha

do
w

C
ol

or
IE

5.
5

sc
ro

llb
ar

F
ac

eC
ol

or
IE

5.
5

sc
ro

llb
ar

H
ig

hl
ig

ht
C

ol
or

IE
5.

5

sc
ro

llb
ar

S
ha

do
w

C
ol

or
IE

5.
5

sc
ro

llb
ar

T
ra

ck
C

ol
or

IE
5.

5

M
is

ce
lla

n
eo

u
s

ac
ce

le
ra

to
rW

5

be
ha

vi
or

W
5

cs
sT

ex
tI

E
4,

 N
6

im
eM

od
e

W
5

P
ri

n
ti

n
g

or
ph

an
s

M
5,

 N
6

w
id

ow
s

M
5,

 N
6

pa
ge

M
5,

 N
6

pa
ge

B
re

ak
A

fte
rI

E
4,

 N
6

pa
ge

B
re

ak
B

ef
or

e
IE

4,
 N

6

pa
ge

B
re

ak
In

si
de

M
5,

 N
6

si
ze

N
6

T
ab

le
s

bo
rd

er
C

ol
la

ps
e

M
5,

 N
6

bo
rd

er
S

pa
ci

ng
M

5,
 N

6

ca
pt

io
nS

id
e

M
5,

 N
6

em
pt

yC
el

ls
M

5,
 N

6

ta
bl

eL
ay

ou
tI

E
5,

 N
6

B
o

rd
er

s
&

 E
d

g
es

bo

rd
er

IE
4,

 N
6

bo
rd

er
B

ot
to

m
IE

4,
 N

6

bo
rd

er
Le

ftI
E

4,
 N

6

bo
rd

er
R

ig
ht

IE
4,

 N
6

bo
rd

er
T

op
IE

4,
 N

6

bo
rd

er
B

ot
to

m
C

ol
or

IE
4,

 N
6

bo
rd

er
Le

ftC
ol

or
IE

4,
 N

6

bo
rd

er
R

ig
ht

C
ol

or
IE

4,
 N

6

bo
rd

er
T

op
C

ol
or

IE
4,

 N
6

bo
rd

er
B

ot
to

m
S

ty
le

IE
4,

 N
6

bo
rd

er
Le

ftS
ty

le
IE

4,
 N

6

bo
rd

er
R

ig
ht

S
ty

le
IE

4,
 N

6

bo
rd

er
T

op
S

ty
le

IE
4,

 N
6

bo
rd

er
B

ot
to

m
W

id
th

IE
4,

 N
6

bo
rd

er
Le

ftW
id

th
IE

4,
 N

6

bo
rd

er
R

ig
ht

W
id

th
IE

4,
 N

6

bo
rd

er
T

op
W

id
th

IE
4,

 N
6

bo
rd

er
C

ol
or

IE
4,

 N
6

bo
rd

er
S

ty
le

IE
4,

 N
6

bo
rd

er
W

id
th

IE
4,

 N
6

m
ar

gi
n

IE
4,

 N
6

m
ar

gi
nB

ot
to

m
IE

4,
 N

6

m
ar

gi
nL

ef
tI

E
4,

 N
6

m
ar

gi
nR

ig
ht

IE
4,

 N
6

m
ar

gi
nT

op
IE

4,
 N

6

ou
tli

ne
M

5,
 N

6

ou
tli

ne
C

ol
or

M
5,

 N
6

ou
tli

ne
S

ty
le

M
5,

 N
6

ou
tli

ne
W

id
th

M
5,

 N
6

pa
dd

in
g

IE
4,

 N
6

pa
dd

in
gB

ot
to

m
IE

4,
 N

6

pa
dd

in
gL

ef
tI

E
4,

 N
6

pa
dd

in
gR

ig
ht

IE
4,

 N
6

pa
dd

in
gT

op
IE

4,
 N

6

B
ac

kg
ro

u
n

d

ba
ck

gr
ou

nd
IE

4,
 N

6

ba
ck

gr
ou

nd
A

tta
ch

m
en

t
IE

4,
 N

6

ba
ck

gr
ou

nd
C

ol
or

IE
4,

 N
6

ba
ck

gr
ou

nd
Im

ag
e

IE
4,

 N
6

ga
ck

gr
ou

nd
P

os
iti

on
IE

4,
 N

6

ba
ck

gr
ou

nd
P

os
iti

on
X

IE
-O

nl
y

ba
ck

gr
ou

nd
P

os
iti

on
Y

IE
-O

nl
y

ba
ck

gr
ou

nd
R

ep
ea

tI
E

4,
 N

6

P
o

si
ti

o
n

in
g

bo
tto

m
IE

5,
 N

6

he
ig

ht
IE

4,
 N

6

le
ft

IE
4,

 N
6

rig
ht

IE
5,

 N
6

to
p

IE
4,

 N
6

w
id

th
IE

4,
 N

6

pi
xe

lB
ot

to
m

IE
/W

-O
nl

y

pi
xe

lH
ei

gh
t

IE
-O

nl
y

pi
xe

lL
ef

tI
E

-O
nl

y

pi
xe

lR
ig

ht
IE

/W
-O

nl
y

pi
xe

lT
op

IE
-O

nl
y

pi
xe

lW
id

th
IE

-O
nl

y

po
sB

ot
to

m
IE

/W
-O

nl
y

po
sH

ei
gh

tI
E

-O
nl

y

po
sL

ef
tI

E
-O

nl
y

po
sR

ig
ht

IE
/W

-O
nl

y

po
sT

op
IE

-O
nl

y

po
sW

id
th

IE
-O

nl
y

po
si

tio
n

IE
4,

 N
6

zI
nd

ex
IE

4,
 N

6

IE
4
+
,
N
N
6
+

st
yl

e
O
b
je
ct
P
ro
p
er
ti
es

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

Ja
va

S
cr

ip
t

an
d

B
ro

w
se

r
O

bj
ec

ts
Q

u
ic

k
R

ef
er

en
ce

A
pp

en
di

x
A

Ja
va

S
cr

ip
t

B
ib

le
, 4

th
 E

di
ti

on
by

 D
an

n
y

G
oo

dm
an

H
ow

 t
o

U
se

 T
h

is
 Q

u
ic

k
R

ef
er

en
ce

T
h

is
 g

u
id

e
co

n
ta

in
s

qu
ic

k
re

fe
re

n
ce

 in
fo

 f
or

 t
h

e
co

re
 J

av
aS

cr
ip

t
la

n
gu

ag
e,

 t
h

e
or

ig
in

al
 d

oc
u

m
en

t
ob

je
ct

 m
od

el
 (

2
pp

),
 t

h
e

IE
4+

D
H

T
M

L
ob

je
ct

 m
od

el
 (

4
pp

),
 a

n
d

th
e

W
3C

 D
O

M
 o

bj
ec

t
m

od
el

(4
 p

p)
 a

s
im

pl
em

en
te

d
in

 I
E

5+
 a

n
d

N
N

6.
 A

ll
-u

pp
er

ca
se

 o
bj

ec
t

n
am

es
 r

ef
er

to
 H

T
M

L
 e

le
m

en
ts

 (
IE

4+
 a

n
d

W
3C

 D
O

M
s)

. T
h

e
th

re
e

co
lu

m
n

s
in

 e
ac

h
 b

ox
 li

st
 t

h
e

ob
je

ct
’s

 p
ro

pe
rt

ie
s,

m
et

h
od

s,
 a

n
d

ev
en

t
h

an
dl

er
s

in
 t

h
at

 o
rd

er
. R

ea
d

th
e

co
m

pa
ti

bi
li

ty
 g

u
id

es
 f

or
 e

ac
h

 s
ec

ti
on

.

N
u

m
be

rs
 in

 t
h

e
u

pp
er

 le
ft

 c
or

n
er

s
of

 o
bj

ec
t

sq
u

ar
es

 a
re

 c
h

ap
te

r
n

u
m

be
rs

 in
 w

h
ic

h
 t

h
e

ob
je

ct
 is

 c
ov

er
ed

 in
 d

et
ai

l.

B
as

ic
 b

ro
w

se
r

an
d

op
er

at
in

g
sy

st
em

 n
ot

at
io

n
 c

od
es

 a
re

 a
s

fo
ll

ow
s:

N

 —
 N

et
sc

ap
e

N
av

ig
at

or

IE
 —

 M
S

 I
n

te
rn

et
 E

xp
lo

re
r

W

 —
 W

in
32

 O
S

M

 —
 M

ac
in

to
sh

 O
S

S
ee

 t
h

e
ac

co
m

pa
n

yi
n

g
fi

le
 f

or
 p

ri
n

ti
n

g
an

d
co

ll
at

in
g

in
st

ru
ct

io
n

s
in

 b
oo

kl
et

 o
r

br
oa

ds
id

e
co

n
fi

gu
ra

ti
on

s.

4
0

3
0

(c) ketabton.com: The Digital Library

1437Appendix A ✦ JavaScript and Browser Object Quick Reference

ca
pt

ur
eE

ve
nt

s(
ty

pe
)N

4-
O

nl
y

cl
ea

r(
)

cl
os

e(
)

ge
tS

el
ec

tio
n(

)
N

4,
(2

)

ha
nd

le
E

ve
nt

(
ev

en
t)

N
4-

O
nl

y

op
en

("
m

im
et

yp
e

"
[,r

ep
la

ce
])(

3)

re
le

as
eE

ve
nt

s(
ty

pe
)N

4-
O

nl
y

ro
ut

eE
ve

nt
(e

ve
nt

)N
4-

O
nl

y

w
rit

e(
"s

tr
in

g
")

w
rit

el
n(

"s
tr

in
g

")

al
in

kC
ol

or
an

ch
or

s[
]

ap
pl

et
s[

]N
3,

 IE
4

bg
C

ol
or

co
ok

ie
do

m
ai

n
N

3,
 IE

4

em
be

ds
[]

N
3,

 IE
4

fg
C

ol
or

fo
rm

s[
]

he
ig

ht
N

4

im
ag

es
[]

N
3,

 IE
4

la
st

M
od

ifi
ed

la
ye

rs
[]

N
4-

O
nl

y

lin
kC

ol
or

lin
ks

[]
lo

ca
tio

n
(1

)

re
fe

rr
er

tit
le

U
R

LN
3,

 IE
4

vl
in

kC
ol

or
w

id
th

N
4

do
cu

m
en

t
(N

on
e)

(1
)

R
ep

la
ce

d
by

 th
e

U
R

L
pr

op
er

ty
 in

 N
av

ig
at

or
 3

.
(2

)
M

4
ha

s
a

do
cu

m
en

t.s
el

ec
tio

n
pr

op
er

ty
 to

 r
et

rie
ve

 th
e

cu
rr

en
tly

 s
el

ec
te

d
te

xt
.

(3
)

m
im

et
yp

e
pa

ra
m

et
er

 n
ew

 in
 M

4,
 b

ut
 o

nl
y

"t
ex

t/h
tm

l"
ty

pe
 s

up
po

rt
ed

.

lo
ca

tio
n

as
si

gn
("

U
R

L"
)

re
lo

ad
([

un
co

nd
iti

on
al

])N
3,

IE
4

re
pl

ac
e(

"U
R

L"
)N

3,
IE

4

ha
sh

ho
st

ho
st

na
m

e
hr

ef
pa

th
na

m
e

po
rt

pr
ot

oc
ol

(N
on

e)

ab
ov

e
ba

ck
gr

ou
nd

be
lo

w
bg

C
ol

or
cl

ip
.b

ot
to

m
cl

ip
.h

ei
gh

t
cl

ip
.le

ft
cl

ip
.r

ig
ht

cl
ip

.to
p

cl
ip

.w
id

th
do

cu
m

en
t

le
ft

na
m

e
pa

ge
X

pa
ge

Y
pa

re
nt

La
ye

r
si

bl
in

gA
bo

ve
si

bl
in

gB
el

ow
sr

c
to

p
vi

si
bi

lit
y

zI
nd

ex

la
ye

rN
4-

O
nl

y

lo
ad

("
fil

en
am

e
",

 y
)

m
ov

eA
bo

ve
(l

ay
er

O
bj

)
m

ov
eB

el
ow

(l
ay

er
O

bj
)

m
ov

eB
y(

∆
x,

 ∆
y)

m
ov

eT
o(

x,
 y

)
m

ov
eT

oA
bs

ol
ut

e(
x,

 y
)

re
si

ze
B

y(
∆

x,
 ∆

y)
re

si
ze

T
o(

w
id

th
, h

ei
gh

t)

on
B

lu
r

on
F

oc
us

on
Lo

ad
on

M
ou

se
O

ut
on

M
ou

se
O

ve
r

on
M

ou
se

U
p

_c
on

te
nt

N
6

ap
pC

or
eN

6

cl
ie

nt
In

fo
rm

at
io

n
IE

4
cl

ip
bo

ar
dD

at
a

W
5

cl
os

ed
N

3,
 IE

4

C
om

po
ne

nt
s[

]N
6

co
nt

ro
lle

rs
[]

N
6

cr
yp

to
N

6

de
fa

ul
tS

ta
tu

s
di

al
og

A
rg

um
en

ts
W

4

di
al

og
H

ei
gh

tW
4

di
al

og
Le

ft
W

4

di
al

og
T

op
W

4

di
al

og
W

id
th

W
4

di
re

ct
or

ie
s

N
4,

(S
)

do
cu

m
en

t
ev

en
tI

E
4

ex
te

rn
al

W
4

fr
am

eE
le

m
en

tI
E

5.
5

fr
am

es
[]

hi
st

or
y

in
ne

rH
ei

gh
tN

4

in
ne

rW
id

th
N

4

le
ng

th
N

6,
 IE

4

lo
ad

in
g

N
4-

O
nl

y

lo
ca

tio
n

lo
ca

tio
nb

ar
N

4,
(S

)

m
en

ub
ar

N
4,

(S
)

na
m

e
na

vi
ga

to
rN

6,
 IE

4

of
fs

cr
ee

nB
uf

fe
rin

g
W

4
op

en
er

 IE
3,

 N
3

ou
te

rH
ei

gh
t

N
4

ou
te

rW
id

th
 N

4

pa
ge

X
O

ffs
et

 N
4

pa
ge

Y
O

ffs
et

 N
4

pa
re

nt

pe
rs

on
al

ba
r

N
4,

(S
)

pk
cs

11
N

6

pr
om

pt
er

N
6

re
tu

rn
V

al
ue

W
4

sc
re

en
 N

6,
 IE

4

sc
re

en
Le

ft
W

5

sc
re

en
T

op
W

5

sc
re

en
X

N
6

sc
re

en
Y

N
6

sc
ro

llb
ar

s
N

4,
(S

)

sc
ro

llX
N

6

sc
ro

llY
N

6

se
lf

si
de

ba
rN

4,
(S

)

st
at

us

st
at

us
ba

rN
4,

(S
)

to
ol

ba
r

N
4,

(S
)

to
p

w
in

do
w

w
in

do
w

(1
)N

ew
 w

in
do

w
 s

pe
cs

 fo
r

al
l b

ro
w

se
rs

: h
ei

gh
t,

w
id

th
, t

oo
lb

ar
, l

oc
at

io
n,

 d
ire

ct
or

ie
s,

 s
ta

tu
s,

 m
en

ub
ar

,

 s
cr

ol
lb

ar
s,

 r
es

iz
ab

le
, c

op
yh

is
to

ry
. A

dd
'l

sp
ec

s
fo

r
N

4+
: a

lw
ay

sL
ow

er
ed

(S
),

 a
lw

ay
sR

ai
se

d(
S

),

 d

ep
en

de
nt

, h
ot

ke
ys

, i
nn

er
H

ei
gh

t,
in

ne
rW

id
th

, o
ut

er
H

ei
gh

t,
ou

te
rW

id
th

, s
cr

ee
nX

, s
cr

ee
nY

, t
itl

eb
ar

(S
),

 z
-lo

ck
(S

).
 A

dd
'l

sp
ec

s
fo

r
IE

4+
: c

ha
nn

el
m

od
e,

 fu
lls

cr
ee

n,
 le

ft,
 to

p.
 A

dd
'l

sp
ec

 fo
r

IE
5+

: t
itl

e.
(2

)O
pt

io
na

l a
rg

s
pa

ra
m

et
er

 a
dd

ed
 to

 N
4;

 3
rd

 p
ar

am
et

er
 in

 IE
4

is
 fo

r
sc

rip
tin

g
la

ng
ua

ge
.

hi
st

or
y

le
ng

th
cu

rr
en

t(
S

),
(1

)

ne
xt

(S
),

(1
)

pr
ev

io
us

(S
),

(1
)

ba
ck

()
fo

rw
ar

d(
)

go
(in

t
| "

U
R

L"
)

(N
on

e)

(1
)

A
cc

es
si

bl
e

in
 N

N
3

vi
a

a
se

cu
rit

y
te

ch
ni

qu
e

no
 lo

ng
er

 in
 u

se
. A

va
ila

bl
e

in
 N

N
4+

 w
ith

 s
ig

ne
d

sc
rip

ts
.

bo
rd

er
co

m
pl

et
e

he
ig

ht
hs

pa
ce

lo
w

sr
c

na
m

e
sr

c
vs

pa
ce

w
id

th
xN

4

yN
4

im
ag

eN
3,

(1
),

IE
4

on
A

bo
rt

on
E

rr
or

on
Lo

ad

(N
on

e)

(1
)

Im
pl

em
en

te
d

in
 IE

3.
01

/M
ac

in
to

sh
 b

ut
 n

ot
 W

in
do

w
s

un
til

 IE
4.

ha
sh

ho
st

ho
st

na
m

e
hr

ef
pa

th
na

m
e

po
rt

pr
ot

oc
ol

se
ar

ch
ta

rg
et

on
C

lic
k

N
4

on
M

ou
se

O
ut

on
M

ou
se

O
ve

r

N
3,

IE
4

ar
ea

(N
on

e)

O
ri
g
in
al
D
O
M

(N
N
2
+
,
IE
3
+
)
Q
u
ic
k
R
ef
er
en
ce

Ñ
P
ag
e
1
o
f
2

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

al
er

t(
"m

sg
")

at
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)IE

5

ba
ck

()
N

4

bl
ur

()
N

3,
 IE

4

ca
pt

ur
eE

ve
nt

s(
ty

pe
)

N
4-

O
nl

y

cl
ea

rI
nt

er
va

l(I
D

)N
4,

 IE
4

cl
ea

rT
im

eo
ut

(I
D

)
cl

os
e(

)
co

nf
irm

("
m

sg
")

cr
ea

te
P

op
up

()
IE

5.
5

de
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)IE

5

di
sa

bl
eE

xt
er

na
lC

ap
tu

re
()

N
4-

O
nl

y

en
ab

le
E

xt
er

na
lC

ap
tu

re
()

N
4-

O
nl

y

ex
ec

S
cr

ip
t(

"e
xp

rs
"[

,la
ng

])I
E

4

fin
d(

["
st

r"
][,

ca
se

, b
kw

d
])N

4-
O

nl
y

fir
eE

ve
nt

("
ev

t"
[,e

vt
O

bj
])I

E
5.

5

fo
cu

s(
)N

3,
 IE

4

fo
rw

ar
d(

) N
4

ha
nd

le
E

ve
nt

(
ev

en
t)

N
4-

O
nl

y

ho
m

e(
)N

4

m
ov

eB
y(

∆
x,

∆y
)N

4,
 IE

4

m
ov

eT
o(

x,
y)

N
4,

 IE
4

na
vi

ga
te

()
IE

3

op
en

(U
R

L,
"n

am
e

",
"s

pe
cs

")(
1)

,(
S

)

pr
in

t(
)N

4,
 IE

5

pr
om

pt
("

m
sg

",
"re

pl
y

")
re

le
as

eE
ve

nt
s(

ty
pe

)N
4-

O
nl

y

re
si

ze
B

y(
∆

x,
∆y

)N
4,

 IE
4

re
si

ze
T

o(
w

id
th

,h
ei

gh
t)

N
4,

 IE
4

ro
ut

eE
ve

nt
(e

ve
nt

)N
4-

O
nl

y

sc
ro

ll(
x,

y)
N

3,
 IE

4

sc
ro

llB
y(

∆
x,

∆y
)N

4,
 IE

4

sc
ro

llT
o(

x,
y)

N
4,

 IE
4

se
tA

ct
iv

e(
)

IE
5.

5

se
tIn

te
rv

al
(f

un
c

, m
se

c
 [,

ar
gs

])N
4,

IE
4,

(2
)

se
tT

im
eo

ut
(f

un
c

, m
se

c
 [,

ar
gs

])(
2)

sh
ow

H
el

p(
)W

4

sh
ow

M
od

al
D

ia
lo

g(
)

W
4

sh
ow

M
od

el
es

sD
ia

lo
g(

)
W

5

st
op

()
N

4

on
A

bo
rt

N
6

on
A

fte
rP

rin
tW

5

on
B

ef
or

eP
rin

tW
5

on
B

ef
or

eU
nl

oa
d

IE
4

on
B

lu
rN

3,
 IE

4

on
C

ha
ng

e
N

6

on
C

lic
k

N
6

on
C

lo
se

N
6

on
D

ra
gD

ro
pN

4,
(S

)

on
E

rr
or

N
3,

 IE
4

on
F

oc
us

N
3,

 IE
4

on
H

el
p

IE
4

on
K

ey
D

ow
n

N
6

on
K

ey
P

re
ss

N
6

on
K

ey
U

p
N

6

on
Lo

ad
on

M
ou

se
D

ow
n

N
6

on
M

ou
se

M
ov

e
N

6

on
M

ou
se

O
ut

N
6

on
M

ou
se

O
ve

rN
6

on
M

ou
se

U
p

N
6

on
M

ov
e

N
4-

O
nl

y

on
R

es
et

N
6

on
R

es
iz

e
N

4,
 IE

4

on
S

cr
ol

lI
E

4

on
S

el
ec

tN
6

on
S

ub
m

it
N

6

on
U

nl
oa

d

na
m

e
N

4,
 IE

4

te
xt

N
4

xN
4

yN
4

(N
on

e)

(N
on

e)

an
ch

or
 (

 <A
 N

A
M

E
=

...
>

<
/A

>
)

ha
sh

ho
st

ho
st

na
m

e
hr

ef
pa

th
na

m
e

po
rt

pr
ot

oc
ol

se
ar

ch
ta

rg
et

te
xt

N
4

xN
4

yN
4

on
C

lic
k

on
D

bl
C

lic
k

N
4,

(1
),

IE
4

on
M

ou
se

D
ow

n
N

4,
 IE

4

on
M

ou
se

O
ut

N
4,

 IE
4

on
M

ou
se

O
ve

r
on

M
ou

se
U

p
N

4,
 IE

4

(N
on

e)

(1
)

N
ot

 im
pl

em
en

te
d

in
 N

N
4/

M
ac

lin
k

(<
A

 H
R

E
F

=
...

>
<

/A
>

)
1
6

1
8 3
1

1
7

1
7

2
2

2
22
1

2
1

(c) ketabton.com: The Digital Library

1438 Part VI ✦ Appendixes

ac
tio

n
el

em
en

ts
[]

en
co

di
ng

le
ng

th
m

et
ho

d
na

m
e

ta
rg

et

ha
nd

le
E

ve
nt

(
ev

t)
N

4

re
se

t(
)N

3,
 IE

4

su
bm

it(
)

on
R

es
et

N
3,

 IE
4

on
S

ub
m

it

fo
rm

le
ng

th
na

m
e

op
tio

ns
[i]

op
tio

ns
[i]

.d
ef

au
ltS

el
ec

te
d

op
tio

ns
[i]

.in
de

x
op

tio
ns

[i]
.s

el
ec

te
d

op
tio

ns
[i]

.te
xt

op
tio

ns
[i]

.v
al

ue
se

le
ct

ed
In

de
x

ty
pe

N
3,

 IE
4

bl
ur

()
N

3,
 IE

4

fo
cu

s(
)N

3,
 IE

4

ha
nd

le
E

ve
nt

(
ev

t)
N

4

se
le

ct
on

B
lu

r
on

C
ha

ng
e

on
F

oc
us

ch
ec

ke
d

de
fa

ul
tC

he
ck

ed
fo

rm
le

ng
th

na
m

e
ty

pe
N

3,
 IE

4

va
lu

e

cl
ic

k(
)

ha
nd

le
E

ve
nt

(
ev

t)
N

3

ra
di

o on
C

lic
k

on
M

ou
se

D
ow

n
N

4,
 IE

4

on
M

ou
se

U
p

N
4,

 IE
4

ch
ec

ke
d

de
fa

ul
tC

he
ck

ed
fo

rm
na

m
e

ty
pe

N
3,

 IE
4

va
lu

e

cl
ic

k(
)

ha
nd

le
E

ve
nt

(
ev

t)
N

3

ch
ec

kb
ox on

C
lic

k
on

M
ou

se
D

ow
n

N
4,

 IE
4

on
M

ou
se

U
p

N
4,

 IE
4

ch
ec

ke
d

fo
rm

na
m

e
ty

pe
N

3,
 IE

4

va
lu

e

cl
ic

k(
)

ha
nd

le
E

ve
nt

(
ev

t)
N

3

bu
tto

n,
 r

es
et

, s
ub

m
it

on
C

lic
k

on
M

ou
se

D
ow

n
N

4,
 IE

4

on
M

ou
se

U
p

N
4,

 IE
4

(1
)

N
ot

 a
va

ila
bl

e
fo

r
te

xt
ar

ea
 o

bj
ec

t.
(2

)
P

as
sw

or
d

va
lu

e
pr

op
er

ty
 r

et
ur

ns
 e

m
pt

y
st

rin
g

in
 N

N
2.

de
fa

ul
tV

al
ue

(1
)

fo
rm

na
m

e
ty

pe
N

3,
 IE

4

va
lu

e
(2

)

bl
ur

()
fo

cu
s(

)
ha

nd
le

E
ve

nt
(

ev
t)

N
4

se
le

ct
()

te
xt

, t
ex

ta
re

a,
 p

as
sw

or
d,

 h
id

de
n

on
B

lu
r

on
C

ha
ng

e
on

F
oc

us
on

K
ey

D
ow

n
N

4,
 IE

4

on
K

ey
P

re
ss

N
4,

 IE
4

on
K

ey
U

p
N

4,
 IE

4

on
S

el
ec

t

(1
)

N
et

sc
ap

e
al

so
 c

al
ls

 th
is

 th
e

fil
eU

pl
oa

d
ob

je
ct

.

fo
rm

na
m

e
ty

pe
va

lu
e

bl
ur

()
fo

cu
s(

)
ha

nd
le

E
ve

nt
(

ev
t)

N
4

se
le

ct
()

N
3,

(1
),

IE
4

fil
e

in
pu

t c
on

tr
ol

on
B

lu
r

on
F

oc
us

on
S

el
ec

t

ap
pC

od
eN

am
e

ap
pM

in
or

V
er

si
on

IE
4

ap
pN

am
e

ap
pV

er
si

on
br

ow
se

rL
an

gu
ag

e
IE

4

co
ok

ie
E

na
bl

ed
N

6,
 IE

4

cp
uC

la
ss

IE
4

la
ng

ua
ge

N
4

m
im

eT
yp

es
[]

N
3,

 M
4

on
Li

ne
IE

4

os
cp

u
N

6

pl
at

fo
rm

N
4,

 IE
4

pl
ug

in
s[

]N
3,

 M
4

pr
od

uc
tN

6

pr
od

uc
tS

ub
N

6

se
cu

rit
yP

ol
ic

y
N

6

sy
st

em
La

ng
ua

ge
IE

4

us
er

A
ge

nt
us

er
La

ng
ua

ge
IE

4

us
er

P
ro

fil
e

IE
4

ve
nd

or
N

6

ve
nd

or
S

ub
N

6

ja
va

E
na

bl
ed

()
N

3,
 M

4

pr
ef

er
en

ce
(n

am
e

[,
va

l]
)N

4,
(S

)

ta
in

tE
na

bl
ed

()
N

3,
 M

4

na
vi

ga
to

r

na
m

e
fil

en
am

e
de

sc
rip

tio
n

le
ng

th

re
fr

es
h(

)

pl
ug

in
N

3,
M

4

de
sc

rip
tio

n
en

ab
le

dP
lu

gi
n

ty
pe

su
ffi

xe
s

(N
on

e)

N
3,

M
4

m
im

eT
yp

e

(1
)N

4+
 o

nl
y.

(2
)I

E
4+

 o
nl

y.

av
ai

lH
ei

gh
t

av
ai

lL
ef

t(
1)

av
ai

lT
op

(1
)

av
ai

lW
id

th
bu

ffe
rD

ep
th

(2
)

co
lo

rD
ep

th
fo

nt
S

m
oo

th
in

gE
na

bl
ed

(2
)

he
ig

ht
pi

xe
lD

ep
th

up
da

te
In

te
rv

al
(2

)

w
id

th

(N
on

e)

sc
re

en
N

4,
IE

4

P
ag
e
2
o
f
2
Ñ

O
ri
g
in
al
D
O
M

(N
N
2
+
,
IE
3
+
)
Q
u
ic
k
R
ef
er
en
ce

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

O
ri

gi
n

al
 D

O
M

C
om

p
at

ib
il

it
y

G
u

id
e

B
as

el
in

e
br

ow
se

rs
 f

or
 t

h
is

 s
ec

ti
on

 a
re

N
N

2,
 I

E
3/

J1
, a

n
d

IE
 3

.0
1/

M
ac

. A
n

 it
em

 w
it

h

n
o

n
ot

at
io

n
 is

 c
om

pa
ti

bl
e

ba
ck

 t
o

th
at

 le
ve

l.
N

ot
at

io
n

s
in

di
ca

te
 t

h
e

br
ow

se
r

an
d

ve
rs

io
n

in

 w
h

ic
h

 t
h

e
pr

op
er

ty
, m

et
h

od
, o

r
ev

en
t

h
an

dl
er

w

as
 in

tr
od

u
ce

d.
 A

n
 it

em
 s

h
ow

in
g

to
 b

e
in

tr
od

u
ce

d
on

ly
 in

 I
E

, f
or

 e
xa

m
pl

e,
 d

oe
s

n
ot

 e
xi

st
 f

or
 a

n
y

N
N

 v
er

si
on

.

E
xc

ep
t

fo
r

th
e

w
in

do
w

 a
n

d
na

vi
ga

to
r

ob
je

ct
s

(w
h

os
e

li
st

in
gs

 c
ov

er
 a

ll
br

ow
se

rs
 a

n
d

ve
rs

io
n

s)
, n

ew
 f

ea
tu

re
s

li
st

ed
 in

 t
h

is
 s

ec
ti

on

co
ve

r
on

ly
 t

h
ro

u
gh

 N
N

4
(a

n
d

IE
4

w
h

en
 t

h
ey

m

at
ch

ed
 a

 n
ew

 N
N

4
fe

at
u

re
).

 N
ot

at
io

n
s

ar
e

as
 f

ol
lo

w
s:

 N

3
—

 N
ew

 in
 N

N
3

 N

4
—

 N
ew

 in
 N

N
4

 J

2
 —

 N
ew

 in
 I

E
3,

 J
S

cr
ip

t.
dl

l v
er

.2

 I
E

4
—

 N
ew

 in
 I

E
4,

 a
ll

 O
S

es

 (
S

)
—

 R
eq

u
ir

es
 s

ig
n

ed
 s

cr
ip

ts
 (

N
N

)
A

dd
it

io
n

al
 w

in
do

w
 a

n
d

na
vi

ga
to

r
ob

je
ct

n
ot

at
io

n
s

ar
e:

 W

4
—

 I
E

4+
/W

in
do

w
s

on
ly

 W

5
—

 I
E

5+
/W

in
do

w
s

on
ly

 I

E
5

—
 I

E
5+

 a
ll

 O
S

es

 I
E

5.
5

—
 I

E
5.

5+
 (

on
ly

 W
in

 t
es

te
d)

 M

4
—

 I
E

4+
/M

ac
 o

n
ly

 M

5
—

 I
E

5+
/M

ac
 o

n
ly

 N

6
—

 N
ew

 in
 N

N
6

E
xc

ep
t

fo
r

it
em

s
m

ar
ke

d
N

4-
O

n
ly

 (
w

h
ic

h
 a

re
n

ot
 c

ar
ri

ed
 o

ve
r

in
to

 N
N

6)
, a

n
 it

em
 li

st
ed

 f
or

an
 e

ar
ly

 b
ro

w
se

r
is

 a
ls

o
av

ai
la

bl
e

in
 t

h
e

IE
4+

an
d/

or
 W

3C
 D

O
M

 o
bj

ec
t

m
od

el
s.

“(
N

on
e)

”
m

ea
n

s
th

at
 n

o
m

et
h

od
s

or
 e

ve
n

ts
ex

is
t

fo
r

th
e

cu
rr

en
t

ob
je

ct
 t

h
ro

u
gh

 I
E

3
an

d
N

N
4.

2
3 2
4

2
4 2
4

2
6

2
8

2
8

2
8

2
8

2
5 2
6

(c) ketabton.com: The Digital Library

1439Appendix A ✦ JavaScript and Browser Object Quick Reference

ac
ce

ss
K

ey

al
l[]

be

ha
vi

or
U

rn
s[

]W
5

ca
nH

av
eC

hi
ld

re
n

W
5

ca
nH

av
eH

T
M

L
IE

5.
5

ch
ild

re
n

cl
as

sN
am

e
cl

ie
nt

H
ei

gh
t

cl
ie

nt
Le

ft
cl

ie
nt

T
op

cl

ie
nt

W
id

th

co
nt

en
tE

di
ta

bl
e

IE
5.

5

cu
rr

en
tS

ty
le

IE
5

da
ta

F
ld

 W
4

da
ta

F
or

m
at

A
s

W
4

da
ta

S
rc

W
4

di
sa

bl
ed

do

cu
m

en
t

fil
te

rs
[]

W
4

hi
de

F
oc

us
IE

5.
5

id

in
ne

rH
T

M
L

in
ne

rT
ex

t
is

C
on

te
nt

E
di

ta
bl

e
IE

5.
5

is
D

is
ab

le
d

IE
5.

5

is
M

ul
tiL

in
e

IE
5.

5

is
T

ex
tE

di
t

W
4

la
ng

la

ng
ua

ge

le
ng

th
(1

)

of
fs

et
H

ei
gh

t
of

fs
et

Le
ft

of
fs

et
P

ar
en

t
of

fs
et

T
op

of

fs
et

W
id

th

ou
te

rH
T

M
L

ou
te

rT
ex

t
pa

re
nt

E
le

m
en

tW
4

pa
re

nt
T

ex
tE

di
t

re
ad

yS
ta

te
re

co
rd

N
um

be
rW

4

ru
nt

im
eS

ty
le

W
5

sc
op

eN
am

e
W

5

sc
ro

llH
ei

gh
t

sc
ro

llL
ef

t
sc

ro
llT

op
sc

ro
llW

id
th

so
ur

ce
In

de
x

st
yl

e
ta

bI
nd

ex
ta

gN
am

e
ta

gU
rn

W
5

tit
le

un
iq

ue
ID

W
5

on
A

ct
iv

at
e

IE
5.

5

on
B

ef
or

eC
op

y
W

5

on
B

ef
or

eC
ut

W
5

on
B

ef
or

eD
ea

ct
iv

at
e

IE
5.

5

on
B

ef
or

eE
di

tF
oc

us
W

5

on
B

ef
or

eP
as

te
W

5

on
B

lu
r

on
C

lic
k

on
C

on
te

xt
M

en
u

W
5

on
C

on
tr

ol
S

el
ec

t
IE

5.
5

on
C

op
y

W
5

on
C

ut
W

5

on
D

bl
C

lic
k

on
D

ea
ct

iv
at

e
IE

5.
5

on
D

ra
gW

5

on
D

ra
gE

nd
W

5

on
D

ra
gE

nt
er

W
5

on
D

ra
gL

ea
ve

W
5

on
D

ra
gO

ve
rW

5

on
D

ra
gS

ta
rt

W
5

on
D

ro
pW

5

on
F

ilt
er

C
ha

ng
e

W
4

on
F

oc
us

on
H

el
p

W
4,

M
5

on
K

ey
D

ow
n

on
K

ey
P

re
ss

on
K

ey
U

p
on

Lo
se

C
ap

tu
re

W
5

on
M

ou
se

D
ow

n
on

M
ou

se
E

nt
er

IE
5.

5

on
M

ou
se

Le
av

e
IE

5.
5

on
M

ou
se

M
ov

e
on

M
ou

se
O

ut
on

M
ou

se
O

ve
r

on
M

ou
se

U
p

on
P

as
te

W
5

on
P

ro
pe

rt
yC

ha
ng

e
W

5

on
R

ea
dy

S
ta

te
C

ha
ng

e
on

R
es

iz
e

on
R

es
iz

eE
nd

IE
5.

5

on
R

es
iz

eS
ta

rt
IE

5.
5

on
S

el
ec

tS
ta

rt

ad
dB

eh
av

io
r(

" U
R

L"
) W

5

ap
pl

yE
le

m
en

t(
el

em
[,t

yp
e

])W
5

at
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)W

5

bl
ur

()

cl
ea

rA
ttr

ib
ut

es
()

W
5

cl
ic

k(
)

co
m

po
ne

nt
F

ro
m

P
oi

nt
(

x,
y)

W
5

co
nt

ai
ns

(e
le

m
)

de
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
) W

5

fir
eE

ve
nt

("
ev

t"
[,e

vt
])I

E
5.

5

fo
cu

s(
)

ge
tA

dj
ac

en
tT

ex
t(

)
W

5

ge
tA

ttr
ib

ut
e(

"a
ttr

"[
,c

as
e

])

ge
tB

ou
nd

in
gC

lie
nt

R
ec

t(
)

W
5

ge
tC

lie
nt

R
ec

ts
()

W
5

ge
tE

xp
re

ss
io

n(
)

W
5

in
se

rt
A

dj
ac

en
tE

le
m

en
t(

)
W

5

in
se

rt
A

dj
ac

en
tH

T
M

L(
)

in
se

rt
A

dj
ac

en
tT

ex
t(

)
ite

m
(i

nd
ex

[,s
ub

in
de

x
])(

1)

m
er

ge
A

ttr
ib

ut
es

()
W

5

re
le

as
eC

ap
tu

re
()

W
5

re
m

ov
eA

ttr
ib

ut
e(

"a
ttr

"[
,c

as
e

])

re
m

ov
eB

eh
av

io
r(

ID
)W

5

re
m

ov
eE

xp
re

ss
io

n(
"

pr
op

")W
5

re
m

ov
eN

od
e(

ch
ild

re
n

)W
5

re
pl

ac
eA

dj
ac

en
tT

ex
t(

"
lo

c
",

"tx
t"

) W
5

re
pl

ac
eN

od
e(

ne
w

)W
5

sc
ro

llI
nt

oV
ie

w
(

to
p

)
se

tA
ct

iv
e(

)
IE

5.
5

se
tA

ttr
ib

ut
e(

"a
ttr

",v
al

[,c
as

e
])

se

tC
ap

tu
re

(c
on

ta
in

er
)W

5

se
tE

xp
re

ss
io

n(
"

pr
op

",
"e

xp
r"

,"l
an

g
")

 W
5

sw
ap

N
od

e(
no

de
)W

5

ta
gs

("
ta

g"
) (

1)

ur
ns

("
U

R
N

")W
5,

(1
)

A
ll

H
T

M
L

E
le

m
en

ts

(1
)P

ro
pe

rt
y

or
 m

et
ho

d
of

 a
ll

ob
je

ct
 c

ol
le

ct
io

ns
.

do
cu

m
en

t
is

O
pe

n
(N

on
e)

hi
de

()
sh

ow
()

po
pu

pW
5.

5

ac
tiv

eE
le

m
en

t
al

in
kC

ol
or

al

l
an

ch
or

s[
]

ap
pl

et
s[

]
bg

C
ol

or

bo
dy

ch

ar
se

t

co
ok

ie

de
fa

ul
tC

ha
rs

et

de
si

gn
M

od
e

W
5

do
ct

yp
e

do

m
ai

n
em

be
ds

[]
ex

pa
nd

o
fg

C
ol

or

fil
eC

re
at

ed
D

at
e

fil
eM

od
ifi

ed
D

at
e

fil
eS

iz
e

fo

rm
s[

]
fr

am
es

[]
im

ag
es

[]

la
st

M
od

ifi
ed

lin
kC

ol
or

lin

ks
[]

lo

ca
tio

n
m

ed
ia

IE
5.

5

m
im

eT
yp

e
W

5

na
m

es
pa

ce
s[

]
IE

5.
5

pa
re

nt
W

in
do

w

pl
ug

in
s[

]

pr
ot

oc
ol

re

ad
yS

ta
te

re

fe
rr

er

sc
rip

ts
[]

se
cu

rit
y

IE
5.

5

se
le

ct
io

n

st
yl

eS
he

et
s[

]

tit
le

un

iq
ue

ID

U
R

L

U
R

LU
ne

nc
od

ed
IE

5.
5

vl
in

kC
ol

or

on
A

ct
iv

at
e

IE
5.

5

on
B

ef
or

eC
ut

W
5

on
B

ef
or

eD
ea

ct
iv

at
e

IE
5.

5

on
B

ef
or

eE
di

tF
oc

us
W

5

on
B

ef
or

eP
as

te
W

5

on
C

lic
k

on
C

on
te

xt
M

en
u

W
5

on
C

on
tr

ol
S

el
ec

t
IE

5.
5

on
C

ut
on

D
bl

C
lic

k
on

D
ea

ct
iv

at
e

IE
5.

5

on
D

ra
gW

5

on
D

ra
gE

nd
W

5

on
D

ra
gE

nt
er

W
5

on
D

ra
gL

ea
ve

W
5

on
D

ra
gO

ve
rW

5

on
D

ra
gS

ta
rt

W
5

on
D

ro
pW

5

on
H

el
p

W
4,

M
5

on
K

ey
D

ow
n

on
K

ey
P

re
ss

on
K

ey
U

p
on

M
ou

se
D

ow
n

on
M

ou
se

M
ov

e
on

M
ou

se
O

ut
on

M
ou

se
O

ve
r

on
M

ou
se

U
p

on
P

as
te

on
P

ro
pe

rt
yC

ha
ng

e
W

5

on
R

ea
dy

S
ta

te
C

ha
ng

e
on

R
es

iz
eE

nd
IE

5.
5

on
R

es
iz

eS
ta

rt
IE

5.
5

on
S

el
ec

tio
nC

ha
ng

e
on

S
to

p
IE

5

at
ta

ch
E

ve
nt

("
ev

t"
,fu

nc
)IE

5

cl
ea

r(
)

cl
ea

rA
ttr

ib
ut

es
()

IE
5

cl
os

e(
)

cr
ea

te
E

le
m

en
t(

" t
ag

")

cr
ea

te
E

ve
nt

O
bj

ec
t(

[
ev

t]
)IE

5.
5

cr
ea

te
S

ty
le

S
he

et
([

"
U

R
L"

[,i
nd

ex
]])

de

ta
ch

E
ve

nt
("

ev
t"

,fu
nc

)IE
5

el
em

en
tF

ro
m

P
oi

nt
(x

,y
)

ex
ec

C
om

m
an

d(
"c

m
d

"[
,U

I][
,a

rg
])

fo

cu
s(

)
m

er
ge

A
ttr

ib
ut

es
(o

bj
)W

5

op
en

([
"m

im
eT

yp
e

"[
,re

pl
ac

e
])

qu

er
yC

om
m

an
dE

na
bl

ed
("

cm
d

")

qu
er

yC
om

m
an

dI
nd

te
rm

("
cm

d
")

qu

er
yC

om
m

an
dS

ta
te

("
cm

d
")

qu

er
yC

om
m

an
dS

up
po

rt
ed

("
cm

d
")

qu

er
yC

om
m

an
dT

ex
t(

"c
m

d
")

qu

er
yC

om
m

an
dV

al
ue

("
cm

d
")

re

ca
lc

(a
llF

la
g

)W
5

re
le

as
eC

ap
tu

re
()

 I
E

5

se
tA

ct
iv

e(
)

IE
5.

5

w
rit

e(
"s

tr
")

w

rit
el

n(
" s

tr
")do

cu
m

en
t

al
in

k
ba

ck
gr

ou
nd

bg

C
ol

or

bg
P

ro
pe

rt
ie

s
bo

tto
m

M
ar

gi
n

le
ftM

ar
gi

n
lin

k
no

W
ra

p
rig

ht
M

ar
gi

n
sc

ro
ll

sc
ro

llL
ef

t
sc

ro
llT

op
te

xt
to

pM
ar

gi
n

vL
in

k

on
A

fte
rP

rin
tW

5

on
B

ef
or

eP
rin

tW
5

on
S

cr
ol

l

cr
ea

te
C

on
tr

ol
R

an
ge

()
W

5

cr
ea

te
T

ex
tR

an
ge

()
do

S
cr

ol
l([

" s
cr

ol
lA

ct
io

n
"]

)W
5

B
O

D
Y

bo
rd

er
C

ol
or

D

oc
um

en
t

fr
am

eB
or

de
r

he

ig
ht

m

ar
gi

nH
ei

gh
t

m
ar

gi
nW

id
th

no
R

es
iz

e
sc

ro
lli

ng
sr

c
w

id
th

F
R

A
M

E

al
ig

n
D

oc
um

en
t

fr
am

eB
or

de
r

fr
am

eS
pa

ci
ng

hs
pa

ce
m

ar
gi

nH
ei

gh
t

m
ar

gi
nW

id
th

sc
ro

lli
ng

sr
c

vs
pa

ce

IF
R

A
M

E

co
lo

r
fa

ce
si

ze

B
A

S
E

F
O

N
T

te
xt

T
IT

LE

hr
ef

ta
rg

et

B
A

S
E

IE
4
+
D
H
T
M
L
D
O
M

Q
u
ic
k
R
ef
er
en
ce

Ñ
P
ag
e
1
o
f
4

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

bo
rd

er
bo

rd
er

C
ol

or
co

ls
fr

am
eB

or
de

r
fr

am
eS

pa
ci

ng
ro

w
s

F
R

A
M

E
S

E
T

ch
ar

se
t

co
nt

en
t

ht
tp

E
qu

iv

na
m

e
ur

l

M
E

T
A

1
5 1
6

1
61
6

1
6

2
0 2
0 2
0 2
0

1
81
8

(c) ketabton.com: The Digital Library

1440 Part VI ✦ Appendixes

ac
tio

n
au

to
co

m
pl

et
e

W
5

el
em

en
ts

[]
en

co
di

ng
en

ct
yp

e
le

ng
th

m
et

ho
d

na
m

e
ta

rg
et

on
R

es
et

on
S

ub
m

it
re

se
t(

)
su

bm
it(

)

F
O

R
M

ht
m

lF
or

(N

on
e)

(N
on

e)

LA
B

E
L

B
U

T
T

O
N

IN
P

U
T

 (
bu

tto
n,

 r
es

et
, s

ub
m

it,
 r

ad
io

, c
he

ck
bo

x)
(S

ee
 o

rig
in

al
 o

bj
ec

t m
od

el
 b

ut
to

n,
 r

es
et

, s
ub

m
it,

 r
ad

io
, a

nd
 c

he
ck

bo
x

ob
je

ct
 li

st
in

gs
.)

co
m

pl
et

e
fo

rm
na

m
e

sr
c

ty
pe

(N
on

e)
(N

on
e)

IN
P

U
T

 (
im

ag
e)

m
ax

Le
ng

th
re

ad
O

nl
y

si
ze

on
A

fte
rU

pd
at

e
W

4

on
B

ef
or

eU
pd

at
e

W
4

on
E

rr
or

U
pd

at
eW

4

(N
on

e)

IN
P

U
T

 (
te

xt
, p

as
sw

or
d,

 h
id

de
n)

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

, p
as

sw
or

d,
 a

nd
 h

id
de

n
ob

je
ct

 li
st

in
gs

.)

co
ls

re
ad

O
nl

y
ro

w
s

w
ra

p

on
A

fte
rU

pd
at

e
W

4

on
B

ef
or

eU
pd

at
e

W
4

on
E

rr
or

U
pd

at
eW

4

cr
ea

te
T

ex
tR

an
ge

()

T
E

X
T

A
R

E
A

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

ar
ea

 o
bj

ec
t l

is
tin

g.
)

le
ng

th
m

ul
tip

le
si

ze
va

lu
e

(N
on

e)
op

tio
ns

[i]
.a

dd
(

el
em

[,i
nd

ex
])

op
tio

ns
[i]

.r
em

ov
e(

)

S
E

LE
C

T
(S

ee
 o

rig
in

al
 o

bj
ec

t m
od

el
 s

el
ec

t o
bj

ec
t l

is
tin

g.
)

ha
sh

ho

st

ho
st

na
m

e
hr

ef

M
et

ho
ds

m

im
eT

yp
e

na
m

e
na

m
eP

ro
p

pa
th

na
m

e
po

rt
pr

ot
oc

ol
pr

ot
oc

ol
Lo

ng
re

l
re

v
se

ar
ch

ta
rg

et

ur
n

A
 (

an
ch

or
/li

nk
)

be
ha

vi
or

bg

C
ol

or
di

re
ct

io
n

he
ig

ht
hs

pa
ce

lo
op

sc
ro

llA
m

ou
nt

sc
ro

llD
el

ay
tr

ue
S

pe
ed

vs
pa

ce

w
id

th

on
B

ou
nc

e
on

F
in

is
h

on
S

ta
rt

st
ar

t(
)

st
op

()

M
A

R
Q

U
E

E

al
ig

n
al

t
bo

rd
er

co
m

pl
et

e
dy

ns
rc

fil
eC

re
at

ed
D

at
e

fil
eM

od
ifi

ed
D

at
e

fil
eS

iz
e

fil
eU

pd
at

ed
D

at
e

he
ig

ht
hr

ef
hs

pa
ce

is
M

ap
lo

op
lo

w
sr

c
na

m
e

na
m

eP
ro

p
W

5

pr
ot

oc
ol

sr
c

st
ar

t
us

eM
ap

vs
pa

ce
w

id
th

on
A

bo
rt

on
E

rr
or

on
Lo

ad

(N
on

e)

IM
G

al
t

co
or

ds
ha

sh
ho

st
ho

st
na

m
e

hr
ef

no
H

re
f

pa
th

na
m

e
po

rt
pr

ot
oc

ol
se

ar
ch

sh
ap

e
ta

rg
et

(N
on

e)
(N

on
e)

A
R

E
A

ar
ea

s[
]

na
m

e
on

S
cr

ol
l

(N
on

e)

M
A

P
co

m
pa

ct
st

ar
t

ty
pe

O
L

co
m

pa
ct

ty
pe

U
L

ty
pe

va
lu

e

LI

co
m

pa
ct

D
L,

 D
T

, D
D

, D
IR

, M
E

N
U

P
ag
e
2
o
f
4
Ñ

IE
4
+
D
H
T
M
L
D
O
M

Q
u
ic
k
R
ef
er
en
ce

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

IE
4+

 D
H

T
M

L
 D

O
M

C
om

p
at

ib
il

it
y

G
u

id
e

T
h

e
ba

se
li

n
e

br
ow

se
r

fo
r

th
is

 s
ec

ti
on

 is
M

S
IE

 4
. A

n
 it

em
 w

it
h

 n
o

n
ot

at
io

n
 is

co
m

pa
ti

bl
e

ba
ck

 t
o

th
at

 le
ve

l f
or

 a
ll

O
S

 v
er

si
on

s.
 N

ot
at

io
n

s
as

 f
ol

lo
w

s:

 W
4

—
 I

E
4+

/W
in

do
w

s
on

ly

 W
5

—
 I

E
5+

/W
in

do
w

s
on

ly

 I
E

5
—

 I
E

5+
 a

ll
 O

S
es

 I

E
5.

5
—

 I
E

5.
5+

 (
on

ly
 W

in
 t

es
te

d)

 M
5

—
 I

E
5+

/M
ac

A
ll

 H
T

M
L

 e
le

m
en

t
ob

je
ct

s
sh

ar
e

it
em

s
fr

om
 “

A
ll

 H
T

M
L

”
bo

x
on

 P
ag

e
1.

“(
N

on
e)

”
m

ea
n

s
n

o
sp

ec
ia

l m
et

h
od

s
or

ev
en

ts
 f

or
 t

h
e

cu
rr

en
t

ob
je

ct
.

de
fa

ul
tS

el
ec

te
d

fo
rm

se
le

ct
ed

te
xt

va
lu

e

(N
on

e)

O
P

T
IO

N
(N

on
e)

2
3

2
3 2
4

2
4 2
5

2
5

2
6 2
6

2
7

2
7

2
7

2
1

2
2

2
2 2
2

1
9

(c) ketabton.com: The Digital Library

1441Appendix A ✦ JavaScript and Browser Object Quick Reference

al
ig

n
bg

C
ol

or
ro

w
s

vA
lig

n

(N
on

e)
de

le
te

R
ow

(i
)

in
se

rt
R

ow
(i

)
m

ov
eR

ow
(s

rc
In

de
x

,d
es

tIn
de

x
)

i

T
B

O
D

Y
, T

F
O

O
T

, T
H

E
A

D

al
ig

n
ba

ck
gr

ou
nd

bg
C

ol
or

bo
rd

er
bo

rd
er

C
ol

or
bo

rd
er

C
ol

or
D

ar
k

bo
rd

er
C

ol
or

Li
gh

t
ca

pt
io

n
ce

llP
ad

di
ng

ce
llS

pa
ci

ng
ce

lls
[]

co
ls

[]
da

te
P

ag
eS

iz
e

fr
am

e
he

ig
ht

ro
w

s[
]

ru
le

s
tB

od
ie

s[
]

tF
oo

t
tH

ea
d

w
id

th

on
S

cr
ol

l
cr

ea
te

C
ap

tio
n(

)
cr

ea
te

T
F

oo
t(

)
cr

ea
te

T
H

ea
d(

)
de

le
te

C
ap

tio
n(

)
de

le
te

R
ow

(i)
de

le
te

T
F

oo
t(

)
de

le
te

T
H

ea
d(

)
fir

st
P

ag
e(

)W
5

in
se

rt
R

ow
(i

)
la

st
P

ag
e(

)W
5

m
ov

eR
ow

(s
rc

In
de

x
,d

es
tIn

de
x

)W
5

ne
xt

P
ag

e(
)W

4

pr
ev

io
us

P
ag

e(
)W

4

re
fr

es
h(

)

T
A

B
LE al

ig
n

vA
lig

n

C
A

P
T

IO
N

al
ig

n
sp

an
vA

lig
n

w
id

thC
O

L,
 C

O
LG

R
O

U
P

al
ig

n
ba

ck
gr

ou
nd

bg
C

ol
or

bo
rd

er
C

ol
or

bo
rd

er
C

ol
or

D
ar

k
bo

rd
er

C
ol

or
Li

gh
t

ce
llI

nd
ex

co
lS

pa
n

he
ig

ht
no

W
ra

p
ro

w
S

pa
n

vA
lig

n
w

id
th

T
D

, T
H

al
ig

n
bg

C
ol

or
bo

rd
er

C
ol

or
bo

rd
er

C
ol

or
D

ar
k

bo
rd

er
C

ol
or

Li
gh

t
ce

lls
[]

he
ig

ht
ro

w
In

de
x

se
ct

io
nR

ow
In

de
x

vA
lig

n

(N
on

e)
de

le
te

C
el

l(
i)

in
se

rt
C

el
l(

i)

T
R

co
lo

r
fa

ce
si

ze

F
O

N
T

al
ig

n
co

lo
r

no
S

ha
de

si
ze

w
id

th

H
R

al
ig

n

H
1.

..H
6

B
R

cl
ea

r

bo
un

di
ng

H
ei

gh
t

bo
un

di
ng

Le
ft

bo
un

di
ng

T
op

bo

un
di

ng
W

id
th

ht
m

lT
ex

t
of

fs
et

Le
ft

of
fs

et
T

op
te

xt

(N
on

e)
co

lla
ps

e(
[s

ta
rt

])
co

m
pa

re
E

nd
P

oi
nt

s(
"

ty
pe

",r
an

ge
)

du
pl

ic
at

e(
)

ex
ec

C
om

m
an

d(
"c

m
d

"[
,U

I[,
va

l]
])

ex
pa

nd
("

un
it

")
fin

dT
ex

t(
" s

tr
"[

,s
co

pe
,fl

ag
s

])
ge

tB
oo

km
ar

k(
)

ge
tB

ou
nd

in
gC

lie
nt

R
ec

t(
)

ge
tC

lie
nt

R
ec

ts
()

in
R

an
ge

(r
an

ge
)

is
E

qu
al

(
ra

ng
e)

m
ov

e(
" u

ni
t"

[,c
ou

nt
])

m
ov

eE
nd

("
un

it
"[

,c
ou

nt
])

m
ov

eS
ta

rt
("

un
it

"[
,c

ou
nt

])
m

ov
eT

oB
oo

km
ar

k(
"b

oo
km

ar
k

")
m

ov
eT

oE
le

m
en

tT
ex

t(
el

em
)

m
ov

eT
oP

oi
nt

(x
,y

)
pa

re
nt

E
le

m
en

t(
)

pa
st

eH
T

M
L(

" H
T

M
LT

ex
t"

)
qu

er
yC

om
m

an
dE

na
bl

ed
("

cm
d

")
qu

er
yC

om
m

an
dI

nd
et

er
m

("
cm

d
")

qu
er

yC
om

m
an

dS
ta

te
("

cm
d

")
qu

er
yC

om
m

an
dS

up
po

rt
ed

("
cm

d
")

qu
er

yC
om

m
an

dT
ex

t(
" c

m
d

")
qu

er
yC

om
m

an
dV

al
ue

("
cm

d
")

sc
ro

llI
nt

oV
ie

w
()

se
le

ct
()

se
tE

nd
P

oi
nt

("
ty

pe
",r

an
ge

)

T
ex

tR
an

ge
W

4

ty
pe

(N
on

e)
cl

ea
r(

)
cr

ea
te

R
an

ge
()

em
pt

y(
)

se
le

ct
io

nM
4

da
ta

le

ng
th

ne

xt
S

ib
lin

g
no

de
N

am
e

no
de

T
yp

e
no

de
V

al
ue

pa

re
nt

N
od

e
pr

ev
io

us
S

ib
lin

g

(N
on

e)
sp

lit
T

ex
t(

of
fs

et
)

T
ex

tN
od

e
IE

5

bo
tto

m
le

ft
rig

ht
to

p

(N
on

e)
(N

on
e)

T
ex

tR
ec

ta
ng

le
IE

5

IE
4+

 D
H

T
M

L
 D

O
M

 Q
ui

ck
 R

ef
er

en
ce

 P

ag
e

3
of

 4
' 2

00
1

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

4

IE
4+

 D
H

T
M

L
 D

O
M

C
om

p
at

ib
il

it
y

G
u

id
e

T
h

e
ba

se
li

n
e

br
ow

se
r

fo
r

th
is

 s
ec

ti
on

 is
M

S
IE

 4
. A

n
 it

em
 w

it
h

 n
o

n
ot

at
io

n
 is

co
m

pa
ti

bl
e

ba
ck

 t
o

th
at

 le
ve

l f
or

 a
ll

O
S

 v
er

si
on

s.
 N

ot
at

io
n

s
as

 f
ol

lo
w

s:

 W
4

—
 I

E
4+

/W
in

do
w

s
on

ly

 W
5

—
 I

E
5+

/W
in

do
w

s
on

ly

 I
E

5
—

 I
E

5+
 a

ll
 O

S
es

 I

E
5.

5
—

 I
E

5.
5+

 (
on

ly
 W

in
 t

es
te

d)

 M
5

—
 I

E
5+

/M
ac

A
ll

 H
T

M
L

 e
le

m
en

t
ob

je
ct

s
sh

ar
e

it
em

s
fr

om
 “

A
ll

 H
T

M
L

”
bo

x
on

 P
ag

e
1.

“(
N

on
e)

”
m

ea
n

s
n

o
sp

ec
ia

l m
et

h
od

s
or

ev
en

ts
 f

or
 t

h
e

cu
rr

en
t

ob
je

ct
.

T
h

is
 Q

u
ic

k
R

ef
er

en
ce

 d
oe

s
n

ot
 c

on
ta

in

li
st

in
gs

 f
or

 M
ic

ro
so

ft
’s

 s
ep

ar
at

e
X

M
L

D

O
M

.

27 27

19 19 19 19

27 27
27

27

19 19 19 19

(c) ketabton.com: The Digital Library

1442 Part VI ✦ Appendixes

al
tK

ey
al

tL
ef

tI
E

5.
5

be
ha

vi
or

C
oo

ki
e

W
5.

5

be
ha

vi
or

P
ar

tW
5.

5

bo
ok

m
ar

ks
W

4

bo
un

dE
le

m
en

ts
bu

tto
n

ca
nc

el
B

ub
bl

e
cl

ie
nt

X
cl

ie
nt

Y
co

nt
en

tO
ve

rf
lo

w
ct

rlK
ey

ct
rlL

ef
tI

E
5.

5

da
ta

F
ld

W
4

da
ta

T
ra

ns
fe

rW
5

fr
om

E
le

m
en

t
ke

yC
od

e
ne

xt
P

ag
e

W
5.

5

of
fs

et
X

of
fs

et
Y

pr
op

er
ty

N
am

e
W

5

qu
al

ifi
er

W
4

re
as

on
W

4

re
co

rd
se

tW
4

re
pe

at
W

5

re
tu

rn
V

al
ue

sa
ve

T
yp

e
W

5.
5

sc
re

en
X

sc
re

en
Y

sh
ift

K
ey

sh
ift

Le
ft

IE
5.

5

sr
cE

le
m

en
t

sr
cF

ilt
er

W
4

sr
cU

rn
W

5

to
E

le
m

en
t

ty
pe

x y

ev
en

t
m

ed
ia

ty
pe

(N
on

e)
(N

on
e)

S
T

Y
LE

sr
c

X
M

LD
oc

um
en

t
(N

on
e)

(N
on

e)

X
M

L

cs
sT

ex
tI

E
5

di
sa

bl
ed

hr

ef

id

im
po

rt
s[

]
m

ed
ia

ow
ni

ng
E

le
m

en
t

pa
ge

s[
]I

E
5.

5

pa
re

nt
S

ty
le

S
he

et
re

ad
O

nl
y

ru
le

s[
]

tit
le

ty
pe

(N
on

e)
ad

dI
m

po
rt

("
U

R
L"

[,i
nd

ex
])

ad
dR

ul
e(

"s
el

ec
to

r"
,"s

ty
le

S
pe

c
"[

,in
de

x
])

re
m

ov
eR

ul
e(

in
de

x
)

st
yl

eS
he

et

re
ad

O
nl

y
se

le
ct

or
T

ex
t

st
yl

e

(N
on

e)
(N

on
e)

ru
le

(S
ee

 s
ty

le
 o

bj
ec

t)

cu
rr

en
tS

ty
le

 ,
 r

un
tim

eS
ty

le
IE

5
IE

5.
5

al
ig

n
he

ig
ht

hi

dd
en

na
m

e
pl

ug
in

sp
ag

e
sr

c
un

its
w

id
th

on
Lo

ad
on

S
cr

ol
l

(N
on

e)

E
M

B
E

D

al
ig

n
al

tH
T

M
L

co
de

co

de
B

as
e

he
ig

ht

hs
pa

ce

na
m

e
vs

pa
ce

w
id

th

on
C

el
lC

ha
ng

e
W

5

on
D

at
aA

va
ila

bl
e

W
5

on
D

at
as

et
C

ha
ng

ed
W

5

on
D

at
as

et
C

om
pl

et
e

W
5

on
Lo

ad
on

R
ow

E
nt

er
W

5

on
R

ow
E

xi
tW

5

on
R

ow
sD

el
et

e
W

5

on
R

ow
sI

ns
er

te
d

W
5

on
S

cr
ol

l

(N
on

e)

A
P

P
LE

T

al
ig

n
al

tH
T

M
L

B

as
eH

re
f

cl
as

si
d

co
de

co

de
B

as
e

co
de

T
yp

e
he

ig
ht

hs
pa

ce
na

m
e

ob
je

ct
ty

pe
vs

pa
ce

w
id

th

on
C

el
lC

ha
ng

e
W

5

on
D

at
aA

va
ila

bl
e

W
5

on
D

at
as

et
C

ha
ng

ed
W

5

on
D

at
as

et
C

om
pl

et
e

W
5

on
Lo

ad
on

R
ow

E
nt

er
W

5

on
R

ow
E

xi
tW

5

on
R

ow
sD

el
et

e
W

5

on
R

ow
sI

ns
er

te
d

W
5

on
S

cr
ol

l

(N
on

e)

O
B

JE
C

T

di
sa

bl
ed

hr

ef

hr
ef

la
ng

m

ed
ia

re

l
re

v
st

yl
eS

he
et

ta
rg

et
ty

pe

on
Lo

ad
(N

on
e)

LI
N

K

de
fe

r
ev

en
t

ht
m

lF
or

la

ng
ua

ge

sr
c

te

xt

ty
pe

(N
on

e)
(N

on
e)

S
C

R
IP

T

P
ag
e
4
o
f
4
Ñ

IE
4
+
D
H
T
M
L
D
O
M

Q
u
ic
k
R
ef
er
en
ce

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

2
0

2
03
0

3
0

3
0

3
0

2
9

3
2

3
2

3
2

3
2

W
5

(c) ketabton.com: The Digital Library

1443Appendix A ✦ JavaScript and Browser Object Quick Reference

at
tr

ib
ut

es
[]

ch
ild

N
od

es
[]

cl
as

sN
am

e
di

r
fir

st
C

hi
ld

id in
ne

rH
T

M
L

(1
)

la
ng

la
st

C
hi

ld
le

ng
th

(3
)

lo
ca

lN
am

e
na

m
es

pa
ce

U
R

I
ne

xt
S

ib
lin

g
no

de
N

am
e

no
de

T
yp

e
no

de
V

al
ue

of
fs

et
H

ei
gh

t(
1)

of
fs

et
Le

ft
(1

)

of
fs

et
P

ar
en

t(
1)

of
fs

et
T

op
(1

)

of
fs

et
W

id
th

(1
)

ow
ne

rD
oc

um
en

t
pa

re
nt

N
od

e
pr

ef
ix

pr
ev

io
us

S
ib

lin
g

st
yl

e
ta

bI
nd

ex
ta

gN
am

e
tit

le

on
B

lu
r

on
C

lic
k

on
D

bl
C

lic
k

on
F

oc
us

on
K

ey
D

ow
n

on
K

ey
P

re
ss

on
K

ey
U

p
on

M
ou

se
D

ow
n

on
M

ou
se

M
ov

e
on

M
ou

se
O

ut
on

M
ou

se
O

ve
r

on
M

ou
se

U
p

on
R

es
iz

e

ad
dE

ve
nt

Li
st

en
er

("
ev

t"
,fu

nc
,c

ap
t)

(2
)

ap
pe

nd
C

hi
ld

(e
le

m
)

bl
ur

()
cl

ic
k(

)
cl

on
eN

od
e(

de
ep

)
di

sp
at

ch
E

ve
nt

(
ev

t)
(2

)

fo
cu

s(
)

ge
tA

ttr
ib

ut
e(

" a
ttr

")
ge

tA
ttr

ib
ut

eN
od

e(
" a

ttr
")(

2)

ge
tE

le
m

en
ts

B
yT

ag
N

am
e(

"
ta

g
")

ha
sC

hi
ld

N
od

es
()

in
se

rt
B

ef
or

e(
ne

w
[,r

ef
])

ite
m

(i
nd

ex
)(3

)

no
rm

al
iz

e(
)(

2)

re
m

ov
eA

ttr
ib

ut
e(

"a
ttr

")
re

m
ov

eA
ttr

ib
ut

eN
od

e(
no

de
)(2

)

re
m

ov
eC

hi
ld

(n
od

e
)

re
m

ov
eE

ve
nt

Li
st

en
er

("
ev

t"
,fu

nc
,c

ap
t)

(2
)

re
pl

ac
eC

hi
ld

(
ne

w
,o

ld
)

se
tA

ttr
ib

ut
e(

"a
ttr

",v
al

)
se

tA
ttr

ib
ut

eN
od

e(
no

de
)(2

)

su
pp

or
ts

("
fe

at
ur

e"
)(2

)

A
ll

H
T

M
L

E
le

m
en

ts

(1
)O

rig
in

at
in

g
fr

om
 th

e
IE

4
O

bj
ec

t M
od

el
, t

hi
s

no
n-

W
3C

 it
em

 is
 im

pl
em

en
te

d
in

 N
6

fo
r

co
nv

en
ie

nc
e.

(2
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.
(3

)P
ro

pe
rt

y
or

 m
et

ho
d

of
 a

ll
ob

je
ct

 c
ol

le
ct

io
ns

.

al
in

kC
ol

or
an

ch
or

s[
]

ap
pl

et
s[

]
at

tr
ib

ut
es

[]
bg

C
ol

or
bo

dy
ch

ar
ac

te
rS

et
(1

)

ch
ild

N
od

es
[]

co
ok

ie
do

ct
yp

e
(1

)

do
cu

m
en

tE
le

m
en

t
do

m
ai

n
em

be
ds

[]
fg

C
ol

or
fir

st
C

hi
ld

fo
rm

s[
]

he
ig

ht
(1

)

im
ag

es
[]

im
pl

em
en

ta
tio

n
(1

)

la
st

C
hi

ld
la

st
M

od
ifi

ed
lin

kC
ol

or
lin

ks
[]

lo
ca

tio
n

na
m

es
pa

ce
U

R
I

ne
xt

S
ib

lin
g

no
de

N
am

e
no

de
T

yp
e

ow
ne

rD
oc

um
en

t(
1)

pa
re

nt
N

od
e

pl
ug

in
s

pr

ev
io

us
S

ib
lin

g
re

fe
rr

er
st

yl
eS

he
et

s[
]

tit
le

U

R
L

vl
in

kC
ol

or
w

id
th

(1
)

on
B

lu
r

on
C

lic
k

on
D

bl
C

lic
k

on
F

oc
us

on
K

ey
D

ow
n

on
K

ey
P

re
ss

on
K

ey
U

p
on

M
ou

se
D

ow
n

on
M

ou
se

M
ov

e
on

M
ou

se
O

ut
on

M
ou

se
O

ve
r

on
M

ou
se

U
p

on
R

es
iz

e

cl
ea

r(
)

cl
os

e(
)

cr
ea

te
A

ttr
ib

ut
e(

"n
am

e
")

cr
ea

te
D

oc
um

en
tF

ra
gm

en
t(

)
cr

ea
te

E
le

m
en

t(
"t

ag
")

cr
ea

te
T

ex
tN

od
e(

"t
xt

")
fo

cu
s(

)
ge

tE
le

m
en

tB
yI

d(
"

ID
")

ge
tE

le
m

en
ts

B
yN

am
e(

"
na

m
e

")
ge

tE
le

m
en

ts
B

yT
ag

N
am

e(
"

ta
g

")
op

en
("

m
im

eT
yp

e
"[

,re
pl

ac
e

])
w

rit
e(

" s
tr

")
w

rit
el

n(
" s

tr
")

do
cu

m
en

t

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

co
nt

en
tD

oc
um

en
t

(1
)

fr
am

eB
or

de
r

lo
ng

D
es

c
(1

)

m
ar

gi
nH

ei
gh

t
m

ar
gi

nW
id

th
no

R
es

iz
e

sc
ro

lli
ng

sr
c

(N
on

e)
(N

on
e)

F
R

A
M

E

co
ls

ro
w

s
(N

on
e)

(N
on

e)

F
R

A
M

E
S

E
T

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
ig

n
co

nt
en

tD
oc

um
en

t
(1

)

fr
am

eB
or

de
r

lo
ng

D
es

c
(1

)

m
ar

gi
nH

ei
gh

t
m

ar
gi

nW
id

th
sc

ro
lli

ng
sr

c

IF
R

A
M

E

al
in

k
ba

ck
gr

ou
nd

bg

C
ol

or

lin
k

te
xt

vL
in

k

(N
on

e)
(N

on
e)

B
O

D
Y

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

ve
rs

io
n

(1
)

(N
on

e)
(N

on
e)

H
T

M
L

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

pr
of

ile
(1

)

H
E

A
D

hr
ef

ta
rg

et

B
A

S
E

co
lo

r
fa

ce
si

ze

B
A

S
E

F
O

N
T

ch
ar

se
t

co
nt

en
t

ht
tp

E
qu

iv
na

m
e

ur
l

M
E

T
A

te
xt

T
IT

LE

W
3
C
D
O
M

(I
E
5
+
,
N
N
6
+
)
Q
u
ic
k
R
ef
er
en
ce

Ñ
P
ag
e
1
o
f
4

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

W
3C

 D
O

M
C

om
p

at
ib

il
it

y
G

u
id

e
B

as
el

in
e

br
ow

se
rs

 f
or

 t
h

is
 s

ec
ti

on
 a

re
IE

5
an

d
N

N
6.

 A
n

 it
em

 w
it

h
 n

o
n

ot
at

io
n

is
 c

om
pa

ti
bl

e
w

it
h

 t
h

es
e

br
ow

se
rs

 f
or

al
l O

S
 v

er
si

on
s.

 O
bs

er
ve

 f
oo

tn
ot

es
 f

or
it

em
s

m
is

si
n

g
fr

om
 I

E
.

A
ll

 H
T

M
L

 e
le

m
en

t
ob

je
ct

s
sh

ar
e

it
em

s
fr

om
 “

A
ll

 H
T

M
L

”
bo

x
on

 P
ag

e
1.

“(
N

on
e)

”
m

ea
n

s
n

o
sp

ec
ia

l m
et

h
od

s
or

ev
en

ts
 f

or
 t

h
e

cu
rr

en
t

ob
je

ct
.

1
5

2
0 2
0

2
0 2
0

2
0

2
0 1
6

1
6

1
6

1
8

1
8

(c) ketabton.com: The Digital Library

1444 Part VI ✦ Appendixes

ch
ar

se
t(

1)

co
or

ds
(1

)

ha
sh

ho
st

ho
st

na
m

e
hr

ef
hr

ef
la

ng
(1

)

na
m

e
pa

th
na

m
e

po
rt

pr
ot

oc
ol

re
l

re
v

se
ar

ch
sh

ap
e

(1
)

ta
rg

et
ty

pe
(1

)A
 (

an
ch

or
/li

nk
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
ig

n
al

t
bo

rd
er

co
m

pl
et

e
he

ig
ht

hr
ef

hs
pa

ce
is

M
ap

lo
ng

D
es

c
(1

)

lo
w

sr
c

lo
w

S
rc

(1
)

na
m

e
sr

c
us

eM
ap

vs
pa

ce
w

id
th

on
A

bo
rt

on
E

rr
or

on
Lo

ad

(N
on

e)

IM
G

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
t

co
or

ds
ha

sh
ho

st
ho

st
na

m
e

hr
ef

no
H

re
f

pa
th

na
m

e
po

rt
pr

ot
oc

ol
se

ar
ch

sh
ap

e
ta

rg
et

A
R

E
A

ar
ea

s
na

m
e

M
A

P

co
m

pa
ct

st
ar

t
ty

pe

O
L

co
m

pa
ct

ty
pe

U
L

ty
pe

va
lu

e

LI

co
m

pa
ct

D
L,

 D
T

, D
D

, D
IR

, M
E

N
U

 P
ag

e
2

of
 4

W

3C
 D

O
M

 (
IE

5+
, N

N
6+

)
D

O
M

 Q
ui

ck
 R

ef
er

en
ce

' 2
00

1
D

an
ny

 G
oo

dm
an

 (
w

w
w

.d
an

ny
g.

co
m

).
 A

ll
R

ig
ht

s
R

es
er

ve
d.

JS
B

4

ac
ce

pt
C

ha
rs

et
(1

)

ac
tio

n
el

em
en

ts
[]

en
co

di
ng

en
ct

yp
e

le
ng

th
m

et
ho

d
na

m
e

ta
rg

et

on
R

es
et

on
S

ub
m

it
re

se
t(

)
su

bm
it(

)

F
O

R
M

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

23

al
ig

n
fo

rm
(N

on
e)

(N
on

e)F
IE

LD
S

E
T

, L
E

G
E

N
D

23

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

ac
ce

ss
K

ey
fo

rm
(1

)

ht
m

lF
or

(N
on

e)
(N

on
e)

LA
B

E
L

23

di
sa

bl
ed

fo
rm

na
m

e
sr

c
ty

pe

(N
on

e)
(N

on
e)

IN
P

U
T

 (
im

ag
e)

24

di
sa

bl
ed

m
ax

Le
ng

th
re

ad
O

nl
y

si
ze

(N
on

e)
(N

on
e)

IN
P

U
T

 (
te

xt
, p

as
sw

or
d,

 h
id

de
n)

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

, p
as

sw
or

d,
 a

nd
 h

id
de

n
ob

je
ct

 li
st

in
gs

.)

25

co
ls

di
sa

bl
ed

re
ad

O
nl

y
ro

w
s

(N
on

e)
(N

on
e)

T
E

X
T

A
R

E
A

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 te
xt

ar
ea

 o
bj

ec
t l

is
tin

g.
)

25

27
27 2722

fo
rm

(1
)

la
be

l(
1)

(N
on

e)
(N

on
e)

O
P

T
G

R
O

U
P

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
/W

in
do

w
s

th
ro

ug
h

5.
5,

 b
ut

 is
 im

pl
em

en
te

d
in

 IE
5/

M
ac

.

26

de
fa

ul
tS

el
ec

te
d

di
sa

bl
ed

fo
rm

la
be

l(
1)

se
le

ct
ed

te
xt

va
lu

e

(N
on

e)
(N

on
e)

O
P

T
IO

N

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
/W

in
do

w
s

th
ro

ug
h

5.
5,

 b
ut

 is
 im

pl
em

en
te

d
in

 IE
5/

M
ac

.

26

di
sa

bl
ed

le
ng

th
m

ul
tip

le
si

ze
va

lu
e

(N
on

e)
ite

m
(i

)
na

m
ed

Ite
m

("
op

tio
nI

D
")

op
tio

ns
[i

].r
em

ov
e(

)

S
E

LE
C

T
(S

ee
 o

rig
in

al
 o

bj
ec

t m
od

el
 s

el
ec

t o
bj

ec
t l

is
tin

g.
)

26
21 2222

B
U

T
T

O
N

IN
P

U
T

 (
bu

tto
n,

 r
es

et
, s

ub
m

it,
 r

ad
io

, c
he

ck
bo

x)
24

di
sa

bl
ed

(S
ee

 o
rig

in
al

 o
bj

ec
t m

od
el

 b
ut

to
n,

 r
es

et
, s

ub
m

it,
 r

ad
io

, a
nd

 c
he

ck
bo

x
ob

je
ct

 li
st

in
gs

.)

(c) ketabton.com: The Digital Library

1445Appendix A ✦ JavaScript and Browser Object Quick Reference

cl
ea

r

B
R

al
ig

n

H
1.

..H
6

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

ci
te

(1
)

B
LO

C
K

Q
U

O
T

E
, Q

co
lo

r
fa

ce
si

ze

F
O

N
T

al
ig

n
co

lo
r

no
S

ha
de

si
ze

w
id

th

H
R

(N
on

e)
al

ig
n

bg
C

ol
or

bo
rd

er
ca

pt
io

n
ce

llP
ad

di
ng

ce
llS

pa
ci

ng
fr

am
e

he
ig

ht
ro

w
s[

]
ru

le
s

su
m

m
ar

y
(1

)

tB
od

ie
s

tF
oo

t
tH

ea
d

w
id

th

on
S

cr
ol

l
cr

ea
te

C
ap

tio
n(

)
cr

ea
te

T
F

oo
t(

)
cr

ea
te

T
H

ea
d(

)
de

le
te

C
ap

tio
n(

)
de

le
te

R
ow

(i
)

de
le

te
T

F
oo

t(
)

de
le

te
T

H
ea

d(
)

in
se

rt
R

ow
(i

)

T
A

B
LE

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
ig

n
vA

lig
n

C
A

P
T

IO
N

de
le

te
R

ow
(i

)
in

se
rt

R
ow

(i
)

al
ig

n
bg

C
ol

or
ch

(1
)

ch
O

ff
(1

)

ro
w

s
vA

lig
n

(N
on

e)

T
B

O
D

Y
, T

F
O

O
T

, T
H

E
A

D

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

an
ch

or
N

od
e

an
ch

or
O

ffs
et

fo
cu

sN
od

e
fo

cu
sO

ffs
et

is
C

ol
la

ps
ed

ra
ng

eC
ou

nt

(N
on

e)
ad

dR
an

ge
(r

an
ge

)
cl

ea
rS

el
ec

tio
n(

)
co

lla
ps

e(
no

de
,o

ffs
et

)
co

nt
ai

ns
N

od
e(

no
de

,r
ec

ur
se

)
de

le
te

F
ro

m
D

oc
um

en
t(

)
ex

te
nd

(n
od

e
,o

ffs
et

)
ge

tR
an

ge
A

t(
)

re
m

ov
eR

an
ge

(r
an

ge
)

se
le

ct
io

n(1
),

(2
)

(1
)N

N
6.

0
do

es
 n

ot
 p

ro
vi

de
 a

 w
ay

 to
 c

re
at

e
a

se
le

ct
io

n
ob

je
ct

(2
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

da
ta

le
ng

th
(N

on
e)

ap
pe

nd
C

hi
ld

(n
od

e
)

ap
pe

nd
D

at
a(

"t
ex

t"
)

cl
on

eN
od

e(
de

ep
)

de
le

te
D

at
a(

of
fs

et
,c

ou
nt

)
ha

sC
hi

ld
N

od
es

()

in
se

rt
B

ef
or

e(
ne

w
,r

ef
)

in
se

rt
D

at
a(

of
fs

et
,"t

ex
t"

)
no

rm
al

iz
e(

)
re

m
ov

eC
hi

ld
()

re

pl
ac

eC
hi

ld
(

of
fs

et
,c

ou
nt

,"t
ex

t"
)

sp
lit

T
ex

t(
of

fs
et

)
su

bs
tr

in
gD

at
a(

of
fs

et
,c

ou
nt

)

T
ex

t(1
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

co
lla

ps
ed

co
m

m
on

A
nc

es
to

rC
on

ta
in

er
en

dC
on

ta
in

er
en

dO
ffs

et
st

ar
tC

on
ta

in
er

st
ar

tO
ffe

t

cl
on

eC
on

te
nt

s(
)(

2)

cl
on

eR
an

ge
()

co
lla

ps
e(

[s
ta

rt
])

co
m

pa
re

B
ou

nd
ar

yP
oi

nt
s(

ty
pe

,s
rc

)(3
)

cr
ea

te
C

on
te

xt
ua

lF
ra

gm
en

t(
"t

ex
t"

)
de

le
te

C
on

te
nt

s(
)

de
ta

ch
()

ex
tr

ac
tC

on
te

nt
s(

)(
2)

in
se

rt
N

od
e(

no
de

)(2
)

is
V

al
id

F
ra

gm
en

t(
"

tx
t"

)
se

le
ct

N
od

e(
no

de
)

se
le

ct
N

od
eC

on
te

nt
s(

no
de

)
se

tE
nd

(n
od

e
,o

ffs
et

)
se

tE
nd

A
fte

r(
no

de
)

se
tE

nd
B

ef
or

e(
no

de
)

se
tS

ta
rt

(n
od

e
,o

ffs
et

)
se

tS
ta

rt
A

fte
r(

no
de

)
se

tS
ta

rt
B

ef
or

e(
no

de
)

su
rr

ou
nd

C
on

te
nt

s(
no

de
)(2

)

to
S

tr
in

g(
)R
an

ge
(1

)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5
(2

)N
ot

 im
pl

em
en

te
d

in
 N

N
6.

0
(3

)B
ro

ke
n

in
 N

N
6.

0

al
ig

n
ch

(1
)

ch
O

ff
(1

)

sp
an

vA
lig

n
w

id
thC

O
L,

 C
O

LG
R

O
U

P

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5

al
ig

n
bg

C
ol

or
ce

lls
[]

ch
(1

)

ch
O

ff
(1

)

ro
w

In
de

x
vA

lig
n

(N
on

e)
de

le
te

C
el

l(
i)

in
se

rt
C

el
l(

i)

T
R

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

ab
br

(1
)

al
ig

n
ax

is
(1

)

ba
ck

gr
ou

nd
bg

C
ol

or
ce

llI
nd

ex
ch

(1
)

ch
O

ff
(1

)

co
lS

pa
n

he
ad

er
s

(1
)

he
ig

ht
no

W
ra

p
ro

w
S

pa
n

vA
lig

n
w

id
th

T
D

, T
H

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

W
3C

 D
O

M
 (

IE
5+

, N
N

6+
)

Q
ui

ck
 R

ef
er

en
ce

Pa

ge
 3

 o
f

4
' 2

00
1

D
an

ny
 G

oo
dm

an
 (

w
w

w
.d

an
ny

g.
co

m
).

 A
ll

R
ig

ht
s

R
es

er
ve

d.

JS
B

4

27 27 27

19 19 19 19 19

27
27 27

N
od

e
T

yp
es

E
LE

M
E

N
T

_N
O

D
E

A
T

T
R

IB
U

T
E

_N
O

D
E

T
E

X
T

_N
O

D
E

C
D

A
T

A
_S

E
C

T
IO

N
_N

O
D

E
E

N
T

IT
Y

_R
E

F
E

R
E

N
C

E
_N

O
D

E
E

N
T

IT
Y

_N
O

D
E

P
R

O
C

E
S

S
IN

G
_I

N
S

T
R

U
C

T
IO

N
_N

O
D

E
C

O
M

M
E

N
T

_N
O

D
E

D
O

C
U

M
E

N
T

_N
O

D
E

D
O

C
U

M
E

N
T

_T
Y

P
E

_N
O

D
E

D
O

C
U

M
E

N
T

_F
R

A
G

M
E

N
T

_N
O

D
E

N
O

T
A

T
IO

N
_N

O
D

E

1 2 3 4 5 6 7 8 9 10 11 12

19 19 19

(N
on

e)

(c) ketabton.com: The Digital Library

1446 Part VI ✦ Appendixes

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

ch
ar

se
t(

1)

di
sa

bl
ed

hr
ef

hr
ef

la
ng

m
ed

ia
re

l
re

v
ta

rg
et

ty
pe

(N
on

e)
(N

on
e)

LI
N

K

de
fe

r
ev

en
t

ht
m

lF
or

la
ng

ua
ge

sr
c

te
xt

ty
pe

(N
on

e)
(N

on
e)

S
C

R
IP

T

al
tK

ey

bu
bb

le
s

bu
tto

n
ca

nc
el

B
ub

bl
e

ca
nc

el
ab

le

ch
ar

C
od

e
cl

ie
nt

X

cl
ie

nt
Y

ct

rlK
ey

cu
rr

en
tT

ar
ge

t
de

ta
il

ev
en

tP
ha

se
is

C
ha

r
ke

yC
od

e
la

ye
rX

la
ye

rY
m

et
aK

ey
pa

ge
X

pa
ge

Y
re

la
te

dT
ar

ge
t

sc
re

en
X

sc
re

en
Y

sh
ift

K
ey

ta
rg

et
tim

eS
ta

m
p

ty
pe

vi
ew

(N
on

e)
in

itE
ve

nt
("

ty
pe

",b
ub

bl
e

,c
an

ce
la

bl
e

)
in

itK
ey

E
ve

nt
("

ty
pe

",
 e

vt
A

rg
s

)
in

itM
ou

se
E

ve
nt

("
ty

pe
",

 e
vt

A
rg

s
)

in
itU

IE
ve

nt
("

ty
pe

",
 e

vt
A

rg
s

)
pr

ev
en

tD
ef

au
lt(

)
st

op
P

ro
pa

ga
tio

n(
)

ev
en

t(1
)

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

m
ed

ia
ty

pe
(N

on
e)

(N
on

e)

S
T

Y
LE

cs
sR

ul
es

[]
di

sa
bl

ed
hr

ef
m

ed
ia

ow
ne

rN
od

e
(1

)

ow
ne

rR
ul

e
(1

)

pa
re

nt
S

ty
le

S
he

et
tit

le
ty

pe

(N
on

e)
de

le
te

R
ul

e(
in

de
x

)(1
)

in
se

rt
R

ul
e(

"r
ul

e
",i

nd
ex

)(1
)

st
yl

eS
he

et

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
ig

n
al

t(
1)

ar
ch

iv
e

(1
)

co
de

co
de

B
as

e
he

ig
ht

hs
pa

ce
na

m
e

ob
je

ct
(1

)

vs
pa

ce
w

id
th

A
P

P
LE

T

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

al
ig

n
he

ig
ht

na
m

e
sr

c
w

id
th

on
Lo

ad
on

S
cr

ol
l

(N
on

e)

E
M

B
E

D al
ig

n
al

t(
1)

co
de

co

de
B

as
e

co
de

T
yp

e
co

nt
en

tD
oc

um
en

t
he

ig
ht

hs
pa

ce
na

m
e

ob
je

ct
ty

pe
vs

pa
ce

w
id

th

O
B

JE
C

T

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.

cs
sT

ex
t(

2)

pa
re

nt
S

ty
le

S
he

et
(2

)

se
le

ct
or

T
ex

t
st

yl
e

ty
pe

(1
)

(N
on

e)
(N

on
e)

cs
sR

ul
e

(1
)N

ot
 im

pl
em

en
te

d
in

 IE
 th

ro
ug

h
5.

5.
(2

)N
ot

 im
pl

em
en

te
d

in
 IE

 th
ro

ug
h

5.
5,

 b
ut

 im
pl

em
en

te
d

in
 IE

5/
M

ac
.

P
ag
e
4
o
f
4
Ñ

W
3
C
D
O
M

(I
E
5
+
,
N
N
6
+
)
D
O
M

Q
u
ic
k
R
ef
er
en
ce

©
2
0
0
1
D
an
n
y
G
o
o
d
m
an

(w
w
w
.d
an
n
y
g
.c
o
m
).
A
ll
R
ig
h
ts
R
es
er
v
ed
.

JS
B

4

W
3C

 D
O

M
C

om
p

at
ib

il
it

y
G

u
id

e
B

as
el

in
e

br
ow

se
rs

 f
or

 t
h

is
 s

ec
ti

on
 a

re
IE

5
an

d
N

N
6.

 A
n

 it
em

 w
it

h
 n

o
n

ot
at

io
n

is
 c

om
pa

ti
bl

e
w

it
h

 t
h

es
e

br
ow

se
rs

 f
or

al
l O

S
 v

er
si

on
s.

 O
bs

er
ve

 f
oo

tn
ot

es
 f

or
it

em
s

m
is

si
n

g
fr

om
 I

E
.

A
ll

 H
T

M
L

 e
le

m
en

t
ob

je
ct

s
sh

ar
e

it
em

s
fr

om
 “

A
ll

 H
T

M
L

”
bo

x
on

 P
ag

e
1.

“(
N

on
e)

”
m

ea
n

s
n

o
sp

ec
ia

l m
et

h
od

s
or

ev
en

ts
 f

or
 t

h
e

cu
rr

en
t

ob
je

ct
.

3
0 3
0

3
0

2
0

2
0

3
2

3
2

3
2

2
9

(c) ketabton.com: The Digital Library

JavaScript
Reserved Words

Every programming language has a built-in vocabulary of

keywords that you cannot use for the names of variables

and the like. Because a JavaScript function is an object that

uses the function name as an identifier for the object, you can-

not employ reserved words for function names either.

Netscape’s list of reserved words closely echoes that of the

Java language; thus, many of the keywords in the list do not —

at least yet — apply to JavaScript. Remember that JavaScript

keywords are case-sensitive. While you may get away with

using these words in other cases, it may lead to unnecessary

confusion for someone reading your scripts.

abstract boolean break byte

case catch char class

const continue debugger default

delete do double else

enum export extends false

final finally float for

function goto if implements

import in instanceof int

interface long native new

null package private protected

public return short static

super switch synchronized this

throw throws transient true

try typeof var void

while with

✦ ✦ ✦

BBA P P E N D I X

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Answers to
Tutorial
Exercises

This appendix provides answers to the tutorial exercises

that appear in Part II of this book (Chapters 4 through 12).

Chapter 4 Answers
1. The music jukebox (a) and temperature calculator (d)

are good client-side JavaScript applications. Even

though the jukebox relies on server storage of the music

files, you can create a more engaging and responsive

user interface of buttons, swappable images, and infor-

mation from a plug-in, such as LiveAudio, Windows

Media Player, or QuickTime. The temperature calculator

is a natural, because all processing is done instanta-

neously on the client, rather than having to access the

server for each conversion.

The Web site visit counter (b) that accumulates the

number of different visitors to a Web site is a server-side

CGI application, because the count must be updated and

maintained on the server. At best, a client-side counter

could keep track of the number of visits the user has

made to a site and report to the user how many times he

or she has been to the site. The storage requires script-

ing the cookie (Chapter 16). A chat room application (c)

done properly requires server facilities to open up com-

munication channels among all users connected simulta-

neously. Client-side scripting by itself cannot create a

live chat environment.

2. The first task is to determine a valid identifier for the

General Motors location in the hierarchy. Then “connect

the dots”:

a. General_Motors.Chevrolet.Malibu

b. General_Motors.Pontiac.Firebird

c. General_Motors.Pontiac.Bonneville

CCA P P E N D I X

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1450 Part VI ✦ Appendixes

3. a. Valid, because it is one contiguous word. InterCap spelling is fine.

b. Valid, because an underscore character is acceptable between words.

c. Not valid, because an identifier cannot begin with a numeral.

d. Not valid, because no spaces are allowed.

e. Not valid, because apostrophes and most other punctuation are not

allowed.

4. The names that I assign here are arbitrary, but the paths are not.

document.myLink
document.entryForm
document.entryForm.nameField
document.entryForm.addressField
document.entryForm.phoneField
document.entryForm.noArchiveBox

5. <INPUT TYPE="button" NAME="Hi" VALUE="Howdy"
onClick="alert('Hello to you, too!')">

Chapter 5 Answers
1. <SCRIPT LANGUAGE=”JavaScript”>

<!--
document.write(“Hello, world.”)
// -->
</SCRIPT>

2. <HTML>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
document.write(“Hello, world.”)
// -->
</SCRIPT>
</BODY>
</HTML>

window
frame self top parent

history document location toolbar, etc.

form link

text text checkbox reset submit

text

(c) ketabton.com: The Digital Library

1451Appendix C ✦ Answers to Tutorial Exercises

3. <HTML>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
// write a welcome message to the world
document.write(“Hello, world.”)
// -->
</SCRIPT>
</BODY>
</HTML>

4. My answer is written so that both event handlers call separate functions. You

can also have each event handler invoke the alert() method inline.

<HTML>
<HEAD>
<TITLE>An onLoad= script</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
function done() {

alert(“The page has finished loading.”)
}
function alertUser() {

alert(“Ouch!”)
}
// -->
</SCRIPT>
</HEAD>
<BODY onLoad=”done()”>
Here is some body text.
<FORM>

<INPUT TYPE=”button” NAME=”oneButton” VALUE=”Press Me!”
onClick=”alertUser()”>
</FORM>
</BODY>
</HTML>

5. a.The page displays two text fields.

b. The user enters text into the first field and either clicks or tabs out of the

field to trigger the onChange event handler.

c. The function displays an all-uppercase version of one field into the other.

Chapter 6 Answers
1. a.Valid.

b. Not valid. The variable needs to be a single word, such as howMany or

how_many.

c. Valid.

d. Not valid. The variable name cannot begin with a numeral. If the variable

needs a number to help distinguish it from other similar variables, then

put the numeral at the end: address1.

(c) ketabton.com: The Digital Library

1452 Part VI ✦ Appendixes

2. a. 4

b. 40

c. “4020”

d. “Robert”

3. The functions are parseInt() and parseFloat(). Strings to be converted

are passed as parameters to the functions:

parseInt(document.forms[0].entry.value).

4. Both text field values are strings that must be converted to numbers before

they can be arithmetically added together. You can use the parseFloat()
functions either on the variable assignment expressions (for example, var
value1 = parseFloat(document.adder.inputA.value)) or in the addi-

tion expression (document.adder.output.value = parseFloat(value1)
+ parseFloat(value2)).

5. Concatenate means to join together two strings to become one string.

Chapter 7 Answers
1. Because the references in the function point to a text field named entry

inside a form named entryForm, be sure to assign those names to the NAME
attributes in the respective HTML tags.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var USStates = new Array(51)
USStates[0] = “Alabama”
USStates[1] = “Alaska”
USStates[2] = “Arizona”
USStates[3] = “Arkansas”
USStates[4] = “California”
USStates[5] = “Colorado”
USStates[6] = “Connecticut”
USStates[7] = “Delaware”
USStates[8] = “District of Columbia”
USStates[9] = “Florida”
USStates[10] = “Georgia”
USStates[11] = “Hawaii”
USStates[12] = “Idaho”
USStates[13] = “Illinois”
USStates[14] = “Indiana”
USStates[15] = “Iowa”
USStates[16] = “Kansas”
USStates[17] = “Kentucky”
USStates[18] = “Louisiana”
USStates[19] = “Maine”
USStates[20] = “Maryland”
USStates[21] = “Massachusetts”
USStates[22] = “Michigan”
USStates[23] = “Minnesota”

(c) ketabton.com: The Digital Library

1453Appendix C ✦ Answers to Tutorial Exercises

USStates[24] = “Mississippi”
USStates[25] = “Missouri”
USStates[26] = “Montana”
USStates[27] = “Nebraska”
USStates[28] = “Nevada”
USStates[29] = “New Hampshire”
USStates[30] = “New Jersey”
USStates[31] = “New Mexico”
USStates[32] = “New York”
USStates[33] = “North Carolina”
USStates[34] = “North Dakota”
USStates[35] = “Ohio”
USStates[36] = “Oklahoma”
USStates[37] = “Oregon”
USStates[38] = “Pennsylvania”
USStates[39] = “Rhode Island”
USStates[40] = “South Carolina”
USStates[41] = “South Dakota”
USStates[42] = “Tennessee”
USStates[43] = “Texas”
USStates[44] = “Utah”
USStates[45] = “Vermont”
USStates[46] = “Virginia”
USStates[47] = “Washington”
USStates[48] = “West Virginia”
USStates[49] = “Wisconsin”
USStates[50] = “Wyoming”

var stateEntered = new Array(51)
stateEntered[0] = 1819
stateEntered[1] = 1959
stateEntered[2] = 1912
stateEntered[3] = 1836
stateEntered[4] = 1850
stateEntered[5] = 1876
stateEntered[6] = 1788
stateEntered[7] = 1787
stateEntered[8] = 0000
stateEntered[9] = 1845
stateEntered[10] = 1788
stateEntered[11] = 1959
stateEntered[12] = 1890
stateEntered[13] = 1818
stateEntered[14] = 1816
stateEntered[15] = 1846
stateEntered[16] = 1861
stateEntered[17] = 1792
stateEntered[18] = 1812
stateEntered[19] = 1820
stateEntered[20] = 1788
stateEntered[21] = 1788
stateEntered[22] = 1837
stateEntered[23] = 1858
stateEntered[24] = 1817
stateEntered[25] = 1821
stateEntered[26] = 1889

(c) ketabton.com: The Digital Library

1454 Part VI ✦ Appendixes

stateEntered[27] = 1867
stateEntered[28] = 1864
stateEntered[29] = 1788
stateEntered[30] = 1787
stateEntered[31] = 1912
stateEntered[32] = 1788
stateEntered[33] = 1789
stateEntered[34] = 1889
stateEntered[35] = 1803
stateEntered[36] = 1907
stateEntered[37] = 1859
stateEntered[38] = 1787
stateEntered[39] = 1790
stateEntered[40] = 1788
stateEntered[41] = 1889
stateEntered[42] = 1796
stateEntered[43] = 1845
stateEntered[44] = 1896
stateEntered[45] = 1791
stateEntered[46] = 1788
stateEntered[47] = 1889
stateEntered[48] = 1863
stateEntered[49] = 1848
stateEntered[50] = 1890

function getStateDate() {
var selectedState = document.entryForm.entry.value
for (var i = 0; i < USStates.length; i++) {

if (USStates[i] == selectedState) {
break

}
}
alert(“That state entered the Union in “ +

stateEntered[i] + “.”)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”entryForm”>
Enter the name of a state:
<INPUT TYPE=”text” NAME=”entry”>
<INPUT TYPE=”button” VALUE=”Look Up Entry Date”
onClick=”getStateDate()”>
</FORM>
</BODY>
</HTML>

2. Several problems plague this function definition. Parentheses are missing

from the first if construction’s condition statement. Curly braces are missing

from the second nested if...else construction. A mismatch of curly braces

also exists for the entire function. The following is the correct form (changes

and additions in boldface):

function format(ohmage) {
var result
if (ohmage >= 10e6) {

ohmage = ohmage / 10e5

(c) ketabton.com: The Digital Library

1455Appendix C ✦ Answers to Tutorial Exercises

result = ohmage + “ Mohms”
} else {

if (ohmage >= 10e3) {
ohmage = ohmage / 10e2
result = ohmage + “ Kohms”

} else {
result = ohmage + “ ohms”

}
}
alert(result)

}

3. Here is one possibility:

for (var i = 1; i < tomatoes.length; i++) {
if (tomatoes[i].looks == “mighty tasty”) {

break
}

}
var myTomato = tomatoes[i]

4. The new version defines a different local variable name for the dog.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var aBoy = “Charlie Brown” // global
var hisDog = “Snoopy” // global
function sampleFunction() {

// using improper design to demonstrate a point
var WallacesDog = “Gromit” // local version of hisDog
var output = WallacesDog + “ does not belong to “ +

aBoy + “.
”
document.write(output)

}
</SCRIPT>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
sampleFunction() // runs as document loads
document.write(hisDog + “ belongs to “ + aBoy + “.”)
</SCRIPT>
</BODY>
</HTML>

5. The application uses three parallel arrays and is structured very much like

the solution to question 1. Learn to reuse code whenever you can.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var planets = new Array(4)
planets[0] = “Mercury”
planets[1] = “Venus”
planets[2] = “Earth”
planets[3] = “Mars”

(c) ketabton.com: The Digital Library

1456 Part VI ✦ Appendixes

var distance = new Array(4)
distance[0] = “36 million miles”
distance[1] = “67 million miles”
distance[2] = “93 million miles”
distance[3] = “141 million miles”

var diameter = new Array(4)
diameter[0] = “3100 miles”
diameter[1] = “7700 miles”
diameter[2] = “7920 miles”
diameter[3] = “4200 miles”

function getPlanetData() {
var selectedPlanet = document.entryForm.entry.value
for (var i = 0; i < planets.length; i++) {

if (planets[i] == selectedPlanet) {
break

}
}
var msg = planets[i] + “ is “ + distance[i]
msg += “ from the Sun and “
msg += diameter[i] + “ in diameter.”
document.entryForm.output.value = msg

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”entryForm”>
Enter the name of a planet:
<INPUT TYPE=”text” NAME=”entry”>
<INPUT TYPE=”button” VALUE=”Look Up a Planet”
onClick=”getPlanetData()”>

<INPUT TYPE=”text” SIZE=70 NAME=”output”>
</BODY>
</HTML>

Chapter 8 Answers
1. a. Close, but no cigar. Array references are always plural:

window.document.forms[0].

b. Not valid: self refers to a window and entryForm must refer to a form.

