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Foreword to the First Edition 
The publication of this book, Hyperspectral Remote Sensing of Vegetation, marks a milestone in 
the application of imaging spectrometry to study 70% of the Earth’s landmass which is vegetated. 
This book shows not only the breadth of international involvement in the use of hyperspectral data 
but also in the breadth of innovative application of mathematical techniques to extract information 
from the image data.

Imaging spectrometry evolved from the combination of insights from the vast heterogeneity of 
reflectance signatures from the Earth’s surface seen in the ERTS-1 (Landsat-1) 4-band images and 
the field spectra that were acquired to help fully understand the causes of the signatures. It wasn’t 
until 1979 when the first hybrid area-array detectors, mercury-cadmium-telluride on silicon CCD’s, 
became available that it was possible to build an imaging spectrometer capable of operating at 
wavelengths beyond 1.0 µm. The AIS (airborne imaging spectrometer), developed at NASA/JPL, had 
only 32 cross-track pixels but that was enough for the geologists clamoring for this development to 
see between the bushes to determine the mineralogy of the substrate. In those early years, vegetation 
cover was just a nuisance!

In the early 1980s, spectroscopic analysis was driven by the interest to identify mineralogical 
composition by exploiting absorptions found in the SWIR region from overtone and combination 
bands of fundamental vibrations found in the mid-IR region beyond 3 µm and the electronic transitions 
in transition elements appearing, primarily, short of 1.0 µm. The interests of the geologists had been 
incorporated in the Landsat TM sensor in the form of the add-on, band 7 in the 2.2 µm region based 
on field spectroscopic measurements. However, one band, even in combination with the other six, did 
not meet the needs for mineral identification. A summary of mineralogical analyses is presented by 
Vaughan et al. in this volume. A summary of the historical development of hyperspectral imaging 
can be found in Goetz (2009).

At the time of the first major publication of the AIS results (Goetz et al., 1985), very little work 
on vegetation analysis using imaging spectroscopy had been undertaken. The primary interest 
was in identifying the relationship of the chlorophyll absorption red-edge to stress and substrate 
composition that had been seen in airborne profiling and in field spectral reflectance measurements. 
Most of the published literature concerned analyzing NDVI, which only required two spectral bands.

In the time leading up to the 1985 publication, we had only an inkling of the potential information 
content in the hundreds of contiguous spectral bands that would be available to us with the advent 
of AVIRIS (airborne visible and infrared imaging spectrometer). One of the authors, Jerry Solomon, 
presciently added the term “hyperspectral” to the text of the paper to describe the “…multidimensional 
character of the spectral data set,” or, in other words, the mathematically, over-determined nature 
of hyperspectral data sets. The term hyperspectral as opposed to multispectral data moved into 
the remote sensing vernacular and was additionally popularized by the military and intelligence 
community.

In the early 1990s, as higher quality AVIRIS data became available, and the first analyses of 
vegetation using statistical techniques borrowed from chemometrics, also known as NIRS analysis 
used in the food and grain industry, were undertaken by John Aber and Mary Martin of the University 
of New Hampshire. Here, nitrogen contents of tree canopies were predicted from reflectance spectra 
by regression techniques using reference measurements from laboratory wet chemical analyses of 
needle and leaf samples acquired by shooting down branches. At the same time, the remote sensing 
community began to recognize the value of “too many” spectral bands and the concomitant wealth 
of spatial information that was amenable to information extraction by statistical techniques. One of 
them was Eyal Ben-Dor who pioneered soil analyses using hyperspectral imaging and who is one 
of the contributors to this volume.
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As the quality of AVIRIS data grew, manifested in increasing SNR, an ever-increasing amount 
of information could be extracted from the data. This quality was reflected in the increasing number 
of nearly noiseless principal components that could be obtained from the data or, in other words, 
its dimensionality. The explosive advances in desktop computing made possible the application of 
image processing and statistical analyses that revolutionized the uses of hyperspectral imaging. 
Joe Boardman and others at the University of Colorado developed what has become the ENVI 
software package to make possible the routine analysis of hyperspectral image data using “unmixing 
techniques” to derive the relative abundance of surface materials on a pixel-by-pixel basis.

Many of the analysis techniques discussed in this volume, such as band selection and various 
indices, are rooted in principal components analysis. The eigenvector loadings or factors indicate 
which spectral bands are the most heavily weighted allowing others to be discarded to reduce the 
noise contribution. As sensors become better, more information will be extractable and fewer bands 
will be discarded. This is the beauty of hyperspectral imaging, allowing the choice of the number 
of eigenvectors to be used for a particular problem. Computing power has reached such a high level 
that it is no longer necessary to choose a subset of bands just to minimize the computational time.