Where’s the document? It should be self.document.entryForm.
entryField.value.

c. Valid.

d. Not valid. The document reference is missing from this one.

e. Valid, assuming that newWindow is a variable holding a reference to a

subwindow.

2. window.status = “Welcome to my Web page.”

(c) ketabton.com: The Digital Library

1457Appendix C ✦ Answers to Tutorial Exercises

3. document.write(“<H1>Welcome to my Web page.</H1>”)

4. A script in the Body portion invokes a function that returns the text entered in

a prompt() dialog box.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function askName() {

var name = prompt(“What is your name, please?”,””)
return name

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“Welcome to my web page, “ + askName() + “.”)
</SCRIPT>
</BODY>
</HTML>

5. The URL can be derived from the href property of the location object.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function showLocation() {

alert(“This page is at: “ + location.href)
}
</SCRIPT>
</HEAD>
<BODY onLoad=”showLocation()”>
Blah, blah, blah.
</BODY>
</HTML>

Chapter 9 Answers
1. For Listing 9-1, pass the text object because that’s the only object involved in

the entire transaction.

<HTML>
<HEAD>
<TITLE>Text Object value Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(field) {

field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>
<BODY>
<FORM onSubmit=”return false”>

(c) ketabton.com: The Digital Library

1458 Part VI ✦ Appendixes

<INPUT TYPE=”text” NAME=”convertor” VALUE=”sample”
onChange=”upperMe(this)”>
</FORM>
</BODY>
</HTML>

For Listing 9-2, the button invokes a function that communicates with a differ-

ent element in the form. Pass the form object.

<HTML>
<HEAD>
<TITLE>Checkbox Inspector</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”)

} else {
alert(“The box is not checked at the moment.”)

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”checkbox” NAME=”checkThis”>Check here

<INPUT TYPE=”button” VALUE=”Inspect Box”
onClick=”inspectBox(this.form)”>
</FORM>
</BODY>
</HTML>

For Listing 9-3, again the button invokes a function that looks at other ele-

ments in the form. Pass the form object.

<HTML>
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function fullName(form) {

for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {

break
}

}
alert(“You chose “ + form.stooges[i].value + “.”)

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Select your favorite Stooge:
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard”
CHECKED>Moe

(c) ketabton.com: The Digital Library

1459Appendix C ✦ Answers to Tutorial Exercises

<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine”> Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard”>
Curly

<INPUT TYPE=”button” NAME=”Viewer” VALUE=”View Full Name...”
onClick=”fullName(this.form)”>
</FORM>
</BODY>
</HTML>

For Listing 9-4, all action is triggered by and confined to the SELECT object.

Pass only that object to the function.

<HTML>
<HEAD>
<TITLE>Select Navigation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goThere(list) {

location = list.options[list.selectedIndex].value
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Choose a place to go:
<SELECT NAME=”urlList” onChange=”goThere(this)”>

<OPTION SELECTED VALUE=”index.html”>Home Page
<OPTION VALUE=”store.html”>Shop Our Store
<OPTION VALUE=”policies.html”>Shipping Policies
<OPTION VALUE=”http://www.yahoo.com”>Search the Web

</SELECT>
</FORM>
</BODY>
</HTML>

2. This requires a bit of surgery. The Submit button is replaced with a standard

button whose VALUE attribute is set to “Submit.” The button’s onClick event

handler calls the checkForm() function, which performs the validation. If an

empty field exists, the function must return to bail out of the loop. Because

the event handler is not expecting any returned value, you can simply

issue the return statement to stop the function altogether. If all the tests

pass, then the form is submitted with the submit() method. Functions that

have a return statement inside an if construction must also have a return
statement outside the construction so that it always returns a value (includ-

ing the null value used here). The other change is that the onSubmit event

handler has been removed from the <FORM> tag, because it is no longer

needed (the submit() method does not trigger an onSubmit event handler).

<HTML>
<HEAD>
<TITLE>Validator</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

(c) ketabton.com: The Digital Library

1460 Part VI ✦ Appendixes

function checkForm(form) {
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].value == “”) {
alert(“Fill out ALL fields.”)
return

}
}
form.submit()
return

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Please enter all requested information:

First Name:<INPUT TYPE=”text” NAME=”firstName”>

Last Name:<INPUT TYPE=”text” NAME=”lastName”>

Rank:<INPUT TYPE=”text” NAME=”rank”>

Serial Number:<INPUT TYPE=”text” NAME=”serialNumber”>

Submit Form
</FORM>
</BODY>
</HTML>

3. The this keyword refers to the text field object, so that this.value refers to

the value property of that object.

function showText(txt) {
alert(txt)

}

4. document.accessories.acc1.value = “Leather Carrying Case”

document.forms[1].acc1.value = “Leather Carrying Case”

5. The SELECT object invokes a function that does the job.

<HTML>
<HEAD>
<TITLE>Color Changer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setColor(list) {

var newColor = list.options[list.selectedIndex].value
document.bgColor = newColor

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Select a background color:
<SELECT onChange=”setColor(this)”>
<OPTION VALUE=”red”>Stop
<OPTION VALUE=”yellow”>Caution
<OPTION VALUE=”green”>Go

(c) ketabton.com: The Digital Library

1461Appendix C ✦ Answers to Tutorial Exercises

</SELECT>
</FORM>
</BODY>
</HTML>

Chapter 10 Answers
1. Use string.indexOf() to see if the field contains the “@” symbol.

<HTML>
<HEAD>
<TITLE>E-mail Validator</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkAddress(form) {

if (form.email.value.indexOf(“@”) == -1) {
alert(“Check the e-mail address for accuracy.”)
return false

}
return true

}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”return checkAddress(this)”>
Enter your e-mail address:
<INPUT TYPE=”text” NAME=”email” SIZE=30>

<INPUT TYPE=”submit”>
</FORM>
</BODY>
</HTML>

2. Remember that the substring goes up to, but does not include, the index of

the second parameter. Spaces count as characters.

myString.substring(0,3) // result = “Net”
myString.substring(13,18) // result = “gator”
myString.substring(4,12) // result = “cape Nav”

3. The missing for loop is in boldface. You could also use the increment opera-

tor on the count variable (++count) to add 1 to it for each letter “e.”

function countE(form) {
var count = 0
var inputString = form.mainstring.value.toLowerCase()
for (var i = 0; i < inputString.length; i++) {

if (inputString.charAt(i) == “e”) {
count += 1

}
}
var msg = “The string has “ + count
msg += “ instances of the letter e.”
alert(msg)

}

(c) ketabton.com: The Digital Library

1462 Part VI ✦ Appendixes

4. The formula for the random throw of one die is in the chapter.

<HTML>
<HEAD>
<TITLE>E-mail Validator</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function roll(form) {

form.die1.value = Math.floor(Math.random() * 6) + 1
form.die2.value = Math.floor(Math.random() * 6) + 1

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”text” NAME=”die1” SIZE=2>
<INPUT TYPE=”text” NAME=”die2” SIZE=2>

<INPUT TYPE=”button” VALUE=”Roll the Dice”
onClick=”roll(this.form)”>
</FORM>
</BODY>
</HTML>

5. If you used the Math.round() method in your calculations, that is fine for

your current exposure to the Math object. Another method, Math.ceil(),

may be more valuable because it rounds up any fractional value.

<HTML>
<HEAD>
<TITLE>Waiting for Santa</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function daysToXMAS() {

var oneDay = 1000 * 60 * 60 * 24
var today = new Date()
var XMAS = new Date(“December 25, 2001”)
var diff = XMAS.getTime() - today.getTime()
return Math.ceil(diff/oneDay)

}
</SCRIPT>
</HEAD>

<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(daysToXMAS() + “ days until Christmas.”)
</SCRIPT>
</BODY>
</HTML>

(c) ketabton.com: The Digital Library

1463Appendix C ✦ Answers to Tutorial Exercises

Chapter 11 Answers
1. onLoad=”parent.currCourse = ‘history101’”

2.

3. All three frames are siblings, so references include the parent.

parent.mechanics.location.href = “french201M.html”
parent.description.location.href = “french201D.html”

4. A script in one of the documents is attempting to reference the selector
object in one of the frames but the document has not fully loaded, causing

the object to not yet be in the browser’s object model. Rearrange the script so

that it fires in response to the onLoad event handler of the framesetting

document.

5. From the subwindow, the opener property refers back to the frame containing

the window.open() method. To extend the reference to the frame’s parent,

the reference includes both pieces: opener.parent.ObjVarFuncName.

Chapter 12 Answers
1. As the document loads, the tag creates a document image object. A

memory image object is created with the new Image() constructor. Both

objects have the same properties, and assigning a URL to the src property of

a memory object loads the image into the browser’s image cache.

2. var janeImg = new Image(100,120)

janeImg.src = “jane.jpg”

3. document.images[“people”].src = janeImg.src

4. Surround tags with link (A element) tags, and use the link’s onClick,

onMouseOver, and onMouseOut event handlers. Set the image’s BORDER
attribute to zero if you don’t want the link highlight to appear around the

image.

✦ ✦ ✦

Top
Parent

<FRAMESET>

mechanics

<FRAME>

description

<FRAME>

navigation

<FRAME>

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

JavaScript and
DOM Internet
Resources

As an online technology, JavaScript has plenty of support

online for scripters. Items recommended here were

taken as a snapshot of Internet offerings in early 2001. But

beware! Sites change. URLs change. Be prepared to hunt

around for these items if the information provided here

becomes out-of-date by the time you read this.

Support and Updates for this Book
The most up-to-date list of errata and other notes of inter-

est pertaining to this edition of the JavaScript Bible can be

found at the official Support Center, located at:

http://www.dannyg.com/update.html

If you are experiencing difficulty with the example listings

in this book, first check with the Support Center to see if your

question has been answered. As mentioned earlier, you are

encouraged to enter the tutorial listings yourself to get used

to typing JavaScript (and HTML) code. If, after copying the

examples from Part II, you can’t make something work (and a

fix hasn’t already been posted to the Support Center), send

the file you’ve typed to me via e-mail, along with a description

of what’s not working for you. Also tell me the browser

version and operating system that you’re using. My e-mail

address is dannyg@dannyg.com. Regretfully, I am unable to

answer general questions about JavaScript or how to apply

examples from the book to your own projects.

Newsgroups
The best places to get quick answers to your pressing

questions are online newsgroups. Here are the top JavaScript-

related newsgroups:

DDA P P E N D I X

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1466 Part VI ✦ Appendixes

On most news servers:

comp.lang.javascript

On news://msnews.microsoft.com

microsoft.public.scripting.jscript
microsoft.public.windows.inetexplorer.ie5.programming.dhtml
microsoft.public.windows.inetexplorer.ie5.programming.dhtml.scripting
microsoft.public.inetsdk.programming.scripting.jscript

On news://secnews.netscape.com

netscape.public.mozilla.dom
netscape.public.mozilla.jseng

Before you post a question to a newsgroup, however, read about FAQs in the fol-

lowing section and also use the extremely valuable Deja.com newsgroup archive,

which is now owned by Google. Look for links to “Usenet Advanced Search” at:

http://groups.google.com

Enter the keyword or phrase into the top text box, but then also try to narrow

your search by limiting the newsgroup(s) to search. For example, if you have a

question about weird behavior you are experiencing with the borderCollapse
style property in IE, enter borderCollapse into the keyword field, and then first

try narrowing the search to the newsgroup comp.lang.javascript. If you don’t

find the answer there, try again with all the Microsoft newsgroups by specifying

microsoft.public.* in the Newsgroups field.

If you post a question to a newsgroup, you will most likely get a quick and

intelligent response if you also provide either some sample code that’s giving you a

problem, or a link to a temporary file on your server that others can check out.

Visualizing a problem you’ve spent days on is very hard for others. Be as specific as

possible, including the browser(s) on which the code must run and the nature of

the problem.

FAQs
One situation that arises with a popular and accessible technology, such as

JavaScript and DHTML authoring, is that the same questions get asked over and

over, as newcomers arrive on the scene daily. Rather than invoke the ire of news-

group users, look through existing FAQ files to see if your concern has already been

raised and answered. Here are some of the best JavaScript FAQ sites:

javascript.faqts.com
developer.irt.org/script/script.htm

For less-frequently asked questions — but previously asked and answered in a

public form — use the dejanews.com archive search, described earlier in this

appendix.

(c) ketabton.com: The Digital Library

1467Appendix D ✦ JavaScript and DOM Internet Resources

Online Documentation
Locations of Web sites that dispense official documentation for one browser or

another are extremely fluid. Therefore, the following information contains links only

to top-level areas of appropriate Web sites, along with tips on what to look for after

you are at the site.

For Netscape browser technologies, start at:

http://developer.netscape.com/library/

You can also find some interesting future-oriented developer documentation at:

http://www.mozilla.org/docs

Microsoft has condensed its developer documentation into a massive site called

MSDN (Microsoft Developer Network). The place to begin is:

http://msdn.microsoft.com/workshop/

This page is the portal to many technologies, but the one most applicable to

JavaScript and client-side scripting is one labeled “DHTML, HTML & CSS”. Look for

subject headers covering Document Object Model and DHTML References. The

core JScript language is detailed in a separate section:

http://msdn.microsoft.com/scripting/jscript/techinfo/jsdocs.htm

Finally, you can read the industry standards for HTML, CSS, and ECMAScript tech-

nologies online. Be aware that these documents are primarily intended for develop-

ers of tools that we use — browsers, WYSIWYG editors,and so forth — to direct them

on how their products should respond to tags, style sheets, scripts, and so on.

Reading these documents has frequently been cited as a cure for insomnia.

http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/html4
http://www.w3.org/TR/REC-CSS2

Please note that just because a particular item is described in an industry stan-

dard doesn’t mean that it is implemented in any or all browsers. In the real world,

we must develop for the way the technologies are actually implemented in

browsers.

World Wide Web
The number of Web sites devoted to JavaScript tips and tricks is mind-boggling.

Many sites come and go in the middle of the night, leaving no trace of their former

existence. If you are looking for more example code for applications not covered in

this book, perhaps the best place to begin your journey is through the traditional

search engines. Narrowing your search through careful keyword choice is vital. In

addition to the Netscape and (heavily Windows-oriented) Microsoft developer Web

sites (plus numerous online articles of mine listed at http://www.dannyg.com/
recentwriting.html), a couple other venerable sites are:

http://builder.com
http://www.webreference.com

(c) ketabton.com: The Digital Library

1468 Part VI ✦ Appendixes

These sites are by no means the only worthwhile JavaScript and DHTML destina-

tions on the Web. Sometimes having too many sources is as terrifying as having not

enough. The links and newsgroups described in this appendix should take you a

long way.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

What’s on the
CD-ROM

The accompanying Windows–Macintosh CD-ROM contains

nearly 300 HTML Document listings from the book, sub-

stantial supplemental book material, electronic versions of

the Quick Reference shown in Appendix A, a complete, search-

able version of the book, trial software, and the Adobe

Acrobat Reader.

System Requirements
To derive the most benefit from the example Listings, you

should have both Netscape Navigator 6 (or later) and Internet

Explorer 5 (or later) installed on your computer. While many

scripts run in both browsers, several scripts demonstrate fea-

tures that are available on only one browser or the other. To

write scripts, you can use a simple text editor, word proces-

sor, or dedicated HTML editor.

To use the Adobe Acrobat Reader, you need the following:

✦ For Windows 95, Windows 98, or Windows NT4.0 (with

SP3 or later), you should be using a 486 or Pentium com-

puter with 16MB of RAM and 10MB of hard disk space.

✦ Macintosh users require a PowerPC, System 7.1,2 or

later, at least 8MB of RAM, and 8MB of disk space.

Disc Contents
Platform-specific software is located in the appropriate

Windows and Macintosh directories on the CD-ROM. The

contents include the following items.

JavaScript listings for Windows and
Macintosh text editors

Starting with Part III of the book, almost all example listings

are on the CD-ROM in the form of complete HTML files, which

EEA P P E N D I X

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

1470 Part VI ✦ Appendixes

you can load into a browser to see the language item in operation. A directory

called Listings contains the HTML and related files, with nested folders named for

each chapter. Each HTML file’s name is keyed to the Listing number in the book. For

example, the file for Listing 15-1 is named lst15-01.htm. Note that no listings are

provided for the tutorial chapters of Part II, because you are encouraged to enter

HTML and scripting code manually.

For your convenience, an index.html file in the Listings folder provides a front-

end table of contents to the HTML files for the book’s program listings. Open that

file from your browser whenever you want to access the program listing files. If you

intend to access that index page frequently, you can bookmark it in your

browser(s). Using the index file to access the listing files can be very important in

some cases, because several individual files must be opened within their associated

framesets to work properly. Accessing the files through the index.html file assures

that you open the frameset. The index.html file also shows browser compatibility

ratings for all the listings. This saves you time from opening listings that are not

intended to run on your browser. To examine and modify the HTML source files,

open them from your favorite text editor program (for Windows editors, be sure to

specify the .htm file extension in the Open File dialog box).

You can open all listing files directly from the CD-ROM, but if you copy them to

your hard drive, access is faster and you will be able to experiment with modifying

the files more readily. Copy the folder named Listings from the CD-ROM to any loca-

tion on your hard drive.

JavaScript and Browser Object Quick Reference
from Appendix A (Adobe Acrobat format)

If you like the Quick Reference in Appendix A, you can print it out in your choice

of format with the help of the Adobe Acrobat Reader, included with the CD-ROM. The

files are located on the CD-ROM in the :Author_Files:JS Object Reference:
folder in PDF format. To decide on the format that is best for you, read the file named

Choose a Version.txt. The .pdf file for each version is contained in its own sub-

directory, where you also find full assembly and collating instructions in a companion

text file. Start Acrobat Reader on your computer and open the desired file from either

the CD-ROM or from a copy made to your hard drive. Before printing out the docu-

ment, be sure to choose Landscape orientation in the Page Setup dialog box of

Acrobat Reader.

Adobe Acrobat Reader
The Adobe Acrobat Reader is a helpful program that enables you to view the

reference example sections for Parts III and IV of the book, the Quick Reference

from Appendix A, and the searchable version of this book, all of which are in .pdf
format on the CD-ROM. To install and run Adobe Acrobat Reader, follow these

steps:

For Windows
1. Start Windows Explorer or Windows NT Explorer and then open the Acrobat

folder on the CD-ROM.

2. In the Acrobat folder, double-click rs405eng.exe and follow the instructions

presented on-screen for installing Adobe Acrobat Reader.

(c) ketabton.com: The Digital Library

1471Appendix E ✦ What’s on the CD-ROM

For Macintosh
1. Open the Acrobat folder on the CD-ROM.

2. In the Acrobat folder, double-click the Adobe Acrobat Installer icon and follow

the instructions presented on-screen for installing Adobe Acrobat Reader.

Reference example sections from Parts III and IV
In many places throughout the reference chapters of Parts III and IV, you see an

icon that directs you to the CD-ROM for an example of the language term being dis-

cussed. All of these example sections are collected into Appendix F, which is

located on the CD-ROM and is part ot the book’s .pdf file. For the fastest access to

these example sections, copy the Examples directory and its contents to your hard

disk.

An example may consist of a detailed description of a listing or directions on

how to experiment with the term through a handy learning utility on the CD-ROM,

called The Evaluator, which is located among the listings for Chapter 15. While

many of these example sections contain listings, the Acrobat files are distinct from

the HTML listing files that you run in your browser and edit with your text editor.

Searchable version of the book
This is a complete, searchable version of the book, provided in Adobe Acrobat

.pdf format. Access it from the JSB4 folder after installing Adobe Acrobat Reader.

To take advantage of the full-text search, you must add the book’s index file (.pdx
file) to the list of indexes available to your copy of Acrobat Reader. Here are the

steps to add the index:

1. Choose Search from the Edit menu.

2. Choose Select Indexes from the submenu.

3. Click the Add button.

4. Locate the .pdx file on the CD-ROM in the directory containing the book’s

.pdf files and open the .pdx file. The JavaScript Bible index should be listed

in the Index Selection window. If the checkbox next to the name is not yet

checked, check it now.

5. Click OK.

To begin an actual search, click the Search icon (binoculars in front of a sheet of

paper). Enter the text for which you’re searching. The search also covers the text of

example listings. To access the index and search facilities in future sessions, the

CD-ROM must be in your CD-ROM drive.

Commercial software products
Included on the CD-ROM are licensed versions of Microsoft Internet Explorer 5.5

for Windows and both the Windows and Macintosh versions of Netscape Navigator

6.0. These products are included on the CD-ROM for your convenience if you have

not yet downloaded the installers for the products from Microsoft or Netscape.

Prior to installing either product, be sure that you read and understand the installa-

tion instructions.

(c) ketabton.com: The Digital Library

1472 Part VI ✦ Appendixes

Commercial, trial, and shareware software
We also include the following software for your review:

Index Stock Imagery WebSpice Objects
The CD-ROM contains the full version of WebSpice Objects. The product con-

tains 3,000 high-quality buttons, labels, borders, and other art to give the profes-

sional look to your Web pages.

Helios Software Solutions TextPad 4.3.1 (Windows only)
TextPad is a favorite Windows text editor for programmers. TextPad is a signifi-

cant improvement over the Notepad and WordPad editors that come with Windows,

but doesn’t have all the overhead that you find in word processors. TextPad is

shareware. Registration information is included with the product.

Bare Bones Software BBEdit 5.1.1 (Macintosh only)
BBEdit is the most popular text editor for the Macintosh. The version on the

CD-ROM is a demo version.

✦ ✦ ✦

(c) ketabton.com: The Digital Library

Examples from
Parts III and IV

Chapter 15 Examples
The following section contains examples from Chapter 15,

“Generic HTML Element Objects.”

FFA P P E N D I X

✦ ✦ ✦ ✦

(c) ketabton.com: The Digital Library

CD-118 Part VI ✦ Appendixes

Generic Objects

Properties
accessKey

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
When you load the script in Listing 15-1, adjust the height of the browser window

so that you can see nothing below the second dividing rule. Enter any character

into the Settings portion of the page and press Enter. (The Enter key may cause

your computer to beep.) Then hold down the Alt (Windows) or Ctrl (Mac) key while

pressing the same keyboard key. The element from below the second divider

should come into view.

Listing 15-1: Controlling the accessKey Property

<HTML>
<HEAD>
<TITLE>accessKey Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function assignKey(type, elem) {

if (window.event.keyCode == 13) {
switch (type) {

case “button”:
document.forms[“output”].access1.accessKey = elem.value
break

case “text”:
document.forms[“output”].access2.accessKey = elem.value
break

case “table”:
document.all.myTable.accessKey = elem.value

}
return false

}
}
</SCRIPT>
</HEAD>
<BODY>

elementObject.accessKey

(c) ketabton.com: The Digital Library

CD-119Appendix F ✦ Examples from Parts III and IV

<H1>accessKey Property Lab</H1>
<HR>
Settings:

<FORM NAME=”input”>
Assign an accessKey value to the Button below and press Return:
<INPUT TYPE=”text” SIZE=2 MAXLENGTH=1
onKeyPress=”return assignKey(‘button’, this)”>

Assign an accessKey value to the Text Box below and press Return:
<INPUT TYPE=”text” SIZE=2 MAXLENGTH=1
onKeyPress=”return assignKey(‘text’, this)”>

Assign an accessKey value to the Table below (IE5.5 only) and press Return:
<INPUT TYPE=”text” SIZE=2 MAXLENGTH=1
onKeyPress=”return assignKey(‘table’, this)”>
</FORM>

Then press Alt (Windows) or Control (Mac) + the key.

<I>Size the browser window to view nothing lower than this line.</I>
<HR>

<FORM NAME=”output” onSubmit=”return false”>
<INPUT TYPE=”button” NAME=”access1” VALUE=”Standard Button”>
<P></P>
<INPUT TYPE=”text” NAME=”access2”>
<P></P>
</FORM>
<TABLE ID=”myTable” CELLPADDING=”10” BORDER=2>
<TR>
<TH>Quantity<TH>Description<TH>Price
</TR>
<TBODY BGCOLOR=”red”>
<TR>

<TD WIDTH=100>4<TD>Primary Widget<TD>$14.96
</TR>
<TR>

<TD>10<TD>Secondary Widget<TD>$114.96
</TR>
</TBODY>
</TABLE>

</BODY>
</HTML>

In IE5, the keyboard combination may bring focus to the input field. This anoma-
lous behavior does not affect the normal script setting of the accessKey property.

Note

elementObject.accessKey

(c) ketabton.com: The Digital Library

CD-120 Part VI ✦ Appendixes

all

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the all collection. Enter the fol-

lowing statements one at a time into the lower text box, and review the results in

the textarea for each.

document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that ele-

ment to see which tag is associated with it. For example, if one of the results for the

document.all collection says document.all.8=[object], enter the following

statement into the topmost text box:

document.all[8].tagName

attributes

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to examine the values of the attributes array for

some of the elements in that document. Enter each of the following expressions

into the lower text field, and see the array contents in the Results textarea for each:

document.body.attributes
document.getElementById(“myP”).attributes
document.getElementById(“myTable”).attributes

If you have both NN6 and IE5, compare the results you get for each of these expres-

sions. To view the properties of a single attribute in IE5/Windows, enter the follow-

ing statement into the bottom text field:

elementObject.attributes

(c) ketabton.com: The Digital Library

CD-121Appendix F ✦ Examples from Parts III and IV

document.getElementById(“myP”).attributes[“class”]

For NN6 and IE5/Mac, use the W3C DOM syntax:

document.getElementById(“myP”).attributes.getNamedItem(“class”)

behaviorUrns

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following function is embedded within a more complete example of IE/Windows

HTML behaviors (Listing 15-19 in this chapter). It reports the length of the

behaviorUrns array and shows — if the values are returned — the URL of the

attached behavior.

function showBehaviors() {
var num = document.all.myP.behaviorUrns.length
var msg = “The myP element has “ + num + “ behavior(s). “
if (num > 0) {

msg += “Name(s): \r\n”
for (var i = 0; i < num; i++) {

msg += document.all.myP.behaviorUrns[i] + “\r\n”
}

}
alert(msg)

}

canHaveChildren

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-2 uses color to demonstrate the difference between an element that can

have children and one that cannot. The first button sets the color style property of

every visible element on the page to red. Thus, elements (including the normally

elementObject.canHaveChildren

(c) ketabton.com: The Digital Library

CD-122 Part VI ✦ Appendixes

non-childbearing ones such as HR and INPUT) are affected by the color change. But

if you reset the page and click the largest button, only those elements that can con-

tain nested elements receive the color change.

Listing 15-2: Reading the canHaveChildren Property

<HTML>
<HEAD>
<TITLE>canHaveChildren Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function colorAll() {

for (var i = 0; i < document.all.length; i++) {
document.all[i].style.color = “red”

}
}

function colorChildBearing() {
for (var i = 0; i < document.all.length; i++) {

if (document.all[i].canHaveChildren) {
document.all[i].style.color = “red”

}
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>canHaveChildren Property Lab</H1>
<HR>
<FORM NAME=”input”>
<INPUT TYPE=”button” VALUE=”Color All Elements” onClick=”colorAll()”>

<INPUT TYPE=”button” VALUE=”Reset” onClick=”history.go(0)”>

<INPUT TYPE=”button” VALUE=”Color Only Elements That Can Have Children”
onClick=”colorChildBearing()”>
</FORM>

<HR>

<FORM NAME=”output”>
<INPUT TYPE=”checkbox” CHECKED>Your basic checkbox
<P></P>
<INPUT TYPE=”text” NAME=”access2” VALUE=”Some textbox text.”>
<P></P>
</FORM>
<TABLE ID=”myTable” CELLPADDING=”10” BORDER=2>
<TR>
<TH>Quantity<TH>Description<TH>Price
</TR>

elementObject.canHaveChildren

(c) ketabton.com: The Digital Library

CD-123Appendix F ✦ Examples from Parts III and IV

<TBODY>
<TR>

<TD WIDTH=100>4<TD>Primary Widget<TD>$14.96
</TR>
<TR>

<TD>10<TD>Secondary Widget<TD>$114.96
</TR>
</TBODY>
</TABLE>

</BODY>
</HTML>

canHaveHTML

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the canHaveHTML property.

Enter the following statements into the top text field and observe the results:

document.all.input.canHaveHTML
document.all.myP.canHaveHTML

The first statement returns false because an INPUT element (the top text field in

this case) cannot have nested HTML. But the myP element is a P element that gladly

accepts HTML content.

childNodes

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The walkChildNodes() function shown in Listing 15-3 accumulates and returns a

hierarchical list of child nodes from the point of view of the document’s HTML element

elementObject.childNodes

(c) ketabton.com: The Digital Library

CD-124 Part VI ✦ Appendixes

(the default) or any element whose ID you pass as a string parameter. This function is

embedded in The Evaluator so that you can inspect the child node hierarchy of that

page or (when using evaluator.js for debugging as described in Chapter 45) the

node hierarchy within any page you have under construction. Try it out in The

Evaluator by entering the following statements into the top text field:

walkChildNodes()
walkChildNodes(getElementById(“myP”))

The results of this function show the nesting relationships among all child nodes

within the scope of the initial object. It also shows the act of drilling down to fur-

ther childNodes collections until all child nodes are exposed and catalogued. Text

nodes are labeled accordingly. The first 15 characters of the actual text are placed

in the results to help you identify the nodes when you compare the results against

your HTML source code. The early NN6 phantom text nodes that contain carriage

returns display <cr> in the results for each return character.

Listing 15-3: Collecting Child Nodes

function walkChildNodes(objRef, n) {
var obj
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef)

} else {
obj = objRef

}
} else {

obj = (document.body.parentElement) ?
document.body.parentElement : document.body.parentNode

}
var output = “”
var indent = “”
var i, group, txt
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”

}
} else {

n = 0
output += “Child Nodes of <” + obj.tagName
output += “>\n=====================\n”

}
group = obj.childNodes
for (i = 0; i < group.length; i++) {

output += indent
switch (group[i].nodeType) {

elementObject.childNodes

(c) ketabton.com: The Digital Library

CD-125Appendix F ✦ Examples from Parts III and IV

case 1:
output += “<” + group[i].tagName
output += (group[i].id) ? “ ID=” + group[i].id : “”
output += (group[i].name) ? “ NAME=” + group[i].name : “”
output += “>\n”
break

case 3:
txt = group[i].nodeValue.substr(0,15)
output += “[Text:\”” + txt.replace(/[\r\n]/g,”<cr>”)
if (group[i].nodeValue.length > 15) {

output += “...”
}
output += “\”]\n”
break

case 8:
output += “[!COMMENT!]\n”
break

default:
output += “[Node Type = “ + group[i].nodeType + “]\n”

}
if (group[i].childNodes.length > 0) {

output += walkChildNodes(group[i], n+1)
}

}
return output

}

children

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The walkChildren() function shown in Listing 15-4 accumulates and returns a

hierarchical list of child elements from the point of view of the document’s HTML

element (the default) or any element whose ID you pass as a string parameter. This

function is embedded in The Evaluator so that you can inspect the parent–child

hierarchy of that page or (when using evaluator.js for debugging as described in

Chapter 45) the element hierarchy within any page you have under construction.

Try it out in The Evaluator in IE5+ by entering the following statements into the top

text field:

elementObject.children

(c) ketabton.com: The Digital Library

CD-126 Part VI ✦ Appendixes

walkChildren()
walkChildren(“myP”)

The results of this function show the nesting relationships among all parent and

child elements within the scope of the initial object. It also shows the act of drilling

down to further children collections until all child elements are exposed and cata-

logued. The element tags also display their ID and/or NAME attribute values if any

are assigned to the elements in the HTML source code.

Listing 15-4: Collecting Child Elements

function walkChildren(objRef, n) {
var obj
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef)

} else {
obj = objRef

}
} else {

obj = document.body.parentElement
}
var output = “”
var indent = “”
var i, group
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”

}
} else {

n = 0
output += “Children of <” + obj.tagName
output += “>\n=====================\n”

}
group = obj.children
for (i = 0; i < group.length; i++) {

output += indent + “<” + group[i].tagName
output += (group[i].id) ? “ ID=” + group[i].id : “”
output += (group[i].name) ? “ NAME=” + group[i].name : “”
output += “>\n”
if (group[i].children.length > 0) {

output += walkChildren(group[i], n+1)
}

}
return output

}

elementObject.children

(c) ketabton.com: The Digital Library

CD-127Appendix F ✦ Examples from Parts III and IV

className

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The style of an element toggles between “on” and “off” in Listing 15-5 by virtue of

setting the element’s className property alternatively to an existing style sheet

class selector name and an empty string. When you set the className to an empty

string, the default behavior of the H1 element governs the display of the first

header. A click of the button forces the style sheet rule to override the default

behavior in the first H1 element.

Listing 15-5: Working with the className Property

<HTML>
<HEAD>
<TITLE>className Property</TITLE>
<STYLE TYPE=”text/css”>
.special {font-size:16pt; color:red}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleSpecialStyle(elemID) {

var elem = (document.all) ? document.all(elemID) :
document.getElementById(elemID)

if (elem.className == “”) {
elem.className = “special”

} else {
elem.className = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>className Property Lab</H1>
<HR>
<FORM NAME=”input”>
<INPUT TYPE=”button” VALUE=”Toggle Class Name”
onClick=”toggleSpecialStyle(‘head1’)”>
</FORM>

<H1 ID=”head1”>ARTICLE I</H1>

Continued

elementObject.className

(c) ketabton.com: The Digital Library

CD-128 Part VI ✦ Appendixes

Listing 15-5 (continued)

<P>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.</P>

<H1>ARTICLE II</H1>
<P>A well regulated militia, being necessary to the security of a free state,
the right of the people to keep and bear arms, shall not be infringed.</P>
</BODY>
</HTML>

You can also create multiple versions of a style rule with different class selector

identifiers and apply them at will to a given element.

clientHeight
clientWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-6 calls upon the clientHeight and clientWidth properties of a DIV ele-

ment that contains a paragraph element. Only the width of the DIV element is speci-

fied in its style sheet rule, which means that the paragraph’s text wraps inside that

width and extends as deeply as necessary to show the entire paragraph. The

clientHeight property describes that depth. The clientHeight property then

calculates where a logo image should be positioned immediately after DIV, regard-

less of the length of the text. As a bonus, the clientWidth property helps the

script center the image horizontally with respect to the paragraph’s text.

Listing 15-6: Using clientHeight and clientWidth Properties

<HTML>
<HEAD>
<TITLE>clientHeight and clientWidth Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

elementObject.clientHeight

(c) ketabton.com: The Digital Library

CD-129Appendix F ✦ Examples from Parts III and IV

function showLogo() {
var paragraphW = document.all.myDIV.clientWidth
var paragraphH = document.all.myDIV.clientHeight
// correct for Windows/Mac discrepancies
var paragraphTop = (document.all.myDIV.clientTop) ?

document.all.myDIV.clientTop : document.all.myDIV.offsetTop
var logoW = document.all.logo.style.pixelWidth
// center logo horizontally against paragraph
document.all.logo.style.pixelLeft = (paragraphW-logoW)/2
// position image immediately below end of paragraph
document.all.logo.style.pixelTop = paragraphTop + paragraphH
document.all.logo.style.visibility = “visible”

}
</SCRIPT>
</HEAD>
<BODY>
<BUTTON onClick=”showLogo()”>Position and Show Logo Art</BUTTON>
<DIV ID=”logo” STYLE=”position:absolute; width:120px; visibility:hidden”></DIV>
<DIV ID=”myDIV” STYLE=”width:200px”>
<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident.</P>
</DIV>
</BODY>
</HTML>

To assist in the vertical positioning of the logo, the offsetTop property of the DIV

object provides the position of the start of the DIV with respect to its outer con-

tainer (the BODY). Unfortunately, IE/Mac uses the clientTop property to obtain

the desired dimension. That measure (assigned to the paragraphTop variable),

plus the clientHeight of the DIV, provides the top coordinate of the image.

If you use only IE5, you can eliminate the DIV wrapper around the P element and

assign the STYLE attribute directly to the P element. The script can then read the

clientHeight and clientWidth of the P object.

contentEditable

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.contentEditable

(c) ketabton.com: The Digital Library

CD-130 Part VI ✦ Appendixes

Example
Listing 15-7 is a simplified demonstration of how to turn some text inside a docu-

ment into an editable element. When you click the button of a freshly loaded page,

the toggleEdit() function captures the opposite of the current editable state via

the isContentEditable property of the DIV that is subject to edit. You switch on

editing for that element in the next statement by assigning the new value to the

contentEditable property of the DIV. For added impact, turn the text of the DIV to

red to provide additional user feedback about what is editable on the page. You can

also switch the button label to one that indicates the action invoked by the next

click on it.

Listing 15-7: Using the contentEditable Property

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
.normal {color: black}
.editing {color: red}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleEdit() {

var newState = !editableText.isContentEditable
editableText.contentEditable = newState
editableText.className = (newState) ? “editing” : “normal”
editBtn.innerText = (newState) ? “Disable Editing” : “Enable Editing”

}
</SCRIPT>
<BODY>
<H1>Editing Contents</H1>
<HR>
<P>Turn on editing to modify the following text:</P>
<DIV ID=”editableText”>Edit this text on the fly....</DIV>
<P><BUTTON ID=”editBtn” onClick=”toggleEdit()” onFocus=”this.blur()”>
Enable Editing
</BUTTON></P>
</BODY>
</HTML>

The BUTTON element has an onFocus event handler that immediately invokes the

blur() method on the button. This prevents a press of the spacebar (during edit-

ing) from accidentally triggering the button.

elementObject.contentEditable

(c) ketabton.com: The Digital Library

CD-131Appendix F ✦ Examples from Parts III and IV

currentStyle

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to compare the properties of the currentStyle
and style objects of an element. For example, an unmodified copy of The

Evaluator contains an EM element whose ID is “myEM”. Enter document.all.
myEM.style into the bottom property listing text box and press Enter. Notice how

most of the property values are empty. Now enter document.all.myEM.
currentStyle into the property listing text box and press Enter. Every property

has a value associated with it.

dataFld
dataFormatAs
dataSrc

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-8 is a simple document that has two TDC objects associated with it. The

external files are different formats of the U.S. Bill of Rights document. One file is a tra-

ditional, tab-delimited data file consisting of only two records. The first record is a

tab-delimited sequence of field names (named “Article1”, “Article2”, and so on);

the second record is a tab-delimited sequence of article content defined in HTML:

<H1>ARTICLE I</H1><P>Congress shall make...</P>

The second file is a raw text file consisting of the full Bill of Rights with no HTML

formatting attached.

elementObject.dataFld

(c) ketabton.com: The Digital Library

CD-132 Part VI ✦ Appendixes

When you load Listing 15-8, only the first article of the Bill of Rights appears in a

blue-bordered box. Buttons enable you to navigate to the previous and next articles

in the series. Because the data source is a traditional, tab-delimited file, the

nextField() and prevField() functions calculate the name of the next source

field and assign the new value to the dataFld property. All of the data is already in

the browser after the page loads, so cycling through the records is as fast as the

browser can reflow the page to accommodate the new content.

Listing 15-8: Changing dataFld and dataSrc Properties

<HTML>
<HEAD>
<TITLE>Data Binding</TITLE>
<STYLE TYPE=”text/css”>
#display {width:500px; border:10px ridge blue; padding:20px}
.hiddenControl {display:none}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function nextField() {

var elem = document.all.display
var fieldName = elem.dataFld
var currFieldNum = parseInt(fieldName.substring(7, fieldName.length),10)
currFieldNum = (currFieldNum == 10) ? 1 : ++currFieldNum
elem.dataFld = “Article” + currFieldNum

}
function prevField() {

var elem = document.all.display
var fieldName = elem.dataFld
var currFieldNum = parseInt(fieldName.substring(7, fieldName.length),10)
currFieldNum = (currFieldNum == 1) ? 10 : --currFieldNum
elem.dataFld = “Article” + currFieldNum

}

function toggleComplete() {
if (document.all.buttonWrapper.className == “”) {

document.all.display.dataSrc = “#rights_raw”
document.all.display.dataFld = “column1”
document.all.display.dataFormatAs = “text”
document.all.buttonWrapper.className = “hiddenControl”

} else {
document.all.display.dataSrc = “#rights_html”
document.all.display.dataFld = “Article1”
document.all.display.dataFormatAs = “HTML”
document.all.buttonWrapper.className = “”

}
}
</SCRIPT>
</HEAD>

elementObject.dataFld

(c) ketabton.com: The Digital Library

CD-133Appendix F ✦ Examples from Parts III and IV

<BODY>
<P>U.S. Bill of Rights</P>
<FORM>
<INPUT TYPE=”button” VALUE=”Toggle Complete/Individual”
onClick=”toggleComplete()”>

<INPUT TYPE=”button” VALUE=”Prev” onClick=”prevField()”>
<INPUT TYPE=”button” VALUE=”Next” onClick=”nextField()”>

</FORM>

<DIV ID=”display” DATASRC=”#rights_html” DATAFLD=”Article1”
DATAFORMATAS=”HTML”></DIV>

<OBJECT ID=”rights_html” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”Bill of Rights.txt”>
<PARAM NAME=”UseHeader” VALUE=”True”>
<PARAM NAME=”FieldDelim” VALUE=”	”>

</OBJECT>
<OBJECT ID=”rights_raw” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<PARAM NAME=”DataURL” VALUE=”Bill of Rights (no format).txt”>
<PARAM NAME=”FieldDelim” VALUE=”\”>
<PARAM NAME=”RowDelim” VALUE=”\”>

</OBJECT>
</BODY>
</HTML>

Another button on the page enables you to switch between the initial piecemeal

version of the document and the unformatted version in its entirety. To load the

entire document as a single record, the FieldDelim and RowDelim parameters of

the second OBJECT element eliminate their default values by replacing them with

characters that don’t appear in the document at all. And because the external file

does not have a field name in the file, the default value (column1 for the lone col-

umn in this document) is the data field. Thus, in the toggleComplete() function,

the dataSrc property is changed to the desired OBJECT element ID, the dataFld
property is set to the correct value for the data source, and the dataFormatAs
property is changed to reflect the different intention of the source content (to be

rendered as HTML or as plain text). When the display shows the entire document,

you can hide the two radio buttons by assigning a className value to the SPAN ele-

ment that surrounds the buttons. The className value is the identifier of the class

selector in the document’s style sheet. When the toggleComplete() function

resets the className property to empty, the default properties (normal inline dis-

play style) take hold.

One further example demonstrates the kind of power available to the TDC under

script control. Listing 15-9 displays table data from a tab-delimited file of Academy

elementObject.dataFld

(c) ketabton.com: The Digital Library

CD-134 Part VI ✦ Appendixes

Award information. The data file has eight columns of data, and each column heading

is treated as a field name: Year, Best Picture, Best Director, Best Director Film, Best

Actress, Best Actress Film, Best Actor, and Best Actor Film. For the design of the

page, only five fields from each record appear: Year, Film, Director, Actress, and Actor.

Notice in the listing how the HTML for the table and its content is bound to the data

source object and the fields within the data.

The “dynamic” part of this example is apparent in how you can sort and filter the

data, once loaded into the browser, without further access to the original source

data. The TDC object features Sort and Filter properties that enable you to act

on the data currently loaded in the browser. The simplest kind of sorting indicates

on which field (or fields via a semicolon delimited list of field names) the entire

data set should be sorted. Leading the name of the sort field is either a plus (to

indicate ascending) or minus (descending) symbol. After setting the data object’s

Sort property, invoke its Reset() method to tell the object to apply the new prop-

erty. The data in the bound table is immediately redrawn to reflect any changes.

Similarly, you can tell a data collection to display records that meet specific crite-

ria. In Listing 15-9, two select lists and a pair of radio buttons provide the interface

to the Filter property’s settings. For example, you can filter the output to display

only those records in which the Best Picture was the same picture of the winning

Best Actress’s performance. Simple filter expressions are based on field names:

dataObj.Filter = “Best Picture” = “Best Actress Film”

Listing 15-9: Sorting and Filtering Bound Data

<HTML>
<HEAD>
<TITLE>Data Binding—Sorting</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function sortByYear(type) {

oscars.Sort = (type == “normal”) ? “-Year” : “+Year”
oscars.Reset()

}
function filterInCommon(form) {

var filterExpr1 = form.filter1.options[form.filter1.selectedIndex].value
var filterExpr2 = form.filter2.options[form.filter2.selectedIndex].value
var operator = (form.operator[0].checked) ? “=” : “<>”
var filterExpr = filterExpr1 + operator + filterExpr2
oscars.Filter = filterExpr
oscars.Reset()

}
</SCRIPT>

</HEAD>
<BODY>

elementObject.dataFld

(c) ketabton.com: The Digital Library

CD-135Appendix F ✦ Examples from Parts III and IV

<P>Academy Awards 1978-1997</P>
<FORM>
<P>Sort list by year from newest to
oldest or from oldest to
newest.</P>
<P>Filter listings for records whose
<SELECT NAME=”filter1” onChange=”filterInCommon(this.form)”>

<OPTION VALUE=””>
<OPTION VALUE=”Best Picture”>Best Picture
<OPTION VALUE=”Best Director Film”>Best Director’s Film
<OPTION VALUE=”Best Actress Film”>Best Actress’s Film
<OPTION VALUE=”Best Actor Film”>Best Actor’s Film

</SELECT>
<INPUT TYPE=”radio” NAME=”operator” CHECKED
onClick=”filterInCommon(this.form)”>is
<INPUT TYPE=”radio” NAME=”operator” onClick=”filterInCommon(this.form)”>is not
<SELECT NAME=”filter2” onChange=”filterInCommon(this.form)”>

<OPTION VALUE=””>
<OPTION VALUE=”Best Picture”>Best Picture
<OPTION VALUE=”Best Director Film”>Best Director’s Film
<OPTION VALUE=”Best Actress Film”>Best Actress’s Film
<OPTION VALUE=”Best Actor Film”>Best Actor’s Film

</SELECT>
</P>
</FORM>
<TABLE DATASRC=”#oscars” BORDER=1 ALIGN=”center”>
<THEAD STYLE=”background-color:yellow; text-align:center”>
<TR><TD>Year</TD>

<TD>Film</TD>
<TD>Director</TD>
<TD>Actress</TD>
<TD>Actor</TD>

</TR>
</THEAD>
<TR>

<TD><DIV ID=”col1” DATAFLD=”Year” ></DIV></TD>
<TD><DIV ID=”col2” DATAFLD=”Best Picture”></DIV></TD>
<TD><DIV ID=”col3” DATAFLD=”Best Director”></DIV></TD>
<TD><DIV ID=”col4” DATAFLD=”Best Actress”></DIV></TD>
<TD><DIV ID=”col5” DATAFLD=”Best Actor”></DIV></TD>

</TR>
</TABLE>

<OBJECT ID=”oscars” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”Academy Awards.txt”>
<PARAM NAME=”UseHeader” VALUE=”True”>
<PARAM NAME=”FieldDelim” VALUE=”	”>

</OBJECT>
</BODY>
</HTML>

elementObject.dataFld

(c) ketabton.com: The Digital Library

CD-136 Part VI ✦ Appendixes

For more detailed information on Data Source Objects and their properties, visit

http://msdn.microsoft.com and search for “Data Binding”.

dir

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Changing this property value in a standard U.S. version of the browser only makes

the right margin the starting point for each new line of text (in other words, the

characters are not rendered in reverse order). You can experiment with this in The

Evaluator by entering the following statements into the expression evaluation field:

document.getElementById(“myP”).dir = “rtl”

disabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � �

Example
Use The Evaluator (Chapter 13) to experiment with the disabled property on both

form elements (IE4+) and regular HTML elements (IE5.5). For IE4+ and NN6, see

what happens when you disable the output textarea by entering the following state-

ment into the top text box:

document.forms[0].output.disabled = true

The textarea is disabled for user entry, although you can still set the field’s value
property via script (which is how the true returned value got there).

If you have IE5.5+, disable the myP element by entering the following statement into

the top text box:

document.all.myP.disabled = true

The sample paragraph’s text turns gray.

elementObject.disabled

(c) ketabton.com: The Digital Library

CD-137Appendix F ✦ Examples from Parts III and IV

document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following simplified function accepts a parameter that can be any object in a

document hierarchy. The script finds out the reference of the object’s containing

document for further reference to other objects:

function getCompanionFormCount(obj) {
var ownerDoc = obj.document
return ownerDoc.forms.length

}

Because the ownerDoc variable contains a valid reference to a document object, the

return statement uses that reference to return a typical property of the document

object hierarchy.

firstChild
lastChild

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
These two properties come in handy for Listing 15-10, whose job it is to either add

or replace LI elements to an existing OL element. You can enter any text you want

to appear at the beginning or end of the list. Using the firstChild and lastChild
properties simplifies access to the ends of the list. For the functions that replace

child nodes, the example uses the replaceChild() method. Alternatively for IE4+,

you can modify the innerText property of the objects returned by the firstChild
or lastChild property. This example is especially interesting to watch when you

add items to the list: The browser automatically renumbers items to fit the current

state of the list.

elementObject.firstChild

(c) ketabton.com: The Digital Library

CD-138 Part VI ✦ Appendixes

Listing 15-10: Using firstChild and lastChild Properties

<HTML>
<HEAD>
<TITLE>firstChild and lastChild Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// helper function for prepend() and append()
function makeNewLI(txt) {

var newItem = document.createElement(“LI”)
newItem.innerHTML = txt
return newItem

}
function prepend(form) {

var newItem = makeNewLI(form.input.value)
var firstLI = document.getElementById(“myList”).firstChild
document.getElementById(“myList”).insertBefore(newItem, firstLI)

}
function append(form) {

var newItem = makeNewLI(form.input.value)
var lastLI = document.getElementById(“myList”).lastChild
document.getElementById(“myList”).appendChild(newItem)

}
function replaceFirst(form) {

var newItem = makeNewLI(form.input.value)
var firstLI = document.getElementById(“myList”).firstChild
document.getElementById(“myList”).replaceChild(newItem, firstLI)

}
function replaceLast(form) {

var newItem = makeNewLI(form.input.value)
var lastLI = document.getElementById(“myList”).lastChild
document.getElementById(“myList”).replaceChild(newItem, lastLI)

}
</SCRIPT>

</HEAD>
<BODY>
<H1>firstChild and lastChild Property Lab</H1>
<HR>
<FORM>
<LABEL>Enter some text to add to or replace in the OL element:</LABEL>

<INPUT TYPE=”text” NAME=”input” SIZE=50>

<INPUT TYPE=”button” VALUE=”Insert at Top” onClick=”prepend(this.form)”>
<INPUT TYPE=”button” VALUE=”Append to Bottom” onClick=”append(this.form)”>

<INPUT TYPE=”button” VALUE=”Replace First Item”
onClick=”replaceFirst(this.form)”>
<INPUT TYPE=”button” VALUE=”Replace Last Item” onClick=”replaceLast(this.form)”>
</FORM>
<P></P>
<OL ID=”myList”>Initial Item 1

elementObject.firstChild

(c) ketabton.com: The Digital Library

CD-139Appendix F ✦ Examples from Parts III and IV

Initial Item 2
Initial Item 3
Initial Item 4

</BODY>
</HTML>

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
The following example increases the width of a table by 10 percent.

var tableW = parseInt(document.all.myTable.width)
document.all.myTable.width = (tableW * 1.1) + “%”

Because the initial setting for the WIDTH attribute of the TABLE element is set as a

percentage value, the script calculation extracts the number from the percentage

width string value. In the second statement, the old number is increased by 10 per-

cent and turned into a percentage string by appending the percentage symbol to

the value. The resulting string value is assigned to the width property of the table.

hideFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the hideFocus property in IE5.5.

Enter the following statement into the top text field to assign a tabIndex value to the

myP element so that, by default, the element receives focus and the dotted rectangle:

document.all.myP.tabIndex = 1

elementObject.hideFocus

(c) ketabton.com: The Digital Library

CD-140 Part VI ✦ Appendixes

Press the Tab key several times until the paragraph receives focus. Now, disable the

focus rectangle:

document.all.myP.hideFocus = true

If you now press the Tab key several times, the dotted rectangle does not appear

around the paragraph. To prove that the element still receives focus, scroll the page

down to the bottom so that the paragraph is not visible (you may have to resize the

window). Click one of the focusable elements at the bottom of the page, and then

press the Tab key slowly until the Address field toolbar has focus. Press the Tab key

once. The page scrolls to bring the paragraph into view, but there is no focus rect-

angle around the element.

id

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Rarely do you need to access this property in a script — unless you write an author-

ing tool that iterates through all elements of a page to extract the IDs assigned by

the author. You can retrieve an object reference once you know the object’s id
property (via the document.getElementById(elemID) method). But if for some

reason your script doesn’t know the ID of, say, the second paragraph of a docu-

ment, you can extract that ID as follows:

var elemID = document.all.tags(“P”)[1].id

innerHTML
innerText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � �

elementObject.innerHTML

(c) ketabton.com: The Digital Library

CD-141Appendix F ✦ Examples from Parts III and IV

Example
The IE4+ page generated by Listing 15-11 contains an H1 element label and a para-

graph of text. The purpose is to demonstrate how the innerHTML and innerText
properties differ in their intent. Two text boxes contain the same combination of

text and HTML tags that replaces the inner content of the paragraph’s label.

If you apply the default content of the first text box to the innerHTML property of

the label1 object, the italic style is rendered as such for the first word. In addition,

the text in parentheses is rendered with the help of the small style sheet rule

assigned by virtue of the surrounding tags. But if you apply that same con-

tent to the innerText property of the label object, the tags are rendered as is.

Use this as a laboratory to experiment with some other content in both text boxes.

See what happens when you insert a
 tag within some text of both text boxes.

Listing 15-11: Using innerHTML and innerText Properties

<HTML>
<HEAD>
<TITLE>innerHTML and innerText Properties</TITLE>
<STYLE TYPE=”text/css”>
H1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial, sans-
serif}
.small {font-size:12pt; font-weight:400; color:gray}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

function setGroupLabelAsText(form) {
var content = form.textInput.value
if (content) {

document.all.label1.innerText = content
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value
if (content) {

document.all.label1.innerHTML = content
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>

Continued

elementObject.innerHTML

(c) ketabton.com: The Digital Library

CD-142 Part VI ✦ Appendixes

Listing 15-11 (continued)

<INPUT TYPE=”text” NAME=”HTMLInput”
VALUE=”<I>First</I> Article (of ten)”
SIZE=50>
<INPUT TYPE=”button” VALUE=”Change Heading HTML”
onClick=”setGroupLabelAsHTML(this.form)”>

</P>
<P>

<INPUT TYPE=”text” NAME=”textInput”
VALUE=”<I>First</I> Article (of ten)”
SIZE=50>
<INPUT TYPE=”button” VALUE=”Change Heading Text”
onClick=”setGroupLabelAsText(this.form)”>

</P>
</FORM>
<H1 ID=”label1”>ARTICLE I</H1>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</BODY>
</HTML>

isContentEditable

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with both the contentEditable and

isContentEditable properties on the myP and nested myEM elements (reload the

page to start with a known version). Check the current setting for the myEM element

by typing the following statement into the top text field:

myEM.isContentEditable

elementObject.isContentEditable

(c) ketabton.com: The Digital Library

CD-143Appendix F ✦ Examples from Parts III and IV

This value is false because no element upward in the element containment hierar-

chy is set to be editable yet. Next, turn on editing for the surrounding myP element:

myP.contentEditable = true

At this point, the entire myP element is editable because its child element is set, by

default, to inherit the edit state of its parent. Prove it by entering the following

statement into the top text box:

myEM.isContentEditable

While the myEM element is shown to be editable, no change has accrued to its

contentEditable property:

myEM.contentEditable

This property value remains the default inherit.

You can see an additional example of these two properties in use in Listing 15-7.

isDisabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with both the disabled and

isDisabled properties on the myP and nested myEM elements (reload the page to

start with a known version). Check the current setting for the myEM element by typ-

ing the following statement into the top text field:

myEM.isDisabled

This value is false because no element upward in the element containment hierar-

chy is set for disabling yet. Next, disable the surrounding myP element:

myP.disabled = true

At this point, the entire myP element (including its children) is disabled. Prove it by

entering the following statement into the top text box:

myEM.isDisabled

elementObject.isDisabled

(c) ketabton.com: The Digital Library

CD-144 Part VI ✦ Appendixes

While the myEM element is shown as disabled, no change has accrued to its

disabled property:

myEM.disabled

This property value remains the default false.

isMultiLine

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to read the isMultiLine property for elements on

that page. Try the following statements in the top text box:

document.body.isMultiLine
document.forms[0].input.isMultiLine
myP.isMultiLine
myEM.isMultiLine

All but the text field form control report that they are capable of occupying multiple

lines.

isTextEdit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Good coding practice dictates that your script check for this property before invok-

ing the createTextRange() method on any object. A typical implementation is as

follows:

if (document.all.myObject.isTextEdit) {
var myRange = document.all.myObject.createTextRange()
[more statements that act on myRange]

}

elementObject.isTextEdit

(c) ketabton.com: The Digital Library

CD-145Appendix F ✦ Examples from Parts III and IV

lang

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Values for the lang property consist of strings containing valid ISO language codes.

Such codes have, at the minimum, a primary language code (for example, “fr” for

French) plus an optional region specifier (for example, “fr-ch” for Swiss French).

The code to assign a Swiss German value to an element looks like the following:

document.all.specialSpan.lang = “de-ch”

language

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although it is unlikely that you will modify this property, the following example

shows you how to do it for a table cell object:

document.all.cellA3.language = “vbs”

lastChild
See firstchild.

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

elementObjectCollection.length

(c) ketabton.com: The Digital Library

CD-146 Part VI ✦ Appendixes

Example
You can try the following sequence of statements in the top text box of The

Evaluator to see how the length property returns values (and sets them for some

objects). Note that some statements work in only some browser versions.

(All browsers) document.forms.length
(All browsers) document.forms[0].elements.length
(NN3+, IE4+) document.images.length
(NN4+) document.layers.length
(IE4+) document.all.length
(IE5+, NN6) document.getElementById(“myTable”).childNodes.length

nextSibling
previousSibling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following function assigns the same class name to all child nodes of an

element:

function setAllChildClasses(parentElem, className) {
var childElem = parentElem.firstChild
while (childElem.nextSibling) {

childElem.className = className
childElem = childElem.nextSibling

}
}

This example is certainly not the only way to achieve the same results. Using a for
loop to iterate through the childNodes collection of the parent element is an

equally valid approach.

nodeName

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.nodeName

(c) ketabton.com: The Digital Library

CD-147Appendix F ✦ Examples from Parts III and IV

Example
The following function demonstrates one (not very efficient) way to assign a new

class name to every P element in an IE5+ document:

function setAllPClasses(className) {
for (var i = 0; i < document.all.length; i++) {

if (document.all[i].nodeName == “P”) {
document.all[i].className = className

}
}

}

A more efficient approach uses the getElementsByTagName() method to retrieve a

collection of all P elements and then iterate through them directly.

nodeType

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can experiment with viewing nodeType property values in The Evaluator. The P

element whose ID is myP is a good place to start. The P element itself is a nodeType
of 1:

document.getElementById(“myP”).nodeType

This element has three child nodes: a string of text (nodeName #text); an EM ele-

ment (nodeName EM); and the rest of the text of the element content (nodeName
#text). If you view the nodeType of either of the text portions, the value comes

back as 3:

document.getElementById(“myP”).childNodes[0].nodeType

In NN6 and IE5/Mac, you can inspect the nodeType of the one attribute of this ele-

ment (the ID attribute):

document.getElementById(“myP”).attributes[0].nodeType

With NN6 and IE5/Mac, you can see how the document object returns a nodeType
of 9:

document.nodeType

elementObject.nodeType

(c) ketabton.com: The Digital Library

CD-148 Part VI ✦ Appendixes

When IE5 does not support a nodeType constant for a node, its value is sometimes

reported as 1. However, more likely the value is undefined.

nodeValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The first example increases the width of a TEXTAREA object by 10 percent. The

nodeValue is converted to an integer (for NN6’s string values) before performing

the math and reassignment:

function widenCols(textareaElem) {
var colWidth = parseInt(textareaElem.attributes[“cols”].nodeValue, 10)
textareaElem.attributes[“cols”].nodeValue = (colWidth * 1.1)

}

The second example replaces the text of an element, assuming that the element

contains no further nested elements:

function replaceText(elem, newText) {
if (elem.childNodes.length == 1 && elem.firstChild.nodeType == 3) {

elem.firstChild.nodeValue = newText
}

}

The function builds in one final verification that the element contains just one child

node and that it is a text type. An alternative version of the assignment statement of

the second example uses the innerText property in IE with identical results:

elem.innerText = newText

offsetHeight
offsetWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

elementObject.offsetHeight

(c) ketabton.com: The Digital Library

CD-149Appendix F ✦ Examples from Parts III and IV

Example
With IE4+, you can substitute the offsetHeight and offsetWidth properties for

clientHeight and clientWidth in Listing 15-6. The reason is that the two ele-

ments in question have their widths hard-wired in style sheets. Thus, the

offsetWidth property follows that lead rather than observing the default width of

the parent (BODY) element.

With IE5+ and NN6, you can use The Evaluator to inspect the offsetHeight and

offsetWidth property values of various objects on the page. Enter the following

statements into the top text box:

document.getElementById(“myP”).offsetWidth
document.getElementById(“myEM”).offsetWidth
document.getElementById(“myP”).offsetHeight
document.getElementById(“myTable”).offsetWidth

offsetLeft
offsetTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following IE script statements utilize all four “offset” dimensional properties to

size and position a DIV element so that it completely covers a SPAN element located

within a P element. This can be for a fill-in-the-blank quiz that provides text entry

fields elsewhere on the page. As the user gets an answer correct, the blocking DIV
element is hidden to reveal the correct answer.

document.all.blocker.style.pixelLeft = document.all.span2.offsetLeft
document.all.blocker.style.pixelTop = document.all.span2.offsetTop
document.all.blockImg.height = document.all.span2.offsetHeight
document.all.blockImg.width = document.all.span2.offsetWidth

Because the offsetParent property for the SPAN element is the BODY element,

the positioned DIV element can use the same positioning context (it’s the default

context, anyway) for setting the pixelLeft and pixelTop style properties.

(Remember that positioning properties belong to an element’s style object.) The

offsetHeight and offsetWidth properties can read the dimensions of the SPAN

element (the example has no borders, margins, or padding to worry about) and

assign them to the dimensions of the image contained by the blocker DIV element.

elementObject.offsetLeft

(c) ketabton.com: The Digital Library

CD-150 Part VI ✦ Appendixes

This example is also a bit hazardous in some implementations. If the text of span2
wraps to a new line, the new offsetHeight value has enough pixels to accommo-

date both lines. But the blockImg and blocker DIV elements are block-level ele-

ments that render as a simple rectangle. In other words, the blocker element

doesn’t turn into two separate strips to cover the pieces of span2 that spread

across two lines.

offsetParent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can use the offsetParent property to help you locate the position of a nested

element on the page. Listing 15-12 demonstrates how a script can “walk” up the

hierarchy of offsetParent objects in IE for Windows to assemble the location of a

nested element on a page. The goal of the exercise in Listing 15-12 is to position an

image at the upper-left corner of the second table cell. The entire table is centered

on the page.

The onLoad event handler invokes the setImagePosition() function. The func-

tion first sets a Boolean flag that determines whether the calculations should be

based on the client or offset sets of properties. IE4/Windows and IE5/Mac rely on

client properties, while IE5+/Windows works with the offset properties. The dis-

crepancies even out, however, with the while loop. This loop traverses the

offsetParent hierarchy starting with the offsetParent of the cell out to, but not

including, the document.body object. The body object is not included because that

is the positioning context for the image. In IE5, the while loop executes only once

because just the TABLE element exists between the cell and the body; in IE4, the

loop executes twice to account for the TR and TABLE elements up the hierarchy.

Finally, the cumulative values of left and top measures are applied to the position-

ing properties of the DIV object’s style and the image is made visible.

Listing 15-12: Using the offsetParent Property

<HTML>
<HEAD>
<TITLE>offsetParent Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setImagePosition(){

var cElement = document.all.myCell

elementObject.offsetParent

(c) ketabton.com: The Digital Library

CD-151Appendix F ✦ Examples from Parts III and IV

// Set flag for whether calculations should use
// client- or offset- property measures. Use
// client- for IE5/Mac and IE4/Windows; otherwise
// use offset- properties. An ugly, but necessary
// workaround.
var useClient = (cElement.offsetTop == 0) ?

((cElement.offsetParent.tagName == “TR”) ? false : true) : false
if (useClient) {

var x = cElement.clientLeft
var y = cElement.clientTop

} else {
var x = cElement.offsetLeft
var y = cElement.offsetTop

}
var pElement = document.all.myCell.offsetParent
while (pElement != document.body) {

if (useClient) {
x += pElement.clientLeft
y += pElement.clientTop

} else {
x += pElement.offsetLeft
y += pElement.offsetTop

}
pElement = pElement.offsetParent

}
document.all.myDIV.style.pixelLeft = x
document.all.myDIV.style.pixelTop = y
document.all.myDIV.style.visibility = “visible”

}
</SCRIPT>
</HEAD>
<BODY onload=”setImagePosition()”>
<SCRIPT LANGUAGE=”JavaScript”>
</SCRIPT>
<H1>The offsetParent Property</H1>
<HR>
<P>After the document loads, the script positions a small image in the upper
left corner of the second table cell.</P>
<TABLE BORDER=1 ALIGN=”center”>
<TR>

<TD>This is the first cell</TD>
<TD ID=”myCell”>This is the second cell.</TD>

</TR>
</TABLE>
<DIV ID=”myDIV” STYLE=”position:absolute; visibility:hidden; height:12;
width:12”>
</DIV>
</BODY>
</HTML>

elementObject.offsetParent

(c) ketabton.com: The Digital Library

CD-152 Part VI ✦ Appendixes

outerHTML
outerText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The page generated by Listing 15-13 (IE4+/Windows only) contains an H1 element

label and a paragraph of text. The purpose is to demonstrate how the outerHTML
and outerText properties differ in their intent. Two text boxes contain the same

combination of text and HTML tags that replaces the element that creates the para-

graph’s label.

If you apply the default content of the first text box to the outerHTML property of

the label1 object, the H1 element is replaced by a SPAN element whose CLASS
attribute acquires a different style sheet rule defined earlier in the document.

Notice that the ID of the new SPAN element is the same as the original H1 element.

This allows the script attached to the second button to address the object. But this

second script replaces the element with the raw text (including tags). The element

is now gone, and any attempt to change the outerHTML or outerText properties of

the label1 object causes an error because there is no longer a label1 object in

the document.

Use this laboratory to experiment with some other content in both text boxes.

Listing 15-13: Using outerHTML and outerText Properties

<HTML>
<HEAD>
<TITLE>outerHTML and outerText Properties</TITLE>
<STYLE TYPE=”text/css”>
H1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial, sans-
serif}
.heading {font-size:20pt; font-weight:bold; font-family:”Arial Black”, Arial,
sans-serif}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

function setGroupLabelAsText(form) {
var content = form.textInput.value
if (content) {

elementObject.outerHTML

(c) ketabton.com: The Digital Library

CD-153Appendix F ✦ Examples from Parts III and IV

document.all.label1.outerText = content
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value
if (content) {

document.all.label1.outerHTML = content
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>

<INPUT TYPE=”text” NAME=”HTMLInput”
VALUE=”Article the First” SIZE=55>
<INPUT TYPE=”button” VALUE=”Change Heading HTML”
onClick=”setGroupLabelAsHTML(this.form)”>

</P>
<P>

<INPUT TYPE=”text” NAME=”textInput”
VALUE=”Article the First” SIZE=55>
<INPUT TYPE=”button” VALUE=”Change Heading Text”
onClick=”setGroupLabelAsText(this.form)”>

</P>
</FORM>
<H1 ID=”label1”>ARTICLE I</H1>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</BODY>
</HTML>

ownerDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.ownerDocument

(c) ketabton.com: The Digital Library

CD-154 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) to explore the ownerDocument property in NN6.

Enter the following statement into the top text box:

document.body.childNodes[5].ownerDocument

The result is a reference to the document object. You can use that to inspect a prop-

erty of the document, as shown in the following statement you should enter into

the top text box:

document.body.childNodes[5].ownerDocument.URL

This returns the document.URL property for the document that owns the child

node.

parentElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can experiment with the parentElement property in The Evaluator. The docu-

ment contains a P element named myP. Type each of the following statements from

the left column into the upper expression evaluation text box and press Enter to

see the results.

Expression Result

document.all.myP.tagName P

document.all.myP.parentElement [object]

document.all.myP.parentElement.tagName BODY

document.all.myP.parentElement.parentElement [object]

document.all.myP.parentElement.parentElement.tagName HTML

document.all.myP.parentElement.parentElement.parentElement null

elementObject.parentElement

(c) ketabton.com: The Digital Library

CD-155Appendix F ✦ Examples from Parts III and IV

parentNode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to examine the parentNode property values of both an element

and a non-element node. Begin with the following two statements and watch the

results of each:

document.getElementById(“myP”).parentNode.tagName
document.getElementById(“myP”).parentElement.tagName (IE only)

Now examine the properties from the point of view of the first text fragment node of

the myP paragraph element:

document.getElementById(“myP”).childNodes[0].nodeValue
document.getElementById(“myP”).childNodes[0].parentNode.tagName
document.getElementById(“myP”).childNodes[0].parentElement (IE only)

Notice (in IE) that the text node does not have a parentElement property.

parentTextEdit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The page resulting from Listing 15-14 contains a paragraph of Greek text and three

radio buttons that select the size of a paragraph chunk: one character, one word, or

one sentence. If you click anywhere within the large paragraph, the onClick event

handler invokes the selectChunk() function. The function first examines which of

the radio buttons is selected to determine how much of the paragraph to highlight

(select) around the point at which the user clicks.

After the script employs the parentTextEdit property to test whether the clicked

element has a valid parent capable of creating a text range, it calls upon the prop-

erty again to help create the text range. From there, TextRange object methods

elementObject.parentTextEdit

(c) ketabton.com: The Digital Library

CD-156 Part VI ✦ Appendixes

shrink the range to a single insertion point, move that point to the spot nearest the

cursor location at click time, expand the selection to encompass the desired chunk,

and select that bit of text.

Notice one workaround for the TextRange object’s expand() method anomaly: If

you specify a sentence, IE doesn’t treat the beginning of a P element as the starting

end of a sentence automatically. A camouflaged (white text color) period is

appended to the end of the previous element to force the TextRange object to

expand only to the beginning of the first sentence of the targeted P element.

Listing 15-14: Using the parentTextEdit Property

<HTML>
<HEAD>
<TITLE>parentTextEdit Property</TITLE>
<STYLE TYPE=”text/css”>
P {cursor:hand}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectChunk() {

var chunk, range
for (var i = 0; i < document.forms[0].chunk.length; i++) {

if (document.forms[0].chunk[i].checked) {
chunk = document.forms[0].chunk[i].value
break

}
}
var x = window.event.clientX
var y = window.event.clientY
if (window.event.srcElement.parentTextEdit) {

range = window.event.srcElement.parentTextEdit.createTextRange()
range.collapse()
range.moveToPoint(x, y)
range.expand(chunk)
range.select()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”white”>
<FORM>
<P>Choose how much of the paragraph is to be selected when you click anywhere in
it:

<INPUT TYPE=”radio” NAME=”chunk” VALUE=”character” CHECKED>Character
<INPUT TYPE=”radio” NAME=”chunk” VALUE=”word”>Word
<INPUT TYPE=”radio” NAME=”chunk” VALUE=”sentence”>Sentence

elementObject.parentTextEdit

(c) ketabton.com: The Digital Library

CD-157Appendix F ✦ Examples from Parts III and IV

.</P>
</FORM>

<P onClick=”selectChunk()”>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
</P>
</BODY>
</HTML>

previousSibling
See nextSibling.

readyState

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To witness a readyState property other than complete for standard HTML, you

can try examining the property in a script that immediately follows an tag:

...

<SCRIPT LANGUAGE=”JavaScript”>
alert(document.all.myImg.readyState)
</SCRIPT>
...

Putting this fragment into a document that is accessible across a slow network

helps. If the image is not in the browser’s cache, you might get the uninitialized
or loading result. The former means that the IMG object exists, but it has not

started receiving the image data from the server yet. If you reload the page,

chances are that the image will load instantaneously from the cache and the

readyState property will report complete.

elementObject.readyState

(c) ketabton.com: The Digital Library

CD-158 Part VI ✦ Appendixes

recordNumber

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can see the recordNumber property in action in Listing 15-15. The data source

is a small, tab-delimited file consisting of 20 records of Academy Award data. Thus,

the table that displays a subset of the fields is bound to the data source object. Also

bound to the data source object are three SPAN objects embedded within a para-

graph near the top of the page. As the user clicks a row of data, three fields from

that clicked record are placed into the bound SPAN objects.

The script part of this page is a mere single statement. When the user triggers the

onClick event handler of the repeated TR object, the function receives as a param-

eter a reference to the TR object. The data store object maintains an internal copy

of the data in a recordset object. One of the properties of this recordset object is

the AbsolutePosition property, which is the integer value of the current record

that the data object points to (it can point to only one row at a time, and the default

row is the first row). The statement sets the AbsolutePosition property of the

recordset object to the recordNumber property for the row that the user clicks.

Because the three SPAN elements are bound to the same data source, they are

immediately updated to reflect the change to the data object’s internal pointer to

the current record. Notice, too, that the third SPAN object is bound to one of the

data source fields not shown in the table. You can reach any field of a record

because the Data Source Object holds the entire data source content.

Listing 15-15: Using the Data Binding recordNumber Property

<HTML>
<HEAD>
<TITLE>Data Binding (recordNumber)</TITLE>
<STYLE TYPE=”text/css”>
.filmTitle {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// set recordset pointer to the record clicked on in the table.
function setRecNum(row) {

document.oscars.recordset.AbsolutePosition = row.recordNumber
}
</SCRIPT>

elementObject.recordNumber

(c) ketabton.com: The Digital Library

CD-159Appendix F ✦ Examples from Parts III and IV

</HEAD>
<BODY>
<P>Academy Awards 1978-1997 (Click on a table row to extract data from
one record.)</P>
<P>The award for Best Actor of
 went to
 for his outstanding achievement in the film
.</P>
<TABLE BORDER=1 DATASRC=”#oscars” ALIGN=”center”>
<THEAD STYLE=”background-color:yellow; text-align:center”>
<TR><TD>Year</TD>

<TD>Film</TD>
<TD>Director</TD>
<TD>Actress</TD>
<TD>Actor</TD>

</TR>
</THEAD>
<TR ID=repeatableRow onClick=”setRecNum(this)”>

<TD><DIV ID=”col1” DATAFLD=”Year”></DIV></TD>
<TD><DIV CLASS=”filmTitle” ID=”col2” DATAFLD=”Best Picture”></DIV></TD>
<TD><DIV ID=”col3” DATAFLD=”Best Director”></DIV></TD>
<TD><DIV ID=”col4” DATAFLD=”Best Actress”></DIV></TD>
<TD><DIV ID=”col5” DATAFLD=”Best Actor”></DIV></TD>

</TR>
</TABLE>

<OBJECT ID=”oscars” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”Academy Awards.txt”>
<PARAM NAME=”UseHeader” VALUE=”True”>
<PARAM NAME=”FieldDelim” VALUE=”	”>

</OBJECT>
</BODY>
</HTML>

runtimeStyle

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to compare the properties of the runtimeStyle
and style objects of an element. For example, an unmodified copy of The

Evaluator contains an EM element whose ID is “myEM”. Enter both

elementObject.runtimeStyle

(c) ketabton.com: The Digital Library

CD-160 Part VI ✦ Appendixes

document.all.myEM.style.color

and

document.all.myEM.runtimeStyle.color

into the top text field in turn. Initially, both values are empty. Now assign a color to

the style property via the upper text box:

document.all.myEM.style.color = “red”

If you now type the two earlier statements into the upper box, you can see that the

style object reflects the change, while the runtimeStyle object still holds onto

its original (empty) value.

scopeName

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you have a sample document that contains XML and a namespace spec, you can

use document.write() or alert() methods to view the value of the scopeName
property. The syntax is

document.all.elementID.scopeName

scrollHeight
scrollWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with these two properties of the

TEXTAREA object, which displays the output of evaluations and property listings.

elementObject.scrollHeight

(c) ketabton.com: The Digital Library

CD-161Appendix F ✦ Examples from Parts III and IV

To begin, enter the following into the bottom one-line text field to list the properties

of the body object:

document.body

This displays a long list of properties for the body object. Now enter the following

property expression in the top one-line text field to see the scrollHeight property

of the output TEXTAREA when it holds the dozens of lines of property listings:

document.all.output.scrollHeight

The result, some number probably in the hundreds, is now displayed in the output

TEXTAREA. This means that you can scroll the content of the output element verti-

cally to reveal that number of pixels. Click the Evaluate button once more. The

result, 13 or 14, is a measure of the scrollHeight property of the TEXTAREA that

had only the previous result in it. The scrollable height of that content was only 13

or 14 pixels, the height of the font in the TEXTAREA. The scrollWidth property of

the output TEXTAREA is fixed by the width assigned to the element’s COLS attribute

(as calculated by the browser to determine how wide to make the textarea on the

page).

scrollLeft
scrollTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with these two properties of the

TEXTAREA object, which displays the output of evaluations and property listings.

To begin, enter the following into the bottom one-line text field to list the properties

of the body object:

document.body

This displays a long list of properties for the body object. Use the TEXTAREA’s

scrollbar to page down a couple of times. Now enter the following property expres-

sion in the top one-line text field to see the scrollTop property of the output

TEXTAREA after you scroll:

document.all.output.scrollTop

elementObject.scrollLeft

(c) ketabton.com: The Digital Library

CD-162 Part VI ✦ Appendixes

The result, some number, is now displayed in the output TEXTAREA. This means

that the content of the output element was scrolled vertically. Click the Evaluate

button once more. The result, 0, is a measure of the scrollTop property of the

TEXTAREA that had only the previous result in it. There wasn’t enough content in

the TEXTAREA to scroll, so the content was not scrolled at all. The scrollTop
property, therefore, is zero. The scrollLeft property of the output is always zero

because the TEXTAREA element is set to wrap any text that overflows the width of

the element. No horizontal scrollbar appears in this case, and the scrollLeft
property never changes.

sourceIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While the operation of this property is straightforward, the sequence of elements

exposed by the document.all property may not be. To that end, you can use The

Evaluator (Chapter 13) to experiment in IE4+ with the values that the sourceIndex
property returns to see how the index values of the document.all collection fol-

low the source code.

To begin, reload The Evaluator. Enter the following statement in the top text box to

set a preinitialized global variable:

a = 0

When you evaluate this expression, a zero should appear in the Results box. Next,

enter the following statement into the top text box:

document.all[a].tagName + “ [“ + a++ + “]”

There are a lot of plus signs in this statement, so be sure you enter it correctly. As

you successively evaluate this statement (repeatedly click the Evaluate button), the

global variable (a) is incremented, thus enabling you to “walk through” the elements

in source code order. The sourceIndex value for each HTML tag appears in square

brackets in the Results box. You generally begin with the following sequence:

HTML [0]
HEAD [1]
TITLE [2]

elementObject.sourceIndex

(c) ketabton.com: The Digital Library

CD-163Appendix F ✦ Examples from Parts III and IV

You can continue until there are no more elements, at which point an error

message appears because the value of a exceeds the number of elements in the

document.all array. Compare your findings against the HTML source code view of

The Evaluator.

style

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Most of the action with the style property has to do with the style object’s prop-

erties, so you can use The Evaluator here to simply explore the lists of style
object properties available on as many DHTML-compatible browsers as you have

running. To begin, enter the following statement into the lower, one-line text box to

inspect the style property for the document.body object:

document.body.style

Now inspect the style property of the table element that is part of the original ver-

sion of The Evaluator. Enter the following statement into the lower text box:

document.getElementById(“myTable”).style

In both cases, the values assigned to the style object’s properties are quite limited

by default.

tabIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The HTML and scripting in Listing 15-16 demonstrate not only the way you can

modify the tabbing behavior of a form on the fly, but also how to force form ele-

ments out of the tabbing sequence entirely in IE. In this page, the upper form

elementObject.tabIndex

(c) ketabton.com: The Digital Library

CD-164 Part VI ✦ Appendixes

(named lab) contains four elements. Scripts invoked by buttons in the lower form

control the tabbing sequence. Notice that the TABINDEX attributes of all lower form

elements are set to -1, which means that these control buttons are not part of the

tabbing sequence in IE.

When you load the page, the default tabbing order for the lab form control ele-

ments (default setting of zero) takes charge. If you start pressing the Tab key, the

precise results at first depend on the browser you use. In IE, the Address field is

first selected; next the Tab sequence gives focus to the window (or frame, if this

page were in a frameset); finally the tabbing reaches the lab form. Continue press-

ing the Tab key and watch how the browser assigns focus to each of the element

types. In NN6, however, you must click anywhere on the content to get the Tab key

to start working on form controls.

The sample script inverts the tabbing sequence with the help of a for loop that ini-

tializes two variables that work in opposite directions as the looping progresses.

This gives the last element the lowest tabIndex value. The skip2() function sim-

ply sets the tabIndex property of the second text box to -1, removing it from the

tabbing entirely (IE only). Notice, however, that you can click in the field and still

enter text. (See the disabled property earlier in this chapter to see how to prevent

field editing.) NN6 does not provide a tabIndex property setting that forces the

browser to skip over a form control. You should disable the control instead.

Listing 15-16: Controlling the tabIndex Property

<HTML>
<HEAD>
<TITLE>tabIndex Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function invert() {

var form = document.lab
for (var i = 0, j = form.elements.length; i < form.elements.length;

i++, j--) {
form.elements[i].tabIndex = j

}
}

function skip2() {
document.lab.text2.tabIndex = -1

}

function resetTab() {
var form = document.lab
for (var i = 0; i < form.elements.length; i++) {

form.elements[i].tabIndex = 0
}

elementObject.tabIndex

(c) ketabton.com: The Digital Library

CD-165Appendix F ✦ Examples from Parts III and IV

}
</SCRIPT>
</HEAD>

<BODY>
<H1>tabIndex Property Lab</H1>
<HR>
<FORM NAME=”lab”>
Text box no. 1: <INPUT TYPE=”text” NAME=”text1”>

Text box no. 2: <INPUT TYPE=”text” NAME=”text2”>

<INPUT TYPE=”button” VALUE=”A Button”>

<INPUT TYPE=”checkbox”>And a checkbox
</FORM>
<HR>
<FORM NAME=”control”>
<INPUT TYPE=”button” VALUE=”Invert Tabbing Order” TABINDEX=-1
onClick=”invert()”>

<INPUT TYPE=”button” VALUE=”Skip Text box no. 2 (IE Only)” TABINDEX=-1
onClick=”skip2()”>

<INPUT TYPE=”button” VALUE=”Reset to Normal Order” TABINDEX=-1
onClick=”resetTab()”>
</FORM>
</BODY>
</HTML>

The final function, resetTab(), sets the tabIndex property value to zero for all

lab form elements. This restores the default order; but in IE5.5/Windows, you may

experience buggy behavior that prevents you from tabbing to items after you reset

them. Only the reloading of the page provides a complete restoration of default

behavior.

tagName

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can see the tagName property in action for the example associated with the

sourceIndex property discussed earlier. In that example, the tagName property is

read from a sequence of objects in source code order.

elementObject.tagName

(c) ketabton.com: The Digital Library

CD-166 Part VI ✦ Appendixes

tagUrn

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you have a sample document that contains XML and a Namespace spec, you can

use document.write() or alert() methods to view the value of the tagUrn prop-

erty. The syntax is

document.all.elementID.tagUrn

title

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can see how dynamic a tooltip is in Listing 15-17. A simple paragraph element

has its TITLE attribute set to “First Time!”, which is what the tooltip displays if

you roll the pointer atop the paragraph and pause after the page loads. But an

onMouseOver event handler for that element increments a global variable counter

in the script, and the title property of the paragraph object is modified with each

mouseover action. The count value is made part of a string assigned to the title
property. Notice that there is not a live connection between the title property and

the variable; instead, the new value explicitly sets the title property.

Listing 15-17: Controlling the title Property

<HTML>
<HEAD>
<TITLE>title Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global counting variable

elementObject.title

(c) ketabton.com: The Digital Library

CD-167Appendix F ✦ Examples from Parts III and IV

var count = 0

function setToolTip(elem) {
elem.title = “You have previously rolled atop this paragraph “ +

count + “ time(s).”
}

function incrementCount(elem) {
count++
setToolTip(elem)

}
</SCRIPT>

</HEAD>
<BODY>
<H1>title Property Lab</H1>
<HR>
<P ID=”myP” TITLE=”First Time!” onMouseOver=”incrementCount(this)”>
Roll the mouse over this paragraph a few times.

Then pause atop it to view the tooltip.</P>
</BODY>
</HTML>

uniqueID

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-18 demonstrates the recommended syntax for obtaining and applying a

browser-generated identifier for an object. After you enter some text into the text

box and click the button, the addRow() function appends a row to the table. The

left column displays the identifier generated via the table row object’s uniqueID
property. IE5+ generates identifiers in the format “ms__idn”, where n is an integer

starting with zero for the current browser session. Because the addRow() function

assigns uniqueID values to the row and the cells in each row, the integer for each

row is three greater than the previous one. There is no guarantee that future gener-

ations of the browser will follow this format, so do not rely on the format or

sequence in your scripts.

elementObject.uniqueID

(c) ketabton.com: The Digital Library

CD-168 Part VI ✦ Appendixes

Listing 15-18: Using the uniqueID Property

<HTML>
<HEAD>
<TITLE>Inserting an IE5+/Windows Table Row</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function addRow(item1) {

if (item1) {
// assign long reference to shorter var name
var theTable = document.all.myTable
// append new row to the end of the table
var newRow = theTable.insertRow(theTable.rows.length)
// give the row its own ID
newRow.id = newRow.uniqueID

// declare cell variable
var newCell

// an inserted row has no cells, so insert the cells
newCell = newRow.insertCell(0)
// give this cell its own id
newCell.id = newCell.uniqueID
// display the row’s id as the cell text
newCell.innerText = newRow.id
newCell.bgColor = “yellow”
// reuse cell var for second cell insertion
newCell = newRow.insertCell(1)
newCell.id = newCell.uniqueID
newCell.innerText = item1

}
}
</SCRIPT>
</HEAD>

<BODY>
<TABLE ID=”myTable” BORDER=1>
<TR>
<TH>Row ID</TH>
<TH>Data</TH>
</TR>

<TR ID=”firstDataRow”>
<TD>firstDataRow
<TD>Fred
</TR>
<TR ID=”secondDataRow”>
<TD>secondDataRow
<TD>Jane
</TR>
</TABLE>
<HR>

elementObject.uniqueID

(c) ketabton.com: The Digital Library

CD-169Appendix F ✦ Examples from Parts III and IV

<FORM>
Enter text to be added to the table:

<INPUT TYPE=”text” NAME=”input” SIZE=25>

<INPUT TYPE=’button’ VALUE=’Insert Row’ onClick=’addRow(this.form.input.value)’>
</FORM>
</BODY>
</HTML>

Methods
addBehavior(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-19a is the JavaScript code for an external component named

makeHot.htc. Its purpose is to turn the color style property of an object to either

a default color (“red”) or any other color that is passed to the component. For

details on the syntax of the <PUBLIC> tags, see Chapter 48. The code presented

here helps you see how the page and scripts in Listing 15-19b work.

Listing 15-19a: The makeHot.htc Behavior Component

<PUBLIC:ATTACH EVENT=”onmousedown” ONEVENT=”makeHot()” />
<PUBLIC:ATTACH EVENT=”onmouseup” ONEVENT=”makeNormal()” />
<PUBLIC:PROPERTY NAME=”hotColor” />
<PUBLIC:METHOD NAME=”setHotColor” />
<SCRIPT LANGUAGE=”JScript”>
var oldColor
var hotColor = “red”

function setHotColor(color) {
hotColor = color

}

function makeHot() {
if (event.srcElement == element) {

Continued

elementObject.addBehavior()

(c) ketabton.com: The Digital Library

CD-170 Part VI ✦ Appendixes

Listing 15-19a (continued)

oldColor = style.color
runtimeStyle.color = hotColor

}
}

function makeNormal() {
if (event.srcElement == element) {

runtimeStyle.color = oldColor
}

}
</SCRIPT>

The object to which the component is attached is a simple paragraph object,

shown in Listing 15-19b. When the page loads, the behavior is not attached so click-

ing the paragraph text has no effect.

When you turn on the behavior by invoking the turnOn() function, the

addBehavior() method attaches the code of the makeHot.htc component to the

myP object. At this point, the myP object has one more property, one more method,

and two more event handlers that are written to be made public by the component’s

code. If you want the behavior to apply to more than one paragraph in the docu-

ment, you have to invoke the addBehavior() method for each paragraph object.

After the behavior file is instructed to start loading, the setInitialColor() func-

tion is called to set the new color property of the paragraph to the user’s choice

from the SELECT list. But this can happen only if the component is fully loaded.

Therefore, the function checks the readyState property of myP for completeness

before invoking the component’s function. If IE is still loading the component, the

function is invoked again in 500 milliseconds.

As long as the behavior is loaded, you can change the color used to turn the para-

graph “hot.” The function first ensures that the component is loaded by checking

that the object has the new color property. If it does, then (as a demonstration of

how to expose and invoke a component method) the method of the component is

invoked. You can also simply set the property value.

Listing 15-19b: Using addBehavior() and removeBehavior()

<HTML>
<HEAD>
<TITLE>addBehavior() and removeBehavior() Methods</TITLE>

elementObject.addBehavior()

(c) ketabton.com: The Digital Library

CD-171Appendix F ✦ Examples from Parts III and IV

<SCRIPT LANGUAGE=”JavaScript”>
var myPBehaviorID

function turnOn() {
myPBehaviorID = document.all.myP.addBehavior(“makeHot.htc”)
setInitialColor()

}

function setInitialColor() {
if (document.all.myP.readyState == “complete”) {

var select = document.forms[0].colorChoice
var color = select.options[select.selectedIndex].value
document.all.myP.setHotColor(color)

} else {
setTimeout(“setInitialColor()”, 500)

}
}

function turnOff() {
document.all.myP.removeBehavior(myPBehaviorID)

}

function setColor(select, color) {
if (document.all.myP.hotColor) {

document.all.myP.setHotColor(color)
} else {

alert(“This feature is not available. Turn on the Behavior first.”)
select.selectedIndex = 0

}
}
function showBehaviorCount() {

var num = document.all.myP.behaviorUrns.length
var msg = “The myP element has “ + num + “ behavior(s). “
if (num > 0) {

msg += “Name(s): \r\n”
for (var i = 0; i < num; i++) {

msg += document.all.myP.behaviorUrns[i] + “\r\n”
}

}
alert(msg)

}
</SCRIPT>
</HEAD>
<BODY>
<H1>addBehavior() and removeBehavior() Method Lab</H1>
<HR>
<P ID=”myP”>This is a sample paragraph. After turning on the behavior,
it will turn your selected color when you mouse down anywhere in this
paragraph.</P>
<FORM>

Continued

elementObject.addBehavior()

(c) ketabton.com: The Digital Library

CD-172 Part VI ✦ Appendixes

Listing 15-19b (continued)

<INPUT TYPE=”button” VALUE=”Switch On Behavior” onClick=”turnOn()”>
Choose a ‘hot’ color:
<SELECT NAME=”colorChoice” onChange=”setColor(this, this.value)”>
<OPTION VALUE=”red”>red
<OPTION VALUE=”blue”>blue
<OPTION VALUE=”cyan”>cyan
</SELECT>

<INPUT TYPE=”button” VALUE=”Switch Off Behavior” onClick=”turnOff()”>
<P><INPUT TYPE=”button” VALUE=”Count the URNs”
onClick=”showBehaviorCount()”></P>
</BODY>
</HTML>

To turn off the behavior, the removeBehavior() method is invoked. Notice that the

removeBehavior() method is associated with the myP object, and the parameter is

the ID of the behavior added earlier. If you associate multiple behaviors with an

object, you can remove one without disturbing the others because each has its own

unique ID.

addEventListener(“eventType”, listenerFunc,
useCapture)
removeEventListener(“eventType”,
listenerFunc, useCapture)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 15-20 provides a compact workbench to explore and experiment with the

basic W3C DOM event model. When the page loads, no event listeners are regis-

tered with the browser (except for the control buttons, of course). But you can add

an event listener for a click event in bubble and/or capture mode to the BODY ele-

ment or the P element that surrounds the SPAN holding the line of text. If you add

an event listener and click the text, you see a readout of the element processing the

event and information indicating whether the event phase is bubbling (3) or cap-

ture (1). With all event listeners engaged, notice the sequence of events being pro-

cessed. Remove listeners one at a time to see the effect on event processing.

elementObject.addEventListener()

(c) ketabton.com: The Digital Library

CD-173Appendix F ✦ Examples from Parts III and IV

Listing 15-20 includes code for event capture that does not operate in NN6. Event
capture facilities should work in a future version of the browser.

Listing 15-20: W3C Event Lab

<HTML>
<HEAD>
<TITLE>W3C Event Model Lab</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// add event listeners
function addBubbleListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent, false)
}
function addCaptureListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent, true)
}
// remove event listeners
function removeBubbleListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”, reportEvent, false)
}
function removeCaptureListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”, reportEvent, true)
}
// display details about any event heard
function reportEvent(evt) {

if (evt.target.parentNode.id == “mySPAN”) {
var msg = “Event processed at “ + evt.currentTarget.tagName +

“ element (event phase = “ + evt.eventPhase + “).\n”
document.controls.output.value += msg

}
}
// clear the details textarea
function clearTextArea() {

document.controls.output.value = “”
}
</SCRIPT>
</HEAD>
<BODY ID=”myBODY”>
<H1>W3C Event Model Lab</H1>
<HR>
<P ID=”myP”>This paragraph (a SPAN element nested inside a P
element) can be set to listen for “click” events.</P>
<HR>
<TABLE CELLPADDING=5 BORDER=1>
<CAPTION STYLE=”font-weight:bold”>Control Panel</CAPTION>

Continued

Note

elementObject.addEventListener()

(c) ketabton.com: The Digital Library

CD-174 Part VI ✦ Appendixes

Listing 15-20 (continued)

<FORM NAME=”controls”>
<TR STYLE=”background-color:#ffff99”><TD ROWSPAN=2>”Bubble”-type click listener:

<TD><INPUT TYPE=”button” VALUE=”Add to BODY”
onClick=”addBubbleListener(‘myBODY’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from BODY”
onClick=”removeBubbleListener(‘myBODY’)”>
</TR>
<TR STYLE=”background-color:#ffff99”>

<TD><INPUT TYPE=”button” VALUE=”Add to P”
onClick=”addBubbleListener(‘myP’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from P”
onClick=”removeBubbleListener(‘myP’)”>
</TR>
<TR STYLE=”background-color:#ff9999”><TD ROWSPAN=2>”Capture”-type click
listener:

<TD><INPUT TYPE=”button” VALUE=”Add to BODY”
onClick=”addCaptureListener(‘myBODY’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from BODY”
onClick=”removeCaptureListener(‘myBODY’)”>
</TR>
<TR STYLE=”background-color:#ff9999”>

<TD><INPUT TYPE=”button” VALUE=”Add to P”
onClick=”addCaptureListener(‘myP’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from P”
onClick=”removeCaptureListener(‘myP’)”>
</TR>
<P>Examine click event characteristics: <INPUT TYPE=”button” VALUE=”Clear”
onClick=”clearTextArea()”>

<TEXTAREA NAME=”output” COLS=”80” ROWS=”6” WRAP=”virtual”></TEXTAREA>
</FORM>
</TABLE>
</BODY>
</HTML>

appendChild(elementObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.appendChild()

(c) ketabton.com: The Digital Library

CD-175Appendix F ✦ Examples from Parts III and IV

Example
Scripts in Listing 15-21 demonstrate how the three major child-related methods

work in IE5+ and NN6. The page includes a simple, two-item list. A form enables you

to add items to the end of the list or replace the last item with a different entry.

The append() function creates a new LI element and then uses the appendChild()
method to attach the text box text as the displayed text for the item. The nested

expression, document.createTextNode(form.input.value), evaluates to a legit-

imate node that is appended to the new LI item. All of this occurs before the new LI

item is added to the document. In the final statement of the function,

appendChild() is invoked from the vantage point of the UL element — thus adding

the LI element as a child node of the UL element.

Invoking the replaceChild() method in the replace() function utilizes some of

the same code. The main difference is that the replaceChild() method requires a

second parameter: a reference to the child element to be replaced. This demonstra-

tion replaces the final child node of the UL list, so the function takes advantage of

the lastChild property of all elements to get a reference to that final nested child.

That reference becomes the second parameter to replaceChild().

Listing 15-21: Various Child Methods

<HTML>
<HEAD>
<TITLE>appendChild(), removeChild(), and replaceChild() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function append(form) {

if (form.input.value) {
var newItem = document.createElement(“LI”)
newItem.appendChild(document.createTextNode(form.input.value))
document.getElementById(“myUL”).appendChild(newItem)

}
}

function replace(form) {
if (form.input.value) {

var newItem = document.createElement(“LI”)
var lastChild = document.getElementById(“myUL”).lastChild
newItem.appendChild(document.createTextNode(form.input.value))
document.getElementById(“myUL”).replaceChild(newItem, lastChild)

}
}

function restore() {
var oneChild
var mainObj = document.getElementById(“myUL”)

Continued

elementObject.appendChild()

(c) ketabton.com: The Digital Library

CD-176 Part VI ✦ Appendixes

Listing 15-21 (continued)

while (mainObj.childNodes.length > 2) {
oneChild = mainObj.lastChild
mainObj.removeChild(oneChild)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Child Methods</H1>
<HR>
Here is a list of items:
<UL ID=”myUL”>First Item
Second Item

<FORM>
Enter some text to add/replace in the list:
<INPUT TYPE=”text” NAME=”input” SIZE=30>

<INPUT TYPE=”button” VALUE=”Append to List” onClick=”append(this.form)”>
<INPUT TYPE=”button” VALUE=”Replace Final Item” onClick=”replace(this.form)”>
<INPUT TYPE=”button” VALUE=”Restore List” onClick=”restore()”>
</BODY>
</HTML>

The final part of the demonstration uses the removeChild() method to peel away

all children of the UL element until just the two original items are left standing.

Again, the lastChild property comes in handy as the restore() function keeps

removing the last child until only two remain. Upon restoring the list, IE5/Mac fails to

render the list bullets; but in the browser’s object model, the UL element still exists.

applyElement(elementObject[, type])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
To help you visualize the impact of the applyElement() method with its different

parameter settings, Listing 15-22 enables you to apply a new element (an EM ele-

ment) to a SPAN element inside a paragraph. At any time, you can view the HTML of

the entire P element to see where the EM element is applied as well as its impact on

the element containment hierarchy for the paragraph.

elementObject.applyElement()

(c) ketabton.com: The Digital Library

CD-177Appendix F ✦ Examples from Parts III and IV

After you load the page, inspect the HTML for the paragraph before doing anything

else. Notice the SPAN element and its nested FONT element, both of which sur-

round the one-word content. If you apply the EM element inside the SPAN element

(click the middle button), the SPAN element’s first (and only) child element

becomes the EM element; the FONT element is now a child of the new EM element.

Listing 15-22: Using the applyElement() Method

<HTML>
<HEAD>
<TITLE>applyElement() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function applyOutside() {

var newItem = document.createElement(“EM”)
newItem.id = newItem.uniqueID
document.all.mySpan.applyElement(newItem)

}

function applyInside() {
var newItem = document.createElement(“EM”)
newItem.id = newItem.uniqueID
document.all.mySpan.applyElement(newItem, “inside”)

}

function showHTML() {
alert(document.all.myP.outerHTML)

}
</SCRIPT>
</HEAD>
<BODY>
<H1>applyElement() Method</H1>
<HR>
<P ID=”myP”>A simple paragraph with a
special word in it.</P>
<FORM>
<INPUT TYPE=”button” VALUE=”Apply Outside” onClick=”applyOutside()”>
<INPUT TYPE=”button” VALUE=”Apply Inside” onClick=”applyInside()”>
<INPUT TYPE=”button” VALUE=”Show <P> HTML...” onClick=”showHTML()”>

<INPUT TYPE=”button” VALUE=”Restore Paragraph” onClick=”location.reload()”>
</BODY>
</HTML>

The visible results of applying the EM element inside and outside the SPAN element

in this case are the same. But you can see from the HTML results that each element

impacts the element hierarchy quite differently.

elementObject.applyElement()

(c) ketabton.com: The Digital Library

CD-178 Part VI ✦ Appendixes

attachEvent(“eventName“, functionRef)
detachEvent(“eventName“, functionRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to create an anonymous function that is called in

response to an onmousedown event of the first paragraph on the page. Begin by

assigning the anonymous function to global variable a (already initialized in The

Evaluator) in the upper text box:

a = new Function(“alert(‘Function created at “ + (new Date()) + “‘)”)

The quote marks and parentheses can get jumbled easily, so enter this expression

carefully. When you enter the expression successfully, the Results box shows the

function’s text. Now assign this function to the onmousedown event of the myP ele-

ment by entering the following statement into the upper text box:

document.all.myP.attachEvent(“onmousedown”, a)

The Results box displays true when successful. If you mouse down on the first

paragraph, an alert box displays the date and time that the anonymous function

was created (when the new Date() expression was evaluated).

Now, disconnect the event relationship from the object by entering the following

statement into the upper text box:

document.all.myP.detachEvent(“onmousedown”, a)

blur()
focus()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

elementObject.blur()

(c) ketabton.com: The Digital Library

CD-179Appendix F ✦ Examples from Parts III and IV

Example
To show how both the window.focus() method and its opposite (window.blur())

operate, Listing 15-23 for NN3+ and IE4+ creates a two-window environment. From

each window, you can bring the other window to the front. The main window uses

the object returned by window.open() to assemble the reference to the new win-

dow. In the subwindow (whose content is created entirely on the fly by JavaScript),

self.opener is summoned to refer to the original window, while self.blur()
operates on the subwindow itself (except for the buggy behavior of NN6 noted ear-

lier). Blurring one window and focusing on another window yields the same result

of sending the window to the back of the pile.

Listing 15-23: The window.focus() and window.blur()
Methods

<HTML>
<HEAD>
<TITLE>Window Focus() and Blur()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// declare global variable name
var newWindow = null
function makeNewWindow() {

// check if window already exists
if (!newWindow || newWindow.closed) {

// store new window object in global variable
newWindow = window.open(“”,””,”width=250,height=250”)
// pause briefly to let IE3 window finish opening
setTimeout(“fillWindow()”,100)

} else {
// window already exists, so bring it forward
newWindow.focus()

}
}
// assemble new content and write to subwindow
function fillWindow() {

var newContent = “<HTML><HEAD><TITLE>Another Subwindow</TITLE></HEAD>”
newContent += “<BODY bgColor=’salmon’>”
newContent += “<H1>A Salmon-Colored Subwindow.</H1>”
newContent += “<FORM><INPUT TYPE=’button’ VALUE=’Bring Main to Front’

onClick=’self.opener.focus()’>”
// the following button doesn’t work in NN6
newContent += “<FORM><INPUT TYPE=’button’ VALUE=’Put Me in Back’

onClick=’self.blur()’>”
newContent += “</FORM></BODY></HTML>”
// write HTML to new window document

Continued

elementObject.blur()

(c) ketabton.com: The Digital Library

CD-180 Part VI ✦ Appendixes

Listing 15-23 (continued)

newWindow.document.write(newContent)
newWindow.document.close()

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Window focus() and blur() Methods</H1>
<HR>
<FORM>
<INPUT TYPE=”button” NAME=”newOne” VALUE=”Show New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

A key ingredient to the success of the makeNewWindow() function in Listing 15-23 is

the first conditional expression. Because newWind is initialized as a null value

when the page loads, that is its value the first time through the function. But after

you open the subwindow the first time, newWind is assigned a value (the subwin-

dow object) that remains intact even if the user closes the window. Thus, the value

doesn’t revert to null by itself. To catch the possibility that the user has closed the

window, the conditional expression also sees if the window is closed. If it is, a new

subwindow is generated, and that new window’s reference value is reassigned to

the newWind variable. On the other hand, if the window reference exists and the

window is not closed, the focus() method brings that subwindow to the front.

You can see the focus() method for a text object in action in Chapter 25’s descrip-

tion of the select() method for text objects.

clearAttributes()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to examine the attributes of an element before and

after you apply clearAttributes(). To begin, display the HTML for the table ele-

ment on the page by entering the following statement into the upper text field:

elementObject.clearAttributes()

(c) ketabton.com: The Digital Library

CD-181Appendix F ✦ Examples from Parts III and IV

myTable.outerHTML

Notice the attributes associated with the <TABLE> tag. Look at the rendered table

to see how attributes such as BORDER and WIDTH affect the display of the table.

Now, enter the following statement in the top text box to remove all removable

attributes from this element:

myTable.clearAttributes()

First, look at the table. The border is gone, and the table is rendered only as wide as

is necessary to display the content with no cell padding. Lastly, view the results of

the clearAttributes() method in the outerHTML of the table again:

myTable.outerHTML

The source code file has not changed, but the object model in the browser’s mem-

ory reflects the changes you made.

click()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Use The Evaluator (Chapter 13) to experiment with the click() method. The page

includes various types of buttons at the bottom. You can “click” the checkbox, for

example, by entering the following statement in the topmost text field:

document.myForm2.myCheckbox.click()

If you use a recent browser version, you most likely can see the checkbox change

states between checked and unchecked each time you execute the statement.

cloneNode(deepBoolean)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.cloneNode()

(c) ketabton.com: The Digital Library

CD-182 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) to clone, rename, and append an element found in

The Evaluator’s source code. Begin by cloning the paragraph element named myP
along with all of its content. Enter the following statement into the topmost text field:

a = document.getElementById(“myP”).cloneNode(true)

The variable a now holds the clone of the original node, so you can change its ID
attribute at this point by entering the following statement:

a.setAttribute(“ID”, “Dolly”)

If you want to see the properties of the cloned node, enter a into the lower text field.

The precise listing of properties you see depends on whether you use NN or IE; in

either case, you should be able to locate the id property, whose value is now Dolly.

As a final step, append this newly named node to the end of the body element by

entering the following statement into the topmost text field:

document.body.appendChild(a)

You can now scroll down to the bottom of the page and see a duplicate of the con-

tent. But because the two nodes have different ID attributes, they cannot confuse

scripts that need to address one or the other.

componentFromPoint(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can experiment with this method in the code supplied with Listing 15-24. As

presented, the method is associated with a TEXTAREA object that is specifically

sized to display both vertical and horizontal scrollbars. As you click various areas

of the TEXTAREA and the rest of the page, the status bar displays information about

the location of the event with the help of the componentFromPoint() method.

The script utilizes a combination of the event.srcElement property and the

componentFromPoint() method to help you distinguish how you can use each one

for different types of event processing. The srcElement property is used initially as

a filter to decide whether the status bar will reveal further processing about the

TEXTAREA element’s event details.

elementObject.componentFromPoint()

(c) ketabton.com: The Digital Library

CD-183Appendix F ✦ Examples from Parts III and IV

The onMouseDown event handler in the BODY element triggers all event processing.

IE events bubble up the hierarchy (and no events are cancelled in this page), so all

mouseDown events eventually reach the BODY element. Then, the whereInWorld()
function can compare each mouseDown event from any element against the

textarea’s geography.

Listing 15-24: Using the componentFromPoint() Method

<HTML>
<HEAD>
<TITLE>componentFromPoint() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function whereInWorld(elem) {

var x = event.clientX
var y = event.clientY
var component = document.all.myTextarea.componentFromPoint(x,y)
if (window.event.srcElement == document.all.myTextarea) {

if (component == “”) {
status = “mouseDown event occurred inside the element”

} else {
status = “mouseDown occurred on the element\’s “ + component

}
} else {

status = “mouseDown occurred “ + component + “ of the element”
}

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”whereInWorld()”>
<H1>componentFromPoint() Method</H1>
<HR>
<P>Tracking the mouseDown event relative to the textarea object. View results in
status bar.</P>
<FORM>
<TEXTAREA NAME=”myTextarea” WRAP=”off” COLS=12 ROWS=4>
This is Line 1
This is Line 2
This is Line 3
This is Line 4
This is Line 5
This is Line 6
</TEXTAREA>
</FORM>
</BODY>
</HTML>

elementObject.componentFromPoint()

(c) ketabton.com: The Digital Library

CD-184 Part VI ✦ Appendixes

contains(elementObjectReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Using The Evaluator (Chapter 13), see how the contains() method responds to

the object combinations in each of the following statements as you enter them into

the upper text box:

document.body.contains(document.all.myP)
document.all.myP.contains(document.all.item(“myEM”))
document.all.myEM.contains(document.all.myEM)
document.all.myEM.contains(document.all.myP)

Feel free to test other object combinations within this page.

detachEvent()
See attachEvent().

dispatchEvent(eventObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 15-25 demonstrates the dispatchEvent() method as defined in the W3C

DOM Level 2. The behavior is identical to that of Listing 15-26, which demonstrates

the IE5.5 equivalent: fireEvent(). This example does not perform all intended

actions in the first release of NN6 because the browser does not fully implement the

document.createEvent() method. The example is designed to operate more com-

pletely in a future version that supports event generation.

elementObject.dispatchEvent()

(c) ketabton.com: The Digital Library

CD-185Appendix F ✦ Examples from Parts III and IV

Listing 15-25: Using the dispatchEvent() Method

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
#mySPAN {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// assemble a couple event object properties
function getEventProps(evt) {

var msg = “”
var elem = evt.target
msg += “event.target.nodeName: “ + elem.nodeName + “\n”
msg += “event.target.parentNode: “ + elem.parentNode.id + “\n”
msg += “event button: “ + evt.button
return msg

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick(evt) {

var msg = “Click event processed in BODY\n\n”
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)

}
function pClick(evt) {

var msg = “Click event processed in P\n\n”
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)

}
function spanClick(evt) {

var msg = “Click event processed in SPAN\n\n”
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)

}

// cancel event bubbling if check box is checked
function checkCancelBubble(evt) {

if (document.controls.bubbleOn.checked) {
evt.stopPropagation()

}
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick
document.getElementById(“myP”).onclick = pClick

Continued

elementObject.dispatchEvent()

(c) ketabton.com: The Digital Library

CD-186 Part VI ✦ Appendixes

Listing 15-25 (continued)

document.getElementById(“mySPAN”).onclick = spanClick
}

// invoke fireEvent() on object whose ID is passed as parameter
function doDispatch(objID, evt) {

// don’t let button clicks bubble
evt.stopPropagation()
var newEvt = document.createEvent(“MouseEvent”)
if (newEvt) {

newEvt.button = 3
document.getElementById(objID).dispatchEvent(newEvt)

} else {
alert(“This browser version does not support the feature.”)

}
}
</SCRIPT>
</HEAD>
<BODY ID=”myBODY” onLoad=”init()”>
<H1>fireEvent() Method</H1>
<HR>
<P ID=”myP”>This is a paragraph (with a nested SPAN)
that receives click events.</P>
<HR>
<P>Control Panel</P>
<FORM NAME=”controls”>
<P><INPUT TYPE=”checkbox” NAME=”bubbleOn”
onClick=”event.stopPropagation()”>Cancel event bubbling.</P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on BODY”
onClick=”doDispatch(‘myBODY’, event)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on myP”
onClick=”doDispatch(‘myP’, event)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on mySPAN”
onClick=”doDispatch(‘mySPAN’, event)”></P>
</FORM>
</BODY>
</HTML>

fireEvent(“eventType”[, eventObjectRef])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.fireEvent()

(c) ketabton.com: The Digital Library

CD-187Appendix F ✦ Examples from Parts III and IV

Example
The small laboratory of Listing 15-26 enables you to explore the possibilities of the

IE5.5 fireEvent() method while reinforcing event bubbling concepts in IE. Three

nested element objects are assigned separate onClick event handlers (via the

init() function invoked after the page loads — although you can also set these

event handlers via onClick attributes in the tags). Each handler displays an alert

whose content reveals which object’s event handler was triggered and the tag name

and ID of the object that received the event. The default behavior of the page is to

allow event bubbling, but a checkbox enables you to turn off bubbling.

After you load the page, click the italic segment (a nested SPAN element) to receive a

series of three alert boxes. The first advises you that the SPAN element’s onClick
event handler is processing the event and that the SPAN element (whose ID is

mySPAN) is, indeed, the source element of the event. Because event bubbling is

enabled by default, the event bubbles upward to the SPAN element’s next outermost

container: the myP paragraph element. (However, mySPAN is still the source element.)

Finally, the event reaches the BODY element. If you click in the H1 element at the top

of the page, the event is not processed until it reaches the BODY element — although

the H1 element is the source element because that’s what you clicked. In all cases,

when you explicitly click something to generate the onclick event, the event’s

button property shows zero to signify the primary mouse button in IE.

Now onto the real purpose of this example: the fireEvent() method. Three but-

tons enable you to direct a click event to each of the three elements that have event

handlers defined for them. The events fired this way are artificial, generated via the

createEventObject() method. For demonstration purposes, the button property

of these scripted events is set to 3. This property value is assigned to the event
object that eventually gets directed to an element. With event bubbling left on, the

events sent via fireEvent() behave just like the physical clicks on the elements.

Similarly, if you disable event bubbling, the first event handler to process the event

cancels bubbling, and no further processing of that event occurs. Notice that event

bubbling is cancelled within the event handlers that process the event. To prevent

the clicks of the checkbox and action buttons from triggering the BODY element’s

onClick event handlers, event bubbling is turned off for the buttons right away.

Listing 15-26: Using the fireEvent() Method

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
#mySPAN {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// assemble a couple event object properties

Continued

elementObject.fireEvent()

(c) ketabton.com: The Digital Library

CD-188 Part VI ✦ Appendixes

Listing 15-26 (continued)

function getEventProps() {
var msg = “”
var elem = event.srcElement
msg += “event.srcElement.tagName: “ + elem.tagName + “\n”
msg += “event.srcElement.id: “ + elem.id + “\n”
msg += “event button: “ + event.button
return msg

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick() {

var msg = “Click event processed in BODY\n\n”
msg += getEventProps()
alert(msg)
checkCancelBubble()

}
function pClick() {

var msg = “Click event processed in P\n\n”
msg += getEventProps()
alert(msg)
checkCancelBubble()

}
function spanClick() {

var msg = “Click event processed in SPAN\n\n”
msg += getEventProps()
alert(msg)
checkCancelBubble()

}

// cancel event bubbling if check box is checked
function checkCancelBubble() {

event.cancelBubble = document.controls.bubbleOn.checked
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick
document.all.myP.onclick = pClick
document.all.mySPAN.onclick = spanClick

}

// invoke fireEvent() on object whose ID is passed as parameter
function doFire(objID) {

var newEvt = document.createEventObject()
newEvt.button = 3
document.all(objID).fireEvent(“onclick”, newEvt)
// don’t let button clicks bubble
event.cancelBubble = true

}

elementObject.fireEvent()

(c) ketabton.com: The Digital Library

CD-189Appendix F ✦ Examples from Parts III and IV

</SCRIPT>
</HEAD>
<BODY ID=”myBODY” onLoad=”init()”>
<H1>fireEvent() Method</H1>
<HR>
<P ID=”myP”>This is a paragraph (with a nested SPAN)
that receives click events.</P>
<HR>
<P>Control Panel</P>
<FORM NAME=”controls”>
<P><INPUT TYPE=”checkbox” NAME=”bubbleOn”
onClick=”event.cancelBubble=true”>Cancel event bubbling.</P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on BODY”
onClick=”doFire(‘myBODY’)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on myP”
onClick=”doFire(‘myP’)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on mySPAN”
onClick=”doFire(‘mySPAN’)”></P>
</FORM>
</BODY>
</HTML>

focus()
See blur().

getAdjacentText(“position”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to examine all four adjacent text possibilities for

the myP and nested myEM elements in that document. Enter each of the following

statements into the upper text box, and view the results:

document.all.myP.getAdjacentText(“beforeBegin”)
document.all.myP.getAdjacentText(“afterBegin”)
document.all.myP.getAdjacentText(“beforeEnd”)
document.all.myP.getAdjacentText(“afterEnd”)

elementObject.getAdjacentText()

(c) ketabton.com: The Digital Library

CD-190 Part VI ✦ Appendixes

The first and last statements return empty strings because the myP element has no

text fragments surrounding it. The afterBegin version returns the text fragment of

the myP element up to, but not including, the EM element nested inside. The

beforeEnd string picks up after the end of the nested EM element and returns all

text to the end of myP.

Now, see what happens with the nested myEM element:

document.all.myEM.getAdjacentText(“beforeBegin”)
document.all.myEM.getAdjacentText(“afterBegin”)
document.all.myEM.getAdjacentText(“beforeEnd”)
document.all.myEM.getAdjacentText(“afterEnd”)

Because this element has no nested elements, the afterBegin and beforeEnd
strings are identical: the same value as the innerText property of the element.

getAttribute(“attributeName”[,
caseSensitivity])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to experiment with the getAttribute() method

for the elements in the page. For IE4, use the document.all notation. IE5 and NN6

understand the W3C standard getElementById() method of addressing an ele-

ment. You can enter the following sample statements into the top text box to view

attribute values.

IE4:

document.all.myTable.getAttribute(“width”)
document.all.myTable.getAttribute(“border”)

IE5/NN6:

document.getElementById(“myTable”).getAttribute(“width”)
document.getElementById(“myTable”).getAttribute(“border”)

elementObject.getAttribute()

(c) ketabton.com: The Digital Library

CD-191Appendix F ✦ Examples from Parts III and IV

getAttributeNode(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to explore the getAttributeNode() method in NN6.

The Results TEXTAREA element provides several attributes to check out. Because the

method returns an object, enter the following statements into the bottom text field so

you can view the properties of the attribute node object returned by the method:

document.getElementById(“output”).getAttributeNode(“COLS”)
document.getElementById(“output”).getAttributeNode(“ROWS”)
document.getElementById(“output”).getAttributeNode(“wrap”)
document.getElementById(“output”).getAttributeNode(“style”)

All (except the last) statements display a list of properties for each attribute node

object. The last statement, however, returns nothing because the STYLE attribute is

not specified for the element.

getBoundingClientRect()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-27 employs both the getBoundingClientRect() and

getClientRects() methods in a demonstration of how they differ. A set of ele-

ments are grouped within a SPAN element named main. The group consists of two

paragraphs and an unordered list.

Two controls enable you to set the position of an underlying highlight rectangle to

any line of your choice. A checkbox enables you to set whether the highlight rectan-

gle should be only as wide as the line or the full width of the bounding rectangle for

the entire SPAN element.

All the code is located in the hilite() function. The SELECT and checkbox ele-

ments invoke this function. Early in the function, the getClientRects() method is

elementObject.getBoundingClientRect()

(c) ketabton.com: The Digital Library

CD-192 Part VI ✦ Appendixes

invoked for the main element to capture a snapshot of all TextRectangles for the

entire element. This array comes in handy when the script needs to get the coordi-

nates of a rectangle for a single line, as chosen in the SELECT element.

Whenever the user chooses a number from the SELECT list and the value is less

than the total number of TextRectangle objects in clientRects, the function

begins calculating the size and location of the underlying yellow highlighter. When

the Full Width checkbox is checked, the left and right coordinates are obtained

from the getBoundingClientRect() method because the entire SPAN element’s

rectangle is the space you’re interested in; otherwise, you pull the left and right
properties from the chosen rectangle in the clientRects array.

Next comes the assignment of location and dimension values to the hiliter
object’s style property. The top and bottom are always pegged to whatever line is

selected, so the clientRects array is polled for the chosen entry’s top and bottom
properties. The previously calculated left value is assigned to the hiliter object’s

pixelLeft property, while the width is calculated by subtracting the left from the

right coordinates. Notice that the top and left coordinates also take into account

any vertical or horizontal scrolling of the entire body of the document. If you resize

the window to a smaller size, line wrapping throws off the original line count.

However, an invocation of hilite() from the onResize event handler applies the

currently chosen line number to whatever content falls in that line after resizing.

Listing 15-27: Using getBoundingClientRect()

<HTML>
<HEAD>
<TITLE>getClientRects() and getBoundClientRect() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function hilite() {

var hTop, hLeft, hRight, hBottom, hWidth
var select = document.forms[0].choice
var n = parseInt(select.options[select.selectedIndex].value) - 1
var clientRects = document.all.main.getClientRects()
var mainElem = document.all.main
if (n >= 0 && n < clientRects.length) {

if (document.forms[0].fullWidth.checked) {
hLeft = mainElem.getBoundingClientRect().left
hRight = mainElem.getBoundingClientRect().right

} else {
hLeft = clientRects[n].left
hRight = clientRects[n].right

}
document.all.hiliter.style.pixelTop = clientRects[n].top +

document.body.scrollTop
document.all.hiliter.style.pixelBottom = clientRects[n].bottom
document.all.hiliter.style.pixelLeft = hLeft + document.body.scrollLeft

elementObject.getBoundingClientRect()

(c) ketabton.com: The Digital Library

CD-193Appendix F ✦ Examples from Parts III and IV

document.all.hiliter.style.pixelWidth = hRight - hLeft
document.all.hiliter.style.visibility = “visible”

} else if (n > 0) {
alert(“The content does not have that many lines.”)
document.all.hiliter.style.visibility = “hidden”

}
}
</SCRIPT>
</HEAD>
<BODY onResize=”hilite()”>
<H1>getClientRects() and getBoundClientRect() Methods</H1>
<HR>
<FORM>
Choose a line to highlight:
<SELECT NAME=”choice” onChange=”hilite()”>
<OPTION VALUE=0>
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=4>4
<OPTION VALUE=5>5
<OPTION VALUE=6>6
<OPTION VALUE=7>7
<OPTION VALUE=8>8
<OPTION VALUE=9>9
<OPTION VALUE=10>10
<OPTION VALUE=11>11
<OPTION VALUE=12>12
<OPTION VALUE=13>13
<OPTION VALUE=14>14
<OPTION VALUE=15>15
</SELECT>

<INPUT NAME=”fullWidth” TYPE=”checkbox” onClick=”hilite()”>
Full Width (bounding rectangle)
</FORM>

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco:</P>

laboris
nisi
aliquip ex ea commodo

<P>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum Et harumd und lookum like Greek to me, dereud
facilis est er expedit distinct.</P>

Continued

elementObject.getBoundingClientRect()

(c) ketabton.com: The Digital Library

CD-194 Part VI ✦ Appendixes

Listing 15-27 (continued)

<DIV ID=”hiliter”
STYLE=”position:absolute; background-color:yellow; z-index:-1;
visibility:hidden”>
</DIV>
</BODY>
</HTML>

Because the z-index style property of the hiliter element is set to -1, the ele-

ment always appears beneath the primary content on the page. If the user selects a

line number beyond the current number of lines in the main element, the hiliter
element is hidden.

getClientRects()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-27, which demonstrates the differences between getClientRects()
and getBoundingClientRect() and shows how you can use the two together.

getElementsByTagName(“tagName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the getElementsByTagName()
method. Enter the following statements one at a time into the upper text box and

study the results:

document.body.getElementsByTagName(“DIV”)

elementObject.getElementsByTagName()

(c) ketabton.com: The Digital Library

CD-195Appendix F ✦ Examples from Parts III and IV

document.body.getElementsByTagName(“DIV”).length
document.getElementById(“myTable”).getElementsByTagName(“TD”).length

Because the getElementsByTagName() method returns an array of objects, you

can use one of those returned values as a valid element reference:

document.getElementsByTagName(“FORM”)[0].getElementsByTagName(“INPUT”).length

getExpression(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-32 for the setExpression() method. This listing demonstrates the

kinds of values returned by getExpression().

hasChildNodes()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the hasChildNodes() method.

If you enter the following statement into the topmost text box:

document.getElementById(“myP”).hasChildNodes()

the returned value is true. You can find out how many nodes there are by getting

the length of the childNodes array:

document.getElementById(“myP”).childNodes.length

This expression reveals a total of three nodes: the two text nodes and the EM ele-

ment between them. Check out whether the first text node has any children:

document.getElementById(“myP”).childNodes[0].hasChildNodes()

elementObject.hasChildNodes()

(c) ketabton.com: The Digital Library

CD-196 Part VI ✦ Appendixes

The response is false because text fragments do not have any nested nodes. But

check out the EM element, which is the second child node of the myP element:

document.getElementById(“myP”).childNodes[1].hasChildNodes()

The answer is true because the EM element has a text fragment node nested within

it. Sure enough, the statement

document.getElementById(“myP”).childNodes[1].childNodes.length

yields a node count of 1. You can also go directly to the EM element in your references:

document.getElementById(“myEM”).hasChildNodes()
document.getElementById(“myEM”).childNodes.length

If you want to see the properties of the text fragment node inside the EM element,

enter the following into the lower text box:

document.getElementById(“myEM”).childNodes[0]

You can see that the data and nodeValue properties for the text fragment return

the text “all”.

insertAdjacentElement(“location”,
elementObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to experiment with the

insertAdjacentElement() method. The goal of the experiment is to insert a new

H1 element above the myP element.

All actions require you to enter a sequence of statements in the topmost text box.

Begin by storing a new element in the global variable a:

a = document.createElement(“H1”)

Give the new object some text:

a.innerText = “New Header”

elementObject.insertAdjacentElement()

(c) ketabton.com: The Digital Library

CD-197Appendix F ✦ Examples from Parts III and IV

Now, insert this element before the start of the myP object:

myP.insertAdjacentElement(“beforeBegin”, a)

Notice that you have not assigned an id property value to the new element. But

because the element was inserted by reference, you can modify the inserted object

by changing the object stored in the a variable:

a.style.color = “red”

The inserted element is also part of the document hierarchy, so you can access it

through hierarchy references such as myP.previousSibling.

The parent element of the newly inserted element is the BODY. Thus, you can

inspect the current state of the HTML for the rendered page by entering the follow-

ing statement into the topmost text box:

document.body.innerHTML

If you scroll down past the first form, you can find the <H1> element that you added

along with the STYLE attribute.

insertAdjacentHTML(“location”,“HTMLtext”)
insertAdjacentText(“location”,“text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with these two methods. The exam-

ple here demonstrates the result of employing both methods in an attempt to add

some HTML to the beginning of the myP element.

Begin by assigning a string of HTML code to the global variable a:

a = “<B ID=’myB’>Important News!”

Because this HTML is to go on the same line as the start of the myP paragraph, use

the afterBegin parameter for the insert method:

myP.insertAdjacentHTML(“afterBegin”, a)

elementObject.insertAdjacentHTML()

(c) ketabton.com: The Digital Library

CD-198 Part VI ✦ Appendixes

Notice that there is no space after the exclamation mark of the inserted HTML. But

to prove that the inserted HTML is genuinely part of the document’s object model,

you can now insert the text of a space after the B element whose ID is myB:

myB.insertAdjacentText(“afterEnd”, “ “)

Each time you evaluate the preceding statement (by repeatedly clicking the

Evaluate button or pressing Enter with the cursor in the topmost field), an addi-

tional space is added.

You should also see what happens when the string to be inserted with

insertAdjacentText() contains HTML tags. Reload The Evaluator and enter the

following two statements into the topmost field, evaluating each one in turn:

a = “<B ID=’myB’>Important News!”
myP.insertAdjacentText(“afterBegin”, a)

The HTML is not interpreted but is displayed as plain text. There is no object

named myB after executing this latest insert method.

insertBefore(newChildNodeObject[,
referenceChildNode])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-28 demonstrates how the insertBefore() method can insert child ele-

ments (LI) inside a parent (OL) at different locations, depending on the second

parameter. A text box enables you to enter your choice of text and/or HTML for

insertion at various locations within the OL element. If you don’t specify a position,

the second parameter of insertBefore() is passed as null— meaning that the

new child node is added to the end of the existing children. But choose a spot from

the select list where you want to insert the new item. The value of each SELECT list

option is an index of one of the first three child nodes of the OL element.

Listing 15-28: Using the insertBefore() Method

<HTML>
<HEAD>

elementObject.insertBefore()

(c) ketabton.com: The Digital Library

CD-199Appendix F ✦ Examples from Parts III and IV

<TITLE>insertBefore() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doInsert(form) {

if (form.newText) {
var newChild = document.createElement(“LI”)
newChild.innerHTML = form.newText.value
var choice = form.itemIndex.options[form.itemIndex.selectedIndex].value
var insertPoint = (isNaN(choice)) ?

null : document.getElementById(“myUL”).childNodes[choice]
document.getElementById(“myUL”).insertBefore(newChild, insertPoint)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>insertBefore() Method</H1>
<HR>
<FORM onSubmit=”return false”>
<P>Enter text or HTML for a new list item:
<INPUT TYPE=”text” NAME=”newText” SIZE=40 VALUE=””></P>
<P>Before which existing item?
<SELECT NAME=”itemIndex”>

<OPTION VALUE=null>None specified
<OPTION VALUE=0>1
<OPTION VALUE=1>2
<OPTION VALUE=2>3

</SELECT></P>
<INPUT TYPE=”button” VALUE=”Insert Item” onClick=”doInsert(this.form)”>
</FORM>

<OL ID=”myUL”>
Originally the First Item
Originally the Second Item
Originally the Third Item

</BODY>
</HTML>

item(index | “index” [, subIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

elementObjectCollection.item()

(c) ketabton.com: The Digital Library

CD-200 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) to experiment with the item() method. Type the

following statements into the topmost text box and view the results for each:

NN6 and IE5

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes.item(0).data
document.getElementById(“myP”).childNodes.item(1).nodeName

NN6, IE4, and IE5

document.forms[1].elements.item(0).type

IE4 and IE5

document.all.item(“myP”).outerHTML
myP.outerHTML

In the last two examples, both statements return the same string. The first example

is helpful when your script is working with a string version of an object’s name. If

your script already knows the object reference, then the second approach is more

efficient and compact.

mergeAttributes(“sourceObject”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-29 demonstrates the usage of mergeAttributes() in the process of repli-

cating the same form input field while assigning a unique ID to each new field. So you

can see the results as you go, I display the HTML for each input field in the field.

The doMerge() function begins by generating two new elements: a P and an INPUT

element. Because these newly created elements have no properties associated with

them, a unique ID is assigned to the INPUT element via the uniqueID property.

Attributes from the field in the source code (field1) are merged into the new

INPUT element. Thus, all attributes except name and id are copied to the new ele-

ment. The INPUT element is inserted into the P element, and the P element is

appended to the document’s form element. Finally, the outerHTML of the new ele-

ment is displayed in its field. Notice that except for the NAME and ID attributes, all

elementObject.mergeAttributes()

(c) ketabton.com: The Digital Library

CD-201Appendix F ✦ Examples from Parts III and IV

others are copied. This includes style sheet attributes and event handlers. To prove

that the event handler works in the new elements, you can add a space to any one

of them and press Tab to trigger the onChange event handler that changes the con-

tent to all uppercase characters.

Listing 15-29: Using the mergeAttributes() Method

<HTML>
<HEAD>
<TITLE>mergeAttributes() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doMerge(form) {

var newPElem = document.createElement(“P”)
var newInputElem = document.createElement(“INPUT”)
newInputElem.id = newInputElem.uniqueID
newInputElem.mergeAttributes(form.field1)
newPElem.appendChild(newInputElem)
form.appendChild(newPElem)
newInputElem.value = newInputElem.outerHTML

}
// called by onChange event handler of fields
function upperMe(field) {

field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>
<BODY onLoad=”document.expandable.field1.value =
document.expandable.field1.outerHTML”>
<H1>mergeAttributes() Method</H1>
<HR>
<FORM NAME=”expandable” onSubmit=”return false”>
<P><INPUT TYPE=”button” VALUE=”Append Field ‘Clone’”
onClick=”doMerge(this.form)”></P>
<P><INPUT TYPE=”text” NAME=”field1” ID=”FIELD1” SIZE=120 VALUE=”” STYLE=”font-
size:9pt” onChange=”upperMe(this)”></P>
</FORM>
</BODY>
</HTML>

normalize()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.normalize()

(c) ketabton.com: The Digital Library

CD-202 Part VI ✦ Appendixes

Example
Use The Evaluator to experiment with the normalize() method in NN6. The follow-

ing sequence adds a text node adjacent to one in the myP element. A subsequent

invocation of the normalize() method removes the division between the adjacent

text nodes.

Begin by confirming the number of child nodes of the myP element:

document.getElementById(“myP”).childNodes.length

Three nodes initially inhabit the element. Next, create a text node and append it as

the last child of the myP element:

a = document.createTextNode(“This means you!”)
document.getElementById(“myP”).appendChild(a)

With the new text now rendered on the page, the number of child nodes increases

to four:

document.getElementById(“myP”).childNodes.length

You can see that the last child node of myP is the text node you just created:

document.getElementById(“myP”).lastChild.nodeValue

But by invoking normalize() on myP, all adjacent text nodes are accumulated into

single nodes:

document.getElementById(“myP”).normalize()

You can now see that the myP element is back to three child nodes, and the last

child is a combination of the two previously distinct, but adjacent, text nodes:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).lastChild.nodeValue

releaseCapture()
setCapture(containerBoolean)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

elementObject.releaseCapture()

(c) ketabton.com: The Digital Library

CD-203Appendix F ✦ Examples from Parts III and IV

Example
Listing 15-30 demonstrates the usage of setCapture() and releaseCapture() in

a “quick-and-dirty” context menu for IE5+/Windows. The job of the context menu is

to present a list of numbering styles for the ordered list of items on the page.

Whenever the user brings up the context menu atop the OL element, the custom

context menu appears. Event capture is turned on in the process to prevent mouse

actions elsewhere on the page from interrupting the context menu choice. Even a

click on the link set up as the title of the list is inhibited while the context menu is

visible. A click anywhere outside of the context menu hides the menu. Clicking a

choice in the menu changes the listStyleType property of the OL object and

hides the menu. Whenever the context menu is hidden, event capture is turned off

so that clicking on the page (such as the link) works as normal.

For this design, onClick, onMouseOver, and onMouseOut event handlers are

assigned to the DIV element that contains the context menu. To trigger the display

of the context menu, the OL element has an onContextMenu event handler. This

handler invokes the showContextMenu() function. In this function, event capture is

assigned to the context menu DIV object. The DIV is also positioned at the location

of the click before it is set to be visible. To prevent the system’s regular context

menu from also appearing, the event object’s returnValue property is set to

false.

Now that all mouse events on the page go through the contextMenu DIV object,

let’s examine what happens with different kinds of events triggered by user action.

As the user rolls the mouse, a flood of mouseover and mouseout events fire. The

event handlers assigned to the DIV manage these events. But notice that the two

event handlers, highlight() and unhighlight(), perform action only when the

srcElement property of the event is one of the menu items in the DIV. Because the

page has no other onMouseOver or onMouseOut event handlers defined for ele-

ments up the containment hierarchy, you do not have to cancel event bubbling for

these events.

When a user clicks the mouse button, different things happen depending on

whether event capture is enabled. Without event capture, the click event bubbles

up from wherever it occurred to the onClick event handler in the BODY element.

(An alert dialog box displays to let you know when the event reaches the BODY.)

But with event capture turned on (the context menu is showing), the

handleClick() event handler takes over to apply the desired choice whenever the

click is atop one of the context menu items. For all click events handled by this

function, the context menu is hidden and the click event is canceled from bub-

bling up any higher (no alert dialog box appears). This takes place whether the

user makes a choice in the context menu or clicks anywhere else on the page. In the

latter case, all you need is for the context menu to go away like the real context

menu does. For added insurance, the onLoseCapture event handler hides the con-

text menu when a user performs any of the actions just listed that cancel capture.

elementObject.releaseCapture()

(c) ketabton.com: The Digital Library

CD-204 Part VI ✦ Appendixes

Listing 15-30: Using setCapture() and releaseCapture()

<HTML>
<STYLE TYPE=”text/css”>
#contextMenu {position:absolute; background-color:#cfcfcf;

border-style:solid; border-width:1px;
border-color:#EFEFEF #505050 #505050 #EFEFEF;
padding:3px 10px; font-size:8pt; font-family:Arial, Helvetica;
line-height:150%; visibility:hidden}

.menuItem {color:black}

.menuItemOn {color:white}
OL {list-style-position:inside; font-weight:bold; cursor:nw-resize}
LI {font-weight:normal}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showContextMenu() {

contextMenu.setCapture()
contextMenu.style.pixelTop = event.clientY + document.body.scrollTop
contextMenu.style.pixelLeft = event.clientX + document.body.scrollLeft
contextMenu.style.visibility = “visible”
event.returnValue = false

}

function revert() {
document.releaseCapture()
hideMenu()

}

function hideMenu() {
contextMenu.style.visibility = “hidden”

}

function handleClick() {
var elem = window.event.srcElement
if (elem.id.indexOf(“menuItem”) == 0) {

shapesList.style.listStyleType = elem.LISTTYPE
}
revert()
event.cancelBubble = true

}

function highlight() {
var elem = event.srcElement
if (elem.className == “menuItem”) {

elem.className = “menuItemOn”
}

}

elementObject.releaseCapture()

(c) ketabton.com: The Digital Library

CD-205Appendix F ✦ Examples from Parts III and IV

function unhighlight() {
var elem = event.srcElement
if (elem.className == “menuItemOn”) {

elem.className = “menuItem”
}

}
</SCRIPT>
<BODY onClick=”alert(‘You reached the document object.’)” >
<OL ID=”shapesList” onContextMenu=”showContextMenu()”>
Three-Dimensional Shapes
Circular Cylinder
Cube
Rectangular Prism
Regular Right Pyramid
Right Circular Cone
Sphere

<DIV ID=”contextMenu” onLoseCapture=”hideMenu()” onClick=”handleClick()”
onMouseOver=”highlight()” onMouseOut=”unhighlight()”>
<SPAN ID=”menuItem1” CLASS=”menuItem” LISTTYPE=”upper-
alpha”>A,B,C,...

<SPAN ID=”menuItem2” CLASS=”menuItem” LISTTYPE=”lower-
alpha”>a,b,c,...

<SPAN ID=”menuItem3” CLASS=”menuItem” LISTTYPE=”upper-
roman”>I,II,III,...

<SPAN ID=”menuItem4” CLASS=”menuItem” LISTTYPE=”lower-
roman”>i,ii,iii,...

1,2,3,...

</DIV>
</BODY>
</HTML>

removeAttribute(“attributeName”[,
caseSensitivity])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to experiment with the removeAttribute()
method for the elements in the page. See the examples for the setAttribute()

elementObject.removeAttribute()

(c) ketabton.com: The Digital Library

CD-206 Part VI ✦ Appendixes

method later in this chapter, and enter the corresponding removeAttribute()
statements in the top text box. Interlace statements using getAttribute() to ver-

ify the presence or absence of each attribute.

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the setAttributeNode() and

removeAttributeNode() methods for the P element in the page. The task is to cre-

ate and add a STYLE attribute to the P element. Begin by creating a new attribute

and storing it temporarily in the global variable a:

a = document.createAttribute(“style”)

Assign a value to the attribute object:

a.nodeValue = “color:red”

Now insert the new attribute into the P element:

document.getElementById(“myP”).setAttributeNode(a)

The paragraph changes color in response to the newly added attribute.

Due to the NN6 bug that won’t allow the method to return a reference to the newly

inserted attribute node, you can artificially obtain such a reference:

b = document.getElementById(“myP”).getAttributeNode(“style”)

Finally, use the reference to the newly added attribute to remove it from the

element:

document.getElementById(“myP”).removeAttribute(b)

Upon removing the attribute, the paragraph resumes its initial color. See the exam-

ple for the setAttribute() method later in this chapter to discover how you can

perform this same kind of operation with setAttribute().

elementObject.removeAttributeNode()

(c) ketabton.com: The Digital Library

CD-207Appendix F ✦ Examples from Parts III and IV

removeBehavior(ID)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listings 15-19a and 15-19b earlier in this chapter for examples of how to use

addBehavior() and removeBehavior().

removeChild(nodeObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can see an example of removeChild() as part of Listing 15-21 earlier in this

chapter.

removeEventListener()
See addEventListener().

removeExpression(“propertyName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can experiment with all three expression methods in The Evaluator (Chapter 13).

The following sequence adds an expression to a style sheet property of the myP ele-

ment on the page and then removes it.

elementObject.removeExpression()

(c) ketabton.com: The Digital Library

CD-208 Part VI ✦ Appendixes

To begin, enter the number 24 in the bottom one-line text box in The Evaluator (but

don’t press Enter or click the List Properties button). This is the value used in the

expression to govern the fontSize property of the myP object. Next, assign an

expression to the myP object’s style object by entering the following statement

into the topmost text box:

myP.style.setExpression(“fontSize”,”document.forms[0].inspector.value”,”JScript”)

You can now enter different font sizes into the lower text box and have the values

immediately applied to the fontSize property. (Keyboard events in the text box

automatically trigger the recalculation.) The default unit is px, but you can also

append other units (such as pt) to the value in the text field to see how different

measurement units influence the same numeric value.

Before proceeding to the next step, enter a value other than 16 (the default

fontSize value). Finally, enter the following statement in the topmost text box to

disconnect the expression from the property:

myP.style.removeExpression(“fontSize”)

Notice that although you can no longer adjust the font size from the lower text box,

the most recent value assigned to it still sticks to the element. To prove it, enter the

following statement in the topmost text box to see the current value:

myP.style.fontSize

removeNode(removeChildrenFlag)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Examine Listing 15-21 for the appendChild() method to understand the difference

between removeChild() and removeNode(). In the restore() function, you can

replace this statement

mainObj.removeChild(oneChild)

in IE5+ with

oneChild.removeNode(true)

elementObject.removeNode()

(c) ketabton.com: The Digital Library

CD-209Appendix F ✦ Examples from Parts III and IV

The difference is subtle, but it is important to understand. See Listing 15-31 later in

this chapter for another example of the removeNode() method.

replaceAdjacentText(“location”, “text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to experiment with the replaceAdjacentText()
method. Enter each of the following statements into the top text box and watch the

results in the myP element (and its nested myEM element) below the solid rule:

document.all.myEM.replaceAdjacentText(“afterBegin”, “twenty”)

Notice that the myEM element’s new text picks up the behavior of the element. In the

meantime, the replaced text (all) is returned by the method and displayed in the

Results box.

document.all.myEM.replaceAdjacentText(“beforeBegin”, “We need “)

All characters of the text fragment, including spaces, are replaced. Therefore, you

may need to supply a trailing space, as shown here, if the fragment you replace has

a space.

document.all.myP.replaceAdjacentText(“beforeEnd”, “ good people.”)

This is another way to replace the text fragment following the myEM element, but it

is also relative to the surrounding myP element. If you now attempt to replace text

after the end of the myP block-level element,

document.all.myP.replaceAdjacentText(“afterEnd”, “Hooray!”)

the text fragment is inserted after the end of the myP element’s tag set. The frag-

ment is just kind of floating in the document object model as an unlabeled text

node.

elementObject.replaceAdjacentText()

(c) ketabton.com: The Digital Library

CD-210 Part VI ✦ Appendixes

replaceChild(newNodeObject, oldNodeObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can see an example of replaceChild() as part of Listing 15-21 earlier in this

chapter.

replaceNode(“newNodeObject”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-31 demonstrates three node-related methods: removeNode(),

replaceNode(), and swapNode(). These methods work in IE5+ only.

The page rendered from Listing 15-31 begins with a UL type list of four items. Four

buttons control various aspects of the node structure of this list element. The first

button invokes the replace() function, which changes the UL type to OL. To do this,

the function must temporarily tuck away all child nodes of the original UL element so

that they can be added back into the new OL element. At the same time, the old UL

node is stored in a global variable (oldNode) for restoration in another function.

To replace the UL node with an OL, the replace() function creates a new, empty

OL element and assigns the myOL ID to it. Next, the children (LI elements) are stored

en masse as an array in the variable innards. The child nodes are then inserted into

the empty OL element, using the insertBefore() method. Notice that as each

child element from the innards array is inserted into the OL element, the child ele-

ment is removed from the innards array. That’s why the loop to insert the child

nodes is a while loop that constantly inserts the first item of the innards array to

the new element. Finally, the replaceNode() method puts the new node in the old

node’s place, while the old node (just the UL element) is stored in oldNode.

The restore() function operates in the inverse direction of the replace() func-

tion. The same juggling of nested child nodes is required.

elementObject.replaceNode()

(c) ketabton.com: The Digital Library

CD-211Appendix F ✦ Examples from Parts III and IV

The third button invokes the swap() function, whose script exchanges the first and

last nodes. The swapNode() method, like the others in this discussion, operates

from the point of view of the node. Therefore, the method is attached to one of the

swapped nodes, while the other node is specified as a parameter. Because of the

nature of the OL element, the number sequence remains fixed but the text of the LI

node swaps.

To demonstrate the removeNode() method, the fourth function removes the last

child node of the list. Each call to removeNode() passes the true parameter to

guarantee that the text nodes nested inside each LI node are also removed.

Experiment with this method by setting the parameter to false (the default).

Notice how the parent–child relationship changes when you remove the LI node.

Listing 15-31: Using Node-Related Methods

<HTML>
<HEAD>
<TITLE>removeNode(), replaceNode(), and swapNode() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original node between changes
var oldNode

// replace UL node with OL
function replace() {

if (document.all.myUL) {
var newNode = document.createElement(“OL”)
newNode.id = “myOL”
var innards = document.all.myUL.children
while (innards.length > 0) {

newNode.insertBefore(innards[0])
}
oldNode = document.all.myUL.replaceNode(newNode)

}
}

// restore OL to UL
function restore() {

if (document.all.myOL && oldNode) {
var innards = document.all.myOL.children
while (innards.length > 0) {

oldNode.insertBefore(innards[0])
}
document.all.myOL.replaceNode(oldNode)

}
}

Continued

elementObject.replaceNode()

(c) ketabton.com: The Digital Library

CD-212 Part VI ✦ Appendixes

Listing 15-31 (continued)

// swap first and last nodes
function swap() {

if (document.all.myUL) {
document.all.myUL.firstChild.swapNode(document.all.myUL.lastChild)

}
if (document.all.myOL) {

document.all.myOL.firstChild.swapNode(document.all.myOL.lastChild)
}

}

// remove last node
function remove() {

if (document.all.myUL) {
document.all.myUL.lastChild.removeNode(true)

}
if (document.all.myOL) {

document.all.myOL.lastChild.removeNode(true)
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Node Methods</H1>
<HR>
Here is a list of items:
<UL ID=”myUL”>
First Item
Second Item
Third Item
Fourth Item

<FORM>
<INPUT TYPE=”button” VALUE=”Change to OL List” onClick=”replace()”>
<INPUT TYPE=”button” VALUE=”Restore LI List” onClick=”restore()”>
<INPUT TYPE=”button” VALUE=”Swap First/Last” onClick=”swap()”>
<INPUT TYPE=”button” VALUE=”Remove Last” onClick=”remove()”>
</BODY>
</HTML>

You can accomplish the same functionality shown in Listing 15-31 in a cross-

browser fashion using the W3C DOM. In place of the removeNode() and

replaceNode() methods, use removeChild() and replaceChild() methods to

shift the point of view (and object references) to the parent of the UL and OL

objects: the document.body. Also, you need to change the document.all refer-

ences to document.getElementById().

elementObject.replaceNode()

(c) ketabton.com: The Digital Library

CD-213Appendix F ✦ Examples from Parts III and IV

scrollIntoView(topAlignFlag)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the scrollIntoView()
method. Resize the browser window height so that you can see only the topmost

text box and the Results textarea. Enter each of the following statements into the

top text box and see where the myP element comes into view:

myP.scrollIntoView()
myP.scrollIntoView(false)

Expand the height of the browser window until you can see part of the table lower

on the page. If you enter

myTable.scrollIntoView(false)

into the top text box, the page scrolls to bring the bottom of the table to the bottom

of the window. But if you use the default parameter (true or empty),

myTable.scrollIntoView()

the page scrolls as far as it can in an effort to align the top of the element as closely

as possible to the top of the window. The page cannot scroll beyond its normal

scrolling maximum (although if the element is a positioned element, you can use

dynamic positioning to place it wherever you want — including “off the page”).

Also, if you shrink the window and try to scroll the top of the table to the top of the

window, be aware that the TABLE element contains a CAPTION element so the cap-

tion is flush with the top of the window.

setActive()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.setActive()

(c) ketabton.com: The Digital Library

CD-214 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) to compare the setActive() and focus() meth-

ods. With the page scrolled to the top and the window sized so that you cannot see

the sample check box near the bottom of the page, enter the following statement

into the top text box:

document.forms[1].myCheckbox.setActive()

Scroll down to see that the checkbox has operational focus (press the spacebar to

see). Now, scroll back to the top and enter the following:

document.forms[1].myCheckbox.focus()

This time, the checkbox gets focus and the page automatically scrolls the object

into view.

setAttribute(“attributeName”, value[,
caseSensitivity])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to experiment with the setAttribute() method for

the elements in the page. For IE4, use the document.all notation; IE5 and NN6

understand the W3C standard getElementById() method of addressing an element.

Setting attributes can have immediate impact on the layout of the page (just as set-

ting an object’s properties can). Enter these sample statements into the top text

box to view attribute values:

IE4+:

document.all.myTable.setAttribute(“width”, “80%”)
document.all.myTable.setAttribute(“border”, “5”)

IE5+/NN6:

document.getElementById(“myTable”).setAttribute(“width”, “80%”)
document.getElementById(“myTable”).setAttribute(“border”, “5”)

elementObject.setAttribute()

(c) ketabton.com: The Digital Library

CD-215Appendix F ✦ Examples from Parts III and IV

setAttributeNode()
See removeAttributeNode().

setCapture(containerBoolean)
See releaseCapture().

setExpression(“propertyName”,
“expression”,”language”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-32 shows the setExpression(), recalc(), and getExpression()
methods at work in a DHTML-based clock. Figure 15-1 shows the clock. As time

clicks by, the bars for hours, minutes, and seconds adjust their widths to reflect the

current time. At the same time, the innerHTML of SPAN elements to the right of

each bar display the current numeric value for the bar.

The dynamically calculated values in this example are based on the creation of a

new date object over and over again to get the current time from the client com-

puter clock. It is from the date object (stored in the variable called now) that the

hour, minute, and second values are retrieved. Some other calculations are involved

so that a value for one of these time components is converted into a pixel value for

the width of the bars. The bars are divided into 24 (for the hours) and 60 (for the

minutes and seconds) parts, so the scale for the two types differs. For the 60-

increment bars in this application, each increment is set to 5 pixels (stored in

shortWidth); the 24-increment bars are 2.5 times the shortWidth.

As the document loads, the three SPAN elements for the colored bars are given no

width, which means that they assume the default width of zero. But after the page

loads, the onLoad event handler invokes the init() function, which sets the initial

values for each bar’s width and the text (innerHTML) of the three labeled spans.

Once these initial values are set, the init() function invokes the updateClock()
function.

elementObject.setExpression()

(c) ketabton.com: The Digital Library

CD-216 Part VI ✦ Appendixes

In the updateClock() function, a new date object is created for the current instant.

The document.recalc() method is called, instructing the browser to recalculate

the expressions that were set in the init() function and assign the new values to

the properties. To keep the clock “ticking,” the setTimeout() method is set to

invoke this same updateClock() function in one second.

To see what the getExpression() method does, you can click the button on the

page. It simply displays the returned value for one of the attributes that you assign

using setExpression().

Listing 15-32: Dynamic Properties

<HTML>
<HEAD>
<TITLE>getExpression(), setExpression(), and recalc() Methods</TITLE>
<STYLE TYPE=”text/css”>
TH {text-align:right}
SPAN {vertical-align:bottom}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

var now = new Date()
var shortWidth = 5
var multiple = 2.5

function init() {
with (document.all) {

hoursBlock.style.setExpression(“width”,
“now.getHours() * shortWidth * multiple”,”jscript”)

hoursLabel.setExpression(“innerHTML”,
“now.getHours()”,”jscript”)

minutesBlock.style.setExpression(“width”,
“now.getMinutes() * shortWidth”,”jscript”)

minutesLabel.setExpression(“innerHTML”,
“now.getMinutes()”,”jscript”)

secondsBlock.style.setExpression(“width”,
“now.getSeconds() * shortWidth”,”jscript”)

secondsLabel.setExpression(“innerHTML”,
“now.getSeconds()”,”jscript”)

}

updateClock()
}

elementObject.setExpression()

(c) ketabton.com: The Digital Library

CD-217Appendix F ✦ Examples from Parts III and IV

function updateClock() {
now = new Date()
document.recalc()
setTimeout(“updateClock()”,1000)

}

function showExpr() {
alert(“Expression for the \’Hours\’ innerHTML property is:\r\n” +

document.all.hoursLabel.getExpression(“innerHTML”) + “.”)
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>getExpression(), setExpression(), recalc() Methods</H1>
<HR>
<P>This clock uses Dynamic Properties to calculate bar width and time
numbers:</P>
<TABLE BORDER=0>
<TR>

<TH>Hours:</TH>
<TD>

 </TD>
</TR>
<TR>

<TH>Minutes:</TH>
<TD>

 </TD>
</TR>
<TR>

<TH>Seconds:</TH>
<TD>

 </TD>
</TR>
</TABLE>
<HR>
<FORM>
<INPUT TYPE=”button” VALUE=”Show ‘Hours’ number innerHTML Expression”
onClick=”showExpr()”
</FORM>
</BODY>
</HTML>

elementObject.setExpression()

(c) ketabton.com: The Digital Library

CD-218 Part VI ✦ Appendixes

Figure 15-1: A clock controlled by dynamic properties

swapNode(otherNodeObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-31 (the replaceNode() method) for an example of the swapNode()
method in action.

tags(“tagName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObjectCollection.tags()

(c) ketabton.com: The Digital Library

CD-219Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to experiment with the tags() method. Enter the

following statements one at a time into the upper text box and study the results:

document.all.tags(“DIV”)
document.all.tags(“DIV”).length
myTable.all.tags(“TD”).length

Because the tags() method returns an array of objects, you can use one of those

returned values as a valid element reference:

document.all.tags(“FORM”)[1].elements.tags(“INPUT”).length

urns(“behaviorURN”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In case the urns() method is reconnected in the future, you can add a button and

function to Listing 15-19b that reveals whether the makeHot.htc behavior is

attached to the myP element. Such a function looks like this:

function behaviorAttached() {
if (document.all.urns(“makeHot”)) {

alert(“There is at least one element set to \’makeHot\’.”)
}

}

Event handlers
onActivate
onBeforeDeactivate
onDeactivate

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.onActivate

(c) ketabton.com: The Digital Library

CD-220 Part VI ✦ Appendixes

Example
You can modify Listing 15-34 later in this chapter by substituting onActivate for

onFocus and onDeactivate for onBlur.

Use The Evaluator (Chapter 13) to experiment with the onBeforeDeactivate
event handler. To begin, set the myP element so it can accept focus:

myP.tabIndex = 1

If you repeatedly press the Tab key, the myP paragraph will eventually receive

focus — indicated by the dotted rectangle around it. To see how you can prevent

the element from losing focus, assign an anonymous function to the

onBeforeDeactivate event handler, as shown in the following statement:

myP.onbeforedeactivate = new Function(“event.returnValue=false”)

Now you can press Tab all you like or click other focusable elements all you like,

and the myP element will not lose focus until you reload the page (which clears

away the event handler). Please do not do this on your pages unless you want to

infuriate and alienate your site visitors.

onBeforeCopy

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use the onBeforeCopy event handler to preprocess information prior to an

actual copy action. In Listing 15-33, the function invoked by the second paragraph

element’s onBeforeCopy event handler selects the entire paragraph so that the

user can select any character(s) in the paragraph to copy the entire paragraph into

the clipboard. You can paste the results into the textarea to verify the operation. By

assigning the paragraph selection to the onBeforeCopy event handler, the page

notifies the user about what the copy operation will entail prior to making the menu

choice. Had the operation been deferred to the onCopy event handler, the selection

would have been made after the user chose Copy from the menu.

elementObject.onBeforeCopy

(c) ketabton.com: The Digital Library

CD-221Appendix F ✦ Examples from Parts III and IV

Listing 15-33: The onBeforeCopy Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeCopy Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectWhole() {

var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onBeforeCopy Event Handler</H1>
<HR>
<P>Select one or more characters in the following paragraph. Then
execute a Copy command via Edit or context menu.</P>
<P ID=”myP” onBeforeCopy=”selectWhole()”>Lorem ipsum dolor sit amet,
consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>
<FORM>
<P>Paste results here:

<TEXTAREA NAME=”output” COLS=”60” ROWS=”5”></TEXTAREA>
</P>
</FORM>
</BODY>
</HTML>

onBeforeCut

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use the onBeforeCut event handler to preprocess information prior to an

actual cut action. You can try this by editing a copy of Listing 15-33, changing the

elementObject.onBeforeCut

(c) ketabton.com: The Digital Library

CD-222 Part VI ✦ Appendixes

onBeforeCopy event handler to onBeforeCut. Notice that in its original form, the

example does not activate the Cut item in either the context or Edit menu when you

select some text in the second paragraph. But by assigning a function to the

onBeforeCut event handler, the menu item is active, and the entire paragraph is

selected from the function that is invoked.

onBeforeDeactivate
See onActivate.

onBeforeEditFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator to explore the onBeforeEditFocus in IE5.5+. In the following

sequence, you assign an anonymous function to the onBeforeEditFocus event

handler of the myP element. The function turns the text color of the element to red

when the event handler fires:

myP.onbeforeeditfocus = new Function(“myP.style.color=’red’”)

Now turn on content editing for the myP element:

myP.contentEditable = true

If you now click inside the myP element on the page to edit its content, the text

turns to red before you begin editing. In a page scripted for this kind of user inter-

face, you would include some control that turns off editing and changes the color to

normal.

If you wish to learn more about HTML content editing via the DHTML Editing

ActiveX control, visit http://msdn.microsoft.com/workshop/browser/
mshtml/.

elementObject.onBeforeEditFocus

(c) ketabton.com: The Digital Library

CD-223Appendix F ✦ Examples from Parts III and IV

onBeforePaste

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-45 for the onPaste event handler (later in this chapter) to see how

the onBeforePaste and onPaste event handlers work together.

onBlur

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
More often than not, a page author uses the onBlur event handler to exert extreme

control over the user, such as preventing a user from exiting out of a text box

unless that user types something into the box. This is not a Web-friendly practice,

and it is one that I discourage because there are intelligent ways to ensure a field

has something typed into it before a form is submitted (see Chapter 43). Listing

15-34 simply demonstrates the impact of the TABINDEX attribute in an IE5/Windows

element with respect to the onBlur and onFocus events. Notice that as you press

the Tab key, only the second paragraph issues the events even though all three

paragraphs have event handlers assigned to them.

Listing 15-34: onBlur and onFocus Event Handlers

<HTML>
<HEAD>
<TITLE>onBlur and onBlur Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showBlur() {

var id = event.srcElement.id
alert(“Element \”” + id + “\” has blurred.”)

Continued

elementObject.onBlur

(c) ketabton.com: The Digital Library

CD-224 Part VI ✦ Appendixes

Listing 15-34 (continued)

}
function showFocus() {

var id = event.srcElement.id
alert(“Element \”” + id + “\” has received focus.”)

}
</SCRIPT>
</HEAD>
<BODY>
<H1 ID=”H1” TABINDEX=2>onBlur and onBlur Event Handlers</H1>
<HR>
<P ID=”P1” onBlur=”showBlur()” onFocus=”showFocus()”>Lorem ipsum
dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.</P>

<P ID=”P2” TABINDEX=1 onBlur=”showBlur()” onFocus=”showFocus()”>Bis
nostrud exercitation ullam mmodo consequet. Duis aute involuptate
velit esse cillum dolore eu fugiat nulla pariatur. At vver eos et
accusam dignissum qui blandit est praesent luptatum delenit
aigueexcepteur sint occae.</P>

<P ID=”P3” onBlur=”showBlur()” onFocus=”showFocus()”>Unte af phen
neigepheings atoot Prexs eis phat eit sakem eit vory gast te Plok
peish ba useing phen roxas. Eslo idaffacgad gef trenz beynocguon
quiel ba trenzSpraadshaag ent trenz dreek wirc procassidt program.</P>

</BODY>
</HTML>

onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The onClick event handler is one of the simplest to grasp and use. Listing 15-35

demonstrates its interaction with the onDblClick event handler and shows you

how to prevent a link’s intrinsic action from activating when combined with click
events. As you click and/or double-click the link, the status bar displays a message

elementObject.onClick

(c) ketabton.com: The Digital Library

CD-225Appendix F ✦ Examples from Parts III and IV

associated with each event. Notice that if you double-click, the click event fires

first with the first message immediately replaced by the second. For demonstration

purposes, I show both backward-compatible ways of cancelling the link’s intrinsic

action. In practice, decide on one style and stick with it.

Listing 15-35: Using onClick and onDblClick Event Handlers

<HTML>
<HEAD>
<TITLE>onClick and onDblClick Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var msg = “”
function showClick() {

msg = “The element has been clicked. “
status = msg

}
function showDblClick() {

msg = “The element has been double-clicked.”
status = msg
return false

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onClick and onDblClick Event Handlers</H1>
<HR>
<A HREF=”#” onClick=”showClick();return false”
onDblClick=”return showDblClick()”>
A sample link.
</BODY>
</HTML>

onContextMenu

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-30 earlier in this chapter for an example of using the onContextMenu
event handler with a custom context menu.

elementObject.onContextMenu

(c) ketabton.com: The Digital Library

CD-226 Part VI ✦ Appendixes

onCopy
onCut

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-36 shows both the onBeforeCut and onCut event handlers in action (as

well as onBeforePaste and onPaste). Notice how the handleCut() function not

only stuffs the selected word into the clipboardData object, but it also erases the

selected text from the table cell element from where it came. If you replace the

onBeforeCut and onCut event handlers with onBeforeCopy and onCopy (and

change handleCut() to not eliminate the inner text of the event source element),

the operation works with copy and paste instead of cut and paste. I demonstrate

this later in the chapter in Listing 15-45.

Listing 15-36: Cutting and Pasting under Script Control

<HTML>
<HEAD>
<TITLE>onBeforeCut and onCut Event Handlers</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectWhole() {

var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false

}
function handleCut() {

var rng = document.selection.createRange()
clipboardData.setData(“Text”,rng.text)
var elem = event.srcElement
elem.innerText = “”
event.returnValue = false

}

elementObject.onCopy

(c) ketabton.com: The Digital Library

CD-227Appendix F ✦ Examples from Parts III and IV

function handlePaste() {
var elem = window.event.srcElement
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”)
}
event.returnValue = false

}
function handleBeforePaste() {

var elem = window.event.srcElement
if (elem.className == “blanks”) {

event.returnValue = false
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onBeforeCut and onCut Event Handlers</H1>
<HR>
<P>Your goal is to cut and paste one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
use the Edit or context menu to cut it from the table.
Select one or more spaces of the blanks in the
sentence and choose Paste to replace the blank with
the clipboard contents.</P>

<TABLE CELLPADDING=5 onBeforeCut=”selectWhole()” onCut=”handleCut()” >
<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>
<TR><TD>truck</TD><TD>round</TD></TR>
<TR><TD>doll</TD><TD>red</TD></TR>
<TR><TD>ball</TD><TD>pretty</TD></TR>
</TABLE>

<P ID=”myP” onBeforePaste=”handleBeforePaste()” onPaste=”handlePaste()”>
Pat said, “Oh my, the

is so
 !”</P>

<BUTTON onClick=”location.reload()”>Reset</BUTTON>
</BODY>
</HTML>

elementObject.onCopy

(c) ketabton.com: The Digital Library

CD-228 Part VI ✦ Appendixes

onDblClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
See Listing 15-35 (for the onClick event handler) to see the onDblClick event in

action.

onDrag

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-37 shows several drag-related event handlers in action. The page resem-

bles the example in Listing 15-36, but the scripting behind the page is quite differ-

ent. In this example, the user is encouraged to select individual words from the

Nouns and Adjectives columns and drag them to the blanks of the sentence. To beef

up the demonstration, Listing 15-37 shows you how to pass the equivalent of array

data from a drag source to a drag target. At the same time, the user has a fixed

amount of time (two seconds) to complete each drag operation.

The onDragStart and onDrag event handlers are placed in the <BODY> tag because

those events bubble up from any element that the user tries to drag. The scripts

invoked by these event handlers filter the events so that the desired action is trig-

gered only by the “hot” elements inside the table. This approach to event handlers

prevents you from having to duplicate event handlers (or IE <SCRIPT FOR=> tags)

for each table cell.

The onDragStart event handler invokes setupDrag(). This function cancels the

onDragStart event except when the target element (in other words, the one about

to be dragged) is one of the TD elements inside the table. To make this application

smarter about what kind of word is dragged to which blank, it passes not only the

word’s text, but also some extra information about the word. This lets another

event handler verify that a noun has been dragged to the first blank, while an adjec-

tive has been dragged to the second blank. To help with this effort, class names are

elementObject.onDrag

(c) ketabton.com: The Digital Library

CD-229Appendix F ✦ Examples from Parts III and IV

assigned to the TD elements to distinguish the words from the Nouns column from

the words of the Adjectives column. The setupDrag() function generates an array

consisting of the innerText of the event’s source element plus the element’s class

name. But the event.dataTransfer object cannot store array data types, so the

Array.join() method converts the array to a string with a colon separating the

entries. This string, then, is stuffed into the event.dataTransfer object. The

object is instructed to render the cursor display during the drag-and-drop opera-

tion so that when the cursor is atop a drop target, the cursor is the “copy” style.

Finally, the setupDrag() function is the first to execute in the drag operation, so a

timer is set to the current clock time to time the drag operation.

The onDrag event handler (in the BODY) captures the onDrag events that are gen-

erated by whichever table cell element is the source element for the action. Each

time the event fires (which is a lot during the action), the timeIt() function is

invoked to compare the current time against the reference time (global timer) set

when the drag starts. If the time exceeds two seconds (2,000 milliseconds), an alert

dialog box notifies the user. To close the alert dialog box, the user must unclick the

mouse button to end the drag operation.

To turn the blank SPAN elements into drop targets, their onDragEnter,

onDragOver, and onDrop event handlers must set event.returnValue to false;

also, the event.dataTransfer.dropEffect property should be set to the desired

effect (copy in this case). These event handlers are placed in the P element that

contains the two SPAN elements, again for simplicity. Notice, however, that the

cancelDefault() functions do their work only if the target element is one of the

SPAN elements whose ID begins with “blank.”

As the user releases the mouse button, the onDrop event handler invokes the

handleDrop() function. This function retrieves the string data from

event.dataTransfer and restores it to an array data type (using the

String.split() method). A little bit of testing makes sure that the word type

(“noun” or “adjective”) is associated with the desired blank. If so, the source ele-

ment’s text is set to the drop target’s innerText property; otherwise, an error mes-

sage is assembled to help the user know what went wrong.

Listing 15-37: Using Drag-Related Event Handlers

<HTML>
<HEAD>
<TITLE>Dragging Event Handlers</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLE>

Continued

elementObject.onDrag

(c) ketabton.com: The Digital Library

CD-230 Part VI ✦ Appendixes

Listing 15-37 (continued)

<SCRIPT LANGUAGE=”JavaScript”>
var timer
function setupDrag() {

if (event.srcElement.tagName != “TD”) {
// don’t allow dragging for any other elements
event.returnValue = false

} else {
// setup array of data to be passed to drop target
var passedData = [event.srcElement.innerText,

event.srcElement.className]
// store it as a string
event.dataTransfer.setData(“Text”, passedData.join(“:”))
event.dataTransfer.effectAllowed = “copy”
timer = new Date()

}
}
function timeIt() {

if (event.srcElement.tagName == “TD” && timer) {
if ((new Date()) - timer > 2000) {

alert(“Sorry, time is up. Try again.”)
timer = 0

}
}

}
function handleDrop() {

var elem = event.srcElement
var passedData = event.dataTransfer.getData(“Text”)
var errMsg = “”
if (passedData) {

// reconvert passed string to an array
passedData = passedData.split(“:”)
if (elem.id == “blank1”) {

if (passedData[1] == “noun”) {
event.dataTransfer.dropEffect = “copy”
event.srcElement.innerText = passedData[0]

} else {
errMsg = “You can’t put an adjective into the noun placeholder.”

}
} else if (elem.id == “blank2”) {

if (passedData[1] == “adjective”) {
event.dataTransfer.dropEffect = “copy”
event.srcElement.innerText = passedData[0]

} else {
errMsg = “You can’t put a noun into the adjective placeholder.”

}
}

elementObject.onDrag

(c) ketabton.com: The Digital Library

CD-231Appendix F ✦ Examples from Parts III and IV

if (errMsg) {
alert(errMsg)

}
}

}
function cancelDefault() {

if (event.srcElement.id.indexOf(“blank”) == 0) {
event.dataTransfer.dropEffect = “copy”
event.returnValue = false

}
}
</SCRIPT>
</HEAD>
<BODY onDragStart=”setupDrag()” onDrag=”timeIt()”>
<H1>Dragging Event Handlers</H1>
<HR>
<P>Your goal is to drag one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
drag it to the desired blank. When you release the
mouse, the word will appear in the blank. You have
two seconds to complete each blank.</P>

<TABLE CELLPADDING=5>
<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>
<TR><TD class=”noun”>truck</TD><TD class=”adjective”>round</TD></TR>
<TR><TD class=”noun”>doll</TD><TD class=”adjective”>red</TD></TR>
<TR><TD class=”noun”>ball</TD><TD class=”adjective”>pretty</TD></TR>
</TABLE>

<P ID=”myP” onDragEnter=”cancelDefault()” onDragOver=”cancelDefault()”
onDrop=”handleDrop()”>
Pat said, “Oh my, the

is so
 !”</P>

<BUTTON onClick=”location.reload()”>Reset</BUTTON>
</BODY>
</HTML>

One event handler not shown in Listing 15-37 is onDragEnd. You can use this event

to display the elapsed time for each successful drag operation. Because the event

fires on the drag source element, you can implement it in the <BODY> tag and filter

events similar to the way the onDragStart or onDrag event handlers filter events

for the TD element.

elementObject.onDrag

(c) ketabton.com: The Digital Library

CD-232 Part VI ✦ Appendixes

onDragEnter
onDragLeave

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-38 shows the onDragEnter and onDragLeave event handlers in use. The

simple page displays (via the status bar) the time of entry to one element of the

page. When the dragged cursor leaves the element, the onDragLeave event handler

hides the status bar message. No drop target is defined for this page, so when you

drag the item, the cursor remains as the “no drop” cursor.

Listing 15-38: Using onDragEnter and onDragLeave Event
Handlers

<HTML>
<HEAD>
<TITLE>onDragEnter and onDragLeave Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showEnter() {

status = “Entered at: “ + new Date()
event.returnValue = false

}
function clearMsg() {

status = “”
event.returnValue = false

}
</SCRIPT>
</HEAD>
<BODY>
<H1 onDragEnter=”showEnter()” onDragLeave=”clearMsg()”>
onDragEnter and onDragLeave Event Handlers
</H1>
<HR>
<P>Select any character(s) from this paragraph,
and slowly drag it around the page. When the dragging action enters the
large header above, the status bar displays when the onDragEnter
event handler fires. When you leave the header, the message is cleared

elementObject.onDragEnter

(c) ketabton.com: The Digital Library

CD-233Appendix F ✦ Examples from Parts III and IV

via the onDragLeave event handler.</P>
</BODY>
</HTML>

onDragOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-37 of the onDrag event handler to see how the onDragOver event

handler contributes to making an element a drop target.

onDragStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 15-37 of the onDrag event handler to see how to apply the onDragStart
event handler in a typical drag-and-drop scenario.

onDrop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-37 of the onDrag event handler to see how to apply the onDrop event

handler in a typical drag-and-drop scenario.

elementObject.onDrop

(c) ketabton.com: The Digital Library

CD-234 Part VI ✦ Appendixes

onFilterChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-39 demonstrates how the onFilterChange event handler can trigger a

second transition effect after another one completes. The onLoad event handler

triggers the first effect. Although the onFilterChange event handler works with

most of the same objects in IE4 as IE5, the filter object transition properties are not

reflected in a convenient form. The syntax shown in Listing 15-39 uses the new

ActiveX filter control found in IE5.5 (described in Chapter 30).

Listing 15-39: Using the onFilterChange Event Handler

<HTML>
<HEAD>
<TITLE>onFilterChange Event Handler</TITLE>
<SCRIPT LANGUAGE=JavaScript>
function init() {

image1.filters[0].apply()
image2.filters[0].apply()
start()

}

function start() {
image1.style.visibility = “hidden”
image1.filters[0].play()

}

function finish() {
// verify that first transition is done (optional)
if (image1.filters[0].status == 0) {

image2.style.visibility = “visible”
image2.filters[0].play()

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>onFilterChange Event Handler</H1>
<HR>
<P>The completion of the first transition (“circle-in”)

elementObject.onFilterChange

(c) ketabton.com: The Digital Library

CD-235Appendix F ✦ Examples from Parts III and IV

triggers the second (“circle-out”).
<BUTTON onClick=”location.reload()”>Play It Again</BUTTON></P>
<DIV ID=”image1” STYLE=”visibility:visible;

position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’in’)”
onFilterChange=”finish()”><IMG SRC=”desk1.gif” HEIGHT=90
WIDTH=120></DIV>

<DIV ID=”image2” STYLE=”visibility:hidden;
position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’out’)”>
</DIV>

</BODY>
</HTML>

onFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 15-34 earlier in this chapter for an example of the onFocus and onBlur
event handlers.

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-40 is a rudimentary example of a context-sensitive help system that dis-

plays help messages tailored to the kind of text input required by different text

fields. When the user gives focus to either of the text fields, a small legend appears

to remind the user that help is available by a press of the F1 help key. IE5/Mac pro-

vides only generic help.

elementObject.onHelp

(c) ketabton.com: The Digital Library

CD-236 Part VI ✦ Appendixes

Listing 15-40: Creating Context-Sensitive Help

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function showNameHelp() {

alert(“Enter your first and last names.”)
event.cancelBubble = true
return false

}
function showYOBHelp() {

alert(“Enter the four-digit year of your birth. For example: 1972”)
event.cancelBubble = true
return false

}
function showGenericHelp() {

alert(“All fields are required.”)
event.cancelBubble = true
return false

}
function showLegend() {

document.all.legend.style.visibility = “visible”
}
function hideLegend() {

document.all.legend.style.visibility = “hidden”
}
function init() {

var msg = “”
if (navigator.userAgent.indexOf(“Mac”) != -1) {

msg = “Press \’help\’ key for help.”
} else if (navigator.userAgent.indexOf(“Win”) != -1) {

msg = “Press F1 for help.”
}
document.all.legend.style.visibility = “hidden”
document.all.legend.innerHTML = msg

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()” onHelp=”return showGenericHelp()”>
<H1>onHelp Event Handler</H1>
<HR>
<P ID=”legend” STYLE=”visibility:hidden; font-size:10px”> </P>
<FORM>
Name: <INPUT TYPE=”text” NAME=”name” SIZE=30

onFocus=”showLegend()” onBlur=”hideLegend()”
onHelp=”return showNameHelp()”>

Year of Birth: <INPUT TYPE=”text” NAME=”YOB” SIZE=30

onFocus=”showLegend()” onBlur=”hideLegend()”

elementObject.onHelp

(c) ketabton.com: The Digital Library

CD-237Appendix F ✦ Examples from Parts III and IV

onHelp=”return showYOBHelp()”>
</FORM>
</BODY>
</HTML>

onKeyDown
onKeyPress
onKeyUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 15-41 is a working laboratory that you can use to better understand the way

keyboard event codes and modifier keys work in IE5+ and NN6. The actual code of

the listing is less important than watching the page while you use it. For every key

or key combination that you press, the page shows the keyCode value for the

onKeyDown, onKeyPress, and onKeyUp events. If you hold down one or more modi-

fier keys while performing the key press, the modifier key name is highlighted for

each of the three events. Note that when run in NN6, the keyCode value is not the

character code (which doesn’t show up in this example for NN6). Also, you may

need to click the NN6 page for the document object to recognize the keyboard

events.

The best way to watch what goes on during keyboard events is to press and hold a

key to see the key codes for the onKeyDown and onKeyPress events. Then release

the key to see the code for the onKeyUp event. Notice, for instance, that if you press

the A key without any modifier key, the onKeyDown event key code is 65 (A) but the

onKeyPress key code in IE (and the charCode property in NN6 if it were displayed

here) is 97 (a). If you then repeat the exercise but hold the Shift key down, all three

events generate the 65 (A) key code (and the Shift modifier labels are highlighted).

Releasing the Shift key causes the onKeyUp event to show the key code for the

Shift key.

In another experiment, press any of the four arrow keys. No key code is passed for

the onKeyPress event because those keys don’t generate those events. They do,

however, generate onKeyDown and onKeyUp events.

elementObject.onKeyDown

(c) ketabton.com: The Digital Library

CD-238 Part VI ✦ Appendixes

Listing 15-41: Keyboard Event Handler Laboratory

<HTML>
<HEAD>
<TITLE>Keyboard Event Handler Lab</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

document.onkeydown = showKeyDown
document.onkeyup = showKeyUp
document.onkeypress = showKeyPress

}

function showKeyDown(evt) {
evt = (evt) ? evt : window.event
document.getElementById(“pressKeyCode”).innerHTML = 0
document.getElementById(“upKeyCode”).innerHTML = 0
document.getElementById(“pressCharCode”).innerHTML = 0
document.getElementById(“upCharCode”).innerHTML = 0
restoreModifiers(“”)
restoreModifiers(“Down”)
restoreModifiers(“Up”)
document.getElementById(“downKeyCode”).innerHTML = evt.keyCode
if (evt.charCode) {

document.getElementById(“downCharCode”).innerHTML = evt.charCode
}
showModifiers(“Down”, evt)

}
function showKeyUp(evt) {

evt = (evt) ? evt : window.event
document.getElementById(“upKeyCode”).innerHTML = evt.keyCode
if (evt.charCode) {

document.getElementById(“upCharCode”).innerHTML = evt.charCode
}
showModifiers(“Up”, evt)
return false

}
function showKeyPress(evt) {

evt = (evt) ? evt : window.event
document.getElementById(“pressKeyCode”).innerHTML = evt.keyCode
if (evt.charCode) {

document.getElementById(“pressCharCode”).innerHTML = evt.charCode
}
showModifiers(“”, evt)
return false

}

elementObject.onKeyDown

(c) ketabton.com: The Digital Library

CD-239Appendix F ✦ Examples from Parts III and IV

function showModifiers(ext, evt) {
restoreModifiers(ext)
if (evt.shiftKey) {

document.getElementById(“shift” + ext).style.backgroundColor = “#ff0000”
}
if (evt.ctrlKey) {

document.getElementById(“ctrl” + ext).style.backgroundColor = “#00ff00”
}
if (evt.altKey) {

document.getElementById(“alt” + ext).style.backgroundColor = “#0000ff”
}

}
function restoreModifiers(ext) {

document.getElementById(“shift” + ext).style.backgroundColor = “#ffffff”
document.getElementById(“ctrl” + ext).style.backgroundColor = “#ffffff”
document.getElementById(“alt” + ext).style.backgroundColor = “#ffffff”

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>Keyboard Event Handler Lab</H1>
<HR>
<FORM>
<TABLE BORDER=2 CELLPADDING=2>
<TR><TH></TH><TH>onKeyDown</TH><TH>onKeyPress</TH><TH>onKeyUp</TH></TR>
<TR><TH>Key Codes</TH>

<TD ID=”downKeyCode”>0</TD>
<TD ID=”pressKeyCode”>0</TD>
<TD ID=”upKeyCode”>0</TD>

</TR>
<TR><TH>Char Codes (IE5/Mac; NN6)</TH>

<TD ID=”downCharCode”>0</TD>
<TD ID=”pressCharCode”>0</TD>
<TD ID=”upCharCode”>0</TD>

</TR>
<TR><TH ROWSPAN=3>Modifier Keys</TH>

<TD>Shift</TD>
<TD>Shift</TD>
<TD>Shift</TD>

</TR>
<TR>

<TD>Ctrl</TD>
<TD>Ctrl</TD>
<TD>Ctrl</TD>

</TR>
<TR>

<TD>Alt</TD>
<TD>Alt</TD>
<TD>Alt</TD>

Continued

elementObject.onKeyDown

(c) ketabton.com: The Digital Library

CD-240 Part VI ✦ Appendixes

Listing 15-41 (continued)

</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Spend some time with this lab, and try all kinds of keys and key combinations until

you understand the way the events and key codes work.

onLoseCapture

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-30 earlier in this chapter for an example of how to use onLoseCapture
with an event-capturing scenario for displaying a context menu. The onLoseCapture
event handler hides the context menu when the user performs any action that causes

the menu to lose mouse capture.

onMouseDown
onMouseUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
To demonstrate a likely scenario of changing button images in response to rolling

atop an image, pressing down on it, releasing the mouse button, and rolling away

from the image, Listing 15-42 presents a pair of small navigation buttons (left- and

right-arrow buttons). Because the image object is not part of the document object

model for NN2 or IE3 (which reports itself as Navigator version 2), the page is

designed to accept all browsers. Only those browsers that support precached

elementObject.onMouseDown

(c) ketabton.com: The Digital Library

CD-241Appendix F ✦ Examples from Parts III and IV

images and image swapping (and thus pass the test for the presence of the

document.images array) can execute those statements. For a browser with an

image object, images are preloaded into the browser cache as the page loads so

that response to the user is instantaneous the first time the user calls upon new

versions of the images.

Listing 15-42: Using onMouseDown and onMouseUp Event
Handlers

<HTML>
<HEAD>
<TITLE>onMouseDown and onMouseUp Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
if (document.images) {

var RightNormImg = new Image(16,16)
var RightUpImg = new Image(16,16)
var RightDownImg = new Image(16,16)
var LeftNormImg = new Image(16,16)
var LeftUpImg = new Image(16,16)
var LeftDownImg = new Image(16,16)

RightNormImg.src = “RightNorm.gif”
RightUpImg.src = “RightUp.gif”
RightDownImg.src = “RightDown.gif”
LeftNormImg.src = “LeftNorm.gif”
LeftUpImg.src = “LeftUp.gif”
LeftDownImg.src = “LeftDown.gif”

}
function setImage(imgName, type) {

if (document.images) {
var imgFile = eval(imgName + type + “Img.src”)
document.images[imgName].src = imgFile
return false

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseDown and onMouseUp Event Handlers</H1>
<HR>
<P>Roll atop and click on the buttons to see how the link event handlers swap
images:</P>
<CENTER>
<A HREF=”javascript:void(0)”

onMouseOver=”return setImage(‘Left’,’Up’)”
onMouseDown=”return setImage(‘Left’,’Down’)”

Continued

elementObject.onMouseDown

(c) ketabton.com: The Digital Library

CD-242 Part VI ✦ Appendixes

Listing 15-42 (continued)

onMouseUp=”return setImage(‘Left’,’Up’)”
onMouseOut=”return setImage(‘Left’,’Norm’)”

>

<A HREF=”javascript:void(0)”

onMouseOver=”return setImage(‘Right’,’Up’)”
onMouseDown=”return setImage(‘Right’,’Down’)”
onMouseUp=”return setImage(‘Right’,’Up’)”
onMouseOut=”return setImage(‘Right’,’Norm’)”

>

</CENTER>
</BODY>
</HTML>

IE4+ and NN6+ simplify the implementation of this kind of three-state image button

by allowing you to assign the event handlers directly to IMG element objects.

Wrapping images inside links is a backward compatibility approach that allows older

browsers to respond to clicks on images for navigation or other scripting tasks.

onMouseEnter
onMouseLeave

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can modify Listing 15-43 with the IE5.5 syntax by substituting onMouseEnter
for onMouseOver and onMouseLeave for onMouseOut. The effect is the same.

onMouseMove

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � �

elementObject.onMouseMove

(c) ketabton.com: The Digital Library

CD-243Appendix F ✦ Examples from Parts III and IV

Example
Listing 15-43 is a simplified example of dragging elements in IE4+. (See Chapter 31

for more dragging examples.) Three images are individually positioned on the page.

Most of the scripting code concerns itself with the geography of click locations, the

stacking order of the images, and the management of the onMouseMove event han-

dler so that it is active only when an item is dragged.

Scripts assign the onMouseDown and onMouseUp event handlers to the document
object, invoking the engage() and release() functions, respectively. When a user

mouses down anywhere in the document, the engage() function starts by invoking

setSelectedObj(). This function examines the target of the mouseDown event. If it

is one of the map images, the selectedObj global variable is set to the image
object and the element is brought to the front of the stacking order of images (any

previously stacked image is returned to its normal position in the stack).

MouseDown events on any other element simply make sure that the selectedObj
variable is null. The presence of a value assigned to selectedObj serves as a kind

of switch for other functions: When the variable contains a value, it means that the

user is doing something associated with dragging an element.

Back at the engage() function — provided the user mouses down on one of the drag-

gable images — the onMouseMove event handler is assigned to the document object,

setting it to invoke the dragIt() function. For the sake of users, the offset of the

mouse down event from the top-left corner of the image is preserved in the offsetX
and offsetY variables (minus any scrolling that the body is subject to at that instant).

These offset values are necessary to let the scripts set the location of the image during

dragging (the location is set for the top-left corner of the image) while keeping the cur-

sor in the same location within the image as when the user first presses the mouse.

As the user drags the image, the onMouseDown event handler fires repeatedly, allow-

ing the dragIt() function to continually update the location of the element relative

to the current cursor position (the event.clientX and event.clientY properties).

The global offset variables are subtracted from the cursor position to preserve the

relation of the image’s top-left corner to the initial cursor position at mouse down.

Upon the user releasing the mouse button, the release() function turns off the

onMouseMove event handler (setting it to null). This prevents the event from being

processed at all during normal usage of the page. The selectedObj global variable

is also set to null, turning off the “switch” that indicates dragging is in session.

Listing 15-43: Dragging Elements with onMouseMove

<HTML>
<HEAD><TITLE>onMouseMove Event Handler</TITLE>

Continued

elementObject.onMouseMove

(c) ketabton.com: The Digital Library

CD-244 Part VI ✦ Appendixes

Listing 15-43 (continued)

<STYLE TYPE=”text/css”>
#camap {position:absolute; left:20; top:120}
#ormap {position:absolute; left:80; top:120}
#wamap {position:absolute; left:140; top:120}

</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global variables used while dragging
var offsetX = 0
var offsetY = 0
var selectedObj
var frontObj

// set document-level event handlers
document.onmousedown = engage
document.onmouseup = release

// positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

obj.style.pixelLeft = x
obj.style.pixelTop = y

}

// setting the z-order of an object
function bringToFront(obj) {

if (frontObj) {
frontObj.style.zIndex = 0

}
frontObj = obj
frontObj.style.zIndex = 1

}

// set global var to a reference to dragged element
function setSelectedObj() {

var imgObj = window.event.srcElement
if (imgObj.id.indexOf(“map”) == 2) {

selectedObj = imgObj
bringToFront(selectedObj)
return

}
selectedObj = null
return

}

// do the dragging (called repeatedly by onMouseMove)
function dragIt() {

if (selectedObj) {

elementObject.onMouseMove

(c) ketabton.com: The Digital Library

CD-245Appendix F ✦ Examples from Parts III and IV

shiftTo(selectedObj, (event.clientX - offsetX), (event.clientY -
offsetY))

return false
}

}

// set global vars and turn on mousemove trapping (called by onMouseDown)
function engage() {

setSelectedObj()
if (selectedObj) {

document.onmousemove = dragIt
offsetX = window.event.offsetX - document.body.scrollLeft
offsetY = window.event.offsetY - document.body.scrollTop

}
}

// restore everything as before (called by onMouseUp)
function release() {

if (selectedObj) {
document.onmousemove = null
selectedObj = null

}
}

</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseMove Event Handler</H1>
<HR>
Click and drag the images:

</SCRIPT>
</BODY>
</HTML>

onMouseOut
onMouseOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

elementObject.onMouseOut

(c) ketabton.com: The Digital Library

CD-246 Part VI ✦ Appendixes

Example
Listing 15-44 uses the U.S. Pledge of Allegiance with four links to demonstrate how

to use the onMouseOver and onMouseOut event handlers. Notice that for each link,

the handler runs a general-purpose function that sets the window’s status message.

The function returns a true value, which the event handler call evaluates to repli-

cate the required return true statement needed for setting the status bar. In one

status message, I supply a URL in parentheses to let you evaluate how helpful you

think it is for users.

Listing 15-44: Using onMouseOver and onMouseOut Event
Handlers

<HTML>
<HEAD>
<TITLE>onMouseOver and onMouseOut Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setStatus(msg) {

status = msg
return true

}
// destination of all link HREFs
function emulate() {

alert(“Not going there in this demo.”)
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseOver and onMouseOut Event Handlers
</H1>
<HR>
<H1>Pledge of Allegiance</H1>
<HR>
I pledge <A HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘View
dictionary definition’)” onMouseOut=”return setStatus(‘’)”>allegiance to the
<A HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘Learn about the
U.S. flag (http://lcweb.loc.gov)’)” onMouseOut=”return setStatus(‘’)”>flag
of the <A HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘View info
about the U.S. government’)” onMouseOut=”return setStatus(‘’)”>United States of
America, and to the Republic for which it stands, one nation <A
HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘Read about the
history of this phrase in the Pledge’)” onMouseOut=”return setStatus(‘’)”>under
God, indivisible, with liberty and justice for all.
</BODY>
</HTML>

elementObject.onMouseOut

(c) ketabton.com: The Digital Library

CD-247Appendix F ✦ Examples from Parts III and IV

onPaste

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-45 demonstrates how to use the onBeforePaste and onPaste event han-

dlers (in conjunction with onBeforeCopy and onCopy) to let scripts control the

data transfer process during a copy-and-paste user operation. A table contains

words to be copied (one column of nouns, one column of adjectives) and then

pasted into blanks in a paragraph. The onBeforeCopy and onCopy event handlers

are assigned to the TABLE element because the events from the TD elements bub-

ble up to the TABLE container and there is less HTML code to contend with.

Inside the paragraph, two SPAN elements contain underscored blanks. To paste text

into the blanks, the user must first select at least one character of the blanks. (See

Listing 15-37, which gives a drag-and-drop version of this application.) The

onBeforePaste event handler in the paragraph (which gets the event as it bubbles

up from either SPAN) sets the event.returnValue property to false, thus allow-

ing the Paste item to appear in the context and Edit menus (not a normal occur-

rence in HTML body content).

At paste time, the innerHTML property of the target SPAN is set to the text data

stored in the clipboard. The event.returnValue property is set to false here, as

well, to prevent normal system pasting from interfering with the controlled version.

Listing 15-45: Using onBeforePaste and onPaste Event
Handlers

<HTML>
<HEAD>
<TITLE>onBeforePaste and onPaste Event Handlers</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

Continued

elementObject.onPaste

(c) ketabton.com: The Digital Library

CD-248 Part VI ✦ Appendixes

Listing 15-45 (continued)

function selectWhole() {
var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false

}
function handleCopy() {

var rng = document.selection.createRange()
clipboardData.setData(“Text”,rng.text)
event.returnValue = false

}
function handlePaste() {

var elem = window.event.srcElement
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”)
}
event.returnValue = false

}
function handleBeforePaste() {

var elem = window.event.srcElement
if (elem.className == “blanks”) {

event.returnValue = false
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onBeforePaste and onPaste Event Handlers</H1>
<HR>
<P>Your goal is to copy and paste one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
copy it to the clipboard. Select one or more spaces
of the blanks in the sentence and choose Paste to
replace the blank with the clipboard contents.</P>

<TABLE CELLPADDING=5 onBeforeCopy=”selectWhole()” onCopy=”handleCopy()” >
<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>
<TR><TD>truck</TD><TD>round</TD></TR>
<TR><TD>doll</TD><TD>red</TD></TR>
<TR><TD>ball</TD><TD>pretty</TD></TR>
</TABLE>

<P ID=”myP” onBeforePaste=”handleBeforePaste()” onPaste=”handlePaste()”>
Pat said, “Oh my, the

elementObject.onPaste

(c) ketabton.com: The Digital Library

CD-249Appendix F ✦ Examples from Parts III and IV

is so
 !”</P>

<BUTTON onClick=”location.reload()”>Reset</BUTTON>
</BODY>
</HTML>

onPropertyChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The page generated by Listing 15-46 contains four radio buttons that alter the

innerHTML and style.color properties of a paragraph. The paragraph’s

onPropertyChange event handler invokes the showChange() function, which

extracts information about the event and displays the data in the status bar of the

window. Notice how the property name includes style. when you modify the style

sheet property.

Listing 15-46: Using the onPropertyChange Property

<HTML>
<HEAD>
<TITLE>onPropertyChange Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function normalText() {

myP.innerText = “This is a sample paragraph.”
}
function shortText() {

myP.innerText = “Short stuff.”
}
function normalColor() {

myP.style.color = “black”
}
function hotColor() {

myP.style.color = “red”
}

Continued

elementObject.onPropertyChange

(c) ketabton.com: The Digital Library

CD-250 Part VI ✦ Appendixes

Listing 15-46 (continued)

function showChange() {
var objID = event.srcElement.id
var propName = event.propertyName
var newValue = eval(objID + “.” + propName)
status = “The “ + propName + “ property of the “ + objID
status += “ object has changed to \”” + newValue + “\”.”

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onPropertyChange Event Handler</H1>
<HR>
<P ID=”myP” onPropertyChange = “showChange()”>This is a sample paragraph.</P>
<FORM>
Text: <INPUT TYPE=”radio” NAME=”btn1” CHECKED onClick=”normalText()”>Normal

<INPUT TYPE=”radio” NAME=”btn1” onClick=”shortText()”>Short

Color: <INPUT TYPE=”radio” NAME=”btn2” CHECKED onClick=”normalColor()”>Black

<INPUT TYPE=”radio” NAME=”btn2” onClick=”hotColor()”>Red
</FORM>
</BODY>
</HTML>

onReadyStateChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can use the onReadyStateChange event handler to assist with a status display

while a long external file, such as a Java applet, loads. For example, you might have

a small image on a page that changes with the state change of an applet. The

<APPLET> tag assigns a function to the onReadyStateChange event handler:

<APPLET ... onReadyStateChange=”showState(this)”>

Then the function changes the image for each state type:

elementObject.onReadyStateChange

(c) ketabton.com: The Digital Library

CD-251Appendix F ✦ Examples from Parts III and IV

function showState(obj) {
var img = document.all.statusImage
switch (obj.readyState) {

case “uninitialized” :
img.src = uninit.src
break

case “loading” :
img.src = loading.src
break

case “complete” :
img.src = ready.src

}
}

The preceding function assumes that the state images are precached as the page

loads.

onResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
If you want to capture the user’s resizing of the browser window (or frame), you

can assign a function to the onResize event handler either via script

window.onresize = handleResize

or by an HTML attribute of the BODY element:

<BODY onResize=”handleResize()”>

onSelectStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.onSelectStart

(c) ketabton.com: The Digital Library

CD-252 Part VI ✦ Appendixes

Example
Use the page from Listing 15-47 to see how the onSelectStart event handler

works when a user selects across multiple elements on a page. As the user begins a

selection anywhere on the page, the ID of the object receiving the event appears in

the status bar. Notice that the event doesn’t fire until you actually make a selection.

When no other element is under the cursor, the BODY element fires the event.

Listing 15-47: Using the onSelectStart Event Handler

<HTML>
<HEAD>
<TITLE>onSelectStart Event Handler</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showObj() {

var objID = event.srcElement.id
status = “Selection started with object: “ + objID

}
</SCRIPT>
</HEAD>
<BODY ID=”myBody” onSelectStart=”showObj()”>
<H1 ID=”myH1”>onSelectStart Event Handler</H1>
<HR ID=”myHR”>
<P ID=”myP”>This is a sample paragraph.</P>
<TABLE BORDER=”1”>
<TR ID=”row1”>

<TH ID=”header1”>Column A</TH>
<TH ID=”header2”>Column B</TH>
<TH ID=”header3”>Column C</TH>

</TR>
<TR ID=”row2”>

<TD ID=”cellA2”>text</TD>
<TD ID=”cellB2”>text</TD>
<TD ID=”cellC2”>text</TD>

</TR>
<TR ID=”row3”>

<TD ID=”cellA3”>text</TD>
<TD ID=”cellB3”>text</TD>
<TD ID=”cellC3”>text</TD>

</TR>
</TABLE>
</BODY>
</HTML>

windowObject.onSelectStart

(c) ketabton.com: The Digital Library

CD-253Appendix F ✦ Examples from Parts III and IV

Chapter 16 Examples
The following sections contain examples from Chapter 16, “Window and Frame

Objects.”

Window Object

Properties
clipboardData

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listings 15-30 and 15-39 to see how the clipboardData object is used with a

variety of edit-related event handlers.

closed

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 16-4, I have created the ultimate cross-platform window opening and clos-

ing sample. It takes into account the lack of the opener property in Navigator 2, the

missing closed property in Navigator 2 and Internet Explorer 3, and it even pro-

vides an ugly but necessary workaround for the inability of Internet Explorer 3 to

gracefully see if a subwindow is still open.

The script begins by initializing a global variable, newWind, which is used to hold

the object reference to the second window. This value needs to be global so that

other functions can reference the window for tasks, such as closing. Another global

windowObject.closed

(c) ketabton.com: The Digital Library

CD-254 Part VI ✦ Appendixes

variable, isIE3, is a Boolean flag that lets the window closing routines know

whether the visitor is using Internet Explorer 3 (see details about the

navigator.appVersion property in Chapter 28).

For this example, the new window contains some HTML code written dynamically

to it, rather than loading an existing HTML file into it. Therefore, the URL parameter

of the window.open() method is left as an empty string. It is vital, however, to

assign a name in the second parameter to accommodate the Internet Explorer 3

workaround for closing the window. After the new window is opened, an opener
property is assigned to the object if one is not already assigned (this property is

needed only for Navigator 2). Next comes a brief delay to allow Internet Explorer

(especially versions 3 and 4) to catch up with opening the window so that content

can be written to it. The delay (using the setTimeout() method described later in

this chapter) invokes the finishNewWindow() function, which uses the global

newWind variable to reference the window for writing. The document.close()
method closes writing to the document — a different kind of close than a window

close.

A separate function, closeWindow(), is responsible for closing the subwindow. To

accommodate Internet Explorer 3, the script appears to create another window

with the same characteristics as the one opened earlier in the script. This is the

trick: If the earlier window exists (with exactly the same parameters and a name

other than an empty string), Internet Explorer does not create a new window even

with the window.open() method executing in plain sight. To the user, nothing

unusual appears on the screen. Only if the user has closed the subwindow do

things look weird for Internet Explorer 3 users. The window.open() method

momentarily creates that subwindow. This subwindow is necessary because a “liv-

ing” window object must be available for the upcoming test of window existence

(Internet Explorer 3 displays a script error if you try to address a missing window,

while NN2+ and IE4+ simply return friendly null values).

As a final test, an if condition looks at two conditions: 1) if the window object has

ever been initialized with a value other than null (in case you click the window

closing button before ever having created the new window) and 2) if the window’s

closed property is null or false. If either condition is true, the close() method

is sent to the second window.

Listing 16-4: Checking Before Closing a Window

<HTML>
<HEAD>
<TITLE>window.closed Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// initialize global var for new window object
// so it can be accessed by all functions on the page

windowObject.closed

(c) ketabton.com: The Digital Library

CD-255Appendix F ✦ Examples from Parts III and IV

var newWind
// set flag to help out with special handling for window closing
var isIE3 = (navigator.appVersion.indexOf(“MSIE 3”) != -1) ? true : false
// make the new window and put some stuff in it
function newWindow() {

newWind = window.open(“”,”subwindow”,”HEIGHT=200,WIDTH=200”)
// take care of Navigator 2
if (newWind.opener == null) {

newWind.opener = window
}
setTimeout(“finishNewWindow()”, 100)

}
function finishNewWindow() {

var output = “”
output += “<HTML><BODY><H1>A Sub-window</H1>”
output += “<FORM><INPUT TYPE=’button’ VALUE=’Close Main Window’”
output +=”onClick=’window.opener.close()’></FORM></BODY></HTML>”
newWind.document.write(output)
newWind.document.close()

}
// close subwindow, including ugly workaround for IE3
function closeWindow() {

if (isIE3) {
// if window is already open, nothing appears to happen
// but if not, the subwindow flashes momentarily (yech!)
newWind = window.open(“”,”subwindow”,”HEIGHT=200,WIDTH=200”)

}
if (newWind && !newWind.closed) {

newWind.close()
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Open Window” onClick=”newWindow()”>

<INPUT TYPE=”button” VALUE=”Close it if Still Open” onClick=”closeWindow()”>
</FORM>
</BODY>
</HTML>

To complete the example of the window opening and closing, notice that the sub-

window is given a button whose onClick event handler closes the main window. In

Navigator 2 and Internet Explorer 3, this occurs without complaint. But in NN3+ and

IE4+, the user is presented with an alert asking to confirm the closure of the main

browser window.

windowObject.closed

(c) ketabton.com: The Digital Library

CD-256 Part VI ✦ Appendixes

defaultStatus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Unless you plan to change the default statusbar text while a user spends time at

your Web page, the best time to set the property is when the document loads. In

Listing 16-5, notice how I also read this property to reset the statusbar in an

onMouseOut event handler. Setting the status property to empty also resets the

statusbar to the defaultStatus setting.