As regression techniques such as PLS (partial least squares) become increasingly adopted to relate 
a particular vegetation parameter to reflectance spectra, it must be remembered that the quality of 
the calibration model is a function of both the spectra and the reference measurement. With spectral 
measurements of organic and inorganic compounds under laboratory conditions, we have found that 
a poor model with a low coefficient of determination (r2) is most often associated with inaccurate 
reference measurements, leading to the previously intuitive conclusion that “spectra don’t lie.”

Up to this point, AVIRIS has provided the bulk of high-quality hyperspectral image data but on 
an infrequent basis. Although Hyperion has provided some time series data, there is no hyperspectral 
imager yet in orbit that is capable of providing routine, high-quality images of the whole Earth on 
a consistent basis. The hope is that in the next decade, HyspIRI will be providing VNIR and SWIR 
hyperspectral images every 3 weeks and multispectral thermal data every week. This resource will 
revolutionize the field of vegetation remote sensing since so much of the useful information is bound 
up in the seasonal growth cycle. The combination of the spectral, spatial, and temporal dimensions 
will be ripe for the application of statistical techniques and the results will be extraordinary.

Dr. Alexander F. H. Goetz PhD
Former Chairman and Chief Scientist

ASD Inc.
2555 55th St. #100

Boulder, CO 80301, USA
303-444-6522 ext. 108

Fax 303-444-6825
www.asdi.com
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studies. Later, he turned his attention to remote sensing of Planet Earth working in collaboration 
with Dr. Gene Shoemaker to map geology of Coconino County (Arizona) using Landsat-1 data and 
went on to be an investigator in further Landsat, Skylab, Shuttle, and EO-1 missions. At NASA/JPL 
he pioneered field spectral measurements and initiated the development of hyperspectral imaging. 
He spent 21 years on the faculty of the University of Colorado, Boulder, and retired in 2006 as an 
Emeritus Professor of Geological Sciences and an Emeritus Director of Center for the Study of Earth 
from Space. Since then, he has been Chairman and Chief Scientist of ASD Inc. a company that has 
provided more than 850 research laboratories in over 60 countries with field spectrometers. Dr. Goetz 
is now retired. His foreword was written for the first edition and I have retained it in consultation 
with him to get a good perspective on the development of hyperspectral remote sensing.
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Foreword to the Second Edition
The publication of the four-volume set, Hyperspectral Remote Sensing of Vegetation, second edition, 
is a landmark effort in providing an important, valuable, and timely contribution that summarizes 
the state of spectroscopy-based understanding of the Earth’s terrestrial and near shore environments. 
Imaging spectroscopy has had 35 years of development in data processing and analysis methods. 
Today’s researchers are eager to use data produced by hyperspectral imagers and address important 
scientific issues from agricultural management to global environmental stewardship. The field 
started with development of the Jet Propulsion Lab’s Airborne Imaging Spectrometer in 1983 that 
measured across the reflected solar infrared spectrum with 128 spectral bands. This technology was 
quickly followed in 1987 by the more capable Advanced Visible Infrared Imaging Spectrometer 
(AVIRIS), which has flown continuously since this time (albeit with multiple upgrades). It has 224 
spectral bands covering the 400–2500 nm range with 10 nm wavelength bands and represents the 
“gold standard” of this technology. In the years since then, progress toward a hyperspectral satellite 
has been disappointingly slow. Nonetheless, important and significant progress in understanding how 
to analyze and understand spectral data has been achieved, with researchers focused on developing 
the concepts, analytical methods, and spectroscopic understanding, as described throughout these 
four volumes. Much of the work up to the present has been based on theoretical analysis or from 
experimental studies at the leaf level from spectrometer measurements and at the canopy level from 
airborne hyperspectral imagers.

Although a few hyperspectral satellites have operated over various periods in the 2000s, none 
have provided systematic continuous coverage required for global mapping and time series analysis. 
An EnMap document compiled the past and near-term future hyperspectral satellites and those 
on International Space Station missions (EnMap and GRSS Technical Committee 2017). Of the 
hyperspectral imagers that have been flown, the European Space Agency’s CHRIS (Compact High 
Resolution Imaging Spectrometer) instrument on the PROBA-1 (Project for On-Board Autonomy) 
satellite and the Hyperion sensor on the NASA technology demonstrator, Earth Observing-1 platform 
(terminated in 2017). Each has operated for 17 years and have received the most attention from the 
science community. Both collect a limited number of images per day, and have low data quality 
relative to today’s capability, but both have open data availability. Other hyperspectral satellites with 
more limited access and duration include missions from China, Russia, India, and the United States.