Listing 16-5: Setting the Default Status Message

<HTML>
<HEAD>
<TITLE>window.defaultStatus property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
window.defaultStatus = “Welcome to my Web site.”
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http://www.microsoft.com”
onMouseOver=”window.status = ‘Visit Microsoft\’s Home page.’;return true”
onMouseOut=”window.status = ‘’;return true”>Microsoft<P>
<A HREF=”http://home.netscape.com”
onMouseOver=”window.status = ‘Visit Netscape\’s Home page.’;return true”
onMouseOut=”window.status = window.defaultStatus;return true”>Netscape
</BODY>
</HTML>

If you need to display single or double quotes in the statusbar (as in the second link

in Listing 16-5), use escape characters (\’ and \”) as part of the strings being

assigned to these properties.

windowObject.defaultStatus

(c) ketabton.com: The Digital Library

CD-257Appendix F ✦ Examples from Parts III and IV

dialogArguments

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 16-38 for the window.showModalDialog() method to see how arguments

can be passed to a dialog box and retrieved via the dialogArguments property.

dialogHeight
dialogWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Dialog boxes sometimes provide a button or icon that reveals more details or more

complex settings for advanced users. You can create a function that handles the

toggle between two sizes. The following function assumes that the document in the

dialog box has a button whose label also toggles between “Show Details” and “Hide

Details.” The button’s onClick event handler invokes the function as

toggleDetails(this).

function toggleDetails(btn) {
if (dialogHeight == “200px”) {

dialogHeight = “350px”
btn.value = “Hide Details”

} else {
dialogHeight = “200px”
btn.value = “Show Details”

}
}

In practice, you also have to toggle the display style sheet property of the extra

material between none and block to make sure that the dialog box does not display

scrollbars in the smaller dialog box version.

windowObject.dialogHeight

(c) ketabton.com: The Digital Library

CD-258 Part VI ✦ Appendixes

dialogLeft
dialogTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although usually not a good idea because of the potentially jarring effect on a user,

you can reposition a dialog box window that has been resized by script (or by the

user if you let the dialog box be resizable). The following statements in a dialog box

window document’s script recenters the dialog box window.

dialogLeft = (screen.availWidth/2) - (parseInt(dialogWidth)/2) + “px”
dialogHeight = (screen.availHeight/2) - (parseInt(dialogHeight)/2) + “px”

Note that the parseInt() functions are used to read the numeric portion of the

dialogWidth and dialogHeight properties so that the values can be used for

arithmetic.

directories
locationbar
menubar
personalbar
scrollbars
statusbar
toolbar

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In Listing 16-6, you can experiment with the look of a browser window with any of

the chrome elements turned on and off. To run this script, you must either sign the

scripts or turn on codebase principals (see Chapter 46). Java must also be enabled

to use the signed script statements.

windowObject.directories

(c) ketabton.com: The Digital Library

CD-259Appendix F ✦ Examples from Parts III and IV

As the page loads, it stores the current state of each chrome element. One button

for each chrome element triggers the toggleBar() function. This function inverts

the visible property for the chrome object passed as a parameter to the function.

Finally, the Restore button returns visibility to their original settings. Notice that

the restore() function is also called by the onUnload event handler for the docu-

ment. Also, if you load this example into NN6, non-fatal script errors occur when

the scrollbars are turned on or off.

Listing 16-6: Controlling Window Chrome

<HTML>
<HEAD>
<TITLE>Bars Bars Bars</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original outer dimensions as page loads
var originalLocationbar = window.locationbar.visible
var originalMenubar = window.menubar.visible
var originalPersonalbar = window.personalbar.visible
var originalScrollbars = window.scrollbars.visible
var originalStatusbar = window.statusbar.visible
var originalToolbar = window.toolbar.visible

// generic function to set inner dimensions
function toggleBar(bar) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
bar.visible = !bar.visible
netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)

}
// restore settings
function restore() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
window.locationbar.visible = originalLocationbar
window.menubar.visible = originalMenubar
window.personalbar.visible = originalPersonalbar
window.scrollbars.visible = originalScrollbars
window.statusbar.visible = originalStatusbar
window.toolbar.visible = originalToolbar
netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)

}
</SCRIPT>
</HEAD>
<BODY onUnload=”restore()”>
<FORM>
Toggle Window Bars

<INPUT TYPE=”button” VALUE=”Location Bar”
onClick=”toggleBar(window.locationbar)”>

<INPUT TYPE=”button” VALUE=”Menu Bar” onClick=”toggleBar(window.menubar)”>

Continued

windowObject.directories

(c) ketabton.com: The Digital Library

CD-260 Part VI ✦ Appendixes

Listing 16-6 (continued)

<INPUT TYPE=”button” VALUE=”Personal Bar”
onClick=”toggleBar(window.personalbar)”>

<INPUT TYPE=”button” VALUE=”Scrollbars”
onClick=”toggleBar(window.scrollbars)”>

<INPUT TYPE=”button” VALUE=”Status Bar”
onClick=”toggleBar(window.statusbar)”>

<INPUT TYPE=”button” VALUE=”Tool Bar” onClick=”toggleBar(window.toolbar)”>

<HR>
<INPUT TYPE=”button” VALUE=”Restore Original Settings” onClick=”restore()”>

</FORM>
</BODY>
</HTML>

external

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The first example asks the user if it is okay to add a Web site to the Active Desktop. If

Active Desktop is not enabled, the user is given the choice of enabling it at this point.

external.AddDesktopComponent(“http://www.nytimes.com”,”website”, 200, 100,
400, 400)

In the next example, the user is asked to approve the addition of a URL to the

Favorites list. The user can follow the normal procedure for filing the item in a

folder in the list.

external.AddFavorite(“http://www.dannyg.com/update6.html”,
“JSBible 4 Support Center”)

The final example assumes that a user makes a choice from a SELECT list of items.

The onChange event handler of the SELECT list invokes the following function to

navigate to a fictitious page and locate listings for a chosen sports team on the page.

function locate(list) {
var choice = list.options[list.selectedIndex].value

windowObject.external

(c) ketabton.com: The Digital Library

CD-261Appendix F ✦ Examples from Parts III and IV

external.NavigateAndFind(“http://www.collegesports.net/scores.html”, choice,
“scores”)
}

frames

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listings 16-7 and 16-8 demonstrate how JavaScript treats values of frame references

from objects inside a frame. The same document is loaded into each frame. A script

in that document extracts info about the current frame and the entire frameset.

Figure 16-5 shows the results after loading the HTML document in Listing 16-7.

Listing 16-7: Framesetting Document for Listing 16-8

<HTML>
<HEAD>
<TITLE>window.frames property</TITLE>
</HEAD>
<FRAMESET COLS=”50%,50%”>

<FRAME NAME=”JustAKid1” SRC=”lst16-08.htm”>
<FRAME NAME=”JustAKid2” SRC=”lst16-08.htm”>

</FRAMESET>
</HTML>

A call to determine the number (length) of frames returns 0 from the point of view

of the current frame referenced. That’s because each frame here is a window that

has no nested frames within it. But add the parent property to the reference, and

the scope zooms out to take into account all frames generated by the parent win-

dow’s document.

Listing 16-8: Showing Various Window Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>

Continued

windowObject.frames

(c) ketabton.com: The Digital Library

CD-262 Part VI ✦ Appendixes

Listing 16-8 (continued)

<SCRIPT LANGUAGE=”JavaScript”>
function gatherWindowData() {

var msg = “”
msg += “From the point of view of this frame:
”
msg += “window.frames.length: “ + window.frames.length + “
”
msg += “window.name: “ + window.name + “<P>”
msg += “From the point of view of the framesetting document:
”
msg += “parent.frames.length: “ + parent.frames.length + “
”
msg += “parent.frames[0].name: “ + parent.frames[0].name
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

Figure 16-5: Property readouts from both frames loaded from Listing 16-7

windowObject.frames

(c) ketabton.com: The Digital Library

CD-263Appendix F ✦ Examples from Parts III and IV

The last statement in the example shows how to use the array syntax (brackets) to

refer to a specific frame. All array indexes start with 0 for the first entry. Because

the document asks for the name of the first frame (parent.frames[0]), the

response is JustAKid1 for both frames.

innerHeight
innerWidth
outerHeight
outerWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In Listing 16-9, a number of buttons let you see the results of setting the

innerHeight, innerWidth, outerHeight, and outerWidth properties.

Listing 16-9: Setting Window Height and Width

<HTML>
<HEAD>
<TITLE>Window Sizer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original outer dimensions as page loads
var originalWidth = window.outerWidth
var originalHeight = window.outerHeight
// generic function to set inner dimensions
function setInner(width, height) {

window.innerWidth = width
window.innerHeight = height

}
// generic function to set outer dimensions
function setOuter(width, height) {

window.outerWidth = width
window.outerHeight = height

}

Continued

windowObject.innerHeight

(c) ketabton.com: The Digital Library

CD-264 Part VI ✦ Appendixes

Listing 16-9 (continued)

// restore window to original dimensions
function restore() {

window.outerWidth = originalWidth
window.outerHeight = originalHeight

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Setting Inner Sizes

<INPUT TYPE=”button” VALUE=”600 Pixels Square” onClick=”setInner(600,600)”>

<INPUT TYPE=”button” VALUE=”300 Pixels Square” onClick=”setInner(300,300)”>

<INPUT TYPE=”button” VALUE=”Available Screen Space”
onClick=”setInner(screen.availWidth, screen.availHeight)”>

<HR>
Setting Outer Sizes

<INPUT TYPE=”button” VALUE=”600 Pixels Square” onClick=”setOuter(600,600)”>

<INPUT TYPE=”button” VALUE=”300 Pixels Square” onClick=”setOuter(300,300)”>

<INPUT TYPE=”button” VALUE=”Available Screen Space”
onClick=”setOuter(screen.availWidth, screen.availHeight)”>

<HR>
<INPUT TYPE=”button” VALUE=”Cinch up for Win95” onClick=”setInner(273,304)”>

<INPUT TYPE=”button” VALUE=”Cinch up for Mac” onClick=”setInner(273,304)”>

<INPUT TYPE=”button” VALUE=”Restore Original” onClick=”restore()”>

</FORM>
</BODY>
</HTML>

As the document loads, it saves the current outer dimensions in global variables.

One of the buttons restores the windows to these settings. Two parallel sets of but-

tons set the inner and outer dimensions to the same pixel values so that you can

see the effects on the overall window and document area when a script changes the

various properties.

Because Navigator 4 displays different-looking buttons in different platforms (as

well as other elements), the two buttons contain script instructions to size the win-

dow to best display the window contents. Unfortunately, no measure of the active

area of a document is available, so that the dimension values were determined by

trial and error before being hard-wired into the script.

windowObject.innerHeight

(c) ketabton.com: The Digital Library

CD-265Appendix F ✦ Examples from Parts III and IV

navigator

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
This book is littered with examples of using the navigator object, primarily for

performing browser detection. Examples of specific navigator object properties

can be found in Chapter 28.

offscreenBuffering

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
If you want to turn off buffering for an entire page, include the following statement

at the beginning of your script statements:

window.offscreenBuffering = false

onerror

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 16-10, one button triggers a script that contains an error. I’ve added an error

handling function to process the error so that it opens a separate window and fills in

a textarea form element (see Figure 16-6). If you load Listing 16-10 in NN6, some of

the reporting categories report “undefined” because the browser unfortunately does

not pass error properties to the handleError() function. A Submit button is also

windowObject.onerror

(c) ketabton.com: The Digital Library

CD-266 Part VI ✦ Appendixes

provided to mail the bug information to a support center e-mail address — an exam-

ple of how to handle the occurrence of a bug in your scripts.

Listing 16-10: Controlling Script Errors

<HTML>
<TITLE>Error Dialog Control</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// function with invalid variable value
function goWrong() {

var x = fred
}
// turn off error dialogs
function errOff() {

window.onerror = doNothing
}
// turn on error dialogs with hard reload
function errOn() {

window.onerror = handleError
}

// assign default error handler
window.onerror = handleError

// error handler when errors are turned off...prevents error dialog
function doNothing() {return true}

function handleError(msg, URL, lineNum) {
var errWind = window.open(“”,”errors”,”HEIGHT=270,WIDTH=400”)
var wintxt = “<HTML><BODY BGCOLOR=RED>”
wintxt += “An error has occurred on this page. “
wintxt += “Please report it to Tech Support.”
wintxt += “<FORM METHOD=POST ENCTYPE=’text/plain’ “
wintxt += “ACTION=mailTo:support4@dannyg.com >”
wintxt += “<TEXTAREA NAME=’errMsg’ COLS=45 ROWS=8 WRAP=VIRTUAL>”
wintxt += “Error: “ + msg + “\n”
wintxt += “URL: “ + URL + “\n”
wintxt += “Line: “ + lineNum + “\n”
wintxt += “Client: “ + navigator.userAgent + “\n”
wintxt += “---\n”
wintxt += “Please describe what you were doing when the error occurred:”
wintxt += “</TEXTAREA><P>”
wintxt += “<INPUT TYPE=SUBMIT VALUE=’Send Error Report’>”
wintxt += “<INPUT TYPE=button VALUE=’Close’ onClick=’self.close()’>”
wintxt += “</FORM></BODY></HTML>”
errWind.document.write(wintxt)
errWind.document.close()
return true

}

windowObject.onerror

(c) ketabton.com: The Digital Library

CD-267Appendix F ✦ Examples from Parts III and IV

</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myform”>
<INPUT TYPE=”button” VALUE=”Cause an Error” onClick=”goWrong()”><P>
<INPUT TYPE=”button” VALUE=”Turn Off Error Dialogs” onClick=”errOff()”>
<INPUT TYPE=”button” VALUE=”Turn On Error Dialogs” onClick=”errOn()”>
</FORM>
</BODY>
</HTML>

Figure 16-6: An example of a self-reporting error window

I provide a button that performs a hard reload, which, in turn, resets the

window.onerror property to its default value. With error dialog boxes turned off,

the error handling function does not run.

opener

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � �

Example
To demonstrate the importance of the opener property, take a look at how a new

window can define itself from settings in the main window (Listing 16-11). The

doNew() function generates a small subwindow and loads the file in Listing 16-12

windowObject.opener

(c) ketabton.com: The Digital Library

CD-268 Part VI ✦ Appendixes

into the window. Notice the initial conditional statements in doNew() to make sure

that if the new window already exists, it comes to the front by invoking the new

window’s focus() method. You can see the results in Figure 16-7. Because the

doNew() function in Listing 16-11 uses window methods and properties not avail-

able in IE3, this example does not work correctly in IE3.

Listing 16-11: Contents of a Main Window Document That
Generates a Second Window

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
var myWind
function doNew() {

if (!myWind || myWind.closed) {
myWind = window.open(“lst16-12.htm”,”subWindow”,

“HEIGHT=200,WIDTH=350,resizable”)
} else {

// bring existing subwindow to the front
myWind.focus()

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”input”>
Select a color for a new window:
<INPUT TYPE=”radio” NAME=”color” VALUE=”red” CHECKED>Red
<INPUT TYPE=”radio” NAME=”color” VALUE=”yellow”>Yellow
<INPUT TYPE=”radio” NAME=”color” VALUE=”blue”>Blue
<INPUT TYPE=”button” NAME=”storage” VALUE=”Make a Window” onClick=”doNew()”>
<HR>
This field will be filled from an entry in another window:
<INPUT TYPE=”text” NAME=”entry” SIZE=25>
</FORM>
</BODY>
</HTML>

The window.open() method doesn’t provide parameters for setting the new win-

dow’s background color, so I let the getColor() function in the new window do the

job as the document loads. The function uses the opener property to find out

which radio button on the main page is selected.

windowObject.opener

(c) ketabton.com: The Digital Library

CD-269Appendix F ✦ Examples from Parts III and IV

Listing 16-12: References to the opener Property

<HTML>
<HEAD>
<TITLE>New Window on the Block</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function getColor() {

// shorten the reference
colorButtons = self.opener.document.forms[0].color
// see which radio button is checked
for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[i].value

}
}
return “white”

}
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“<BODY BGCOLOR=’” + getColor() + “‘>”)
</SCRIPT>
<H1>This is a new window.</H1>
<FORM>
<INPUT TYPE=”button” VALUE=”Who’s in the Main window?”
onClick=”alert(self.opener.document.title)”><P>
Type text here for the main window:
<INPUT TYPE=”text” SIZE=25 onChange=”self.opener.document.forms[0].entry.value =
this.value”>
</FORM>
</BODY>
</HTML>

In the getColor() function, the multiple references to the radio button array can

be very long. To simplify the references, the getColor() function starts out by

assigning the radio button array to a variable I arbitrarily call colorButtons. That

shorthand now stands in for lengthy references as I loop through the radio buttons

to determine which button is checked and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s doc-

ument. Even if another document loads in the main window in the meantime, the

opener reference still points to the main window: Its document object, however,

will change.

Finally, the second window contains a text input object. Enter any text there that you

like and either tab or click out of the field. The onChange event handler updates the

field in the opener’s document (provided that document is still loaded).

windowObject.opener

(c) ketabton.com: The Digital Library

CD-270 Part VI ✦ Appendixes

Figure 16-7: The main and subwindows, inextricably linked via the window.opener
property

pageXOffset
pageYOffset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The script in Listing 16-13 is an unusual construction that creates a frameset and

creates the content for each of the two frames all within a single HTML document

(see “Frame Object” later in this chapter for more details). The purpose of this

example is to provide you with a playground to become familiar with the page off-

set concept and how the values of these properties correspond to physical activity

in a scrollable document.

windowObject.pageXOffset

(c) ketabton.com: The Digital Library

CD-271Appendix F ✦ Examples from Parts III and IV

In the left frame of the frameset are two fields that are ready to show the pixel val-

ues of the right frame’s pageXOffset and pageYOffset properties. The content of

the right frame is a 30-row table of fixed width (800 pixels). Mouse click events are

captured by the document level (see Chapter 18), allowing you to click any table or

cell border or outside the table to trigger the showOffsets() function in the right

frame. That function is a simple script that displays the page offset values in their

respective fields in the left frame.

Listing 16-13: Viewing the pageXOffset and pageYOffset
Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function leftFrame() {

var output = “<HTML><BODY><H3>Page Offset Values</H3><HR>\n”
output += “<FORM>PageXOffset:<INPUT TYPE=’text’ NAME=’xOffset’

SIZE=4>
\n”
output += “PageYOffset:<INPUT TYPE=’text’ NAME=’yOffset’ SIZE=4>
\n”
output += “</FORM></BODY></HTML>”
return output

}

function rightFrame() {
var output = “<HTML><HEAD><SCRIPT LANGUAGE=’JavaScript’>\n”
output += “function showOffsets() {\n”
output += “parent.readout.document.forms[0].xOffset.value =

self.pageXOffset\n”
output += “parent.readout.document.forms[0].yOffset.value =

self.pageYOffset\n}\n”
output += “document.captureEvents(Event.CLICK)\n”
output += “document.onclick = showOffsets\n”
output += “<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n”
output += “Scroll this frame and click on a table border to view “ +

“page offset values.
<HR>\n”
output += “<TABLE BORDER=5 WIDTH=800>”
var oneRow = “<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD><TD>Cell 4</TD>” +

“<TD>Cell 5</TD>”
for (var i = 1; i <= 30; i++) {

output += “<TR><TD>Row “ + i + “</TD>” + oneRow + “</TR>”
}
output += “</TABLE></BODY></HTML>”
return output

}
</SCRIPT>
</HEAD>

Continued

windowObject.pageXOffset

(c) ketabton.com: The Digital Library

CD-272 Part VI ✦ Appendixes

Listing 16-13 (continued)

<FRAMESET COLS=”30%,70%”>
<FRAME NAME=”readout” SRC=”javascript:parent.leftFrame()”>
<FRAME NAME=”display” SRC=”javascript:parent.rightFrame()”>

</FRAMESET>
</HTML>

To gain an understanding of how the offset values work, scroll the window slightly

in the horizontal direction and notice that the pageXOffset value increases; the

same goes for the pageYOffset value as you scroll down. Remember that these val-

ues reflect the coordinate in the document that is currently under the top-left cor-

ner of the window (frame) holding the document. You can see an IE4+ version of

this example in Listing 18-20. A cross-browser version would require very little

browser branching.

parent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate how various window object properties refer to window levels in a

multiframe environment, use your browser to load the Listing 16-14 document. It, in

turn, sets each of two equal-size frames to the same document: Listing 16-15. This

document extracts the values of several window properties, plus the

document.title properties of two different window references.

Listing 16-14: Framesetting Document for Listing 16-15

<HTML>
<HEAD>
<TITLE>The Parent Property Example</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
self.name = “Framesetter”
</SCRIPT>

windowObject.parent

(c) ketabton.com: The Digital Library

CD-273Appendix F ✦ Examples from Parts III and IV

</HEAD>
<FRAMESET COLS=”50%,50%” onUnload=”self.name = ‘’”>

<FRAME NAME=”JustAKid1” SRC=”lst16-15.htm”>
<FRAME NAME=”JustAKid2” SRC=”lst16-15.htm”>

</FRAMESET>
</HTML>

Listing 16-15: Revealing Various Window-Related Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function gatherWindowData() {

var msg = “”
msg = msg + “top name: “ + top.name + “
”
msg = msg + “parent name: “ + parent.name + “
”
msg = msg + “parent.document.title: “ + parent.document.title + “<P>”
msg = msg + “window name: “ + window.name + “
”
msg = msg + “self name: “ + self.name + “
”
msg = msg + “self.document.title: “ + self.document.title
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

In the two frames (Figure 16-8), the references to the window and self object

names return the name assigned to the frame by the frameset definition

(JustAKid1 for the left frame, JustAKid2 for the right frame). In other words, from

each frame’s point of view, the window object is its own frame. References to

self.document.title refer only to the document loaded into that window frame.

But references to the top and parent windows (which are one and the same in this

example) show that those object properties are shared between both frames.

windowObject.parent

(c) ketabton.com: The Digital Library

CD-274 Part VI ✦ Appendixes

Figure 16-8: Parent and top properties being shared by both frames.

A couple other fine points are worth highlighting. First, the name of the frameset-

ting window is set as Listing 16-14 loads, rather than in response to an onLoad
event handler in the <FRAMESET> tag. The reason for this is that the name must be

set in time for the documents loading in the frames to get that value. If I had waited

until the frameset’s onLoad event handler, the name wouldn’t be set until after the

frame documents had loaded. Second, I restore the parent window’s name to an

empty string when the framesetting document unloads. This is to prevent future

pages from getting confused about the window name.

returnValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

windowObject.returnValue

(c) ketabton.com: The Digital Library

CD-275Appendix F ✦ Examples from Parts III and IV

Example
See Listing 16-39 for the showModalDialog() method for an example of how to get

data back from a dialog box in IE4+.

screenLeft
screenTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to experiment with the screenLeft and

screenTop properties. Start with the browser window maximized (if you are using

Windows). Enter the following property name into the top text box:

window.screenLeft

Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button

again to see the current value. Do the same for window.screenTop.

screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the screenX and screenY prop-

erties in NN6. Start with the browser window maximized (if you are using

Windows). Enter the following property name into the top text box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button

again to see the current value. Do the same for window.screenY.

windowObject.screenX

(c) ketabton.com: The Digital Library

CD-276 Part VI ✦ Appendixes

scrollX
scrollY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the scrollX and scrollY prop-

erties in NN6. Enter the following property into the top text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button.

Click the button to see how far the window has scrolled along the y-axis.

self

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 16-16 uses the same operations as Listing 16-5 but substitutes the self
property for all window object references. The application of this reference is

entirely optional, but it can be helpful for reading and debugging scripts if the

HTML document is to appear in one frame of a multiframe window — especially if

other JavaScript code in this document refers to documents in other frames. The

self reference helps anyone reading the code know precisely which frame was

being addressed.

Listing 16-16: Using the self Property

<HTML>
<HEAD>
<TITLE>self Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

windowObject.self

(c) ketabton.com: The Digital Library

CD-277Appendix F ✦ Examples from Parts III and IV

self.defaultStatus = “Welcome to my Web site.”
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http:// www.microsoft.com”
onMouseOver=”self.status = ‘Visit Microsoft\’s Home page.’;return true”
onMouseOut=”self.status = ‘’;return true”>Microsoft<P>
<A HREF=”http://home.netscape.com”
onMouseOver=”self.status = ‘Visit Netscape\’s Home page.’;return true”
onMouseOut=”self.status = self.defaultStatus;return true”>Netscape
</BODY>
</HTML>

status

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In Listing 16-17, the status property is set in a handler embedded in the

onMouseOver attribute of two HTML link tags. Notice that the handler requires a

return true statement (or any expression that evaluates to return true) as the

last statement of the handler. This statement is required or the status message will

not display, particularly in early browsers.

Listing 16-17: Links with Custom Statusbar Messages

<HTML>
<HEAD>
<TITLE>window.status Property</TITLE>
</HEAD>
<BODY>
<A HREF=”http://www.dannyg.com” onMouseOver=”window.status = ‘Go to my Home
page. (www.dannyg.com)’; return true”>Home<P>
<A HREF=”http://home.netscape.com” onMouseOver=”window.status = ‘Visit Netscape
Home page. (home.netscape.com)’; return true”>Netscape
</BODY>
</HTML>

windowObject.status

(c) ketabton.com: The Digital Library

CD-278 Part VI ✦ Appendixes

As a safeguard against platform-specific anomalies that affect the behavior of

onMouseOver event handlers and the window.status property, you should also

include an onMouseOut event handler for links and client-side image map area

objects. Such onMouseOut event handlers should set the status property to an

empty string. This setting ensures that the statusbar message returns to the

defaultStatus setting when the pointer rolls away from these objects. If you want

to write a generalizable function that handles all window status changes, you can

do so, but word the onMouseOver attribute carefully so that the event handler eval-

uates to return true. Listing 16-18 shows such an alternative.

Listing 16-18: Handling Status Message Changes

<HTML>
<HEAD>
<TITLE>Generalizable window.status Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showStatus(msg) {

window.status = msg
return true

}
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http:// www.dannyg.com “ onMouseOver=”return showStatus(‘Go to my Home
page (www.dannyg.com).’)” onMouseOut=”return showStatus(‘’)”>Home<P>
<A HREF=”http://home.netscape.com” onMouseOver=”return showStatus(‘Visit
Netscape Home page.’)” onMouseOut=”return showStatus(‘’)”>Netscape
</BODY>
</HTML>

Notice how the event handlers return the results of the showStatus() method to

the event handler, allowing the entire handler to evaluate to return true.

One final example of setting the statusbar (shown in Listing 16-19) also demon-

strates how to create a simple scrolling banner in the statusbar.

Listing 16-19: Creating a Scrolling Banner

<HTML>
<HEAD>
<TITLE>Message Scroller</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--

windowObject.status

(c) ketabton.com: The Digital Library

CD-279Appendix F ✦ Examples from Parts III and IV

var msg = “Welcome to my world...”
var delay = 150
var timerId
var maxCount = 0
var currCount = 1

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {

maxCount = 3 * msg.length
}
window.status = msg
// keep track of how many characters have scrolled
currCount++
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1)
// test whether we’ve reached maximum character count
if (currCount >= maxCount) {

timerID = 0 // zero out the timer
window.status = “” // clear the status bar
return // break out of function

} else {
// recursive call to this function
timerId = setTimeout(“scrollMsg()”, delay)

}
}
// -->
</SCRIPT>
</HEAD>
<BODY onLoad=”scrollMsg()”>
</BODY>
</HTML>

Because the statusbar is being set by a standalone function (rather than by an

onMouseOver event handler), you do not have to append a return true statement

to set the status property. The scrollMsg() function uses more advanced

JavaScript concepts, such as the window.setTimeout() method (covered later in

this chapter) and string methods (covered in Chapter 34). To speed the pace at

which the words scroll across the statusbar, reduce the value of delay.

Many Web surfers (myself included) don’t care for these scrollers that run forever

in the statusbar. Rolling the mouse over links disturbs the banner display. Scrollers

can also crash earlier browsers, because the setTimeout() method eats applica-

tion memory in Navigator 2. Use scrolling bars sparingly or design them to run only

a few times after the document loads.

windowObject.status

(c) ketabton.com: The Digital Library

CD-280 Part VI ✦ Appendixes

Setting the status property with onMouseOver event handlers has had a check-
ered career along various implementations in Navigator. A script that sets the sta-
tusbar is always in competition against the browser itself, which uses the statusbar
to report loading progress. When a “hot” area on a page is at the edge of a frame,
many times the onMouseOut event fails to fire, thus preventing the statusbar from
clearing itself. Be sure to torture test any such implementations before declaring
your page ready for public access.

Methods
alert(“message”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The parameter for the example in Listing 16-20 is a concatenated string. It joins

together two fixed strings and the value of the browser’s navigator.appName prop-

erty. Loading this document causes the alert dialog box to appear, as shown in sev-

eral configurations in Figure 16-10. The JavaScript Alert: line cannot be deleted from

the dialog box in earlier browsers, nor can the title bar be changed in later browsers.

Listing 16-20: Displaying an Alert Dialog Box

<HTML>
<HEAD>
<TITLE>window.alert() Method</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
alert(“You are running the “ + navigator.appName + “ browser.”)
</SCRIPT>
</BODY>
</HTML>

Tip

windowObject.alert()

(c) ketabton.com: The Digital Library

CD-281Appendix F ✦ Examples from Parts III and IV

Figure 16-10: Results of the alert() method in Listing 16-20 in Internet Explorer 5 and
Navigator 6 for Windows 98

captureEvents(eventTypeList)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page in Listing 16-21 is an exercise in capturing and releasing click events in the

window object. Whenever the window is capturing click events, the flash() func-

tion runs. In that function, the event is examined so that only if the Control key is

also being held down and the name of the button starts with “button” does the doc-

ument background color flash red. For all click events (that is, those directed at

objects on the page capable of their own onClick event handlers), the click is pro-

cessed with the routeEvent() method to make sure the target buttons execute

their own onClick event handlers.

Listing 16-21: Capturing Click Events in the Window

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
// function to run when window captures a click event
function flash(e) {

if (e.modifiers = Event.CONTROL_MASK &&
e.target.name.indexOf(“button”) == 0) {

Continued

windowObject.captureEvents()

(c) ketabton.com: The Digital Library

CD-282 Part VI ✦ Appendixes

Listing 16-21 (continued)

document.bgColor = “red”
setTimeout(“document.bgColor = ‘white’”, 500)

}
// let event continue to target
routeEvent(e)

}
// default setting to capture click events
window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flash
</SCRIPT>
</HEAD>
<BODY BGCOLOR=”white”>
<FORM NAME=”buttons”>
Turn window click event capture on or off (Default is “On”)<P>
<INPUT NAME=”captureOn” TYPE=”button” VALUE=”Capture On”
onClick=”window.captureEvents(Event.CLICK)”>
<INPUT NAME=”captureOff” TYPE=”button” VALUE=”Capture Off”
onClick=”window.releaseEvents(Event.CLICK)”>
<HR>
Ctrl+Click on a button to see if clicks are being captured by the window
(background color will flash red):<P>

<INPUT NAME=”button1” TYPE=”button” VALUE=”Informix” onClick=”alert(‘You
clicked on Informix.’)”>
<INPUT NAME=”button2” TYPE=”button” VALUE=”Oracle” onClick=”alert(‘You
clicked on Oracle.’)”>
<INPUT NAME=”button3” TYPE=”button” VALUE=”Sybase” onClick=”alert(‘You
clicked on Sybase.’)”>

</FORM>
</BODY>
</HTML>

When you try this page, also turn off window event capture. Now only the buttons’

onClick event handlers execute, and the page does not flash red.

clearInterval(intervalIDnumber)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

windowObject.clearInterval()

(c) ketabton.com: The Digital Library

CD-283Appendix F ✦ Examples from Parts III and IV

Example
See Listings 16-36 and 16-37 for an example of how setInterval() and

clearInterval() are used together on a page.

clearTimeout(timeoutIDnumber)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page in Listing 16-22 features one text field and two buttons (Figure 16-11). One

button starts a countdown timer coded to last one minute (easily modifiable for

other durations); the other button interrupts the timer at any time while it is run-

ning. When the minute is up, an alert dialog box lets you know.

Listing 16-22: A Countdown Timer

<HTML>
<HEAD>
<TITLE>Count Down Timer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var running = false
var endTime = null
var timerID = null

function startTimer() {
running = true
now = new Date()
now = now.getTime()
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1)
showCountDown()

}

function showCountDown() {
var now = new Date()
now = now.getTime()
if (endTime - now <= 0) {

stopTimer()

Continued

windowObject.clearTimeout()

(c) ketabton.com: The Digital Library

CD-284 Part VI ✦ Appendixes

Listing 16-22 (continued)

alert(“Time is up. Put down your pencils.”)
} else {

var delta = new Date(endTime - now)
var theMin = delta.getMinutes()
var theSec = delta.getSeconds()
var theTime = theMin
theTime += ((theSec < 10) ? “:0” : “:”) + theSec
document.forms[0].timerDisplay.value = theTime
if (running) {

timerID = setTimeout(“showCountDown()”,1000)
}

}
}

function stopTimer() {
clearTimeout(timerID)
running = false
document.forms[0].timerDisplay.value = “0:00”

}
//-->
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”startTime” VALUE=”Start 1 min. Timer”
onClick=”startTimer()”>
<INPUT TYPE=”button” NAME=”clearTime” VALUE=”Clear Timer”
onClick=”stopTimer()”><P>
<INPUT TYPE=”text” NAME=”timerDisplay” VALUE=””>
</FORM>
</BODY>
</HTML>

Notice that the script establishes three variables with global scope in the window:

running, endTime, and timerID. These values are needed inside multiple func-

tions, so they are initialized outside of the functions.

In the startTimer() function, you switch the running flag on, meaning that the

timer should be going. Using some date functions (Chapter 36), you extract the cur-

rent time in milliseconds and add the number of milliseconds for the next minute

(the extra multiplication by one is the place where you can change the amount to

the desired number of minutes). With the end time stored in a global variable, the

function now calls another function that compares the current and end times and

displays the difference in the text field.

windowObject.clearTimeout()

(c) ketabton.com: The Digital Library

CD-285Appendix F ✦ Examples from Parts III and IV

Figure 16-11: The countdown timer page as it displays the time remaining

Early in the showCountDown() function, check to see if the timer has wound down.

If so, you stop the timer and alert the user. Otherwise, the function continues to cal-

culate the difference between the two times and formats the time in mm:ss format.

As long as the running flag is set to true, the function sets the one-second timeout

timer before repeating itself. To stop the timer before it has run out (in the

stopTimer() function), the most important step is to cancel the timeout running

inside the browser. The clearTimeout() method uses the global timerID value to

do that. Then the function turns off the running switch and zeros out the display.

When you run the timer, you may occasionally notice that the time skips a second.

It’s not cheating. It just takes slightly more than one second to wait for the timeout

and then finish the calculations for the next second’s display. What you’re seeing is

the display catching up with the real time left.

close()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 16-4 (for the window.closed property), which provides an elaborate,

cross-platform, bug-accommodating example of applying the window.close()
method across multiple windows.

windowObject.close()

(c) ketabton.com: The Digital Library

CD-286 Part VI ✦ Appendixes

confirm(“message”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The example in Listing 16-23 shows the user interface part of how you can use a

confirm dialog box to query a user before clearing a table full of user-entered data.

The line in the title bar, as shown in Figure 16-12, or the “JavaScript Confirm” legend

in earlier browser versions cannot be removed from the dialog box.

Listing 16-23: The Confirm Dialog Box

<HTML>
<HEAD>
<TITLE>window.confirm() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function clearTable() {

if (confirm(“Are you sure you want to empty the table?”)) {
alert(“Emptying the table...”) // for demo purposes
//statements that actually empty the fields

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE=”button” NAME=”clear” VALUE=”Reset Table” onClick=”clearTable()”>
</FORM>
</BODY>
</HTML>

Figure 16-12: A JavaScript confirm dialog box (IE5/Windows format)

windowObject.confirm()

(c) ketabton.com: The Digital Library

CD-287Appendix F ✦ Examples from Parts III and IV

createPopup()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listing 16-49 later in this chapter for an example of the createPopup()
method.

disableExternalCapture()
enableExternalCapture()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
As this was a little-used feature of NN4 even while the browser enjoyed a substan-

tial installed base, it becomes less important as that browser version recedes into

history. You can find an example of this feature at the Support Center for this edi-

tion (http://www.dannyg.com/update6.html) or on pp.213–214 of the previous

edition.

execScript(“exprList”[, language])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the execScript() method. The

Evaluator has predeclared global variables for the lowercase letters a through z.

windowObject.execScript()

(c) ketabton.com: The Digital Library

CD-288 Part VI ✦ Appendixes

Enter each of the following statements into the top text box and observe the results

for each.

a

When first loaded, the variable is declared but assigned no value, so it is undefined.

window.execScript(“a = 5”)

The method returns no value, so the mechanism inside The Evaluator says that the

statement is undefined.

a

The variable is now 5.

window.execScript(“b = a * 50”)
b

The b global variable has a value of 250. Continue exploring with additional script

statements. Use semicolons to separate multiple statements within the string

parameter.

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A simple call to the window.find() method looks as follows:

var success = window.find(“contract”)

And if you want the search to be case-sensitive, add at least one of the two optional

parameters:

success = wind.find(matchString,caseSensitive,backward)

windowObject.find()

(c) ketabton.com: The Digital Library

CD-289Appendix F ✦ Examples from Parts III and IV

Because this method works only in NN4, refer to discussions of the TextRange
and Range objects in Chapter 19 for more modern implementations of body text

searching.

GetAttention()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) in NN6 to set a timer that gives you enough time to

switch to another application and wait for the attention signal to fire. Enter the fol-

lowing statement into the top text box, click the Evaluate button, and then quickly

switch to another program:

setTimeout(“GetAttention()”, 5000)

After a total of five seconds, the attention signal fires.

moveBy(deltaX,deltaY)
moveTo(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Several examples of using the window.moveTo() and window.moveBy() methods

are shown in Listing 16-24. The page presents four buttons, each of which performs

a different kind of browser window movement.

windowObject.moveBy()

(c) ketabton.com: The Digital Library

CD-290 Part VI ✦ Appendixes

Listing 16-24: Window Boogie

<HTML>
<HEAD>
<TITLE>Window Gymnastics</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var isNav4 = ((navigator.appName == “Netscape”) &&
(parseInt(navigator.appVersion) >= 4))
// wait in onLoad for page to load and settle in IE
function init() {

// fill missing IE properties
if (!window.outerWidth) {

window.outerWidth = document.body.clientWidth
window.outerHeight = document.body.clientHeight + 30

}
// fill missing IE4 properties
if (!screen.availWidth) {

screen.availWidth = 640
screen.availHeight = 480

}
}
// function to run when window captures a click event
function moveOffScreen() {

// branch for NN security
if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
}
var maxX = screen.width
var maxY = screen.height
window.moveTo(maxX+1, maxY+1)
setTimeout(“window.moveTo(0,0)”,500)
if (isNav4) {

netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
}

}
// moves window in a circular motion
function revolve() {

var winX = (screen.availWidth - window.outerWidth) / 2
var winY = 50
window.resizeTo(400,300)
window.moveTo(winX, winY)

for (var i = 1; i < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5
winY += Math.sin(i * (Math.PI/18)) * 5
window.moveTo(winX, winY)

}
}

windowObject.moveBy()

(c) ketabton.com: The Digital Library

CD-291Appendix F ✦ Examples from Parts III and IV

// moves window in a horizontal zig-zag pattern
function zigzag() {

window.resizeTo(400,300)
window.moveTo(0,80)
var incrementX = 2
var incrementY = 2
var floor = screen.availHeight - window.outerHeight
var rightEdge = screen.availWidth - window.outerWidth
for (var i = 0; i < rightEdge; i += 2) {

window.moveBy(incrementX, incrementY)
if (i%60 == 0) {

incrementY = -incrementY
}

}
}
// resizes window to occupy all available screen real estate
function maximize() {

window.moveTo(0,0)
window.resizeTo(screen.availWidth, screen.availHeight)

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<FORM NAME=”buttons”>
Window Gymnastics<P>

<INPUT NAME=”offscreen” TYPE=”button” VALUE=”Disappear a Second”
onClick=”moveOffScreen()”>
<INPUT NAME=”circles” TYPE=”button” VALUE=”Circular Motion”
onClick=”revolve()”>
<INPUT NAME=”bouncer” TYPE=”button” VALUE=”Zig Zag” onClick=”zigzag()”>
<INPUT NAME=”expander” TYPE=”button” VALUE=”Maximize” onClick=”maximize()”>

</FORM>
</BODY>
</HTML>

To run successfully in NN, the first button requires that you have codebase princi-

pals turned on (see Chapter 46) to take advantage of what would normally be a

signed script. The moveOffScreen() function momentarily moves the window

entirely out of view. Notice how the script determines the size of the screen before

deciding where to move the window. After the journey off screen, the window

comes back into view at the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second func-

tion, revolve(), should feel just right. After reducing the size of the window and

positioning it near the top center of the screen, the script uses a bit of math to posi-

tion the window along 36 places around a perfect circle (at 10-degree increments).

windowObject.moveBy()

(c) ketabton.com: The Digital Library

CD-292 Part VI ✦ Appendixes

This is an example of how to control a window’s position dynamically based on

math calculations. IE complicates the job a bit by not providing properties that

reveal the outside dimensions of the browser window.

To demonstrate the moveBy() method, the third function, zigzag(), uses a for
loop to increment the coordinate points to make the window travel in a saw tooth

pattern across the screen. The x coordinate continues to increment linearly until

the window is at the edge of the screen (also calculated on the fly to accommodate

any size monitor). The y coordinate must increase and decrease as that parameter

changes direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates how

best to simulate maximizing the browser window to fill the entire available screen

space on the visitor’s monitor.

navigate(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Supply any valid URL as the parameter to the method, as in

window.navigate(“http://www.dannyg.com”)

open(“URL”, “windowName” [,
“windowFeatures”][,replaceFlag])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page rendered by Listing 16-26 displays a single button that generates a new

window of a specific size that has only the statusbar turned on. The script here

shows all the elements necessary to create a new window that has all the right stuff

on most platforms. The new window object reference is assigned to a global vari-

able, newWindow. Before a new window is generated, the script looks to see if the

windowObject.open()

(c) ketabton.com: The Digital Library

CD-293Appendix F ✦ Examples from Parts III and IV

window has never been generated before (in which case newWindow would be

null) or, for newer browsers, the window is closed. If either condition is true, the

window is created with the open() method. Otherwise, the existing window is

brought forward with the focus() method (NN3+ and IE4+).

As a safeguard against older browsers, the script manually adds an opener prop-

erty to the new window if one is not already assigned by the open() method. The

current window object reference is assigned to that property.

Due to the timing problem that afflicts all IE generations, the HTML assembly and

writing to the new window is separated into its own function that is invoked after a

50 millisecond delay (NN goes along for the ride, but it could accommodate the

assembly and writing without the delay). To build the string that is eventually writ-

ten to the document, I use the += (add-by-value) operator, which appends the string

on the right side of the operator to the string stored in the variable on the left side.

In this example, the new window is handed an <H1>-level line of text to display.

Listing 16-26: Creating a New Window

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newWindow
function makeNewWindow() {

if (!newWindow || newWindow.closed) {
newWindow = window.open(“”,””,”status,height=200,width=300”)
if (!newWindow.opener) {
newWindow.opener = window
}
// force small delay for IE to catch up
setTimeout(“writeToWindow()”, 50)

} else {
// window’s already open; bring to front
newWindow.focus()

}
}
function writeToWindow() {

// assemble content for new window
var newContent = “<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>”
newContent += “<BODY><H1>This window is brand new.</H1>”
newContent += “</BODY></HTML>”
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close layout stream

}

Continued

windowObject.open()

(c) ketabton.com: The Digital Library

CD-294 Part VI ✦ Appendixes

Listing 16-26 (continued)

</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”newOne” VALUE=”Create New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

If you need to create a new window for the lowest common denominator of script-

able browser, you will have to omit the focus() method and the window.closed
property from the script (as well as add the NN2 bug workaround described ear-

lier). Or you may prefer to forego a subwindow for all browsers below a certain

level. See Listing 16-3 (in the window.closed property discussion) for other ideas

about cross-browser authoring for subwindows.

print()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 16-27 is a frameset that loads Listing 16-28 into the top frame and a copy of

the Bill of Rights into the bottom frame.

Listing 16-27: Print Frameset

<HTML>
<HEAD>
<TITLE>window.print() method</TITLE>
</HEAD>
<FRAMESET ROWS=”25%,75%”>

<FRAME NAME=”controls” SRC=”lst16-28.htm”>
<FRAME NAME=”display” SRC=”bofright.htm”>

</FRAMESET>
</HTML>

windowObject.print()

(c) ketabton.com: The Digital Library

CD-295Appendix F ✦ Examples from Parts III and IV

Two buttons in the top control panel (Listing 16-28) let you print the whole frame-

set (in those browsers and OSes that support it) or just the lower frame. To print

the entire frameset, the reference includes the parent window; to print the lower

frame, the reference is directed at the parent.display frame.

Listing 16-28: Printing Control

<HTML>
<HEAD>
<TITLE>Print()</TITLE>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”printWhole” VALUE=”Print Entire Frameset”
onClick=”parent.print()”><P>
<INPUT TYPE=”button” NAME=”printFrame” VALUE=”Print Bottom Frame Only”
onClick=”parent.display.print()”><P>
</FORM>
</BODY>
</HTML>

If you don’t like some facet of the printed output, blame the browser’s print engine,

and not JavaScript. The print() method merely invokes the browser’s regular

printing routines. Pages whose content is generated entirely by JavaScript print

only in NN3+ and IE4+.

prompt(“message”, “defaultReply”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The function that receives values from the prompt dialog box in Listing 16-29 (see

the dialog box in Figure 16-13) does some data-entry validation (but certainly not

enough for a commercial site). The function first checks to make sure that the

returned value is neither null (Cancel) nor an empty string (the user clicked OK

without entering any values). See Chapter 43 for more about data-entry validation.

windowObject.prompt()

(c) ketabton.com: The Digital Library

CD-296 Part VI ✦ Appendixes

Listing 16-29: The Prompt Dialog Box

<HTML>
<HEAD>
<TITLE>window.prompt() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function populateTable() {

var howMany = prompt(“Fill in table for how many factors?”,””)
if (howMany != null && howMany != “”) {

alert(“Filling the table for “ + howMany) // for demo
//statements that validate the entry and
//actually populate the fields of the table

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE=”button” NAME=”fill” VALUE=”Fill Table...”
onClick=”populateTable()”>
</FORM>
</BODY>
</HTML>

Figure 16-13: The prompt dialog box displayed from Listing 16-29 (Windows format)

Notice one important user interface element in Listing 16-29. Because clicking the

button leads to a dialog box that requires more information from the user, the but-

ton’s label ends in an ellipsis (or, rather, three periods acting as an ellipsis charac-

ter). The ellipsis is a common courtesy to let users know that a user interface

element leads to a dialog box of some sort. As in similar situations in Windows and

Macintosh programs, the user should be able to cancel out of that dialog box and

return to the same screen state that existed before the button was clicked.

windowObject.prompt()

(c) ketabton.com: The Digital Library

CD-297Appendix F ✦ Examples from Parts III and IV

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
You can experiment with the resize methods with the page in Listing 16-30. Two

parts of a form let you enter values for each method. The one for window.
resize() also lets you enter a number of repetitions to better see the impact of

the values. Enter zero and negative values to see how those affect the method. Also

test the limits of different browsers.

Listing 16-30: Window Resize Methods

<HTML>
<HEAD>
<TITLE>Window Resize Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doResizeBy(form) {

var x = parseInt(form.resizeByX.value)
var y = parseInt(form.resizeByY.value)
var count = parseInt(form.count.value)
for (var i = 0; i < count; i++) {

window.resizeBy(x, y)
}

}
function doResizeTo(form) {

var x = parseInt(form.resizeToX.value)
var y = parseInt(form.resizeToY.value)
window.resizeTo(x, y)

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter the x and y increment, plus how many times the window should be resized
by these increments:

Horiz:<INPUT TYPE=”text” NAME=”resizeByX” SIZE=4>
Vert:<INPUT TYPE=”text” NAME=”resizeByY” SIZE=4>
How Many:<INPUT TYPE=”text” NAME=”count” SIZE=4>

Continued

windowObject.resizeBy()

(c) ketabton.com: The Digital Library

CD-298 Part VI ✦ Appendixes

Listing 16-30 (continued)

<INPUT TYPE=”button” NAME=”ResizeBy” VALUE=”Show resizeBy()”
onClick=”doResizeBy(this.form)”>
<HR>
Enter the desired width and height of the current window:

Width:<INPUT TYPE=”text” NAME=”resizeToX” SIZE=4>
Height:<INPUT TYPE=”text” NAME=”resizeToY” SIZE=4>
<INPUT TYPE=”button” NAME=”ResizeTo” VALUE=”Show resizeTo()”
onClick=”doResizeTo(this.form)”>
</FORM>
</BODY>
</HTML>

routeEvent(event)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The window.routeEvent() method is used in the example for

window.captureEvents(), Listing 16-21.

scroll(horizontalCoord, verticalCoord)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
To demonstrate the scroll() method, Listing 16-31 defines a frameset with a docu-

ment in the top frame (Listing 16-32) and a control panel in the bottom frame

(Listing 16-33). A series of buttons and text fields in the control panel frame directs

the scrolling of the document. I’ve selected an arbitrary, large GIF image to use in

windowObject.scroll()

(c) ketabton.com: The Digital Library

CD-299Appendix F ✦ Examples from Parts III and IV

the example. To see results of some horizontal scrolling values, you may need to

shrink the width of the browser window until a horizontal scrollbar appears in the

top frame. If you substitute scrollTo() for the scroll() methods in Listing 16-33,

the results will be the same, but you will need version browsers at a minimum to

run it.

Listing 16-31: A Frameset for the scroll() Demonstration

<HTML>
<HEAD>
<TITLE>window.scroll() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-32.htm” NAME=”display”>
<FRAME SRC=”lst16-33.htm” NAME=”control”>

</FRAMESET>
</HTML>

Listing 16-32: The Image to Be Scrolled

<HTML>
<HEAD>
<TITLE>Arch</TITLE>
</HEAD>

<BODY>
<H1>A Picture is Worth...</H1>
<HR>
<CENTER>
<TABLE BORDER=3>
<CAPTION ALIGN=bottom>A Splendid Arch</CAPTION>
<TD>

</TD></TABLE></CENTER>
</BODY>
</HTML>

windowObject.scroll()

(c) ketabton.com: The Digital Library

CD-300 Part VI ✦ Appendixes

Listing 16-33: Controls to Adjust Scrolling of the Upper Frame

<HTML>
<HEAD>
<TITLE>Scroll Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function scroll(x,y) {

parent.frames[0].scroll(x,y)
}
function customScroll(form) {

parent.frames[0].scroll(parseInt(form.x.value),parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
<H2>Scroll Controller</H2>
<HR>
<FORM NAME=”fixed”>
Click on a scroll coordinate for the upper frame:<P>
<INPUT TYPE=”button” VALUE=”0,0” onClick=”scroll(0,0)”>
<INPUT TYPE=”button” VALUE=”0,100” onClick=”scroll(0,100)”>
<INPUT TYPE=”button” VALUE=”100,0” onClick=”scroll(100,0)”>
<P>
<INPUT TYPE=”button” VALUE=”-100,100” onClick=”scroll(-100,100)”>
<INPUT TYPE=”button” VALUE=”20,200” onClick=”scroll(20,200)”>
<INPUT TYPE=”button” VALUE=”1000,3000” onClick=”scroll(1000,3000)”>
</FORM>
<HR>
<FORM NAME=”custom”>
Enter a Horizontal
<INPUT TYPE=”text” NAME=”x” VALUE=”0” SIZE=4>
and Vertical
<INPUT TYPE=”text” NAME=”y” VALUE=”0” SIZE=4>
value. Then
<INPUT TYPE=”button” VALUE=”click to scroll” onClick=”customScroll(this.form)”>
</FORM>
</BODY>
</HTML>

Notice that in the customScroll() function, JavaScript must convert the string

values from the two text boxes to integers (with the parseInt() method) for the

scroll() method to accept them. Nonnumeric data can produce very odd results.

Also be aware that although this example shows how to adjust the scroll values in

another frame, you can set such values in the same frame or window as the script,

as well as in subwindows, provided that you use the correct object references to

the window.

windowObject.scroll()

(c) ketabton.com: The Digital Library

CD-301Appendix F ✦ Examples from Parts III and IV

scrollBy(deltaX,deltaY)
scrollTo(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
To work with the scrollTo() method, you can use Listings 16-31 through 16-33

(the window.scroll() method) but substitute window.scrollTo() for

window.scroll(). The results should be the same. For scrollBy(), the example

starts with the frameset in Listing 16-34. It loads the same content document as the

window.scroll() example (Listing 16-32), but the control panel (Listing 16-35)

provides input to experiment with the scrollBy() method.

Listing 16-34: Frameset for ScrollBy Controller

<HTML>
<HEAD>
<TITLE>window.scrollBy() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-32.htm” NAME=”display”>
<FRAME SRC=”lst16-35.htm” NAME=”control”>

</FRAMESET>
</HTML>

Notice in Listing 16-35 that all references to window properties and methods are

directed to the display frame. String values retrieved from text fields are con-

verted to number with the parseInt() global function.

Listing 16-35: ScrollBy Controller

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>

Continued

windowObject.scrollBy()

(c) ketabton.com: The Digital Library

CD-302 Part VI ✦ Appendixes

Listing 16-35 (continued)

<SCRIPT LANGUAGE=”JavaScript1.2”>
function page(direction) {

var pixFrame = parent.display
var deltaY = (pixFrame.innerHeight) ? pixFrame.innerHeight :

pixFrame.document.body.scrollHeight
if (direction == “up”) {

deltaY = -deltaY
}
parent.display.scrollBy(0, deltaY)

}
function customScroll(form) {

parent.display.scrollBy(parseInt(form.x.value), parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
ScrollBy Controller
<FORM NAME=”custom”>
Enter an Horizontal increment
<INPUT TYPE=”text” NAME=”x” VALUE=”0” SIZE=4”>
and Vertical
<INPUT TYPE=”text” NAME=”y” VALUE=”0” SIZE=4”>
value.
Then
<INPUT TYPE=”button” VALUE=”click to scrollBy()”
onClick=”customScroll(this.form)”>
<HR>
<INPUT TYPE=”button” VALUE=”PageDown” onClick=”page(‘down’)”>
<INPUT TYPE=”button” VALUE=”PageUp” onClick=”page(‘up’)”>

</FORM>
</BODY>
</HTML>

setCursor(“cursorType”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

windowObject.setCursor()

(c) ketabton.com: The Digital Library

CD-303Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) in NN6 to experiment with setting the cursor. After

clicking the top text box in preparation for typing, roll the cursor to a location atop

an empty spot on the page. Then enter the following statements one at a time into

the top text box, and press Enter/Return:

setCursor(“wait”)
setCursor(“spinning”
setCursor(“move”)

After evaluating each statement, roll the cursor around the page, and notice where

the cursor reverts to its normal appearance.

setInterval(“expr”, msecDelay [, language])
setInterval(funcRef, msecDelay [, funcarg1,
..., funcargn])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
The demonstration of the setInterval() method entails a two-framed environ-

ment. The framesetting document is shown in Listing 16-36.

Listing 16-36: SetInterval() Demonstration Frameset

<HTML>
<HEAD>
<TITLE>setInterval() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-37.htm” NAME=”control”>
<FRAME SRC=”bofright.htm” NAME=”display”>

</FRAMESET>
</HTML>

windowObject.setInterval()

(c) ketabton.com: The Digital Library

CD-304 Part VI ✦ Appendixes

In the top frame is a control panel with several buttons that control the automatic

scrolling of the Bill of Rights text document in the bottom frame. Listing 16-37

shows the control panel document. Many functions here control the interval,

scrolling jump size, and direction, and they demonstrate several aspects of apply-

ing setInterval().

Notice that in the beginning the script establishes a number of global variables.

Three of them are parameters that control the scrolling; the last one is for the ID

value returned by the setInterval() method. The script needs that value to be a

global value so that a separate function can halt the scrolling with the

clearInterval() method.

All scrolling is performed by the autoScroll() function. For the sake of simplicity,

all controlling parameters are global variables. In this application, placement of

those values in global variables helps the page restart autoscrolling with the same

parameters as it had when it last ran.

Listing 16-37: setInterval() Control Panel

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var scrollSpeed = 500
var scrollJump = 1
var scrollDirection = “down”
var intervalID

function autoScroll() {
if (scrollDirection == “down”) {

scrollJump = Math.abs(scrollJump)
} else if (scrollDirection == “up” && scrollJump > 0) {

scrollJump = -scrollJump
}
parent.display.scrollBy(0, scrollJump)
if (parent.display.pageYOffset <= 0) {

clearInterval(intervalID)
}

}

function reduceInterval() {
stopScroll()
scrollSpeed -= 200
startScroll()

}
function increaseInterval() {

windowObject.setInterval()

(c) ketabton.com: The Digital Library

CD-305Appendix F ✦ Examples from Parts III and IV

stopScroll()
scrollSpeed += 200
startScroll()

}
function reduceJump() {

scrollJump -= 2
}
function increaseJump() {

scrollJump += 2
}
function swapDirection() {

scrollDirection = (scrollDirection == “down”) ? “up” : “down”
}
function startScroll() {

parent.display.scrollBy(0, scrollJump)
if (intervalID) {

clearInterval(intervalID)
}
intervalID = setInterval(“autoScroll()”,scrollSpeed)

}
function stopScroll() {

clearInterval(intervalID)
}
</SCRIPT>
</HEAD>
<BODY onLoad=”startScroll()”>
AutoScroll by setInterval() Controller
<FORM NAME=”custom”>
<INPUT TYPE=”button” VALUE=”Start Scrolling” onClick=”startScroll()”>
<INPUT TYPE=”button” VALUE=”Stop Scrolling” onClick=”stopScroll()”><P>
<INPUT TYPE=”button” VALUE=”Shorter Time Interval” onClick=”reduceInterval()”>
<INPUT TYPE=”button” VALUE=”Longer Time Interval”
onClick=”increaseInterval()”><P>
<INPUT TYPE=”button” VALUE=”Bigger Scroll Jumps” onClick=”increaseJump()”>
<INPUT TYPE=”button” VALUE=”Smaller Scroll Jumps” onClick=”reduceJump()”><P>
<INPUT TYPE=”button” VALUE=”Change Direction” onClick=”swapDirection()”>

</FORM>
</BODY>
</HTML>

The setInterval() method is invoked inside the startScroll() function. This

function initially “burps” the page by one scrollJump interval so that the test in

autoScroll() for the page being scrolled all the way to the top doesn’t halt a page

from scrolling before it gets started. Notice, too, that the function checks for the

existence of an interval ID. If one is there, it is cleared before the new one is set.

This is crucial within the design of the example page, because repeated clicking of

the Start Scrolling button triggers multiple interval timers inside the browser. Only

windowObject.setInterval()

(c) ketabton.com: The Digital Library

CD-306 Part VI ✦ Appendixes

the most recent one’s ID would be stored in intervalID, allowing no way to clear

the older ones. But this little side trip makes sure that only one interval timer is

running. One of the global variables, scrollSpeed, is used to fill the delay parame-

ter for setInterval(). To change this value on the fly, the script must stop the

current interval process, change the scrollSpeed value, and start a new process.

The intensely repetitive nature of this application is nicely handled by the

setInterval() method.

setTimeout(“expr”, msecDelay [, language])
setTimeout(functionRef, msecDelay [, funcarg1,
..., funcargn])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
When you load the HTML page in Listing 16-38, it triggers the updateTime() func-

tion, which displays the time (in hh:mm am/pm format) in the statusbar. Instead of

showing the seconds incrementing one by one (which may be distracting to some-

one trying to read the page), this function alternates the last character of the dis-

play between an asterisk and nothing, like a visual “heartbeat.”

Listing 16-38: Display the Current Time

<HTML>
<HEAD>
<TITLE>Status Bar Clock</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var flasher = false
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {

var now = new Date()
var theHour = now.getHours()
var theMin = now.getMinutes()
var theTime = “” + ((theHour > 12) ? theHour - 12 : theHour)
theTime += ((theMin < 10) ? “:0” : “:”) + theMin
theTime += (theHour >= 12) ? “ pm” : “ am”
theTime += ((flasher) ? “ “ : “*”)

windowObject.setTimeout()

(c) ketabton.com: The Digital Library

CD-307Appendix F ✦ Examples from Parts III and IV

flasher = !flasher
window.status = theTime
// recursively call this function every second to keep timer going
timerID = setTimeout(“updateTime()”,1000)

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad=”updateTime()”>
</BODY>
</HTML>

In this function, the setTimeout() method works in the following way: Once the

current time (including the flasher status) appears in the statusbar, the function

waits approximately one second (1,000 milliseconds) before calling the same func-

tion again. You don’t have to clear the timerID value in this application because

JavaScript does it for you every time the 1,000 milliseconds elapse.

A logical question to ask is whether this application should be using setInterval()
instead of setTimeout(). This is a case in which either one does the job. To use

setInterval() here would require that the interval process start outside of the

updateTime() function, because you need only one process running that repeatedly

calls updateTime(). It would be a cleaner implementation in that regard, instead of

the tons of timeout processes spawned by Listing 16-38. On the other hand, the appli-

cation would not run in any browsers before NN4 or IE4, as Listing 16-38 does.

To demonstrate passing parameters, you can modify the updateTime() function to

add the number of times it gets invoked to the display in the statusbar. For that to

work, the function must have a parameter variable so that it can catch a new value

each time it is invoked by setTimeout()’s expression. For all browsers, the func-

tion would be modified as follows (unchanged lines are represented by the ellipsis):

function updateTime(i) {
...
window.status = theTime + “ (“ + i + “)”
// pass updated counter value with next call to this function
timerID = setTimeout(“updateTime(“ + i+1 + “)”,1000)

}

If you were running this exclusively in NN4+, you could use its more convenient way

of passing parameters to the function:

timerID = setTimeout(updateTime,1000, i+1)

windowObject.setTimeout()

(c) ketabton.com: The Digital Library

CD-308 Part VI ✦ Appendixes

In either case, the onLoad event handler would also have to be modified to get the

ball rolling with an initial parameter:

onLoad = “updateTime(0)”

One warning about setTimeout() functions that dive into themselves as fre-
quently as this one does: Each call eats up a bit more memory for the browser
application in Navigator 2. If you let this clock run for a while, some browsers may
encounter memory difficulties, depending on which operating system they’re
using. But considering the amount of time the typical user spends on Web pages
(even if only 10 or 15 minutes), the function shouldn’t present a problem. And any
reloading invoked by the user (such as by resizing the window in Navigator 2)
frees up memory once again.

showModalDialog(“URL”[, arguments]
[, features])
showModelessDialog(“URL”[, arguments]
[, features])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � �

Example
To demonstrate the two styles of dialog boxes, I have implemented the same func-

tionality (setting some session visual preferences) for both modal and modeless

dialog boxes. This tactic shows you how to pass data back and forth between the

main page and both styles of dialog box windows.

The first example demonstrates how to use a modal dialog box. In the process, data

is passed into the dialog box window and values are returned. Listing 16-39 is the

HTML and scripting for the main page. A button’s onClick event handler invokes a

function that opens the modal dialog box. The dialog box’s document (Listing 16-40)

contains several form elements for entering a user name and selecting a few color

styles for the main page. Data from the dialog is fashioned into an array to be sent

back to the main window. That array is initially assigned to a local variable, prefs, as

the dialog box closes. If the user cancels the dialog box, the returned value is an

empty string, so nothing more in getPrefsData() executes. But when the user

clicks OK, the array comes back. Each of the array items is read and assigned to its

respective form value or style property. These values are also preserved in the global

currPrefs array. This allows the settings to be sent to the modal dialog box (as the

second parameter to showModalDialog()) the next time the dialog box is opened.

Caution

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-309Appendix F ✦ Examples from Parts III and IV

Listing 16-39: Main Page for showModalDialog()

<HTML>
<HEAD>
<TITLE>window.setModalDialog() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currPrefs = new Array()
function getPrefsData() {

var prefs = showModalDialog(“lst16-40.htm”, currPrefs,
“dialogWidth:400px; dialogHeight:300px”)

if (prefs) {
if (prefs[“name”]) {

document.all.firstName.innerText = prefs[“name”]
currPrefs[“name”] = prefs[“name”]

}
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”]
currPrefs[“bgColor”] = prefs[“bgColor”]

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”]
currPrefs[“textColor”] = prefs[“textColor”]

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”]
currPrefs[“h1Size”] = prefs[“h1Size”]

}
}

}
function init() {

document.all.firstName.innerText = “friend”
}
</SCRIPT>

</HEAD>
<BODY BGCOLOR=”#eeeeee” STYLE=”margin:20px” onLoad=”init()”>
<H1>window.setModalDialog() Method</H1>
<HR>
<H2 ID=”welcomeHeader”>Welcome, !</H2>
<HR>
<P>Use this button to set style preferences for this page:
<BUTTON ID=”prefsButton” onClick=”getPrefsData()”>
Preferences
</BUTTON>
</BODY>
</HTML>

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-310 Part VI ✦ Appendixes

The dialog box’s document, shown in Listing 16-40, is responsible for reading the

incoming data (and setting the form elements accordingly) and assembling form

data for return to the main window’s script. Notice when you load the example that

the TITLE element of the dialog box’s document appears in the dialog box window’s

title bar.

When the page loads into the dialog box window, the init() function examines the

window.dialogArguments property. If it has any data, the data is used to pre-set

the form elements to mirror the current settings of the main page. A utility function,

setSelected(), pre-selects the option of a SELECT element to match the current

settings.

Buttons at the bottom of the page are explicitly positioned to be at the lower-right

corner of the window. Each button invokes a function to do what is needed to close

the dialog box. In the case of the OK button, the handleOK() function sets the

window.returnValue property to the data that come back from the getFormData()
function. This latter function reads the form element values and packages them in an

array using the form elements’ names as array indices. This helps keep everything

straight back in the main window’s script, which uses the index names, and is there-

fore not dependent upon the precise sequence of the form elements in the dialog box

window.

Listing 16-40: Document for the Modal Dialog

<HTML>
<HEAD>
<TITLE>User Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Close the dialog
function closeme() {

window.close()
}

// Handle click of OK button
function handleOK() {

window.returnValue = getFormData()
closeme()

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”
closeme()

}
// Generic function converts form element name-value pairs
// into an array

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-311Appendix F ✦ Examples from Parts III and IV

function getFormData() {
var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == “radio”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type == “checkbox”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else continue
}
return returnedData

}
// Initialize by setting form elements from passed data
function init() {

if (window.dialogArguments) {
var args = window.dialogArguments
var form = document.prefs
if (args[“name”]) {

form.name.value = args[“name”]
}
if (args[“bgColor”]) {

setSelected(form.bgColor, args[“bgColor”])
}
if (args[“textColor”]) {

setSelected(form.textColor, args[“textColor”])
}
if (args[“h1Size”]) {

setSelected(form.h1Size, args[“h1Size”])
}

}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i
break

}
}
return

}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK

Continued

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-312 Part VI ✦ Appendixes

Listing 16-40 (continued)

function checkEnter() {
if (window.event.keyCode == 13) {

handleOK()
}

}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#eeeeee” onLoad=”init()”>
<H2>Web Site Preferences</H2>
<HR>
<TABLE BORDER=0 CELLSPACING=2>
<FORM NAME=”prefs” onSubmit=”return false”>
<TR>
<TD>Enter your first name:<INPUT NAME=”name” TYPE=”text” VALUE=”” SIZE=20
onKeyDown=”checkEnter()”>
</TR>

<TR>
<TD>Select a background color:
<SELECT NAME=”bgColor”>

<OPTION VALUE=”beige”>Beige
<OPTION VALUE=”antiquewhite”>Antique White
<OPTION VALUE=”goldenrod”>Goldenrod
<OPTION VALUE=”lime”>Lime
<OPTION VALUE=”powderblue”>Powder Blue
<OPTION VALUE=”slategray”>Slate Gray

</SELECT>
</TR>

<TR>
<TD>Select a text color:
<SELECT NAME=”textColor”>

<OPTION VALUE=”black”>Black
<OPTION VALUE=”white”>White
<OPTION VALUE=”navy”>Navy Blue
<OPTION VALUE=”darkorange”>Dark Orange
<OPTION VALUE=”seagreen”>Sea Green
<OPTION VALUE=”teal”>Teal

</SELECT>
</TR>

<TR>
<TD>Select “Welcome” heading font point size:
<SELECT NAME=”h1Size”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”14”>14
<OPTION VALUE=”18”>18

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-313Appendix F ✦ Examples from Parts III and IV

<OPTION VALUE=”24”>24
<OPTION VALUE=”32”>32
<OPTION VALUE=”48”>48

</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE=”position:absolute; left:200px; top:220px”>
<BUTTON STYLE=”width:80px” onClick=”handleOK()”>OK</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleCancel()”>Cancel</BUTTON>
</DIV>
</BODY>
</HTML>

One last convenience feature of the dialog box window is the onKeyPress event

handler in the text box. The function it invokes looks for the Enter key. If that key is

pressed while the box has focus, the same handleOK() function is invoked, as if the

user had clicked the OK button. This feature makes the dialog box behave as if the

OK button is an automatic default, just as “real” dialog boxes.

You should observe several important structural changes that were made to turn

the modal approach into a modeless one. Listing 16-41 shows the version of the

main window modified for use with a modeless dialog box. Another global variable,

prefsDlog, is initialized to eventually store the reference to the modeless window

returned by the showModelessDialog() method. The variable gets used to invoke

the init() function inside the modeless dialog box, but also as conditions in an if
construction surrounding the generation of the dialog box. The reason this is

needed is to prevent multiple instances of the dialog box being created (the button

is still alive while the modeless window is showing). The dialog box won’t be created

again as long as there is a value in prefsDlog, and the dialog box window has not

been closed (picking up the window.closed property of the dialog box window).

The showModelessDialog() method’s second parameter is a reference to the func-

tion in the main window that updates the main document. As you see in a moment,

that function is invoked from the dialog box when the user clicks the OK or Apply

buttons.

Listing 16-41: Main Page for showModelessDialog()

<HTML>
<HEAD>
<TITLE>window.setModelessDialog() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currPrefs = new Array()

Continued

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-314 Part VI ✦ Appendixes

Listing 16-41 (continued)

var prefsDlog
function getPrefsData() {

if (!prefsDlog || prefsDlog.closed) {
prefsDlog = showModelessDialog(“lst16-42.htm”, setPrefs,
“dialogWidth:400px; dialogHeight:300px”)
prefsDlog.init(currPrefs)

}
}

function setPrefs(prefs) {
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”]
currPrefs[“bgColor”] = prefs[“bgColor”]

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”]
currPrefs[“textColor”] = prefs[“textColor”]

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”]
currPrefs[“h1Size”] = prefs[“h1Size”]

}
if (prefs[“name”]) {

document.all.firstName.innerText = prefs[“name”]
currPrefs[“name”] = prefs[“name”]

}
}

function init() {
document.all.firstName.innerText = “friend”

}
</SCRIPT>

</HEAD>
<BODY BGCOLOR=”#eeeeee” STYLE=”margin:20px” onLoad=”init()”>
<H1>window.setModelessDialog() Method</H1>
<HR>
<H2 ID=”welcomeHeader”>Welcome, !</H2>
<HR>
<P>Use this button to set style preferences for this page:
<BUTTON ID=”prefsButton” onClick=”getPrefsData()”>
Preferences
</BUTTON>
</BODY>
</HTML>

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-315Appendix F ✦ Examples from Parts III and IV

Changes to the dialog box window document for a modeless version (Listing 16-42)

are rather limited. A new button is added to the bottom of the screen for an Apply

button. As in many dialog box windows you see in Microsoft products, the Apply but-

ton lets current settings in dialog boxes be applied to the current document but with-

out closing the dialog box. This approach makes experimenting with settings easier.

The Apply button invokes a handleApply() function, which works the same as

handleOK(), except the dialog box is not closed. But these two functions communi-

cate back to the main window differently than a modal dialog box. The main window’s

processing function is passed as the second parameter of showModelessDialog()
and is available as the window.dialogArguments property in the dialog box win-

dow’s script. That function reference is assigned to a local variable in both functions,

and the remote function is invoked, passing the results of the getFormData() func-

tion as parameter values back to the main window.

Listing 16-42: Document for the Modeless Dialog Box

<HTML>
<HEAD>
<TITLE>User Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Close the dialog
function closeme() {

window.close()
}

// Handle click of OK button
function handleOK() {

var returnFunc = window.dialogArguments
returnFunc(getFormData())
closeme()

}

// Handle click of Apply button
function handleApply() {

var returnFunc = window.dialogArguments
returnFunc(getFormData())

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”
closeme()

}
// Generic function converts form element name-value pairs
// into an array

Continued

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-316 Part VI ✦ Appendixes

Listing 16-42 (continued)

function getFormData() {
var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == “radio”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type == “checkbox”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else continue
}
return returnedData

}
// Initialize by setting form elements from passed data
function init(currPrefs) {

if (currPrefs) {
var form = document.prefs
if (currPrefs[“name”]) {

form.name.value = currPrefs[“name”]
}
if (currPrefs[“bgColor”]) {

setSelected(form.bgColor, currPrefs[“bgColor”])
}
if (currPrefs[“textColor”]) {

setSelected(form.textColor, currPrefs[“textColor”])
}
if (currPrefs[“h1Size”]) {

setSelected(form.h1Size, currPrefs[“h1Size”])
}

}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i
break

}
}
return

}

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-317Appendix F ✦ Examples from Parts III and IV

// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#eeeeee” onLoad=”init()”>
<H2>Web Site Preferences</H2>
<HR>
<TABLE BORDER=0 CELLSPACING=2>
<FORM NAME=”prefs” onSubmit=”return false”>
<TR>
<TD>Enter your first name:<INPUT NAME=”name” TYPE=”text” VALUE=”” SIZE=20
onKeyDown=”checkEnter()”>
</TR>

<TR>
<TD>Select a background color:
<SELECT NAME=”bgColor”>

<OPTION VALUE=”beige”>Beige
<OPTION VALUE=”antiquewhite”>Antique White
<OPTION VALUE=”goldenrod”>Goldenrod
<OPTION VALUE=”lime”>Lime
<OPTION VALUE=”powderblue”>Powder Blue
<OPTION VALUE=”slategray”>Slate Gray

</SELECT>
</TR>

<TR>
<TD>Select a text color:
<SELECT NAME=”textColor”>

<OPTION VALUE=”black”>Black
<OPTION VALUE=”white”>White
<OPTION VALUE=”navy”>Navy Blue
<OPTION VALUE=”darkorange”>Dark Orange
<OPTION VALUE=”seagreen”>Sea Green
<OPTION VALUE=”teal”>Teal

</SELECT>
</TR>

<TR>
<TD>Select “Welcome” heading font point size:
<SELECT NAME=”h1Size”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”14”>14

Continued

windowObject.showModalDialog()

(c) ketabton.com: The Digital Library

CD-318 Part VI ✦ Appendixes

Listing 16-42 (continued)

<OPTION VALUE=”18”>18
<OPTION VALUE=”24”>24
<OPTION VALUE=”32”>32
<OPTION VALUE=”48”>48

</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE=”position:absolute; left:120px; top:220px”>
<BUTTON STYLE=”width:80px” onClick=”handleOK()”>OK</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleCancel()”>Cancel</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleApply()”>Apply</BUTTON>
</DIV>
</BODY>
</HTML>

The biggest design challenge you probably face with respect to these windows is

deciding between a modal and modeless dialog box style. Some designers insist

that modality has no place in a graphical user interface; others say that there are

times when you need to focus the user on a very specific task before any further

processing can take place. That’s where a modal dialog box makes perfect sense.

sizeToContent()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) in NN6 to try the sizeToContent() method.

Assuming that you are running The Evaluator from the Chap13 directory on the

CD-ROM (or the directory copied as-is to your hard disk), you can open a subwin-

dow with one of the other files in the directory, and then size the subwindow. Enter

the following statements into the top text box:

a = window.open(“lst13-02.htm”,””)
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser win-

dow, and at a height tall enough to display the little bit of content in the document.

windowObject.sizeToContent()

(c) ketabton.com: The Digital Library

CD-319Appendix F ✦ Examples from Parts III and IV

Event handlers
onAfterPrint
onBeforePrint

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following script fragment assumes that the page includes a DIV element whose

style sheet includes a setting of display:none as the page loads. Somewhere in the

Head, the print-related event handlers are set as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = “block”

}
function hidePrintCopyright() {

document.all.printCopyright.style.display = “none”
}
window.onbeforeprint = showPrintCopyright
window.onafterprint = hidePrintCopyright

onBeforeUnload

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The simple page in Listing 16-43 shows you how to give the user a chance to stay on

the page.

Listing 16-43: Using the onBeforeUnload Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeUnload Event Handler</TITLE>

Continued

windowObject.onBeforeUnload

(c) ketabton.com: The Digital Library

CD-320 Part VI ✦ Appendixes

Listing 16-43 (continued)

<SCRIPT LANGUAGE=”JavaScript”>
function verifyClose() {

event.returnValue = “We really like you and hope you will stay longer.”
}
window.onbeforeunload = verifyClose
</SCRIPT>

</HEAD>
<BODY>
<H1>onBeforeUnload Event Handler</H1>
<HR>
<P>Use this button to navigate to the previous page:
<BUTTON ID=”go” onClick=”history.back()”>
Go Back
</BUTTON>
</BODY>
</HTML>

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following script fragment can be embedded in the IE5-only modeless dialog box

code in Listing 16-44 to provide context-sensitive help within the dialog box. Help

messages for only two of the form elements are shown here, but in a real applica-

tion you add messages for the rest.

function showHelp() {
switch (event.srcElement.name) {

case “bgColor” :
alert(“Choose a color for the main window\’s background.”)
break

case “name” :
alert(“Enter your first name for a friendly greeting.”)
break

default :
alert(“Make preference settings for the main page styles.”)

}

windowObject.onHelp

(c) ketabton.com: The Digital Library

CD-321Appendix F ✦ Examples from Parts III and IV

event.returnValue = false
}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction cases

are based on the name properties of the form elements. For other kinds of pages,

the id properties may be more appropriate.

FRAME Element Object

Properties
borderColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although you may experience problems (especially in IE5) changing the color of a

single frame border, the W3C DOM syntax would look like the following if the script

were inside the framesetting document:

document.getElementById(“contentsFrame”).borderColor = “red”

The IE-only version would be:

document.all[“contentsFrame”].borderColor = “red”

These examples assume the frame name arrives to a script function as a string. If

the script is executing in one of the frames of the frameset, add a reference to

parent in the preceding statements.

contentDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

FRAME.contentDocument

(c) ketabton.com: The Digital Library

CD-322 Part VI ✦ Appendixes

Example
A framesetting document script might be using the ID of a FRAME element to read

or adjust one of the element properties, and then need to perform some action on

the content of the page through its document object. You can get the reference to

the document object via a statement, such as the following:

var doc = document.getElementById(“FRAME3”).contentDocument

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

Document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While you have far easier ways to reach the document object of another frame

(parent.otherFrameName.document), the following statement takes the long way

to get there to retrieve the number of forms in the document of another frame:

var formCount = parent.document.all.contentsFrame.Document.forms.length

Using the Document property only truly makes sense when a function is passed a

FRAME or IFRAME element object reference as a parameter, and the script must,

among other things more related to those objects, access the document contained

by those elements.

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The default value for the frameBorder property is yes. You can use this setting to

create a toggle script (which, unfortunately, does not change the appearance in IE).

The W3C-compatible version looks like the following:

FRAME.frameBorder

(c) ketabton.com: The Digital Library

CD-323Appendix F ✦ Examples from Parts III and IV

function toggleFrameScroll(frameID) {
var theFrame = document.getElementById(frameID)
if (theFrame.frameBorder == “yes”) {

theFrame.frameBorder = “no”
} else {

theFrame.frameBorder = “yes”
}

}

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following fragment assumes a frameset defined with two frames set up as two

columns within the frameset. The statements here live in the framesetting docu-

ment. They retrieve the current width of the left frame and increase the width of

that frame by ten percent. Syntax shown here is for the W3C DOM, but can be easily

adapted to IE-only terminology.

var frameWidth = document.getElementById(“leftFrame”).width
document.getElementById(“mainFrameset”).cols = (Math.round(frameWidth * 1.1)) +
“,*”

Notice how the numeric value of the existing frame width is first increased by ten

percent and then concatenated to the rest of the string property assigned to the

frameset’s cols property. The asterisk after the comma means that the browser

should figure out the remaining width and assign it to the right-hand frame.

noResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

FRAME.noResize

(c) ketabton.com: The Digital Library

CD-324 Part VI ✦ Appendixes

Example
The following statement turns off the ability for a frame to be resized:

parent.document.getElementById(“myFrame1”).noResize = true

Because of the negative nature of the property name, it may be difficult to keep the

logic straight (setting noResize to true means that resizability is turned off). Keep

a watchful eye on your Boolean values.

scrolling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 16-45 produces a frameset consisting of eight frames. The content for the

frames is generated by a script within the frameset (via the fillFrame() function).

Event handlers in the Body of each frame invoke the toggleFrameScroll() func-

tion. Both ways of referencing the FRAME element object are shown, with the IE-

only version commented out.

In the toggleFrameScroll() function, the if condition checks whether the prop-

erty is set to something other than no. This allows the condition to evaluate to

true if the property is set to either auto (the first time) or yes (as set by the func-

tion). Note that the scrollbars don’t disappear from the frames in IE5.5 or NN6.

Listing 16-45: Controlling the FRAME.scrolling Property

<HTML>
<HEAD>
<TITLE>frame.scrolling Property</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleFrameScroll(frameID) {

// IE5 & NN6 version
var theFrame = document.getElementById(frameID)
// IE4+ version
// var theFrame = document.all[frameID]

if (theFrame.scrolling != “no”) {
theFrame.scrolling = “no”

FRAME.scrolling

(c) ketabton.com: The Digital Library

CD-325Appendix F ✦ Examples from Parts III and IV

} else {
theFrame.scrolling = “yes”

}
}
// generate content for each frame
function fillFrame(frameID) {

var page = “<HTML><BODY onClick=’parent.toggleFrameScroll(\”” +
frameID + “\”)’>”

page += “<P>This frame has the ID of:</P><P>” + frameID + “.</P>”
page += “</BODY></HTML>”
return page

}
</SCRIPT>
<FRAMESET ID=”outerFrameset” COLS=”50%,50%”>

<FRAMESET ID=”innerFrameset1” ROWS=”25%,25%,25%,25%”>
<FRAME ID=”myFrame1” SRC=”javascript:parent.fillFrame(‘myFrame1’)”>
<FRAME ID=”myFrame2” SRC=”javascript:parent.fillFrame(‘myFrame2’)”>
<FRAME ID=”myFrame3” SRC=”javascript:parent.fillFrame(‘myFrame3’)”>
<FRAME ID=”myFrame4” SRC=”javascript:parent.fillFrame(‘myFrame4’)”>

</FRAMESET>
<FRAMESET ID=”innerFrameset2” ROWS=”25%,25%,25%,25%”>

<FRAME ID=”myFrame5” SRC=”javascript:parent.fillFrame(‘myFrame5’)”>
<FRAME ID=”myFrame6” SRC=”javascript:parent.fillFrame(‘myFrame6’)”>
<FRAME ID=”myFrame7” SRC=”javascript:parent.fillFrame(‘myFrame7’)”>
<FRAME ID=”myFrame8” SRC=”javascript:parent.fillFrame(‘myFrame8’)”>

</FRAMESET>
</FRAMESET>
</HTML>

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
For best results, use fully formed URLs as value for the src property, as shown here:

parent.document.getElementById(“mainFrame”).src = “http://www.dannyg.com”

Relative URLs and javascript: pseudo-URLs will also work most of the time.

FRAME.src

(c) ketabton.com: The Digital Library

CD-326 Part VI ✦ Appendixes

FRAMESET Element Object

Properties
border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Even though the property is read/write in IE4+, changing the value does not change

the thickness of the border you see in the browser. If you need to find the thickness

of the border, a script reference from one of the frame’s documents would look like

the following:

var thickness = parent.document.all.outerFrameset.border

borderColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To retrieve the current color setting in a frameset, a script reference from one of the

frame’s documents would look like the following:

var borderColor = parent.document.all.outerFrameset.borderColor

cols
rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

FRAMESET.cols

(c) ketabton.com: The Digital Library

CD-327Appendix F ✦ Examples from Parts III and IV

Example
Listings 16-46 through 16-48 show the HTML for a frameset and two of the three

documents that go into the frameset. The final document is an HTML version of the

U.S. Bill of Rights, which is serving here as a content frame for the demonstration.

The frameset listing (16-46) shows a three-frame setup. Down the left column is a

table of contents (16-47). The right column is divided into two rows. In the top row

is a simple control (16-48) that hides and shows the table of contents frame. As the

user clicks the hot text of the control (located inside a SPAN element), the onClick
event handler invokes the toggleTOC() function in the frameset.

Syntax used in this example is W3C-compatible. To modify this for IE-only, you

replace document.getElementById(“outerFrameset”) with document.
all.outerFrameset and elem.firstChild.nodeValue to elem.innerText. You

can also branch within the scripts to accommodate both styles.

Listing 16-46: Frameset and Script for Hiding/Showing a
Frame

<HTML>
<HEAD>
<TITLE>Hide/Show Frame Example</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var origCols
function toggleTOC(elem, frm) {

if (origCols) {
showTOC(elem)

} else {
hideTOC(elem, frm)

}
}
function hideTOC(elem, frm) {

var frameset = document.getElementById(“outerFrameset”)
origCols = frameset.cols
frameset.cols = “0,*”

}
function showTOC(elem) {

if (origCols) {
document.getElementById(“outerFrameset”).cols = origCols
origCols = null

}
}
</SCRIPT>

Continued

FRAMESET.cols

(c) ketabton.com: The Digital Library

CD-328 Part VI ✦ Appendixes

Listing 16-46 (continued)

<FRAMESET ID=”outerFrameset” FRAMEBORDER=”no” COLS=”150,*”>
<FRAME ID=”TOC” NAME=”TOCFrame” SRC=”lst16-47.htm”>
<FRAMESET ID=”innerFrameset1” ROWS=”80,*”>

<FRAME ID=”controls” NAME=”controlsFrame” SRC=”lst16-48.htm”>
<FRAME ID=”content” NAME=”contentFrame” SRC=”bofright.htm”>

</FRAMESET>
</FRAMESET>
</HTML>

When a user clicks the hot spot to hide the frame, the script copies the original

cols property settings to a global variable. The variable is used in showTOC() to

restore the frameset to its original proportions. This allows a designer to modify

the HTML for the frameset without also having to dig into scripts to hard-wire the

restored size.

Listing 16-47: Table of Contents Frame Content

<HTML>
<HEAD>
<TITLE>Table of Contents</TITLE>
</HEAD>
<BODY BGCOLOR=”#eeeeee”>
<H3>Table of Contents</H3>
<HR>
<UL STYLE=”font-size:10pt”>
Article I
Article II
Article III
Article IV
Article V
Article VI
Article VII
Article VIII
Article IX
Article X

</BODY>
</HTML>

FRAMESET.cols

(c) ketabton.com: The Digital Library

CD-329Appendix F ✦ Examples from Parts III and IV

Listing 16-48: Control Panel Frame

<HTML>
<HEAD>
<TITLE>Control Panel</TITLE>
</HEAD>
<BODY>
<P>
<SPAN ID=”tocToggle”

STYLE=”text-decoration:underline; cursor:hand”
onClick=”parent.toggleTOC(this)”> <<Hide/Show>>

Table of Contents
</P>
</BODY>
</HTML>

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The default value for the frameBorder property is yes. You can use this setting to

create a toggle script (which, unfortunately, does not change the appearance in IE).

The IE4+-compatible version looks like the following:

function toggleFrameScroll(framesetID) {
var theFrameset = document.all(framesetID)
if (theFrameset.frameBorder == “yes”) {

theFrameset.frameBorder = “no”
} else {

theFrameset.frameBorder = “yes”
}

}

frameSpacing

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

FRAMESET.frameSpacing

(c) ketabton.com: The Digital Library

CD-330 Part VI ✦ Appendixes

Example
Even though the property is read/write in IE4+, changing the value does not change

the thickness of the frame spacing you see in the browser. If you need to find the

spacing as set by the tag’s attribute, a script reference from one of the frame’s doc-

uments would look like the following:

var spacing = parent.document.all.outerFrameset.frameSpacing

IFRAME Element Object

Properties
align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The default setting for an IFRAME alignment is baseline. A script can shift the

IFRAME to be flush with the right edge of the containing element as follows:

document.getElementById(“iframe1”).align = “right”

contentDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A document script might be using the ID of an IFRAME element to read or adjust

one of the element properties; it then needs to perform some action on the content

of the page through its document object. You can get the reference to the document
object via a statement, such as the following:

var doc = document.getElementById(“FRAME3”).contentDocument

IFRAME.contentDocument

(c) ketabton.com: The Digital Library

CD-331Appendix F ✦ Examples from Parts III and IV

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See the example for the FRAME.frameBorder property earlier in this chapter.

hspace
vspace

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following fragment sets the white space surrounding an IFRAME element to an

equal amount:

document.all.myIframe.hspace = 20
document.all.myIframe.vspace = 20

Unfortunately these changes do not work for IE5/Windows.

scrolling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following toggleIFrameScroll() function accepts a string of the IFRAME ele-

ment’s ID as a parameter and switches between on and off scroll bars in the

IFRAME.scrolling

(c) ketabton.com: The Digital Library

CD-332 Part VI ✦ Appendixes

IFRAME. The if condition checks whether the property is set to something other

than no. This test allows the condition to evaluate to true if the property is set to

either auto (the first time) or yes (as set by the function).

function toggleFrameScroll(frameID) {
// IE5 & NN6 version
var theFrame = document.getElementById(frameID)
// IE4+ version
// var theFrame = document.all[frameID]
if (theFrame.scrolling != “no”) {

theFrame.scrolling = “no”
} else {

theFrame.scrolling = “yes”
}

}

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
For best results, use fully formed URLs as value for the src property, as shown here:

document.getElementById(“myIframe”).src = “http://www.dannyg.com”

Relative URLs and javascript: pseudo-URLs also work most of the time.

popup Object

Properties
document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

popupObject.document

(c) ketabton.com: The Digital Library

CD-333Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to experiment with the popup object and its proper-

ties. Enter the following statements into the top text box. The first statement cre-

ates a pop-up window, whose reference is assigned to the a global variable. Next, a

reference to the body of the pop-up’s document is preserved in the b variable for

the sake of convenience. Further statements work with thest two variables.

a = window.createPopup()
b = a.document.body
b.style.border = “solid 2px black”
b.style.padding = “5px”
b.innerHTML = “<P>Here is some text in a popup window</P>”
a.show(200,100, 200, 50, document.body)

See the description of the show() method for details on the parameters.

isOpen

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the isOpen property. Enter the

following statements into the top text box. The sequence begins with a creation of a

simple pop-up window, whose reference is assigned to the a global variable. Note

that the final statement is actually two statements, designed so that the second

statement executes while the pop-up window is still open.

a = window.createPopup()
a.document.body.innerHTML = “<P>Here is a popup window</P>”
a.show(200,100, 200, 50, document.body); alert(“Popup is open:” + a.isOpen)

If you then click into the main window to hide the pop-up, you will see a different

result if you enter the following statement into the top text box by itself:

alert(“Popup is open:” + a.isOpen)

popupObject.isOpen

(c) ketabton.com: The Digital Library

CD-334 Part VI ✦ Appendixes

Methods
hide()
show(left, top, width, height
[, positioningElementRef])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 16-49 demonstrates both the show() and hide() methods for a popup
object. A click of the button on the page invokes the selfTimer() function, which

acts as the main routine for this page. The goal is to produce a pop-up window that

“self-destructs” five seconds after it appears. Along the way, a message in the pop-

up counts down the seconds.

A reference to the pop-up window is preserved as a global variable, called popup.

After the popup object is created, the initContent() function stuffs the content

into the pop-up by way of assigning style properties and some innerHTML for the

body of the document that is automatically created when the pop-up is generated. A

SPAN element is defined so that another function later on can modify the content of

just that segment of text in the pop-up. Notice that the assignment of content to the

pop-up is predicated on the pop-up window having been initialized (by virtue of the

popup variable having a value assigned to it) and that the pop-up window is not

showing. While invoking initContent() under any other circumstances is probably

impossible, the validation of the desired conditions is good programming practice.

Back in selfTimer(), the popup object is displayed. Defining the desired size

requires some trial and error to make sure the pop-up window comfortably accom-

modates the text that is put into the pop-up in the initContent() function.

With the pop-up window showing, now is the time to invoke the countDown() func-

tion. Before the function performs any action, it validates that the pop-up has been

initialized and is still visible. If a user clicks the main window while the counter is

counting down, this changes the value of the isOpen property to false, and noth-

ing inside the if condition executes.

This countDown() function grabs the inner text of the SPAN and uses paresInt()
to extract just the integer number (using base 10 numbering, because we’re dealing

with zero-leading numbers that can potentially be regarded as octal values). The

condition of the if construction decreases the retrieved integer by one. If the

popupObject.hide()

(c) ketabton.com: The Digital Library

CD-335Appendix F ✦ Examples from Parts III and IV

decremented value is zero, then the time is up, and the pop-up window is hidden

with the popup global variable returned to its original, null value. But if the value

is other than zero, then the inner text of the SPAN is set to the decremented value

(with a leading zero), and the setTimeout() method is called upon to reinvoke the

countDown() function in one second (1000 milliseconds).

Listing 16-49: Hiding and Showing a Pop-up

<HTML>
<HEAD>
<TITLE>popup Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var popup
function initContent() {

if (popup && !popup.isOpen) {
var popBody = popup.document.body
popBody.style.border = “solid 3px red”
popBody.style.padding = “10px”
popBody.style.fontSize = “24pt”
popBody.style.textAlign = “center”
var bodyText = “<P>This popup will self-destruct in “
bodyText += “05”
bodyText += “ seconds...</P>”
popBody.innerHTML = bodyText

}
}
function countDown() {

if (popup && popup.isOpen) {
var currCount = parseInt(popup.document.all.counter.innerText, 10)
if (--currCount == 0) {

popup.hide()
popup = null

} else {
popup.document.all.counter.innerText = “0” + currCount
setTimeout(“countDown()”, 1000)

}
}

}
function selfTimer() {

popup = window.createPopup()
initContent()
popup.show(200,200,400,100,document.body)
setTimeout(“countDown()”, 1000)

}
</SCRIPT>
</HEAD>
<BODY>

Continued

popupObject.hide()

(c) ketabton.com: The Digital Library

CD-336 Part VI ✦ Appendixes

Listing 16-49 (continued)

<FORM>
<INPUT TYPE=”button” VALUE=”Impossible Mission” onClick=”selfTimer()”>
</FORM>
</BODY>
</HTML>

The hide() method here is invoked by a script that is running while the pop-up

window is showing. Because a pop-up window automatically goes away if a user

clicks the main window, it is highly unlikely that the hide() method would ever be

invoked by itself in response to user action in the main window. If you want a script

in the pop-up window to close the pop-up, use parentWindow.close().

Chapter 17 Examples
The following sections contain examples from Chapter 17, “Location and History

Objects.”

Location Object

Properties
hash

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
When you load the script in Listing 17-1, adjust the size of the browser window so

only one section is visible at a time. When you click a button, its script navigates to

the next logical section in the progression and eventually takes you back to the top.

windowObject.location.hash

(c) ketabton.com: The Digital Library

CD-337Appendix F ✦ Examples from Parts III and IV

Listing 17-1: A Document with Anchors

<HTML>
<HEAD>
<TITLE>location.hash Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goNextAnchor(where) {

window.location.hash = where
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Top</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec1’)”>
</FORM>
<HR>
<H1>Section 1</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec2’)”>
</FORM>
<HR>
<H1>Section 2</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec3’)”>
</FORM>
<HR>
<H1>Section 3</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”BACK TO TOP”
onClick=”goNextAnchor(‘start’)”>
</FORM>

</BODY>
</HTML>

Anchor names are passed as parameters with each button’s onClick event handler.

Instead of going through the work of assembling a window.location value in the

function by appending a literal hash mark and the value for the anchor, here I sim-

ply modify the hash property of the current window’s location. This is the pre-

ferred, cleaner method.

If you attempt to read back the window.location.hash property in an added line of

script, however, the window’s actual URL probably will not have been updated yet,

and the browser will appear to be giving your script false information. To prevent this

windowObject.location.hash

(c) ketabton.com: The Digital Library

CD-338 Part VI ✦ Appendixes

problem in subsequent statements of the same function, construct the URLs of those

statements from the same variable values you use to set the window.location.hash
property — don’t rely on the browser to give you the values you expect.

host

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Use the documents in Listings 17-2 through 17-4 as tools to help you learn the val-

ues that the various window.location properties return. In the browser, open the

file for Listing 17-2. This file creates a two-frame window. The left frame contains a

temporary placeholder (Listing 17-4) that displays some instructions. The right

frame has a document (Listing 17-3) that enables you to load URLs into the left

frame and get readings on three different windows available: the parent window

(which creates the multiframe window), the left frame, and the right frame.

Listing 17-2: Frameset for the Property Picker

<HTML>
<HEAD>
<TITLE>window.location Properties</TITLE>
</HEAD>
<FRAMESET COLS=”50%,50%” BORDER=1 BORDERCOLOR=”black”>

<FRAME NAME=”Frame1” SRC=”lst17-04.htm”>
<FRAME NAME=”Frame2” SRC=”lst17-03.htm”>

</FRAMESET>
</HTML>

Listing 17-3: Property Picker

<HTML>
<HEAD>
<TITLE>Property Picker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav4 = (navigator.appName == “Netscape” && navigator.appVersion.charAt(0)
>= 4) ? true : false

windowObject.location.host

(c) ketabton.com: The Digital Library

CD-339Appendix F ✦ Examples from Parts III and IV

function fillLeftFrame() {
newURL = prompt(“Enter the URL of a document to show in the left frame:”,””)
if (newURL != null && newURL != “”) {
parent.frames[0].location = newURL
}

}

function showLocationData(form) {
for (var i = 0; i <3; i++) {

if (form.whichFrame[i].checked) {
var windName = form.whichFrame[i].value
break

}
}
var theWind = “” + windName + “.location”
if (isNav4) {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”)

}
var theObj = eval(theWind)
form.windName.value = windName
form.windHash.value = theObj.hash
form.windHost.value = theObj.host
form.windHostname.value = theObj.hostname
form.windHref.value = theObj.href
form.windPath.value = theObj.pathname
form.windPort.value = theObj.port
form.windProtocol.value = theObj.protocol
form.windSearch.value = theObj.search
if (isNav4) {
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserRead”)

}
}
</SCRIPT>
</HEAD>
<BODY>
Click the “Open URL” button to enter the location of an HTML document to display
in the left frame of this window.
<FORM>
<INPUT TYPE=”button” NAME=”opener” VALUE=”Open URL...”
onClick=”fillLeftFrame()”>
<HR>
<CENTER>
Select a window/frame. Then click the “Show Location Properties” button to view
each window.location property value for the desired window.<P>
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent” CHECKED>Parent window
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent.frames[0]”>Left frame
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent.frames[1]”>This frame
<P>
<INPUT TYPE=”button” NAME=”getProperties” VALUE=”Show Location Properties”
onClick=”showLocationData(this.form)”>

Continued

windowObject.location.host

(c) ketabton.com: The Digital Library

CD-340 Part VI ✦ Appendixes

Listing 17-3 (continued)

<INPUT TYPE=”reset” VALUE=”Clear”><P>
<TABLE BORDER=2>
<TR><TD ALIGN=right>Window:</TD><TD><INPUT TYPE=”text” NAME=”windName”
SIZE=30></TD></TR>
<TR><TD ALIGN=right>hash:</TD>
<TD><INPUT TYPE=”text” NAME=”windHash” SIZE=30></TD></TR>

<TR><TD ALIGN=right>host:</TD>
<TD><INPUT TYPE=”text” NAME=”windHost” SIZE=30></TD></TR>

<TR><TD ALIGN=right>hostname:</TD>
<TD><INPUT TYPE=”text” NAME=”windHostname” SIZE=30></TD></TR>

<TR><TD ALIGN=right>href:</TD>
<TD><TEXTAREA NAME=”windHref” ROWS=3 COLS=30 WRAP=”soft”>
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>pathname:</TD>
<TD><TEXTAREA NAME=”windPath” ROWS=3 COLS=30 WRAP=”soft”>
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>port:</TD>
<TD><INPUT TYPE=”text” NAME=”windPort” SIZE=30></TD></TR>

<TR><TD ALIGN=right>protocol:</TD>
<TD><INPUT TYPE=”text” NAME=”windProtocol” SIZE=30></TD></TR>

<TR><TD ALIGN=right>search:</TD>
<TD><TEXTAREA NAME=”windSearch” ROWS=3 COLS=30 WRAP=”soft”>
</TEXTAREA></TD></TR>
</TABLE>
</CENTER>
</FORM>
</BODY>
</HTML>

Listing 17-4: Placeholder Document for Listing 17-2

<HTML>
<HEAD>
<TITLE>Opening Placeholder</TITLE>
</HEAD>
<BODY>

windowObject.location.host

(c) ketabton.com: The Digital Library

CD-341Appendix F ✦ Examples from Parts III and IV

Initial placeholder. Experiment with other URLs for this frame (see right).
</BODY>
</HTML>

Figure 17-1 shows the dual-frame browser window with the left frame loaded with a

page from my Web site.

Figure 17-1: Browser window loaded to investigate window.location properties

For the best results, open a URL to a Web document on the network from the same

domain and server from which you load the listings (perhaps your local hard disk).

If possible, load a document that includes anchor points to navigate through a long

document. Click the Left frame radio button, and then click the button that shows

all properties. This action fills the table in the right frame with all the available

location properties for the selected window. Figure 17-2 shows the complete

results for a page from my Web site that is set to an anchor point.

Attempts to retrieve these properties from URLs outside of your domain and server

result in a variety of responses based on your browser and browser version. NN2

returns null values for all properties. NN3 presents an “access disallowed” security

windowObject.location.host

(c) ketabton.com: The Digital Library

CD-342 Part VI ✦ Appendixes

alert. With codebase principals turned on in NN4 (see Chapter 46), the proper values

appear in their fields. IE3 does not have the same security restrictions that

Navigator does, so all values appear in their fields. But in IE4+, you get a “permission

denied” error alert. See the following discussion for the meanings of the other listed

properties and instructions on viewing their values.