We are at a threshold in the availability of hyperspectral imagery. There are many hyperspectral 
missions planned for launch in the next 5 years from China, Italy, Germany, India, Japan, Israel, 
and the United States, some with open data access. The analysis of the data volumes from this 
proliferation of hyperspectral imagers requires a comprehensive reference resource for professionals 
and students to turn to in order to understand and correctly and efficiently use these data. This 
four-volume set is unique in compiling in-depth understanding of calibration, visualization, and 
analysis of data from hyperspectral sensors. The interest in this technology is now widespread, thus, 
applications of hyperspectral imaging cross many disciplines, which are truly international, as is 
evident by the list of authors of the chapters in these volumes, and the number of countries planning 
to operate a hyperspectral satellite. At least some of the hyperspectral satellites announced and 
expected to be launched in this decade (such as the HyspIRI-like satellite approved for development 
by NASA with a launch in the 2023 period) will provide high-fidelity narrow-wavelength bands, 
covering the full reflected solar spectrum, at moderate (30 m pixels) to high spatial resolution. These 
instruments will have greater radiometric range, better SNR, pointing accuracy, and reflectance 
calibration than past instruments, and will collect data from many countries and parts of the world 
that have not previously been available. Together, these satellites will produce an unprecedented flow 
of information about the physiological functioning (net primary production, evapotranspiration, and 
even direct measurements related to respiration), biochemical characteristics (from spectral indices 
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and from radiative transfer first principle methods), and direct measurements of the distributions of 
plant and soil biodiversity of the terrestrial and coastal environments of the Earth.

This four-volume set presents an unprecedented range and scope of information on hyperspectral 
data analysis and applications written by leading authors in the field. Topics range from sensor 
characteristics from ground-based platforms to satellites, methods of data analysis to characterize 
plant functional properties related to exchange of gases CO2, H2O, O2, and biochemistry for 
pigments, N cycle, and other molecules. How these data are used in applications range from precision 
agriculture to global change research. Because the hundreds of bands in the full spectrum includes 
information to drive detection of these properties, the data is useful at scales from field applications 
to global studies.

Volume I has three sections and starts with an introduction to hyperspectral sensor systems. 
Section II focuses on sensor characteristics from ground-based platforms to satellites, and how these 
data are used in global change research, particularly in relation to agricultural crop monitoring and 
health of natural vegetation. Section III provides five chapters that deal with the concept of spectral 
libraries to identify crops and spectral traits, and for phenotyping for plant breeding. It addresses the 
development of spectral libraries, especially for agricultural crops and one for soils.

Volume II expands on the first volume, focusing on use of hyperspectral indices and image 
classification. The volume begins with an explanation of how narrow-band hyperspectral indices are 
determined, often from individual spectral absorption bands but also from correlation matrices and 
from derivative spectra. These are followed by chapters on statistical approaches to image classification 
and a chapter on methods for dealing with “big data.” The last half of this volume provides five 
chapters focused on use of vegetation indices for quantifying and characterizing photosynthetic 
pigments, leaf nitrogen concentrations or contents, and foliar water content measurements. These 
chapters are particularly focused on applications for agriculture, although a chapter addresses more 
heterogeneous forest conditions and how these patterns relate to monitoring health and production.

The first half of Volume III focuses on biophysical and biochemical characterization of vegetation 
properties that are derived from hyperspectral data. Topics include ecophysiological functioning 
and biomass estimates of crops and grasses, indicators of photosynthetic efficiency, and stress 
detection. The chapter addresses biophysical characteristics across different spatial scales while 
another chapter examines spectral and spatial methods for retrieving biochemical and biophysical 
properties of crops. The chapters in the second half of this volume are focused on identification and 
discrimination of species from hyperspectral data and use of these methods for rapid phenotyping of 
plant breeding trials. Lastly, two chapters evaluate tree species identification, and another provides 
examples of mapping invasive species.

Volume IV focuses on six areas of advanced applications in agricultural crops. The first considers 
detection of plant stressors including nitrogen deficiency and excess heavy metals and crop disease 
detection in precision farming. The second addresses global patterns of crop water productivity and 
quantifying litter and invasive species in arid ecosystems. Phenological patterns are examined while 
others focus on multitemporal data for mapping patterns of phenology. The third area is focused on 
applications of land cover mapping in different forest, wetland, and urban applications. The fourth 
topic addresses hyperspectral measurements of wildfires, and the fifth evaluates use of continuity 
vegetation index data in global change applications. And lastly, the sixth area examines use of 
hyperspectral data to understand the geologic surfaces of other planets.

Susan L. Ustin
Professor and Vice Chair, Dept. Land, Air and Water Resources

Associate Director, John Muir Institute
University of California
Davis California, USA
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Preface
This seminal book on Hyperspectral Remote Sensing of Vegetation (Second Edition, 4 Volume Set), 
published by Taylor and Francis Inc.\CRC Press is an outcome of over 2 years of effort by the editors 
and authors. In 2011, the first edition of Hyperspectral Remote Sensing of Vegetation was published. 
The book became a standard reference on hyperspectral remote sensing of vegetation amongst the 
remote sensing community across the world. This need and resulting popularity demanded a second 
edition with more recent as well as more comprehensive coverage of the subject. Many advances 
have taken place since the first edition. Further, the first edition was limited in scope in the sense 
it covered some very important topics and missed equally important topics (e.g., hyperspectral 
library of agricultural crops, hyperspectral pre-processing steps and algorithms, and many others). 
As a result, a second edition that brings us up-to-date advances in hyperspectral remote sensing of 
vegetation was required. Equally important was the need to make the book more comprehensive, 
covering an array of subjects not covered in the first edition. So, my coeditors and myself did a 
careful research on what should go into the second edition. Quickly, the scope of the second edition 
expanded resulting in an increasing number of chapters. All of this led to developing the seminal 
book: Hyperspectral Remote Sensing of Vegetation, Second Edition, 4 Volume Set. The four volumes 
are:

Volume I: Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation
Volume II: Hyperspectral Indices and Image Classifications for Agriculture and Vegetation
Volume III: Biophysical and Biochemical Characterization and Plant Species Studies
Volume IV: Advanced Applications in Remote Sensing of Agricultural Crops and Natural 

Vegetation

The goal of the book was to bring in one place collective knowledge of the last 50 years of 
advances in hyperspectral remote sensing of vegetation with a target audience of wide spectrum 
of scientific community, students, and professional application practitioners. The book documents 
knowledge advances made in applying hyperspectral remote sensing technology in the study of 
terrestrial vegetation that include agricultural crops, forests, rangelands, and wetlands. This is a very 
practical offering about a complex subject that is rapidly advancing its knowledge-base. In a very 
practical way, the book demonstrates the experience, utility, methods, and models used in studying 
terrestrial vegetation using hyperspectral data. The four volumes, with a total of 48 chapters, are 
divided into distinct themes.

•	 Volume I: There are 14 chapters focusing on hyperspectral instruments, spectral 
libraries, and methods and approaches of data handling. The chapters extensively address 
various preprocessing steps and data mining issues such as the Hughes phenomenon and 
overcoming the “curse of high dimensionality” of hyperspectral data. Developing spectral 
libraries of crops, vegetation, and soils with data gathered from hyperspectral data from 
various platforms (ground-based, airborne, spaceborne), study of spectral traits of crops, 
and proximal sensing at field for phenotyping are extensively discussed. Strengths and 
limitations of hyperspectral data of agricultural crops and vegetation acquired from different 
platforms are discussed. It is evident from these chapters that the hyperspectral data provides 
opportunities for great advances in study of agricultural crops and vegetation. However, it 
is also clear from these chapters that hyperspectral data should not be treated as panacea 
to every limitation of multispectral broadband data such as from Landsat or Sentinel series 
of satellites. The hundreds or thousands of hyperspectral narrowbands (HNBs) as well as 
carefully selected hyperspectral vegetation indices (HVIs) will help us make significant 
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advances in characterizing, modeling, mapping, and monitoring vegetation biophysical, 
biochemical, and structural quantities. However, it is also important to properly understand 
hyperspectral data and eliminate redundant bands that exist for every application and to 
optimize computing as well as human resources to enable seamless and efficient handling 
enormous volumes of hyperspectral data. Special emphasis is also put on preprocessing and 
processing of Earth Observing-1 (EO-1) Hyperion, the first publicly available hyperspectral 
data from space. These methods, approaches, and algorithms, and protocols set the stage for 
upcoming satellite hyperspectral sensors such as NASA’s HyspIRI and Germany’s EnMAP.