Figure 17-2: Readout of all window.location properties for the left frame

hostname

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 17-2 through 17-4 earlier in this chapter for a set of related pages to

help you view the hostname data for a variety of other pages.

href

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

windowObject.location.href

(c) ketabton.com: The Digital Library

CD-343Appendix F ✦ Examples from Parts III and IV

Example
Listing 17-5 includes the unescape() function in front of the part of the script that

captures the URL. This function serves cosmetic purposes by displaying the path-

name in alert dialog boxes for browsers that normally display the ASCII-encoded

version.

Listing 17-5: Extracting the Directory of the Current
Document

<HTML>
<HEAD>
<TITLE>Extract pathname</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// general purpose function to extract URL of current directory
function getDirPath(URL) {

var result = unescape(URL.substring(0,(URL.lastIndexOf(“/”)) + 1))
return result

}
// handle button event, passing work onto general purpose function
function showDirPath(URL) {

alert(getDirPath(URL))
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”View directory URL”
onClick=”showDirPath(window.location.href)”>
</FORM>
</BODY>
</HTML>

pathname

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

windowObject.location.pathname

(c) ketabton.com: The Digital Library

CD-344 Part VI ✦ Appendixes

Example
See Listings 17-2 through 17-4 earlier in this chapter for a multiple-frame example

you can use to view the location.pathname property for a variety of URLs of your

choice.

port

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you have access to URLs containing port numbers, use the documents in Listings

17-2 through 17-4 to experiment with the output of the location.port property.

protocol

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 17-2 through 17-4 for a multiple-frame example you can use to view the

location.protocol property for a variety of URLs. Also try loading an FTP site to

see the location.protocol value for that type of URL.

search

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
As mentioned in the opening of Chapter 16 about frames, you can force a particular

HTML page to open inside the frameset for which it is designed. But with the help of

the search string, you can reuse the same framesetting document to accommodate

windowObject.location.search

(c) ketabton.com: The Digital Library

CD-345Appendix F ✦ Examples from Parts III and IV

any number of content pages that go into one of the frames (rather than specifying a

separate frameset for each possible combination of pages in the frameset). The list-

ings in this section create a simple example of how to force a page to load in a frame-

set by passing some information about the page to the frameset. Thus, if a user has a

URL to one of the content frames (perhaps it has been bookmarked by right-clicking

the frame or it comes up as a search engine result), the page appears in its desig-

nated frameset the next time the user visits the page.

The fundamental task going on in this scheme has two parts. The first is in each of

the content pages where a script checks whether the page is loaded inside a frame-

set. If the frameset is missing, then a search string is composed and appended to

the URL for the framesetting document. The framesetting document has its own

short script that looks for the presence of the search string. If the string is there,

then the script extracts the search string data and uses it to load that specific page

into the content frame of the frameset.

Listing 17-6 is the framesetting document. The getSearchAsArray() function is

more complete than necessary for this simple example, but you can use it in other

instances to convert any number of name/value pairs passed in the search string

(in traditional format of name1=value1&name2=value2&etc.) into an array whose

indexes are the names (making it easier for scripts to extract a specific piece of

passed data). Version branching takes place because, for convenience, the

getSearchAsArray() function uses text and array methods that don’t exist in

browsers prior to NN3 or IE4.

Listing 17-6: A Smart Frameset

<HTML>
<HEAD>
<TITLE>Example Frameset</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Convert location.search into an array of values
// indexed by name.
function getSearchAsArray() {

var minNav3 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) >= 3)

var minIE4 = (navigator.appName.indexOf(“Microsoft”) >= 0 &&
parseInt(navigator.appVersion) >= 4)

var minDOM = minNav3 || minIE4 // baseline DOM required for this function
var results = new Array()
if (minDOM) {

var input = unescape(location.search.substr(1))
if (input) {

var srchArray = input.split(“&”)
var tempArray = new Array()
for (var i = 0; i < srchArray.length; i++) {

Continued

windowObject.location.search

(c) ketabton.com: The Digital Library

CD-346 Part VI ✦ Appendixes

Listing 17-6 (continued)

tempArray = srchArray[i].split(“=”)
results[tempArray[0]] = tempArray[1]

}
}

}
return results

}
function loadFrame() {

if (location.search) {
var srchArray = getSearchAsArray()
if (srchArray[“content”]) {

self.content.location.href = srchArray[“content”]
}

}
}
</SCRIPT>
</HEAD>
<FRAMESET COLS=”250,*” onLoad=”loadFrame()”>

<FRAME NAME=”toc” SRC=”lst17-07.htm”>
<FRAME NAME=”content” SRC=”lst17-08.htm”>

</FRAMESET>
</HTML>

Listing 17-7 is the HTML for the table of contents frame. Nothing elaborate goes on

here, but you can see how normal navigation works for this simplified frameset.

Listing 17-7: The Table of Contents

<HTML>
<HEAD>
<TITLE>Table of Contents</TITLE>
</HEAD>
<BODY BGCOLOR=”#eeeeee”>
<H3>Table of Contents</H3>
<HR>

Page 1
Page 2
Page 3

</BODY>
</HTML>

windowObject.location.search

(c) ketabton.com: The Digital Library

CD-347Appendix F ✦ Examples from Parts III and IV

Listing 17-8 shows one of the content pages. As the page loads, the

checkFrameset() function is invoked. If the window does not load inside a

frameset, then the script navigates to the framesetting page, passing the current

content URL as a search string. Notice that for browsers that support the

location.replace() method, the loading of this page on its own does not get

recorded to the browser’s history and isn’t accessed if the user hits the Back button.

Listing 17-8: A Content Page

<HTML>
<HEAD>
<TITLE>Page 1</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkFrameset() {

var minNav3 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) >= 3)

var minIE4 = (navigator.appName.indexOf(“Microsoft”) >= 0 &&
parseInt(navigator.appVersion) >= 4)

var minDOM = minNav3 || minIE4 // baseline DOM required for this function
var isNav4 = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) == 4)
if (parent == window) {

// Don’t do anything if running NN4
// so that the frame can be printed on its own
if (isNav4 && window.innerWidth == 0) {

return
}
if (minDOM) {

// Use replace() to keep current page out of history
location.replace(“lst17-06.htm?content=” + escape(location.href))

} else {
location.href = “ lst17-06.htm?content=” + escape(location.href)

}
}

}
// Invoke the function
checkFrameset()
</SCRIPT>
</HEAD>
<BODY>
<H1>Page 1</H1>
<HR>
</BODY>
</HTML>

windowObject.location.search

(c) ketabton.com: The Digital Library

CD-348 Part VI ✦ Appendixes

In practice, I recommend placing the code for the checkFrameset() function and

call to it inside an external .js library and linking that library into each content doc-

ument of the frameset. That’s why the function assigns the generic location.href
property to the search string — you can use it on any content page.

Methods
reload(unconditionalGETBoolean)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
To experience the difference between the two loading styles, load the document in

Listing 17-9. Click a radio button, enter some new text, and make a choice in the

SELECT object. Clicking the Soft Reload/Refresh button invokes a method that reloads

the document as if you had clicked the browser’s Reload/Refresh button. It also pre-

serves the visible properties of form elements. The Hard Reload button invokes the

location.reload() method, which resets all objects to their default settings.

Listing 17-9: Hard versus Soft Reloading

<HTML>
<HEAD>
<TITLE>Reload Comparisons</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function hardReload() {

location.reload(true)
}
function softReload() {

history.go(0)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myForm”>
<INPUT TYPE=”radio” NAME=”rad1” VALUE = 1>Radio 1

<INPUT TYPE=”radio” NAME=”rad1” VALUE = 2>Radio 2

<INPUT TYPE=”radio” NAME=”rad1” VALUE = 3>Radio 3<P>
<INPUT TYPE=”text” NAME=”entry” VALUE=”Original”><P>
<SELECT NAME=”theList”>
<OPTION>Red

windowObject.location.reload()

(c) ketabton.com: The Digital Library

CD-349Appendix F ✦ Examples from Parts III and IV

<OPTION>Green
<OPTION>Blue
</SELECT>
<HR>
<INPUT TYPE=”button” VALUE=”Soft Reload” onClick=”softReload()”>
<INPUT TYPE=”button” VALUE=”Hard Reload” onClick=”hardReload()”>
</FORM>
</BODY>
</HTML>

replace(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Calling the location.replace() method navigates to another URL similarly to

assigning a URL to the location. The difference is that the document doing the call-

ing doesn’t appear in the history list after the new document loads. Check the his-

tory listing (in your browser’s usual spot for this information) before and after

clicking Replace Me in Listing 17-10.

Listing 17-10: Invoking the location.replace() Method

<HTML>
<HEAD>
<TITLE>location.replace() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function doReplace() {

location.replace(“lst17-01.htm”)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myForm”>
<INPUT TYPE=”button” VALUE=”Replace Me” onClick=”doReplace()”>
</FORM>
</BODY>
</HTML>

windowObject.location.replace()

(c) ketabton.com: The Digital Library

CD-350 Part VI ✦ Appendixes

History Object

Properties
length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The simple function in Listing 17-11 displays one of two alert messages based on

the number of items in the browser’s history.

Listing 17-11: A Browser History Count

<HTML>
<HEAD>
<TITLE>History Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showCount() {

var histCount = window.history.length
if (histCount > 5) {

alert(“My, my, you\’ve been busy. You have visited “ + histCount +
“ pages so far.”)

} else {
alert(“You have been to “ + histCount + “ Web pages this session.”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”activity” VALUE=”My Activity” onClick=”showCount()”>
</FORM>
</BODY>
</HTML>

windowObject.history.length

(c) ketabton.com: The Digital Library

CD-351Appendix F ✦ Examples from Parts III and IV

Methods
back()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listings 17-12 and 17-13 provide a little workshop in which you can test the behav-

ior of a variety of backward and forward navigation in different browsers. Some fea-

tures work only in NN4+.

Listing 17-12: Navigation Lab Frameset

<HTML>
<HEAD>
<TITLE>Back and Forward</TITLE>
</HEAD>
<FRAMESET COLS=”45%,55%”>

<FRAME NAME=”controller” SRC=”lst17-13.htm”>
<FRAME NAME=”display” SRC=”lst17-01.htm”>

</FRAMESET>
</HTML>

The top portion of Listing 17-13 contains simple links to other example files from

this chapter. A click of any link loads a different document into the right-hand frame

to let you build some history inside the frame.

Listing 17-13: Navigation Lab Control Panel

<HTML>
<HEAD>
<TITLE>Lab Controls</TITLE>

Continued

windowObject.history.back()

(c) ketabton.com: The Digital Library

CD-352 Part VI ✦ Appendixes

Listing 17-13 (continued)

</HEAD>
<BODY>
Load a series of documents into the right frame by clicking some of these
links (make a note of the sequence you click on):<P>
Listing 17-1

Listing 17-5

Listing 17-9

<HR>
<FORM NAME=”input”>
Click on the various buttons below to see the results in this
frameset:<P>

NN4+ Substitute for toolbar buttons -- <TT>window.back()</TT> and
<TT>window.forward()</TT>:<INPUT TYPE=”button” VALUE=”Back”
onClick=”window.back()”><INPUT TYPE=”button” VALUE=”Forward”
onClick=”window.forward()”><P>

<TT> history.back()</TT> and <TT>history.forward()</TT> for righthand frame:
<INPUT TYPE=”button” VALUE=”Back” onClick=”parent.display.history.back()”><INPUT
TYPE=”button” VALUE=”Forward” onClick=”parent.display.history.forward()”><P>

<TT>history.back()</TT> for this frame:<INPUT TYPE=”button” VALUE=”Back”
onClick=”history.back()”><P>

<TT>history.back()</TT> for parent:<INPUT TYPE=”button” VALUE=”Back”
onClick=”parent.history.back()”><P>

</FORM>
</BODY>
</HTML>

go(relativeNumber | “URLOrTitleSubstring”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

windowObject.history.go()

(c) ketabton.com: The Digital Library

CD-353Appendix F ✦ Examples from Parts III and IV

Example
Fill in either the number or text field of the page in Listing 17-14 and then click the

associated button. The script passes the appropriate kind of data to the go()
method. Be sure to use negative numbers for visiting a page earlier in the history.

Listing 17-14: Navigating to an Item in History

<HTML>
<HEAD>
<TITLE>history.go() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doGoNum(form) {

window.history.go(parseInt(form.histNum.value))
}
function doGoTxt(form) {

window.history.go(form.histWord.value)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Calling the history.go() method:
<HR>
Enter a number (+/-):<INPUT TYPE=”text” NAME=”histNum” SIZE=3 VALUE=”0”>
<INPUT TYPE=”button” VALUE=”Go to Offset” onClick=”doGoNum(this.form)”><P>
Enter a word in a title:<INPUT TYPE=”text” NAME=”histWord”>
<INPUT TYPE=”button” VALUE=”Go to Match” onClick=”doGoTxt(this.form)”>
</FORM>
</BODY>
</HTML>

windowObject.history.go()

(c) ketabton.com: The Digital Library

CD-354 Part VI ✦ Appendixes

Chapter 18 Examples
The following sections contain examples from Chapter 18, “The Document and

Body Objects.”

Document Object

Properties
activeElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) with IE4+ to experiment with the activeElement
property. Type the following statement into the top text box:

document.activeElement.value

After you press the Enter key, the Results box shows the value of the text box you

just typed into (the very same expression you just typed). But if you then click the

Evaluate button, you will see the value property of that button object appear in the

Results box.

alinkColor
bgColor
fgColor
linkColor
vlinkColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.alinkColor

(c) ketabton.com: The Digital Library

CD-355Appendix F ✦ Examples from Parts III and IV

Example
I select some color values at random to plug into three settings of the ugly colors

group for Listing 18-1. The smaller window displays a dummy button so that you

can see how its display contrasts with color settings. Notice that the script sets the

colors of the smaller window by rewriting the entire window’s HTML code. After

changing colors, the script displays the color values in the original window’s

textarea. Even though some colors are set with the color constant values, proper-

ties come back in the hexadecimal triplet values. You can experiment to your

heart’s content by changing color values in the listing. Every time you change the

values in the script, save the HTML file and reload it in the browser.

Listing 18-1: Color Sampler

<HTML>
<HEAD>
<TITLE>Color Me</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function defaultColors() {

return “BGCOLOR=’#c0c0c0’ VLINK=’#551a8b’ LINK=’#0000ff’”
}

function uglyColors() {
return “BGCOLOR=’yellow’ VLINK=’pink’ LINK=’lawngreen’”

}
function showColorValues() {

var result = “”
result += “bgColor: “ + newWindow.document.bgColor + “\n”
result += “vlinkColor: “ + newWindow.document.vlinkColor + “\n”
result += “linkColor: “ + newWindow.document.linkColor + “\n”
document.forms[0].results.value = result

}
// dynamically writes contents of another window
function drawPage(colorStyle) {

var thePage = “”
thePage += “<HTML><HEAD><TITLE>Color Sampler</TITLE></HEAD><BODY “
if (colorStyle == “default”) {

thePage += defaultColors()
} else {

thePage += uglyColors()
}
thePage += “>Just so you can see the variety of items and color, <A “
thePage += “HREF=’http://www.nowhere.com’>here\’s a link, and “ +

“ here is another link “ +
“you can use on-line to visit and see how its color differs “ +
“from the standard link.”

thePage += “<FORM>”

Continued

document.alinkColor

(c) ketabton.com: The Digital Library

CD-356 Part VI ✦ Appendixes

Listing 18-1 (continued)

thePage += “<INPUT TYPE=’button’ NAME=’sample’ VALUE=’Just a Button’>”
thePage += “</FORM></BODY></HTML>”
newWindow.document.write(thePage)
newWindow.document.close()
showColorValues()

}
// the following works properly only in Windows Navigator
function setColors(colorStyle) {

if (colorStyle == “default”) {
document.bgColor = “#c0c0c0”

} else {
document.bgColor = “yellow”

}
}
var newWindow = window.open(“”,””,”height=150,width=300”)
</SCRIPT>
</HEAD>

<BODY>
Try the two color schemes on the document in the small window.
<FORM>
<INPUT TYPE=”button” NAME=”default” VALUE=’Default Colors’

onClick=”drawPage(‘default’)”>
<INPUT TYPE=”button” NAME=”weird” VALUE=”Ugly Colors”

onClick=”drawPage(‘ugly’)”><P>
<TEXTAREA NAME=”results” ROWS=3 COLS=20></TEXTAREA><P><HR>
These buttons change the current document, but not correctly on all platforms<P>
<INPUT TYPE=”button” NAME=”default” VALUE=’Default Colors’

onClick=”setColors(‘default’)”>
<INPUT TYPE=”button” NAME=”weird” VALUE=”Ugly Colors”

onClick=”setColors(‘ugly’)”><P>
</FORM>
<SCRIPT LANGUAGE=”JavaScript”>
drawPage(“default”)
</SCRIPT>
</BODY>
</HTML>

To satisfy the curiosity of those who want to change the color of a loaded docu-

ment on the fly, the preceding example includes a pair of buttons that set the color

properties of the current document. If you’re running browsers and versions capa-

ble of this power (see Table 18-1), everything will look fine; but in other platforms

or earlier versions, you may lose the buttons and other document content behind

the color. You can still click and activate these items, but the color obscures them.

Unless you know for sure that users of your Web page use only browsers and

document.alinkColor

(c) ketabton.com: The Digital Library

CD-357Appendix F ✦ Examples from Parts III and IV

clients empowered for background color changes, do not change colors by setting

properties of an existing document.

If you are using Internet Explorer 3 for the Macintosh, you will experience some
difficulties with Listing 18-1. The script in the main document loses its connection
with the subwindow; it does not redraw the second window with other colors.
You can, however, change the colors in the main document. The significant flicker
you may experience is related to the way the Mac version redraws content after
changing colors.

anchors

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In Listing 18-2, I append an extra script to Listing 17-1 to demonstrate how to

extract the number of anchors in the document. The document dynamically writes

the number of anchors found in the document. You will not likely ever need to

reveal such information to users of your page, and the document.anchors prop-

erty is not one that you will call frequently. The object model defines it automati-

cally as a document property while defining actual anchor objects.

Listing 18-2: Reading the Number of Anchors

<HTML>
<HEAD>
<TITLE>document.anchors Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goNextAnchor(where) {

window.location.hash = where
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Top</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec1’)”>
</FORM>

Continued

Note

document.anchors

(c) ketabton.com: The Digital Library

CD-358 Part VI ✦ Appendixes

Listing 18-2 (continued)

<HR>

<H1>Section 1</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec2’)”>
</FORM>
<HR>

<H1>Section 2</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec3’)”>
</FORM>
<HR>

<H1>Section 3</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”BACK TO TOP”
onClick=”goNextAnchor(‘start’)”>
</FORM>
<HR><P>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“<I>There are “ + document.anchors.length +
“ anchors defined for this document</I>”)
</SCRIPT>
</BODY>
</HTML>

applets

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
The document.applets property is defined automatically as the browser builds the

object model for a document that contains applet objects. You will rarely access this

property, except to determine how many applet objects a document has.

document.applets

(c) ketabton.com: The Digital Library

CD-359Appendix F ✦ Examples from Parts III and IV

bgColor
See alinkColor.

body

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to examine properties of the BODY element object.

First, to prove that the document.body is the same as the element object that

comes back from longer references, enter the following statement into the top text

box with either IE5 or NN6:

document.body == document.getElementsByTagName(“BODY”)[0]

Next, check out the BODY object’s property listings later in this chapter and enter

the listings into the top text box to review their results. For example:

document.body.bgColor
document.body.tagName

charset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the charset property. To see

the default setting applied to the page, enter the following statement into the top

text box:

document.charset

document.charset

(c) ketabton.com: The Digital Library

CD-360 Part VI ✦ Appendixes

If you are running IE5+ for Windows 98 and you enter the following statement, the

browser will apply a different character set to the page:

document.charset = “iso-8859-2”

If your version of Windows does not have that character set installed in the system,

the browser may ask permission to download and install the character set.

characterSet

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the characterSet property in

NN6. To see the default setting applied to the page, enter the following statement

into the top text box:

document.charset

cookie

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Experiment with the last group of statements in Listing 18-3 to create, retrieve, and

delete cookies. You can also experiment with The Evaluator by assigning a

name/value pair string to document.cookie, and then examining the value of the

cookie property.

defaultCharset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.defaultCharset

(c) ketabton.com: The Digital Library

CD-361Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to experiment with the defaultCharset property.

To see the default setting applied to the page, enter the following statement into the

top text box:

document.defaultCharset

documentElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to examine the behavior of the documentElement
property. In IE5+ or NN6, enter the following statement into the top text field:

document.documentElement.tagName

The result is HTML, as expected.

expando

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the document.expando prop-

erty in IE4+. Begin by proving that the document object can normally accept cus-

tom properties. Type the following statement into the top text field:

document.spooky = “Boo!”

This property is now set and stays that way until the page is either reloaded or

unloaded.

document.expando

(c) ketabton.com: The Digital Library

CD-362 Part VI ✦ Appendixes

Now freeze the document object’s properties with the following statement:

document.expando = false

If you try to add a new property, such as the following, you receive an error:

document.happy = “tra la”

Interestingly, even though document.expando is turned off, the first custom prop-

erty is still accessible and modifiable.

fgColor
See alinkColor.

fileCreatedDate
fileModifiedDate
fileSize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-4 dynamically generates several pieces of content relating to the creation

and modification dates of the file, as well as its size. More importantly, the listing

demonstrates how to turn a value returned by the file date properties into a gen-

uine date object that can be used for date calculations. In the case of Listing 18-4,

the calculation is the number of full days between the creation date and the day

someone views the file. Notice that the dynamically generated content is added

very simply via the innerText properties of carefully-located SPAN elements in the

body content.

Listing 18-4: Viewing File Dates

<HTML>
<HEAD>
<TITLE>fileCreatedDate and fileModifiedDate Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

document.fileCreatedDate

(c) ketabton.com: The Digital Library

CD-363Appendix F ✦ Examples from Parts III and IV

function fillInBlanks() {
var created = document.fileCreatedDate
var modified = document.fileModifiedDate
document.all.created.innerText = created
document.all.modified.innerText = modified
var createdDate = new Date(created).getTime()
var today = new Date().getTime()
var diff = Math.floor((today - createdDate) / (1000*60*60*24))
document.all.diff.innerText = diff
document.all.size.innerText = document.fileSize

}
</SCRIPT>
</HEAD>

<BODY onLoad=”fillInBlanks()”>
<H1>fileCreatedDate and fileModifiedDate Properties</H1>
<HR>
<P>This file (bytes) was created
on and most
recently modified on .</P>
<P>It has been days since this file was
created.</P>
</BODY>
</HTML>

forms

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The document in Listing 18-5 is set up to display an alert dialog box that simulates

navigation to a particular music site, based on the checked status of the “bluish”

check box. The user input here is divided into two forms: one form with the check

box and the other form with the button that does the navigation. A block of copy

fills the space in between. Clicking the bottom button (in the second form) triggers

the function that fetches the checked property of the “bluish” checkbox by using

the document.forms[i] array as part of the address.

document.forms

(c) ketabton.com: The Digital Library

CD-364 Part VI ✦ Appendixes

Listing 18-5: Using the document.forms Property

<HTML>
<HEAD>
<TITLE>document.forms example</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goMusic() {

if (document.forms[0].bluish.checked) {
alert(“Now going to the Blues music area...”)

} else {
alert(“Now going to Rock music area...”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME=”theBlues”>
<INPUT TYPE=”checkbox” NAME=”bluish”>Check here if you’ve got the blues.
</FORM>
<HR>
M

o

r

e

C

o

p

y

<HR>
<FORM NAME=”visit”>
<INPUT TYPE=”button” VALUE=”Visit music site” onClick=”goMusic()”>
</FORM>
</BODY>
</HTML>

frames

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.frames

(c) ketabton.com: The Digital Library

CD-365Appendix F ✦ Examples from Parts III and IV

Example
See Listings 16-7 and 16-8 for examples of using the frames property with window

objects. The listings works with IE4+ if you swap references to the window with

document.

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to examine the height and width properties of

that document. Enter the following statement into the top text box and click the

Evaluate button:

“height=” + document.height + “; width=” + document.width

Resize the window so that you see both vertical and horizontal scrollbars in the

browser window and click the Evaluate button again. If either or both numbers get

smaller, the values in the Results box are the exact size of the space occupied by

the document. But if you expand the window to well beyond where the scrollbars

are needed, the values extend to the number of pixels in each dimension of the win-

dow’s content region.

images

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

Example
The document.images property is defined automatically as the browser builds the

object model for a document that contains image objects. See the discussion about

the Image object in Chapter 22 for reference examples.

document.images

(c) ketabton.com: The Digital Library

CD-366 Part VI ✦ Appendixes

implementation

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the document.implementation.
hasFeature() method in NN6. Enter the following statements one at a time into the

top text field and examine the results:

document.implementation.hasFeature(“HTML”,”1.0”)
document.implementation.hasFeature(“HTML”,”2.0”)
document.implementation.hasFeature(“HTML”,”3.0”)
document.implementation.hasFeature(“CSS”,”2.0”)
document.implementation.hasFeature(“CSS2”,”2.0”)

Feel free to try other values.

lastModified

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Experiment with the document.lastModified property with Listing 18-6. But also

be prepared for inaccurate readings if the file is located on some servers or local

hard disks.

Listing 18-6: document.lastModified Property in Another
Format

<HTML>
<HEAD>
<TITLE>Time Stamper</TITLE>
</HEAD>
<BODY>

document.lastModified

(c) ketabton.com: The Digital Library

CD-367Appendix F ✦ Examples from Parts III and IV

<CENTER> <H1>GiantCo Home Page</H1></CENTER>
<SCRIPT LANGUAGE=”JavaScript”>
update = new Date(document.lastModified)
theMonth = update.getMonth() + 1
theDate = update.getDate()
theYear = update.getFullYear()
document.writeln(“<I>Last updated:” + theMonth + “/” + theDate + “/” + theYear +
“</I>”)
</SCRIPT>
<HR>
</BODY>
</HTML>

As noted at great length in Chapter 36’s discussion about the Date object, you

should be aware that date formats vary greatly from country to country. Some of

these formats use a different order for date elements. When you hard-code a date

format, it may take a form that is unfamiliar to other users of your page.

layers

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 18-7 demonstrates only for NN4 how to use the document.layers property

to crawl through the entire set of nested layers in a document. Using reflexive calls

to the crawlLayers() function, the script builds an indented list of layers in the

same hierarchy as the objects themselves and displays the results in an alert dialog

box. After you load this document (the script is triggered by the onLoad event han-

dler), compare the alert dialog box contents against the structure of <LAYER> tags

in the document.

Listing 18-7: A Navigator 4 Layer Crawler

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var output = “”

Continued

document.layers

(c) ketabton.com: The Digital Library

CD-368 Part VI ✦ Appendixes

Listing 18-7 (continued)

function crawlLayers(layerArray, indent) {
for (var i = 0; i < layerArray.length; i++) {

output += indent + layerArray[i].name + “\n”
if (layerArray[i].document.layers.length) {

var newLayerArray = layerArray[i].document.layers
crawlLayers(newLayerArray, indent + “ “)

}
}
return output

}
function revealLayers() {

alert(crawlLayers(document.layers, “”))
}
</SCRIPT>
</HEAD>
<BODY onLoad=”revealLayers()”>
<LAYER NAME=”Europe”>

<LAYER NAME=”Germany”></LAYER>
<LAYER NAME=”Netherlands”>

<LAYER NAME=”Amsterdam”></LAYER>
<LAYER NAME=”Rotterdam”></LAYER>

</LAYER>
<LAYER NAME=”France”></LAYER>

</LAYER>
<LAYER NAME=”Africa”>

<LAYER NAME=”South Africa”></LAYER>
<LAYER NAME=”Ivory Coast”></LAYER>

</LAYER>
</BODY>
</HTML>

linkColor
See alinkColor.

links

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.links

(c) ketabton.com: The Digital Library

CD-369Appendix F ✦ Examples from Parts III and IV

Example
The document.links property is defined automatically as the browser builds the

object model for a document that contains link objects. You rarely access this prop-

erty, except to determine the number of link objects in the document.

location
URL

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � (�) (�) � � �

Example
HTML documents in Listing 18-8 through 18-10 create a test lab that enables you to

experiment with viewing the document.URL property for different windows and

frames in a multiframe environment. Results are displayed in a table, with an addi-

tional listing of the document.title property to help you identify documents

being referred to. The same security restrictions that apply to retrieving

window.location object properties also apply to retrieving the document.URL
property from another window or frame.

Listing 18-8: Frameset for document.URL Property Reader

<HTML>
<HEAD>
<TITLE>document.URL Reader</TITLE>
</HEAD>
<FRAMESET ROWS=”60%,40%”>

<FRAME NAME=”Frame1” SRC=”lst18-10.htm”>
<FRAME NAME=”Frame2” SRC=”lst18-09.htm”>

</FRAMESET>
</HTML>

document.location

(c) ketabton.com: The Digital Library

CD-370 Part VI ✦ Appendixes

Listing 18-9 document.URL Property Reader

<HTML>
<HEAD>
<TITLE>URL Property Reader</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function fillTopFrame() {

newURL=prompt(“Enter the URL of a document to show in the top frame:”,””)
if (newURL != null && newURL != “”) {

top.frames[0].location = newURL
}

}

function showLoc(form,item) {
var windName = item.value
var theRef = windName + “.document”
form.dLoc.value = unescape(eval(theRef + “.URL”))
form.dTitle.value = unescape(eval(theRef + “.title”))

}
</SCRIPT>
</HEAD>

<BODY>
Click the “Open URL” button to enter the location of an HTML document to display
in the upper frame of this window.
<FORM>
<INPUT TYPE=”button” NAME=”opener” VALUE=”Open URL...” onClick=”fillTopFrame()”>
</FORM>
<HR>
<FORM>
Select a window or frame to view each document property values.<P>
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent”
onClick=”showLoc(this.form,this)”>Parent window
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”top.frames[0]”
onClick=”showLoc(this.form,this)”>Upper frame
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”top.frames[1]”
onClick=”showLoc(this.form,this)”>This frame<P>
<TABLE BORDER=2>
<TR><TD ALIGN=RIGHT>document.URL:</TD>
<TD><TEXTAREA NAME=”dLoc” ROWS=3 COLS=30 WRAP=”soft”></TEXTAREA></TD></TR>

<TR><TD ALIGN=RIGHT>document.title:</TD>
<TD><TEXTAREA NAME=”dTitle” ROWS=3 COLS=30 WRAP=”soft”></TEXTAREA></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

document.location

(c) ketabton.com: The Digital Library

CD-371Appendix F ✦ Examples from Parts III and IV

Listing 18-10: Placeholder for Listing 18-8

<HTML>
<HEAD>
<TITLE>Opening Placeholder</TITLE>
</HEAD>
<BODY>
Initial place holder. Experiment with other URLs for this frame (see below).
</BODY>
</HTML>

parentWindow

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To prove the parentWindow property points to the document’s window, you can

enter the following statement into the top text field of The Evaluator (Chapter 13):

document.parentWindow == self

This expression evaluates to true only if both references are of the same object.

protocol

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
If you use The Evaluator (Chapter 13) to test the document.protocol property,

you will find that it displays File Protocol in the results because you are access-

ing the listing from a local hard disk or CD-ROM.

document.protocol

(c) ketabton.com: The Digital Library

CD-372 Part VI ✦ Appendixes

referrer

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
This demonstration requires two documents (and for IE, you’ll also need to access

the documents from a Web server). The first document, in Listing 18-11, simply con-

tains one line of text as a link to the second document. In the second document

(Listing 18-12), a script verifies the document from which the user came via a link. If

the script knows about that link, it displays a message relevant to the experience

the user had at the first document. Also try opening Listing 18-12 in a new browser

window from the Open File command in the File menu to see how the script won’t

recognize the referrer.

Listing 18-11: A Source Document

<HTML>
<HEAD>
<TITLE>document.referrer Property 1</TITLE>
</HEAD>

<BODY>
<H1>Visit my sister document
</BODY>
</HTML>

Listing 18-12: Checking document.referrer

<HTML>
<HEAD>
<TITLE>document.referrer Property 2</TITLE>
</HEAD>

<BODY><H1>
<SCRIPT LANGUAGE=”JavaScript”>
if(document.referrer.length > 0 && document.referrer.indexOf(“18-11.htm”) != -1){

document.referrer

(c) ketabton.com: The Digital Library

CD-373Appendix F ✦ Examples from Parts III and IV

document.write(“How is my brother document?”)
} else {

document.write(“Hello, and thank you for stopping by.”)
}
</SCRIPT>
</H1></BODY>
</HTML>

scripts

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can experiment with the document.scripts array in The Evaluator (Chapter

13). For example, you can see that only one SCRIPT element object is in The

Evaluator page if you enter the following statement into the top text field:

document.scripts.length

If you want to view all of the properties of that lone SCRIPT element object, enter

the following statement into the bottom text field:

document.scripts[0]

Among the properties are both innerText and text. If you assign an empty string

to either property, the scripts are wiped out from the object model, but not from

the browser. The scripts disappear because after the scripts loaded, they were

cached outside of the object model. Therefore, if you enter the following statement

into the top field:

document.scripts[0].text = “”

the script contents are gone from the object model, yet subsequent clicks of the

Evaluate and List Properties buttons (which invoke functions of the SCRIPT element

object) still work.

document.scripts

(c) ketabton.com: The Digital Library

CD-374 Part VI ✦ Appendixes

selection

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listings 15-30 and 15-39 in Chapter 15 to see the document.selection prop-

erty in action for script-controlled copying and pasting (IE/Windows only).

URL
See location.

vlinkColor
See alinkColor.

width
See height.

Methods
captureEvents(eventTypeList)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See the example for the NN4 window.captureEvents() method in Chapter 16

(Listing 16-21) to see how to capture events on their way to other objects. In that

example, you can substitute the document reference for the window reference to

see how the document version of the method works just like the window version. If

you understand the mechanism for windows, you understand it for documents. The

same is true for the other NN4 event methods.

document.captureEvents()

(c) ketabton.com: The Digital Library

CD-375Appendix F ✦ Examples from Parts III and IV

close()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Before you experiment with the document.close() method, be sure you under-

stand the document.write() method described later in this chapter. After that,

make a separate set of the three documents for that method’s example (Listings

18-16 through 18-18 in a different directory or folder). In the takePulse() function

listing, comment out the document.close() statement, as shown here:

msg += “<P>Make it a great day!</BODY></HTML>”
parent.frames[1].document.write(msg)
//parent.frames[1].document.close()

Now try the pages on your browser. You see that each click of the upper button

appends text to the bottom frame, without first removing the previous text. The

reason is that the previous layout stream was never closed. The document thinks

that you’re still writing to it. Also, without properly closing the stream, the last line

of text may not appear in the most recently written batch.

createAttribute(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Unfortunately, the setAttributeNode() method in NN6 does not yet work with

attributes generated by the createAttribute() method. This will be fixed eventu-

ally, and you can experiment adding attributes to sample elements in The Evaluator.

In the meantime, you can still create an attribute and inspect its properties. Enter

the following text into the top text box:

a = document.createAttribute(“author”)

Now enter a into the bottom text box to inspect the properties of an Attr object.

document.createAttribute()

(c) ketabton.com: The Digital Library

CD-376 Part VI ✦ Appendixes

createElement(“tagName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Chapter 15 contains numerous examples of the document.createElement()
method in concert with methods that add or replace content to a document. See

Listings 15-10, 15-21, 15-22,15 -28, 15-29, and 15-31.

createEventObject([eventObject])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See the discussion of the fireEvent() method in Chapter 15 for an example of the

sequence to follow when creating an event to fire on an element.

createStyleSheet([“URL”[, index]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-13 demonstrates adding an internal and external style sheet to a docu-

ment. For the internal addition, the addStyle1() function invokes document.
createStyleSheet() and adds a rule governing the P elements of the page (not

available for IE5/Mac). In the addStyle2() function, an external file is loaded. That

file contains the following two style rules:

H2 {font-size:20pt; color:blue}
P {color:blue}

document.createStyleSheet()

(c) ketabton.com: The Digital Library

CD-377Appendix F ✦ Examples from Parts III and IV

Notice that by specifying a position of zero for the imported style sheet, the addi-

tion of the internal style sheet always comes afterward in styleSheet object

sequence. Thus, except when you deploy only the external style sheet, the red text

color of the P elements override the blue color of the external style sheet. If you

remove the second parameter of the createStyleSheet() method in

addStyle2(), the external style sheet is appended to the end of the list. If it is the

last style sheet to be added, the blue color prevails. Repeatedly clicking the buttons

in this example continues to add the style sheets to the document.

Listing 18-13: Using document.createStyleSheet()

<HTML>
<HEAD>
<TITLE>document.createStyleSheet() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function addStyle1() {

var newStyle = document.createStyleSheet()
newStyle.addRule(“P”, “font-size:16pt; color:red”)

}

function addStyle2() {
var newStyle = document.createStyleSheet(“lst18-13.css”,0)

}
</SCRIPT>
</HEAD>

<BODY>
<H1>document.createStyleSheet() Method</H1>
<HR>
<FORM>
<INPUT TYPE=”button” VALUE=”Add Internal” onClick=”addStyle1()”>
<INPUT TYPE=”button” VALUE=”Add External” onClick=”addStyle2()”>
</FORM>
<H2>Section 1</H2>
<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.</P>
<H2>Section 2</H2>
<P>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum.</P>
</BODY>
</HTML>

document.createStyleSheet()

(c) ketabton.com: The Digital Library

CD-378 Part VI ✦ Appendixes

createTextNode(“text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While Chapter 14 and 15 (Listing 15-21, for instance) provide numerous examples of

the createTextNode() method at work, using The Evaluator (Chapter 13) is

instructive to see just what the method generates in IE5+ and NN6. You can use one

of the built-in global variables of The Evaluator to hold a reference to a newly gener-

ated text node by entering the following statement into the top text field:

a = document.createTextNode(“Hello”)

The Results box shows that an object was created. Now, look at the properties of

the object by typing a into the bottom text field. The precise listings of properties

varies between IE5+ and NN6, but the W3C DOM properties that they share in com-

mon indicate that the object is a node type 3 with a node name of #text. No par-

ents, children, or siblings exist yet because the object created here is not part of

the document hierarchy tree until it is explicitly added to the document.

To see how insertion works, enter the following statement into the top text field to

append the text node to the myP paragraph:

document.getElementById(“myP”).appendChild(a)

The word “Hello” appears at the end of the simple paragraph lower on the page.

Now you can modify the text of that node either via the reference from the point of

view of the containing P element or via the global variable reference for the newly

created node:

document.getElementById(“myP”).lastChild.nodeValue = “Howdy”

or

a.nodeValue = “Howdy”

document.createTextNode()

(c) ketabton.com: The Digital Library

CD-379Appendix F ✦ Examples from Parts III and IV

elementFromPoint(x, y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-14 is a document that contains many different types of elements, each of

which has an ID attribute assigned to it. The onMouseOver event handler for the

document object invokes a function that finds out which element the cursor is over

when the event fires. Notice that the event coordinates are event.clientX and

event.clientY, which use the same coordinate plane as the page for their point of

reference. As you roll the mouse over every element, its ID appears on the page.

Some elements, such as BR and TR, occupy no space in the document, so you can-

not get their IDs to appear. On a typical browser screen size, a positioned element

rests atop one of the paragraph elements so that you can see how the

elementFromPoint() method handles overlapping elements. If you scroll the page,

the coordinates for the event and the page’s elements stay in sync.

Listing 18-14: Using the elementFromPoint() Method

<HTML>
<HEAD>
<TITLE>document.elementFromPoint() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showElemUnderneath() {

var elem = document.elementFromPoint(event.clientX, event.clientY)
document.all.mySpan.innerText = elem.id

}
document.onmouseover = showElemUnderneath
</SCRIPT>
</HEAD>

<BODY ID=”myBody”>
<H1 ID=”header”>document.elementFromPoint() Method</H1>
<HR ID=”myHR”>
<P ID=”instructions”>Roll the mouse around the page. The coordinates
of the mouse pointer are currently atop an element<BR ID=”myBR”>whose ID
is:””.</P>
<FORM ID=”myForm”>
<INPUT ID=”myButton” TYPE=”button” VALUE=”Sample Button” onClick=””>
</FORM>

Continued

document.elementFromPoint()

(c) ketabton.com: The Digital Library

CD-380 Part VI ✦ Appendixes

Listing 18-14 (continued)

<TABLE BORDER=1 ID=”myTable”>
<TR ID=”tr1”>

<TD ID=”td_A1”>Cell A1</TD>
<TD ID=”td_B1”>Cell B1</TD>

</TR>
<TR ID=”tr2”>

<TD ID=”td_A2”>Cell A2</TD>
<TD ID=”td_B2”>Cell B2</TD>

</TR>
</TABLE>
<H2 ID=”sec1”>Section 1</H2>
<P ID=”p1”>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.</P>
<H2 ID=”sec2”>Section 2</H2>
<P ID=”p2”>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum.</P>
<DIV ID=”myDIV” STYLE=”position:absolute; top:340; left:300; background-
color:yellow”>
Here is a positioned element.</DIV>
</BODY>
</HTML>

execCommand(“commandName”[, UIFlag]
[, param])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find many examples of the execCommand() method for the TextRange
object in Chapter 19. But you can try out the document-specific commands in The

Evaluator (Chapter 13) if you like. Try each of the following statements in the top

text box and click the Evaluate button:

document.execCommand()

(c) ketabton.com: The Digital Library

CD-381Appendix F ✦ Examples from Parts III and IV

document.execCommand(“Refresh”)
document.execCommand(“SelectAll”)
document.execCommand(“Unselect”)

All methods return true in the Results box.

Because any way you can evaluate a statement in The Evaluator forces a body

selection to become deselected before the evaluation takes place, you can’t experi-

ment this way with the selection-oriented commands.

getElementById(“elementID”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find many examples of this method in use throughout this book, but you

can take a closer look at how it works by experimenting in The Evaluator

(Chapter 13). A number of elements in The Evaluator have IDs assigned to them, so

that you can use the method to inspect the objects and their properties. Enter the

following statements into both the top and bottom text fields of The Evaluator.

Results from the top field are references to the objects; results from the bottom

field are lists of properties for the particular object.

document.getElementById(“myP”)
document.getElementById(“myEM”)
document.getElementById(“myTitle”)
document.getElementById(“myScript”)

As you see in the Results field, NN6 is more explicit about the type of HTML ele-

ment object being referenced in the top text field than IE5. But both browsers are

pointing to the same objects just the same.

getElementsByName(“elementName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.getElementsByName()

(c) ketabton.com: The Digital Library

CD-382 Part VI ✦ Appendixes

Example
Use The Evaluator to test out the getElementsByName() method. All form ele-

ments in the upper part of the page have names associated with them. Enter the fol-

lowing statements into the top text field and observe the results:

document.getElementsByName(“output”)
document.getElementsByName(“speed”).length
document.getElementsByName(“speed”)[0].value

You can also explore all of the properties of the text field by typing the following

expression into the bottom field:

document.getElementsByName(“speed”)[0]

getSelection()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The document in Listing 18-15 provides a cross-browser (but not IE5/Mac) solution

to capturing text that a user selects in the page. Selected text is displayed in the

textarea. The script uses browser detection and branching to accommodate the

diverse ways of recognizing the event and reading the selected text.

Listing 18-15: Capturing a Text Selection

<HTML>
<HEAD>
<TITLE>Getting Selected Text</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav4 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) == 4)
var isNav4Min = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) >= 4)
var isIE4Min = (navigator.appName.indexOf(“Microsoft”) != -1 &&

parseInt(navigator.appVersion) >= 4)
function showSelection() {

if (isNav4Min) {
document.forms[0].selectedText.value = document.getSelection()

} else if (isIE4Min) {

document.getSelection()

(c) ketabton.com: The Digital Library

CD-383Appendix F ✦ Examples from Parts III and IV

if (document.selection) {
document.forms[0].selectedText.value =

document.selection.createRange().text
event.cancelBubble = true

}
}

}
if (isNav4) {

document.captureEvents(Event.MOUSEUP)
}
document.onmouseup = showSelection
</SCRIPT>
</HEAD>

<BODY>
<H1>Getting Selected Text</H1>
<HR>
<P>Select some text and see how JavaScript can capture the selection:</P>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the
free exercise thereof; or abridging the freedom of speech, or of the press; or
the right of the people peaceably to assemble, and to petition the government
for a redress of grievances.
</P>
</HR>
<FORM>
<TEXTAREA NAME=”selectedText” ROWS=3 COLS=40 WRAP=”virtual”></TEXTAREA>
</FORM>
</BODY>
</HTML>

open([“mimeType”] [, replace])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
You can see an example of where the document.open() method fits in the scheme

of dynamically creating content for another frame in the discussion of the

document.write() method, later in this chapter.

document.open()

(c) ketabton.com: The Digital Library

CD-384 Part VI ✦ Appendixes

queryCommandEnabled(“commandName“)
queryCommandIndterm(“commandName“)
queryCommandCommandState(“commandName“)
queryCommandSupported(“commandName“)
queryCommandText(“commandName“)
queryCommandValue(“commandName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See the examples for these methods covered under the TextRange object in

Chapter 19.

recalc([allFlag])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can see an example of recalc() in Listing 15-32 for the setExpression()
method. In that example, the dependencies are between the current time and prop-

erties of standard element objects.

write(“string1“[,“string2“...[,“stringn“]])
writeln(“string1”[,”string2”...[,“stringn”]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.write()

(c) ketabton.com: The Digital Library

CD-385Appendix F ✦ Examples from Parts III and IV

Example
The example in Listings 18-16 through 18-18 demonstrates several important points

about using the document.write() or document.writeln() methods for writing

to another frame. First is the fact that you can write any HTML code to a frame, and

the browser accepts it as if the source code came from an HTML file somewhere. In

the example, I assemble a complete HTML document, including basic HTML tags for

completeness.

Listing 18-16: Frameset for document.write() Example

<HTML>
<HEAD>
<TITLE>Writin’ to the doc</TITLE>
</HEAD>
<FRAMESET ROWS=”50%,50%”>

<FRAME NAME=”Frame1” SRC=”lst18-17.htm”>
<FRAME NAME=”Frame2” SRC=”lst18-18.htm”>

</FRAMESET>
</HTML>

Listing 18-17: document.write() Example

<HTML>
<HEAD>
<TITLE>Document Write Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function takePulse(form) {

var msg = “<HTML><HEAD><TITLE>On The Fly with “ + form.yourName.value +
“</TITLE></HEAD>”

msg += “<BODY BGCOLOR=’salmon’><H1>Good Day “ + form.yourName.value +
“!</H1><HR>”

for (var i = 0; i < form.how.length; i++) {
if (form.how[i].checked) {

msg += form.how[i].value
break

}
}
msg += “<P>Make it a great day!</BODY></HTML>”
parent.Frame2.document.write(msg)
parent.Frame2.document.close()

}

Continued

document.write()

(c) ketabton.com: The Digital Library

CD-386 Part VI ✦ Appendixes

Listing 18-17 (continued)

function getTitle() {
alert(“Lower frame document.title is now:” + parent.Frame2.document.title)

}
</SCRIPT>
</HEAD>

<BODY>
Fill in a name, and select how that person feels today. Then click “Write To
Below”
to see the results in the bottom frame.
<FORM>
Enter your first name:<INPUT TYPE=”text” NAME=”yourName” VALUE=”Dave”><P>
How are you today? <INPUT TYPE=”radio” NAME=”how”
VALUE=”I hope that feeling continues forever.” CHECKED>Swell
<INPUT TYPE=”radio” NAME=”how” VALUE=”You may be on your way to feeling Swell”>
Pretty Good
<INPUT TYPE=”radio” NAME=”how” VALUE=”Things can only get better from here.”>
So-So<P>
<INPUT TYPE=”button” NAME=”enter” VALUE=”Write To Below”

onClick=”takePulse(this.form)”>
<HR>
<INPUT TYPE=”button” NAME=”peek” VALUE=”Check Lower Frame Title”

onClick=”getTitle()”>
</BODY>
</HTML>

Listing 18-18: Placeholder for Listing 18-16

<HTML>
<HEAD>
<TITLE>Placeholder</TITLE>
<BODY>
</BODY>
</HTML>

Figure 18-2 shows an example of the frame written by the script.

document.write()

(c) ketabton.com: The Digital Library

CD-387Appendix F ✦ Examples from Parts III and IV

Figure 18-2: Clicking the Write To Below button in the upper frame causes a script to
assemble and write HTML for the bottom frame.

A second point to note is that this example customizes the content of the document

based on user input. This customization makes the experience of working with your

Web page feel far more interactive to the user — yet you’re doing it without any CGI

programs running on the server.

The third point I want to bring home is that the document created in the separate

frame by the document.write() method is a genuine document object. In this

example, for instance, the <TITLE> tag of the written document changes if you

redraw the lower frame after changing the entry of the name field in the upper

frame. If you click the lower button after updating the bottom frame, you see that

the document.title property has, indeed, changed to reflect the <TITLE> tag writ-

ten to the browser in the course of displaying the frame’s page (except in NN4/Mac,

which exhibits a bug for this property in a dynamically written document). The fact

that you can artificially create full-fledged, JavaScript document objects on the fly

represents one of the most important powers of serverless CGI scripting (for infor-

mation delivery to the user) with JavaScript. You have much to take advantage of

here if your imagination is up to the task.

document.write()

(c) ketabton.com: The Digital Library

CD-388 Part VI ✦ Appendixes

Notice that except for NN2, you can easily modify Listing 18-17 to write the results

to the same frame as the document containing the field and buttons. Instead of

specifying the lower frame

parent.frames[1].document.open()
parent.frames[1].document.write(msg)
parent.frames[1].document.close()

the code simply can use

document.open()
document.write(msg)
document.close()

This code would replace the form document with the results and not require any

frames in the first place. Because the code assembles all of the content for the new

document into one variable value, that data survive the one document.write()
method.

The frameset document (Listing 18-18) creates a blank frame by loading a blank doc-

ument (Listing 18-18). An alternative I highly recommend is to have the framesetting

document fill the frame with a blank document of its own creation. See “Blank

Frames” in Chapter 16 for further details about this technique for NN3+ and IE3+.

Event Handlers
onStop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 18-19 provides a simple example of an intentional infinitely looping script. In

case you load this page into a browser other than IE5, you can click the Halt

Counter button to stop the looping. The Halt Counter button as well as the onStop
event handler invoke the same function.

document.onStop

(c) ketabton.com: The Digital Library

CD-389Appendix F ✦ Examples from Parts III and IV

Listing 18-19: Scripting the Browser Stop Button

<HTML>
<HEAD>
<TITLE>onStop Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var counter = 0
var timerID
function startCounter() {

document.forms[0].display.value = ++counter
//clearTimeout(timerID)
timerID = setTimeout(“startCounter()”, 10)

}
function haltCounter() {

clearTimeout(timerID)
counter = 0

}
document.onstop = haltCounter
</SCRIPT>
</HEAD>

<BODY>
<H1>onStop Event Handler</H1>
<HR>
<P>Click the browser’s Stop button (in IE) to stop the script counter.</P>
<FORM>
<P><INPUT TYPE=”text” NAME=”display”></P>
<INPUT TYPE=”button” VALUE=”Start Counter” onClick=”startCounter()”>
<INPUT TYPE=”button” VALUE=”Halt Counter” onClick=”haltCounter()”>
</FORM>
</BODY>
</HTML>

document.onStop

(c) ketabton.com: The Digital Library

CD-390 Part VI ✦ Appendixes

BODY Element Object

Properties
aLink
bgColor
link
text
vLink

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can modify Listing 18-1 for use with IE4+ and NN6+ only by using the new prop-

erty names instead. Replace all references to the document properties with their

document.body equivalents. For example, the function would be reworked as the

following (changes in boldface):

function showColorValues() {
var result = “”
result += “bgColor: “ + newWindow.document.body.bgColor + “\n”
result += “vLink: “ + newWindow.document.body.vLink + “\n”
result += “link: “ + newWindow.document.body.link + “\n”
document.forms[0].results.value = result

}

background

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

document.body.background

(c) ketabton.com: The Digital Library

CD-391Appendix F ✦ Examples from Parts III and IV

Example
If you have a background image file named images/logoBG.gif, a script can set

the background via the following statement:

document.body.background = “images/logoBG.gif”

To clear the background image:

document.body.background = “”

If a background color has been previously set, the color becomes visible after the

image disappears.

bgColor
See aLink.

bgProperties

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Both of the following statements change the default behavior of background image

scrolling in IE4+:

document.body.bgProperties = “fixed”

or

document.body.style.backgroundAttachment = “fixed”

The added benefit of using the style sheet version is that it also works in NN6.

document.body.bgProperties

(c) ketabton.com: The Digital Library

CD-392 Part VI ✦ Appendixes

bottomMargin
leftMargin
rightMargin
topMargin

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Both of the following statements change the default left margin in IE4+:

document.body.leftMargin = 30

or

document.body.style.marginLeft = 30

leftMargin
See bottomMargin.

link
See aLink.

noWrap

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To change the word wrapping behavior from the default, the statement is:

document.body.noWrap = true

document.body.noWrap

(c) ketabton.com: The Digital Library

CD-393Appendix F ✦ Examples from Parts III and IV

rightMargin
See bottomMargin.

scroll

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To change the scrollbar appearance from the default, the statement is:

document.body.scroll = “no”

scrollLeft
scrollTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-20 is the IE4+ version of the NN example for pageXOffset and

pageYOffset properties (Listing 16-13). Everything about these two examples is

the same except for the syntax that retrieves the values indicating how much the

document is scrolled in a window.

Listing 18-20: Viewing the scrollLeft and scrollTop Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function leftFrame() {

var output = “<HTML><BODY><H3>Body Scroll Values</H3><HR>\n”

Continued

document.body.scrollLeft

(c) ketabton.com: The Digital Library

CD-394 Part VI ✦ Appendixes

Listing 18-20 (continued)

output += “<FORM>body.scrollLeft:<INPUT TYPE=’text’ NAME=’xOffset’
SIZE=4>
\n”

output += “body.scrollTop:<INPUT TYPE=’text’ NAME=’yOffset’ SIZE=4>
\n”
output += “</FORM></BODY></HTML>”
return output

}

function rightFrame() {
var output = “<HTML><HEAD><SCRIPT LANGUAGE=’JavaScript’>\n”
output += “function showOffsets() {\n”
output += “parent.readout.document.forms[0].xOffset.value = “ +

“document.body.scrollLeft\n”
output += “parent.readout.document.forms[0].yOffset.value = “ +

“document.body.scrollTop\n}\n”
output += “document.onclick = showOffsets\n”
output += “<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n”
output += “Scroll this frame and click on a table border to view “ +

“page offset values.
<HR>\n”
output += “<TABLE BORDER=5 WIDTH=800>”
var oneRow = “<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD><TD>Cell 4</TD>” +

“<TD>Cell 5</TD>”
for (var i = 1; i <= 30; i++) {

output += “<TR><TD>Row “ + i + “</TD>” + oneRow + “</TR>”
}
output += “</TABLE></BODY></HTML>”
return output

}
</SCRIPT>
</HEAD>
<FRAMESET COLS=”30%,70%”>

<FRAME NAME=”readout” SRC=”javascript:parent.leftFrame()”>
<FRAME NAME=”display” SRC=”javascript:parent.rightFrame()”>

</FRAMESET>
</HTML>

text
See aLink.

topMargin
See bottomMargin.

document.body.topMargin

(c) ketabton.com: The Digital Library

CD-395Appendix F ✦ Examples from Parts III and IV

vLink
See aLink.

Methods
createTextRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-8 for an example of the createTextRange() method in action.

doScroll([“scrollAction”])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to experiment with the doScroll() method in

IE5+. Size the browser window so that at least the vertical scrollbar is active (mean-

ing it has a thumb region). Enter the following statement into the top text field and

press Enter a few times to simulate clicking the PgDn key:

document.body.doScroll()

Return to the top of the page and now do the same for scrolling by the increment of

the scrollbar down arrow:

document.body.doScroll(“down”)

You can also experiment with upward scrolling. Enter the desired statement in the

top text field and leave the text cursor in the field. Manually scroll to the bottom of

the page and then press Enter to activate the command.

document.body.doScroll()

(c) ketabton.com: The Digital Library

CD-396 Part VI ✦ Appendixes

Event Handlers
onAfterPrint
onBeforePrint

See the onAfterPrint event handler for the window object, Chapter 16.

onScroll

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-21 is a highly artificial demonstration of what can be a useful tool for

some page designs. Consider a document that occupies a window or frame, but one

that you don’t want scrolled, even by accident with one of the newer mouse wheels

that are popular with Wintel PCs. If scrolling of the content would destroy the

appearance or value of the content, then you want to make sure that the page

always zips back to the top. The onScroll event handler in Listing 18-21 does just

that. Notice that the event handler is set as a property of the document.body
object after the page has loaded. While the event handler can also be set as an

attribute of the <BODY> tag, to assign it as a property requires the page to load first.

Until then, the document.body object does not yet officially exist in the object

model for this page.

Listing 18-21: Forcing Scrolling to Stay at the Page Top

<HTML>
<HEAD>
<TITLE>onScroll Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function zipBack() {

window.scroll(0,0)
}
function init() {

document.body.onscroll = zipBack
}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>

document.body.onScroll

(c) ketabton.com: The Digital Library

CD-397Appendix F ✦ Examples from Parts III and IV

<H1>onScroll Event Handler</H1>
<HR>
This page always zips back to the top if you try to scroll it.
<P>
<IFRAME FRAMEBORDER=0 SCROLLING=”no” HEIGHT=1000 SRC=”bofright.htm”></IFRAME>
</P>
</BODY>
</HTML>

Chapter 19 Examples
The following sections contain examples from Chapter 19, “Body Text Objects.”

FONT Element Object

Properties
color

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 19-1 contains a page that demonstrates changes to the three FONT element

object properties: color, face, and size. Along the way, you can see an economi-

cal use of the setAttribute() method to do the work for all of the property

changes. This page loads successfully in all browsers, but the SELECT lists make

changes to the text only in IE4+ and NN6+.

A P element contains a nested FONT element that encompasses three words whose

appearance is controlled by three select lists. Each list controls one of the three

FONT object properties, and their NAME attributes are strategically assigned the

names of the properties (as you see in a moment). VALUE attributes for OPTION

elements contain strings that are to be assigned to the various properties. Each

SELECT element invokes the same setFontAttr() function, passing a reference to

itself so that the function can inspect details of the element.

FONT.color

(c) ketabton.com: The Digital Library

CD-398 Part VI ✦ Appendixes

The first task of the setFontAttr() function is to make sure that only browsers

capable of treating the FONT element as an object get to the meat of the function.

The test for the existence of document.all and the myFONT element blocks all

older browsers from changing the font characteristics. As the page loads, the

document.all property is set for NN6 by using a variation of the normalization

technique described in Chapter 14.

For suitably equipped browsers, the function next extracts the string from the

value property of the SELECT object that was passed to the function. If a selection

is made (meaning other than the first, empty one), then the single nested statement

uses the setAttribute() method to assign the value to the attribute whose name

matches the name of the SELECT element.

An odd bug in IE5/Mac doesn’t let the rendered color change when changing the
color property. But the setting is valid, as proven by selecting any of the other
two property choices.

Listing 19-1: Controlling FONT Object Properties

<HTML>
<HEAD>
<TITLE>FONT Object Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// document.all normalization trick for NN6
if (navigator.appName == “Netscape” && parseInt(navigator.appVersion) >= 5) {

document.all = document.getElementsByTagName(“*”)
}

// one function does all!
function setFontAttr(select) {

if (document.all && document.all.myFONT) {
var choice = select.options[select.selectedIndex].value
if (choice) {

document.all.myFONT.setAttribute(select.name, choice)
}

}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>Font Object Properties</H1>

<P>This may look like a simple sentence, but
THESE THREE WORDS
are contained by a FONT element.</P>

Note

FONT.color

(c) ketabton.com: The Digital Library

CD-399Appendix F ✦ Examples from Parts III and IV

<FORM>
Select a text color:
<SELECT NAME=”color” onChange=”setFontAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”green”>Green</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
<OPTION VALUE=”#FA8072”>Some Hex Triplet Value</OPTION>

</SELECT>

Select a font face:
<SELECT NAME=”face” onChange=”setFontAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”Helvetica”>Helvetica</OPTION>
<OPTION VALUE=”Times”>Times</OPTION>
<OPTION VALUE=”Comic Sans MS, sans-serif”>Comic Sans MS, sans-serif</OPTION>
<OPTION VALUE=”Courier, monospace”>Courier, monospace</OPTION>
<OPTION VALUE=”Zapf Dingbats, serif”>Zapf Dingbats, serif</OPTION>

</SELECT>

Select a font size:
<SELECT NAME=”size” onChange=”setFontAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”3”>3 (Default)</OPTION>
<OPTION VALUE=”+1”>Increase Default by 1</OPTION>
<OPTION VALUE=”-1”>Decrease Default by 1</OPTION>
<OPTION VALUE=”1”>Smallest</OPTION>
<OPTION VALUE=”7”>Biggest</OPTION>

</SELECT>
</BODY>
</HTML>

face

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-1 for an example of values that can be used to set the face property

of a FONT element object. While you will notice visible changes to most choices on

the page, the font face selections may not change from one choice to another,

which all depends on the fonts that are installed on your PC.

FONT.face

(c) ketabton.com: The Digital Library

CD-400 Part VI ✦ Appendixes

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-1 for an example of values that can be used to set the size property

of a FONT element object. Notice that incrementing or decrementing the size prop-

erty is applied only to the size assigned to the SIZE attribute of the element (or the

default, if none is specified) and not the current setting adjusted by script.

HR Element Object

Properties
align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 19-2 contains a page that demonstrates the changes to the five HR element

object properties: align, color, noShade, size, and width. Along the way, you can

see an economical use of the setAttribute() method to do the work for all of the

property changes. This page loads successfully in all browsers, but the SELECT lists

make changes to the text only in IE4+ and NN6+ (because they treat the element as

an object).

An HR element (whose ID is myHR) is displayed with the browser default settings

(100% width, centered, and its “magic” color). Each list controls one of the five HR

object properties, and their NAME attributes are strategically assigned the names of

the properties (as you see in a moment). VALUE attributes for OPTION elements

contain strings that are to be assigned to the various properties. Each SELECT ele-

ment invokes the same setHRAttr() function, passing a reference to itself so that

the function can inspect details of the element.

HR.align

(c) ketabton.com: The Digital Library

CD-401Appendix F ✦ Examples from Parts III and IV

The first task of the setHRAttr() function is to make sure that only browsers capa-

ble of treating the HR element as an object get to the meat of the function. As the

page loads, the document.all property is set for NN6 using a normalization tech-

nique described in Chapter 14.

For suitably equipped browsers, the function next reads the string from the value
property of the SELECT object that is passed to the function. If a selection is made

(that is, other than the first, empty one), then the single, nested statement uses the

setAttribute() method to assign the value to the attribute whose name matches

the name of the SELECT element.

Listing 19-2: Controlling HR Object Properties

<HTML>
<HEAD>
<TITLE>HR Object Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// document.all normalization trick for NN6
if (navigator.appName == “Netscape” && parseInt(navigator.appVersion) >= 5) {

document.all = document.getElementsByTagName(“*”)
}

// one function does all!
function setHRAttr(select) {

if (document.all && document.all.myHR) {
var choice = select.options[select.selectedIndex].value
if (choice) {

document.all.myHR.setAttribute(select.name, choice)
}

}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>HR Object Properties</H1>

<P>Here is the HR element you will be controlling:</P>
<HR ID=”myHR”>
<FORM>
Select an alignment:
<SELECT NAME=”align” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”left”>Left</OPTION>
<OPTION VALUE=”center”>Center</OPTION>
<OPTION VALUE=”right”>Right</OPTION>

Continued

HR.align

(c) ketabton.com: The Digital Library

CD-402 Part VI ✦ Appendixes

Listing 19-2 (continued)

</SELECT>

Select a rule color (IE only):
<SELECT NAME=”color” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”green”>Green</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
<OPTION VALUE=”#FA8072”>Some Hex Triplet Value</OPTION>

</SELECT>

Select a rule shading:
<SELECT NAME=”noShade” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=true>No Shading</OPTION>
<OPTION VALUE=false>Shading</OPTION>

</SELECT>

Select a rule height:
<SELECT NAME=”size” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=2>2 (Default)</OPTION>
<OPTION VALUE=4>4 Pixels</OPTION>
<OPTION VALUE=10>10 Pixels</OPTION>

</SELECT>

Select a rule width:
<SELECT NAME=”width” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”100%”>100% (Default)</OPTION>
<OPTION VALUE=”80%”>80%</OPTION>
<OPTION VALUE=300>300 Pixels </OPTION>

</SELECT>
</BODY>
</HTML>

color

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

HR.color

(c) ketabton.com: The Digital Library

CD-403Appendix F ✦ Examples from Parts III and IV

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used to

set the color property of an HR element object.

noShade

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used to

set the noShade property of an HR element object. Because of the buggy behavior

associated with setting this property, adjusting the property in the example has

unexpected (and usually undesirable) consequences.

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used to

set the size property of an HR element object.

width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used to

set the width property of an HR element object.

HR.width

(c) ketabton.com: The Digital Library

CD-404 Part VI ✦ Appendixes

MARQUEE Element Object

Properties
behavior

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-3 contains a page that demonstrates the changes to several MARQUEE

element object properties: behavior, bgColor, direction, scrollAmount, and

scrollDelay. This page and scripts are intended only for IE4+. See the description

of Listing 19-1 for details on the attribute setting script.

Listing 19-3: Controlling MARQUEE Object Properties

<HTML>
<HEAD>
<TITLE>MARQUEE Object Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// one function does all!
function setMARQUEEAttr(select) {

if (document.all && document.all.myMARQUEE) {
var choice = select.options[select.selectedIndex].value
if (choice) {

document.all.myMARQUEE.setAttribute(select.name, choice)
}

}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>MARQUEE Object Properties</H1>

<HR>
<MARQUEE ID=”myMARQUEE” WIDTH=400 HEIGHT=24>This is the MARQUEE element object
you will be controlling.</MARQUEE>
<FORM>

MARQUEE.behavior

(c) ketabton.com: The Digital Library

CD-405Appendix F ✦ Examples from Parts III and IV

<INPUT TYPE=”button” VALUE=”Start Marquee”
onClick=”document.all.myMARQUEE.start()”>
<INPUT TYPE=”button” VALUE=”Stop Marquee”
onClick=”document.all.myMARQUEE.stop()”>

Select a behavior:
<SELECT NAME=”behavior” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”alternate”>Alternate</OPTION>
<OPTION VALUE=”scroll”>Scroll</OPTION>
<OPTION VALUE=”slide”>Slide</OPTION>

</SELECT>

Select a background color:
<SELECT NAME=”bgColor” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”green”>Green</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
<OPTION VALUE=”#FA8072”>Some Hex Triplet Value</OPTION>

</SELECT>

Select a scrolling direction:
<SELECT NAME=”direction” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”left”>Left</OPTION>
<OPTION VALUE=”right”>Right</OPTION>
<OPTION VALUE=”up”>Up</OPTION>
<OPTION VALUE=”down”>Down</OPTION>

</SELECT>

Select a scroll amount:
<SELECT NAME=”scrollAmount” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=4>4</OPTION>
<OPTION VALUE=6>6 (Default)</OPTION>
<OPTION VALUE=10>10</OPTION>

</SELECT>

Select a scroll delay:
<SELECT NAME=”scrollDelay” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=50>Short</OPTION>
<OPTION VALUE=85>Normal</OPTION>
<OPTION VALUE=125>Long</OPTION>

</SELECT>
</BODY>
</HTML>

MARQUEE.behavior

(c) ketabton.com: The Digital Library

CD-406 Part VI ✦ Appendixes

bgColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to the

bgColor property.

direction

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to the

direction property.

scrollAmount
scrollDelay

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to the

scrollAmount and scrollDelay properties.

MARQUEE.scrollAmount

(c) ketabton.com: The Digital Library

CD-407Appendix F ✦ Examples from Parts III and IV

Methods
start()
stop()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for examples of both the start() and

stop() methods, which are invoked in event handlers of separate controlling but-

tons on the page. Notice, too, that when you have the behavior set to slide, stop-

ping and restarting the MARQUEE does not cause the scroll action to start from a

blank region.

Range Object

Properties
collapsed

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the collapsed property.

Reload the page and assign a new range to the a global variable by typing the fol-

lowing statement into the top text box:

a = document.createRange()

Next, set the range to encompass a node:

a.selectNode(document.body)

Range.collapsed

(c) ketabton.com: The Digital Library

CD-408 Part VI ✦ Appendixes

Enter a.collapsed into the top text box . The expression returns false because

the end points of the range are not the same.

commonAncestorContainer

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the commonAncestorContainer
property. Reload the page and assign a new range to the a global variable by typing

the following statement into the top text box:

a = document.createRange()

Now set the start point to the beginning of the contents of the myEM element and set

the end point to the end of the surrounding myP element:

a.setStartBefore(document.getElementById(“myEM”).firstChild)
a.setEndAfter(document.getElementById(“myP”).lastChild)

Verify that the text range is set to encompass content from the myEM node (the

word “all”) and end of myP nodes:

a.toString()

Verify, too, that the two end point containers are different nodes:

a.startContainer.tagName
a.endContainer.tagName

Finally, see what node contains both of these two end points:

a.commonAncestorContainer.id

The result is the myP element, which both the myP and myEM nodes have in common.

Range.commonAncestorContainer

(c) ketabton.com: The Digital Library

CD-409Appendix F ✦ Examples from Parts III and IV

endContainer
startContainer

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the endContainer and

startContainer properties. Reload the page and assign a new range to the a
global variable by typing the following statement into the top text box:

a = document.createRange()

Now set the range to encompass the myEM element:

a.selectNode(document.getElementById(“myEM”)

Inspect the containers for both the start and end points of the selection:

a.startContainer.id
a.endContainer.id

The range encompasses the entire myEM element, so the start and end points are

outside of the element. Therefore, the container of both start and end points is the

myP element that also surrounds the myEM element.

endOffset
startOffset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with the endOffset and

startOffset properties, following similar paths you just saw in the description.

Range.endOffset

(c) ketabton.com: The Digital Library

CD-410 Part VI ✦ Appendixes

Reload the page and assign a new range to the a global variable by typing the fol-

lowing statement into the top text box:

a = document.createRange()

Now set the range to encompass the myEM element and then move the start point

outward to a character within the myP element’s text node:

a.selectNode(document.getElementById(“myEM”))
a.setStart(document.getElementById(“myP”).firstChild, 7)

Inspect the node types of the containers for both the start and end points of the

selection:

a.startContainer.nodeType
a.endContainer.nodeType

The startContainer node type is 3 (text node), while the endContainer node

type is 1 (element). Now inspect the offsets for both the start and end points of the

selection:

a.startOffset
a.endOffset

Methods
cloneContents()
cloneRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
When Netscape outfits the NN6 browser with the cloneContents() method, use

The Evaluator (Chapter 13) to see the method in action. Begin by creating a new

range object that contains the text of the myP paragraph element.

a = document.createRange()
a.selectNode(document.getElementById(“myP”)

Range.cloneContents()

(c) ketabton.com: The Digital Library

CD-411Appendix F ✦ Examples from Parts III and IV

Next, clone the original range and preserve the copy in variable b:

b = a.cloneContents()

Move the original range so that it is an insertion point at the end of the body by

first expanding it to encompass the entire body and then collapse it to the end

a.selectNode(document.body)
a.collapse(false)

Now, insert the copy at the very end of the body:

a.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text.

See the description of the compareBoundaryPoints() method later in this chapter

to see an example of the cloneRange() method.

collapse([startBoolean])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listings 19-11 and 15-14 to see the collapse() method at work (albeit with the

IE TextRange object).

compareBoundaryPoints(typeInteger,
sourceRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page rendered by Listing 19-4 lets you experiment with text range comparisons

in NN6+. The bottom paragraph contains a SPAN element that has a Range object

Range.compareBoundaryPoints()

(c) ketabton.com: The Digital Library

CD-412 Part VI ✦ Appendixes

assigned to its nested text node after the page loads (in the init() function). That

fixed range becomes a solid reference point for you to use while you select text in

the paragraph.

Unfortunately, the window object method that converts a user selection into an
object is not connected correctly in the first release of NN6. Even if it were, the
inverted values returned by the compareBoundaryPoints() method would
give you incorrect results. Try this example on subsequent versions of NN6.

After you make a selection, all four versions of the compareBoundaryPoints()
method run to compare the start and end points of the fixed range against your

selection. One column of the results table shows the raw value returned by the

compareBoundaryPoints() method, while the third column puts the results into

plain language.

To see how this page works, begin by selecting the first word of the fixed text range

(carefully drag the selection from the first red character). You can see that the

starting positions of both ranges are the same, because the returned value is 0.

Because all of the invocations of the compareBoundaryPoints() method are on

the fixed text range, all comparisons are from the point of view of that range. Thus,

the first row of the table for the START_TO_END parameter indicates that the start

point of the fixed range comes before the end point of the selection, yielding a

return value of -1.

Other selections to make include:

✦ Text that starts before the fixed range and ends inside the range

✦ Text that starts inside the fixed range and ends beyond the range

✦ Text that starts and ends precisely at the fixed range boundaries

✦ Text that starts and ends before the fixed range

✦ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align

with the selection you made.

Listing 19-4: Lab for NN6 compareBoundaryPoints() Method

<HTML>
<HEAD>
<TITLE>TextRange.compareBoundaryPoints() Method</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
.propName {font-family:Courier, monospace}

Note

Range.compareBoundaryPoints()

(c) ketabton.com: The Digital Library

CD-413Appendix F ✦ Examples from Parts III and IV

#fixedRangeElem {color:red; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var fixedRange

function setAndShowRangeData() {
try {

var selectedRange = window.getSelection()
selectedRange = selectedRange.getRangeAt(0)
var result1 = fixedRange.compareBoundaryPoints(Range.START_TO_END,

selectedRange)
var result2 = fixedRange.compareBoundaryPoints(Range.START_TO_START,

selectedRange)
var result3 = fixedRange.compareBoundaryPoints(Range.END_TO_START,

selectedRange)
var result4 = fixedRange.compareBoundaryPoints(Range.END_TO_END,

selectedRange)

document.getElementById(“B1”).innerHTML = result1
document.getElementById(“compare1”).innerHTML = getDescription(result1)
document.getElementById(“B2”).innerHTML = result2
document.getElementById(“compare2”).innerHTML = getDescription(result2)
document.getElementById(“B3”).innerHTML = result3
document.getElementById(“compare3”).innerHTML = getDescription(result3)
document.getElementById(“B4”).innerHTML = result4
document.getElementById(“compare4”).innerHTML = getDescription(result4)

}
catch(err) {

alert(“Vital Range object services are not yet implemented in this
browser.”)

}
}

function getDescription(comparisonValue) {
switch (comparisonValue) {

case -1 :
return “comes before”
break

case 0 :
return “is the same as”
break

case 1 :
return “comes after”
break

default :
return “vs.”

}
}

Continued

Range.compareBoundaryPoints()

(c) ketabton.com: The Digital Library

CD-414 Part VI ✦ Appendixes

Listing 19-4 (continued)

function init() {
fixedRange = document.createRange()
fixedRange.selectNodeContents(document.getElementById(“fixedRangeElem”).
firstChild)
fixedRange.setEnd(fixedRange.endContainer,

fixedRange.endContainer.nodeValue.length)
}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>TextRange.compareBoundaryPoints() Method</H1>
<HR>
<P>Select text in the paragraph in various places relative to
the fixed text range (shown in red). See the relations between
the fixed and selected ranges with respect to their start
and end points.</P>
<TABLE ID=”results” BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Returned Value</TH><TH>Fixed Range vs. Selection</TR>
<TR>

<TD CLASS=”propName”>StartToEnd</TD>
<TD CLASS=”count” ID=”B1”> </TD>
<TD CLASS=”count” ID=”C1”>Start of Fixed vs.
End of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>StartToStart</TD>
<TD CLASS=”count” ID=”B2”> </TD>
<TD CLASS=”count” ID=”C2”>Start of Fixed vs.
Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToStart</TD>
<TD CLASS=”count” ID=”B3”> </TD>
<TD CLASS=”count” ID=”C3”>End of Fixed vs.
Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToEnd</TD>
<TD CLASS=”count” ID=”B4”> </TD>
<TD CLASS=”count” ID=”C4”>End of Fixed vs.
End of Selection</TD>

</TR>
</TABLE>
<HR>
<P onMouseUp=”setAndShowRangeData()”>

Range.compareBoundaryPoints()

(c) ketabton.com: The Digital Library

CD-415Appendix F ✦ Examples from Parts III and IV

Lorem ipsum dolor sit, consectetaur adipisicing
elit,
sed do eiusmod tempor incididunt ut labore et dolore aliqua. Ut enim adminim
veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</P>
</BODY>
</HTML>

createContextualFragment(“text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to create a document fragment and replace an

existing document tree node with the fragment. Begin by creating the range and

fragment:

a = document.createRange()
a.selectNode(document.body)
b = a.createContextualFragment(“a bunch of
”)

This fragment consists of a SPAN element node with a text node nested inside. At

this point, you can inspect the properties of the document fragment by entering b
into the bottom text box.

To replace the myEM element on the page with this new fragment, use the

replaceChild() method on the enclosing myP element:

document.getElementById(“myP”).replaceChild(b, document.getElementById(“myEM”))

The fragment now becomes a legitimate child node of the myP element and can be

referenced like any node in the document tree. For example, if you enter the follow-

ing statement into the top text box of The Evaluator, you can retrieve a copy of the

text node inside the new SPAN element:

document.getElementById(“myP”).childNodes[1].firstChild.nodeValue

Range.createContextualFragment()

(c) ketabton.com: The Digital Library

CD-416 Part VI ✦ Appendixes

deleteContents()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with deleting contents of both a text

node and a complete element node. Begin by creating a text range for the text node

inside the myEM element (enter the third statement, which wraps below, as one

continous expression):

a = document.createRange()
a.setStart(document.getElementById(“myEM”).firstChild, 0)
a.setEnd(document.getElementById(“myEM”).lastChild,

document.getElementById(“myEM”).lastChild.length)

Verify the makeup of the range by entering a into the bottom text box and inspect

its properties. Both containers are text nodes (they happen to be the same text

node), and offsets are measured by character positions.

Now, delete the contents of the range:

a.deleteContents()

The italicized word “all” is gone from the tree, but the myEM element is still there. To

prove it, put some new text inside the element:

document.getElementById(“myEM”).innerHTML = “a band of “

The italic style of the EM element applies to the text, as it should.

Next, adjust the range boundaries to include the myEM element tags, as well:

a.selectNode(document.getElementById(“myEM”))

Inspect the Range object’s properties again by entering a into the bottom text box.

The container nodes are the P element that surrounds the EM element; the offset

values are measured in nodes. Delete the range’s contents:

a.deleteContents()

Range.deleteContents()

(c) ketabton.com: The Digital Library

CD-417Appendix F ✦ Examples from Parts III and IV

Not only is the italicized text gone, but the myEM element is gone, too. The myP ele-

ment now has but one child node, the text node inside. The following entries into

the top text box of The Evaluator verify this fact:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes[0].nodeValue

If you try this example in early versions of NN6, however, you see that the

deleteContents() method also removes the text node following the myEM ele-

ment. This is buggy behavior, demonstrating that the method works best on text

nodes, rather than elements.

extractContents()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
When Netscape outfits the NN6 browser with the extractContents() method, use

The Evaluator (Chapter 13) to see how the method works. Begin by creating a new

range object that contains the text of the myP paragraph element.

a = document.createRange()
a.selectNode(document.getElementById(“myP”))

Next, extract the original range’s content and preserve the copy in variable b:

b = a.extractContents()

Move the original range so that it is an insertion point at the end of the body by

first expanding it to encompass the entire body and then collapse it to the end

a.selectNode(document.body)
a.collapse(false)

Now, insert the extracted fragment at the very end of the body:

a.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text.

Range.extractContents()

(c) ketabton.com: The Digital Library

CD-418 Part VI ✦ Appendixes

insertNode(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 19-5, which relies on selection and Range object features not implemented

in the first release of NN6, demonstrates the insertNode() method plus some

additional items from the NN6 selection object. The example even includes a

rudimentary undo buffer for scripted changes to a text range. In the page generated

by this listing, users can select any text in a paragraph and have the script automat-

ically convert the text to all uppercase characters. The task of replacing a selection

with other text requires several steps, starting with the selection, which is retrieved

via the window.getSelection() method. After making sure the selection contains

some text (that is, the selection isn’t collapsed), the selection is preserved as a

range object so that the starting text can be stored in a global variable (as a prop-

erty of the undoBuffer global variable object). After that, the selection is deleted

from the document tree, leaving the selection as a collapsed insertion point. A copy

of that selection in the form of a range object is preserved in the undoBuffer
object so that the undo script knows where to reinsert the original text. A new text

node is created with an uppercase version of the original text, and, finally, the

insertNode() method is invoked to stick the converted text into the collapsed

range.

Undoing this operation works in reverse. Original locations and strings are copied

from the undoBuffer object. After creating the range with the old start and end

points (which represent a collapsed insertion point), the resurrected text (con-

verted to a text node) is inserted into the collapsed range. For good housekeeping,

the undoBuffer object is restored to its unused form.

Listing 19-5: Inserting a Node into a Range

<HTML>
<HEAD>
<TITLE>NN Selection Object Replacement</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var undoBuffer = {rng:null, txt:””}
function convertSelection() {

var sel, grossRng, netRng, newText
try {

sel = window.getSelection()

Range.insertNode()

(c) ketabton.com: The Digital Library

CD-419Appendix F ✦ Examples from Parts III and IV

if (!sel.isCollapsed) {
grossRng = sel.getRangeAt(0)
undoBuffer.txt = grossRng.toString()
sel.deleteFromDocument()
netRng = sel.getRangeAt(0)
undoBuffer.rng = netRng
newText = document.createTextNode(undoBuffer.txt.toUpperCase())
netRng.insertNode(newText)

}
}
catch(err) {

alert(“Vital Range object services are not yet implemented in this
browser.”)

}
}
function undoConversion() {

var rng, oldText
if (undoBuffer.rng) {

rng = document.createRange()
rng.setStart(undoBuffer.rng.startParent, undoBuffer.rng.startOffset)
rng.setEnd(undoBuffer.rng.endParent, undoBuffer.rng.endOffset)
oldText = document.createTextNode(undoBuffer.txt)
rng.insertNode(oldText)
undoBuffer.rng = null
undoBuffer.txt = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1 ID=”H1_1”>NN6 Selection Object Replacement</H1>
<HR>
<P ID=”P_1” onMouseUp=”convertSelection()”>This paragraph
contains text that you can select. Selections are deleted and
replaced by all uppercase versions of the selected text.</P>
<BUTTON onClick=”undoConversion()”>Undo Last</BUTTON>
<BUTTON onClick=”location.reload(true)”>Start Over</BUTTON>
</BODY>
</HTML>

isValidFragment(“HTMLText”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Range.isValidFragment()

(c) ketabton.com: The Digital Library

CD-420 Part VI ✦ Appendixes

Example
You can try the validity of any strings that you like in The Evaluator (Chapter 13).

You will discover, however, that the object model can make a document fragment

out of just about any string. For instance, if you attempt to create a document frag-

ment out of some random text and an end tag, the document fragment will consist

of a text node and an element node of the type indicated by the end tag.

selectNode(nodeReference)
selectNodeContents(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to see the behavior of both the selectNode() and

selectNodeContents() methods work. Begin by creating a new range object.

a = document.createRange()

Set the range boundaries to include the myP element node:

a.selectNode(document.getElementById(“myP”))

Enter a into the bottom text box to view the properties of the range. Notice that

because the range has selected the entire paragraph node, the container of the

range’s start and end points is the BODY element of the page (the parent element of

the myP element).

Now change the range so that it encompasses only the contents of the myP element:

a.selectNodeContents(document.getElementById(“myP”))

Click the List Properties button to view the current properties of the range. The

container of the range’s boundary points is the P element that holds the element’s

contents.

Range.selectNode()

(c) ketabton.com: The Digital Library

CD-421Appendix F ✦ Examples from Parts III and IV

setEnd(nodeReference, offset)
setStart(nodeReference, offset)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with both the setStart() and

setEnd() methods. Begin by creating a new range object.

a = document.createRange()

For the first range, set the start and end points to encompass the second node (the

myEM element) inside the myP element:

a.setStart(document.getElementById(“myP”), 1)
a.setEnd(document.getElementById(“myP”), 2)

The text encompassed by the range consists of the word “all” plus the trailing

space that is contained by the myEM element. Prove this by entering the following

statement into the top text box:

a.toString()

If you then click the Results box to the right of the word “all,” you see that the

results contain the trailing space. Yet, if you examine the properties of the range

(enter a into the bottom text box), you see that the range is defined as actually

starting before the myEM element and ending after it.

Next, adjust the start point of the range to a character position inside the first text

node of the myP element:

a.setStart(document.getElementById(“myP”).firstChild, 11)

Click the List Properties button to see that the startContainer property of the

range is the text node, and that the startOffset measures the character position.

All end boundary properties, however, have not changed. Enter a.toString() in

the top box again to see that the range now encompasses text from two of the

nodes inside the myP element.

Range.setEnd()

(c) ketabton.com: The Digital Library

CD-422 Part VI ✦ Appendixes

You can continue to experiment by setting the start and end points to other ele-

ment and text nodes on the page. After each adjustment, verify the properties of

the a range object and the text it encompasses (via a.toString()).

setEndAfter(nodeReference)
setEndBefore(nodeReference)
setStartAfter(nodeReference)
setStartBefore(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to experiment with all four methods. Begin by cre-

ating a new rnge object.

a = document.createRange()

For the first range, set the start and end points to encompass the myEM element

inside the myP element:

a.setStartBefore(document.getElementById(“myEM”))
a.setEndAfter(document.getElementById(“myEM”))

The text encompassed by the range consists of the word “all” plus the trailing

space that is contained by the myEM element. Prove this by entering the following

statement into the top text box:

a.toString()

Next, adjust the start point of the range to the beginning of the first text node of the

myP element:

a.setStartBefore(document.getElementById(“myP”).firstChild)

Enter a into the bottom text box to see that the startParent property of the range

is the P element node, while the endParent property points to the EM element.

You can continue to experiment by setting the start and end points to before and

after other element and text nodes on the page. After each adjustment, verify the

properties of the a range object and the text it encompasses (via a.toString()).

Range.setEndAfter()

(c) ketabton.com: The Digital Library

CD-423Appendix F ✦ Examples from Parts III and IV

surroundContents(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 19-6, which relies on selection and Range object features not implemented

in the first release of NN6, demonstrates how the surroundContents() method

wraps a range inside a new element. As the page loads, a global variable (newSpan)

stores a SPAN element that is used as a prototype for elements to be used as new

surrounding parent nodes. When you select text in either of the two paragraphs,

the selection is converted to a range. The surroundContents() method then

wraps the range with the newSpan element. Because that SPAN element has a class

name of hilite, the element and its contents pick up the style sheet properties as

defined for that class selector.

Listing 19-6: Using the Range.surroundContents() Method

<HTML>
<HEAD>
<TITLE>Range.surroundContents() Method</TITLE>
<STYLE TYPE=”text/css”>
.hilite {background-color:yellow; color:red; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newSpan = document.createElement(“SPAN”)
newSpan.className = “hilite”

function highlightSelection() {
var sel, rng
try {

sel = window.getSelection()
if (!sel.isCollapsed) {

rng = sel.getRangeAt(0)
rng.surroundContents(newSpan.cloneNode(false))

}
}
catch(err) {

alert(“Vital Range object services are not yet implemented in this
browser.”)

Continued

Range.surroundContents()

(c) ketabton.com: The Digital Library

CD-424 Part VI ✦ Appendixes

Listing 19-6 (continued)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Range.surroundContents() Method</H1>
<HR>
<P onMouseUp=”highlightSelection()”>These paragraphs
contain text that you can select. Selections are surrounded
by SPAN elements that share a stylesheet class selector
for special font and display characteristics.</P>

<P onMouseUp=”highlightSelection()”>Lorem ipsum dolor
sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>
</BODY>
</HTML>

toString()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) to see the results of the toString() method. Enter

the following sequence of statements into the top text box:

a = document.createRange()
a.selectNode(document.getElementById(“myP”))
a.toString()

If you type only a into the top text box, you see the text contents of the range, but

don’t be fooled. Internal workings of The Evaluator attempt to evaluate any expres-

sion entered into that text field. Assigning a range object to a text box forces an

internal application of the toString() method (just as the Date object does when

you create a new object instance in The Evaluator).

Range.toString()

(c) ketabton.com: The Digital Library

CD-425Appendix F ✦ Examples from Parts III and IV

selection Object

Properties
type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-7 contains a page that demonstrates several features of the selection
object. When you make a selection with the Deselect radio button selected, you see

the value of the selection.type property (in the statusbar) before and after the

selection is deselected. After the selection goes away, the type property returns

None.

Listing 19-7: Using the document.selection Object

<HTML>
<HEAD>
<TITLE>selection Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function processSelection() {

if (document.choices.process[0].checked) {
status = “Selection is type: “ + document.selection.type
setTimeout(“emptySelection()”, 2000)

} else if (document.choices.process[1].checked) {
var rng = document.selection.createRange()
document.selection.clear()

}
}
function emptySelection() {

document.selection.empty()
status = “Selection is type: “ + document.selection.type

}
</SCRIPT>
</HEAD>
<BODY>
<H1>IE selection Object</H1>
<HR>

Continued

selection.type

(c) ketabton.com: The Digital Library

CD-426 Part VI ✦ Appendixes

Listing 19-7 (continued)

<FORM NAME=”choices”>
<INPUT TYPE=”radio” NAME=”process” CHECKED>De-select after two seconds

<INPUT TYPE=”radio” NAME=”process”>Delete selected text.
</FORM>
<P onMouseUp=”processSelection()”>Lorem ipsum dolor sit amet, consectetaur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
involuptate velit esse cillum dolore eu fugiat nulla pariatur.
</BODY>
</HTML>

Methods
clear()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-7 earlier in this chapter to see the selection.clear() method at

work.

createRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

selection.createRange()

(c) ketabton.com: The Digital Library

CD-427Appendix F ✦ Examples from Parts III and IV

Example
See Listings 15-36 and 15-45 to see the selection.createRange() method turn

user selections into text ranges.

empty()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-7 earlier in this chapter to view the selection.empty() method at

work.

Text and TextNode Objects

Properties
data

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
In the Chapter 15 example for the nodeValue property used in a text replacement

script, you can substitute the data property for nodeValue to accomplish the same

result.

TextNode.data

(c) ketabton.com: The Digital Library

CD-428 Part VI ✦ Appendixes

Methods
appendData(“text“)
deleteData(offset, count)
insertData(offset, “text“)
replaceData(offset, count, “text“)
substringData(offset, count)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page created by Listing 19-8 is a working laboratory that you can use to experi-

ment with the five data-related methods in NN6+. The text node that invokes the

methods is a simple sentence in a P element. Each method has its own clickable

button, followed by two or three text boxes into which you enter values for method

parameters. Don’t be put off by the length of the listing. Each method’s operation is

confined to its own function and is fairly simple.

Each of the data-related methods throws exceptions of different kinds. To help han-

dle these errors gracefully, the method calls are wrapped inside a try/catch con-

struction. All caught exceptions are routed to the handleError() function where

details of the error are inspected and friendly alert messages are displayed to the

user. See Chapter 39 for details on the try/catch approach to error handling in

W3C DOM-capable browsers.

Listing 19-8: Text object Data Method Laboratory

<HTML>
<HEAD>
<TITLE>Data Methods of a W3C Text Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doAppend(form) {

var node = document.getElementById(“myP”).firstChild
var newString = form.appendStr.value
try {

node.appendData(newString)
}
catch(err) {

TextNode.appendData()

(c) ketabton.com: The Digital Library

CD-429Appendix F ✦ Examples from Parts III and IV

handleError(err)
}

}
function doDelete(form) {

var node = document.getElementById(“myP”).firstChild
var offset = form.deleteOffset.value
var count = form.deleteCount.value
try {

node.deleteData(offset, count)
}
catch(err) {

handleError(err)
}

}
function doInsert(form) {

var node = document.getElementById(“myP”).firstChild
var offset = form.insertOffset.value
var newString = form.insertStr.value
try {

node.insertData(offset, newString)
}
catch(err) {

handleError(err)
}

}

function doReplace(form) {
var node = document.getElementById(“myP”).firstChild
var offset = form.replaceOffset.value
var count = form.replaceCount.value
var newString = form.replaceStr.value
try {

node.replaceData(offset, count, newString)
}
catch(err) {

handleError(err)
}

}
function showSubstring(form) {

var node = document.getElementById(“myP”).firstChild
var offset = form.substrOffset.value
var count = form.substrCount.value
try {

alert(node.substringData(offset, count))
}
catch(err) {

handleError(err)
}

}

Continued

TextNode.appendData()

(c) ketabton.com: The Digital Library

CD-430 Part VI ✦ Appendixes

Listing 19-8 (continued)

// error handler for these methods
function handleError(err) {

switch (err.name) {
case “NS_ERROR_DOM_INDEX_SIZE_ERR”:

alert(“The offset number is outside the allowable range.”)
break

case “NS_ERROR_DOM_NOT_NUMBER_ERR”:
alert(“Make sure each numeric entry is a valid number.”)
break

default:
alert(“Double-check your text box entries.”)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Data Methods of a W3C Text Object</H1>
<HR>
<P ID=”myP” STYLE=”font-weight:bold; text-align:center”>
So I called myself Pip, and became to be called Pip.</P>
<FORM NAME=”choices”>
<P><INPUT TYPE=”button” onClick=”doAppend(this.form)” VALUE=”appendData()”>
String:<INPUT TYPE=”text” NAME=”appendStr” SIZE=30></P>

<P><INPUT TYPE=”button” onClick=”doDelete(this.form)” VALUE=”deleteData()”>
Offset:<INPUT TYPE=”text” NAME=”deleteOffset” SIZE=3>
Count:<INPUT TYPE=”text” NAME=”deleteCount” SIZE=3></P>

<P><INPUT TYPE=”button” onClick=”doInsert(this.form)” VALUE=”insertData()”>
Offset:<INPUT TYPE=”text” NAME=”insertOffset” SIZE=3>
String:<INPUT TYPE=”text” NAME=”insertStr” SIZE=30></P>

<P><INPUT TYPE=”button” onClick=”doReplace(this.form)” VALUE=”replaceData()”>
Offset:<INPUT TYPE=”text” NAME=”replaceOffset” SIZE=3>
Count:<INPUT TYPE=”text” NAME=”replaceCount” SIZE=3>
String:<INPUT TYPE=”text” NAME=”replaceStr” SIZE=30></P>

<P><INPUT TYPE=”button” onClick=”showSubstring(this.form)”
VALUE=”substringData()”>
Offset:<INPUT TYPE=”text” NAME=”substrOffset” SIZE=3>
Count:<INPUT TYPE=”text” NAME=”substrCount” SIZE=3></P>

</FORM>
</BODY>
</HTML>

TextNode.appendData()

(c) ketabton.com: The Digital Library

CD-431Appendix F ✦ Examples from Parts III and IV

splitText(offset)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see the splitText() method in action. Begin by

verifying that the myEM element has but one child node, and that its nodeValue is

the string “all”:

document.getElementById(“myEM”).childNodes.length
document.getElementById(“myEM”).firstChild.nodeValue

Next, split the text node into two pieces after the first character:

document.getElementById(“myEM”).firstChild.splitText(1)

Two text nodes are now inside the element:

document.getElementById(“myEM”).childNodes.length

Each text node contains its respective portion of the original text:

document.getElementById(“myEM”).firstChild.nodeValue
document.getElementById(“myEM”).lastChild.nodeValue

If you are using NN6, now bring the text nodes back together:

document.getElementById(“myEM”).normalize()
document.getElementById(“myEM”).childNodes.length

At no time during these statement executions does the rendered text change.

TextNode.splitText()

(c) ketabton.com: The Digital Library

CD-432 Part VI ✦ Appendixes

TextRange Object

Properties
boundingHeight
boundingLeft
boundingTop
boundingWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-9 provides a simple playground to explore the four bounding properties

(and two offset properties) of a TextRange object. As you select text in the big

paragraph, the values of all six properties are displayed in the table. Values are also

updated if you resize the window via an onResize event handler.

Notice, for example, if you simply click in the paragraph without dragging a selec-

tion, the boundingWidth property shows up as zero. This action is the equivalent

of a TextRange acting as an insertion point.

Listing 19-9: Exploring the Bounding TextRange Properties

<HTML>
<HEAD>
<TITLE>TextRange Object Dimension Properties</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
.propName {font-family: Courier, monospace}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setAndShowRangeData() {

var range = document.selection.createRange()
B1.innerText = range.boundingHeight
B2.innerText = range.boundingWidth
B3.innerText = range.boundingTop
B4.innerText = range.boundingLeft
B5.innerText = range.offsetTop

TextRange.boundingHeight

(c) ketabton.com: The Digital Library

CD-433Appendix F ✦ Examples from Parts III and IV

B6.innerText = range.offsetLeft
}
</SCRIPT>
</HEAD>

<BODY onResize=”setAndShowRangeData()”>
<H1>TextRange Object Dimension Properties</H1>
<HR>
<P>Select text in the paragraph below and observe the “bounding”
property values for the TextRange object created for that selection.</P>
<TABLE ID=”results” BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Pixel Value</TH></TR>
<TR>

<TD CLASS=”propName”>boundingHeight</TD>
<TD CLASS=”count” ID=”B1”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>boundingWidth</TD>
<TD CLASS=”count” ID=”B2”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>boundingTop</TD>
<TD CLASS=”count” ID=”B3”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>boundingLeft</TD>
<TD CLASS=”count” ID=”B4”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>offsetTop</TD>
<TD CLASS=”count” ID=”B5”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>offsetLeft</TD>
<TD CLASS=”count” ID=”B6”> </TD>

</TR>
</TABLE>
<HR>
<P onMouseUp=”setAndShowRangeData()”>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deseruntmollit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit.
</P>
</BODY>
</HTML>

TextRange.boundingHeight

(c) ketabton.com: The Digital Library

CD-434 Part VI ✦ Appendixes

htmlText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to investigate values returned by the htmlText
property. Use the top text box to enter the following statements and see the values

in the Results box.

Begin by creating a TextRange object for the entire body and store the range in

local variable a:

a = document.body.createTextRange()

Next, use the findText() method to set the start and end points of the text range

around the word “all,” which is an EM element inside the myP paragraph:

a.findText(“all”)

The method returns true (see the findText() method) if the text is found and the

text range adjusts to surround it. To prove that the text of the text range is what

you think it is, examine the text property of the range:

a.text

Because the text range encompasses all of the text of the element, the htmlText
property contains the tags for the element as well:

a.htmlText

If you want to experiment by finding other chunks of text and looking at both the

text and htmlText properties, first restore the text range to encompass the entire

body with the following statement:

a.expand(“textEdit”)

You can read about the expand() method later in this chapter. In other tests, use

findText() to set the range to “for all” and just “for al.” Then, see how the

htmlText property exposes the EM element’s tags.

TextRange.htmlText

(c) ketabton.com: The Digital Library

CD-435Appendix F ✦ Examples from Parts III and IV

text

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-11 later in this chapter for the findText() method to see the text
property used to perform the replace action of a search-and-replace function.

Methods
collapse([startBoolean])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listings 19-11 and 15-14 to see the collapse() method at work.

compareEndPoints(“type”, rangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The page rendered by Listing 19-10 lets you experiment with text range compar-

isons. The bottom paragraph contains a SPAN element that has a TextRange object

assigned to its text after the page loads (in the init() function). That fixed range

becomes a solid reference point for you to use while you select text in the para-

graph. After you make a selection, all four versions of the compareEndPoints()
method run to compare the start and end points of the fixed range against your

TextRange.compareEndPoints()

(c) ketabton.com: The Digital Library

CD-436 Part VI ✦ Appendixes

selection. One column of the results table shows the raw value returned by the

compareEndPoints() method, while the third column puts the results into plain

language.

To see how this page works, begin by selecting the first word of the fixed text range

(double-click the word). You can see that the starting positions of both ranges are

the same, because the returned value is 0. Because all of the invocations of the

compareEndPoints() method are on the fixed text range, all comparisons are from

the point of view of that range. Thus, the first row of the table for the StartToEnd
parameter indicates that the start point of the fixed range comes before the end

point of the selection, yielding a return value of -1.

Other selections to make include:

✦ Text that starts before the fixed range and ends inside the range

✦ Text that starts inside the fixed range and ends beyond the range

✦ Text that starts and ends precisely at the fixed range boundaries

✦ Text that starts and ends before the fixed range

✦ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align

with the selection you make.

Listing 19-10: Lab for compareEndPoints() Method

<HTML>
<HEAD>
<TITLE>TextRange.compareEndPoints() Method</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
.propName {font-family:Courier, monospace}
#fixedRangeElem {color:red; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var fixedRange

function setAndShowRangeData() {
var selectedRange = document.selection.createRange()
var result1 = fixedRange.compareEndPoints(“StartToEnd”, selectedRange)
var result2 = fixedRange.compareEndPoints(“StartToStart”, selectedRange)
var result3 = fixedRange.compareEndPoints(“EndToStart”, selectedRange)
var result4 = fixedRange.compareEndPoints(“EndToEnd”, selectedRange)

B1.innerText = result1
compare1.innerText = getDescription(result1)

TextRange.compareEndPoints()

(c) ketabton.com: The Digital Library

CD-437Appendix F ✦ Examples from Parts III and IV

B2.innerText = result2
compare2.innerText = getDescription(result2)
B3.innerText = result3
compare3.innerText = getDescription(result3)
B4.innerText = result4
compare4.innerText = getDescription(result4)

}

function getDescription(comparisonValue) {
switch (comparisonValue) {

case -1 :
return “comes before”
break

case 0 :
return “is the same as”
break

case 1 :
return “comes after”
break

default :
return “vs.”

}
}

function init() {
fixedRange = document.body.createTextRange()
fixedRange.moveToElementText(fixedRangeElem)

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>TextRange.compareEndPoints() Method</H1>
<HR>
<P>Select text in the paragraph in various places relative to
the fixed text range (shown in red). See the relations between
the fixed and selected ranges with respect to their start
and end points.</P>
<TABLE ID=”results” BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Returned Value</TH><TH>Fixed Range vs. Selection</TR>
<TR>

<TD CLASS=”propName”>StartToEnd</TD>
<TD CLASS=”count” ID=”B1”> </TD>
<TD CLASS=”count” ID=”C1”>Start of Fixed
vs. End of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>StartToStart</TD>
<TD CLASS=”count” ID=”B2”> </TD>

Continued

TextRange.compareEndPoints()

(c) ketabton.com: The Digital Library

CD-438 Part VI ✦ Appendixes

Listing 19-10 (continued)

<TD CLASS=”count” ID=”C2”>Start of Fixed
vs. Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToStart</TD>
<TD CLASS=”count” ID=”B3”> </TD>
<TD CLASS=”count” ID=”C3”>End of Fixed
vs. Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToEnd</TD>
<TD CLASS=”count” ID=”B4”> </TD>
<TD CLASS=”count” ID=”C4”>End of Fixed
vs. End of Selection</TD>

</TR>
</TABLE>
<HR>
<P onMouseUp=”setAndShowRangeData()”>
Lorem ipsum dolor sit, consectetaur adipisicing
elit,
sed do eiusmod tempor incididunt ut labore et dolore aliqua. Ut enim adminim
veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</P>
</BODY>
</HTML>

duplicate()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see how the duplicate() method works. Begin by

creating a new TextRange object that contains the text of the myP paragraph element.

a = document.body.createTextRange()
a.moveToElementText(myP)

Next, clone the original range and preserve the copy in variable b:

TextRange.duplicate()

(c) ketabton.com: The Digital Library

CD-439Appendix F ✦ Examples from Parts III and IV

b = a.duplicate()

The method returns no value, so don’t be alarmed by the “undefined” that appears

in the Results box. Move the original range so that it is an insertion point at the end

of the body by first expanding it to encompass the entire body, and then collapse it

to the end:

a.expand(“textedit”)
a.collapse(false)

Now, insert the copy at the very end of the body:

a.text = b.text

If you scroll to the bottom of the page, you’ll see a copy of the text.

execCommand(“commandName”[, UIFlag[, value]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see how to copy a text range’s text into the client

computer’s Clipboard. Begin by setting the text range to the myP element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Now use execCommand() to copy the range into the Clipboard:

a.execCommand(“Copy”)

To prove that the text is in the Clipboard, click the bottom text field and choose

Paste from the Edit menu (or type Ctrl+V).

expand(“unit”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextRange.expand()

(c) ketabton.com: The Digital Library

CD-440 Part VI ✦ Appendixes

Example
You can find examples of the expand() method in Listing 15-14.

findText(“searchString”[,searchScope,flags])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-11 implements two varieties of text search and replace operation, while

showing you how to include extra parameters for case-sensitive and whole word

searches. Both approaches begin by creating a TextRange for the entire body, but

they immediately shift the starting point to the beginning of the DIV element that

contains the text to search.

One search and replace function prompts the user to accept or decline replacement

for each instance of a found string. The select() and scrollIntoView() methods

are invoked to help the user see what is about to be replaced. Notice that even

when the user declines to accept the replacement, the text range is collapsed to the

end of the found range so that the next search can begin after the previously found

text. Without the collapse() method, the search can get caught in an infinite loop

as it keeps finding the same text over and over (with no replacement made).

Because no counting is required, this search and replace operation is implemented

inside a while repeat loop.

The other search and replace function goes ahead and replaces every match and

then displays the number of replacements made. After the loop exits (because

there are no more matches), the loop counter is used to display the number of

replacements made.

Listing 19-11: Two Search and Replace Approaches
(with Undo)

<HTML>
<HEAD>
<TITLE>TextRange.findText() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

TextRange.findText()

(c) ketabton.com: The Digital Library

CD-441Appendix F ✦ Examples from Parts III and IV

// global range var for use with Undo
var rng

// return findText() third parameter arguments
function getArgs(form) {

var isCaseSensitive = (form.caseSensitive.checked) ? 4 : 0
var isWholeWord = (form.wholeWord.checked) ? 2 : 0
return isCaseSensitive ^ isWholeWord

}

// prompted search and replace
function sAndR(form) {

var srchString = form.searchString.value
var replString = form.replaceString.value
if (srchString) {

var args = getArgs(form)
rng = document.body.createTextRange()
rng.moveToElementText(rights)
clearUndoBuffer()
while (rng.findText(srchString, 10000, args)) {

rng.select()
rng.scrollIntoView()
if (confirm(“Replace?”)) {

rng.text = replString
pushUndoNew(rng, srchString, replString)

}
rng.collapse(false)

}
}

}

// unprompted search and replace with counter
function sAndRCount(form) {

var srchString = form.searchString.value
var replString = form.replaceString.value
var i
if (srchString) {

var args = getArgs(form)
rng = document.body.createTextRange()
rng.moveToElementText(rights)
for (i = 0; rng.findText(srchString, 10000, args); i++) {

rng.text = replString
pushUndoNew(rng, srchString, replString)
rng.collapse(false)

}
if (i > 1) {

clearUndoBuffer()
}

}

Continued

TextRange.findText()

(c) ketabton.com: The Digital Library

CD-442 Part VI ✦ Appendixes

Listing 19-11 (continued)

document.all.counter.innerText = i
}
// BEGIN UNDO BUFFER CODE
// buffer global variables
var newRanges = new Array()
var origSearchString

// store original search string and bookmarks of each replaced range
function pushUndoNew(rng, srchString, replString) {

origSearchString = srchString
rng.moveStart(“character”, -replString.length)
newRanges[newRanges.length] = rng.getBookmark()

}

// empty array and search string global
function clearUndoBuffer() {

document.all.counter.innerText = “0”
origSearchString = “”
newRanges.length = 0

}

// perform the undo
function undoReplace() {

if (newRanges.length && origSearchString) {
for (var i = 0; i < newRanges.length; i++) {

rng.moveToBookmark(newRanges[i])
rng.text = origSearchString

}
document.all.counter.innerText = i
clearUndoBuffer()

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>TextRange.findText() Method</H1>
<HR>
<FORM>
<P>Enter a string to search for in the following text:
<INPUT TYPE=”text” NAME=”searchString” SIZE=20 VALUE=”Law”>
<INPUT TYPE=”checkbox” NAME=”caseSensitive”>Case-sensitive
<INPUT TYPE=”checkbox” NAME=”wholeWord”>Whole words only</P>
<P>Enter a string with which to replace found text:
<INPUT TYPE=”text” NAME=”replaceString” SIZE=20 VALUE=”legislation”></P>
<P><INPUT TYPE=”button” VALUE=”Search and Replace (with prompt)”
onClick=”sAndR(this.form)”></P>
<P><INPUT TYPE=”button” VALUE=”Search, Replace, and Count (no prompt)”
onClick=”sAndRCount(this.form)”>

TextRange.findText()

(c) ketabton.com: The Digital Library

CD-443Appendix F ✦ Examples from Parts III and IV

0 items found and replaced.</P>
<P><INPUT TYPE=”button” VALUE=”Undo Search and Replace”
onClick=”undoReplace()”></P>
</FORM>

<DIV ID=”rights”>

<H2>ARTICLE I</H2>

<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
[The rest of the text is snipped for printing here, but it is on the CD-ROM
version.]
</DIV>
</BODY>
</HTML>

Having a search and replace function available in a document is only one-half of the

battle The other half is offering the facilities to undo the changes. To that end,

Listing 19-11 includes an undo buffer that accurately undoes only the changes made

in the initial replacement actions.

The undo buffer stores its data in two global variables. The first,

origSearchString, is simply the string used to perform the original search. This

variable is the string that has to be put back in the places where it had been

replaced. The second global variable is an array that stores TextRange bookmarks

(see getBookmark() later in this chapter). These references are string values that

don’t mean much to humans, but the browser can use them to recreate a range

with its desired start and end point. Values for both the global search string and

bookmark specifications are stored in calls to the pushUndoNew() method each

time text is replaced.

A perhaps unexpected action of setting the text property of a text range is that the

start and end points collapse to the end of the new text. Because the stored book-

mark must include the replaced text as part of its specification, the start point of

the current range must be adjusted back to the beginning of the replacement text

before the bookmark can be saved. Thus, the pushUndoNew() function receives the

replacement text string so that the moveStart() method can be adjusted by the

number of characters matching the length of the replacement string.

After all of the bookmarks are stored in the array, the undo action can do its job in a

rather simple for loop inside the undoReplace() function. After verifying that the

TextRange.findText()

(c) ketabton.com: The Digital Library

CD-444 Part VI ✦ Appendixes

undo buffer has data stored in it, the function loops through the array of book-

marks and replaces the bookmarked text with the old string. The benefit of using

the bookmarks rather than using the replacement function again is that only those

ranges originally affected by the search-and-replace operation are touched in the

undo operation. For example, in this document if you replace a case-sensitive

“states” with “States” two replacements are performed. At that point, however, the

document has four instances of “States,” two of which existed before. Redoing the

replacement function by inverting the search and replace strings would convert all

four back to the lowercase version — not the desired effect.

getBookmark()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-11 earlier in this chapter shows how the getBookmark() method is used

to preserve specifications for text ranges so that they can be called upon again to

be used to undo changes made to the text range. The getBookmark() method is

used to save the snapshots, while the moveToBookmark() method is used during

the undo process.

inRange(otherRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see the inRange() method in action. The follow-

ing statements generate two distinct text ranges, one for the myP paragraph ele-

ment and the other for the myEM element nested within.

a = document.body.createTextRange()
a.moveToElementText(myP)
b = document.body.createTextRange()
b.moveToElementText(myEM)

TextRange.inRange()

(c) ketabton.com: The Digital Library

CD-445Appendix F ✦ Examples from Parts III and IV

Because the myP text range is larger than the other, invoke the inRange() method

on it, fully expecting the return value of true

a.inRange(b)

But if you switch the references, you see that the larger text range is not “in” the

smaller one:

b.inRange(a)

isEqual(otherRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to try the isEqual() method. Begin by creating

two separate TextRange objects, one for the myP element and one for myEM.

a = document.body.createTextRange()
a.moveToElement(myP)
b = document.body.createTextRange()
b.moveToElement(myEM)

Because these two ranges encompass different sets of text, they are not equal, as

the results show from the following statement:

a.isEqual(b)

But if you now adjust the first range boundaries to surround the myEM element,

both ranges are the same values:

a.moveToElement(myEM)
a.isEqual(b)

move(“unit”[, count])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextRange.move()

(c) ketabton.com: The Digital Library

CD-446 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) to experiment with the move() method. To see how

the method returns just the number of units it moves the pointer, begin by creating

a text range and set it to enclose the myP element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Now enter the following statement to collapse and move the range backward by 20

words.

a.move(“word”, -20)

Continue to click the Evaluate button and watch the returned value in the Results

box. The value shows 20 while it can still move backward by 20 words. But eventu-

ally the last movement will be some other value closer to zero. And after the range

is at the beginning of the BODY element, the range can move no more in that direc-

tion, so the result is zero.

moveEnd(“unit“[, count])
moveStart(“unit”[, count])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the moveEnd() and

moveStart() methods. Begin by creating a text range and set it to enclose the

myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

To help you see how movements of the pointers affect the text enclosed by the

range, type a into the bottom text box and view all the properties of the text range.

Note especially the htmlText and text properties.

Now enter the following statement to move the end of the range forward by one

word.

a.moveEnd(“word”)

TextRange.moveEnd()

(c) ketabton.com: The Digital Library

CD-447Appendix F ✦ Examples from Parts III and IV

Click on the List Properties button to see that the text of the range now includes

the word following the EM element. Try each of the following statements in the top

text box and examine both the integer results and (by clicking the List Properties

button) the properties of the range after each statement:

a.moveStart(“word”, -1)
a.moveEnd(“sentence”)

Notice that for a sentence, a default unit of 1 expands to the end of the current sen-

tence. And if you move the start point backward by one sentence, you’ll see that

the lack of a period-ending sentence prior to the myP element causes strange

results.

Finally, force the start point backward in increments of 20 words and watch the

results as the starting point nears and reaches the start of the BODY:

a.moveStart(“word”, -20)

Eventually the last movement will be some other value closer to zero. And as soon

as the range is at the beginning of the BODY element, the range can move no more

in that direction, so the result is zero.

moveToBookmark(“bookmarkString”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-11 earlier in this chapter shows how to use the moveToBookmark()
method to restore a text range so that changes that created the state saved by the

bookmark can be undone. The getBookmark() method is used to save the snap-

shots, while the moveToBookmark() method is used during the undo process.

moveToElementText(elemObjRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextRange.moveToElement()

(c) ketabton.com: The Digital Library

CD-448 Part VI ✦ Appendixes

Example
A majority of examples for other TextRange object methods in this chapter use the

moveToElementText() method. Listings 19-10 and 19-11 earlier in this chapter

show the method within an application context.

moveToPoint(x, y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to see the moveToPoint() method in action. Begin by creating a

text range for the entire BODY element:

a = document.body.createTextRange()

Now, invoke the moveToPoint() method to a location 100, 100, which turns out to

be in the rectangle space of the Results textarea:

a.moveToPoint(100,100)

If you type a into the bottom text box and view the properties, both the htmlText
and text properties are empty because the insertion point represents no visible

text content. But if you gradually move, for example, the start point backward one

character at a time, you will see the htmlText and text properties begin to fill in

with the body text that comes before the TEXTAREA element, namely the “Results:”

label and the
 tag between it and the TEXTAREA element. Enter the following

statement into the top text box and click the Evaluate button several times.

a.moveStart(“character”, -1)

Enter a into the bottom text box after each evaluation to list the properties of the

range.

parentElement()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextRange.parentElement()

(c) ketabton.com: The Digital Library

CD-449Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to experiment with the parentElement() method.

Begin by setting the text range to the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

To inspect the object returned by the parentElement() method, enter the follow-

ing statement in the lower text box:

a.parentElement()

If you scroll down to the outerHTML property, you see that the parent of the text

range is the myEM element, tag and all.

Next, extend the end point of the text range by one word:

a.moveEnd(“word”)

Because part of the text range now contains text of the myP object, the outerHTML
property of a.parentElement() shows the entire myP element and tags.

pasteHTML(“HTMLText”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the pasteHTML() method. The

goal of the following sequence is to change the tag to a tag whose

STYLE attribute sets the color of the original text that was in the EM element.

Begin by creating the text range and setting the boundaries to the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

While you can pass the HTML string directly as a parameter to pasteHTML(),stor-

ing the HTML string in its own temporary variable may be more convenient (and

more easily testable), such as:

b = “” + a.text + “”

TextRange.pasteHTML()

(c) ketabton.com: The Digital Library

CD-450 Part VI ✦ Appendixes

Notice that we concatenate the text of the current text range, because it has not yet

been modified. Now we can paste the new HTML string into the current text range

a.pasteHTML(b)

At this point the EM element is gone from the object model, and the SPAN element

is in its place. Prove it to yourself by looking at the HTML for the myP element:

myP.innerHTML

As noted earlier, the pasteHTML() method is not the only way to insert or replace

HTML in a document. This method makes excellent sense when the user selects

some text in the document to be replaced, because you can use the

document.selection.createRange() method to get the text range for the selec-

tion. But if you’re not using text ranges for other related operations, consider the

other generic object properties and methods available to you.

select()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-11 earlier in this chapter for an example of the select() method in use.

setEndPoint(“type”, otherRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to experiment with the setEndPoint() method. Begin by creat-

ing two independent text ranges, one for the myP element and one for myEM:

a = document.body.createTextRange()
a.moveToElementText(myP)
b = document.body.createTextRange()
b.moveToElementText(myEM)

TextRange.setEndPoint()

(c) ketabton.com: The Digital Library

CD-451Appendix F ✦ Examples from Parts III and IV

Before moving any end points, compare the HTML for each of those ranges:

a.htmlText
b.htmlText

Now, move the start point of the a text range to the end point of the b text range:

a.setEndPoint(“StartToEnd”, b)

If you now view the HTML for the a range,

a.htmlText

you see that the <P> tag of the original a text range is nowhere to be found. This

demonstration is a good lesson to use the setEndPoint() method primarily if you

are concerned only with visible body text being inside ranges, rather than an ele-

ment with its tags.

TextRectangle Object

Properties
bottom
left
right
top

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 19-12 lets you click one of four nested elements to see how the

TextRectangle is treated. When you click one of the elements, that element’s

TextRectangle dimension properties are used to set the size of a positioned ele-

ment that highlights the space of the rectangle. Be careful not to confuse the visible

rectangle object that you see on the page with the abstract TextRectangle object

that is associated with each of the clicked elements.

TextRectangle.bottom

(c) ketabton.com: The Digital Library

CD-452 Part VI ✦ Appendixes

An important part of the listing is the way the action of sizing and showing the posi-

tioned element is broken out as a separate function (setHiliter()) from the one

that is the onClick event handler function (handleClick()). This is done so that

the onResize event handler can trigger a script that gets the current rectangle for

the last element clicked, and the positioned element can be sized and moved to

maintain the highlight of the same text. As an experiment, try removing the

onResize event handler from the <BODY> tag and watch what happens to the high-

lighted rectangle after you resize the browser window: the rectangle that represents

the TextRectangle remains unchanged and loses track of the abstract

TextRectangle associated with the actual element object.

Listing 19-12: Using the TextRectangle Object Properties

<HTML>
<HEAD>
<TITLE>TextRectangle Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// preserve reference to last clicked elem so resize can re-use it
var lastElem
// TextRectangle left tends to be out of registration by a couple of pixels
var rectLeftCorrection = 2

// process mouse click
function handleClick() {

var elem = event.srcElement
if (elem.className && elem.className == “sample”) {

// set hiliter element only on a subset of elements
lastElem = elem
setHiliter()

} else {
// otherwise, hide the hiliter
hideHiliter()

}
}
function setHiliter() {

if (lastElem) {
var textRect = lastElem.getBoundingClientRect()
hiliter.style.pixelTop = textRect.top + document.body.scrollTop
hiliter.style.pixelLeft = textRect.left + document.body.scrollLeft –

rectLeftCorrection
hiliter.style.pixelHeight = textRect.bottom - textRect.top
hiliter.style.pixelWidth = textRect.right - textRect.left
hiliter.style.visibility = “visible”

}
}
function hideHiliter() {

hiliter.style.visibility = “hidden”
lastElem = null

TextRectangle.bottom

(c) ketabton.com: The Digital Library

CD-453Appendix F ✦ Examples from Parts III and IV

}
</SCRIPT>
</HEAD>
<BODY onClick=”handleClick()” onResize=”setHiliter()”>
<H1>TextRectangle Object</H1>
<HR>
<P>Click on any of the four colored elements in the paragraph below and watch
the highlight rectangle adjust itself to the element’s TextRectangle object.

<P CLASS=”sample”>Lorem ipsum dolor sit amet, <SPAN CLASS=”sample”
STYLE=”color:red”>consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur.</P>
<DIV ID=”hiliter” STYLE=”position:absolute; background-color:salmon; z-index:-1;
visibility:hidden”></DIV>
</BODY>
</HTML>

Chapter 22 Examples
The following sections contain examples from Chapter 22, “Image, Area, and Map

Objects.”

Image and IMG Element Objects

Properties
align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

IMG.align

(c) ketabton.com: The Digital Library

CD-454 Part VI ✦ Appendixes

Example
Listing 22-1 enables you to choose from the different align property values as they

influence the layout of an image whose HTML is embedded inline with some other

text. Resize the window to see different perspectives on word-wrapping on a page

and their effects on the alignment choices. Not all browsers provide distinctive

alignments for each choice, so experiment in multiple supported browsers.

Listing 22-1: Testing an Image’s align Property

<HTML>
<HEAD>
<TITLE>IMG align Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

function setAlignment(sel) {
document.myIMG.align = sel.options[sel.selectedIndex].text

}
</SCRIPT>
</HEAD>
<BODY>
<H1>IMG align Property</H1>
<HR>
<FORM>
Choose the image alignment:
<SELECT onChange=”setAlignment(this)”>

<OPTION>absbottom
<OPTION>absmiddle
<OPTION>baseline
<OPTION SELECTED >bottom
<OPTION >left
<OPTION>middle
<OPTION>right
<OPTION>texttop
<OPTION>top

</SELECT>
</FORM>
<HR>
<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.
Ut enim adminim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>
</BODY>
</HTML>

IMG.align

(c) ketabton.com: The Digital Library

CD-455Appendix F ✦ Examples from Parts III and IV

alt

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to assign a string to the alt property of the

document.myIMG image on the page. First, assign a nonexistent image to the src
property to remove the existing image:

document.myIMG.src = “fred.gif”

Scroll down to the image, and you can see a space for the image. Now, assign a

string to the alt property:

document.myIMG.src = “Fred\’s face”

The extra backslash is required to escape the apostrophe inside the string. Scroll

down to see the new alt text in the image space.

border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Feel free to experiment with the document.myIMG.border property for the image

in The Evaluator (Chapter 13) by assigning different integer values to the property.

complete

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

IMG.complete

(c) ketabton.com: The Digital Library

CD-456 Part VI ✦ Appendixes

Example
To experiment with the image.complete property, quit and relaunch your browser

before loading Listing 22-2 (in case the images are in memory cache). As each image

loads, click the “Is it loaded yet?” button to see the status of the complete property

for the image object. The value is false until the loading finishes; then, the value

becomes true. The arch image is the bigger of the two image files. You may have

to quit and relaunch your browser between trials to clear the arch image from the

cache (or empty the browser’s memory cache). If you experience difficulty with this

property in your scripts, try adding an onLoad event handler (even if it is empty, as

in Listing 22-2) to your tag.

Listing 22-2: Scripting image.complete

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function loadIt(theImage,form) {

form.result.value = “”
document.images[0].src = theImage

}
function checkLoad(form) {

form.result.value = document.images[0].complete
}
</SCRIPT>
</HEAD>
<BODY>

<FORM>
<INPUT TYPE=”button” VALUE=”Load keyboard”
onClick=”loadIt(‘cpu2.gif’,this.form)”>
<INPUT TYPE=”button” VALUE=”Load arch”
onClick=”loadIt(‘arch.gif’,this.form)”><P>
<INPUT TYPE=”button” VALUE=”Is it loaded yet?” onClick=”checkLoad(this.form)”>
<INPUT TYPE=”text” NAME=”result”>
</FORM>
</BODY>
</HTML>

dynsrc

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IMG.dynsrc

(c) ketabton.com: The Digital Library

CD-457Appendix F ✦ Examples from Parts III and IV

Example
To swap between still and video sources, simply empty the opposite property.

Listing 22-3 shows a simplified example that swaps between one fixed image and

one video image. This listing exhibits most of the bugs associated with changing

between static image and video sources described in the text.

Listing 22-3: Changing Between Still and Motion Images

<HTML>
<HEAD>
<TITLE>IMG dynsrc Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

var trainImg = new Image(160,120)
trainImg.src = “amtrak.jpg”
trainImg.dynsrc = “amtrak.mpg”

function setLoop() {
var selector = document.forms[0].looper
document.myIMG.loop = selector.options[selector.selectedIndex].value

}

function setImage(type) {
if (type == “jpg”) {

document.myIMG.dynsrc = “”
document.myIMG.src = trainImg.src

} else {
document.myIMG.src = “”
document.myIMG.start = “fileopen”
setLoop()
document.myIMG.dynsrc = trainImg.dynsrc

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>IMG dynsrc Property</H1>
<HR>
<FORM>
Choose image type:
<INPUT TYPE=”radio” NAME=”imgGroup” CHECKED onClick=”setImage(‘jpg’)”>Still
<INPUT TYPE=”radio” NAME=”imgGroup” onClick=”setImage(‘mpg’)”>Video
<P>Play video how many times after loading:
<SELECT NAME=”looper” onChange=”setLoop()”>

<OPTION VALUE=1 SELECTED>Once
<OPTION VALUE=2>Twice
<OPTION VALUE=-1>Continuously

Continued

IMG.dynsrc

(c) ketabton.com: The Digital Library

CD-458 Part VI ✦ Appendixes

Listing 22-3 (continued)

</SELECT></P>
</FORM>
<HR>

</BODY>
</HTML>

If you don’t explicitly set the start property to fileopen (as shown in Listing

22-3), users of IE for the Macintosh have to double-click (IE4) or click (IE5) the

movie image to make it run.

fileCreatedDate
fileModifiedDate
fileSize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
These properties are similar to the same-named properties of the document object.

You can see these properties in action in Listing 18-4. Make a copy of that listing,

and supply an image before modifying the references from the document object to

the image object to see how these properties work with the IMG element object.

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

IMG.height

(c) ketabton.com: The Digital Library

CD-459Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to experiment with the height and width proper-

ties. Begin retrieving the default values by entering the following two statements

into the top text box:

document.myIMG.height
document.myIMG.width

Increase the height of the image from its default 90 to 180:

document.myIMG.height = 180

If you scroll down to the image, you see that the image has scaled in proportion.

Next, exaggerate the width:

document.myIMG.width = 400

View the resulting image.

hspace
vspace

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Use The Evaluator (Chapter 13) to experiment with the hspace and vspace proper-

ties. Begin by noticing that the image near the bottom of the page has no margins

specified for it and is flush left with the page. Now assign a horizontal margin spac-

ing of 30 pixels:

document.myIMG.hspace = 30

The image has shifted to the right by 30 pixels. An invisible margin also exists to

the right of the image.

IMG.hspace

(c) ketabton.com: The Digital Library

CD-460 Part VI ✦ Appendixes

isMap

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The image in The Evaluator page is not defined as an image map. Thus, if you type

the following statement into the top text box, the property returns false:

document.myIMG.isMap

loop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 22-3 for the dynsrc property to see the loop property in action.

lowsrc
lowSrc

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
See Listing 22-5 for the image object’s onLoad event handler to see how the source-

related properties affect event processing.

IMG.lowsrc

(c) ketabton.com: The Digital Library

CD-461Appendix F ✦ Examples from Parts III and IV

name

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � (�) � � �

Example
You can use The Evaluator to examine the value returned by the name property of

the image on that page. Enter the following statement into the top text box:

document.myIMG.name

Of course, this is redundant because the name is part of the reference to the object.

nameProp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use The Evaluator to compare the results of the src and nameProp proper-

ties in IE5+/Windows. Enter each of the following statements into the top text box:

document.myIMG.src
document.myIMG.nameProp

protocol

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

IMG.protocol

(c) ketabton.com: The Digital Library

CD-462 Part VI ✦ Appendixes

Example
You can use The Evaluator to examine the protocol property of the image on the

page. Enter the following statement into the top text box:

document.myIMG.protocol

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

Example
In the following example (Listing 22-4), you see a few applications of image objects.

Of prime importance is a comparison of how precached and regular images feel to

the user. As a bonus, you see an example of how to set a timer to automatically

change the images displayed in an image object. This feature is a popular request

among sites that display advertising banners.

As the page loads, a global variable is handed an array of image objects. Entries of

the array are assigned string names as index values (“desk1”, “desk2”, and so on).

The intention is that these names ultimately will be used as addresses to the array

entries. Each image object in the array has a URL assigned to it, which precaches

the image.

The page (see Figure 22-1) includes two IMG elements: one that displays noncached

images and one that displays cached images. Under each image is a SELECT ele-

ment that you can use to select one of four possible image files for each element.

The onChange event handler for each SELECT list invokes a different function to

change the noncached (loadIndividual()) or cached (loadCached()) images.

Both of these functions take as their single parameter a reference to the form that

contains the SELECT elements.

To cycle through images at five-second intervals, the checkTimer() function looks

to see if the timer check box is checked. If so, the selectedIndex property of the

cached image SELECT control is copied and incremented (or reset to zero if the

index is at the maximum value). The SELECT element is adjusted, so you can now

invoke the loadCached() function to read the currently selected item and set the

image accordingly.

For some extra style points, the <BODY> tag includes an onUnload event handler

that invokes the resetSelects() function. This general-purpose function loops

IMG.src

(c) ketabton.com: The Digital Library

CD-463Appendix F ✦ Examples from Parts III and IV

through all forms on the page and all elements within each form. For every SELECT

element, the selectedIndex property is reset to zero. Thus, if a user reloads the

page, or returns to the page via the Back button, the images start in their original

sequence. An onLoad event handler makes sure that the images are in sync with the

SELECT choices and the checkTimer() function is invoked with a five-second delay.

Unless the timer check box is checked, however, the cached images don’t cycle.

Listing 22-4: A Scripted Image Object and Rotating Images

<HTML>
<HEAD>
<TITLE>Image Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global declaration for ‘desk’ images array
var imageDB
// pre-cache the ‘desk’ images
if (document.images) {

// list array index names for convenience
var deskImages = new Array(“desk1”, “desk2”, “desk3”, “desk4”)
// build image array and pre-cache them
imageDB = new Array(4)
for (var i = 0; i < imageDB.length ; i++) {

imageDB[deskImages[i]] = new Image(120,90)
imageDB[deskImages[i]].src = deskImages[i] + “.gif”

}
}
// change image of ‘individual’ image
function loadIndividual(form) {

if (document.images) {
var gifName =

form.individual.options[form.individual.selectedIndex].value
document.thumbnail1.src = gifName + “.gif”

}
}
// change image of ‘cached’ image
function loadCached(form) {

if (document.images) {
var gifIndex = form.cached.options[form.cached.selectedIndex].value
document.thumbnail2.src = imageDB[gifIndex].src

}
}
// if switched on, cycle ‘cached’ image to next in queue
function checkTimer() {

if (document.images && document.Timer.timerBox.checked) {
var gifIndex = document.selections.cached.selectedIndex
if (++gifIndex > imageDB.length - 1) {

gifIndex = 0

Continued

IMG.src

(c) ketabton.com: The Digital Library

CD-464 Part VI ✦ Appendixes

Listing 22-4: A Scripted Image Object and Rotating Images

}
document.selections.cached.selectedIndex = gifIndex
loadCached(document.selections)
var timeoutID = setTimeout(“checkTimer()”,5000)

}
}
// reset form controls to defaults on unload
function resetSelects() {

for (var i = 0; i < document.forms.length; i++) {
for (var j = 0; j < document.forms[i].elements.length; j++) {

if (document.forms[i].elements[j].type == “select-one”) {
document.forms[i].elements[j].selectedIndex = 0

}
}

}
}
// get things rolling
function init() {

loadIndividual(document.selections)
loadCached(document.selections)
setTimeout(“checkTimer()”,5000)

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()” onUnload=”resetSelects ()”>
<H1>Image Object</H1>
<HR>
<CENTER>
<TABLE BORDER=3 CELLPADDING=3>
<TR><TH></TH><TH>Individually Loaded</TH><TH>Pre-cached</TH></TR>
<TR><TD ALIGN=RIGHT>Image:</TD>
<TD></TD>
<TD></TD>
</TR>
<TR><TD ALIGN=RIGHT>Select image:</TD>
<FORM NAME=”selections”>
<TD>
<SELECT NAME=”individual” onChange=”loadIndividual(this.form)”>
<OPTION VALUE=”cpu1”>Wires
<OPTION VALUE=”cpu2”>Keyboard
<OPTION VALUE=”cpu3”>Desks
<OPTION VALUE=”cpu4”>Cables
</SELECT>
</TD>
<TD>
<SELECT NAME=”cached” onChange=”loadCached(this.form)”>
<OPTION VALUE=”desk1”>Bands

IMG.src

(c) ketabton.com: The Digital Library

CD-465Appendix F ✦ Examples from Parts III and IV

<OPTION VALUE=”desk2”>Clips
<OPTION VALUE=”desk3”>Lamp
<OPTION VALUE=”desk4”>Erasers
</SELECT></TD>
</FORM>
</TR></TABLE>
<FORM NAME=”Timer”>
<INPUT TYPE=”checkbox” NAME=”timerBox” onClick=”checkTimer()”>Auto-cycle through
pre-cached images
</FORM>
</CENTER>
</BODY>
</HTML>

Figure 22-1: The image object demonstration page (Images (c) Aris Multimedia
Entertainment, Inc. 1994)

IMG.src

(c) ketabton.com: The Digital Library

CD-466 Part VI ✦ Appendixes

start

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 22-3 earlier in this chapter for an example of how you can use the start
property with a page that loads a movie clip into an IMG element object.

x
y

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
If you want to scroll the document so that the link is a few pixels below the top of

the window, use a statement such as this:

window.scrollTo(document.images[0].x, (document.images[0].y - 3))

Event handlers
onAbort
onError

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

IMG.onAbort

(c) ketabton.com: The Digital Library

CD-467Appendix F ✦ Examples from Parts III and IV

Example
Listing 22-5 includes an onAbort event handler. If the images already exist in the

cache, you must quit and relaunch the browser to try to stop the image from load-

ing. In that example, I provide a reload option for the entire page. How you handle

the exception depends a great deal on your page design. Do your best to smooth

over any difficulties that users may encounter.

onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Quit and restart your browser to get the most from Listing 22-5. As the document

first loads, the LOWSRC image file (the picture of pencil erasers) loads ahead of the

computer keyboard image. When the erasers are loaded, the onLoad event handler

writes “done” to the text field even though the main image is not loaded yet. You

can experiment further by loading the arch image. This image takes longer to load,

so the LOWSRC image (set on the fly, in this case) loads way ahead of it.

Listing 22-5: The Image onLoad Event Handler

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function loadIt(theImage,form) {

if (document.images) {
form.result.value = “”
document.images[0].lowsrc = “desk1.gif”
document.images[0].src = theImage

}
}
function checkLoad(form) {

if (document.images) {
form.result.value = document.images[0].complete

}
}
function signal() {

if(confirm(“You have stopped the image from loading. Do you want to try
again?”)) {

Continued

IMG.onLoad

(c) ketabton.com: The Digital Library

CD-468 Part VI ✦ Appendixes

Listing 22-5 (continued)

location.reload()
}

}
</SCRIPT>
</HEAD>
<BODY>
<IMG SRC=”cpu2.gif” LOWSRC=”desk4.gif” WIDTH=120 HEIGHT=90
onLoad=”if (document.forms[0].result) document.forms[0].result.value=’done’”
onAbort=”signal()”>
<FORM>
<INPUT TYPE=”button” VALUE=”Load keyboard”
onClick=”loadIt(‘cpu2.gif’,this.form)”>
<INPUT TYPE=”button” VALUE=”Load arch”
onClick=”loadIt(‘arch.gif’,this.form)”><P>
<INPUT TYPE=”button” VALUE=”Is it loaded yet?” onClick=”checkLoad(this.form)”>
<INPUT TYPE=”text” NAME=”result”>
</FORM>
</BODY>
</HTML>

AREA Element Object

Properties
coords
shape

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 22-7 for a demonstration of the coords and shape properties in the con-

text of scripting MAP element objects.

AREA.coords

(c) ketabton.com: The Digital Library

CD-469Appendix F ✦ Examples from Parts III and IV

MAP Element Object

Property
areas

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 22-7 demonstrates how to use scripting to replace the AREA element objects

inside a MAP element. The scenario is that the page loads with one image of a com-

puter keyboard. This image is linked to the keyboardMap client-side image map,

which specifies details for three hot spots on the image. If you then switch the

image displayed in that IMG element, scripts change the useMap property of the

IMG element object to point to a second MAP that has specifications more suited to

the desk lamp in the second image. Roll the mouse pointer atop the images, and

view the URLs associated with each area in the statusbar (for this example, the

URLs do not lead to other pages).

Another button on the page, however, invokes the makeAreas() function (not

working in IE5/Mac), which creates four new AREA element objects and (through

DOM-specific pathways) adds those new area specifications to the image. If you roll

the mouse atop the image after the function executes, you can see that the URLs

now reflect those of the new areas. Also note the addition of a fourth area.

Listing 22-7: Modifying AREA Elements on the Fly

<HTML>
<HEAD>
<TITLE>MAP Element Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// generate area elements on the fly
function makeAreas() {

document.myIMG.src = “desk3.gif”
// build area element objects
var area1 = document.createElement(“AREA”)
area1.href = “Script-Made-Shade.html”
area1.shape = “polygon”

Continued

MAP.areas

(c) ketabton.com: The Digital Library

CD-470 Part VI ✦ Appendixes

Listing 22-7 (continued)

area1.coords = “52,28,108,35,119,29,119,8,63,0,52,28”
var area2 = document.createElement(“AREA”)
area2.href = “Script-Made-Base.html”
area2.shape = “rect”
area2.coords = “75,65,117,87”
var area3 = document.createElement(“AREA”)
area3.href = “Script-Made-Chain.html”
area3.shape = “polygon”
area3.coords = “68,51,73,51,69,32,68,51”
var area4 = document.createElement(“AREA”)
area4.href = “Script-Made-Emptyness.html”
area4.shape = “rect”
area4.coords = “0,0,50,120”
// stuff new elements into MAP child nodes
if (document.all) {

// works for IE4+
document.all.lampMap.areas.length = 0
document.all.lampMap.areas[0] = area1
document.all.lampMap.areas[1] = area2
document.all.lampMap.areas[2] = area3
document.all.lampMap.areas[3] = area4

} else if (document.getElementById) {
// NN6 adheres to node model
var mapObj = document.getElementById(“lamp_map”)
while (mapObj.childNodes.length) {

mapObj.removeChild(mapObj.firstChild)
}
mapObj.appendChild(area1)
mapObj.appendChild(area2)
mapObj.appendChild(area3)
mapObj.appendChild(area4)
// workaround NN6 display bug
document.myIMG.style.display = “inline”

}

function changeToKeyboard() {
document.myIMG.src = “cpu2.gif”
document.myIMG.useMap = “#keyboardMap”

}

function changeToLamp() {
document.myIMG.src = “desk3.gif”
document.myIMG.useMap = “#lampMap”

}
</SCRIPT>
</HEAD>
<BODY>
<H1>MAP Element Object</H1>

MAP.areas

(c) ketabton.com: The Digital Library

CD-471Appendix F ✦ Examples from Parts III and IV

<HR>

<FORM>
<P><INPUT TYPE=”button” VALUE=”Load Lamp Image” onClick=”changeToLamp()”>
<INPUT TYPE=”button” VALUE=”Write Map on the Fly” onClick=”makeAreas()”></P>
<P>
<INPUT TYPE=”button” VALUE=”Load Keyboard Image”
onClick=”changeToKeyboard()”></P>
</FORM>
<MAP NAME=”keyboardMap”>
<AREA HREF=”AlpaKeys.htm” SHAPE=”rect” COORDS=”0,0,26,42”>
<AREA HREF=”ArrowKeys.htm” SHAPE=”polygon”
COORDS=”48,89,57,77,69,82,77,70,89,78,84,89,48,89”>
<AREA HREF=”PageKeys.htm” SHAPE=”circle” COORDS=”104,51,14”>
</MAP>
<MAP NAME=”lampMap”>
<AREA HREF=”Shade.htm” SHAPE=”polygon”
COORDS=”52,28,108,35,119,29,119,8,63,0,52,28”>
<AREA HREF=”Base.htm” SHAPE=”rect” COORDS=”75,65,117,87”>
<AREA HREF=”Chain.htm” SHAPE=”polygon” COORDS=”68,51,73,51,69,32,68,51”>
</MAP>
</BODY>
</HTML>

Chapter 23 Examples
The following section contains examples from Chapter 23, “The Form and Related

Objects.”

FORM Object

Properties
action

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

FORM.action

(c) ketabton.com: The Digital Library

CD-472 Part VI ✦ Appendixes

Example
The following statement assigns a mailto: URL to the first form of a page:

document.forms[0].action = “mailto:jdoe@giantco.com”

elements

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The document in Listing 23-2 demonstrates a practical use of the elements prop-

erty. A form contains four fields and some other elements mixed in between (see

Figure 23-2). The first part of the function that acts on these items repeats through

all the elements in the form to find out which ones are text box objects and which

text box objects are empty. Notice how I use the type property to separate text box

objects from the rest, even when radio buttons appear amid the fields. If one field

has nothing in it, I alert the user and use that same index value to place the inser-

tion point at the field with the field’s focus() method.

Listing 23-2: Using the form.elements Array

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function verifyIt() {

var form = document.forms[0]
for (i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text” && form.elements[i].value == “”){
alert(“Please fill out all fields.”)
form.elements[i].focus()
break

}
// more tests

}
// more statements

}
</SCRIPT>
</HEAD>

FORM.elements

(c) ketabton.com: The Digital Library

CD-473Appendix F ✦ Examples from Parts III and IV

<BODY>
<FORM>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”><P>
<INPUT TYPE=”radio” NAME=”gender”>Male
<INPUT TYPE=”radio” NAME=”gender”>Female <P>
Enter your address:<INPUT TYPE=”text” NAME=”address”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city”><P>
<INPUT TYPE=”checkbox” NAME=”retired”>I am retired
</FORM>
<FORM>
<INPUT TYPE=”button” NAME=”act” VALUE=”Verify” onClick=”verifyIt()”>
</FORM>
</BODY>
</HTML>

Figure 23-2: The elements array helps find text fields for validation.

FORM.elements

(c) ketabton.com: The Digital Library

CD-474 Part VI ✦ Appendixes

encoding
enctype

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you need to modify the first form in a document so that the content is sent in non-

URL-encoded text at the user’s request, the statement is:

document.forms[0].encoding = “text/plain”

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Use The Evaluator (Chapter 13) to determine the number of form controls in the

first form of the page. Enter the following statement into the top text box:

document.forms[0].length

method

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you need to modify the first form in a document so that the content is sent via the

POST method, the statement is:

document.forms[0].method = “POST”

FORM.method

(c) ketabton.com: The Digital Library

CD-475Appendix F ✦ Examples from Parts III and IV

target

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you want to direct the response from the first form’s CGI to a new window (rather

than the target specified in the form’s tag), use this statement:

document.forms[0].target = “_blank”

Methods
reset()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 23-3, I assign the act of resetting the form to the HREF attribute of a link

object (that is attached to a graphic called reset.jpg). I use the javascript: URL

to invoke the reset() method for the form directly (in other words, without doing

it via function). Note that the form’s action in this example is to a nonexistent URL.

If you click the Submit icon, you receive an “unable to locate” error from the

browser.

Listing 23-3: form.reset() and form.submit() Methods

<HTML>
<HEAD>
<TITLE>Registration Form</TITLE>
</HEAD>
<BODY>
<FORM NAME=”entries” METHOD=POST ACTION=”http://www.u.edu/pub/cgi-bin/register”>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”><P>

Continued

FORM.reset()

(c) ketabton.com: The Digital Library

CD-476 Part VI ✦ Appendixes

Listing 23-3 (continued)

Enter your last name:<INPUT TYPE=”text” NAME=”lastName”><P>
Enter your address:<INPUT TYPE=”text” NAME=”address”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city”><P>
<INPUT TYPE=”radio” NAME=”gender” CHECKED>Male
<INPUT TYPE=”radio” NAME=”gender”>Female <P>
<INPUT TYPE=”checkbox” NAME=”retired”>I am retired
</FORM>
<P>
<IMG SRC=”submit.jpg” HEIGHT=25
WIDTH=100 BORDER=0>
<IMG SRC=”reset.jpg” HEIGHT=25
WIDTH=100 BORDER=0>
</BODY>
</HTML>

submit()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Consult Listing 23-3 for an example of using the submit() method from outside of a

form.

Event handlers
onReset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

FORM.onReset

(c) ketabton.com: The Digital Library

CD-477Appendix F ✦ Examples from Parts III and IV

Example
Listing 23-4 demonstrates one way to prevent accidental form resets or submis-

sions. Using standard Reset and Submit buttons as interface elements, the <FORM>
object definition includes both event handlers. Each event handler calls its own

function that offers a choice for users. Notice how each event handler includes the

word return and takes advantage of the Boolean values that come back from the

confirm() method dialog boxes in both functions.

Listing 23-4: The onReset and onSubmit Event Handlers

<HTML>
<HEAD>
<TITLE>Submit and Reset Confirmation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function allowReset() {

return window.confirm(“Go ahead and clear the form?”)
}
function allowSend() {

return window.confirm(“Go ahead and mail this info?”)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=POST ENCTYPE=”text/plain” ACTION=”mailto:trash4@dannyg.com”
onReset=”return allowReset()” onSubmit=”return allowSend()”>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”><P>
Enter your address:<INPUT TYPE=”text” NAME=”address”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city”><P>
<INPUT TYPE=”radio” NAME=”gender” CHECKED>Male
<INPUT TYPE=”radio” NAME=”gender”>Female <P>
<INPUT TYPE=”checkbox” NAME=”retired”>I am retired<P>
<INPUT TYPE=”reset”>
<INPUT TYPE=”submit”>
</FORM>
</BODY>
</HTML>

FORM.onReset

(c) ketabton.com: The Digital Library

CD-478 Part VI ✦ Appendixes

onSubmit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 23-4 for an example of trapping a submission via the onSubmit event

handler.

LABEL Element Object

Property
htmlFor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement uses W3C DOM-compatible syntax (IE5+ and NN6) to

assign a form control reference to the htmlFor property of a label:

document.getElementById(“myLabel”).htmlFor = document.getElementById(“myField”)

LABEL.htmlFor

(c) ketabton.com: The Digital Library

CD-479Appendix F ✦ Examples from Parts III and IV

Chapter 24 Examples
The following sections contain examples from Chapter 24, “Button Objects.”

The BUTTON Element Object and the Button,
Submit, and Reset Input Objects

Properties
form

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following function fragment receives a reference to a button element as the

parameter. The button reference is needed to decide which branch to follow; then

the form is submitted.

function setAction(btn) {
if (btn.name == “normal”) {

btn.form.action = “cgi-bin/normal.pl”
} else if (btn.name == “special”) {

btn.form.action = “cgi-bin/specialHandling.pl”
}
btn.form.submit()

}

Notice how this function doesn’t have to worry about the form reference, because

its job is to work with whatever form encloses the button that triggers this function.

Down in the form, two buttons invoke the same function. Only their names ulti-

mately determine the precise processing of the button click:

<FORM>
...
<INPUT TYPE=”button” NAME=”normal” VALUE=”Regular Handling”
onClick=”setAction(this)”>
<INPUT TYPE=”button” NAME=”special” VALUE=”Special Handling”
onClick=”setAction(this)”>
</FORM>

document.formObject.buttonObject.form

(c) ketabton.com: The Digital Library

CD-480 Part VI ✦ Appendixes

name

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See the example for the form property earlier in this chapter for a practical applica-

tion of the name property.

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In the following excerpt, the statement toggles the label of a button from “Play” to

“Stop” except in NN/Mac through NN4:

var btn = document.forms[0].controlButton
btn.value = (btn.value == “Play”) ? “Stop” : “Play”

Methods
click()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement demonstrates how to script a click action on a button form

control named sender:

document.forms[0].sender.click()

document.formObject.buttonObject.click()

(c) ketabton.com: The Digital Library

CD-481Appendix F ✦ Examples from Parts III and IV

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 24-1 demonstrates not only the onClick event handler of a button but also

how you may need to extract a particular button’s name or value properties from a

general-purpose function that services multiple buttons. In this case, each button

passes its own object as a parameter to the displayTeam() function. The function

then displays the results in an alert dialog box. A real-world application would

probably use a more complex if...else decision tree to perform more sophisti-

cated actions based on the button clicked (or use a switch construction on the

btn.value expression for NN4+ and IE4+).

Listing 24-1: Three Buttons Sharing One Function

<HTML>
<HEAD>
<TITLE>Button Click</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function displayTeam(btn) {

if (btn.value == “Abbott”) {alert(“Abbott & Costello”)}
if (btn.value == “Rowan”) {alert(“Rowan & Martin”)}
if (btn.value == “Martin”) {alert(“Martin & Lewis”)}

}
</SCRIPT>
</HEAD>

<BODY>
Click on your favorite half of a popular comedy team:<P>
<FORM>
<INPUT TYPE=”button” VALUE=”Abbott” onClick=”displayTeam(this)”>
<INPUT TYPE=”button” VALUE=”Rowan” onClick=”displayTeam(this)”>
<INPUT TYPE=”button” VALUE=”Martin” onClick=”displayTeam(this)”>
</FORM>
</BODY>
</HTML>

document.formObject.buttonObject.onClick

(c) ketabton.com: The Digital Library

CD-482 Part VI ✦ Appendixes

Checkbox Input Object

Properties
checked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The simple example in Listing 24-2 passes a form object reference to the JavaScript

function. The function, in turn, reads the checked value of the form’s checkbox

object (checkThis.checked) and uses its Boolean value as the test result for the

if...else construction.

Listing 24-2: The checked Property as a Conditional

<HTML>
<HEAD>
<TITLE>Checkbox Inspector</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”)

} else {
alert(“The box is not checked at the moment.”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”checkbox” NAME=”checkThis”>Check here<P>
<INPUT TYPE=”button” NAME=”boxChecker” VALUE=”Inspect Box”
onClick=”inspectBox(this.form)”>
</FORM>
</BODY>
</HTML>

document.formObject.checkboxObject.checked

(c) ketabton.com: The Digital Library

CD-483Appendix F ✦ Examples from Parts III and IV

defaultChecked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The function in Listing 24-3 (this fragment is not in the CD-ROM listings) is designed

to compare the current setting of a checkbox against its default value. The if con-

struction compares the current status of the box against its default status. Both are

Boolean values, so they can be compared against each other. If the current and

default settings don’t match, the function goes on to handle the case in which the

current setting is other than the default.

Listing 24-3: Examining the defaultChecked Property

function compareBrowser(thisBox) {
if (thisBox.checked != thisBox.defaultChecked) {

// statements about using a different set of HTML pages
}

}

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The scenario for the skeleton HTML page in Listing 24-4 is a form with a checkbox

whose selection determines which of two actions to follow for submission to the

server. After the user clicks the Submit button, a JavaScript function examines

the checkbox’s checked property. If the property is true (the button is checked),

the script sets the action property for the entire form to the content of the value

property — thus influencing where the form goes on the server side. If you try this

document.formObject.checkboxObject.value

(c) ketabton.com: The Digital Library

CD-484 Part VI ✦ Appendixes

listing on your computer, the result you see varies widely with the browser version

you use. For most browsers, you see some indication (an error alert or other screen

notation) that a file with the name primaryURL or alternateURL doesn’t exist.

Unfortunately, IE5.5/Windows does not display the name of the file that can’t be

opened. Try the example in another browser if you have one. The names and the

error message come from the submission process for this demonstration.

Listing 24-4: Adjusting a CGI Submission Action

<HTML>
<HEAD>
<TITLE>Checkbox Submission</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setAction(form) {

if (form.checkThis.checked) {
form.action = form.checkThis.value

} else {
form.action = “file://primaryURL”

}
return true

}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=”POST” ACTION=””>
<INPUT TYPE=”checkbox” NAME=”checkThis” VALUE=”file://alternateURL”>Use
alternate<P>
<INPUT TYPE=”submit” NAME=”boxChecker” onClick=”return setAction(this.form)”>
</FORM>
</BODY>
</HTML>

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.formObject.checkboxObject.onClick

(c) ketabton.com: The Digital Library

CD-485Appendix F ✦ Examples from Parts III and IV

Example
The page in Listing 24-5 shows how to trap the click event in one checkbox to influ-

ence the visibility and display of other form controls. After you turn on the Monitor

checkbox, a list of radio buttons for monitor sizes appears. Similarly, engaging the

Communications checkbox makes two radio buttons visible. Your choice of radio

button brings up one of two further choices within the same table cell.

Notice how the toggle() function was written as a generalizable function. This func-

tion can accept a reference to any checkbox object and any related span. If five more

groups like this were added to the table, no additional functions would be needed.

In the swap() function, an application of a nested if...else shortcut construction

is used to convert the Boolean values of the checked property to the strings

needed for the display style property. The nesting is used to allow a single state-

ment to take care of two conditions: the group of buttons to be controlled and the

checked property of the button invoking the function. This function is not general-

izable, because it contains explicit references to objects in the document. The

swap() function can be made generalizable, but due to the special relationships

between pairs of span elements (meaning one has to be hidden while the other dis-

played in its place), the function would require more parameters to fill in the blanks

where explicit references are needed.

A rendering bug in NN6 causes the form controls in the lower right frame to lose
their settings when the elements have their display style property set to none.
The problem is related to the inclusion of P or similar block elements inside a
table cell that contains controls. Therefore, if you uncheck and recheck the
Communications checkbox in the example page, the previously displayed sub-
group shows up even though no radio buttons are selected. You can script around
this bug by preserving radio button settings in a global variable as you hide the
group, and restoring the settings when you show the group again.

Syntax used to address elements here is the W3C DOM-compatible form, so this list-

ing runs as is with IE5+ and NN6+. You can modify the listing to run in IE4 by adapt-

ing references to the document.all format.

Listing 24-5: A Checkbox and an onClick event Handler

<HTML>
<HEAD>
<TITLE>Checkbox Event Handler</TITLE>
<STYLE TYPE=”text/css”>
#monGroup {visibility:hidden}
#comGroup {visibility:hidden}

Continued

Note

document.formObject.checkboxObject.onClick

(c) ketabton.com: The Digital Library

CD-486 Part VI ✦ Appendixes

Listing 24-5 (continued)

</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// toggle visibility of a main group spans
function toggle(chkbox, group) {

var visSetting = (chkbox.checked) ? “visible” : “hidden”
document.getElementById(group).style.visibility = visSetting

}
// swap display of communications sub group spans
function swap(radBtn, group) {

var modemsVisSetting = (group == “modems”) ?
((radBtn.checked) ? “” : “none”) : “none”

var netwksVisSetting = (group == “netwks”) ?
((radBtn.checked) ? “” : “none”) : “none”

document.getElementById(“modems”).style.display = modemsVisSetting
document.getElementById(“netwks”).style.display = netwksVisSetting

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<H3>Check all accessories for your computer:</H3>
<TABLE BORDER=2 CELLPADDING=5>
<TR>

<TD>
<INPUT TYPE=”checkbox” NAME=”monitor”

onClick=”toggle(this, ‘monGroup’)”>Monitor
</TD>
<TD>

<INPUT TYPE=”radio” NAME=”monitorType”>15”
<INPUT TYPE=”radio” NAME=”monitorType”>17”
<INPUT TYPE=”radio” NAME=”monitorType”>21”
<INPUT TYPE=”radio” NAME=”monitorType”>>21”

</TD>

</TR>
<TR>

<TD>
<INPUT TYPE=”checkbox” NAME=”comms”

onClick=”toggle(this, ‘comGroup’)”>Communications
</TD>
<TD>

<P><INPUT TYPE=”radio” NAME=”commType”
onClick=”swap(this, ‘modems’)”>Modem

<INPUT TYPE=”radio” NAME=”commType”
onClick=”swap(this, ‘netwks’)”>Network</P>

document.formObject.checkboxObject.onClick

(c) ketabton.com: The Digital Library

CD-487Appendix F ✦ Examples from Parts III and IV

<P>
<INPUT TYPE=”radio” NAME=”modemType”><56kbps
<INPUT TYPE=”radio” NAME=”modemType”>56kbps
<INPUT TYPE=”radio” NAME=”modemType”>ISDN (any speed)
<INPUT TYPE=”radio” NAME=”modemType”>Cable

<INPUT TYPE=”radio” NAME=”netwkType”>Ethernet 10Mbps (10-Base T)
<INPUT TYPE=”radio” NAME=”netwkType”>Ethernet 100Mbps (10/100)
<INPUT TYPE=”radio” NAME=”netwkType”>T1 or greater

 </P>

</TD>

</TR>

</TABLE>
</FORM>
</BODY>
</HTML>

Radio Input Object

Properties
checked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 24-6 uses a repeat loop in a function to look through all buttons in the

Stooges group in search of the checked button. After the loop finds the one whose

checked property is true, it returns the value of the index. In one instance, that

index value is used to extract the value property for display in the alert dialog box;

in the other instance, the value helps determine which button in the group is next

in line to have its checked property set to true.

document.formObject.radioObject.checked

(c) ketabton.com: The Digital Library

CD-488 Part VI ✦ Appendixes

Listing 24-6: Finding the Selected Button in a Radio Group

<HTML>
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function getSelectedButton(buttonGroup){

for (var i = 0; i < buttonGroup.length; i++) {
if (buttonGroup[i].checked) {

return i
}

}
return 0

}
function fullName(form) {

var i = getSelectedButton(form.stooges)
alert(“You chose “ + form.stooges[i].value + “.”)

}
function cycle(form) {

var i = getSelectedButton(form.stooges)
if (i+1 == form.stooges.length) {

form.stooges[0].checked = true
} else {

form.stooges[i+1].checked = true
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Select your favorite Stooge:
<P><INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard” CHECKED>Moe
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine” >Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard” >Curly
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Shemp Howard” >Shemp</P>
<P><INPUT TYPE=”button” NAME=”Viewer” VALUE=”View Full Name...”
onClick=”fullName(this.form)”></P>
<P><INPUT TYPE=”button” NAME=”Cycler” VALUE=”Cycle Buttons”
onClick=”cycle(this.form)”> </P>
</FORM>
</BODY>
</HTML>

document.formObject.radioObject.checked

(c) ketabton.com: The Digital Library

CD-489Appendix F ✦ Examples from Parts III and IV

defaultChecked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In the script fragment of Listing 24-7 (not among the CD-ROM files), a function is

passed a reference to a form containing the Stooges radio buttons. The goal is to

see, in as general a way as possible (supplying the radio group name where

needed), if the user changed the default setting. Looping through each of the radio

buttons, you look for the one whose CHECKED attribute is set in the <INPUT> defini-

tion. With that index value (i) in hand, you then look to see if that entry is still

checked. If not (notice the ! negation operator), you display an alert dialog box

about the change.

Listing 24-7: Has a Radio Button Changed?

function groupChanged(form) {
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].defaultChecked) {
if (!form.stooges[i].checked) {

alert(“This radio group has been changed.”)
}

}
}

}

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See the loop construction within the function of Listing 24-7 for one way to apply

the length property.

document.formObject.radioObject.length

(c) ketabton.com: The Digital Library

CD-490 Part VI ✦ Appendixes

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 24-6 earlier in this chapter demonstrates how a function extracts the value
property of a radio button to display otherwise hidden information stored with a

button. In this case, it lets the alert dialog box show the full name of the selected

Stooge.

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Every time a user clicks one of the radio buttons in Listing 24-8, he or she sets a

global variable to true or false, depending on whether the person is a Shemp

lover. This action is independent of the action that is taking place if the user clicks

on the View Full Name button. An onUnload event handler in the <BODY> definition

triggers a function that displays a message to Shemp lovers just before the page

clears (click the browser’s Reload button to leave the current page prior to reload-

ing). Here I use an initialize function triggered by onLoad so that the current radio

button selection sets the global value upon a reload.

Listing 24-8: An onClick event Handler for Radio Buttons

<HTML>
<HEAD>
<TITLE>Radio Button onClick Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

document.formObject.radioObject.onClick

(c) ketabton.com: The Digital Library

CD-491Appendix F ✦ Examples from Parts III and IV

var ShempOPhile = false
function initValue() {

ShempOPhile = document.forms[0].stooges[3].checked
}
function fullName(form) {

for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {

break
}

}
alert(“You chose “ + form.stooges[i].value + “.”)

}
function setShemp(setting) {

ShempOPhile = setting
}
function exitMsg() {

if (ShempOPhile) {
alert(“You like SHEMP?”)

}
}
</SCRIPT>
</HEAD>

<BODY onLoad=”initValue()” onUnload=”exitMsg()”>
<FORM>
Select your favorite Stooge:<P>
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard” CHECKED
onClick=”setShemp(false)”>Moe
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine”
onClick=”setShemp(false)”>Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard”
onClick=”setShemp(false)”>Curly
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Shemp Howard”
onClick=”setShemp(true)”>Shemp<P>
<INPUT TYPE=”button” NAME=”Viewer” VALUE=”View Full Name...”
onClick=”fullName(this.form)”>
</FORM>
</BODY>
</HTML>

See also Listing 24-5 for further examples of scripting onClick event handlers for

radio buttons — this time to hide and show related items in a form.

document.formObject.radioObject.onClick

(c) ketabton.com: The Digital Library

CD-492 Part VI ✦ Appendixes

Chapter 25 Examples
The following sections contain examples from Chapter 25, “Text-Related Form

Objects.”

Text Input Object

Properties
defaultValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Important: Listings 25-1, 25-2, and 25-3 feature a form with only one text INPUT ele-

ment. The rules of HTML forms say that such a form submits itself if the user

presses the Enter key whenever the field has focus. Such a submission to a form

whose action is undefined causes the page to reload, thus stopping any scripts that

are running at the time. FORM elements for of these example listings contain an

onSubmit event handler that both blocks the submission and attempts to trigger

the text box onChange event handler to run the demonstration script. In some

browsers, such as IE5/Mac, you may have to press the Tab key or click outside of

the text box to trigger the onChange event handler after you enter a new value.

Listing 25-1 has a simple form with a single field that has a default value set in its

tag. A function (resetField()) restores the contents of the page’s lone field to the

value assigned to it in the <INPUT> definition. For a single-field page such as this,

defining a TYPE=”reset” button or calling form.reset() works the same way

because such buttons reestablish default values of all elements of a form. But if you

want to reset only a subset of fields in a form, follow the example button and func-

tion in Listing 25-1.

Listing 25-1: Resetting a Text Object to Default Value

<HTML>
<HEAD>
<TITLE>Text Object DefaultValue</TITLE>

document.formObject.textObject.defaultValue

(c) ketabton.com: The Digital Library

CD-493Appendix F ✦ Examples from Parts III and IV

<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(field) {

field.value = field.value.toUpperCase()
}
function resetField(form) {

form.converter.value = form.converter.defaultValue
}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE=”text”
NAME=”converter” VALUE=”sample” onChange=”upperMe(this)”>
<INPUT TYPE=”button” VALUE=”Reset Field”
onClick=”resetField(this.form)”>
</FORM>
</BODY>
</HTML>

form

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following function fragment receives a reference to a text element as the

parameter. The text element reference is needed to decide which branch to follow;

then the form is submitted.

function setAction(fld) {
if (fld.value.indexOf(“@”) != -1) {

fld.form.action = “mailto:” + fld.value
} else {

fld.form.action = “cgi-bin/normal.pl”
}
fld.form.submit()

}

Notice how this function doesn’t have to worry about the form reference, because its

job is to work with whatever form encloses the text field that triggers this function.

document.formObject.textObject.form

(c) ketabton.com: The Digital Library

CD-494 Part VI ✦ Appendixes

maxLength

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to experiment with the maxLength property. The

top text field has no default value, but you can temporarily set it to only a few char-

acters and see how it affects entering new values:

document.forms[0].input.maxLength = 3

Try typing into the field to see the results of the change. To restore the default

value, reload the page.

name

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Consult Listing 25-2 later in this chapter, where I use the text object’s name, con-
vertor, as part of the reference when assigning a value to the field. To extract the

name of a text object, you can use the property reference. Therefore, assuming that

your script doesn’t know the name of the first object in the first form of a docu-

ment, the statement is

var objectName = document.forms[0].elements[0].name

readOnly

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

document.formObject.textObject.readOnly

(c) ketabton.com: The Digital Library

CD-495Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to set the bottom text box to be read-only. Begin by

typing anything you want in the bottom text box. Then enter the following state-

ment into the top text box:

document.forms[0].inspector.readOnly = true

While existing text in the box is selectable (and therefore can be copied into the

clipboard), it cannot be modified or removed.

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Resize the bottom text box of The Evaluator (Chapter 13) by entering the following

statements into the top text box:

document.forms[0].inspector.size = 20
document.forms[0].inspector.size = 400

Reload the page to return the size back to normal (or set the value to 80).

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
As a demonstration of how to retrieve and assign values to a text object, Listing

25-2 shows how the action in an onChange event handler is triggered. Enter any

lowercase letters into the field and click out of the field. I pass a reference to the

entire form object as a parameter to the event handler. The function extracts the

value, converts it to uppercase (using one of the JavaScript string object methods),

and assigns it back to the same field in that form.

document.formObject.textObject.value

(c) ketabton.com: The Digital Library

CD-496 Part VI ✦ Appendixes

Listing 25-2: Getting and Setting a Text Object’s Value

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(form) {

inputStr = form.converter.value
form.converter.value = inputStr.toUpperCase()

}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE=”text”
NAME=”converter” VALUE=”sample” onChange=”upperMe(this.form)”>
</FORM>
</BODY>
</HTML>

I also show two other ways to accomplish the same task, each one more efficient

than the previous example. Both utilize the shortcut object reference to get at the

heart of the text object. Listing 25-3 passes the text object — contained in the this
reference — to the function handler. Because that text object contains a complete

reference to it (out of sight, but there just the same), you can access the value
property of that object and assign a string to that object’s value property in a sim-

ple assignment statement.

Listing 25-3: Passing a Text Object (as this) to the Function

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(field) {

field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE=”text”
NAME=”converter” VALUE=”sample” onChange=”upperMe(this)”>
</FORM>

document.formObject.textObject.value

(c) ketabton.com: The Digital Library

CD-497Appendix F ✦ Examples from Parts III and IV

</BODY>
</HTML>

Yet another way is to deal with the field values directly in an embedded event

handler — instead of calling an external function (which is easier to maintain because

all scripts are grouped together in the Head). With the function removed from the

document, the event handler attribute of the <INPUT> tag changes to do all the work:

<INPUT TYPE=”text” NAME=”converter” VALUE=”sample”
onChange=”this.value = this.value.toUpperCase()”>

The right-hand side of the assignment expression extracts the current contents of

the field and (with the help of the toUpperCase() method of the string object) con-

verts the original string to all uppercase letters. The result of this operation is

assigned to the value property of the field.

The application of the this keyword in the previous examples may be confusing at

first, but these examples represent the range of ways in which you can use such ref-

erences effectively. Using this by itself as a parameter to an object’s event handler

refers only to that single object — a text object in Listing 25-3. If you want to pass

along a broader scope of objects that contain the current object, use the this key-

word along with the outer object layer that you want. In Listing 25-2, I sent a refer-

ence to the entire form along by specifying this.form— meaning the form that

contains “this” object, which is being defined in the line of HTML code.

At the other end of the scale, you can use similar-looking syntax to specify a partic-

ular property of the this object. Thus, in the last example, I zeroed in on just the

value property of the current object being defined —this.value. Although the

formats of this.form and this.value appear the same, the fact that one is a ref-

erence to an object and the other just a value can influence the way your functions

work. When you pass a reference to an object, the function can read and modify

properties of that object (as well as invoke its functions); but when the parameter

passed to a function is just a property value, you cannot modify that value without

building a complete reference to the object and its value.

Methods
blur()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.formObject.textObject.blur()

(c) ketabton.com: The Digital Library

CD-498 Part VI ✦ Appendixes

Example
The following statement invokes the blur() method on a text box named

vanishText:

document.forms[0].vanishText.blur()

focus()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 25-4 for an example of an application of the focus() method in concert

with the select() method.

select()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
A click of the Verify button in Listing 25-4 performs a validation on the contents of

the text box, making sure the entry consists of all numbers. All work is controlled

by the checkNumeric() function, which receives a reference to the field needing

inspection as a parameter. Because of the way the delayed call to the

doSelection() function has to be configured, various parts of what will become a

valid reference to the form are extracted from the field’s and form’s properties. If

the validation (performed in the isNumber() function) fails, the setSelection()
method is invoked after an artificial delay of zero milliseconds. As goofy as this

sounds, this method is all that IE needs to recover from the display and closure of

the alert dialog box. Because the first parameter of the setTimeout() method

must be a string, the example assembles a string invocation of the

setSelection() function via string versions of the form and field names. All that

the setSelection() function does is focus and select the field whose reference is

passed as a parameter. This function is now generalizable to work with multiple

text boxes in a more complex form.

document.formObject.textObject.select()

(c) ketabton.com: The Digital Library

CD-499Appendix F ✦ Examples from Parts III and IV

Listing 25-4: Selecting a Field

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i)
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are integers only.”)
return false

}
}
return true

}
function checkNumeric(fld) {

var inputStr = fld.value
var fldName = fld.name
var formName = fld.form.name
if (isNumber(inputStr)) {

// statements if true
} else {

setTimeout(“doSelection(document.” + formName + “. “ + fldName + “)”, 0)
}

}

function doSelection(fld) {
fld.focus()
fld.select()

}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME=”entryForm” onSubmit=”return false”>
Enter any positive integer: <INPUT TYPE=”text” NAME=”numeric”><P>
<INPUT TYPE=”button” VALUE=”Verify” onClick=”checkNumeric(this.form.numeric)”>
</FORM>
</BODY>
</HTML>

document.formObject.textObject.select()

(c) ketabton.com: The Digital Library

CD-500 Part VI ✦ Appendixes

Event handlers
onBlur
onFocus
onSelect

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate one of these event handlers, Listing 25-5 shows how you may use

the window’s statusbar as a prompt message area after a user activates any field of

a form. When the user tabs to or clicks on a field, the prompt message associated

with that field appears in the statusbar.

Listing 25-5: The onFocus event Handler

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function prompt(msg) {

window.status = “Please enter your “ + msg + “.”
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”
onFocus=”prompt(‘first name’)”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”
onFocus=”prompt(‘last name’)”><P>
Enter your address:<INPUT TYPE=”text” NAME=”address”
onFocus=”prompt(‘address’)”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city” onFocus=”prompt(‘city’)”><P>
</FORM>
</BODY>
</HTML>

document.formObject.textObject.onBlur

(c) ketabton.com: The Digital Library

CD-501Appendix F ✦ Examples from Parts III and IV

onChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Whenever a user makes a change to the text in a field in Listing 25-6 and then either

tabs or clicks out of the field, the change event is sent to that field, triggering the

onChange event handler.

Because the form in Listing 25-6 has only one field, the example demonstrates a

technique you can use that prevents a form from being “submitted” if the user acci-

dentally presses the Enter key. The technique is as simple as defeating the submis-

sion via the onSubmit event handler of the form. At the same time, the onSubmit
event handler invokes the checkIt() function, so that pressing the Enter key (as

well as pressing Tab or clicking outside the field) triggers the function.

Listing 25-6: Data Validation via an onChange event Handler

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1)
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numbers only.”)
return false

}
}
return true

}
function checkIt(form) {

inputStr = form.numeric.value
if (isNumber(inputStr)) {

// statements if true
} else {

form.numeric.focus()
form.numeric.select()

Continued

document.formObject.textObject.onChange

(c) ketabton.com: The Digital Library

CD-502 Part VI ✦ Appendixes

Listing 25-6 (continued)

}
}
</SCRIPT>
</HEAD>

<BODY onSubmit=”checkIt(this); return false”>
<FORM>
Enter any positive integer: <INPUT TYPE=”text” NAME=”numeric”
onChange=”checkIt(this.form)”><P>
</FORM>
</BODY>
</HTML>

TEXTAREA Element Object

Properties
cols
rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator to play with the cols and rows property settings for the Results

textarea on that page. Shrink the width of the textarea by entering the following

statement into the top text box:

document.forms[0].output.cols = 30

And make the textarea one row deeper:

document.forms[0].output.rows++

TEXTAREA.cols

(c) ketabton.com: The Digital Library

CD-503Appendix F ✦ Examples from Parts III and IV

Methods
createTextRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See the example for the TextRange.move() method in Chapter 19 to see how to

control the text insertion pointer inside a TEXTAREA element.

Chapter 26 Examples
The following sections contain examples from Chapter 26, “Select, Option, and

FileUpload Objects.”

SELECT Element Object

Properties
length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 26-1 for an illustration of the way you use the length property to help

determine how often to cycle through the repeat loop in search of selected items.

Because the loop counter, i, must start at 0, the counting continues until the loop

counter is one less than the actual length value (which starts its count with 1).

SELECT.length

(c) ketabton.com: The Digital Library

CD-504 Part VI ✦ Appendixes

multiple

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement toggles between single and multiple selections on a

SELECT element object whose SIZE attribute is set to a value greater than 1:

document.forms[0].mySelect.multiple = !document.forms[0].mySelect.multiple

options[index]

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 26-1 through 26-3 in the printed chapter for examples of how the

options array references information about the options inside a SELECT element.

options[index].defaultSelected

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement preserves a Boolean value if the first option of the SELECT

list is the default selected item:

var zeroIsDefault = document.forms[0].listName.options[0].defaultSelected

SELECT.options[index].defaultSelected

(c) ketabton.com: The Digital Library

CD-505Appendix F ✦ Examples from Parts III and IV

options[index].index

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement assigns the index integer of the first option of a SELECT

element named listName to a variable named itemIndex.

var itemIndex = document.forms[0].listName.options[0].index

options[index].selected

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To accumulate a list of all items selected by the user, the seeList() function in

Listing 26-4 systematically examines the options[index].selected property of

each item in the list. The text of each item whose selected property is true is

appended to the list. I add the “\n “ inline carriage returns and spaces to make the

list in the alert dialog box look nice and indented. If you assign other values to the

VALUE attributes of each option, the script can extract the options[index].value
property to collect those values instead.

Listing 26-4: Cycling through a Multiple-Selection List

<HTML>
<HEAD>
<TITLE>Accessories List</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeList(form) {

var result = “”
for (var i = 0; i < form.accList.length; i++) {

if (form.accList.options[i].selected) {

Continued

SELECT.options[index].selected

(c) ketabton.com: The Digital Library

CD-506 Part VI ✦ Appendixes

Listing 26-4 (continued)

result += “\n “ + form.accList.options[i].text
}

}
alert(“You have selected:” + result)

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Control/Command-click on all accessories you use:
<SELECT NAME=”accList” SIZE=9 MULTIPLE>

<OPTION SELECTED>Color Monitor
<OPTION>Modem
<OPTION>Scanner
<OPTION>Laser Printer
<OPTION>Tape Backup
<OPTION>MO Drive
<OPTION>Video Camera

</SELECT> </P>
<P><INPUT TYPE=”button” VALUE=”View Summary...”
onClick=”seeList(this.form)”></P>
</FORM>
</BODY>
</HTML>

options[index].text

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate the text property of an option, Listing 26-5 applies the text from a

selected option to the document.bgColor property of a document in the current

window. The color names are part of the collection built into all scriptable

browsers; fortunately, the values are case-insensitive so that you can capitalize the

color names displayed and assign them to the property.

SELECT.options[index].text

(c) ketabton.com: The Digital Library

CD-507Appendix F ✦ Examples from Parts III and IV

Listing 26-5: Using the options[index].text Property

<HTML>
<HEAD>
<TITLE>Color Changer 1</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeColor(form) {

var newColor = (form.colorsList.options[form.colorsList.selectedIndex].text)
document.bgColor = newColor

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Choose a background color:
<SELECT NAME=”colorsList”>

<OPTION SELECTED>Gray
<OPTION>Lime
<OPTION>Ivory
<OPTION>Red

</SELECT></P>
<P><INPUT TYPE=”button” VALUE=”Change It” onClick=”seeColor(this.form)”></P>
</FORM>
</BODY>
</HTML>

options[index].value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 26-6 requires the option text that the user sees to be in familiar, multiple-

word form. But to set the color using the browser’s built-in color palette, you must

use the one-word form. Those one-word values are stored in the VALUE attributes of

each <OPTION> definition. The function then reads the value property, assigning it

to the bgColor of the current document. If you prefer to use the hexadecimal

triplet form of color specifications, those values are assigned to the VALUE
attributes (<OPTION VALUE=”#e9967a”>Dark Salmon).

SELECT.options[index].value

(c) ketabton.com: The Digital Library

CD-508 Part VI ✦ Appendixes

Listing 26-6: Using the options[index].value Property

<HTML>
<HEAD>
<TITLE>Color Changer 2</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeColor(form) {

var newColor = (form.colorsList.options[form.colorsList.selectedIndex].value)
document.bgColor = newColor

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Choose a background color:
<SELECT NAME=”colorsList”>

<OPTION SELECTED VALUE=”cornflowerblue”>Cornflower Blue
<OPTION VALUE=”darksalmon”>Dark Salmon
<OPTION VALUE=”lightgoldenrodyellow”>Light Goldenrod Yellow
<OPTION VALUE=”seagreen”>Sea Green

</SELECT></P>
<P><INPUT TYPE=”button” VALUE=”Change It” onClick=”seeColor(this.form)”></P>
</FORM>
</BODY>
</HTML>

selectedIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In the inspect() function of Listing 26-7, notice that the value inside the options
property index brackets is a reference to the object’s selectedIndex property.

Because this property always returns an integer value, it fulfills the needs of the

index value for the options property. Therefore, if you select Green in the pop-up

menu, form.colorsList.selectedIndex returns a value of 1; that reduces the

rest of the reference to form.colorsList.options[1].text, which equals

“Green.”

SELECT.selectedIndex

(c) ketabton.com: The Digital Library

CD-509Appendix F ✦ Examples from Parts III and IV

Listing 26-7: Using the selectedIndex Property

<HTML>
<HEAD>
<TITLE>Select Inspector</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function inspect(form) {

alert(form.colorsList.options[form.colorsList.selectedIndex].text)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P><SELECT NAME=”colorsList”>

<OPTION SELECTED>Red
<OPTION VALUE=”Plants”><I>Green</I>
<OPTION>Blue

</SELECT></P>
<P><INPUT TYPE=”button” VALUE=”Show Selection” onClick=”inspect(this.form)”></P>
</FORM>
</BODY>
</HTML>

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement sets the number of visible items to 5:

document.forms[0].mySelect.size = 5

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

SELECT.value

(c) ketabton.com: The Digital Library

CD-510 Part VI ✦ Appendixes

Example
The function in Listing 26-6 that accesses the chosen value the long way can be sim-

plified for newer browsers only with the following construction:

function seeColor(form) {
document.bgColor = form.colorsList.value

}

Methods
item(index)
namedItem(“optionID”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The following statement assigns an OPTION element reference to a variable:

var oneOption = document.forms[0].mySelect.namedItem(“option3_2”)

Event handlers
onChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 26-8 is a version of Listing 26-6 that invokes all action as the result of a user

making a selection from the pop-up menu. The onChange event handler in the

<SELECT> tag replaces the action button. For this application — when you desire a

direct response to user input — an appropriate method is to have the action trig-

gered from the pop-up menu rather than by a separate action button.

SELECT.onChange

(c) ketabton.com: The Digital Library

CD-511Appendix F ✦ Examples from Parts III and IV

Notice two other important changes. First, the SELECT element now contains a

blank first option. When a user visits the page, nothing is selected yet, so you

should present a blank option to encourage the user to make a selection. The func-

tion also makes sure that the user selects one of the color-valued items before it

attempts to change the background color.

Second, the BODY element contains an onUnload event handler that resets the

form. The purpose behind this is that if the user navigates to another page and uses

the Back button to return to the page, the script-adjusted background color does

not persist. I recommend you return the SELECT element to its original setting.

Unfortunately, the reset does not stick to the form in IE4 and IE5 for Windows

(although this problem appears to be repaired in IE5.5). Another way to approach

this issue is to use the onLoad event handler to invoke seeColor(), passing as a

parameter a reference to the SELECT element. Thus, if the SELECT element choice

persists, the background color is adjusted accordingly after the page loads.

Listing 26-8: Triggering a Color Change from a Pop-Up Menu

<HTML>
<HEAD>
<TITLE>Color Changer 2</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value)
if (newColor) {

document.bgColor = newColor
}

}
</SCRIPT>
</HEAD>

<BODY onUnload=”document.forms[0].reset()”>
<FORM>
<P>Choose a background color:
<SELECT NAME=”colorsList” onChange=”seeColor(this)”>

<OPTION SELECTED VALUE=””>
<OPTION VALUE=”cornflowerblue”>Cornflower Blue
<OPTION VALUE=”darksalmon”>Dark Salmon
<OPTION VALUE=”lightgoldenrodyellow”>Light Goldenrod Yellow
<OPTION VALUE=”seagreen”>Sea Green

</SELECT></P>
</FORM>
</BODY>
</HTML>

SELECT.onChange

(c) ketabton.com: The Digital Library

CD-512 Part VI ✦ Appendixes

OPTION Element Object

Properties
label

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following statement modifies the text that appears as the selected text in a pop-

up list:

document.forms[0].mySelect.options[3].label = “Widget 9000”

If this option is the currently selected one, the text on the pop-up list at rest

changes to the new label.

OPTGROUP Element Object

Properties
label

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
I present Listing 26-9 in the hope that Microsoft and Netscape will eventually

eradicate the bugs that afflict their current implementations of the label property.

When the feature works as intended, Listing 26-9 demonstrates how a script

can alter the text of option group labels. This page is an enhanced version of the

background color setters used in other examples of this chapter. Be aware that

OPTGROUP.label

(c) ketabton.com: The Digital Library

CD-513Appendix F ✦ Examples from Parts III and IV

IE5/Mac does not alter the last OPTGROUP element’s label, and NN6 achieves only a

partial change to the text displayed in the SELECT element.

Listing 26-9: Modifying OPTGROUP Element Labels

<HTML>
<HEAD>
<TITLE>Color Changer 3</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var regularLabels = [“Reds”,”Greens”,”Blues”]
var naturalLabels = [“Apples”,”Leaves”,”Sea”]
function setRegularLabels(list) {

var optGrps = list.getElementsByTagName(“OPTGROUP”)
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = regularLabels[i]
}

}
function setNaturalLabels(list) {

var optGrps = list.getElementsByTagName(“OPTGROUP”)
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = naturalLabels[i]
}

}
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value)
if (newColor) {

document.bgColor = newColor
}

}
</SCRIPT>
</HEAD>

<BODY onUnload=”document.forms[0].reset()”>
<FORM>
<P>Choose a background color:
<SELECT name=”colorsList” onChange=”seeColor(this)”>

<OPTGROUP ID=”optGrp1” label=”Reds”>
<OPTION value=”#ff9999”>Light Red
<OPTION value=”#ff3366”>Medium Red
<OPTION value=”#ff0000”>Bright Red
<OPTION value=”#660000”>Dark Red

</OPTGROUP>
<OPTGROUP ID=”optGrp2” label=”Greens”>

<OPTION value=”#ccff66”>Light Green
<OPTION value=”#99ff33”>Medium Green
<OPTION value=”#00ff00”>Bright Green
<OPTION value=”#006600”>Dark Green

</OPTGROUP>

Continued

OPTGROUP.label

(c) ketabton.com: The Digital Library

CD-514 Part VI ✦ Appendixes

Listing 26-9 (continued)

<OPTGROUP ID=”optGrp3” label=”Blues”>
<OPTION value=”#ccffff”>Light Blue
<OPTION value=”#66ccff”>Medium Blue
<OPTION value=”#0000ff”>Bright Blue
<OPTION value=”#000066”>Dark Blue

</OPTGROUP>
</SELECT></P>
<P>
<INPUT TYPE=”radio” NAME=”labels” CHECKED
onClick=”setRegularLabels(this.form.colorsList)”>Regular Label Names
<INPUT TYPE=”radio” NAME=”labels”
onClick=”setNaturalLabels(this.form.colorsList)”>Label Names from Nature</P>
</FORM>
</BODY>
</HTML>

Chapter 27 Examples
The following sections contain examples from Chapter 27, “Table and List Objects.”

TABLE Element Object

Properties
align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to see the align property at work. The default value

(left) is in force when the page loads. But you can shift the table to right-align with

TABLE.align

(c) ketabton.com: The Digital Library

CD-515Appendix F ✦ Examples from Parts III and IV

the body by entering the following statement into the top text box for IE5+

and NN6+:

document.getElementById(“myTable”).align = “right”

background

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Treat the background property of a table like you do the src property of an IMG

element object. If you precache an image, you can assign the src property of the

precached image object to the background property of the table for quick image

changing. Such an assignment statement looks like the following:

document.all.myTable.background = imgArray[“myTableAlternate”].src

bgColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to assign a color to the table. After looking at the

table to see its initial state, enter the following IE5+/NN6+ statement into the top

text box:

document.getElementById(“myTable”).bgColor = “lightgreen”

When you look at the table again, you see that only some of the cells turned to

green. This is because colors also are assigned to table elements nested inside the

outermost table element, and the color specification closest to the actual element

wins the context.

TABLE.bgColor

(c) ketabton.com: The Digital Library

CD-516 Part VI ✦ Appendixes

border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
To remove all traces of an outside border of a table (and, in some combinations of

attributes of other table elements, borders between cells), use the following state-

ment (in IE5+/NN6+ syntax):

document.getElementById(“myTable”).border = 0

borderColor
borderColorDark
borderColorLight

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Assuming that you have set the initial light and dark color attributes of a table, the

following function swaps the light and dark colors to shift the light source to the

opposite corner:

function swapColors(tableRef) {
var oldLight = tableRef.borderColorLight
tableRef.borderColorLight = tableRef.borderColorDark
tableRef.borderColorDark = oldLight

}

While you can easily invoke this function over and over by ending it with a

setTimeout() method that calls this function after a fraction of a second, the

results are very distracting to the person trying to read your page. Please don’t do it.

TABLE.borderColor

(c) ketabton.com: The Digital Library

CD-517Appendix F ✦ Examples from Parts III and IV

caption

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following example, for use with The Evaluator (Chapter 13) in NN6+, demon-

strates the sequence of assigning a new CAPTION element object to a table. While

the table in The Evaluator already has a CAPTION element, the following statements

replace it with an entirely new one. Enter each of the following statements into the

top text box, starting with the one that saves a long reference into a variable for

multiple use at the end:

t = document.getElementById(“myTable”)
a = document.createElement(“CAPTION”)
b = document.createTextNode(“A Brand New Caption”)
a.appendChild(b)
t.replaceChild(a, t.caption)

A view of the table shows that the new caption has replaced the old one because a

table can have only one CAPTION element.

cellPadding
cellSpacing

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to adjust the cellPadding and cellSpacing prop-

erties of the demonstrator table. First, adjust the padding (IE5+/NN6 syntax):

document.getElementById(“myTable”).cellPadding = 50

Now, adjust the cell spacing:

document.getElementById(“myTable”).cellSpacing = 15

Notice how cellSpacing affected the thickness of inter-cell borders.

TABLE.cellPadding

(c) ketabton.com: The Digital Library

CD-518 Part VI ✦ Appendixes

cells

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator with IE5+ for Windows to have JavaScript calculate the number

of columns in the demonstrator table with the help of the cells and rows proper-

ties. Enter the following statement into the top text box:

document.all.myTable.cells.length/document.all.myTable.rows.length

The result is the number of columns in the table.

dataPageSize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
If you want to change the number of visible rows of linked data in the table to 15,

use the following statement:

document.all.myTable.dataPageSize = 15

frame

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 27-4 presents a page that cycles through all possible settings for the frame
property. The frame property value is displayed in the table’s caption. (Early ver-

sions of NN6 might fail to refresh part of the page after adjusting the frame property.)

TABLE.frame

(c) ketabton.com: The Digital Library

CD-519Appendix F ✦ Examples from Parts III and IV

Listing 27-4: Cycling Through Table frame Property Values

<HTML>
<HEAD>
<TITLE>TABLE.frame Property</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>
var timeoutID
var frameValues = [“box”, “above”, “rhs”, “below”, “lhs”, “hsides”, “vsides”,

“border”, “void”]
function rotateBorder(i) {

document.getElementById(“myTABLE”).frame = frameValues[i]
document.getElementById(“myCAPTION”).innerHTML = frameValues[i]
i = (++i == frameValues.length) ? 0 : i
timeoutID = setTimeout(“rotateBorder(“ + i + “)”, 2000)

}
function stopRotate() {

clearTimeout(timeoutID)
document.getElementById(“myTABLE”).frame = “box”
document.getElementById(“myCAPTION”).innerHTML = “box”

}
</SCRIPT>
</HEAD>

<BODY>
<H1>TABLE.frame Property</H1>
<HR>
<FORM NAME=”controls”>
<FIELDSET>
<LEGEND>Cycle Table Edge Visibility</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” VALUE=”Cycle” onClick=”rotateBorder(0)”></TD>
<TD><INPUT TYPE=”button” VALUE=”Stop” onClick=”stopRotate()”></TD>
</TR>
</TABLE>
</FIELDSET>
</TABLE>
</FIELDSET>
</FORM>
<HR>
<TABLE ID=”myTABLE” CELLPADDING=5 BORDER=3 ALIGN=”center”>
<CAPTION ID=”myCAPTION”>Default</CAPTION>
<THEAD ID=”myTHEAD”>
<TR>

<TH>River<TH>Outflow<TH>Miles<TH>Kilometers
</TR>

Continued

TABLE.frame

(c) ketabton.com: The Digital Library

CD-520 Part VI ✦ Appendixes

Listing 27-4 (continued)

</THEAD>
<TBODY>
<TR>

<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
</TR>
<TR>

<TD>Congo<TD>Atlantic Ocean<TD>2900<TD>4670
</TR>
<TR>

<TD>Niger<TD>Atlantic Ocean<TD>2600<TD>4180
</TR>
<TR>

<TD>Zambezi<TD>Indian Ocean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to adjust the width of the demonstrator table.

Begin by increasing the width to the full width of the page:

document.getElementById(“myTable”).width = “100%”

To restore the table to its minimum width, assign a very small value to the property:

document.getElementById(“myTable”).width = 50

If you have IE4+, you can perform similar experiments with the height property of

the table.

TABLE.height

(c) ketabton.com: The Digital Library

CD-521Appendix F ✦ Examples from Parts III and IV

rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator to examine the number of rows in the demonstrator table. Enter

the following statement into the top text box:

document.getElementById(“myTable”).rows.length

In contrast, notice how the rows property sees only the rows within the demonstra-

tor table’s TBODY element:

document.getElementById(“myTbody”).rows.length

rules

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 27-5 presents a page that cycles through all possible settings for the rows
property. The rows property value is displayed in the table’s caption. When you run

this script, notice the nice border display for this table’s combination of COL-

GROUP and table row segment elements. Early versions of NN6 may not render the

altered table correctly, and scripted changes won’t appear on the page.

Listing 27-5: Cycling Through Table rows Property Values

<HTML>
<HEAD>
<TITLE>TABLE.rules Property</TITLE>

Continued

TABLE.rules

(c) ketabton.com: The Digital Library

CD-522 Part VI ✦ Appendixes

Listing 27-5 (continued)

<SCRIPT LANGUAGE=”JavaScript”>
var timeoutID
var rulesValues = [“all”, “cols”, “groups”, “none”, “rows”]
function rotateBorder(i) {

document.getElementById(“myTABLE”).rules = rulesValues[i]
document.getElementById(“myCAPTION”).innerHTML = rulesValues[i]
i = (++i == rulesValues.length) ? 0 : i
timeoutID = setTimeout(“rotateBorder(“ + i + “)”, 2000)

}
function stopRotate() {

clearTimeout(timeoutID)
document.getElementById(“myTABLE”).rules = “all”
document.getElementById(“myCAPTION”).innerHTML = “all”

}
</SCRIPT>
</HEAD>

<BODY>
<H1>TABLE.rules Property</H1>
<HR>
<FORM NAME=”controls”>
<FIELDSET>
<LEGEND>Cycle Table Rule Visibility</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” VALUE=”Cycle” onClick=”rotateBorder(0)”></TD>
<TD><INPUT TYPE=”button” VALUE=”Stop” onClick=”stopRotate()”></TD>
</TR>
</TABLE>
</FIELDSET>
</TABLE>
</FIELDSET>
</FORM>
<HR>
<TABLE ID=”myTABLE” CELLPADDING=5 BORDER=3 ALIGN=”center”>
<CAPTION ID=”myCAPTION”>Default</CAPTION>
<COLGROUP SPAN=1>
<COLGROUP SPAN=3>
<THEAD ID=”myTHEAD”>
<TR>

<TH>River<TH>Outflow<TH>Miles<TH>Kilometers
</TR>
</THEAD>
<TBODY>
<TR>

<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
</TR>
<TR>

<TD>Congo<TD>Atlantic Ocean<TD>2900<TD>4670

TABLE.rules

(c) ketabton.com: The Digital Library

CD-523Appendix F ✦ Examples from Parts III and IV

</TR>
<TR>

<TD>Niger<TD>Atlantic Ocean<TD>2600<TD>4180
</TR>
<TR>

<TD>Zambezi<TD>Indian Ocean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

tBodies

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to access the tBodies array and reveal the number

of rows in the one TBODY segment of the demonstrator table. Enter the following

statement into the top text box:

document.getElementById(“myTable”).tBodies[0].rows.length

Methods
moveRow(sourceRowIndex, destinationRowIndex)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you want to shift the bottom row of a table to the top, you can use the shortcut

reference to the last item’s index value (-1) for the first parameter:

var movedRow = document.all.someTable.moveRow(-1, 0)

TABLE.moveRow()

(c) ketabton.com: The Digital Library

CD-524 Part VI ✦ Appendixes

TBODY, TFOOT, and THEAD Element Objects

Properties
vAlign

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to modify the vertical alignment of the content of

the TBODY element in the demonstrator table. Enter the following statement in the

top text box to shift the content to the bottom of the cells:

document.getElementById(“myTBody”).vAlign = “bottom”

Notice that the cells of the THEAD element are untouched by the action imposed on

the TBODY element.

COL and COLGROUP Element Objects

Properties
span

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement assigns a span of 3 to a newly created COLGROUP element

stored in the variable colGroupA:

colGroupA.span = 3

COL.span

(c) ketabton.com: The Digital Library

CD-525Appendix F ✦ Examples from Parts III and IV

TR Element Object

Properties
cells

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to retrieve the number of TD elements in the sec-

ond row of the demonstrator table. Enter the following statement into the top text

box (W3C DOM syntax shown here):

document.getElementById(“myTable”).rows[1].cells.length

height

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) in IE4+ to expand the height of the second row of

the demonstrator table. Enter the following statement into the top text box:

document.all.myTable.rows[1].height = 300

If you attempt to set the value very low, the rendered height goes no smaller than

the default height.

TR.height

(c) ketabton.com: The Digital Library

CD-526 Part VI ✦ Appendixes

rowIndex
sectionRowIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to explore the rowIndex and sectionRowIndex
property values for the second physical row in the demonstrator table. Enter each

of the following statements into the top text box (W3C DOM syntax shown here):

document.getElementById(“myTable”).rows[1].rowIndex
document.getElementById(“myTable”).rows[1].sectionRowIndex

The result of the first statement is 1 because the second row is the second row of

the entire table. But the sectionRowIndex property returns 0 because this row is

the first row of the TBODY element in this particular table.

TD and TH Element Objects

Properties
cellIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can rewrite the cell addition portion of Listing 27-2 to utilize the cellIndex
property. The process entails modifying the insertTableRow() function so that it

uses a do...while construction to keep adding cells to match the number of data

slots. The function looks like the following (changes shown in boldface):

TD.cellIndex

(c) ketabton.com: The Digital Library

CD-527Appendix F ✦ Examples from Parts III and IV

function insertTableRow(form, where) {
var now = new Date()
var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),

now.getMilliseconds()]
clearBGColors()
var newCell
var newRow = theTableBody.insertRow(where)
var i = 0
do {

newCell = newRow.insertCell(i)
newCell.innerHTML = nowData[i++]
newCell.style.backgroundColor = “salmon”

} while (newCell.cellIndex < nowData.length)
updateRowCounters(form)

}

This version is merely for demonstration purposes and is not as efficient as the

sequence shown in Listing 27-2. But the cellIndex property version can give you

some implementation ideas for the property. It also shows how dynamic the prop-

erty is, even for brand new cells.

colSpan
rowSpan

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to witness how modifying either of these properties

in an existing table can destroy the table. Enter the following statement into the top

text box:

document.getElementById(“myTable”).rows[1].cells[0].colSpan = 3

Now that the first cell of the second row occupies the space of three columns, the

browser has no choice but to shift the two other defined cells for that row out

beyond the original boundary of the table. Experiment with the rowSpan property

the same way. To restore the original settings, assign 1 to each property.

TD.colSpan

(c) ketabton.com: The Digital Library

CD-528 Part VI ✦ Appendixes

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to see the results of setting the height and width
properties of an existing table cell. Enter each of the following statements into the

top text box and study the results in the demonstrator table (W3C DOM syntax

used here):

document.getElementById(“myTable”).rows[1].cell[1].height = 100
document.getElementById(“myTable”).rows[2].cell[0].width = 300

You can restore both cells to their original sizes by assigning very small values,

such as 1 or 0, to the properties. The browser prevents the cells from rendering any

smaller than is necessary to show the content.

noWrap

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement creates a new cell in a row and sets its noWrap property to

prevent text from word-wrapping inside the cell:

newCell = newRow.insertCell(-1)
newCell.noWrap = true

You need to set this property only if the cell must behave differently than the

default, word-wrapping style.

TD.noWrap

(c) ketabton.com: The Digital Library

CD-529Appendix F ✦ Examples from Parts III and IV

OL Element Object

Properties
start

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new OL element and assign a value to the

start property:

var newOL = document.createElement(“OL”)
newOL.start = 5

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new OL element and assign a value to the type
property so that the sequence letters are uppercase Roman numerals:

var newOL = document.createElement(“OL”)
newOL.type = “I”

OL.type

(c) ketabton.com: The Digital Library

CD-530 Part VI ✦ Appendixes

UL Element Object

Properties
type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new UL element and assign a value to the type
property so that the bullet characters are empty circles:

var newUL = document.createElement(“UL”)
newUL.type = “circle”

LI Element Object

Properties
type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See the examples for the OL.type and UL.type properties earlier in this chapter.

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

LI.value

(c) ketabton.com: The Digital Library

CD-531Appendix F ✦ Examples from Parts III and IV

Example
The following statements generate a new LI element and assign a value to the start
property:

var newLI = document.createElement(“LI”)
newLI.start = 5

Chapter 28 Examples
The following sections contain examples from Chapter 28, “The Navigator and

Other Environment Objects.”

clientInformation Object (IE4+) and navigator
Object (All)

Properties
appCodeName
appName
appVersion
userAgent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 28-1 provides a number of reusable functions that your scripts can employ

to determine a variety of information about the currently running browser. This is

not intended in any way to be an all-inclusive browser-sniffing routine; instead, I

offer samples of how to extract information from the key navigator properties to

determine various browser conditions.

All functions in Listing 28-1 return a Boolean value inline with the pseudo-question

presented in the function’s name. For example, the isWindows() function returns

true if the browser is any type of Windows browser; otherwise, it returns false.

(In Internet Explorer 3, the values are 0 for false and -1 for true, but those values

navigator.appCodeName

(c) ketabton.com: The Digital Library

CD-532 Part VI ✦ Appendixes

are perfectly usable in if conditional phrases). If this kind of browser detection

occurs frequently in your pages, consider moving these functions into an external

.js source library for inclusion in your pages (see Chapter 13).

When you load this page, it presents fields that display the results of each function

depending on the type of browser and client operating system you use.

Listing 28-1: Functions to Examine Browsers

<HTML>
<HEAD>
<TITLE>UserAgent Property Library</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// basic brand determination
function isNav() {

return (navigator.appName == “Netscape”)
}

function isIE() {
return (navigator.appName == “Microsoft Internet Explorer”)

}

// operating system platforms
function isWindows() {

return (navigator.appVersion.indexOf(“Win”) != -1)
}

function isWin95NT() {
return (isWindows() && (navigator.appVersion.indexOf(“Win16”) == -1 &&

navigator.appVersion.indexOf(“Windows 3.1”) == -1))
}

function isMac() {
return (navigator.appVersion.indexOf(“Mac”) != -1)

}

function isMacPPC() {
return (isMac() && (navigator.appVersion.indexOf(“PPC”) != -1 ||

navigator.appVersion.indexOf(“PowerPC”) != -1))
}

function isUnix() {
return (navigator.appVersion.indexOf(“X11”) != -1)

}

// browser versions
function isGeneration2() {

return (parseInt(navigator.appVersion) == 2)
}

navigator.appCodeName

(c) ketabton.com: The Digital Library

CD-533Appendix F ✦ Examples from Parts III and IV

function isGeneration3() {
return (parseInt(navigator.appVersion) == 3)

}

function isGeneration3Min() {
return (parseInt(navigator.appVersion.charAt(0)) >= 3)

}
function isNav4_7() {

return (isNav() && parseFloat(navigator.appVersion) == 4.7)
}

function isMSIE4Min() {
return (isIE() && navigator.appVersion.indexOf(“MSIE”) != -1)

}

function isMSIE5_5() {
return (navigator.appVersion.indexOf(“MSIE 5.5”) != -1)

}

function isNN6Min() {
return (isNav() && parseInt(navigator.appVersion) >= 5)

}

// element referencing syntax
function isDocAll() {

return (document.all) ? true : false
}

function isDocW3C() {
return (document.getElementById) ? true : false

}

// fill in the blanks
function checkBrowser() {

var form = document.forms[0]
form.brandNN.value = isNav()
form.brandIE.value = isIE()
form.win.value = isWindows()
form.win32.value = isWin95NT()
form.mac.value = isMac()
form.ppc.value = isMacPPC()
form.unix.value = isUnix()
form.ver3Only.value = isGeneration3()
form.ver3Up.value = isGeneration3Min()
form.Nav4_7.value = isNav4_7()
form.Nav6Up.value = isNN6Min()
form.MSIE4.value = isMSIE4Min()
form.MSIE5_5.value = isMSIE5_5()
form.doc_all.value = isDocAll()

Continued

navigator.appCodeName

(c) ketabton.com: The Digital Library

CD-534 Part VI ✦ Appendixes

Listing 28-1 (continued)

form.doc_w3c.value = isDocW3C()
}
</SCRIPT>
</HEAD>

<BODY onLoad=”checkBrowser()”>
<H1>About This Browser</H1>
<FORM>
<H2>Brand</H2>
Netscape Navigator:<INPUT TYPE=”text” NAME=”brandNN” SIZE=5>
Internet Explorer:<INPUT TYPE=”text” NAME=”brandIE” SIZE=5>
<HR>
<H2>Browser Version</H2>
3.0x Only (any brand):<INPUT TYPE=”text” NAME=”ver3Only” SIZE=5><P>
3 or Later (any brand): <INPUT TYPE=”text” NAME=”ver3Up” SIZE=5><P>
Navigator 4.7: <INPUT TYPE=”text” NAME=”Nav4_7” SIZE=5><P>
Navigator 6+: <INPUT TYPE=”text” NAME=”Nav6Up” SIZE=5><P>
MSIE 4+: <INPUT TYPE=”text” NAME=”MSIE4” SIZE=5><P>
MSIE 5.5:<INPUT TYPE=”text” NAME=”MSIE5_5” SIZE=5><P>
<HR>
<H2>OS Platform</H2>
Windows: <INPUT TYPE=”text” NAME=”win” SIZE=5>
Windows 95/98/2000/NT: <INPUT TYPE=”text” NAME=”win32” SIZE=5><P>
Macintosh: <INPUT TYPE=”text” NAME=”mac” SIZE=5>
Mac PowerPC: <INPUT TYPE=”text” NAME=”ppc” SIZE=5><P>
Unix: <INPUT TYPE=”text” NAME=”unix” SIZE=5><P>
<HR>
<H2>Element Referencing Style</H2>
Use <TT>document.all</TT>: <INPUT TYPE=”text” NAME=”doc_all” SIZE=5><P>
Use <TT>document.getElementById()</TT>: <INPUT TYPE=”text” NAME=”doc_w3c”
SIZE=5><P>
</FORM>
</BODY>
</HTML>

Sometimes you may need to use more than one of these functions together. For

example, if you want to create a special situation for the window.open() bug that

afflicts UNIX and Macintosh versions of Navigator 2, then you have to put your

Boolean operator logic powers to work to construct a fuller examination of the

browser:

function isWindowBuggy() {
return (isGeneration2() && (isMac() || isUnix()))

}

navigator.appCodeName

(c) ketabton.com: The Digital Library

CD-535Appendix F ✦ Examples from Parts III and IV

You can see many more examples of browser sniffing, including more details about

handling AOL browsers, in an article by Eric Krock at: http://developer.
netscape.com:80/docs/examples/javascript/browser_type.html.

appMinorVersion

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to examine the two related version properties of

your IE browser(s). Type the following two statements into the top text box and

observe the results:

navigator.appVersion
navigator.minorAppVersion

There is a good chance that the values returned are not related to the browser ver-

sion number shown after MSIE in the appVersion value.

cookieEnabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator to see the value of the navigator.cookieEnabled property on

your browsers. Enter the following statement into the top text box:

navigator.cookieEnabled

Feel free to change the cookie preferences setting temporarily to see the new value

of the property. You do not have to relaunch the browser for the new setting to take

effect.

navigator.cookieEnabled

(c) ketabton.com: The Digital Library

CD-536 Part VI ✦ Appendixes

cpuClass

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see how IE reports the cpuClass of your PC.