•	 Volume II: There are 10 chapters focusing on hyperspectral vegetation indices (HVIs) and 
image classification methods and techniques. The HVIs are of several types such as: (i) two-
band derived, (ii) multi-band-derived, and (iii) derivative indices derived. The strength 
of the HVIs lies in the fact that specific indices can be derived for specific biophysical, 
biochemical, and plant structural quantities. For example, you have carotenoid HVI, 
anthocyanin HVI, moisture or water HVI, lignin HVI, cellulose HVI, biomass or LAI or 
other biophysical HVIs, red-edge based HVIs, and so on. Further, since these are narrowband 
indices, they are better targeted and centered at specific sensitive wavelength portions of the 
spectrum. The strengths and limitations of HVIs in a wide array of applications such as leaf 
nitrogen content (LNC), vegetation water content, nitrogen content in vegetation, leaf and 
plant pigments, anthocyanin’s, carotenoids, and chlorophyll are thoroughly studied. Image 
classification using hyperspectral data provides great strengths in deriving more classes 
(e.g., crop species within a crop as opposed to just crop types) and increasing classification 
accuracies. In earlier years and decades, hyperspectral data classification and analysis was 
a challenge due to computing and data handling issues. However, with the availability of 
machine learning algorithms on cloud computing (e.g., Google Earth Engine) platforms, 
these challenges have been overcome in the last 2–3 years. Pixel-based supervised machine 
learning algorithms like the random forest, and support vector machines as well as object-
based algorithms like the recursive hierarchical segmentation, and numerous others 
methods (e.g., unsupervised approaches) are extensively discussed. The ability to process 
petabyte volume data of the planet takes us to a new level of sophistication and makes use 
of data such as from hyperspectral sensors feasible over large areas. The cloud computing 
architecture involved with handling massively large petabyte-scale data volumes are 
presented and discussed.

•	 Volume III: There are 11 chapters focusing on biophysical and biochemical characterization 
and plant species studies. A number of chapters in this volume are focused on separating 
and discriminating agricultural crops and vegetation of various types or species using 
hyperspectral data. Plant species discrimination and classification to separate them are the 
focus of study using vegetation such as forests, invasive species in different ecosystems, and 
agricultural crops. Performance of hyperspectral narrowbands (HNBs) and hyperspectral 
vegetation indices (HVIs) when compared with multispectral broadbands (MBBs) and 
multispectral broadband vegetation indices (BVIs) are presented and discussed. The 
vegetation and agricultural crops are studied at various scales, and their vegetation 
functional properties diagnosed. The value of digital surface models in study of plant traits 
as complementary\supplementary to hyperspectral data has been highlighted. Hyperspectral 
bio-indicators to study photosynthetic efficiency and vegetation stress are presented and 
discussed. Studies are conducted using hyperspectral data across wavelengths (e.g., visible, 
near-infrared, shortwave-infrared, mid-infrared, and thermal-infrared).

•	 Volume IV: There are 15 chapters focusing on specific advanced applications of 
hyperspectral data in study of agricultural crops and natural vegetation. Specific agricultural 
crop applications include crop management practices, crop stress, crop disease, nitrogen 
application, and presence of heavy metals in soils and related stress factors. These studies 
discuss biophysical and biochemical quantities modeled and mapped for precision farming, 
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hyperspectral narrowbands (HNBs), and hyperspectral vegetation indices (HVIs) involved 
in assessing nitrogen in plants, and the study of the impact of heavy metals on crop health 
and stress. Vegetation functional studies using hyperspectral data presented and discussed 
include crop water use (actual evapotranspiration), net primary productivity (NPP), gross 
primary productivity (GPP), phenological applications, and light use efficiency (LUE). 
Specific applications discussed under vegetation functional studies using hyperspectral 
data include agricultural crop classifications, machine learning, forest management studies, 
pasture studies, and wetland studies. Applications in fire assessment, modeling, and mapping 
using hyperspectral data in the optical and thermal portions of the spectrum are presented 
and discussed. Hyperspectral data in global change studies as well as in outer planet studies 
have also been discussed. Much of the outer planet remote sensing is conducted using 
imaging spectrometer and hence the data preprocessing and processing methods of Earth 
and that of outer planets have much in common and needs further examination.

The chapters are written by leading experts in the global arena with each chapter: (a) focusing on 
specific applications, (b) reviewing existing “state-of-art” knowledge, (c) highlighting the advances 
made, and (d) providing guidance for appropriate use of hyperspectral data in study of vegetation and 
its numerous applications such as crop yield modeling, crop biophysical and biochemical property 
characterization, and crop moisture assessment.

The four-volume book is specifically targeted on hyperspectral remote sensing as applied to 
terrestrial vegetation applications. This is a big market area that includes agricultural croplands, 
study of crop moisture, forests, and numerous applications such as droughts, crop stress, crop 
productivity, and water productivity. To the knowledge of the editors, there is no comparable book, 
source, and/or organization that can bring this body of knowledge together in one place, making 
this a “must buy” for professionals. This is clearly a unique contribution whose time is now. The 
book highlights include:

	 1.	Best global expertise on hyperspectral remote sensing of vegetation, agricultural crops, crop 
water use, plant species detection, crop productivity and water productivity mapping, and 
modeling;

	 2.	Clear articulation of methods to conduct the work. Very practical;
	 3.	Comprehensive review of the existing technology and clear guidance on how best to use 

hyperspectral data for various applications;
	 4.	Case studies from a variety of continents with their own subtle requirements; and
	 5.	Complete solutions from methods to applications inventory and modeling.