Enter the following statement into the top text box:

navigator.cpuClass

mimeTypes

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�) (�)

Example
For examples of the mimeTypes property and details about using the mimeType

object, see the discussion of this object later in the chapter. A number of simple

examples showing how to use this property to see whether the navigator object

has a particular MIME type do not go far enough in determining whether a plug-in is

installed and enabled to play the incoming data.

onLine

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see the online state of your IE browsers. Enter

the following statement into the top text box:

navigator.onLine

navigator.onLine

(c) ketabton.com: The Digital Library

CD-537Appendix F ✦ Examples from Parts III and IV

Verify your browsing mode by checking the Work Offline choice in the File menu. If

it is checked, the onLine property should return false.

oscpu

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) with NN6 to see what your client machine reports

to you by entering the following statement into the top text box:

navigator.oscpu

platform

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Use The Evaluator (Chapter 13) to see what your computer reports as its operating

system. Enter the following statement into the top text box:

navigator.platform

product
productSub
vendor
vendorSub

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

navigator.product

(c) ketabton.com: The Digital Library

CD-538 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) on your copy of NN6 to see the values returned for

these four properties. Enter each of the following statements into the top text box

of the page and see the values for each in the Results box:

navigator.product
navigator.productSub
navigator.vendor
navigator.vendorSub

Also check the value of the navigator.userAgent property to see how many of

these four property values are revealed in the userAgent property.

systemLanguage
userLanguage

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) with your IE4+ browser to compare the values of

the three language-related properties running on your computer. Enter each of the

following statements into the top text box:

navigator.browserLanguage
navigator.systemLanguage
navigator.userLanguage

Don’t be surprised if all three properties return the same value.

Methods
preference(name [, val])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

navigator.preference()

(c) ketabton.com: The Digital Library

CD-539Appendix F ✦ Examples from Parts III and IV

Example
The page in Listing 28-2 displays checkboxes for several preference settings plus

one text box to show a preference setting value for the size of the browser’s disk

cache. To run this script without signing the scripts, turn on codebase principals as

directed in Chapter 46. (The listing file on the CD-ROM does not employ signed

scripts.)

One function reads all the preferences and sets the form control values accordingly.

Another function sets a preference when you click its checkbox. Because of the

interaction among three of the cookie settings, it is easier to have the script rerun

the showPreferences() function after each setting rather than you trying to man-

ually control the properties of the three checkboxes. Rerunning that function also

helps verify that you set the preference.

Listing 28-2: Reading and Writing Browser Preferences

<HTML>
<HEAD>
<TITLE>Reading/Writing Browser Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function setPreference(pref, value) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalPreferencesWrite”)

navigator.preference(pref, value)
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalPreferencesWrite”)
showPreferences()

}

function showPreferences() {
var form = document.forms[0]
netscape.security.PrivilegeManager.enablePrivilege(

“UniversalPreferencesRead”)
form.imgLoad.checked = navigator.preference(“general.always_load_images”)
form.cacheSize.value = navigator.preference(“browser.cache.disk_cache_size”)
form.ssEnable.checked = navigator.preference(“browser.enable_style_sheets”)
form.autoIEnable.checked = navigator.preference(“autoupdate.enabled”)
var cookieSetting = navigator.preference(“network.cookie.cookieBehavior”)
for (var i = 0; i < 3; i++) {

form.elements[“cookie” + i].checked = (i == cookieSetting) ? true :
false

}

Continued

navigator.preference()

(c) ketabton.com: The Digital Library

CD-540 Part VI ✦ Appendixes

Listing 28-2 (continued)

form.cookieWarn.checked =
navigator.preference(“network.cookie.warnAboutCookies”)

netscape.security.PrivilegeManager.revertPrivilege(
“UniversalPreferencesRead”)

}
</SCRIPT>
</HEAD>

<BODY onLoad=”showPreferences()”>
<H1>Browser Preferences Settings Sampler</H1>
<HR>
<FORM>
<INPUT TYPE=”checkbox” NAME=”imgLoad”
onClick=”setPreference(‘general.always_load_images’,this.checked)”>
Automatically Load Images

<INPUT TYPE=”checkbox” NAME=”ssEnable”
onClick=”setPreference(‘browser.enable_style_sheets’,this.checked)”>
Style Sheets Enabled

<INPUT TYPE=”checkbox” NAME=”autoIEnable”
onClick=”setPreference(‘autoupdate.enabled’,this.checked)”>
AutoInstall Enabled

<INPUT TYPE=”checkbox” NAME=”cookie0”
onClick=”setPreference(‘network.cookie.cookieBehavior’,0)”>
Accept All Cookies

<INPUT TYPE=”checkbox” NAME=”cookie1”
onClick=”setPreference(‘network.cookie.cookieBehavior’,1)”>
Accept Only Cookies Sent Back to Server

<INPUT TYPE=”checkbox” NAME=”cookie2”
onClick=”setPreference(‘network.cookie.cookieBehavior’,2)”>
Disable Cookies

<INPUT TYPE=”checkbox” NAME=”cookieWarn”
onClick=”setPreference(‘network.cookie.warnAboutCookies’,this.checked)”>
Warn Before Accepting Cookies

Disk cache is <INPUT TYPE=”text” NAME=”cacheSize” SIZE=10> KB

</FORM>
</BODY>
</HTML>

navigator.preference()

(c) ketabton.com: The Digital Library

CD-541Appendix F ✦ Examples from Parts III and IV

screen Object

Properties
availLeft
availTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you are a Windows user, you can experiment with these NN4+ properties via The

Evaluator (Chapter 13). With the taskbar at the bottom of the screen, enter these

two statements into the top text box:

screen.availLeft
screen.availTop

Next, drag the taskbar to the top of the screen and try both statements again. Now,

drag the taskbar to the left edge of the screen and try the statements once more.

userProfile Object

Methods
addReadRequest(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

userProfile.addReadRequest()

(c) ketabton.com: The Digital Library

CD-542 Part VI ✦ Appendixes

Example
See Listing 28-4 for an example of the addReadRequest() method in action. You

can also invoke it from the top text box in The Evaluator. For example, enter the fol-

lowing statement to queue one request:

navigator.userProfile.addReadRequest(“vCard.LastName”)

To continue the process, see examples for doReadRequest() and getAttribute()
later in this chapter.

doReadRequest(reasonCode, identification[,
domain[, path[, expiration]]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 28-4 for an example of the doReadRequest() method in action. If you

entered the addReadRequest() example for The Evaluator earlier in this chapter,

you can now bring up the permissions dialog box (if you have a user profile for

your version of Windows) by entering the following statement into the top text box:

navigator.userProfile.doReadRequest(1, “Just me!”)

getAttribute(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 28-4 for an example of the getAttribute() method in action. Also, if

you followed The Evaluator examples for this object, you can now extract the

desired information (provided it is in your user profile). Enter the following state-

ment into the top text box:

navigator.userProfile.getAttribute(“vCard.LastName”)

userProfile.getAttribute()

(c) ketabton.com: The Digital Library

CD-543Appendix F ✦ Examples from Parts III and IV

Chapter 29 Examples
The following sections contain examples from Chapter 29, “Event Objects.”

NN4 event Object

Properties
data

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page in Listing 29-12 contains little more than a TEXTAREA in which the URLs

of dragged items are listed. To run this script without signing the scripts, turn on

codebase principals, as directed in Chapter 46.

To experiment with this listing, load the page and drag any desktop icons that rep-

resent files, applications, or folders to the window. Select multiple items and drag

them all at once. Because the onDragDrop event handler evaluates to return
false, the files are not loaded into the window. If you want merely to look at the

URL and allow only some to process, you would generate an if...else construc-

tion to return true or false to the event handler as needed. A value of return
true allows the normal processing of the DragDrop event to take place after your

event handler function has completed its processing.

Listing 29-12: Obtaining URLs of a DragDrop Event’s data
Property

<HTML>
<HEAD>
<TITLE>Drag and Drop</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function handleDrag(evt) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”)

Continued

(NN4) eventObject.data

(c) ketabton.com: The Digital Library

CD-544 Part VI ✦ Appendixes

Listing 29-12 (continued)

var URLArray = evt.data
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserRead”)
if (URLArray) {

document.forms[0].output.value = URLArray.join(“\n”)
} else {

document.forms[0].output.value = “Nothing found.”
}
return false

}
</SCRIPT>
</HEAD>
<BODY onDragDrop=”return handleDrag(event)”>
Drag a URL to this window (NN4 only).
<HR>
<FORM>
URLs:

<TEXTAREA NAME=”output” COLS=70 ROWS=4></TEXTAREA>

<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

layerX
layerY
pageX
pageY
screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can see the effects of the coordinate systems and associated properties with the

page in Listing 29-13. Part of the page contains a three-field readout of the layer-,

page-, and screen-level properties. Two clickable objects are provided so that you

can see the differences between an object not in any layer and an object residing

(NN4) eventObject.layerX

(c) ketabton.com: The Digital Library

CD-545Appendix F ✦ Examples from Parts III and IV

within a layer. The object not confined by a layer has its layer and page coordinates

the same in the event object properties.

Additional readouts display the event object coordinates for resizing and moving a

window. If you maximize the window under Windows, the Navigator browser’s top-

left corner is actually out of sight, four pixels up and to the left. That’s why the

screenX and screenY values are both -4.

Listing 29-13: NN4 Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkCoords(evt) {

var form = document.forms[0]
form.layerCoords.value = evt.layerX + “,” + evt.layerY
form.pageCoords.value = evt.pageX + “,” + evt.pageY
form.screenCoords.value = evt.screenX + “,” + evt.screenY
return false

}
function checkSize(evt) {

document.forms[0].resizeCoords.value = evt.layerX + “,” + evt.layerY
}
function checkLoc(evt) {

document.forms[0].moveCoords.value = evt.screenX + “,” + evt.screenY
}
</SCRIPT>
</HEAD>
<BODY onResize=”checkSize(event)” onMove=”checkLoc(event)”>
<H1>X and Y Event Properties (NN4)</H1>
<HR>
<P>Click on the button and in the layer/image to see the coordinate values for
the event object.</P>
<FORM NAME=”output”>
<TABLE>
<TR><TD COLSPAN=2>Mouse Event Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>layerX, layerY:</TD><TD><INPUT TYPE=”text”
NAME=”layerCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>pageX, pageY:</TD><TD><INPUT TYPE=”text” NAME=”pageCoords”
SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>screenX, screenY:</TD><TD><INPUT TYPE=”text”
NAME=”screenCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”><INPUT TYPE=”button” VALUE=”Click Here”
onMouseDown=”checkCoords(event)”></TD></TR>
<TR><TD COLSPAN=2><HR></TD></TR>
<TR><TD COLSPAN=2>Window Resize Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>layerX, layerY:</TD><TD><INPUT TYPE=”text”

Continued

(NN4) eventObject.layerX

(c) ketabton.com: The Digital Library

CD-546 Part VI ✦ Appendixes

Listing 29-13 (continued)

NAME=”resizeCoords” SIZE=10></TD></TR>
<TR><TD COLSPAN=2><HR></TD></TR>
<TR><TD COLSPAN=2>Window Move Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>screenX, screenY:</TD><TD><INPUT TYPE=”text”
NAME=”moveCoords” SIZE=10></TD></TR>
</TABLE>
</FORM>
<LAYER NAME=”display” BGCOLOR=”coral” TOP=140 LEFT=300 HEIGHT=250 WIDTH=330>

</LAYER>
</BODY>
</HTML>

IE4+ event Object

Properties
clientX
clientY
offsetX
offsetY
screenX
screenY
x
y

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

(IE) event.clientX

(c) ketabton.com: The Digital Library

CD-547Appendix F ✦ Examples from Parts III and IV

Example
Listing 29-14 provides readings of all event coordinate properties in an interactive

way. An onMouseDown event handler triggers all event handling, and you can click

the mouse anywhere on the page to see what happens. You see the tag of the ele-

ment targeted by the mouse event to help you visualize how some of the coordinate

properties are determined. An image is encased inside a positioned DIV element to

help you see what happens to some of the properties when the event is targeted

inside a positioned element.

Listing 29-14: IE4+ Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties (IE4+)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkCoords() {

var form = document.forms[0]
form.srcElemTag.value = “<” + event.srcElement.tagName + “>”
form.clientCoords.value = event.clientX + “,” + event.clientY
form.pageCoords.value = (event.clientX + document.body.scrollLeft) +

“,” + (event.clientY + document.body.scrollTop)
form.offsetCoords.value = event.offsetX + “,” + event.offsetY
form.screenCoords.value = event.screenX + “,” + event.screenY
form.xyCoords.value = event.x + “,” + event.y
form.parElem.value = “<” + event.srcElement.offsetParent.tagName + “>”
return false

}
function handleSize() {

document.forms[0].resizeCoords.value = event.clientX + “,” + event.clientY
}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”checkCoords()” onResize=”handleSize()”>
<H1>X and Y Event Properties (IE4+)</H1>
<HR>
<P>Click on the button and in the DIV/image to see the coordinate values for the
event object.</P>
<FORM NAME=”output”>
<TABLE>
<TR><TD COLSPAN=2>IE Mouse Event Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>srcElement:</TD><TD><INPUT TYPE=”text” NAME=”srcElemTag”
SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>clientX, clientY:</TD><TD><INPUT TYPE=”text”
NAME=”clientCoords” SIZE=10></TD>
<TD ALIGN=”right”>...With scrolling:</TD><TD><INPUT TYPE=”text”
NAME=”pageCoords” SIZE=10></TD></TR>

Continued

(IE) event.clientX

(c) ketabton.com: The Digital Library

CD-548 Part VI ✦ Appendixes

Listing 29-14 (continued)

<TR><TD ALIGN=”right”>offsetX, offsetY:</TD><TD><INPUT TYPE=”text”
NAME=”offsetCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>screenX, screenY:</TD><TD><INPUT TYPE=”text”
NAME=”screenCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>x, y:</TD><TD><INPUT TYPE=”text” NAME=”xyCoords”
SIZE=10></TD>
<TD ALIGN=”right”>...Relative to:</TD><TD><INPUT TYPE=”text” NAME=”parElem”
SIZE=10></TD></TR>
<TR><TD ALIGN=”right”><INPUT TYPE=”button” VALUE=”Click Here”></TD></TR>
<TR><TD COLSPAN=2><HR></TD></TR>
<TR><TD COLSPAN=2>Window Resize Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>clientX, clientY:</TD><TD><INPUT TYPE=”text”
NAME=”resizeCoords” SIZE=10></TD></TR>
</TABLE>
</FORM>
<DIV ID=”display” STYLE=”position:relative; left:100”>

</DIV>
</BODY>
</HTML>

Here are some tasks to try with the page that loads from Listing 29-14 to help you

understand the relationships among the various pairs of coordinate properties:

1. Click the dot above the “i” on the “Click Here” button label. The target ele-

ment is the button (INPUT) element, whose offsetParent is a table cell ele-

ment. The offsetY value is very low because you are near the top of the

element’s own coordinate space. The client coordinates (and x and y), how-

ever, are relative to the viewable area in the window. If your browser window

is maximized in Windows, the screenX and clientX values will be the same;

the difference between screenY and clientY is the height of all the window

chrome above the content region. With the window not scrolled at all, the

client coordinates are the same with and without scrolling taken into account.

2. Jot down the various coordinate values and then scroll the page down slightly

(clicking the scrollbar fires an event) and click the dot on the button again.

The clientY value shrinks because the page has moved upward relative to

the viewable area, making the measure between the top of the area smaller

with respect to the button. The Windows version does the right thing with the

offset properties, by continuing to return values relative to the element’s own

coordinate space; the Mac, unfortunately, subtracts the scrolled amount from

the offset properties.

(IE) event.clientX

(c) ketabton.com: The Digital Library

CD-549Appendix F ✦ Examples from Parts III and IV

3. Click the large image. The client properties perform as expected for both

Windows and Mac, as do the screen properties. For Windows, the x and y
properties correctly return the event coordinates relative to the IMG ele-

ment’s offsetParent, which is the DIV element that surrounds it. Note, how-

ever, that the browser “sees” the DIV as starting 10 pixels to the left of the

image. In IE5.5/Windows, you can click within those ten transparent pixels to

the left of the image to click the DIV element. This padding is inserted auto-

matically and impacts the coordinates of the x and y properties. A more reli-

able measure of the event inside the image is the offset properties. The same

is true in the Macintosh version, as long as the page isn’t scrolled, in which

case the scroll, just as in Step 2, affects the values above.

4. Click the top HR element under the heading. It may take a couple of tries to

actually hit the element (you’ve made it when the HR element shows up in the

srcElement box). This is to reinforce the way the client properties provide

coordinates within the element itself (again, accept on the Mac when the page

is scrolled). Clicking at the very left end of the rule, you eventually find the 0,0

coordinate.

Finally, if you are a Windows user, here are two examples to try to see some of the

unexpected behavior of coordinate properties.

1. With the page not scrolled, click anywhere along the right side of the page,

away from any text so that the BODY element is srcElement. Because the

BODY element theoretically fills the entire content region of the browser win-

dow, all coordinate pairs except for the screen coordinates should be the

same. But offset properties are two pixels less than all the others. By and

large, this difference won’t matter in your scripts, but you should be aware of

this potential discrepancy if precise positioning is important. For inexplicable

reasons, the offset properties are measured in a space that is inset two pixels

from the left and top of the window. This is not the case in the Macintosh ver-

sion, where all value pairs are the same from the BODY perspective.

2. Click the text of the H1 or P elements (just above and below the long horizon-

tal rule at the top of the page). In theory, the offset properties should be rela-

tive to the rectangles occupied by these elements (they’re block elements,

after all). But instead, they’re measured in the same space as the client prop-

erties (plus the two pixels). This unexpected behavior doesn’t have anything

to do with the cursor being a text cursor, because if you click inside any of the

text box elements, their offset properties are properly relative to their own

rectangles. This problem does not afflict the Macintosh version.

You can see further examples of key event coordinate properties in action in

Chapter 31’s example of dragging elements around the page.

(IE) event.clientX

(c) ketabton.com: The Digital Library

CD-550 Part VI ✦ Appendixes

fromElement
toElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 29-15 provides an example of how the fromElement and toElement proper-

ties can reveal the life of the cursor action before and after it rolls into an element.

When you roll the cursor to the center box (a table cell), its onMouseOver event

handler displays the text from the table cell from which the cursor arrived. If the

cursor comes in from one of the corners (not easy to do), a different message is

displayed.

Listing 29-15: Using the toElement and fromElement
Properties

<HTML>
<HEAD>
<TITLE>fromElement and toElement Properties</TITLE>
<STYLE TYPE=”text/CSS”>
.direction {background-color:#00FFFF; width:100; height:50; text-align:center}
#main {background-color:#FF6666; text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showArrival() {

var direction = (event.fromElement.innerText) ? event.fromElement.innerText :
“parts unknown”
status = “Arrived from: “ + direction

}
function showDeparture() {

var direction = (event.toElement.innerText) ? event.toElement.innerText :
“parts unknown”
status = “Departed to: “ + direction

}
</SCRIPT>
</HEAD>
<BODY>
<H1>fromElement and toElement Properties</H1>
<HR>
<P>Roll the mouse to the center box and look for arrival information

(IE) event.fromElement

(c) ketabton.com: The Digital Library

CD-551Appendix F ✦ Examples from Parts III and IV

in the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</P>

<TABLE CELLSPACING=0 CELLPADDING=5>
<TR><TD></TD><TD CLASS=”direction”>North</TD><TD></TD></TR>
<TR><TD CLASS=”direction”>West</TD>
<TD ID=”main” onMouseOver=”showArrival()” onMouseOut=”showDeparture()”>Roll</TD>
<TD CLASS=”direction”>East</TD></TR>
<TR><TD></TD><TD CLASS=”direction”>South</TD><TD></TD></TR>
</TABLE>
</BODY>
</HTML>

This is a good example to experiment with in the browser, because it also reveals a

potential limitation. The element registered as the toElement or fromElement
must fire a mouse event to register itself with the browser. If not, the next element

in the sequence that registers itself is the one acknowledged by these properties.

For example, if you roll the mouse into the center box and then extremely quickly

roll the cursor to the bottom of the page, you may bypass the South box entirely.

The text that appears in the statusbar is actually the inner text of the BODY ele-

ment, which is the element that caught the first mouse event to register itself as the

toElement for the center table cell.

keyCode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 29-16 provides an additional play area to view the keyCode property for all

three keyboard events while you type into a TEXTAREA. You can use this page later

as an authoring tool to grab the precise codes for keyboard keys you may not be

familiar with.

Listing 29-16: Displaying keyCode Property Values

<HTML>
<HEAD>
<TITLE>keyCode Property</TITLE>

Continued

(IE) event.keyCode

(c) ketabton.com: The Digital Library

CD-552 Part VI ✦ Appendixes

Listing 29-16 (continued)

<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showCode(which) {

document.forms[0].elements[which].value = event.keyCode
}
function clearEm() {

for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>keyCode Property</H1>
<HR>
<P></P>
<FORM>
<P>
<TEXTAREA NAME=”scratchpad” COLS=”40” ROWS=”5” WRAP=”hard”
onKeyDown=”clearEm(); showCode(‘down’)” onKeyUp=”showCode(‘up’)”
onKeyPress=”showCode(‘press’)”></TEXTAREA>
</P>
<TABLE CELLPADDING=”5”>
<TR><TH>Event</TH><TH>event.keyCode</TH></TR>
<TR><TD>onKeyDown:</TD><TD><INPUT TYPE=”text” NAME=”down” SIZE=”3”></TD></TR>
<TR><TD>onKeyPress:</TD><TD><INPUT TYPE=”text” NAME=”press” SIZE=”3”></TD></TR>
<TR><TD>onKeyUp:</TD><TD><INPUT TYPE=”text” NAME=”up” SIZE=”3”></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

The following are some specific tasks to try with the page to examine key codes (if

you are not using a browser set for English and a Latin-based keyboard, your

results may vary):

1. Enter a lowercase letter “a”. Notice how the onKeyPress event handler shows

the code to be 97, which is the Unicode (and ASCII) value for the first of the

lowercase letters of the Latin alphabet. But the other two events record just

the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the

Shift key, itself, generates the code 16 for the onKeyDown and onKeyUp events.

(IE) event.keyCode

(c) ketabton.com: The Digital Library

CD-553Appendix F ✦ Examples from Parts III and IV

But the character key then shows the value 65 for all three events, because

the ASCII value of the uppercase letter happens to match the keyboard key

code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the

TEXTAREA, because that’s where the keyboard events are being monitored).

As a non-character key, it does not fire an onKeyPress event. But it does fire

the other events, and assigns 40 as the code for this key.

4. Poke around with other non-character keys. Some may produce dialog boxes

or menus, but their key codes are recorded nonetheless. Note that not all keys

on a Macintosh keyboard register with IE/Mac.

returnValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find several examples of the returnValue property at work in Chapter 15.

Look at Listings 15-30, 33, 36, 37, 38, and 45. Moreover, many of the other examples

in that chapter can substitute the returnValue property way of cancelling the

default action if the scripts were to be run exclusively on IE4+.

srcElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
As a simplified demonstration of the power of the srcElement property, Listing

29-17 has but two event handlers defined for the BODY element, each invoking a

single function. The idea is that the onMouseDown and onMouseUp events will bub-

ble up from whatever their targets are, and the event handler functions will find out

which element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the className
property of the target element. If the className is bold— a class name shared by

(IE) event.srcElement

(c) ketabton.com: The Digital Library

CD-554 Part VI ✦ Appendixes

three SPAN elements in the paragraph — the style sheet rule for that class is modi-

fied so that all items share the same color. Your scripts can do even more in the

way of filtering objects that arrive at the functions to perform special operations on

certain objects or groups of objects.

Notice that the scripts don’t have to know anything about the objects on the page

to address each clicked one individually. That’s because the srcElement property

provides all of the specificity needed for acting on the target element.

Listing 29-17: Using the srcElement property

<HTML>
<HEAD>
<TITLE>srcElement Property</TITLE>
<STYLE TYPE=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function highlight() {

var elem = event.srcElement
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “red”
} else {

elem.style.color = “#FFCC00”
}

}
function restore() {

var elem = event.srcElement
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “”
} else {

elem.style.color = “”
}

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”highlight()” onMouseUp=”restore()”>
<H1>srcElement Property</H1>
<HR>
<P>One event handler...</P>

Can
Cover
Many
Objects

<P>

(IE) event.srcElement

(c) ketabton.com: The Digital Library

CD-555Appendix F ✦ Examples from Parts III and IV

Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.
</P>
</BODY>
</HTML>

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to see values returned by the type property. Enter

the following object name into the bottom text box and press Enter/Return:

event

If necessary, scroll the Results box to view the type property, which should read

keypress. Now click the List Properties button. The type changes to click. The

reason for these types is that the event object whose properties are being shown

here is the event that triggers the function to show the properties. From the text

box, an onKeyPress event handler triggers that process; from the button, an

onClick event handler does the job.

NN6+ event Object
charCode
keyCode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

(NN6) eventObject.charCode

(c) ketabton.com: The Digital Library

CD-556 Part VI ✦ Appendixes

Example
Listing 29-18 provides a play area to view the charCode and keyCode properties for

all three keyboard events while you type into a TEXTAREA. You can use this later as

an authoring tool to grab the precise codes for keyboard keys you may not be famil-

iar with.

Listing 29-18: Displaying charCode and keyCode Property
Values

<HTML>
<HEAD>
<TITLE>charCode and keyCode Properties</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showCode(which, evt) {

document.forms[0].elements[which + “Char”].value = evt.charCode
document.forms[0].elements[which + “Key”].value = evt.keyCode

}
function clearEm() {

for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>charCode and keyCode Properties</H1>
<HR>
<P></P>
<FORM>
<P>
<TEXTAREA NAME=”scratchpad” COLS=”40” ROWS=”5” WRAP=”hard”
onKeyDown=”clearEm(); showCode(‘down’, event)” onKeyUp=”showCode(‘up’, event)”
onKeyPress=”showCode(‘press’, event)”></TEXTAREA>
</P>
<TABLE CELLPADDING=”5”>
<TR><TH>Event</TH><TH>event.charCode</TH><TH>event.keyCode</TH></TR>
<TR><TD>onKeyDown:</TD><TD><INPUT TYPE=”text” NAME=”downChar” SIZE=”3”></TD>
<TD><INPUT TYPE=”text” NAME=”downKey” SIZE=”3”></TD></TR>
<TR><TD>onKeyPress:</TD><TD><INPUT TYPE=”text” NAME=”pressChar” SIZE=”3”></TD>
<TD><INPUT TYPE=”text” NAME=”pressKey” SIZE=”3”></TD></TR>
<TR><TD>onKeyUp:</TD><TD><INPUT TYPE=”text” NAME=”upChar” SIZE=”3”></TD>
<TD><INPUT TYPE=”text” NAME=”upKey” SIZE=”3”></TD></TR>
</TABLE>

(NN6) eventObject.charCode

(c) ketabton.com: The Digital Library

CD-557Appendix F ✦ Examples from Parts III and IV

</FORM>
</BODY>
</HTML>

Here are some specific tasks to try with the page to examine key codes (if you are not

using a browser set for English and a Latin-based keyboard, your results may vary):

1. Enter a lowercase letter “a”. Notice how the onKeyPress event handler shows

the charCode to be 97, which is the Unicode (and ASCII) value for the first of

the lowercase letters of the Latin alphabet. But the other two event types

record just the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the

Shift key, itself, generates the key code 16 for the onKeyDown and onKeyUp
events. But the character key then shows the value 65 for all three events

(until you release the Shift key), because the ASCII value of the uppercase let-

ter happens to match the keyboard key code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the

TEXTAREA, because that’s where the keyboard events are being monitored).

As a non-character key, all three events stuff a value into the keyCode prop-

erty, but zero into charCode. The keyCode value for this key is 40.

4. Poke around with other non-character keys. Some may produce dialog boxes

or menus, but their key codes are recorded nonetheless.

clientX
clientY
layerX
layerY
pageX
pageY
screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

(NN6) eventObject.clientX

(c) ketabton.com: The Digital Library

CD-558 Part VI ✦ Appendixes

Example
You can see the effects of the coordinate systems and associated NN6 properties

with the page in Listing 29-19. You can view coordinate values for all four measuring

systems, as well as some calculated value. Two clickable objects are provided so

that you can see the differences between an object not in any layer and an object

residing within a layer (although anything you see is clickable, including text nodes).

One of the calculated fields applies window scrolling values to the client coordi-

nates. But, as you will see, these calculated values are the same as the more conve-

nient page coordinates. The other calculated field shows the coordinates relative to

the rectangular space of the target element. Notice in the code that if the nodeType
of the target indicates a text node, that node’s parent node (an element) is used for

the calculation.

Listing 29-19: NN6 Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties (NN6+)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkCoords(evt) {

var form = document.forms[“output”]
var targText, targElem
if (evt.target.nodeType == 3) {

targText = “[textnode] inside <” + evt.target.parentNode.tagName + “>”
targElem = evt.target.parentNode

} else {
targText = “<” + evt.target.tagName + “>”
targElem = evt.target

}
form.srcElemTag.value = targText
form.clientCoords.value = evt.clientX + “,” + evt.clientY
form.clientScrollCoords.value = (evt.clientX + window.scrollX) +

“,” + (evt.clientY + window.scrollY)
form.layerCoords.value = evt.layerX + “,” + evt.layerY
form.pageCoords.value = evt.pageX + “,” + evt.pageY
form.inElemCoords.value =
(evt.pageX - targElem.offsetLeft - document.body.offsetLeft) +

“,” + (evt.pageY - targElem.offsetTop - document.body.offsetTop)
form.screenCoords.value = evt.screenX + “,” + evt.screenY
return false

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”checkCoords(event)”>
<H1>X and Y Event Properties (NN6+)</H1>
<HR>

(NN6) eventObject.clientX

(c) ketabton.com: The Digital Library

CD-559Appendix F ✦ Examples from Parts III and IV

<P>Click on the button and in the DIV/image to see the coordinate values for the
event object.</P>
<FORM NAME=”output”>
<TABLE>
<TR><TD COLSPAN=2>NN6 Mouse Event Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>target:</TD>

<TD COLSPAN=3><INPUT TYPE=”text” NAME=”srcElemTag” SIZE=25></TD></TR>
<TR><TD ALIGN=”right”>clientX, clientY:</TD>

<TD><INPUT TYPE=”text” NAME=”clientCoords” SIZE=10></TD>
<TD ALIGN=”right”>...With scrolling:</TD>
<TD><INPUT TYPE=”text” NAME=”clientScrollCoords” SIZE=10></TD></TR>

<TR><TD ALIGN=”right”>layerX, layerY:</TD>
<TD><INPUT TYPE=”text” NAME=”layerCoords” SIZE=10></TD></TR>

<TR><TD ALIGN=”right”>pageX, pageY:</TD>
<TD><INPUT TYPE=”text” NAME=”pageCoords” SIZE=10></TD>
<TD ALIGH=”right”>Within Element:</TD>
<TD><INPUT TYPE=”text” NAME=”inElemCoords” SIZE=10></TR>

<TR><TD ALIGN=”right”>screenX, screenY:</TD>
<TD><INPUT TYPE=”text” NAME=”screenCoords” SIZE=10></TD></TR>

<TR><TD ALIGN=”right”><INPUT TYPE=”button” VALUE=”Click Here”></TD></TR>
</TABLE>
</FORM>
<DIV ID=”display” STYLE=”position:relative; left:100”>

</DIV>
</BODY>
</HTML>

currentTarget

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-20 shows the power of the currentTarget property in revealing the ele-

ment that is processing an event during event propagation. Similar to the code in

Listing 29-7, this example is made simpler because it lets the event object’s proper-

ties do more of the work to reveal the identity of each element that processes the

event. Event listeners assigned for various propagation modes are assigned to a vari-

ety of nodes in the document. After you click the button, each listener in the propa-

gation chain fires in sequence. The alert dialog shows which node is processing the

event. And, as in Listing 29-7, the eventPhase property is used to help display the

propagation mode in force at the time the event is processed by each node.

(NN6) eventObject.currentTarget

(c) ketabton.com: The Digital Library

CD-560 Part VI ✦ Appendixes

Listing 29-20: currentTarget and eventPhase Properties

<HTML>
<HEAD>
<TITLE>currentTarget and eventPhase Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

// using old syntax to assign bubble-type event handlers
document.onclick = processEvent
document.body.onclick = processEvent
// turn on click event capture for document and form
document.addEventListener(“click”, processEvent, true)
document.forms[0].addEventListener(“click”, processEvent, true)
// set bubble event listener for form
document.forms[0].addEventListener(“click”, processEvent, false)

}
function processEvent(evt) {

var currTargTag, msg
if (evt.currentTarget.nodeType == 1) {

currTargTag = “<” + evt.currentTarget.tagName + “>”
} else {

currTargTag = evt.currentTarget.nodeName
}
msg = “Event is now at the “ + currTargTag + “ level “
msg += “(“ + getPhase(evt) + “).”
alert(msg)

}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”
break

case 2:
return “AT TARGET”
break

case 3:
return “BUBBLING”
break

default:
return “”

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>currentTarget and eventPhase Properties</H1>
<HR>
<FORM>

(NN6) eventObject.currentTarget

(c) ketabton.com: The Digital Library

CD-561Appendix F ✦ Examples from Parts III and IV

<INPUT TYPE=”button” VALUE=”A Button” NAME=”main1”
onClick=”processEvent(event)”>

</FORM>
</BODY>
</HTML>

You can also click other places on the page. For example, if you click to the right of

the button, you will be clicking the FORM element. Event propagation and process-

ing adjusts accordingly. Similarly, if you click the header text, the only event listen-

ers that see the event are in the document and BODY levels.

eventPhase

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listing 29-20 earlier in this chapter for an example of how you can use a switch
construction to branch function processing based on the event phase of the current

event object.

relatedTarget

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-21 provides an example of how the relatedTarget property can reveal

the life of the cursor action before and after it rolls into an element. When you roll

the cursor to the center box (a table cell), its onMouseOver event handler displays

the text from the table cell from which the cursor arrived (the nodeValue of the

text node inside the table cell). If the cursor comes in from one of the corners (not

easy to do), a different message is displayed.

(NN6) eventObject.relatedTarget

(c) ketabton.com: The Digital Library

CD-562 Part VI ✦ Appendixes

The two functions that report the results employ a bit of filtering to make sure that

they process the event object only if the event occurs on an element and if the

relatedTarget element is anything other than a nested text node of the central

table cell element. Because nodes respond to events in NN6, this extra filtering

prevents processing whenever the cursor makes the transition from the central TD

element to its nested text node.

Listing 29-21: Using the relatedTarget Property

<HTML>
<HEAD>
<TITLE>relatedTarget Properties</TITLE>
<STYLE TYPE=”text/CSS”>
.direction {background-color:#00FFFF; width:100; height:50; text-align:center}
#main {background-color:#FF6666; text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showArrival(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”
status = “Arrived from: “ + direction

}
}

}
function showDeparture(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”
status = “Departed to: “ + direction

}
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>relatedTarget Properties</H1>
<HR>
<P>Roll the mouse to the center box and look for arrival information
in the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</P>

<TABLE CELLSPACING=0 CELLPADDING=5>
<TR><TD></TD><TD CLASS=”direction”>North</TD><TD></TD></TR>
<TR><TD CLASS=”direction”>West</TD>
<TD ID=”main” onMouseOver=”showArrival(event)”

onMouseOut=”showDeparture(event)”>Roll</TD>

(NN6) eventObject.relatedTarget

(c) ketabton.com: The Digital Library

CD-563Appendix F ✦ Examples from Parts III and IV

<TD CLASS=”direction”>East</TD></TR>
<TR><TD></TD><TD CLASS=”direction”>South</TD><TD></TD></TR>
</TABLE>
</BODY>
</HTML>

target

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
As a simplified demonstration of the power of the target property, Listing 29-22

has but two event handlers defined for the BODY element, each invoking a single

function. The idea is that the onMouseDown and onMouseUp events will bubble up

from whatever their targets are, and the event handler functions will find out which

element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the className
property of the target element. If the className is bold— a class name shared by

three SPAN elements in the paragraph — the style sheet rule for that class is modi-

fied so that all items share the same color. Your scripts can do even more in the

way of filtering objects that arrive at the functions to perform special operations on

certain objects or groups of objects.

Notice that the scripts don’t have to know anything about the objects on the page

to address each clicked one individually. That’s because the target property pro-

vides all of the specificity needed for acting on the target element.

Listing 29-22: Using the target Property

<HTML>
<HEAD>
<TITLE>target Property</TITLE>

Continued

(NN6) eventObject.target

(c) ketabton.com: The Digital Library

CD-564 Part VI ✦ Appendixes

Listing 29-22 (continued)

<STYLE TYPE=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function highlight(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode : evt.target
if (elem.className == “bold”) {

document.styleSheets[0].cssRules[0].style.color = “red”
} else {

elem.style.color = “#FFCC00”
}

}
function restore(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode : evt.target
if (elem.className == “bold”) {

document.styleSheets[0].cssRules[0].style.color = “black”
} else {

elem.style.color = “black”
}

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”highlight(event)” onMouseUp=”restore(event)”>
<H1>target Property</H1>
<HR>
<P>One event handler...</P>

Can
Cover
Many
Objects

<P>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.
</P>
</BODY>
</HTML>

(NN6) eventObject.target

(c) ketabton.com: The Digital Library

CD-565Appendix F ✦ Examples from Parts III and IV

timeStamp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-23 uses the timeStamp property to calculate the instantaneous typing

speed when you type into a TEXTAREA. The calculations are pretty raw,and work

only on intra-keystroke times without any averaging or smoothing that a more

sophisticated typing tutor might perform. Calculated values are rounded to the

nearest integer.

Listing 29-23: Using the timeStamp property

<HTML>
<HEAD>
<TITLE>timeStamp Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var stamp
function calcSpeed(evt) {

if (stamp) {
var gross = evt.timeStamp - stamp
var wpm = Math.round(6000/gross)
document.getElementById(“wpm”).firstChild.nodeValue = wpm + “ wpm.”

}
stamp = evt.timeStamp

}
</SCRIPT>
</HEAD>
<BODY>
<H1>timeStamp Property</H1>
<HR>
<P>Start typing, and watch your instantaneous typing speed below:</P>
<P>
<TEXTAREA COLS=60 ROWS=10 WRAP=”hard” onKeyPress=”calcSpeed(event)”></TEXTAREA>
</P>
<P>Typing Speed: </P>
</BODY>
</HTML>

(NN6) eventObject.timeStamp

(c) ketabton.com: The Digital Library

CD-566 Part VI ✦ Appendixes

Chapter 30 Examples
The following sections contain examples from Chapter 30, “Style sheet and Style

Objects.”

styleSheet Object

Properties
cssRules

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�) (�)

Example
Use The Evaluator (Chapter 13) to look at the cssRules property in NN6+ or

IE5+/Mac. First, view how many rules are in the first styleSheet object of the page

by entering the following statement into the top text box:

document.styleSheets[0].cssRules.length

Now use the array with an index value to access one of the rule objects to view the

rule object’s properties list. Enter the following statement into the bottom text box:

document.styleSheets[0].cssRules[1]

You use this syntax to modify the style details of an individual rule belonging to the

styleSheet object.

cssText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

styleSheetObject.cssText

(c) ketabton.com: The Digital Library

CD-567Appendix F ✦ Examples from Parts III and IV

Example
Use The Evaluator (Chapter 13) to replace the style rules in one blast via the cssText
property. Begin by examining the value returned from the property for the initially

disabled style sheet by entering the following statement into the top text box:

document.styleSheets[0].cssText

Next, enable the style sheet so that its rules are applied to the document:

document.styleSheets[0].disabled = false

Finally, enter the following statement into the top text box to overwrite the style

sheet with entirely new rules.

document.styleSheets[0].cssText = “P {color:red}”

Reload the page after you are finished to restore the original state.

disabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to toggle between the enabled and disabled state of

the first styleSheet object on the page. Enter the following statement into the top

text box:

document.styleSheets[0].disabled = (!document.styleSheets[0].disabled)

The inclusion of the NOT operator (!) forces the state to change from true to

false or false to true with each click of the Evaluate button.

ownerNode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

styleSheetObject.ownerNode

(c) ketabton.com: The Digital Library

CD-568 Part VI ✦ Appendixes

Example
Use The Evaluator (Chapter 13) with NN6 to inspect the ownerNode of the first

styleSheet object in the document. Enter the following statement into the top

text box:

document.styleSheets[0].ownerNode.tagName

The returned value is the STYLE element tag name.

owningElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) with IE4+ to inspect the owningElement of the

first styleSheet object in the document. Enter the following statement into the top

text box:

document.styleSheets[0].owningElement.tagName

The returned value is the STYLE element tag name.

rules

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) with IE4+ to examine the rules property of the first

styleSheet object in the page. First, find out how many rules are in the first

styleSheet object by entering the following statement into the top text box:

document.styleSheets[0].rules.length

styleSheetObject.rules

(c) ketabton.com: The Digital Library

CD-569Appendix F ✦ Examples from Parts III and IV

Next, examine the properties of one of the rules by entering the following statement

into the bottom text box:

document.styleSheets[0].rules[1]

You now see the all the properties that IE4+ exposes for a rule object.

Methods
addRule(“selector“, “styleSpec“[, index])
removeRule(index)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) with IE4+ to add a style sheet rule to the first

styleSheet object of the page. First, make sure the style sheet is enabled by entering

the following statement into the top text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the TEXTAREA element:

document.styleSheets[0].addRule(“TEXTAREA”, “color:red”)

Enter any valid object (such as document.body) into the bottom text box to see

how the style has been applied to the TEXTAREA element on the page.

Now remove the style, using the index of the last item of the rules collection as the

index:

document.styleSheets[0].removeRule(document.styleSheets[0].rules.length - 1)

The text in the TEXTAREA returns to its default color.

styleSheetObject.addRule()

(c) ketabton.com: The Digital Library

CD-570 Part VI ✦ Appendixes

deleteRule(index)
insertRule(“rule”, index)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13) with NN6+ to add a style sheet rule to the first

styleSheet object of the page. First, make sure the style sheet is enabled by entering

the following statement into the top text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the TEXTAREA element:

document.styleSheets[0].insertRule(“TEXTAREA {color:red}”,
document.styleSheets[0].cssRules.length)

Enter any valid object (such as document.body) into the bottom text box to see

how the style has been applied to the TEXTAREA element on the page.

Now remove the style, using the index of the last item of the rules collection as the

index:

document.styleSheets[0].deleteRule(document.styleSheets[0].cssRules.length - 1)

The first release of NN6 processes most, but not all, of the internal actions in

response to the deleteRule() method. The method returns no value, so the

Results box after evaluating the deleteRule() example statement correctly

reports undefined. At the same time, the method has genuinely removed the rule

from the styleSheet object (as proven by inspecting the length property of the

document.styleSheets[0].cssRules array). But the browser does not refresh

the page display to reflect the removal of the rule.

styleSheetObject.deleteRule()

(c) ketabton.com: The Digital Library

CD-571Appendix F ✦ Examples from Parts III and IV

cssRule and rule Objects

Properties
selectorText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to examine the selectorText property of rules in

the first styleSheet object of the page. Enter each of the following statements in the

top text box:

document.styleSheets[0].rules[0].selectorText
document.styleSheets[0].rules[1].selectorText

Compare these values against the source code view for the STYLE element in the

page.

style

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13) to modify a style property of one of the styleSheet

rules in the page. The syntax shown here is for IE4+, but you can substitute the

cssRules reference for the rules collection reference in NN6 (and IE5/Mac) if you

like.

ruleObject.style

(c) ketabton.com: The Digital Library

CD-572 Part VI ✦ Appendixes

Begin by reloading the page and making sure the style sheet is enabled. Enter the

following statement into the top text box:

document.styleSheets[0].disabled = false

The first rule is for the myP element on the page. Change the rule’s font-size style:

document.styleSheets[0].rules[0].style.fontSize = “20pt”

Look over the style object properties in the discussion of the style object later in

this chapter and have fun experimenting with different style properties. After you

are finished, reload the page to restore the styles to their default states.

Chapter 31 Examples
The following sections contain examples from Chapter 31, “Positioned Objects.”

NN4 Layer Object

Properties
above
below
siblingAbove
siblingBelow

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 31-1 enables you to experiment with just one set of these properties:

layerObject.above and layerObject.below. The page is almost in the form of a

laboratory/quiz that enables you to query yourself about the values of these prop-

erties for two swappable layers.

document.layerObject.above

(c) ketabton.com: The Digital Library

CD-573Appendix F ✦ Examples from Parts III and IV

Listing 31-1: A Layer Quiz

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function checkAbove(oneLayer) {

document.forms[0].errors.value = “”
document.forms[0].output.value = oneLayer.above.name

}
function checkBelow(oneLayer) {

document.forms[0].errors.value = “”
document.forms[0].output.value = oneLayer.below.name

}
function swapLayers() {

if (document.yeller.above) {
document.yeller.moveAbove(document.greeny)

} else {
document.greeny.moveAbove(document.yeller)

}
}
function onerror(msg) {

document.forms[0].output.value = “”
document.forms[0].errors.value = msg
return true

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Ordering</H1>
<HR>
<FORM>
Results:<INPUT TYPE=”text” NAME=”output”><P>
<INPUT TYPE=”button” VALUE=”Who’s ABOVE the Yellow layer?”
onClick=”checkAbove(document.yeller)”>

<INPUT TYPE=”button” VALUE=”Who’s BELOW the Yellow layer?”
onClick=”checkBelow(document.yeller)”><P>
<INPUT TYPE=”button” VALUE=”Who’s ABOVE the Green layer?”
onClick=”checkAbove(document.greeny)”>

<INPUT TYPE=”button” VALUE=”Who’s BELOW the Green layer?”
onClick=”checkBelow(document.greeny)”><P>
<INPUT TYPE=”button” VALUE=”Swap Layers” onCLick=”swapLayers()”><P>
If there are any errors caused by missing

properties, they will appear below:

<TEXTAREA NAME=”errors” COLS=30 ROWS=3 WRAP=”virtual”></TEXTAREA>
</FORM>
<LAYER NAME=”yeller” BGCOLOR=”yellow” TOP=110 LEFT=300 WIDTH=200 HEIGHT=200>
This is just a yellow layer.
</LAYER>

Continued

document.layerObject.above

(c) ketabton.com: The Digital Library

CD-574 Part VI ✦ Appendixes

Listing 31-1 (continued)

<LAYER NAME=”greeny” BGCOLOR=”lightgreen” TOP=150 LEFT=340 WIDTH=200 HEIGHT=200>
This is just a green layer.
</LAYER>
</BODY>
</HTML>

The page contains two layers: one colored yellow and the other light green.

Legends on four buttons ask you to guess whether one layer is above or below the

other. For example, if you click the button labeled “Who’s ABOVE the Yellow layer?”

and the green layer is above it, the name of that green layer appears in the Results

field. But if layers are oriented such that the returned value is null, the error mes-

sage (indicating that the nonexistent object doesn’t have a name property) appears

in the error field at the bottom. Another button enables you to swap the order of

the layers so you can try your hand at predicting the results based on your knowl-

edge of layers and the above and below properties.

Positioned objects in IE4+ and NN6 have no comparable properties to the four

described in this section.

background

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A simple example (Listing 31-2) defines one layer that features five buttons to

change the background image of a second layer. I put the buttons in a layer because

I want to make sure the buttons and background layer rectangles align themselves

along their top edges on all platforms.

As the second layer loads, I merely assign a gray background color to it and write

some reverse (white) text. Most of the images are of the small variety that repeat in

the layer. One is a large photograph to demonstrate how images are clipped to the

layer’s rectangle. Along the way, I hope you also heed the lesson of readability

demonstrated by the difficulty of reading text on a wild-looking background. For an

example compatible with IE5+ and NN6+, see Listing 31-13.

document.layerObject.background

(c) ketabton.com: The Digital Library

CD-575Appendix F ✦ Examples from Parts III and IV

Listing 31-2: Setting Layer Backgrounds

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setBg(URL) {

document.bgExpo.background.src = URL
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Backgrounds</H1>
<HR>
<LAYER NAME=”buttons” TOP=100>

<FORM>
<INPUT TYPE=”button” VALUE=”The Usual”

onClick=”setBg(‘cr_kraft.gif’)”>

<INPUT TYPE=”button” VALUE=”A Big One” onClick=”setBg(‘arch.gif’)”>

<INPUT TYPE=”button” VALUE=”Not So Usual”

onClick=”setBg(‘wh86.gif’)”>

<INPUT TYPE=”button” VALUE=”Decidedly Unusual”

onClick=”setBg(‘sb23.gif’)”>

<INPUT TYPE=”button” VALUE=”Quick as...”

onClick=”setBg(‘lightnin.gif’)”>

</FORM>

</LAYER>
<LAYER NAME=”bgExpo” BGCOLOR=”gray” TOP=100 LEFT=250 WIDTH=300 HEIGHT=260>
Some text, which may or may not read well with the
various backgrounds.
</LAYER>
</BODY>
</HTML>

bgColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can have some fun with Listing 31-3, which uses a number of layer scripting

techniques. The page presents a kind of palette of eight colors, each one created as

document.layerObject.bgColor

(c) ketabton.com: The Digital Library

CD-576 Part VI ✦ Appendixes

a small layer (see Figure 31-1). Another, larger layer’s bgColor property changes as

you roll the mouse over any color in the palette.

Figure 31-1: Drag the mouse across the palette to change the layer’s background color.

To save HTML lines to create those eight color palette layers, I use a script to estab-

lish an array of colors and then document.write() the <LAYER> tags with appro-

priate attribute settings so the layers all line up in a contiguous row. By predefining

a number of variable values for the size of the color layers, I can make all of them

larger or smaller with the change of only a few script characters.

The document object handles the job of capturing the mouseOver events. I turn on

the document’s captureEvents() method such that it traps all mouseOver events

and hands them to the setColor() function. The setColor() function reads the

target object’s bgColor and sets the larger layer’s bgColor property to the same. If

this page had other objects that could receive mouseOver events for other pur-

poses, I would use routeEvents() to let those events pass on to their intended tar-

gets. For the purposes of this example, however, the events need to go no further.

Listing 31-14 shows the same functionality working in IE5+ and NN6+.

Listing 31-3: Layer Background Colors

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>

document.layerObject.bgColor

(c) ketabton.com: The Digital Library

CD-577Appendix F ✦ Examples from Parts III and IV

function setColor(e) {
document.display.bgColor = e.target.bgColor

}
document.captureEvents(Event.MOUSEOVER)
document.onmouseover = setColor
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Background Colors</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
var oneLayer
var colorTop = 100
var colorLeft = 20
var colorWidth = 40
var colorHeight = 40
var colorPalette = new
Array(“aquamarine”,”coral”,”forestgreen”,”goldenrod”,”red”,

“magenta”,”navy”,”teal”)
for (var i = 0; i < colorPalette.length; i++) {

oneLayer = “<LAYER NAME=swatch” + i + “ TOP=” + colorTop
oneLayer += “ LEFT=” + ((colorWidth * i) + colorLeft)
oneLayer += “ WIDTH=” + colorWidth + “ HEIGHT=” + colorHeight
oneLayer += “ BGCOLOR=” + colorPalette[i] + “></LAYER>\n”
document.write(oneLayer)

}
</SCRIPT>
<LAYER NAME=”display” BGCOLOR=”gray” TOP=150 LEFT=80 WIDTH=200 HEIGHT=200>
<CENTER>Some reversed text to test against background
colors.</CENTER>
</LAYER>
</BODY>
</HTML>

clip

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Because of the edge movement behavior of adjustments to layerObject.clip
properties, Listing 31-4 enables you to experiment with adjustments to each of the

document.layerObject.clip

(c) ketabton.com: The Digital Library

CD-578 Part VI ✦ Appendixes

six properties. The document loads one layer that you can adjust by entering alter-

native values into six text fields — one per property. Figure 31-2 shows the page.

Figure 31-2: Experiment with layer.clip properties.

As you enter values, all properties are updated to show their current values (via the

showValues() function). Pay particular attention to the apparent motion of the

edge and the effect the change has on at least one other property. For example, a

change to the layerObject.clip.left value also affects the layerObject.
clip.width property value.

Listing 31-4: Adjusting layer.clip Properties

<HTML>
<HEAD>
<TITLE>Layer Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var origLayerWidth = 0
var origLayerHeight = 0
function initializeXY() {

origLayerWidth = document.display.clip.width
origLayerHeight = document.display.clip.height
showValues()

}

document.layerObject.clip

(c) ketabton.com: The Digital Library

CD-579Appendix F ✦ Examples from Parts III and IV

function setClip(field) {
var clipVal = parseInt(field.value)
document.display.clip[field.name] = clipVal
showValues()

}
function showValues() {

var form = document.layers[0].document.forms[0]
var propName
for (var i = 0; i < form.elements.length; i++) {

propName = form.elements[i].name
if (form.elements[i].type == “text”) {

form.elements[i].value = document.display.clip[propName]
}

}
}
var intervalID
function revealClip() {

var midWidth = Math.round(origLayerWidth /2)
var midHeight = Math.round(origLayerHeight /2)
document.display.clip.left = midWidth
document.display.clip.top = midHeight
document.display.clip.right = midWidth
document.display.clip.bottom = midHeight
intervalID = setInterval(“stepClip()”,1)

}
function stepClip() {

var widthDone = false
var heightDone = false
if (document.display.clip.left > 0) {

document.display.clip.left += -2
document.display.clip.right += 2

} else {
widthDone = true

}
if (document.display.clip.top > 0) {

document.display.clip.top += -1
document.display.clip.bottom += 1

} else {
heightDone = true

}
showValues()
if (widthDone && heightDone) {

clearInterval(intervalID)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”initializeXY()”>
<H1>Layer Clipping Properties</H1>

Continued

document.layerObject.clip

(c) ketabton.com: The Digital Library

CD-580 Part VI ✦ Appendixes

Listing 31-4 (continued)

<HR>
Enter new clipping values to adjust the visible area of the layer.<P>
<LAYER TOP=130>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.clip.left:</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.top:</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.right:</TD>
<TD><INPUT TYPE=”text” NAME=”right” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.bottom:</TD>
<TD><INPUT TYPE=”text” NAME=”bottom” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.width:</TD>
<TD><INPUT TYPE=”text” NAME=”width” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.height:</TD>
<TD><INPUT TYPE=”text” NAME=”height” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
</TABLE>
<INPUT TYPE=”button” VALUE=”Reveal Original Layer” onClick=”revealClip()”>
</FORM>
</LAYER>
<LAYER NAME=”display” BGCOLOR=”coral” TOP=130 LEFT=200 WIDTH=360 HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</BODY>
</HTML>

document.layerObject.clip

(c) ketabton.com: The Digital Library

CD-581Appendix F ✦ Examples from Parts III and IV

Listing 31-4 has a lot of other scripting in it to demonstrate a couple of other clip

area techniques. After the document loads, the onLoad event handler initializes

two global variables that represent the starting height and width of the layer as

determined by the clip.height and clip.width properties. Because the <LAYER>
tag does not specify any CLIP attributes, the layerObject.clip region is ensured

of being the same as the layer’s dimensions at load time.

I preserve the initial values for a somewhat advanced set of functions that act in

response to the Reveal Original Layer button. The goal of this button is to temporar-

ily shrink the clipping area to nothing and then expand the clip rectangle gradually

from the very center of the layer. The effect is analogous to a zoom-out visual effect.

The clip region shrinks to practically nothing by setting all four edges to the same

point midway along the height and width of the layer. The script then uses

setInterval() to control the animation in setClip(). To make the zoom even on

both axes, I first make sure that the initial size of the layer is an even ratio: twice as

wide as it is tall. Each time through the setClip() function, the clip.left and

clip.right values are adjusted in their respective directions by two pixels and

clip.top and clip.bottom are adjusted by one pixel.

To make sure the animation stops when the layer is at its original size, I check

whether the clip.top and clip.left values are their original zero values. If they

are, I set a Boolean variable for each side. When both variables indicate that the

clip rectangle is its original size, the script cancels the setInterval() action.

Listing 31-15 demonstrates how to adjust clipping in IE5+ and NN6+ syntax.

left
top

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
To enable you to experiment with manually setting layerObject.top and

layerObject.left properties, Listing 31-5 is a modified version of the

layer.clip example (Listing 31-4). The current example again has the one modifi-

able layer, but it has only four text fields in which you can enter values. Two fields

are for the layerObject.left and layerObject.top properties; the other two

are for the layerObject.clip.left and layerObject.clip.top properties. I

present both sets of values here to help reinforce the lack of connection between

layer and clip location properties in the same layer object.

document.layerObject.left

(c) ketabton.com: The Digital Library

CD-582 Part VI ✦ Appendixes

You can find the corresponding syntax for IE5+ and NN6+ in Listing 31-16.

Listing 31-5 Comparison of Layer and Clip Location
Properties

<HTML>
<HEAD>
<TITLE>Layer vs. Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setClip(field) {

var clipVal = parseInt(field.value)
document.display.clip[field.name] = clipVal
showValues()

}
function setLayer(field) {

var layerVal = parseInt(field.value)
document.display[field.name] = layerVal
showValues()

}
function showValues() {

var form = document.layers[0].document.forms[0]
form.elements[0].value = document.display.left
form.elements[1].value = document.display.top
form.elements[2].value = document.display.clip.left
form.elements[3].value = document.display.clip.top

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
Layer vs. Clip Location Properties
<HR>
Enter new layer and clipping values to adjust the layer.<P>
<LAYER TOP=80>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.left:</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.top:</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.left:</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setClip(this)”></TD>

</TR>

document.layerObject.left

(c) ketabton.com: The Digital Library

CD-583Appendix F ✦ Examples from Parts III and IV

<TR>
<TD ALIGN=”right”>layer.clip.top:</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
</TABLE>
</FORM>
</LAYER>
<LAYER NAME=”display” BGCOLOR=”coral” TOP=80 LEFT=200 WIDTH=360 HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</BODY>
</HTML>

pageX
pageY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 31-6 defines one outer layer and one nested inner layer of different colors

(see Figure 31-3). The inner layer contains some text content; the outer layer is

sized initially to present a colorful border by being below the inner layer and 10 pix-

els wider and taller.

Two sets of fields display (and enable you to change) the layerObject.pageX,

layerObject.pageY, layerObject.left, and layerObject.top properties for

each of the nested layers. Each set of fields is color-coded to its corresponding layer.

When you change any value, all values are recalculated and displayed in the other

fields. For example, the initial pageX position for the outer layer is 200 pixels; for

the inner layer, the pageX value is 205 pixels (accounting for the 5-pixel “border”

around the inner layer). If you change the outer layer’s pageX value to 220, the

outer layer moves to the right by 20 pixels, taking the inner layer along for the ride.

The layer.pageX value for the inner layer after the move is 225 pixels.

document.layerObject.pageX

(c) ketabton.com: The Digital Library

CD-584 Part VI ✦ Appendixes

Figure 31-3: Testing the position properties of nested layers

The outer layer values for the pairs of values are always the same no matter what.

But for the inner layer, the page values are significantly different from the

layer.left and layer.top values because these latter values are measured rela-

tive to their containing layer — the outer layer. If you move the outer layer, the

inner layer values for layerObject.left and layerObject.top don’t change one

iota. Listing 31-17 shows the comparable syntax for IE5+ and NN6+.

Listing 31-6: Testing Nested Layer Coordinate Systems

<HTML>
<HEAD>
<TITLE>Nested Layer PageX/PageY</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setOuterPage(field) {

var layerVal = parseInt(field.value)
document.outerDisplay[field.name] = layerVal
showValues()

}
function setOuterLayer(field) {

var layerVal = parseInt(field.value)
document.outerDisplay[field.name] = layerVal
showValues()

}
function setInnerPage(field) {

var layerVal = parseInt(field.value)

document.layerObject.pageX

(c) ketabton.com: The Digital Library

CD-585Appendix F ✦ Examples from Parts III and IV

document.outerDisplay.document.innerDisplay[field.name] = layerVal
showValues()

}
function setInnerLayer(field) {

var layerVal = parseInt(field.value)
document.outerDisplay.document.innerDisplay[field.name] = layerVal
showValues()

}
function showValues() {

var form = document.layers[0].document.forms[0]
form.elements[0].value = document.outerDisplay.pageX
form.elements[1].value = document.outerDisplay.pageY
form.elements[2].value = document.outerDisplay.left
form.elements[3].value = document.outerDisplay.top
form.elements[4].value = document.outerDisplay.document.innerDisplay.pageX
form.elements[5].value = document.outerDisplay.document.innerDisplay.pageY
form.elements[6].value = document.outerDisplay.document.innerDisplay.left
form.elements[7].value = document.outerDisplay.document.innerDisplay.top

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
Coordinate Systems for Nested Layers
<HR>
Enter new page and layer coordinates for the outer
layer and inner layer objects.<P>
<LAYER TOP=80>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.pageX:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.pageY:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.left:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.top:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>

Continued

document.layerObject.pageX

(c) ketabton.com: The Digital Library

CD-586 Part VI ✦ Appendixes

Listing 31-6 (continued)

<TR>
<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.pageX:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.pageY:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.left:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.top:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
</TABLE>
</FORM>
</LAYER>
<LAYER NAME=”outerDisplay” BGCOLOR=”coral” TOP=80 LEFT=200 WIDTH=370 HEIGHT=190>
<LAYER NAME=”innerDisplay” BGCOLOR=”aquamarine” TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</LAYER>
</BODY>
</HTML>

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

document.layerObject.src

(c) ketabton.com: The Digital Library

CD-587Appendix F ✦ Examples from Parts III and IV

Example
Setting the layerObject.src property of a layer that is a member of a layer family

(that is, a family with at least one parent and one child) can be tricky business if

you’re not careful. Listing 31-7 presents a workspace for you to see how changing

the src property of outer and inner layers affects the scenery.

When you first load the document, one outer layer contains one inner layer (each

with a different background color). Control buttons on the page enable you to set

the layerObject.src property of each layer independently. Changes to the inner

layer content affect only that layer. Long content forces the inner layer to expand

its depth, but the inner layer’s view is automatically clipped by its parent layer.

Changing the outer layer content, however, removes the inner layer completely.

Code in the following listing shows one way to examine for the presence of a partic-

ular layer before attempting to load new content in it. If the inner layer doesn’t

exist, the script creates a new layer on the fly to replace the original inner layer.

Listing 31-7: Setting Nested Layer Source Content

<HTML>
<HEAD>
<TITLE>Layer Source</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function loadOuter(doc) {

document.outerDisplay.src = doc
}
function loadInner(doc) {

var nested = document.outerDisplay.document.layers
if (nested.length > 0) {

// inner layer exists, so load content or restore
if (doc) {

nested[0].src = doc
} else {

restoreInner(nested[0])
}

} else {
// prompt user about restoring inner layer
if (confirm(“The inner layer has been removed by loading an outer

document. “ + “Restore the original layers?”)) {
restoreLayers(doc)

}
}

}
function restoreLayers(doc) {

// reset appearance of outer layer
document.outerDisplay.bgColor = “coral”

Continued

document.layerObject.src

(c) ketabton.com: The Digital Library

CD-588 Part VI ✦ Appendixes

Listing 31-7 (continued)

document.outerDisplay.resizeTo(370,190) // sets clip
document.outerDisplay.document.write(“”)
document.outerDisplay.document.close()
// generate new inner layer
var newInner = new Layer(360, document.layers[“outerDisplay”])
newInner.bgColor = “aquamarine”
newInner.moveTo(5,5)
if (doc) {

// user clicked an inner content button
newInner.src = doc

} else {
// return to pristine look
restoreInner(newInner)

}
newInner.visibility = “show”

}
function restoreInner(inner) {

inner.document.write(“<HTML><BODY><P>Placeholder text for raw inner
layer.</P>” + 0“</BODY></HTML>”)

inner.document.close()
inner.resizeTo(360,180) // sets clip

}
</SCRIPT>
</HEAD>
<BODY>
Setting the <TT>layer.src</TT> Property of Nested Layers
<HR>
Click the buttons to see what happens when you load new source documents into
the outer layer and inner
layer objects.<P>
<LAYER TOP=100 BGCOLOR=”coral”>
<FORM>
Load into outer layer:

<INPUT TYPE=”button” VALUE=”Article I” onClick=”loadOuter(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Entire Bill of Rights”
onClick=”loadOuter(‘bofright.htm’)”>

</FORM>
</LAYER>
<LAYER TOP=220 BGCOLOR=”aquamarine”>
<FORM>
Load into inner layer:

<INPUT TYPE=”button” VALUE=”Article I” onClick=”loadInner(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Entire Bill of Rights”
onClick=”loadInner(‘bofright.htm’)”>

<INPUT TYPE=”button” VALUE=”Restore Original” onClick=”loadInner()”>

</FORM>
</LAYER>
<LAYER NAME=”outerDisplay” BGCOLOR=”coral” TOP=100 LEFT=200 WIDTH=370
HEIGHT=190>

document.layerObject.src

(c) ketabton.com: The Digital Library

CD-589Appendix F ✦ Examples from Parts III and IV

<LAYER NAME=”innerDisplay” BGCOLOR=”aquamarine” TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>

<P>Placeholder text for raw inner layer.</P>
</LAYER>

</LAYER>
</BODY>
</HTML>

Restoring the original layers via script (as opposed to reloading the document)

does not perform a perfect restoration. The key difference is that the scripts use

the layerObject.resizeTo() method to set the layers to the height and width

established by the <LAYER> tags that create the layers in the first place. This

method, however, sets the clipping rectangle of the layer — not the layer’s size.

Therefore, if you use the script to restore the layers, loading the longer text file into

either layer does not force the layer to expand to display all the content; the clip-

ping region governs the view.

visibility

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use the page in Listing 31-8 to see how the layerObject.visibility property set-

tings affect a pair of nested layers. When the page first loads, the default inherit
setting is in effect. Changes you make to the outer layer by clicking the outer layer

buttons affect the inner layer, but setting the inner layer’s properties to hide or

show severs the visibility relationship between parent and child. Listing 31-19

shows this example with IE5+ and NN6+ syntax.

Listing 31-8: Nested Layer Visibility Relationships

<HTML>
<HEAD>
<TITLE>Layer Source</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setOuterVis(type) {

document.outerDisplay.visibility = type
}

Continued

document.layerObject.visibility

(c) ketabton.com: The Digital Library

CD-590 Part VI ✦ Appendixes

Listing 31-8 (continued)

function setInnerVis(type) {
document.outerDisplay.document.innerDisplay.visibility = type

}
</SCRIPT>
</HEAD>
<BODY>
Setting the <TT>layer.visibility</TT> Property of Nested Layers
<HR>
Click the buttons to see what happens when you change the visibility of the
outer layer and inner
layer objects.<P>
<LAYER TOP=100 BGCOLOR=”coral”>
<FORM>
Control outer layer property:

<INPUT TYPE=”button” VALUE=”Hide Outer Layer” onClick=”setOuterVis(‘hide’)”>

<INPUT TYPE=”button” VALUE=”Show Outer Layer” onClick=”setOuterVis(‘show’)”>

</FORM>
</LAYER>
<LAYER TOP=220 BGCOLOR=”aquamarine”>
<FORM>
Control inner layer property:

<INPUT TYPE=”button” VALUE=”Hide Inner Layer” onClick=”setInnerVis(‘hide’)”>

<INPUT TYPE=”button” VALUE=”Show Inner Layer” onClick=”setInnerVis(‘show’)”>

<INPUT TYPE=”button” VALUE=”Inherit Outer Layer”
onClick=”setInnerVis(‘inherit’)”>

</FORM>
</LAYER>
<LAYER NAME=”outerDisplay” BGCOLOR=”coral” TOP=100 LEFT=200 WIDTH=370
HEIGHT=190>

<LAYER NAME=”innerDisplay” BGCOLOR=”aquamarine” TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>

<P>Placeholder text for raw inner layer.</P>
</LAYER>

</LAYER>
</BODY>
</HTML>

zIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

document.layerObject.zIndex

(c) ketabton.com: The Digital Library

CD-591Appendix F ✦ Examples from Parts III and IV

Example
The relationships among the three stacking property values can be difficult to visu-

alize. Listing 31-9 offers a way to see the results of changing the

layerObject.zIndex properties of three overlapping sibling layers. Figure 31-4

shows the beginning organization of layers after the page loads.

Figure 31-4: A place to play with zIndex property settings

The sequence of the <LAYER> tags in the document governs the original stacking

order. Because the attribute is not set in the HTML, the initial values appear as zero

for all three layers. But, as the page reveals, the layerObject.above and

layerObject.below properties are automatically established. When a layer has no

other layer object above it, the page shows (none). Also, if the layer below the bot-

tom of the stack is the main window, a strange inner layer name is assigned (some-

thing like _js_layer_21).

To experiment with this page, first make sure you understand the layerObject.
above and layerObject.below readings for the default order of the layers. Then,

assign different orders to the layers with value sequences such as 3-2-1, 1-3-2, 2-2-2,

and so on. Each time you enter one new value, check the actual layers to see if their

stacking order changed and how that affected the other properties of all layers.

document.layerObject.zIndex

(c) ketabton.com: The Digital Library

CD-592 Part VI ✦ Appendixes

Listing 31-20 shows how to achieve the same action with IE5+ and NN6+ syntax.

Listing 31-9: Relationships Among zIndex, above, and below

<HTML>
<HEAD>
<TITLE>Layer zIndex</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setZ(field) {

switch (field.name) {
case “top” :

document.top.zIndex = parseInt(field.value)
break

case “mid” :
document.middle.zIndex = parseInt(field.value)
break

case “bot” :
document.bottom.zIndex = parseInt(field.value)

}
showValues()

}
function showValues() {

document.layers[0].document.forms[0].bot.value = document.bottom.zIndex
document.layers[1].document.forms[0].mid.value = document.middle.zIndex
document.layers[2].document.forms[0].top.value = document.top.zIndex

document.layers[0].document.forms[0].above.value = (document.bottom.above) ?
document.bottom.above.name : “(none)”

document.layers[1].document.forms[0].above.value = (document.middle.above) ?
document.middle.above.name : “(none)”

document.layers[2].document.forms[0].above.value = (document.top.above) ?
document.top.above.name : “(none)”

document.layers[0].document.forms[0].below.value = (document.bottom.below) ?
document.bottom.below.name : “(none)”

document.layers[1].document.forms[0].below.value = (document.middle.below) ?
document.middle.below.name : “(none)”

document.layers[2].document.forms[0].below.value = (document.top.below) ?
document.top.below.name : “(none)”

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
Setting the <TT>layer.zIndex</TT> Property of Sibling Layers
<HR>
Enter new zIndex values to see the effect on three layers.<P>
<LAYER TOP=90 WIDTH=240 BGCOLOR=”coral”>
<FORM>
Control Original Bottom Layer:

document.layerObject.zIndex

(c) ketabton.com: The Digital Library

CD-593Appendix F ✦ Examples from Parts III and IV

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”bot” SIZE=3
onChange=”setZ(this)”></TD></TR>
<TR><TD ALIGN=”right”>Layer above:</TD><TD><INPUT TYPE=”text” NAME=”above”
SIZE=13></TD></TR>
<TR><TD ALIGN=”right”>Layer below:</TD><TD><INPUT TYPE=”text” NAME=”below”
SIZE=13></TD></TR>
</TABLE>
</FORM>
</LAYER>
<LAYER TOP=220 WIDTH=240 BGCOLOR=”aquamarine”>
<FORM>
Control Original Middle Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”mid” SIZE=3
onChange=”setZ(this)”></TD></TR>
<TR><TD ALIGN=”right”>Layer above:</TD><TD><INPUT TYPE=”text” NAME=”above”
SIZE=13></TD></TR>
<TR><TD ALIGN=”right”>Layer below:</TD><TD><INPUT TYPE=”text” NAME=”below”
SIZE=13></TD></TR>
</TABLE></FORM>
</LAYER>
<LAYER TOP=350 WIDTH=240 BGCOLOR=”yellow”>
<FORM>
Control Original Top Layer:

<TABLE><TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”top”
SIZE=3 onChange=”setZ(this)”></TD></TR>
<TR><TD ALIGN=”right”>Layer above:</TD><TD><INPUT TYPE=”text” NAME=”above”
SIZE=13></TD></TR>
<TR><TD ALIGN=”right”>Layer below:</TD><TD><INPUT TYPE=”text” NAME=”below”
SIZE=13></TD></TR>
</TABLE>
</FORM>
</LAYER>
<LAYER NAME=”bottom” BGCOLOR=”coral” TOP=90 LEFT=260 WIDTH=300 HEIGHT=190>

<P>Original Bottom Layer</P>
</LAYER>

<LAYER NAME=”middle” BGCOLOR=”aquamarine” TOP=110 LEFT=280 WIDTH=300
HEIGHT=190>
<P>Original Middle Layer</P>

</LAYER>
<LAYER NAME=”top” BGCOLOR=”yellow” TOP=130 LEFT=300 WIDTH=300 HEIGHT=190>

<P>Original Top Layer</P>
</LAYER>
</LAYER>
</BODY>
</HTML>

document.layerObject.zIndex

(c) ketabton.com: The Digital Library

CD-594 Part VI ✦ Appendixes

Methods
load(“URL”, newLayerWidth)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Buttons in Listing 31-10 enable you to load short and long documents into a layer.

The first two buttons don’t change the width (in fact, the second parameter to

layerObject.load() is the layerObject.clip.left value). For the second two

buttons, a narrower width than the original is specified. Click the Restore button

frequently to return to a known state.

Listing 31-10: Loading Documents into Layers

<HTML>
<HEAD>
<TITLE>Layer Loading</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function loadDoc(URL,width) {

if (!width) {
width = document.myLayer.clip.width

}
document.myLayer.load(URL, width)

}
</SCRIPT>
</HEAD>
<BODY>
Loading New Documents
<HR>
<LAYER TOP=90 WIDTH=240 BGCOLOR=”yellow”>
<FORM>
Loading new documents:

<INPUT TYPE=”button” VALUE=”Small Doc/Existing Width”
onClick=”loadDoc(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Large Doc/Existing Width”
onClick=”loadDoc(‘bofright.htm’)”><P>
<INPUT TYPE=”button” VALUE=”Small Doc/Narrower Width”
onClick=”loadDoc(‘article1.htm’,200)”>

<INPUT TYPE=”button” VALUE=”Large Doc/Narrower Width”
onClick=”loadDoc(‘bofright.htm’,200)”><P>
<INPUT TYPE=”button” VALUE=”Restore” onClick=”location.reload()”></FORM>

document.layerObject.load()

(c) ketabton.com: The Digital Library

CD-595Appendix F ✦ Examples from Parts III and IV

</LAYER>
<LAYER NAME=”myLayer” BGCOLOR=”yellow” TOP=90 LEFT=300 WIDTH=300 HEIGHT=190>

<P>Text loaded in original document.</P>
</LAYER>
</BODY>
</HTML>

moveAbove(layerObject)
moveBelow(layerObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can see the layerObject.moveAbove() method at work in Listing 31-1.

moveBy(deltaX,deltaY)
moveTo(x,y)
moveToAbsolute(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 31-11 shows a demonstration of the layerObject.moveTo() method. It is a

simple script that enables you to click and drag a layer around the screen. The

script employs the coordinate values of the mouseMove event; after compensating

for the offset within the layer at which the click occurs, the script moves the layer

to track the mouse action.

I want to present this example for an additional reason: to explain an important user

interface difference between Windows and Macintosh versions of NN4. In Windows

versions, you can click and hold the mouse button down on an object and let the

object receive all the mouseMove events as you drag the cursor around the screen.

On the Macintosh, however, NN4 tries to compensate for the lack of a second mouse

document.layerObject.moveBy()

(c) ketabton.com: The Digital Library

CD-596 Part VI ✦ Appendixes

button by popping up a context-sensitive menu at the cursor position when the user

holds the mouse button down for more than just a click. To prevent the pop-up

menu from appearing, the engage() method invoked by the onMouseDown event

handler ends with return false.

Notice in the following listing how the layer captures a number of mouse events.

Each one plays an important role in creating a mode that is essentially like a

mouseStillDown event (which doesn’t exist in NN4’s event model). The mouseDown
event sets a Boolean flag (engaged) indicating that the user clicked down in the

layer. At the same time, the script records how far away from the layer’s top-left

corner the mouseDown event occurred. This offset information is needed so that any

setting of the layer’s location takes this offset into account (otherwise, the top-left

corner of the layer would jump to the cursor position and be dragged from there).

During the drag (mouseDown events firing with each mouse movement), the

dragIt() function checks whether the drag mode is engaged. If so, the layer is

moved to the page location calculated by subtracting the original downstroke offset

from the mouseMove event location on the page. When the user releases the mouse

button, the mouseUp event turns off the drag mode Boolean value.

Listing 31-21 shows a version of this example for IE5+ and NN6.

Listing 31-11: Dragging a Layer

<HTML>
<HEAD>
<TITLE>Layer Dragging</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0
function dragIt(e) {

if (engaged) {
document.myLayer.moveTo(e.pageX - offsetX, e.pageY - offsetY)

}
}
function engage(e) {

engaged = true
offsetX = e.pageX - document.myLayer.left
offsetY = e.pageY - document.myLayer.top
return false

}
function release() {

engaged = false
}
</SCRIPT>
</HEAD>
<BODY>

document.layerObject.moveBy()

(c) ketabton.com: The Digital Library

CD-597Appendix F ✦ Examples from Parts III and IV

Dragging a Layer
<HR>
<LAYER NAME=”myLayer” BGCOLOR=”lightgreen” TOP=90 LEFT=100 WIDTH=300 HEIGHT=190>

<P>Drag me around the window.</P>
</LAYER>
<SCRIPT LANGUAGE=”JavaScript”>
document.myLayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE)
document.myLayer.onMouseDown = engage
document.myLayer.onMouseUp = release
document.myLayer.onMouseMove = dragIt
</SCRIPT>
</BODY>
</HTML>

resizeBy(deltaX,deltaY)
resizeTo(width,height)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
It is important to understand the ramifications of content flow when these two

methods resize a layer. Listing 31-12a (and the companion document Listing 31-12b)

shows you how to set the lower-right corner of a layer to be dragged by a user for

resizing the layer (much like grabbing the resize corner of a document window).

Three radio buttons enable you to choose whether and when the content should be

redrawn to the layer — never, after resizing, or during resizing.

Event capture is very much like that in Listing 31-11 for layer dragging. The primary

difference is that drag mode is engaged only when the mouse event takes place in

the region of the lower-right corner. A different kind of offset value is saved here

because, for resizing, the script needs to know the mouse event offset from the

right and bottom edges of the layer.

Condition statements in the resizeIt() and release() functions verify whether a

specific radio button is checked to determine when (or if) the content should be

redrawn. I designed this page with the knowledge that its content might be

redrawn. Therefore, I built the content of the layer as a separate HTML document

that loads in the <LAYER> tag.

document.layerObject.resizeBy()

(c) ketabton.com: The Digital Library

CD-598 Part VI ✦ Appendixes

Redrawing the content requires reloading the document into the layer. I use the

layerObject.load() method because I want to send the current

layerObject.clip.width as a parameter for the width of the clip region to

accommodate the content as it loads.

An important point to know about reloading content into a layer is that all property

settings for the layer’s event capture are erased when the document loads.

Overcoming this behavior requires setting the layer’s onLoad event handler to set

the layer’s event capture mechanism. If the layer event capturing is specified as part

of the statements at the end of the document, the layer ignores some important

events needed for the dynamic resizing after the document reloads the first time.

As you experiment with the different ways to resize and redraw, you see that

redrawing during resizing is a slow process because of the repetitive loading (from

cache) needed each time. On slower client machines, it is easy for the cursor to

outrun the layer region, causing the layer to not get mouseOver events at all. It may

not be the best-looking solution, but I prefer to redraw after resizing the layer.

Listing 31-22 shows a version designed for the IE5+ and NN6 object models. Because

content automatically reflows in those browsers, you do not have to load the con-

tent of the positioned element from an external document.

Listing 31-12a: Resizing a Layer

<HTML>
<HEAD>
<TITLE>Layer Resizing</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0
function resizeIt(e) {

if (engaged) {
document.myLayer.resizeTo(e.pageX + offsetX, e.pageY + offsetY)
if (document.forms[0].redraw[2].checked) {

document.myLayer.load(“lst31-12b.htm”, document.myLayer.clip.width)
}

}
}
function engage(e) {

if (e.pageX > (document.myLayer.clip.right - 10) &&
e.pageY > (document.myLayer.clip.bottom - 10)) {
engaged = true
offsetX = document.myLayer.clip.right - e.pageX
offsetY = document.myLayer.clip.bottom - e.pageY

}
}

document.layerObject.resizeBy()

(c) ketabton.com: The Digital Library

CD-599Appendix F ✦ Examples from Parts III and IV

function release() {
if (engaged && document.forms[0].redraw[1].checked) {

document.myLayer.load(“lst31-12b.htm”, document.myLayer.clip.width)
}
engaged = false

}
function grabEvents() {

document.myLayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE)
}
</SCRIPT>
</HEAD>
<BODY>
Resizing a Layer
<HR>
<FORM>
Redraw layer content:

<INPUT TYPE=”radio” NAME=”redraw” CHECKED>Never
<INPUT TYPE=”radio” NAME=”redraw”>After resize
<INPUT TYPE=”radio” NAME=”redraw”>During resize
</FORM>
<LAYER NAME=”myLayer” SRC=”lst31-12b.htm” BGCOLOR=”lightblue” TOP=120 LEFT=100
WIDTH=300 HEIGHT=190 onLoad=”grabEvents()”>
</LAYER>
<SCRIPT LANGUAGE=”JavaScript”>
document.myLayer.onMouseDown = engage
document.myLayer.onMouseUp = release
document.myLayer.onMouseMove = resizeIt
</SCRIPT>
</BODY>
</HTML>

Listing 31-12b: Content for the Resizable Layer

<HTML>
<BODY>

<P>Resize me by dragging the lower-right corner.</P>
<SCRIPT LANGUAGE=”JavaScript”>
if (navigator.userAgent.indexOf(“Mac”) != -1) {

document.write(“(Mac users: Ctrl-Click me first; then Click to stop
dragging.)”)

}
</SCRIPT>

</BODY>
</HTML>

document.layerObject.resizeBy()

(c) ketabton.com: The Digital Library

CD-600 Part VI ✦ Appendixes

Chapter 34 Examples
The following section contains examples from Chapter 34, “The String Object.”

String Object

Properties
constructor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Use The Evaluator (Chapter 13) to test the value of the constructor property.

Enter the following statements into the top text box:

a = new String(“abcd”)
a.constructor == String
a.constructor == Number

Parsing methods
string.charAt(index)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Enter each of the following statements into the top text box of The Evaluator:

a = “banana daiquiri”
a.charAt(0)

stringObject.charAt()

(c) ketabton.com: The Digital Library

CD-601Appendix F ✦ Examples from Parts III and IV

a.charAt(5)
a.charAt(6)
a.charAt(20)

Results from each of the charAt() methods should be b, a (the third “a” in

“banana”), a space character, and an empty string, respectively.

string.charCodeAt([index])
String.fromCharCode(num1 [, num2 [, ...
numn]])

Returns: Integer code number for a character; concatenated string value of code

numbers supplied as parameters.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 34-2 provides examples of both methods on one page. Moreover, because

one of the demonstrations relies on the automatic capture of selected text on the

page, the scripts include code to accommodate the different handling of selection

events and capture of the selected text in Navigator and Internet Explorer 4.

After you load the page, select part of the body text anywhere on the page. If you

start the selection with the lowercase letter “a,” the character code displays as 97.

If you select no text, the result is NaN.

Try entering numeric values in the three fields at the bottom of the page. Values

below 32 are ASCII control characters that most fonts represent as hollow squares.

But try all other values to see what you get. Notice that the script passes all three

values as a group to the String.fromCharCode() method, and the result is a com-

bined string.

stringObject.charCodeAt()

(c) ketabton.com: The Digital Library

CD-602 Part VI ✦ Appendixes

Listing 34-2: Character Conversions

<HTML>
<HEAD>
<TITLE>Character Codes</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav = (navigator.appName == “Netscape”)
var isNav4 = (isNav && parseInt(navigator.appVersion == 4))
function showCharCode() {

if (isNav) {
var theText = document.getSelection()

} else {
var theText = document.selection.createRange().text

}
if (theText) {

document.forms[0].charCodeDisplay.value = theText.charCodeAt()
} else {

document.forms[0].charCodeDisplay.value = “ “
}

}
function showString(form) {

form.result.value =
String.fromCharCode(form.entry1.value,form.entry2.value,form.entry3.value)
}
if (isNav4) {

document.captureEvents(Event.MOUSEUP)
}
document.onmouseup = showCharCode
</SCRIPT>
</HEAD>
<BODY>
Capturing Character Codes
<FORM>
Select any of this text, and see the character code of the first character.<P>
Character Code:<INPUT TYPE=”text” NAME=”charCodeDisplay” SIZE=3>

<HR>
Converting Codes to Characters

Enter a value 0-255:<INPUT TYPE=”text” NAME=”entry1” SIZE=4>

Enter a value 0-255:<INPUT TYPE=”text” NAME=”entry2” SIZE=4>

Enter a value 0-255:<INPUT TYPE=”text” NAME=”entry3” SIZE=4>

<INPUT TYPE=”button” VALUE=”Show String” onClick=”showString(this.form)”>
Result:<INPUT TYPE=”text” NAME=”result” SIZE=5>
</FORM>
</BODY>
</HTML>

stringObject.charCodeAt()

(c) ketabton.com: The Digital Library

CD-603Appendix F ✦ Examples from Parts III and IV

string.indexOf(searchString [, startIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Enter each of the following statements (up to, but not including the “//” comment

symbols) into the top text box of The Evaluator (you can simply replace the param-

eters of the indexOf() method for each statement after the first one). Compare

your results with the results shown below.

a = “bananas”
a.indexOf(“b”) // result = 0 (index of first letter is zero)
a.indexOf(“a”) // result = 1
a.indexOf(“a”,1) // result = 1 (start from second letter)
a.indexOf(“a”,2) // result = 3 (start from third letter)
a.indexOf(“a”,4) // result = 5 (start from fifth letter)
a.indexOf(“nan”) // result = 2
a.indexOf(“nas”) // result = 4
a.indexOf(“s”) // result = 6
a.indexOf(“z”) // result = -1 (no “z” in string)

string.lastIndexOf(searchString[,
startIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Enter each of the following statements (up to, but not including the “//” comment

symbols) into the top text box of The Evaluator (you can simply replace the param-

eters of the lastIndexOf() method for each statement after the first one).

Compare your results with the results shown below.

a = “bananas”
a.lastIndexOf(“b”) // result = 0 (index of first letter is zero)
a.lastIndexOf(“a”) // result = 5
a.lastIndexOf(“a”,1) // result = 1 (from second letter toward the front)

stringObject.lastindexOf()

(c) ketabton.com: The Digital Library

CD-604 Part VI ✦ Appendixes

a.lastIndexOf(“a”,2) // result = 1 (start from third letter working to front)
a.lastIndexOf(“a”,4) // result = 3 (start from fifth letter)
a.lastIndexOf(“nan”) // result = 2 [except for -1 Nav 2.0 bug]
a.lastIndexOf(“nas”) // result = 4
a.lastIndexOf(“s”) // result = 6
a.lastIndexOf(“z”) // result = -1 (no “z” in string)

string.match(regExpression)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
To help you understand the string.match() method, Listing 34-3 provides a work-

shop area for experimentation. Two fields occur for data entry: the first is for the

long string to be examined by the method; the second is for a regular expression.

Some default values are provided in case you’re not yet familiar with the syntax of

regular expressions (see Chapter 38). A check box lets you specify whether the

search through the string for matches should be case-sensitive. After you click the

“Execute match()” button, the script creates a regular expression object out of

your input, performs the string.match() method on the big string, and reports

two kinds of results to the page. The primary result is a string version of the array

returned by the method; the other is a count of items returned.

Listing 34-3: Regular Expression Match Workshop

<HTML>
<HEAD>
<TITLE>Regular Expression Match</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doMatch(form) {

var str = form.entry.value
var delim = (form.caseSens.checked) ? “/g” : “/gi”
var regexp = eval(“/” + form.regexp.value + delim)
var resultArray = str.match(regexp)
if (resultArray) {

form.result.value = resultArray.toString()
form.count.value = resultArray.length

} else {
form.result.value = “<no matches>”
form.count.value = “”

}
}

stringObject.match()

(c) ketabton.com: The Digital Library

CD-605Appendix F ✦ Examples from Parts III and IV

</SCRIPT>
</HEAD>
<BODY>
String Match with Regular Expressions
<HR>
<FORM>
Enter a main string:<INPUT TYPE=”text” NAME=”entry” SIZE=60
VALUE=”Many a maN and womAN have meant to visit GerMAny.”>

Enter a regular expression to match:<INPUT TYPE=”text” NAME=”regexp” SIZE=25
VALUE=”\wa\w”>

<INPUT TYPE=”checkbox” NAME=”caseSens”>Case-sensitive<P>
<INPUT TYPE=”button” VALUE=”Execute match()” onClick=”doMatch(this.form)”>
<INPUT TYPE=”reset”><P>
Result:<INPUT TYPE=”text” NAME=”result” SIZE=40>

Count:<INPUT TYPE=”text” NAME=”count” SIZE=3>

</FORM>
</BODY>
</HTML>

The default value for the main string has unusual capitalization intentionally. The

capitalization lets you see more clearly where some of the matches come from. For

example, the default regular expression looks for any three-character string that

has the letter “a” in the middle. Six string segments match that expression. With the

help of capitalization, you can see where each of the four strings containing “man”

are extracted from the main string. The following table lists some other regular

expressions to try with the default main string.

RegExp Description

man Both case-sensitive and not

man\b Where “man” is at the end of a word

\bman Where “man” is at the start of a word

me*an Where zero or more “e” letters occur between “m” and “a”

.a. Where “a” is surrounded by any one character (including space)

\sa\s Where “a” is surrounded by a space on both sides

z Where a “z” occurs (none in the default string)

In the scripts for Listing 34-3, if the string.match() method returns null, you are

informed politely, and the count field is emptied.

stringObject.match()

(c) ketabton.com: The Digital Library

CD-606 Part VI ✦ Appendixes

string.replace(regExpression, replaceString)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
The page in Listing 34-4 lets you practice with the string.replace() and

string.search() methods and regular expressions in a friendly environment. The

source text is a five-line excerpt from Hamlet. You can enter the regular expression

to search for, and the replacement text as well. Note that the script completes the

job of creating the regular expression object, so that you can focus on the other

special characters used to define the matching string. All replacement activities act

globally, because the g parameter is automatically appended to any expression you

enter.

Default values in the fields replace the contraction ‘tis with “it is” after you click the

“Execute replace()” button. Notice that the backslash character in front of the

apostrophe of ‘tis (in the string assembled in mainString) makes the apostophe a

non-word boundary, and thus allows the \B’t regular expression to find a match

there. As described in the section on the string.search() method, the button

connected to that method returns the offset character number of the matching

string (or -1 if no match occurs).

You could modify the listing so that it actually replaces text in the HTML paragraph

for IE4+ and NN6. The steps include wrapping the paragraph in its own element (for

example, a SPAN), and invoking the replace() method on the innerHTML of that

element. Assign the results to the innerHTML property of that element to complete

the job.

Listing 34-4: Lab for string.replace() and string.search()

<HTML>
<HEAD>
<TITLE>Regular Expression Replace and Search</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “To be, or not to be: that is the question:\n”
mainString += “Whether \’tis nobler in the mind to suffer\n”
mainString += “The slings and arrows of outrageous fortune,\n”
mainString += “Or to take arms against a sea of troubles,\n”
mainString += “And by opposing end them.”

stringObject.replace()

(c) ketabton.com: The Digital Library

CD-607Appendix F ✦ Examples from Parts III and IV

function doReplace(form) {
var replaceStr = form.replaceEntry.value
var delim = (form.caseSens.checked) ? “/g” : “/gi”
var regexp = eval(“/” + form.regexp.value + delim)
form.result.value = mainString.replace(regexp, replaceStr)

}
function doSearch(form) {

var replaceStr = form.replaceEntry.value
var delim = (form.caseSens.checked) ? “/g” : “/gi”
var regexp = eval(“/” + form.regexp.value + delim)
form.result.value = mainString.search(regexp)

}
</SCRIPT>
</HEAD>
<BODY>
String Replace and Search with Regular Expressions
<HR>
Text used for string.replace() and string.search() methods:

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them.

<FORM>
Enter a regular expression to match:<INPUT TYPE=”text” NAME=”regexp” SIZE=25
VALUE=”\B’t”>
<INPUT TYPE=”checkbox” NAME=”caseSens”>Case-sensitive

Enter a string to replace the matching strings:<INPUT TYPE=”text”
NAME=”replaceEntry” SIZE=30 VALUE=”it “><P>
<INPUT TYPE=”button” VALUE=”Execute replace()” onClick=”doReplace(this.form)”>
<INPUT TYPE=”reset”>
<INPUT TYPE=”button” VALUE=”Execute search()” onClick=”doSearch(this.form)”><P>
Result:

<TEXTAREA NAME=”result” COLS=60 ROWS=5 WRAP=”virtual”></TEXTAREA>
</FORM>
</BODY>
</HTML>

string.search(regExpression)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

stringObject.search()

(c) ketabton.com: The Digital Library

CD-608 Part VI ✦ Appendixes

Example
Listing 34-4, for the string.replace() method, also provides a laboratory to

experiment with the string.search() method.

string.slice(startIndex [, endIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
With Listing 34-5, you can try several combinations of parameters with the

string.slice() method (see Figure 34-1). A base string is provided (along with

character measurements). Select from the different choices available for parame-

ters and study the outcome of the slice.

Listing 34-5: Slicing a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part I</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “Electroencephalograph”
function showResults() {

var form = document.forms[0]
var param1 = parseInt(form.param1.options[form.param1.selectedIndex].value)
var param2 = parseInt(form.param2.options[form.param2.selectedIndex].value)
if (!param2) {

form.result1.value = mainString.slice(param1)
} else {

form.result1.value = mainString.slice(param1, param2)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showResults()”>
String slice() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

----5----5----5----5-</TT>
<TABLE BORDER=1>
<FORM>

stringObject.slice()

(c) ketabton.com: The Digital Library

CD-609Appendix F ✦ Examples from Parts III and IV

<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>
<TD>string.slice()</TD><TD ROWSPAN=3 VALIGN=middle>
(<SELECT NAME=”param1” onChange=”showResults()”>

<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

</SELECT>,
<SELECT NAME=”param2” onChange=”showResults()”>

<OPTION >(None)
<OPTION VALUE=5>5
<OPTION VALUE=10>10
<OPTION VALUE=-1>-1
<OPTION VALUE=-5>-5
<OPTION VALUE=-10>-10

</SELECT>) </TD>
<TD><INPUT TYPE=”text” NAME=”result1” SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

Figure 34-1: Lab for exploring the string.slice() method

stringObject.slice()

(c) ketabton.com: The Digital Library

CD-610 Part VI ✦ Appendixes

string.split(“delimiterCharacter”[,
limitInteger])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Use The Evaluator (Chapter 13) to see how the string.split() method works.

Begin by assigning a comma-delimited string to a variable:

a = “Anderson,Smith,Johnson,Washington”

Now split the string at comma positions so that the string pieces become items in

an array, saved as b:

b = a.split(“,”)

To prove that the array contains four items, inspect the array’s length property:

b.length // result: 4

string.substr(start [, length])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 34-6 lets you experiment with a variety of values to see how the

string.substr() method works.

Listing 34-6: Reading a Portion of a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part II</TITLE>

stringObject.substr()

(c) ketabton.com: The Digital Library

CD-611Appendix F ✦ Examples from Parts III and IV

<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “Electroencephalograph”
function showResults() {

var form = document.forms[0]
var param1 = parseInt(form.param1.options[form.param1.selectedIndex].value)
var param2 = parseInt(form.param2.options[form.param2.selectedIndex].value)
if (!param2) {

form.result1.value = mainString.substr(param1)
} else {

form.result1.value = mainString.substr(param1, param2)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showResults()”>
String substr() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

----5----5----5----5-</TT>
<TABLE BORDER=1>
<FORM>
<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>
<TD>string.substr()</TD><TD ROWSPAN=3 VALIGN=middle>
(<SELECT NAME=”param1” onChange=”showResults()”>

<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

</SELECT>,
<SELECT NAME=”param2” onChange=”showResults()”>

<OPTION >(None)
<OPTION VALUE=5>5
<OPTION VALUE=10>10
<OPTION VALUE=20>20

</SELECT>) </TD>
<TD><INPUT TYPE=”text” NAME=”result1” SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

stringObject.substr()

(c) ketabton.com: The Digital Library

CD-612 Part VI ✦ Appendixes

string.substring(indexA, indexB)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 34-7 lets you experiment with a variety of values to see how the

string.substring() method works. If you are using Navigator 4, try changing the

LANGUAGE attribute of the script to JavaScript1.2 and see the different behavior

when you set the parameters to 5 and 3. The parameters switch themselves, essen-

tially letting the second index value become the beginning of the extracted

substring.

Listing 34-7: Reading a Portion of a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part III</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “Electroencephalograph”
function showResults() {

var form = document.forms[0]
var param1 = parseInt(form.param1.options[form.param1.selectedIndex].value)
var param2 = parseInt(form.param2.options[form.param2.selectedIndex].value)
if (!param2) {

form.result1.value = mainString.substring(param1)
} else {

form.result1.value = mainString.substring(param1, param2)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showResults()”>
String substr() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

----5----5----5----5-</TT>
<TABLE BORDER=1>
<FORM>
<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>
<TD>string.substring()</TD><TD>

stringObject.substring()

(c) ketabton.com: The Digital Library

CD-613Appendix F ✦ Examples from Parts III and IV

(<SELECT NAME=”param1” onChange=”showResults()”>
<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

</SELECT>,
<SELECT NAME=”param2” onChange=”showResults()”>

<OPTION >(None)
<OPTION VALUE=3>3
<OPTION VALUE=5>5
<OPTION VALUE=10>10

</SELECT>) </TD>
<TD><INPUT TYPE=”text” NAME=”result1” SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

string.toLowerCase()
string.toUpperCase()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
You can use the toLowerCase() and toUpperCase() methods on literal strings, as

follows:

var newString = “HTTP://www.Netscape.COM”.toLowerCase()
// result = “http://www.netscape.com”

The methods are also helpful in comparing strings when case is not important, as

follows:

if (guess.toUpperCase() == answer.toUpperCase()) {...}
// comparing strings without case sensitivity

stringObject.toLowerCase()

(c) ketabton.com: The Digital Library

CD-614 Part VI ✦ Appendixes

string.toString()
string.valueOf()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Examples
Use The Evaluator to test the valueOf() method. Enter the following statements

into the top text box and examine the values that appear in the Results field:

a = new String(“hello”)
typeof a
b = a.valueOf()
typeof b

Because all other JavaScript core objects also have the valueOf() method, you

can build generic functions that receive a variety of object types as parameters, and

the script can branch its code based on the type of value that is stored in the

object.