Hyperspectral narrowband spectral data, as discussed in various chapters of this book, are 
fast emerging as practical most advanced solutions in modeling and mapping vegetation. Recent 
research has demonstrated the advances and great value made by hyperspectral data, as discussed 
in various chapters in: (a) quantifying agricultural crops as to their biophysical and harvest yield 
characteristics, (b) modeling forest canopy biochemical properties, (c) establishing plant and soil 
moisture conditions, (d) detecting crop stress and disease, (e) mapping leaf chlorophyll content as 
it influences crop production, (f) identifying plants affected by contaminants such as arsenic, and 
(g) demonstrating sensitivity to plant nitrogen content, and (h) invasive species mapping. The ability 
to significantly better quantify, model, and map plant chemical, physical, and water properties is well 
established and has great utility.

Even though these accomplishments and capabilities have been reported in various places, the 
need for a collective “knowledge bank” that links these various advances in one place is missing. 
Further, most scientific papers address specific aspects of research, failing to provide a comprehensive 
assessment of advances that have been made nor how the professional can bring those advances 
to their work. For example, deep scientific journals report practical applications of hyperspectral 
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narrowbands yet one has to canvass the literature broadly to obtain the pertinent facts. Since several 
papers report this, there is a need to synthesize these findings so that the reader gets the correct 
picture of the best wavebands for their practical applications. Also, studies do differ in exact methods 
most suited for detecting parameters such as crop moisture variability, chlorophyll content, and stress 
levels. The professional needs this sort of synthesis and detail to adopt best practices for their own 
work.

In years and decades past, use of hyperspectral data had its challenges especially in handling large 
data volumes. That limitation is now overcome through cloud-computing, machine learning, deep 
learning, artificial intelligence, and advances in knowledge in processing and applying hyperspectral 
data.

This book can be used by anyone interested in hyperspectral remote sensing that includes 
advanced research and applications, such as graduate students, undergraduates, professors, practicing 
professionals, policy makers, governments, and research organizations.

Dr. Prasad S. Thenkabail, PhD
Editor-in-Chief

Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set
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Prasad S. Thenkabail, Research Geographer-15, U.S. Geological 
Survey (USGS), is a world-recognized expert in remote sensing 
science with multiple major contributions in the field sustained over 
more than 30 years. He obtained his PhD from the Ohio State 
University in 1992 and has over 140+ peer-reviewed scientific 
publications, mostly in major international journals.

Dr. Thenkabail has conducted pioneering research in the area 
of hyperspectral remote sensing of vegetation and in that of global 
croplands and their water use in the context of food security. In 
hyperspectral remote sensing he has done cutting-edge research 
with wide implications in advancing remote sensing science in 
application to agriculture and vegetation. This body of work led 
to more than ten peer-reviewed research publications with high 
impact. For example, a single paper [1] has received 1000+ citations 

as at the time of writing (October 4, 2018). Numerous other papers, book chapters, and books (as 
we will learn below) are also related to this work, with two other papers [2,3] having 350+ to 425+ 
citations each.

In studies of global croplands in the context of food and water security, he has led the release 
of the world’s first Landsat 30-m derived global cropland extent product. This work demonstrates 
a “paradigm shift” in how remote sensing science is conducted. The product can be viewed in full 
resolution at the web location www.croplands.org. The data is already widely used worldwide and 
is downloadable from the NASA\USGS LP DAAC site [4]. There are numerous major publication 
in this area (e.g. [5,6]).

Dr. Thenkabail’s contributions to series of leading edited books on remote sensing science places 
him as a world leader in remote sensing science advances. He edited three-volume Remote Sensing 
Handbook published by Taylor and Francis, with 82 chapters and more than 2000 pages, widely 
considered a “magnus opus” standard reference for students, scholars, practitioners, and major experts 
in remote sensing science. Links to these volumes along with endorsements from leading global 
remote sensing scientists can be found at the location give in note [7]. He has recently completed 
editing Hyperspectral Remote Sensing of Vegetation published by Taylor and Francis in four volumes 
with 50 chapters. This is the second edition is a follow-up on the earlier single-volume Hyperspectral 
Remote Sensing of Vegetation [8]. He has also edited a book on Remote Sensing of Global Croplands 
for Food Security (Taylor and Francis) [9]. These books are widely used and widely referenced in 
institutions worldwide.

Dr. Thenkabail’s service to remote sensing community is second to none. He is currently an 
editor-in-chief of the Remote Sensing open access journal published by MDPI; an associate editor 
of the journal Photogrammetric Engineering and Remote Sensing (PERS) of the American Society 
of Photogrammetry and Remote Sensing (ASPRS); and an editorial advisory board member of the 
International Society of Photogrammetry and Remote Sensing (ISPRS) Journal of Photogrammetry 
and Remote Sensing. Earlier, he served on the editorial board of Remote Sensing of Environment for 
many years (2007–2017). As an editor-in-chief of the open access Remote Sensing MDPI journal 
from 2013 to date he has been instrumental in providing leadership for an online publication that did 
not even have a impact factor when he took over but is now one of the five leading remote sensing 
international journals, with an impact factor of 3.244.

Dr. Thenkabail has led remote sensing programs in three international organizations: International 
Water Management Institute (IWMI), 2003–2008; International Center for Integrated Mountain 
Development (ICIMOD), 1995–1997; and International Institute of Tropical Agriculture (IITA), 

http://www.croplands.org


xxviii Editors

1992–1995. He has worked in more than 25+ countries on several continents, including East Asia 
(China), S-E Asia (Cambodia, Indonesia, Myanmar, Thailand, Vietnam), Middle East (Israel, Syria), 
North America (United States, Canada), South America (Brazil), Central Asia (Uzbekistan), South 
Asia (Bangladesh, India, Nepal, and Sri Lanka), West Africa (Republic of Benin, Burkina Faso, 
Cameroon, Central African Republic, Cote d’Ivoire, Gambia, Ghana, Mali, Nigeria, Senegal, and 
Togo), and Southern Africa (Mozambique, South Africa). During this period he has made major 
contributions and written seminal papers on remote sensing of agriculture, water resources, inland 
valley wetlands, global irrigated and rain-fed croplands, characterization of African rainforests and 
savannas, and drought monitoring systems.

The quality of Dr. Thenkabail’s research is evidenced in the many awards, which include, in 
2015, the American Society of Photogrammetry and Remote Sensing (ASPRS) ERDAS award for 
best scientific paper in remote sensing (Marshall and Thenkabail); in 2008, the ASPRS President’s 
Award for practical papers, second place (Thenkabail and coauthors); and in 1994, the ASPRS 
Autometric Award for outstanding paper (Thenkabail and coauthors). His team was recognized by 
the Environmental System Research Institute (ESRI) for “special achievement in GIS” (SAG award) 
for their Indian Ocean tsunami work. The USGS and NASA selected him to be on the Landsat 
Science Team for a period of five years (2007–2011).

Dr. Thenkabail is regularly invited as keynote speaker or invited speaker at major international 
conferences and at other important national and international forums every year. He has been 
principal investigator and/or has had lead roles of many pathfinding projects, including the ∼5 million 
over five years (2014–2018) for the global food security support analysis data in the 30-m (GFSAD) 
project (https://geography.wr.usgs.gov/science/croplands/) funded by NASA MEaSUREs (Making 
Earth System Data Records for Use in Research Environments), and projects such as Sustain and 
Manage America’s Resources for Tomorrow (waterSMART) and characterization of Eco-Regions 
in Africa (CERA).
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1 Using Hyperspectral Data in 
Precision Farming Applications

Haibo Yao, Yanbo Huang, Lie Tang, Lei Tian, 
Deepak Bhatnagar, and Thomas E. Cleveland

1.1  INTRODUCTION

1.1.1  Precision Farming

Rather than being managed as a single, uniform unit, a crop field can be handled site specifically 
based on local field needs. This is the concept behind using precision agriculture for in-field 
variability management. The goals of precision agriculture can be described as follows and are 
based on economic, productivity, and environmental considerations:

•	 Greater yield than traditional farming with the same amount of input;
•	 The same yields with reduced input;
•	 Greater yield than traditional farming with reduced input.
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The precision agriculture concept has drawn significant attention from farmers and researchers 
around the world (National Research Council, 1997; Zhang et al., 2002; Hedley, 2015). A complete 
precision agriculture system can be described in terms of four indispensable parts: (a) field variability 
sensing and information extraction, (b) decision making, (c) precision field control, and (d) operation 
and result assessment. The success of any precision agriculture system depends on the correct 
implementation of these four parts. Among the four parts, the decision-making step is the central 
component (Stafford, 2000). The decision-making process involves making the right management 
decisions based on the variability information derived from data collected in the field.