Chapter 35 Examples
The following section contains examples from Chapter 35, “The Math, Number, and

Boolean Objects.”

stringObject.toString()

(c) ketabton.com: The Digital Library

CD-615Appendix F ✦ Examples from Parts III and IV

Number Object

Properties
MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
POSITIVE_INFINITY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
Enter each of the four Number object expressions into the top text field of The

Evaluator to see how the browser reports each value.

Methods
number.toExponential(fractionDigits)
number.toFixed(fractionDigits)
number.toPrecision(precisionDigits)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use The Evaluator to experiment with all three of these methods with a

variety of parameter values. Before invoking any method, be sure to assign a

numeric value to one of the built-in global variables in The Evaluator (a through z).

None of these methods works with number literals (for example,

123.toExponential(2) does not work).

numberObject.toExponential()

(c) ketabton.com: The Digital Library

CD-616 Part VI ✦ Appendixes

number.toString([radix])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
Use The Evaluator to experiment with the toString() method. Assign the number

12 to the variable a and see how the number is converted to strings in a variety of

number bases:

a = 12
a.toString() // base 10
a.toString(2)
a.toString(16)

Chapter 37 Examples
The following section contains examples from Chapter 37, “The Array Object.”

Array Object Methods
array.concat(array2)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 37-6 is a bit complex, but it demonstrates both how arrays can be joined

with the array.concat() method and how values and objects in the source arrays

do or do not propagate based on their data type. The page is shown in Figure 37-1.

numberObject.concat()

(c) ketabton.com: The Digital Library

CD-617Appendix F ✦ Examples from Parts III and IV

Figure 37-1: Object references remain “alive” in a concatenated array.

After you load the page, you see readouts of three arrays. The first array consists of

all string values; the second array has two string values and a reference to a form

object on the page (a textbox named “original” in the HTML). In the initialization

routine of this page, not only are the two source arrays created, but they are joined

with the array.concat() method, and the result is shown in the third box. To

show the contents of these arrays in columns, I use the array.join() method,

which brings the elements of an array together as a string delimited in this case by

a return character — giving us an instant column of data.

Two series of fields and buttons let you experiment with the way values and object

references are linked across concatenated arrays. In the first group, if you enter a

new value to be assigned to arrayThree[0], the new value replaces the string

value in the combined array. Because regular values do not maintain a link back to

the original array, only the entry in the combined array is changed. A call to

showArrays() proves that only the third array is affected by the change.

More complex is the object relationship for this demonstration. A reference to the first

text box of the second grouping has been assigned to the third entry of arrayTwo.

After concatenation, the same reference is now in the last entry of the combined array.

If you enter a new value for a property of the object in the last slot of arrayThree, the

change goes all the way back to the original object — the first text box in the lower

numberObject.concat()

(c) ketabton.com: The Digital Library

CD-618 Part VI ✦ Appendixes

grouping. Thus, the text of the original field changes in response to the change of

arrayThree[5]. And because all references to that object yield the same result, the

reference in arrayTwo[2] points to the same text object, yielding the same new

answer. The display of the array contents doesn’t change, because both arrays still

contain a reference to the same object (and the VALUE attribute showing in the

<INPUT> tag of the column listings refers to the default value of the tag, not to its

current algorithmically retrievable value shown in the last two fields of the page).

Listing 37-6: Array Concatenation

<HTML>
<HEAD>
<TITLE>Array Concatenation</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// global variables
var arrayOne, arrayTwo, arrayThree, textObj
// initialize after load to access text object in form
function initialize() {

var form = document.forms[0]
textObj = form.original
arrayOne = new Array(“Jerry”, “Elaine”,”Kramer”)
arrayTwo = new Array(“Ross”, “Rachel”,textObj)
arrayThree = arrayOne.concat(arrayTwo)
update1(form)
update2(form)
showArrays()

}
// display current values of all three arrays
function showArrays() {

var form = document.forms[0]
form.array1.value = arrayOne.join(“\n”)
form.array2.value = arrayTwo.join(“\n”)
form.array3.value = arrayThree.join(“\n”)

}
// change the value of first item in Array Three
function update1(form) {

arrayThree[0] = form.source1.value
form.result1.value = arrayOne[0]
form.result2.value = arrayThree[0]
showArrays()

}
// change value of object property pointed to in Array Three
function update2(form) {

arrayThree[5].value = form.source2.value
form.result3.value = arrayTwo[2].value
form.result4.value = arrayThree[5].value
showArrays()

}

numberObject.concat()

(c) ketabton.com: The Digital Library

CD-619Appendix F ✦ Examples from Parts III and IV

</SCRIPT>
</HEAD>
<BODY onLoad=”initialize()”>
<FORM>
<TABLE>
<TR><TH>arrayOne</TH><TH>arrayTwo</TH><TH>arrayThree</TH></TR>
<TR>
<TD><TEXTAREA NAME=”array1” COLS=25 ROWS=6></TEXTAREA></TD>
<TD><TEXTAREA NAME=”array2” COLS=25 ROWS=6></TEXTAREA></TD>
<TD><TEXTAREA NAME=”array3” COLS=25 ROWS=6></TEXTAREA></TD>
</TR>
</TABLE>
Enter new value for arrayThree[0]:<INPUT TYPE=”text” NAME=”source1”
VALUE=”Jerry”>
<INPUT TYPE=”button” VALUE=”Change arrayThree[0]”
onClick=”update1(this.form)”>

Current arrayOne[0] is:<INPUT TYPE=”text” NAME=”result1”>

Current arrayThree[0] is:<INPUT TYPE=”text” NAME=”result2”>

<HR>

textObj assigned to arrayTwo[2]:<INPUT TYPE=”text” NAME=”original”
onFocus=”this.blur()”></BR>
Enter new value for arrayThree[5]:<INPUT TYPE=”text” NAME=”source2”
VALUE=”Phoebe”>
<INPUT TYPE=”button” VALUE=”Change arrayThree[5].value”
onClick=”update2(this.form)”>

Current arrayTwo[2].value is:<INPUT TYPE=”text” NAME=”result3”>

Current arrayThree[5].value is:<INPUT TYPE=”text” NAME=”result4”><P>

<INPUT TYPE=”button” VALUE=”Reset” onClick=”location.reload()”>
</FORM>
</BODY>
</HTML>

array.join(separatorString)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
The script in Listing 37-7 converts an array of planet names into a text string. The

page provides you with a field to enter the delimiter string of your choice and

shows the results in a textarea.

array.join()

(c) ketabton.com: The Digital Library

CD-620 Part VI ✦ Appendixes

Listing 37-7: Using the Array.join() Method

<HTML>
<HEAD>
<TITLE>Array.join()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
solarSys = new Array(9)
solarSys[0] = “Mercury”
solarSys[1] = “Venus”
<HTML>
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”
solarSys[7] = “Neptune”
solarSys[8] = “Pluto”

// join array elements into a string
function convert(form) {

var delimiter = form.delim.value
form.output.value = unescape(solarSys.join(delimiter))

}
</SCRIPT>
<BODY>
<H2>Converting arrays to strings</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>
Enter a string to act as a delimiter between entries:
<INPUT TYPE=”text” NAME=”delim” VALUE=”,” SIZE=5><P>
<INPUT TYPE=”button” VALUE=”Display as String” onClick=”convert(this.form)”>
<INPUT TYPE=”reset”>
<TEXTAREA NAME=”output” ROWS=4 COLS=40 WRAP=”virtual”>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

Notice that this method takes the parameter very literally. If you want to include

nonalphanumeric characters, such as a newline or tab, do so with URL-encoded

characters (%0D for a carriage return; %09 for a tab) instead of inline string literals.

In Listing 37-7, the results of the array.join() method are subjected to the

unescape() function in order to display them in the TEXTAREA.

array.joint()

(c) ketabton.com: The Digital Library

CD-621Appendix F ✦ Examples from Parts III and IV

array.reverse()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
Listing 37-8 is an enhanced version of Listing 37-7, which includes another button

and function that reverse the array and display it as a string in a text area.

Listing 37-8: Array.reverse() Method

<HTML>
<HEAD>
<TITLE>Array.reverse()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
solarSys = new Array(9)
solarSys[0] = “Mercury”
solarSys[1] = “Venus”
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”
solarSys[7] = “Neptune”
solarSys[8] = “Pluto”

// show array as currently in memory
function showAsIs(form) {

var delimiter = form.delim.value
form.output.value = unescape(solarSys.join(delimiter))

}
// reverse array order, then display as string
function reverseIt(form) {

var delimiter = form.delim.value
solarSys.reverse() // reverses original array
form.output.value = unescape(solarSys.join(delimiter))

}
</SCRIPT>
<BODY>
<H2>Reversing array element order</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>

Continued

array.reverse()

(c) ketabton.com: The Digital Library

CD-622 Part VI ✦ Appendixes

Listing 37-8 (continued)

Enter a string to act as a delimiter between entries:
<INPUT TYPE=”text” NAME=”delim” VALUE=”,” SIZE=5><P>
<INPUT TYPE=”button” VALUE=”Array as-is” onClick=”showAsIs(this.form)”>
<INPUT TYPE=”button” VALUE=”Reverse the array” onClick=”reverseIt(this.form)”>
<INPUT TYPE=”reset”>
<INPUT TYPE=”button” VALUE=”Reload” onClick=”self.location.reload()”>
<TEXTAREA NAME=”output” ROWS=4 COLS=60>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

Notice that the solarSys.reverse() method stands by itself (meaning, nothing

captures the returned value) because the method modifies the solarSys array. You

then run the now inverted solarSys array through the array.join() method for

your text display.

array.sort([compareFunction])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
You can look to Listing 37-9 for a few examples of sorting an array of string values.

Four buttons summon different sorting routines, three of which invoke comparison

functions. This listing sorts the planet array alphabetically (forward and backward)

by the last character of the planet name and also by the length of the planet name.

Each comparison function demonstrates different ways of comparing data sent dur-

ing a sort.

Listing 37-9: Array.sort() Possibilities

<HTML>
<HEAD>
<TITLE>Array.sort()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
solarSys = new Array(9)

array.sort()

(c) ketabton.com: The Digital Library

CD-623Appendix F ✦ Examples from Parts III and IV

solarSys[0] = “Mercury”
solarSys[1] = “Venus”
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”
solarSys[7] = “Neptune”
solarSys[8] = “Pluto”
// comparison functions
function compare1(a,b) {

// reverse alphabetical order
if (a > b) {return -1}
if (b > a) {return 1}
return 0

}
function compare2(a,b) {

// last character of planet names
var aComp = a.charAt(a.length - 1)
var bComp = b.charAt(b.length - 1)
if (aComp < bComp) {return -1}
if (aComp > bComp) {return 1}
return 0

}
function compare3(a,b) {

// length of planet names
return a.length - b.length

}
// sort and display array
function sortIt(form, compFunc) {

var delimiter = “;”
if (compFunc == null) {

solarSys.sort()
} else {

solarSys.sort(compFunc)
}
// display results in field
form.output.value = unescape(solarSys.join(delimiter))

}
</SCRIPT>
<BODY onLoad=”document.forms[0].output.value = unescape(solarSys.join(‘;’))”>
<H2>Sorting array elements</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>
Click on a button to sort the array:<P>
<INPUT TYPE=”button” VALUE=”Alphabetical A-Z” onClick=”sortIt(this.form)”>
<INPUT TYPE=”button” VALUE=”Alphabetical Z-A”
onClick=”sortIt(this.form,compare1)”>
<INPUT TYPE=”button” VALUE=”Last Character”
onClick=”sortIt(this.form,compare2)”>

Continued

array.sort()

(c) ketabton.com: The Digital Library

CD-624 Part VI ✦ Appendixes

Listing 37-9 (continued)

<INPUT TYPE=”button” VALUE=”Name Length” onClick=”sortIt(this.form,compare3)”>
<INPUT TYPE=”button” VALUE=”Reload Original” onClick=”self.location.reload()”>
<INPUT TYPE=”text” NAME=”output” SIZE=62>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

array.splice(startIndex , deleteCount[,
item1[, item2[,...itemN]]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13) to experiment with the splice() method. Begin by

creating an array with a sequence of numbers:

a = new Array(1,2,3,4,5)

Next, remove the center three items, and replace them with one string item:

a.splice(1, 3, “two/three/four”)

The Results box shows a string version of the three-item array returned by the

method. To view the current contents of the array, enter a into the top text box.

To put the original numbers back into the array, swap the string item with three

numeric items:

a.splice(1, 1, 2, 3, 4)

The method returns the single string, and the a array now has five items in it again.

✦ ✦ ✦

array.splice()

(c) ketabton.com: The Digital Library

Symbols
</ /> comment tag, 41

<!—comment—> tag, 26

=+ (add-by-value operator), CD-90

<> delimiter characters, 4

!= (does not equal comparison operator),

CD-43

== (equals comparison operator), CD-43,

CD-58

> (greater than comparison operator),

CD-43

>= (greater than/equal to comparison

operator), CD-43

< (less than comparison operator), CD-43

<= (less than/equal to comparison

operator), CD-43

$1...$9 property, RegExp object, 1031

@ symbol, CD-1–CD-2

A
A element object, 493–504

abbr property

TD element object, 654

TH element object, 654

above property, layers, 860–861

acceptCharset property

FORM element object, 537

FORM object, 537

accessKey property, 109–110

LABEL element object, 418–419

action property

FORM element object, 537–538

FORM object, 5

activeElement property, document object,

344

ActiveX controls, 6

ActiveXObject object, 1140–1141

add-by-value operators, CD-90

addBehavior() method, 149–150

AddDesktopComponent() method, 237

addEventListener() method, 91–92,

151–153

AddFavorite() method, 237

addImport() method, styleSheet object,

790–791

addReadRequest() method, userProfile

object, 706–707

addRule() method, styleSheet object, 791

Adobe Acrobat Reader, 6

alert() method, 255, CD-21, CD-90

alertUser() function, CD-30

align property

APPLET element object, 903

EMBED element object, 914

HR element object, 416

IFRAME element object, 311–312

Image element object, 509

OBJECT element object, 908

TABLE element object, 630

alignment, IFRAME element object, 311–312

aLink property, BODY element object,

400–401

alinkColor property, document object,

344–345

all property, 110–111

simulator, 100–101

alt property

APPLET element object, 903–904

AREA element object, 522

Image element object, 509–510

OBJECT element object, 909

altHTML property

APPLET element object, 904

OBJECT element object, 909

altKey property, event object

IE4, 747–748

NN6+, 764–765

altLeft property, event object (IE4),

748–749

Anchor element object, 493–504

Index

(c) ketabton.com: The Digital Library

1474 Index ✦ A

anchors property, document object,

345–346

animation, 6

APIs (application programming interfaces)

compatibility and, 1266–1268

scripting and, 1200–1206

appCore property, 229

appendChild() method, 86, 153–154

APPLET element object, 902–906

applet-to-script application example,

1193–1197

applets, 7

control, 1178

data type conversion, 1189–1190

JSObject class, 1191–1193

limitations of, 1185

playing, 7

properties, 1180

scripting examples, 1181–1190

source code, 1186–1187

stopping/starting, 1180

text files, reading, 1188

applets property, document object, 346

applications

calculations, 1355–1363

decision helper, 1375–1398

graphics, 1355–1363

intelligent updated flags, 1365–1373

lookup tables, 1299–1309

map puzzle, DHTML, 1399–1414

order forms, 1311–1319

table of contents, outline style,

1322–1353

XML data islands, transforming,

1415–1429

applyElement() method, 154–155

ARCHIVE attribute, signing scripts, 1248

archive property, APPLET element object,

904

AREA element object, 520–524

arg1 variable, 60

arguments. See also parameters

functions, CD-52

methods, CD-20

arguments property, Function object, 1097

arithmetic operators, 1074–1076, CD-43

arity property, Function object, 1097

Array() function, CD-55

Array object

methods, 998–1005

properties, 996–998

arrays, 987–988, CD-55–CD-59

attributes, 111

childNodes, 115

creating, 988–989, CD-55–CD-56

creation enhancements, 991

data access, CD-56

decrementing through, 130–131

deleting entries, 991–992

document objects in, CD-58–CD-59

document.all, 71

document.images, 51–52, CD-112

FORM object, 536

forms, 535–536

initializing, 988

literal notation, 991

multidimensional, 995–996

onImgArray, CD-113

parallel, 992–995, CD-56–CD-58

populating, options for, 989–991

used as stacks, 1000

assign() method, location object, 330

assignment operators, 1070, 1076–1078,

CD-37

assignments, event handlers, 51

attachEvent() method, 155–156

attribute object, 112

properties, 167

attributes

CONTENT, 48

deleting, 158–159, 179–180

HEIGHT, 124, CD-110

ID, 125, 1249–1250, CD-15

LANG, 129

LANGUAGE, 39, CD-23–CD-24

NAME, CD-15

SRC, 42–43, CD-24

TYPE, CD-24

WIDTH, 124, CD-110

(c) ketabton.com: The Digital Library

1475Index ✦ A–B

attributes array, 111

attributes property, 111–113

audio, 6

aural properties

currentStyle object, 839–840

runtimeStyle object, 839–840

style object, 839–840

authoring

environment setup, 20–23

MacOS and, 22

overview, 11–13

Windows and, 21

work-flow, 20–21

WYSIWYG tools, 19

autocomplete property, FORM element

object, 538

availHeight property, screen object,

699–700

availLeft property, screen object, 701

availTop property, screen object, 701

availWidth property, screen object,

699–700

axis property

TD element object, 654

TH element object, 654

B
back() method

history object, 335

window object, 256

back-end programs, 5

background properties

currentStyle object, 821–826

runtimeStyle object, 824–826

style object, 821–826

background property

BODY element object, 401

TABLE element object, 631

BASE element object, 475–477

BASEFONT element object, 477–478

BaseHref property, OBJECT element

object, 909

batch mode validation, 1151

BBEdit (Bare Bones Software), text editor,

20

behavior components

event handlers and, 1276

methods, 1276–1277

properties, 1276–1277

Behavioral Extensions for CSS, 1273

behaviorCookie property, event object

(IE4), 749

behaviorPart property, event object (IE4),

749

behaviors

components, linking, 1274–1275

components, structure, 1275–1277

enabling/disabling, 1275

examples, 1277–1283

Internet Explorer, 1273

style sheets and, 1273–1274

text objects, CD-78

behaviorUrns property, 113

below property, layers, 860–861

beta browsers, compatibility and, 54

bgColor property

BODY element object, 400–402

document object, 344–345, 346

layers, 862

MARQUEE element object, 421

TABLE element object, 631

bgProperties property

BODY element object, 402

bidirectional event model, 90–91

binding, data binding, 120–121

bitwise operators, 1070, 1082–1083

blank frames, 223–224

BLOCKQUOTE element object, 410

blur() method, 156–158

Text Input object, 578

BODY element object, 399–407

event handlers, 407

methods, 405–407

properties, 400–405

body property, document object, 347

<BODY> tag, onDragDrop event handler

and, 293–294

(c) ketabton.com: The Digital Library

1476 Index ✦ B–C

body text objects, 409–472

bookmarks property, event object (IE4),

749–750

Boolean object, 965

Boolean operators, 1070, 1078–1082

Boolean values, CD-33, CD-36

border and edge properties

currentStyle object, 826–832

runtimeStyle object, 826–832

style object, 826–832

BORDER attribute, 300

border property

FRAMESET element object, 307

Image element object, 510

TABLE element object, 632

borderColor property

FRAME element object, 300

FRAMESET element object, 307–308

TABLE element object, 632

borders

color, 300, 308

frames, 302

size, 307

bottom property, TextRectangle object,

471–472

bottomMargin property, BODY element

object, 402–403

boundElements property, event object

(IE4), 749–750

boundingHeight property, TextRange

object, 453

boundingLeft property, TextRange object,

453

boundingTop property, TextRange object,

453

boundingWidth property, TextRange

object, 453

BR element object, 411

braces, curly, CD-54–CD-55

branching index pages, implementation,

47–49

branching variables, 95

break statement, CD-58

browser sniffer scripts, 48

browser wars, 12–13

browsers

branching index pages, 48–49

crashes, debugging, 1235

document object, 63–64

inline branching, compatibility,

1262–1263

non-DHTML, 1268–1269

nonscriptable, 45–46

older, <script> tag and, CD-26–CD-27

selecting, 20

threads, freezing, 287

version detection, 44–53

bubbles property, event object (NN6+),

765–766

bufferDepth property, screen property,

701–702

built-in objects, 58

BUTTON element object, 550–555

event handlers, 554–555

methods, 554

properties, 552–553

button elements

accessing, CD-80–CD-81

adding, CD-13–CD-14, CD-16–CD-17

Button object, CD-79

button property

event object (IE4), 750–751

event object (NN6+), 766

buttons, event handlers and, CD-21

C
calculations

application, 1355–1363

Date object, 978–982

calendars, 1285–1286

call() method, Function object, 1100–1102

caller property, Function object, 1098–1099

calling functions from event handler, CD-52

cancelable property, event object (NN6+),

767

(c) ketabton.com: The Digital Library

1477Index ✦ C

cancelBubble property, event object

IE4, 751–752

NN6+, 766–767

canHaveChildren property, 113–114

canHaveHTML property, 114

CAPTION element object, 645

caption property, TABLE element object,

633

captureEvents() method, 70

document object, 378–380

window object, 256–258

capturing events, 279–280

cascading style sheets, 16, 74

case, strings, converting, CD-91

cellIndex property

TD element object, 654

TH element object, 654–655

cellPadding property, TABLE element

object, 633

cells, tables, 615–616

content modification, 616–619

populating, 615–616

cells property

TABLE element object, 634

TR element object, 650

cellSpacing property, TABLE element

object, 633

CGI (Common Gateway Interface)

cookies, 348

prototyping, CD-8

serverless, CD-7

servers, CD-1–CD-2

character codes, key codes comparison,

208

characterSet property, document object,

348

charCode property, event object (NN6+),

767–738

charset property

A element object, 498

Anchor element property, 498–499

document object, 347

Link element object, 481, 498

META element object, 485

Checkbox Input object, 555–559

event handlers, 559

methods, 559

properties, 557–558

checkbox object, CD-79–CD-80

checked property, CD-79–CD-80

preferences and, CD-80

checked property, CD-79–CD-80

Checkbox Input object, 558

Radio Input object, 561–562

child/child references, 220, CD-102–CD-103

child frames, CD-99–CD-101

child nodes, 123

child/parent references, 220, CD-102

childNodes property, 114–115

children property, 115–116

chrome, windows, 235, CD-62

cite property, 410

CLASS attribute, 116

classes, 1178

JSObject, 1191–1193

scripting directly, 1214–1215

CLASSID attribute, 276

classid property, OBJECT element object,

909–910

className property, 116

clear() method

document object, 380

selection object, 443–444

clear property, BR element object, 411

clearAttributes() method, 158–159

clearInterval() method, 258

clearRequest() method, userProfile object,

707

clearTimeout() method, 258–259

click() method, 159

BUTTON element object, 554

Checkbox Input object, 559

Radio Input object, 564

clientHeight property, 116–117

clientInformation object (IE4+), 681–683

methods, 681–683

properties, 667–681

clientInformation property, 229

(c) ketabton.com: The Digital Library

1478 Index ✦ C

clientLeft property, 117

clientTop property, 117

clientWidth property, 116–117

clientX property, event object

IE4, 752–754

NN6+, 768–769

clientY property, event object

IE4, 752–754

NN6+, 768–769

clip property, layers, 862–864

clipboardData property, 229–230

cloneContents() method, Range object,

431–432

cloneNode() method, 160

cloneRange() method, Range object,

431–432

close() method, CD-64

document object, 380–381

window object, 259

closed property, 231

closeNewWindow() function, CD-64

Code Base Principles, Evaluator Sr. and, 56

code property

APPLET element object, 904–905

OBJECT element object, 910

codebase principal, digital certificates and,

1246–1247

codeBase property

APPLET element object, 905

OBJECT element object, 910–911

codeType property, OBJECT element

object, 911

COL element objects, 646–648

collapse() method

Range object, 432–433

TextRange object, 454–455

collapsed property, Range object, 429

collections, 71

color

borders, 300, 308

layers, 858–859

color property

BASEFONT element object, 478

FONT element object, 412–413

HR element object, 416

colorDepth property, screen object, 702

cols property

FRAMESET element object, 308

TABLE element object, 634

TEXTAREA element object, 585–586

colSpan property

TD element object, 655

TH element object, 655

columns, tables, 625–627

comments, 26, 1137–1138

debugging and, 1229

statements and, CD-27–CD-28

commonAncestorContainer property,

Range object, 429–430

compact property, OL element object, 657

compareBoundaryPoints() method, Range

object, 433–434

compareEndPoints() method, TextRange

object, 455–456

comparison operators, 1069, 1070–1071,

CD-43

compatibility, 13–16

authoring and, 12–13

beta browsers, 54

designing for, 53–57

language, objects and, 13–14

ratings charts, 56–57

compile() method, regular expression

object, 1025–1026

complete property

Image element object, 510–511

Image Input object, 566

componentFromPoint() method, 160–162

Components property, 229, 231

concatenation, 27, CD-90–CD-91

strings, 928–929

conditions, loops, CD-50

(c) ketabton.com: The Digital Library

1479Index ✦ C

confirm dialog box, 260

confirm() method, 260–261

connubial operators, 1070, 1073–1076

console windows, Netscape, debugging,

1218–1219

const statement, 1138–1139

constructor property

Function object, 1100

string object, 932–933

containment hierarchy, 65

elements, 73–74

containment versus inheritance, 222–223

contains() method, 162

content, properties, 101–102

CONTENT attribute, 48

content property

currentStyle object, 813

META element object, 486

contentDocument property

FRAME element object, 301

IFRAME element object, 312–313

contentEditable property, 117–118

control selections, 198

control structures, 59, 1033, CD-48–CD-49

conditional expressions, 1038–1039

if constructions, 1034–1038, CD-48–CD-49

if-else constructions, 1034–1038, CD-49

labeled statements, 1048–1050

for loops, 1039–1044

with statement, 1047–1048

switch statement, 1050–1053

controllers property, 229, 231

controls, form controls, CD-76

converting

case, strings, CD-91

data types, CD-40–CD-42

data types, applets and, 1193

numbers to strings, CD-42

strings to numbers, CD-41–CD-42

cookie property, document object, 348–358

cookies

access, 350

Bill Dortch’s cookie functions, 354–357

CGI and, 348

domain, 352

expiration dates, 351–352

files, 349

retrieving data, 352–353

saving, 351–352

SECURE parameter, 352

strings, parsing, 353

subcookies, 358

throwaway passwords, 350

value, assigning, 351

coordinates, scrolling and, 280–281

coords property

A element object, 498–499

Anchor element object, 498–499

AREA element object, 523

Link element object, 498–499

Core DOM, 76–77

core language, 14–15

core language objects, CD-89

createAttribute() method, document

object, 381–382

createCaption() method, TABLE element

object, 639–340

createContextualFragment() method,

Range object, 434–435

createControlRange() method, BODY

element object, 405

createElement() method, 87

document object, 382–383

createEventObject() method, document

object, 383–384

createPopup() method, 261

createRange() method, selection object,

444

createStyleSheet() method, document

object, 384

createTextNode() method, 87

document object, 385

createTextRange() method, BODY element

object, 405

createTextRange() method, TEXTAREA

element object, 586–587

(c) ketabton.com: The Digital Library

1480 Index ✦ C–D

createTFoot() method, TABLE element

object, 640

createTHead() method, TABLE element

object, 640

crypto property, 232

CSS (cascading style sheets), 74, 116

cursor attribute, 282–283

table of contents, 1336–1343

CSS1 (Cascading Style Sheets Level 1), 16

cssRule object, 792–796

cssRules property, styleSheet object, 783

cssText property, styleSheet object,

783–784

ctrlKey property

event object (IE4), 747–748

event object (NN6+), 764–765

ctrlLeft property, event object (IE4),

748–749

curly braces, CD-54–CD-55

current property, history object, 333–334

currentStyle object, 796–840

font properties, 801–812

property values, 798–801

style properties, 797–798

text properties, 801–812

currentStyle property, 118

currentTarget property, event object

(NN6+), 770

cursor style sheet attribute, 282–283

cursor types, 282–283

custom objects

arrays of, creating, 1113–1114

creating, 1116

methods, custom, 1115–1116

D
data, CD-35

data binding, 120–121

data entry validation, CD-7

data property

event object (NN4), 742

Text object, 446

TextNode object, 446

data types, 58, CD-36

comparison operators, 1072–1073

conversion, CD-40–CD-42

converting, 1193

converting, applets, 1189–1190

strings, 927–930

databases, 1300

dataFld property, 119–120

dataFormatAs property, 119–120

dataPageSize property, TABLE element

object, 634–635

dataSrc property, 119–120

dataTransfer property, event object (IE4),

754–757

date entries, forms, 983–986

Date object, 969–986, CD-94–CD-96

calculations, CD-96–CD-97

creating, 969–971

formatting, 976–977

mathematical calculations with, 978–979

methods, 971–975, CD-95

millisecond dates, creating, 974

properties, 971

string format, 975–976

time zones, 975

DD element object, 662–663

debugging scripts

browser crashes, 1235

comments, statements and, 1229

embeddable Evaluator and, 1230–1231

error messages, 1218–1219

HTML tags, 1226–1227

prevention, 1235–1236

reopening files, 1228–1229

runtime errors, 1217–1218

runtime expression evaluation,

1229–1230

source, viewing, 1227

syntax errors, 1217–1218

tables, 1228

timing, 1228

trace utility, 1232–1234

working intermittently, 1227–1228

(c) ketabton.com: The Digital Library

1481Index ✦ D

decimal numbers, converting to

hexadecimal, 954–955

Decision Helper, CD-6–CD-6

navigation bars and, CD-104–CD-105

decision helper application, 1375–1398

decisions, CD-47–CD-48

declaring variables, CD-37

decodeURI() function, 1128–1129

decodeURIComponent() function,

1128–1129

decrementing arrays, 130–131

defaultCharset property, document object,

358

defaultChecked property

Checkbox Input object, 558–559

Radio Input object, 562

defaultStatus property, 344

defaultValue property, Text Input object,

574

deferred scripting, CD-28–CD-30

dynamic tables and, 1286

deleteCaption() method, TABLE element

object, 639–340

deleteCell() method, TR element property,

651–652

deleteContents() method, Range object,

435–436

deleteData() method

Text object, 447–448

TextNode object, 447–448

deleteRow() method, TABLE element

object, 640–641

deleteRule() method, styleSheet object,

792

deleteTFoot() method, TABLE element

object, 640

deleteTHead() method, TABLE element

object, 640

delimiter characters, HTML tags, 4

demo() function, CD-54

description property

Error object, 1064–1065

mimeType object, 685

plugin object, 689–690

designMode property, document object, 359

detach() method, Range object, 436–437

detachEvent() method, 155–156

detail property, event object (NN6+), 770

DHTML. See Dynamic HTML

dialog boxes, 289–290

cautions, 290–291

features, 289–290

retrieving data, 288–289

dialogArguments property, 233

dialogHeight property, 233

dialogLeft property, 234

dialogTop property, 234

dialogWidth property, 233

Dictionary object, 1141–1142

digital certificates, 1246–1247

dimmed elements, 121

DIR element object, 663

dir property, 121

direction property, MARQUEE element

object, 421–422

directories property, 234–236

disabled property, 121–122, 128

Link element object, 481

styleSheet object, 784–785

disableExternalCapture() method, 261–262

dispatch lookup table, validation and,

1162–1164

dispatchEvent() method, 163

DIV element, 75

DL element object, 662–663

doctype property, document object,

359–360

document object, 13, CD-10, CD-61,

CD-69–CD-72

arrays, CD-58–CD-59

browsers, 63–64

defining, 64

event handlers, 398–399

methods, 378–398

properties, 344–378

(c) ketabton.com: The Digital Library

1482 Index ✦ D–E

document property, 122, 236

FRAME element object, 301

IFRAME element object, 313

layers, 864

popup object, 317–318

document.all array, 71

documentation, online, 1467

document.close() method, CD-71

documentElement property, document

object, 360

document.forms[] property, CD-70

document.images array, 51–52, CD-112

document.layers property, 70–71

documents

loading, CD-10–CD-14

references to, CD-15

document.title property, CD-70

document.write() method, CD-39, CD-

70–CD-72

window object, 227

doIt() function, 51

DOM (document object model), 15, CD-8

compatibility, 20

content replacing/adding, 89

Core DOM, 76–77

event handling, 99

levels, 77

positioned elements, 874–899

proprietary, CD-10

standard, CD-10

W3C, 76–92

domain property, document object,

360–361

doReadRequest() method, userProfile

object, 708–709

doScroll() method, BODY element object,

406–407

dot syntax, 62, CD-17–CD-18

downloading plug-ins, 6

dragging, element dragging behavior,

1277–1280

dragging layers, 894–899

DreamWeaver, 19

DT element object, 662–663

DTD (Document Type Definition), 81

dummy functions, 50

duplicate() method, TextRange object,

456–457

dynamic content, DOM, 96–97

Dynamic HTML, 16, CD-6–CD-7,

CD-115–CD-116

API example, 1269–1272

behaviors, 76

compatibility issues, 1261–1268

element positioning, 209

interactivity, CD-8

map puzzle application, 1399–1414

non-DHTML browsers, 1268–1269

overview, 1259–1261

tables, 1293–1297

W3C DOM and, 78–79

dynamic styles, 94–95

dynamic tables, 1289–1293

dynsrc property, Image element object, 511

E
ECMA (European Computer Manufacturer’s

Association), 14–15, CD-35

ECMAScript, 38

element positioning, 97–98

element referencing, W3C COM, 79–80

elementFromPoint() method, document

object, 385–386

elements

attributes, removing, 158–159

containment hierarchy, 73–74

functions, passing to, CD-83–CD-85

grouping, 105

long descriptions, 303

sibling elements, 132

elements property, FORM element object,

538–539

EMBED element object, 913–916

properties, 914–916

<EMBED> tag, 1198, 1199

embeddable Evaluator, debugging scripts

and, 1230–1231

(c) ketabton.com: The Digital Library

1483Index ✦ E

embedding

behavior components, 1274–1275

scripts, HTML documents, 38–44

sound, multiple, 1209–1214

embeds property, document object, 361

empty() method, selection object, 444–445

enabledPlugin property, mimeType object,

685–686

enableExternalCapture() method, 261–262

encodeURI() function, 1128–1129

encodeURIComponent() function,

1128–1129

encoding property, FORM element object,

539–540

enctype property, FORM element object,

539–540

endContainer property, Range object, 430

endOffset property, Range object, 430–431

entities, 43–44

Enumerator object, 1142–1143

error messages, 1218–1219

multiple, 1219

text, 1221–1226

Error object, 1063–1067

methods, 1067

properties, 1064–1067

error trapping, 60

errors

file names, 1219

location, 1220–1221

runtime versus syntax, 1217–1218

scripts, 244

scripts, viewing, CD-30–CD-32

escape() function, 1129–1130

eval() function, 111, 1130–1132, CD-112

evaluated text, 27

Evaluator Jr. (Navigator), CD-40

Evaluator Sr. (Navigator), 54–56

evaluator.html file, 56

EVENT attribute, 40

event binding, scripts, 75

event bubbling, 74–75

event capture model, Navigator 4, 70

event handlers, 66–68, CD-20–CD-21

assignments, 51

behavior components, 1276

BODY element object, 407

BUTTON element object, 554–555

calling functions from, CD-52

Checkbox Input object, 559

document object, 398–399

FORM object, 544–545

generic objects, 191–216

Image element object, 519–520

keyboard events, 208–210

layers, 873–874

Link element object, 484

MARQUEE element object, 424–425

as methods, 66–67

as object properties, 50–51

as properties, 67–68

Radio Input object, 564–565

SELECT element object, 606–607

Text Input object, 580–582

window object, 292–299

event listener, 91

event models, bidirectional, 90–91

event object

compatibility, 734–735

referencing, 732–733

event object (IE4) properties, 745–762,

747–762

event object (NN4), 741–745

properties, 742–745

event object (NN6+), 762–775

methods, 774–775

properties, 764–774, 764–775

event objects

overview, 711–712

static, 713

event property, 236–237

SCRIPT element object, 488–489

event tasks, keyboard, 208–210

eventPhase property, event object (NN6+),

771

(c) ketabton.com: The Digital Library

1484 Index ✦ E–F

events, CD-20–CD-21

capturing, 279–280

models, 735–738

onChange, CD-78

passing, 718–720

propagation, 713–732

redirecting, Internet Explorer, 720–723

targets, drag and drop and, 201–202

types, 738–741

exception handling, 1053

exceptions compared to errors,

1053–1055

throwing error object exceptions,

1060–1061

throwing exceptions, 1059–1063

throwing object exceptions, 1062–1063

throwing string exceptions, 1059–1060

try-catch-finally constructions,

1055–1058

exec() method, regular expression object,

1026–1027

execCommand() method

document object, 386–388

TextRange object, 457–460

execScript() method, 262

executing statements

deferred, CD-28–CD-30

immediate, CD-28

user actions, CD-30

execution flow, control structures and,

CD-48

expand() method, TextRange object,

460–461

expando property, document object, 361

expiration dates, cookies, 351–352

expressions

evaluation, CD-38–CD-40

operators, CD-43

script1.htm, CD-39

variables and, CD-39

extensions

Internet Explorer 5+, 75–76

Navigator 4, 69–71

external property, 237–238

extractContents() method, Range object,

436–437

extracting

string characters, CD-92–CD-93

substrings, CD-92–CD-93

extranets, 44

F
face property

BASEFONT element object, 478

FONT element objects, 413

FAQs, 1466

fgColor property, document object,

344–345, 362

fields, 1181

FIELDSET element object, 545–546

File Input element object, 610–611

file names, errors, 1219

fileCreatedDate property

document object, 362

Image element object, 512

fileModifiedDate property

document object, 362

Image element object, 512

fileName property

Error object, 1065

plugin object, 689–690

fileSize property

document object, 362

Image element object, 512

FileSystemObject object, 1143

filter object, 840–851

filters

functions, library building, 1152–1156

links and, 49

static, 841–842

transition filters, 843–845

validation and, 1151

filters property, 122

find() method, 263

findText() method, TextRange object,

461–462

fireEvent() method, 164–165

firstChild property, 123

(c) ketabton.com: The Digital Library

1485Index ✦ F

firstPage() method, TABLE element object,

641

Flash, 6

floating-point numbers, 952–954,

CD-41–CD-42

exponents, 954

focus

hiding, 125

onBlur event handler, 194–195

focus() method, 67, 156–158

Text Input object, 578–579

FONT element object, 411–414

properties, 412–414

font properties

currentStyle object, 802–804

style object, 802–804

fontSmoothingEnabled property, screen

object, 703

FOR attribute, 40

for loops, CD-49, CD-50

childNodes array and, 115

length property and, 130–131

form controls, CD-76

elements, CD-11

objects, CD-77–CD-79

form data, passing to functions,

CD-83–CD-85

FORM object, 528–545, CD-11, CD-75–CD-77

arrays, 536

defining, 528–529

event handlers, 544–545

methods, 542–544

properties, 537–542

form property

BUTTON element object, 552

LABEL element object, 419

Text Input object, 574

<FORM> tag, CD-11, CD-12, CD-76

formatting

Date object, 976–977

numbers, 953–954

strings, 929–930

form.elements[] property, CD-76–CD-77

forms, CD-12. See also order forms

adding, CD-15–CD-16

blur() method and, 157–158

CGI and, 5

date entries, 983–986

date entry validation, 1158–1160

focus() method and, 157–158

layers and, 859–860

prevalidating, CD-85–CD-87

properties, access, CD-76

submitting, CD-85–CD-87

validation, CD-4

forms property, document object, 363–364

forward() method

history, 335–336

window object, 256, 263

FRAME element, 224–225

FRAME element object, 299–305

properties, 300–305

syntax, 299

frame object model, 218–220

frame property, TABLE element object,

635–636

<FRAME> tag, 219–220, CD-101–CD-102

FRAMEBORDER attribute, 300

frameBorder property

FRAME element object, 302

FRAMESET element object, 309

IFRAME element object, 313

frameElement property, 238

frames

blank, 223–224

border color, 300

border thickness, 307

borders, 302

children, CD-99–CD-101

creating, 218

ensuring framing, 221–222

FRAME element objects and, 224–225

hierarchy, CD-100

multiple, CD-5–CD-6, CD-103–CD-105

parents, CD-99–CD-101

preventing framing, 221

referencing, 220

Continued

(c) ketabton.com: The Digital Library

1486 Index ✦ F–G

frames (continued)

resizing, 303–304

scripting tips, CD-103

sizing, 303–304

source code, viewing, 224

spacing, 309

switching from, 222

synchronization, 223

frames property

document object, 364–365

window object, 239–240

FRAMESET element object, 305–309

properties, 307–309

<FRAMESET> tag, 219–220

framesets, CD-100

loading, forcing, 221–222

parent documents, CD-100

spacing, 309

frameSpacing property

FRAMESET element object, 309

IFRAME element object, 314

fromElement property, event object (IE4),

757

front end, CD-3

FrontPage, 19

fullName() function, CD-81

fullScreen() function, 66

Function object, 1093–1102

functions, creating, 1094–1095

methods, 1100–1102

nesting, 1095–1096

parameters, 1096–1097

properties, 1097–1100

function references, 155

functions, CD-36, CD-51–CD-54

calling from event handler, CD-52

constructor, Image object,

CD-110–CD-111

dummy functions, 50

elements, passing to, CD-83–CD-85

filter functions, 1152–1156

form data, passing to, CD-83–CD-85

global, 1128–1136

invoking, 1102–1103, CD-29

libraries, 1107–1108

names, CD-51

overloading, 59

parameters, CD-51–52

parameters, passing, 286–287

recursion, 1107

validation, combining, 1156–1158

values, returning, 59

G
generic objects

event handlers, 192–216

methods, 150–191

properties, 109–150

getAdjacentText() method, 165–166

GetAttention() method, 264

getAttribute() method, 166–167

userProfile object, 709

getAttributeNode() method, 167–169

getBookmark() method, TextRange object,

462–463

getBoundingClientRect() method, 169

getClientRects() method, 169–170

getElementByID() method, document

object, 388–389

getElementsByName() method, document

object, 389

getElementsByTagName() method,

170–171

getExpression() method, 171

getIEVersion() function, 95

getSelection() method, document object,

390

getters, object property, 1118–1119

global functions, 1128–1136

global property, regular expression object,

1024

global statements, 1137–1146

global variables, 1103–1106, CD-53

example, CD-53–CD-54

host environment and, 58

go() method, history object, 336–337

goNext() function, CD-105

graphics application, 1355–1357

Greenwich Mean Time (GMT), 967–969,

CD-94

(c) ketabton.com: The Digital Library

1487Index ✦ H

H
handleEvent() method

document object, 390

FORM element object, 542

FORM object, 542

window object, 264–265

hasChildNodes() method, 171–172

hash property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

Link element object, 499

location object, 324

head, scripts in, CD-25

HEAD element object, 474–475

headers property

TD element object, 654

TH element object, 654

HEIGHT attribute, 124, CD-110

height property, 124

APPLET element object, 905

document object, 365

EMBED element object, 915

FRAME element object, 302

Image element object, 513

MARQUEE element object, 422

OBJECT element object, 911

screen object, 699–700

TABLE element object, 636

TD element object, 655–656

TH element object, 655–656

TR element object, 650–651

helpers, 6

H1...H6 element objects, 414–415

Hidden Input object, 582–583

hidden property, EMBED element object,

915

hide() method, 318–319

hideFocus property, 125

hiding scripts, CD-27

hierarchy

containment, 73–74

frames, CD-100

objects, CD-10–CD-11

hijacking, cookies, 350

History object, CD-69

methods, 335–337

properties, 333–334

history property, 240

home() method, 265

host environment, 57

global scope and, 58

host property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

Link element object, 499

location object, 325

hostname property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

Link element object, 499

location object, 325

HR element object, 415–418

href property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

BASE element object, 476

Link element object, 481–482, 499

location object, 326–327

styleSheet object, 785

hrefLang property

A element object, 500

Anchor element object, 500

Link element object, 482, 500

hspace property

APPLET element object, 905–906

IFRAME element object, 314

Image element object, 513

MARQUEE element object, 422

OBJECT element object, 911–912

HTAs (HTML applications), 76

htc extension, 76

HTML applications, 76

HTML collections, 176

HTML element object, 473–474

(c) ketabton.com: The Digital Library

1488 Index ✦ H–I

HTML (Hypertext Markup Language), 4–5

debugging tags, 1226–1227

delimiter characters in tags, 4

documents, called by applets,

1196–1197

editable content, 118

element objects, 71–73

forms and, 1313–1319

loading to layers, 889–890

tags, 4–5

htmlFor property

LABEL element object, 419, 548

SCRIPT element object, 488–489

htmlText property, TextRange object,

453–454

hybrid tables (dynamic/static), 1293

HyperCard, 7

I
ID attribute, 125, CD-15

signing scripts, 1249–1250

id property, 125

styleSheet object, 785

identifiers (objects), CD-15

id property, 125

ids property, document object, 366

IE/Windows objects, plug-in detection,

695–698

if constructions, CD-48–CD-49

if...else constructions, CD-49

IFRAME element object, 310–316

properties, 311–316

ignoreCase property, regular expression

object, 1024

Image element object, 505–520

event handlers, 519–520

properties, 509–519

Image Input object, 565–567

properties, 566–567

Image object, 69, CD-109–CD-115

constructor function, CD-110–CD-112

property values, 124

image rollovers, CD-112–CD-115

image swapping, 51–52

imageOff() function, CD-113

imageOn() function, CD-113

images

basic object model and, 69

interchangeable, CD-110

precaching, CD-110–CD-112

src property, CD-110

images property, document object,

366–367

 tag, CD-109

immediate scripting, dynamic tables and,

1286

immediate statements, CD-28

implementation property, document

object, 367–368

importing style sheets, 779–780

imports property, styleSheet object,

785–786

indexes, CD-55

branching pages, 47–49

inheritance

containment comparison, 222–223

hierarchy, 65

prototype-based, 59

prototypes, 1121–1123

initial expression, loops, CD-50

initializing

arrays, 988

variables, CD-37

inline branching, browser compatibility,

1262–1263

inline display properties, styles, 812–821

innerHeight property, 240–241

innerHTML property, 72, 126–127

innerText property, 72, 126–127

innerWidth property, 240–241

input, text input elements, CD-12–CD-13,

CD-16

Input object, this keyword and, CD-84

input property, RegExp object, 1028–1029

inRange() method, TextRange object, 463

insertAdjacentElement() method, 123,

172–173

insertAdjacentHTML() method, 173–175

(c) ketabton.com: The Digital Library

1489Index ✦ I–K

insertAdjacentText() method, 173–175

insertBefore() method, 86, 175

insertCell() method, TR element property,

651–652

insertData() method

Text object, 447–448

TextNode object, 447–448

insertNode() method, Range object, 437

insertRow() method

TABLE element object, 640–641

tables, 621–625

insertRule() method, styleSheet object, 792

installation, plug-ins, 694–695

integer numbers, 952–954

hexadecimal, 954–955

octal, 954–955

integers, CD-41

intelligent updated flags application,

1365–1373

interactive data, CD-5

interactivity, CD-2

interCap format, naming, CD-38

functions, CD-51

international characters, signed scripts,

1258

Internet Explorer

event bubbling, 74–75

event object, 745–762

event object references, 732

extensions, 71–76

HTML element features in common, 72

JavaScript versions, 37–38

objects, 1140

open() method, 274

printing, 276

selection object, 442

sticky cursor, 381

syntax, NN6 and, 99–102

versions, 55

invoking functions, 1102–1103, CD-29

invoking methods, CD-19

isChar property, event object (NN6+), 771

isContentEditable property, 127

isDisabled property, 127–128

isEmpty() function, 1152–1153

isEqual() method, TextRange object,

463–464

isFinite() function, 1132

ISINDEX element object, 478–479

isInteger() function, 1154

isMap property, Image element object, 514

isMultiLine property, 128

isNaN() function, 1132–1133

isNumber() function, 1155

isOpen property, 318

isPosInteger() function, 1153–1154

isTextEdit property, 128–129

isValidFragment() method, Range object,

437–438

item() method, 111, 175–176

SELECT input object, 606

J
Java applets, 7

JavaScript, 7–10

enabling, 44–46

JScript comparison, 40

reasons to use, 9–10

VBScript comparison, 40

versions, 37–38

when to use, CD-7–CD-8

joining strings, CD-90–CD-91

js files, 42–43

JScript, 9, 14–15, CD-35

JavaScript comparison, 40

JSObject class, 1191–1193

jukebox example, 1206–1209

K
key codes/character codes comparison,

208

keyboard

accessKey property, 109–110

event tasks, 208–210

keyCode property, event object

IE4, 757–758

NN6+, 767–768

keywords, reserved, 1447, CD-37

(c) ketabton.com: The Digital Library

1490 Index ✦ L

L
LABEL element object, 418–419, 547–548

label property

OPTGROUP element object, 609–610

OPTION element object, 608–609

LANG attribute, 129

lang property, 129

language

core language, 14–15

object-based, 57–58

objects and, 13–14

scripting languages, 57

version selection, 39

LANGUAGE attribute, 39, CD-23–CD-24

language property, 129–130

lastChild property, 123

lastIndex property, regular expression

object, 1024–1025

lastMatch property, RegExp object, 1029

lastModified property, document object,

368–369

lastPage() method, TABLE element object,

641

lastParen property, RegExp object, 1030

<LAYER> tag, 71

layers, 855–856

background, 875–877

color, 876–877

dragging, 894–899

forms and, 859–860

loading HTML, 889–890

methods, 870–873

Navigator 4, 70–71

nested, 883–889

object detection and, 52

resizing, 894–899

stacking order, 892–894

tables and, 617, 860

layers property, document object, 369–370

layerX property, event object

NN4, 742–743

NN6+, 768–769

layerY property, event object

NN4, 742–743

NN6+, 768–769

layout properties, styles, 812–821

left property

layers, 864–865

TextRectangle object, 471–472

leftContext property, RegExp object, 1030

leftMargin property, BODY element object,

402–403

length property, 130–131

Array object, 996

FORM element object, 540

FORM object, 540

Function object, 1100

history object, 334

JavaScript versions, 37–38

plugin object, 689–690

Radio Input object, 562

SELECT input object, 599–600

string object, 933

strings, CD-93

Level 4 browsers, 14

LI element object, 660–662

examples, 660–662

libraries

compatibility, 43

filter functions, 1152–1156

functions, 1107–1108

script libraries, 42–43, 98

line terminators, 60

lineNumber property, Error object, 1065

Link element object, 480–484, 493–504

backward-compatible event handlers,

495–496

backward-compatible properties, 495

event handlers, 484

properties, 481–484, 498–504

link object, CD-73

link property, BODY element object,

400–401, 403

(c) ketabton.com: The Digital Library

1491Index ✦ L–M

linkColor property, document object,

344–345, 370

links property, document object, 370–371

list properties

currentStyle object, 832–833

runtimeStyle object, 832–833

style object, 832–833

literal notation (arrays), 991

LiveConnect, 1177–1178

applet classes, 1190–1191

LiveScript, change to JavaScript, 8–9

loadCached() function, CD-112

loading

content, new windows, 272–273

framesets, forcing, 221–222

loading property, 241

local variables, 1103–1106, CD-53

example, CD-53–CD-54

localName property, 131

Location object, CD-11, CD-68–CD-69

methods, 330–331

properties, 324–329

location of errors, 1220–1221

location property

document object, 371–372

window object, 242

locationbar property, 234–236, 242

long descriptions, elements, 303

longDesc property

FRAME element object, 303

IFRAME element object, 314–315

Image element object, 514–515

lookup tables

implementation, 1300–1301

serverless databases, 1299–1300

source code, 1301–1308

lookups, small data lookups, CD-3–CD-4

loop property

Image element object, 514

MARQUEE element object, 422–423

loops, CD-47–CD-48

for, 1039–1044

conditions, CD-50

do-while, 1045–1046

initial expressions, CD-50

interval action, 258

for loops, CD-50

MARQUEE element object, 422–423

nested, labeled statements, 1048–1050

object properties, extracting, 1046–1047

repeat loops, CD-50

update expressions, CD-50

while, 1045–1046

lowSrc property, Image element object, 515

lowsrc property, Image element object, 515

Lynx, 49

M
MacOS, authoring and, 22

makeNewWindow() function, CD-64, CD-72

MAP element object, 524–525

map puzzle application (DHTML),

1399–1414

marginHeight property

FRAME element object, 303

IFRAME element object, 315

marginWidth property

FRAME element object, 303

IFRAME element object, 315

MARQUEE element object, 420–423

event handlers, 424–425

methods, 424

properties, 420–423

Math object, 957–960, CD-93–CD-94

methods, CD-93–CD-94

random numbers, 959–960

Math.floor() method, CD-94

Math.random() method, CD-93–CD-94

maximize() method, 66

maxLength property, Text Input object, 575

media property

document object, 372

Link element object, 482

STYLE element object, 781

styleSheet object, 786

memory management, 60

MENU element object, 663

menubar property, 234–236

(c) ketabton.com: The Digital Library

1492 Index ✦ M

mergeAttributes() method, 176–177

message property, Error object, 1065–1066

META element object, 484–487

<META> tag, 49

metaKey property, event object (NN6+),

764–765

method property

FORM element object, 540–541

methods, 65–66, 1178–1179, CD-19–CD-20

accessing, syntax, 109

arguments, CD-20

Array object, 998–1005

behavior components, 1276–1277

BODY element object, 405–407

BUTTON element object, 554

Checkbox Input object, 559

clientInformation object (IE4+), 681–683

Date object, 971–975

Document object, 378–398

document object, 378–398

Error object, 1067

event object (NN6+), 774–775

FORM object, 542–544

Function object, 1100–1102

generic objects, 150–191

History object, 335–337

invoking, CD-19

layers, 870–873

Location object, 330–331

MARQUEE element object, 424

Math object, 958, CD-93–CD-94

navigator object, 681–683

nodes, W3C DOM, 86

Number object, 963–965

Object object, 1124–1125

objects, adding to, 59

parameters, 62, CD-20

plugin object, 690–691

popup objects, 318–319

protected, 1251–1253

quick reference card, 1435–1446

Radio Input object, 564

Range object, 431–441

regular expression object, 1025–1027

SELECT element object, 605–606

selection object, 443–445

static objects, 58–59

String object, CD-90

strings, CD-91–CD-93

styleSheet object, 790–792

TABLE element object, 639–643

Text Input object, 578–580

Text object, 447–448

Text/TextNode objects, 447–448

TEXTAREA element object, 586–587

TextRange object, 454–470

TR element object, 651–652

userProfile object, 706–709

window object, 255–292

window.clipboardData, 230

windows, CD-63, CD-65–68

windows, access, 227

Methods property

A element object, 500

Anchor element object, 500

Link element object, 500

Microsoft JScript, 9

MIME (Multipurpose Internet Mail

Extensions), CD-24

plug-ins and, 691–698

verifying types, 692–693

mimeType object, 684–688

document property, 372

properties, 685–688

mimeType property

A element object, 500

Anchor element object, 500

Link element object, 500

modal dialog boxes

opening, 288–291

returnValue property, 249

modeless dialog boxes, 288–291

modifiers property, event object (NN4),

743–744

modulus operator, CD-49

mouse rollovers, 15, CD-109

(c) ketabton.com: The Digital Library

1493Index ✦ M–N

mouse scroll button, 282

move() method, TextRange object,

464–465

moveBy() method, window object, 266

moveEnd() method, TextRange object, 465

moveRow() method, TABLE element

object, 641–642

moveStart() method, TextRange object, 465

moveTo() method, window object, 266

moveToBookmark() method, TextRange

object, 465–466

moveToElementText() method, TextRange

object, 466

moveToPoint() method, TextRange object,

466–467

moving windows, 266

multidimensional arrays, 995–996

multiline property

RegExp object, 1029

regular expression object, 1025

multiple property, SELECT input object, 600

N
NAME attribute, CD-15

name property

A element object, 501

Anchor element object, 501

APPLET element object, 906

BUTTON element object, 552

EMBED element object, 915

Error object, 1066

FORM element object, 541

FORM object, 541

Image element object, 515–516

layers, 865

Link element object, 501

META element object, 486

OBJECT element object, 912

plugin object, 689–690

Radio Input object, 563

Text Input object, 575–576

window object, 242

name/value pair, cookies, 351

named node lists, 176

named node map, 167

namedItem() method, SELECT input

object, 606

nameProp property

A element object, 501

Anchor element object, 501

Image element object, 516

Link element object, 501

names

objects, ID attribute comparison, CD-15

strings, assigning, CD-56

style sheet objects, 778–779

variables, CD-37–CD-38

window objects, 242

windows, 272

namespaces property, document object,

373

namespaceURI property, 131

naming objects, CD-14

navigate() method, 267

NavigateAndFind() method, 237

navigation, SELECT object and, CD-83

navigation bars

frames, multiple, CD-103–CD-105

graphical, CD-104–CD-105

Navigator

event capture model, 70

event object, 741–745, 762–775

event object references, 733

expression evaluation, CD-40

extensions, 69–71

JavaScript versions, 37–38

layers, 70–71

onLoad event bugs, 297

open() method, 273

printing, 275–276

selection object, 442–443

navigator object, 27, 666–683

methods, 681–683

properties, 667–681

(c) ketabton.com: The Digital Library

1494 Index ✦ N–O

navigator property, 243

navigator.appVersion property, 55

navigator.javaEnabled() method, 45

nested layers, 883–889

nested strings, CD-51

nesting

if-else constructions, 1037–1038

loops, labeled statements, 1048–1050

objects, prototype inheritance,

1121–1123

Netscape. See also NN6

console windows, debugging and,

1218–19

signed script policy, 1244–1245

new keyword, CD-55

newContent variable, CD-71

newsgroups, 1465–1466

dot syntax and, CD-18

newWind variable, 231

newWindow() function, CD-106–CD-107

next property, history object, 333–334

nextPage() method, TABLE element

object, 642

nextPage property, event object (IE4), 758

nextSibling property, 132

nextWeek() function, CD-96–CD-97

NN6 JavaScript Console window, CD-31

node map, 123

named node map, 167

nodeName property, 132–133

nodes, 81

child nodes, 123

childNodes property, 114–115

content generation, 87–88

content replacement, 88–89

methods, W3C DOM, 86

named node lists, 176

properties, W3C DOM, 82–85

W3C DOM hierarchy, 80–82

nodeType property, 84, 133–134

nodeValue property, 84, 134–135

nonscriptable browsers, 45–46

noResize property, 303–304

normalize() method, 177

<NOSCRIPT> tag, 44–45

noWrap property

BODY element object, 403

TD element object, 656

TH element object, 656

null types, CD-36

Number() function, 1133–1134

Number object, 960–965

number property, Error object, 1066–1067

numbers, CD-36

converting to/from strings, 955–957,

CD-41–CD-42

decimal, converting to hexadecimal,

954–955

floating-point, 952–954, CD-41–CD-42

formatting, 953–954

integers, 952–954

NaN value, 956

overview, 951–952

random, 959–960

strings, converting to, 955–957

O
object-based languages, 57–58

object detection, 51–53

compatibility and, 1265–1266

OBJECT element object, 906–903

properties, 908–913

object model

basic model, 68–69

families, 68

hierarchy, 61–64

images and, 69

mixing models, 92–99

Object object, 1123–1125

object operators, 1070

delete, 1083–1084

instanceof, 1084–1085

new, 1085–1086

this, 1086–1087

object-oriented concepts

prototype inheritance, 1121–1123

prototypes, adding, 1120–1121

(c) ketabton.com: The Digital Library

1495Index ✦ O

object-oriented programming, 65

W3C DOM and, 85

object property

APPLET element object, 906

getters, 1118–1119

OBJECT element object, 912

setters, 1118–1119

<OBJECT> tag, 1198–1200

object types, CD-36

objects

A element object, 493–504

Anchor element object, 493–504

APPLET element object, 902–906

AREA element object, 520–524

attribute object, 112–113

BASE element object, 475–477

BASEFONT element object, 477–478

behaviors, deleting, 181–182

BLOCKQUOTE element object, 410

Boolean, 965

BR element object, 411

built-in, 58

button, CD-79

CAPTION element object, 645

checkbox, CD-79–CD-80

Checkbox Input object, 555–559

COL element object, 646–648

cssRule, 792–796

currentStyle object, 796–840

custom, 1108–1120

Date object, CD-94–CD-96

DD element object, 662–663

defining, CD-18–CD-21

DIR element object, 663

DL element object, 662–663

document, 13, CD-10, CD-61, CD-69–CD-72

document, arrays, CD-58–CD-59

DT element object, 662–633

EMBED element object, 913–916

event object (IE4), 745–762

event object (NN4), 741–745

event objects, 711–713

FIELDSET element object, 545–546

File Input element object, 610–611

filter object, 840–851

FONT element object, 411

form, CD-11

form controls as, CD-77–CD-79

FRAME object, 299–305

FRAMESET element object, 305–309

Function object, 1093–1102

generic, 109–216

HEAD element object, 474–475

H1...H6 element objects, 414–415

Hidden Input object, 582–583

hierarchy, CD-10–CD-11

history, CD-69

HTML element object, 473–474

identifiers, CD-15

IFRAME element object, 310–316

Image, CD-109–CD-115

Image element object, 505–520

Image Input object, 565–567

Image object, 69

Internet Explorer, 1140

ISINDEX element object, 478–479

LABEL element object, 418–419, 547–548

language and, 13–14

LI element object, 660–662

link, CD-73

Link element object, 480–484, 493–504

location, CD-11, CD-69

MAP element object, 524–525

MARQUEE element object, 420–423

MENU element object, 663

META element object, 484–487

methods, CD-19–CD-20

methods, adding, 59

mimeType object, 684–688

names, ID attribute comparison, CD-15

naming, CD-14

navigator, 27

nested, prototype inheritance and,

1121–1123

Number, 960–965

OBJECT element object, 906–913

Object object, 1123–1125

Continued

(c) ketabton.com: The Digital Library

1496 Index ✦ O

objects (continued)

OL element object, 656–659

OPTGROUP element object, 609–610

OPTION element object, 607–609, CD-82

Password Input object, 582

planetary, 1109–1113

plugin object, 688–698

popup, 316–319

properties, CD-18–CD-19

properties, adding, 59

properties, event handlers as, 50–51

properties, function references, 59

Q element, 410

Q element object, 410

radio, CD-80–CD-81

Radio Input object, 559–565

Range object, 425–441

references, CD-14–CD-17

RegExp object, 1027–1031

rule, 792–796

runtimeStyle object, 796–840

screen object, 698–703

SCRIPT element object, 487–490

scriptable, CD-77

SELECT element object, 589–607,

CD-82–CD-83

selection object, 441–445

static, CD-94

string, CD-90–CD-93

STYLE element object, 780–782

style object, 796–840

style sheets, names, 778–779

styleSheet object, 782–792

TABLE element object, 628–643

TBODY element objects, 643–645

TD element object, 652–656

Text Input object, 570–582

Text objects, 445–448

text objects, behaviors, CD-78

text-related, CD-77–CD-79

TEXTAREA element object, 583–587

TextNode objects, 445–448

TextRange object, 448–470

TextRectangle object, 470–472

TFOOT element objects, 643–645

TH element object, 652–656

THEAD element objects, 643–645

TITLE element object, 490–491

TR element object, 648–651

UL element object, 659–660

userProfile object, 703–709

watcher methods, 1117–1118

window, CD-10, CD-62–CD-65

window object, 225–227

Windows, 1140

XML Element object, 921–923

octal numbers, 954–955

offscreenBuffering property, 243

offset properties, 73

offsetHeight property, 135–136

offsetLeft property, 136–137

offsetParent property, 137–138

offsetTop property, 136–137

offsetWidth property, 135–136

OL element object, 656–659

properties, 657–659

onActivate event handler, 192

onAfterPrint event handler

BODY element object, 407

window object, 292–293

onAfterUpdate event handler, Text Input

object, 580

onBeforeCopy event handler, 192–193

onBeforeCut event handler, 193

onBeforeDeactivate event handler, 192

onBeforeEditFocus event handler, 193–194

onBeforePaste event handler, 194

onBeforePrint event handler, 292–293

BODY element object, 407

window object, 275

onBeforeUnload event handler, 293

onBeforeUpdate event handler, Text Input

object, 580

onBlur event handler, 194–195

Text Input object, 580–581

onBounce event handler, MARQUEE

element object, 424

(c) ketabton.com: The Digital Library

1497Index ✦ O

onChange event, CD-78

SELECT input object, 606–607

Text Input object, 581–582

onClick event handler, 109, 195–197

BUTTON element object, 554

Checkbox Input object, 559

onContextMenu event handler, 197–198

onControlSelect event handler, 198

onCopy event handler, 198–199

onCut event handler, 198–199

onDblClick event handler, 199

onDeactivate event handler, 192

onDrag event handler, 200

onDragDrop event handler, 293–294

onDragEnter event handler, 203

onDragOver event handler, 203–204

onDragStart event handler, 204

onDrop event handler, 204–205

onError event handler, 244, 294

onerror property, 243–245

onErrorUpdate event handler, Text Input

object, 580

onFilterChange event handler, 205

onFinish event handler, MARQUEE element

object, 424–425

onFocus event handler, 66–67, 205–206

Text Input object, 571, 580–581

onHelp event handler, 206–207

window object, 295

onImgArray array, CD-113

onKeyDown event handler, 207–208

onKeyPress event handler, 207–208

onKeyUp event handler, 207–208

online documentation, 1467

onLoad event handler, CD-29, CD-68, CD-105

window object, 296–294

onLoseCapture() event handler, 210

onMouseDown event handler, 211

BUTTON element object, 555

onMouseEnter event handler, 211–212

onMouseMove event handler, 212

onMouseOut event handler, 212–213,

CD-113

onMouseOver event handler, 212–213,

CD-113

onMouseUp event handler, 211

BUTTON element object, 555

onMove event handler, 297

onPaste event handler, 213–214

onPropertyChange event handler, 214

onReadyStateChange event handler,

214–215

onReset event handler, FORM element

object, 544

onResize event handler, 215–216, 304

window object, 297–298

onResizeEnd event handler, 216

onResizeStart event handler, 216

onSelectionChange event handler,

document object, 398

onSelectStart event handler, 216

onStart event handler, MARQUEE event

handler, 425

onStop event handler, document object,

398–399

onSubmit event handler, CD-86–CD-87

FORM element object, 544–545

FORM object, 544–545

onUnload event handler, 298–299

open() method, 267–274

attributes, 268–269

document object, 391–392

Internet Explorer, 274

Navigator bug, 273

Netscape-only signed scripts, 269–271

opener property, CD-106

window object, 245–246

Opera browser, 12

operator precedence, 1089–1092

regular expressions, 1012

operators, 59, 1069

add-by-value, CD-90

arithmetic, 1074–1076, CD-43

assignment, 1070, 1076–1078, CD-37

bitwise, 1070, 1085–1083

Boolean, 1070, 1078–1082

Continued

(c) ketabton.com: The Digital Library

1498 Index ✦ O–P

operators (continued)

categories of, 1069–1070

comma (,), 1087

comparison, 1069, 1070–1071, CD-43

conditional (?:), 1087–1088

connubial, 1070, 1073–1076

modulus, CD-49

object, 1070, 1083–1087

typeof, 1088

unary, 1075

void, 1089

OPTGROUP element object, 609–610

OPTION element object, 607–609

OPTION objects, CD-82

options property, SELECT input property,

600–601

options.add() method, SELECT input

object, 605

options.defaultSelected property, SELECT

input object, 601

options.index property, SELECT input

object, 601–602

options.remove() method, SELECT input

object, 605

options.selected input object, SELECT

input object, 602

options.text property, SELECT input

object, 602–603

options.value property, SELECT input

object, 603

order forms. See also forms

design, 1212

HTML and, 1313–1319

scripting and, 1313–1319

origin checks, security, 1243–1244

outerHeight property, 240–241, 247

outerHTML property, 72, 138

outerText property, 72, 138

outerWidth property, 240–241, 247

outlines, table of contents, 1322–1353

output stream, CD-70

overloading functions, 59

ownerDocument property, 139

ownerNode property, styleSheet object,

786–787

ownerRule property, styleSheet object, 787

owningElement property, styleSheet

object, 787

P
<P> tag, 78–79

page properties

currentStyle object, 836–837

runtimeStyle object, 836–837

style object, 836–837

pages property, styleSheet object, 788

pageX property

event object (NN4), 742–743

event object (NN6+), 768–769

layers, 865–866

pageXOffset property, 247

pageY property

event object (NN4), 742–743

event object (NN6+), 738–739

layers, 865–866

pageYOffset property, 247

parallel arrays, 992–995, CD-56–CD-58

PARAM element, 917

parameters, 27, 62

function, passing, 286–287

Function object, 1096–1097

methods, CD-20

SECURE, cookies, 352

TDC (Tabular Data Control), 120

variables, 1106

parent/child references, 220, CD-101–CD-102

parent object, 219–220

top object comparison, 221

parent property, 248–249

parent window

frames, CD-99–CD-101

variables, 223

parentElement() method, TextRange

object, 467

parentElement property, 139–140

parentLayer property, layers, 866

(c) ketabton.com: The Digital Library

1499Index ✦ P

parentNode property, 139–140

parentStyleSheet property

cssRule object, 793

rule object, 793

styleSheet object, 788

parentTextEdit property, 140–141

parentWindow property, document object,

373

parseFloat() function, 1133–1134, CD-41

Text Input object, 574

window object, 277

parseInt() function, 1133–1134, CD-41

Text Input object, 574

window object, 277

parsing methods, string object, 935–945

parsing strings, cookies, 353

passing data, URLs and, 329

passing values, 60

Password Input object, 582

pasteHTML() method, TextRange object,

468

pathname property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

Link element object, 499

location object, 327

paths, cookies, 352

PDA browsers, 49

personalbar property, 234–236, 249

phantom page syndrome, 74

pixelDepth property, screen object, 702

pkcs11 property, 232

placement of tags, CD-24–CD-26

planetary objects, 1109–1113

planning scripting for different browsers,

47

platform equivalency, browser

compatibility and, 1264–1265

plug-ins, 6, 691–698

downloading, 6

manual installation, 694–695

scripting plug-ins, 1197–1214

plugin object, 688–698

methods, 690–691

properties, 689–690

plugins property, document object, 373

pluginspage property, EMBED element

object, 916

pop-up windows, 261

popup object, 316–319

port property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

Link element object, 499

location object, 327–328

positioning elements, 97–98

positioning properties

currentStyle object, 821–824

runtimeStyle object, 821–824

style object, 821–824

precaching images, CD-110–CD-112

preferences, checkboxes, CD-80

prefix property, 131

prevalidating forms, CD-85–CD-87

preventDefault() method, event object

(NN6+), 774

preventing framing, 221

previous property, history object, 333–334

previousPage() method, TABLE element

object, 642

previousSibling property, 132

print() method, 275–276

printing

Internet Explorer 4, 276

Navigator 4, 275–276

printing properties

currentStyle object, 836–837

runtimeStyle object, 836–837

style object, 836–837

Privilege Manager errors, 1255–1256

processData() function, CD-84

profile property, HEAD element object, 475

Program Switcher (Macintosh), 22

prompt() method, 276–277

(c) ketabton.com: The Digital Library

1500 Index ✦ P

prompter property, 229

properties, 64–65

A element object, 498–504

accessing, syntax, 109

adding, 59

Anchor element object, 498–504

APPLET element object, 903–906

applets, 1180

AREA element object, 520–524

BASE element object, 476–477

BASEFONT element object, 478

behavior components, 1276–1277

BLOCKQUOTE element object, 410

BODY element object, 400–405

BR element object, 411

BUTTON element object, 552–553

Checkbox Input object, 557–558

clientInformation object (IE4+), 667–681

content, simulator, 101–102

controllers, 229, 231

cssRule object, 793–796

currentStyle object, 797–840

Date object, 971

document loading and, CD-18–CD-19

Document object, 344–378

document object, CD-70

documents, accessing, CD-18–CD-19

EMBED element object, 914–916

Error object, 1064–1067

event handlers as, 50–51

event object (IE4), 745–762

event object (NN4), 741–745

event object (NN6), 764–775

FONT element object, 412–414

FORM object, 537–542

FRAME element object, 300–305

FRAMESET element object, 307–309

Function object, 1097–1100

function references, 59

generic objects, 109–150

HEAD element object, 475

H1...H6 element objects, 414–415

History object, 333–334

HR element object, 416–418

HTML element object, 474

IFRAME element object, 311–316

Image element object, 509–519

Image Input object, 566–567

LABEL element object, 418–419, 548

length, strings and, CD-93

Link element object, 481–484, 498–504

loading, 241

Location object, 324–329

MAP element object, 524–525

MARQUEE element object, 420–423

Math object, 958

META element object, 485–487

mimeType object, 685–688

names, case-sensitivity, 65

navigator object, 667–681

nodes, W3C DOM, 82–85

Number object, 961–962

OBJECT element object, 908–913

objects, CD-18–CD-19

OL element object, 657–659

OPTGROUP element object, 609–610

OPTION element object, 608–609

plugin object, 689–690

popup objects, 317–318

protected, 1251–1253

prototype, read-only, 90–91

Q element object, 410

quick reference card, 1435–1446

Radio Input object, 561–564

Range object, 429–431

RegExp object, 1028–1031

regular expression object, 1024–1025

rule object, 793–796

runtimeStyle object, 798–840

screen object, 699–703

SCRIPT element object, 488–490

SELECT element object, 599–605, CD-82

selection object, 443

static objects, 58–59

string object, 932–935

STYLE element object, 781–782

style object, 797–840

styles, 780

(c) ketabton.com: The Digital Library

1501Index ✦ P–R

styleSheet object, 783–790

stylesheet object, 783–790

TABLE element object, 630–639

TD element object, 654–656

Text Input object, 574–578

Text objects, 446

Text/TextNode objects, 446

TEXTAREA element object, 585–586

TextNode objects, 446

TextRange object, 453–454

TextRectangle object, 471–472

TH element object, 654–656

TR element object, 650–651

value, text-related elements and,

CD-78–CD-79

window object, 229–254

windows, CD-65–CD-68

access, 227

XML Element object, 921–923

propertyName property, event object (IE4),

758–759

proprietary object models, CD-10

protocol property

A element object, 499

Anchor element object, 499

AREA element object, 523–524

document object, 374

Image element object, 516–517

Link element object, 499

location object, 328

protocolLong property

A element object, 501

Anchor element object, 501

Link element object, 501

prototype-based inheritance, 59

prototype properties, read-only, 90–91

prototype property

Array object, 996–998

string object, 934–935

prototypes

adding, 1120–1121

inheritance, 1121–1123

public instance variables, 1180

Q
Q element objects, 410

qualifier property, event object (IE4),

749–750

queries, CGI scripting and, 5

queryCommandCommandState() method,

document object, 392–393

queryCommandEnabled() method

document object, 392–393

TextRange object, 468

queryCommandIndeterm() method,

TextRange object, 468

queryCommandIndterm() method,

document object, 392–393

queryCommandState() method, TextRange

object, 468

queryCommandSupported() method

document object, 392–393

TextRange object, 468

queryCommandText() method

document object, 392–393

TextRange object, 468

queryCommandValue() method

document object, 392–393

TextRange object, 468

R
Radio Input object, 564–565

event handlers, 564–565

methods, 564

properties, 561–564

radio object, CD-80–CD-81

random numbers, 959–960

Range object, 425–441

methods, 431–441

properties, 429–431

ranges, creating, 427–429, 450–451

readOnly property

cssRule object, 794

rule object, 794

styleSheet object, 789

Text Input object, 576

readyState property, 141–142

(c) ketabton.com: The Digital Library

1502 Index ✦ R

real-time validation, 1149–1151

reason property, event object (IE4),

749–750

recalc() method, document object, 394

recordNumber property, 142

recordset property, event object (IE4),

749–750

recursion, functions, 1107

references

child/child, CD-102–CD-103

child/parent, CD-102

event object, 732–734

frames, 220

function references, 155

layers, 858–859

objects, CD-14–CD-17

parent/child, CD-101–CD-102

windows, CD-106–CD-107

referrer property, document object, 374

refresh() method

plugin object, 690–691

TABLE element object, 642–643

RegExp object, 1027–1031

regular expression object, 1023–1024

methods, 1025–1027

properties, 1024–1025

regular expressions, 1007–1008

matches, getting information about,

1019–1020

objects, 1013–1017

operator precedence, 1012

simple, 1009

special characters, 1009–1012

string replacement, 1021–1022

rel property

A element object, 502

Anchor element object, 502

Link element object, 482–483, 502

relatedTarget property, event object

(NN6+), 771–772

releaseCapture() method, 177–179

releaseEvents() method, 70

document object, 394

window object, 277–278

reload() method, location object, 330–331

reloading, authoring and, 23

removeAttribute() method, 179–180

removeAttributeNode() method, 180–181

removeBehavior() method, 181–182

removeChild() method, 86, 182

removeEventListener() method, 151–153

removeExpression() method, 182–183

removeNode() method, 183

repeat loops, CD-50

repeat property, event object (IE4), 759

replace() method, location object, 331

replaceAdjacentText() method, 184

replaceChild() method, 86, 184–185

replaceData() method

Text object, 447–448

TextNode object, 447–448

replaceNode() method, 185–186

reserved keywords, 1447, CD-37

reset() method, FORM element object,

542–543

resistor example, interactivity, CD-5

resizeBy() method, window object,

278–279

resizeTo() method, window object,

278–279

returnValue property

event object (IE4), 759–760

window object, 249

rev property

A element object, 502

Anchor element object, 502

Link element object, 482–483, 502

right property, TextRectangle object,

471–472

rightContext property, RegExp object, 1030

rightMargin property, BODY element

object, 402–403

rollovers, text rollover behaviors,

1280–1283

routeEvent() method

document object, 395

window object, 279–280

(c) ketabton.com: The Digital Library

1503Index ✦ R–S

rowIndex property, TR element property,

651

rows, tables, 619–625

rows property

FRAMESET element object, 308

TABLE element object, 636–637

TEXTAREA element object, 585–586

rowSpan property

TD element object, 655, 656

TH element object, 655

rule object, 792–796

rules

HR element object, 415–418

tables, 625–626

rules property

styleSheet object, 789

TABLE element object, 637–638

runtime errors versus syntax errors,

1217–1218

runtime expressions, debugging scripts

and, 1229–1230

runtimeStyle object, 796–840

font properties, 801–812

property values, 798–799

style properties, 797–798

text properties, 801–812

runtimeStyle property, 142–143

S
saveType property, event object (IE4), 760

scopeName property, 143

screen object, 698–703

examples, 698–703

screen property, 249–250

screenLeft property, 250

screenTop property, 362

screenX property

event object (IE4), 752–754

event object (NN4), 742–743

event object (NN6+), 768–769

window object, 250–251

screenY property

event object (IE4), 752–754

event object (NN4), 742–743

event object (NN6+), 768–769

window object, 250–251

scrElement property, event object (IE4),

761

SCRIPT element object, 487–490

<SCRIPT FOR> tag, 40

script libraries, 42–43

DOM, 98

script statements

behavior components, 1275

hiding, 40–41

<SCRIPT> tag, 25–26, 39–40, CD-23–CD-24

script1.htm

expressions, CD-39

source code, 24

scripting

classes, directly, 1214–1215

deferred, dynamic tables and, 1286

different browsers, 46–53

forms and, 1313–1319

frames, CD-103

immediate, dynamic tables and, 1286

jukebox example, 1206–1209

language version selection, 39

plug-ins, 1197–1214

radio objects, CD-81

strategies, 16–17

scripting languages, 57

scripting methods, 1181–1185

scripting versus programming, CD-32–CD-33

scripts, CD-1–CD-2

body and, CD-25

comment tag, 26

debugging (See debugging scripts)

deferred, CD-28–CD-30

embedding in HTML documents, 38–44

entering, 23–25

errors, 244

errors, viewing, CD-30–CD-32

event binding, 75

head and, CD-25

head and body, CD-25–CD-26

hiding from older browsers, CD-27

Continued

(c) ketabton.com: The Digital Library

1504 Index ✦ S

scripts (continued)

intermittent working, 1227–1228

multiple-level, 49–50

onLoad event handler and, CD-29

privileges, 1254

signing, security, 1247–1251

user actions and, CD-30

scripts property, document object, 375

scroll() method, 280–281

scroll property, BODY element object, 404

scrollAmount property, MARQUEE element

object, 423

scrollbar properties

currentStyle object, 834

runtimeStyle object, 834

style object, 834

scrollbars property, 251

scrollBy() method, 281–282

scrollDelay property, MARQUEE element

object, 423

scrollHeight property, 144

scrolling

coordinates and, 280–281

mouse scroll button, 282

scrolling property

FRAME element object, 304

IFRAME element object, 315

scrollIntoView() method, 186

scrollLeft property, 144–145

BODY element object, 404

scrollTo() method, window object,

281–282

scrollTop property, 144–145

BODY element object, 404

scrollWidth property, 144

scrollx property, 251

scrolly property, 251

search property

A element object, 499

Anchor element object, 499

AREA element object, 524

Link element object, 499

location object, 328–329

searches, strings, CD-91–CD-92

sectionRowIndex property, TR element

property, 651

SECURE parameter, cookies, 352

security, 1239–1241

digital certificates, 1246–1247

Netscape signed script policy,

1244–1245

origin checks, 1243–1244

policies, 1241–1242

Privilege Manager errors, 1255–1256

same origin policy, 1242–1244

security property, document object, 375

SELECT input object, 592–599

select() method

Text Input object, 579–580

TextRange object, 469

SELECT element object, 589–607

event handlers, 606–607

methods, 605–606

properties, 599–605

SELECT form control, CD-77

images, CD-112

SELECT object, CD-82–CD-83

navigating with, CD-82

<SELECT> tag, 591

selectedIndex property, SELECT input

object, 603–604

selection lists, 589

selection object, 441–445

methods, 443–445

properties, 443

selection property, document object, 376

selectNode() method, Range object,

438–439

selectNodeContents() method, Range

object, 438–439

selectorText property

cssRule object, 794–795

rule object, 794–795

self property, 228, 252

self.close() method, CD-64

serverless databases, lookup tables and,

1299–1300

servers, offloading busy, CD-8

(c) ketabton.com: The Digital Library

1505Index ✦ S

servlets, 7

setActive() method, 186–187

setAttribute() method, 87, 187–188

setAttributeNode() method, 188

setCapture() method, 177–179, 188

setCursor() method, 282–283

setEnd() method, Range object, 439–440

setEndAfter() method, Range object, 440

setEndBefore() method, Range object, 440

setEndPoint() method, TextRange object,

469–470

setExpression() method, 188–190

setInterval() method, 258, 283–285

setStart() method, Range object, 439–440

setStartAfter() method, Range object, 440

setStartBefore() method, Range object,

440

setters, object property, 1118–1119

setTimeout() method, 285–287

SGML (Standard Generalized Markup

Language), 4

shape property

A element object, 498–499

Anchor element object, 498–499

AREA element object, 523

Link element object, 498–499

shiftKey property

event object (IE4), 747–748

event object (NN6+), 764–765

shiftLeft property, event object (IE4),

748–749

show() method, 318–319

showHelp() method, 287

showModalDialog() method, 233, 288–291

showModelessDialog() method, 233,

288–291

sibling elements, 132

siblingAbove property, layers, 860–864,

897–868

siblingBelow property, layers, 860–861, 897

sidebar property, 229, 252

signed scripts, 1244–1245, 1247–1251

exporting/importing, 1257

SignTool, scripts and, 1247–1248

simple regular expressions, 1009

size property

BASEFONT element object, 478

FONT element object, 413–414

HR element object, 416, 417

SELECT input object, 604

Text Input object, 576–577

sizeToContent() method, 291

small data lookups, CD-3–CD-4

sniffers, browser sniffer script, 48

sound, embedding multiple, 1209–1214

source code

calculations application, 1357–1363

decision helper application, 1378–1397

frames, viewing, 224

graphics application, 1357–1363

lookup tables, 1301–1308

script1.htm, 24

table of contents, outline style,

1324–1336

source property, regular expression object,

1025

sourceIndex property, 145

space characters, variable names, CD-38

span property, COL element object,

647–648

special characters

regular expressions, 1009–1012

strings, 929–926

splitText() method

Text object, 448

TextNode object, 448

square brackets, optional items in loops,

CD-50, CD-70

SRC attribute, CD-24

<SCRIPT> tag, 42–43

src property, CD-110

EMBED element object, 916

FRAME element object, 305

IFRAME element object, 316

Image element object, 517

Image Input object, 566

layers, 867–868

SCRIPT element object, 489

(c) ketabton.com: The Digital Library

1506 Index ✦ S

srcFilter property, event object (IE4), 761

srcUrn property, event object (IE4),

761–762

stacking order, layers, 892–894

stacks, arrays used as, 1000

standard object models, CD-10

start property

Image element object, 518

OL element object, 657–658

startContainer property, Range object, 430

startOffset property, Range object, 430–431

statements, CD-27–CD-28

break, CD-58

comments, 1137–1138, CD-27–CD-28

curly braces and, CD-54–CD-55

delimiters, 60

executing, deferred, CD-28–CD-30

executing, immediate, CD-28

executing, user actions, CD-30

global, 1137–1146

immediate, CD-28

labeled, nested loops, 1048–1050

script, hiding, 40–41

static filters, 843–845

static objects, CD-93

event objects, 713

methods, accessing, 58–59

properties, accessing, 58–59

static tables, 1286–1289

static text, 27

status property, 252–253

statusbar, window object, 253

statusbar property, 234–236, 253

Stop button, toolbar, 292

stop() method

MARQUEE element object, 424

window object, 292

stopPropagation() method, event object

(NN6+), 774–775

string literals, CD-90–CD-91

string object, 930–945

parsing methods, 935–945

properties, 932–935

string objects, CD-90–CD-93

methods, CD-90

string types, CD-36

string.indexOf() method, CD-92

strings, CD-33, CD-90

case, converting, CD-91

characters, copies, CD-92–CD-93

concatenation, 937, CD-90–CD-91

converting to/from numbers, 955–957,

CD-41–CD-42

data types, 927–930

formatting, 947–948

joining, CD-41, CD-90–CD-91

methods, CD-91–CD-93

names, assigning, CD-56

nested, CD-51

numbers, converting to, 955–957

parsing, cookies, 353

properties, length, CD-93

replacing with regular expressions,

1021–1022

searches, CD-91–CD-92

special characters, 929–930

substrings, copies, CD-92–CD-93

URL encoding/decoding, 949

utility functions, 945–949

string.substring() method, CD-92

STYLE element object, 778–782

imported style sheets, 779–780

properties, 781–782

style object, 796–840

cssRule object, 795

font properties, 801–812

property values, 798–801

rule object, 795

style properties, 797–798

text properties, 801–812

style property, 73, 74, 94–95, 146

style sheets, 777–853

behaviors and, 1273–1274

imported, 779–780

objects, names, 778–779

style property, 146

(c) ketabton.com: The Digital Library

1507Index ✦ S–T

<STYLE> tag, 778–779

styles

dynamic, 94–95

filters, 840–851

properties, 780

styleSheet object, 782–792

methods, 790–792

properties, 783–790

styleSheet property

Link element object, 483

styleSheets property, document object, 376

subcookies, 358

sub-properties, filters, 841

submit() method, CD-85–CD-87

FORM element object, 543–544

FORM object, 543–544

submitting forms, CD-85–CD-87

substringData() method

Text object, 447–448

TextNode object, 447–448

substrings, copies, CD-92–CD-93

subwindows, CD-107

subWrite() method, CD-72

suffixes property, mimeType object,

687–688

summary property, TABLE element object,

638

Support Center Web site, 1465

surroundContents() method, Range

object, 440–441

swapNode() method, 190

swapping images, 51–52

synchronization, frames, 223

syntax errors versus runtime errors,

1217–1218

T
tabIndex property, 146–147

TABLE element object, 628–643

methods, 639–643

properties, 630–639

table of contents, CD-2

table of contents, outline style

source code, 1324–1336

XML, 1343–1353

table properties

currentStyle object, 834–836

runtimeStyle object, 834–836

style object, 834–836

tables, 613

captions, 614–615

cells, modifying content, 616–619

cells, populating, 615–616

columns, modifying, 625–627

DHTML (dynamic HTML), 1293–1297

dynamic tables, 1286–1289

hybrid (dynamic/static), 1293

layers and, 617

lookup tables, 1299–1309

object hierarchy, 614–615

properties, 865–866

rows, modifying, 619–625

rules, 625–626

scripts, debugging, 1228

static tables, 1286–1289

tables of contents, outline style

design, 1321–1322

implementation, 1322

Tabular Data Control DSO (Microsoft), 120

tagName property, 147–148

tags

ending tags, CD-24

placement, CD-24–CD-26

tags() method, 111, 190–191

tags property, document object, 377

tagUrn property, 148

target property

A element object, 502

Anchor element object, 502

AREA element object, 524

BASE element object, 477

event object (NN4), 744

FORM element object, 541–542

FORM object, 541–542

Link element object, 483, 502

(c) ketabton.com: The Digital Library

1508 Index ✦ T

target property, event object (NN6+), 772

tBodies property, TABLE element object,

638

TBODY element object, 643–645

TD element, 73

TD element object, 652–656

properties, 654–656

TDC (Tabular Data Control), 120

test() method, regular expression object,

1027

testing, reloading and, 23

text

concatenating, 27

displaying, script and, 27

evaluated, 27

static text, 27

text editors, 19–20

text fields, validation and, 1160–1161

text input elements, CD-12–CD-13

adding, CD-16

Text Input object, 570–582

event handlers, 580–582

methods, 578–580

properties, 574–578

Text Input Object, properties, 574–578

text nodes, children property, 115

Text objects, 445–448

behaviors, CD-78

methods, 447–448

properties, 446

text property

A element object, 503

Anchor element object, 503

BODY element object, 400–401

Link element object, 503

SCRIPT element object, 489

TextRange object, 454

TITLE element object, 490–491

text-related objects, CD-77–CD-79

TEXTAREA element object, 583–587

carriage returns, 585

methods, 586–587

properties, 585–586

TEXTAREA form control, CD-77–CD-78

TextNode objects, 445–448

methods, 447–448

properties, 445–448

TextPad, 20

TextRange object, 448–470

browser compatibility, 452

methods, 454–470

properties, 453–454

TextRectangle object, 471–472

TFOOT element object, 643–645

tFoot property, TABLE element object, 639

TH element object, 652–656

THEAD element object, 643–645

tHead property, TABLE element object, 639

this keyword, 59, CD-83

throwaway passwords, cookies and, 350

throwing exceptions, error object

exceptions, 1060–1061

time zones, 967–969, 975

Date object, CD-94–CD-95

timeouts, 287

timeStamp property, event object (NN6+),

772–773

TITLE element object, 490–491

title property, 148–149

document object, 377

styleSheet object, 790

toElement property, event object (IE4), 757

toolbar property, 234–236, 253

top object, 219–220

parent object comparison, 221

top property

layers, 864–865

TextRectangle object, 471–472

window object, 254

top window (parent window), CD-102

topMargin property, BODY element object,

402–403

toString() function, 1134–1136

Range object, 441

toString() method

Error object, 1067

Function object, 1102

toUpperCase() function, CD-78

(c) ketabton.com: The Digital Library

1509Index ✦ T–V

TR element, 73

TR element object, 648–651

methods, 651–652

properties, 650–651

trace() function, 1232–1233

trace utility, debugging and, 1232–1234

trace.js, 1233

transition filters, 843–845

tree views, CD-2

trueSpeed property, MARQUEE element

object, 423

TYPE attribute, CD-24

type property

A element object, 503

Anchor element object, 503

BUTTON element object, 553

Checkbox Input object, 559

cssRule object, 795–796

event object (IE4), 761–762

event object (NN4), 744

event object (NN6+), 773

Image Input object, 567

LI element object, 661

Link element object, 484, 503

mimeType object, 687

OBJECT element object, 913

OL element object, 658–659

Radio Input object, 563

rule object, 795–796

SCRIPT element object, 490

SELECT input object, 604

selection object, 443

STYLE element object, 781–782

styleSheet object, 790

Text Input object, 577

UL element object, 660

U
UL element object, 659–660

unary operators, 1075

unescape() function, 1129–1130

uniqueID property, 149–150

units property, EMBED element object, 916

unwatch function, 1136

update expressions, loops, CD-50

updated flags application, 1365–1373

updateInterval property, screen object, 703

updates, book content, 1465

upperMe() function, CD-78

URL property, document object, 371–372

URLs (Uniform Resource Locators),

passing data and, 329

URLUnencoded property, document

object, 378

urn property

A element object, 503–504

Anchor element object, 503–504

Link element object, 503–504

URNs (Uniform Resource Names), 113

urns() method, 191

useMap property, Image element object,

518

user actions, script running and, CD-30

user interfaces, application, 1355–1357

user preferences, cookies and, 348–349

userProfile object, 703–709

V
validation

batch mode, 1151

date entry in forms, 1158–1160

dispatch lookup table, 1162–1164

filters and, 1151

forms, CD-4

functions, combining, 1156–1158

functions, custom, 1155–1156

real-time, 1149–1151

samples, 1164–1176

structure and, 1161

value property

BUTTON element object, 553

Checkbox Input object, 559

LI element object, 661–662

Radio Input object, 563–564

SELECT input object, 605

Text Input object, 577–578

text-related elements, CD-78–CD-79

valueOf() method, Function object, 1102

(c) ketabton.com: The Digital Library

1510 Index ✦ V–W

values, CD-35–CD-36

passing, 60

returning, 59

var keyword, CD-37

var statement, 1139

variable scope, 58, CD-53–CD-54

variables, CD-36

arg1, 60

assignment operators, 1076–1078, CD-37

branching, 95

creating, CD-37

expressions and, CD-39

global, 1103–1106

initializing, CD-37

local, 1103–1106

names, CD-37–CD-38

newContent, CD-71

newWind, 231

parameters, 1106

parent window, 223

public instance variables, 1180

scope, 1103–1106

scope, behavior components, 1275–1276

strings and, CD-90

VBScript/JavaScript comparison, 40

version detection, browsers, 44–53

version property, HTML element object,

474

video, 6

view property, event object (NN6+),

773–774

visibility property, layers, 868–869

visible property, chrome objects, 235

Visual Basic, 7

vLink property, BODY element object,

400–401

vlinkColor property, document object,

344–345, 378

void keyword, CD-73

vspace property

APPLET element object, 905–906

IFRAME element object, 314

MARQUEE element object, 422

OBJECT element object, 911–912

W
W3C (World Wide Web Consortium)

DOM and, 14, 76–92

element referencing, 79–80

event listener types, 151–152

event object references, 733

node properties, 82–85

nodes, 80–82

object-oriented, 85

static HTML objects, 89–91

watch function, 1136

watcher methods, objects, 1117–1118

Web sites

JavaScript information, 1467–1468

Support Center, 1465

white space, 60

WIDTH attribute, 124, CD-110

width property, 124

APPLET element object, 905

COL element object, 648

document object, 365, 378

EMBED element object, 915

FRAME element object, 302

HR element object, 417–418

Image element object, 513

MARQUEE element object, 422

OBJECT element object, 911

screen object, 699–700

TABLE element object, 636

TD element object, 655–656

TH element object, 655–656

Win32, 75

window object, 217, 225–228, CD-10,

CD-62–CD-65

document loading and, CD-10–CD-14

event handlers, 292–299

methods, 255–292

onLoad event handler, CD-68

parent object, 219–220

properties, 229–254

references, CD-65

top object, 219–220

window property, 254

window.alert() method, CD-66–CD-67

(c) ketabton.com: The Digital Library

1511Index ✦ W–Z

window.close() method, CD-64

window.confirm() method, CD-67

windowFeatures parameter, open()

method, 267

window.maximize property, 66

window.moveTo() method, 241

window.open() method, CD-64, CD-106

window.prompt() method, CD-68

window.returnValue property, modal dialog

boxes, 288–289

windows

chrome, CD-62

creating, CD-63–CD-65

creating, syntax, 227

features, new, 267–268

loading content into new, 272–273

methods, CD-63, CD-65–CD-68

methods, access, 227

moving, 266

names, 272

pop-up, 261

popup, 318

positioning, 266

properties, CD-63, CD-65–CD-68

properties, access, 227

references, CD-106–CD-107

sizing, 278–279, 291, 297–298

subwindows, CD-107

Windows

authoring and, 21

objects, 1140

window.status property, CD-65–CD-66

Winhelp windows, opening, 287

WordPad, 20

write() method, document object, 395–398

writeln() method, document object,

395–398

WYSIWYG (What You See Is What You Get),

authoring tools and, 19

X
x property

A element object, 504

Anchor element object, 504

event object (IE4), 752–754

Image element object, 519

Link element object, 504

XML

data islands application, 1415–1429

documents, 76

objects, 919

objects, elements compared to nodes,

919–921

table of contents, outline style,

1343–1353

xpconnect package, 229

Y
y property

A element object, 504

Anchor element object, 504

event object (IE4), 752–754

Image element object, 519

Link element object, 504

Z
zIndex property, layers, 869–870

(c) ketabton.com: The Digital Library

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening

the software packet(s) included with this book (“Book”). This is a license agree-

ment (“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the

accompanying software packet(s), you acknowledge that you have read and accept

the following terms and conditions. If you do not agree and do not want to be

bound by such terms and conditions, promptly return the Book and the unopened

software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclu-

sive license to use one copy of the enclosed software program(s) (collectively,

the “Software”) solely for your own personal or business purposes on a single

computer (whether a standard computer or a workstation component of a

multi-user network). The Software is in use on a computer when it is loaded

into temporary memory (RAM) or installed into permanent memory (hard

disk, CD-ROM, or other storage device). HMI reserves all rights not expressly

granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copy-

right, in and to the compilation of the Software recorded on the disk(s) or

CD-ROM (“Software Media”). Copyright to the individual programs recorded

on the Software Media is owned by the author or other authorized copyright

owner of each program. Ownership of the Software and all proprietary rights

relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival

purposes, or (ii) transfer the Software to a single hard disk, provided

that you keep the original for backup or archival purposes. You may not

(i) rent or lease the Software, (ii) copy or reproduce the Software

through a LAN or other network system or through any computer sub-

scriber system or bulletin-board system, or (iii) modify, adapt, or create

derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.

You may transfer the Software and user documentation on a permanent

basis, provided that the transferee agrees to accept the terms and condi-

tions of this Agreement and you retain no copies. If the Software is an

update or has been updated, any transfer must include the most recent

update and all prior versions.

(c) ketabton.com: The Digital Library

4. Restrictions on Use of Individual Programs. You must follow the individual

requirements and restrictions detailed for each individual program in

Appendix E of this Book. These limitations are also contained in the individual

license agreements recorded on the Software Media. These limitations may

include a requirement that after using the program for a specified period of

time, the user must pay a registration fee or discontinue use. By opening the

Software packet(s), you will be agreeing to abide by the licenses and restric-

tions for these individual programs that are detailed in Appendix E and on the

Software Media. None of the material on this Software Media or listed in this

Book may ever be redistributed, in original or modified form, for commercial

purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects

in materials and workmanship under normal use for a period of sixty

(60) days from the date of purchase of this Book. If HMI receives notifica-

tion within the warranty period of defects in materials or workmanship,

HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have

other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials

and workmanship shall be limited to replacement of the Software Media,

which may be returned to HMI with a copy of your receipt at the follow-

ing address: Software Media Fulfillment Department, Attn.: JavaScript
Bible, Gold Edition, Hungry Minds, Inc., 10475 Crosspoint Blvd.,

Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six

weeks for delivery. This Limited Warranty is void if failure of the

Software Media has resulted from accident, abuse, or misapplication.

Any replacement Software Media will be warranted for the remainder of

the original warranty period or thirty (30) days, whichever is longer.

(c) ketabton.com: The Digital Library

(b) In no event shall HMI or the author be liable for any damages whatso-

ever (including without limitation damages for loss of business profits,

business interruption, loss of business information, or any other pecu-

niary loss) arising from the use of or inability to use the Book or the

Software, even if HMI has been advised of the possibility of such

damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of

liability for consequential or incidental damages, the above limitation or

exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the

Software for or on behalf of the United States of America, its agencies and/or

instrumentalities (the “U.S. Government”) is subject to restrictions as stated

in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the

Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,

and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties

and revokes and supersedes all prior agreements, oral or written, between

them and may not be modified or amended except in a writing signed by both

parties hereto that specifically refers to this Agreement. This Agreement shall

take precedence over any other documents that may be in conflict herewith. If

any one or more provisions contained in this Agreement are held by any court

or tribunal to be invalid, illegal, or otherwise unenforceable, each and every

other provision shall remain in full force and effect.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

CD-ROM Installation Instructions
The files on this CD-ROM can be accessed and used from both Windows 95 (or

later) and Macintosh environments. Some Macintosh program files require MacOS

8.6 or later, but program listing text files can be opened with any MacOS version.

For Windows, access the software with My Computer or Windows Explorer.

Macintosh users can access files by using the Finder.

You can open all of the example file listings directly from the CD-ROM, but access

will be faster — and you will be able to experiment with modifying the files more

readily — if you copy the listings to your hard drive. Copy the folder named Listings

from the CD-ROM to any location on your hard drive.

To open the listing scripts on this CD-ROM, you should have a copy of Microsoft

Internet Explorer 5 (or later), Netscape Navigator 6 (or later), or both browsers

installed on your computer. You will find installers for recommended minimum

versions of the two browsers on this CD-ROM.

To run the listing scripts from your browser, open the file named index.html in the

Listings folder. This page provides a table of contents consisting of direct links to

the listings, showing which browsers are compatible with each listing.

Access the Adobe Acrobat (PDF) files for the book’s contents from the CD-ROM. Be

sure to install the index files into your copy of Acrobat to take advantage of full-text

search.

For more details on installing and running the CD-ROM contents, see Appendix E.

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