To make sound decisions, the most important step is to obtain accurate information about 
in-field variabilities. Agricultural engineers devote significant efforts to field variability sensing and 
information extraction, as well as to precision field control and operation. Sensing and information 
extraction are crucial parts of the system requiring that the desired information be obtained at the 
right location at the right time. Sensing and information extraction involve using various sensors 
to capture data on field conditions. Once the raw data are obtained, appropriate algorithms can be 
used to extract field information. Sensing either from a close distance (ground) or remotely, such 
as from airborne or spaceborne sensors, is an import method of field data acquisition (Scotford and 
Miller, 2005; Larson et al., 2008; McIntyre and Corner, 2016; Skowronek et al., 2017). Agricultural 
remote sensing typically involves the use of surface reflectance information in the visible (VIS) and 
near-infrared (NIR) region of the electromagnetic spectrum. It provides a fast and economical way 
to acquire detailed field data in a short period of time. Remote sensing has thus been used in a broad 
range of applications in the farming industry. Mulla (2013) reviewed progress made in the previous 
25 years on remote sensing in precision agriculture. The article pointed out the potential to collect 
massive amounts of data from different sensors and platforms for agricultural applications. Another 
review (Wolfert et al., 2017) further described scenarios in which big data influenced farm operations 
with its substantial impact on the entire food supply chain.

1.1.2  Hyperspectral Data

Traditionally, agricultural remote sensing has used multispectral broadband imagery. With advances 
in sensor technology over the past two decades, the introduction of hyperspectral remote sensing 
imagery to agriculture provided more opportunities for field-level information extraction. One 
comparison study (Mariotto et al., 2013) with satellite sensors demonstrated that hyperspectral 
imagery (Hyperion) was advantageous over multispectral broadband imagery (Landsat-7, Advanced 
Land Imager, Indian Remote Sensing, IKONOS, and QuickBird) in crop productivity modeling. 
The five crops under investigation were cotton, wheat, corn, rice, and alfalfa. The results showed 
that hyperspectral-based crop biophysical models explained around 25% greater variability than 
multispectral broadband-based models. For crop-type identification, hyperspectral data produced 
much higher accuracy (>90%) than multispectral broadband data (45%–84%).

Figure 1.1 presents a system approach to using hyperspectral imagery for precision agriculture 
applications. A hyperspectral image has more bands (tens to hundreds or even thousands) with a 
narrow bandwidth (one to several nanometers) in the same spectral range (e.g., 400–2500 nm) as 
a multispectral image. In this chapter, hyperspectral by default means narrowband spectral data. 
When presenting hyperspectral imagery, each pixel within an image is typically described as a data 
vector and the entire image as an image cube. Due to the high data volume of a hyperspectral image, 
hyperspectral imagery could potentially provide more information for precision agriculture. On the 
other hand, the increased number of data dimensions in a hyperspectral image also increases the 
complexity in image processing and might impact accuracy. One example of the influence of data 
dimensionality on accuracy is the Hughes phenomenon (Hughes, 1968), which shows that classification 
accuracy decreases as data dimensions increase, especially when a large number of wavebands is 
involved. To reduce image-processing complexity and to increase image-interpretation accuracy, it is 
desirable to reduce the original image’s dimensionality through a feature reduction process.
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There are two major types of feature reduction methods (Richard and Jia, 1999): feature selection 
and feature extraction. The purpose of feature selection is to remove the least effective features (image 
bands) and select the most effective features. Feature selection consists in evaluating an existing set 
of features of a hyperspectral image in order to select the most discriminating features and discard 
the rest. Feature extraction involves transforming a pixel vector into a new set of coordinates in 
which the basis for feature selection is more evident. Common feature-extraction techniques used 
in remote sensing include the linear combination of image bands, such as in principal component 
transformation and canonical analysis, and arithmetic transformation, such as vegetation indices. 
Vegetation indices and their application in precision farming will be discussed later in this chapter.

1.2  APPLICATIONS OF HYPERSPECTRAL DATA IN PRECISION AGRICULTURE

1.2.1  Precision Farming Management Considerations

Crop production in agriculture has relied heavily on the development and implementation of various 
technologies. Crop yield can be regarded as the single most important output of crop production 
systems. Other aspects related to crop production, such as field topography, soil characteristics 
and fertility, tillage practices, fertilizer application, crop rotation, seeding, weed and pest control, 
irrigation, and weather, can all be regarded as inputs for crop production systems. Remote sensing 
(Mulla, 2013) provides field variability information on the manageable inputs in a map-driven 
approach to precision farming practices. For example, one of the most successful precision farming 
technologies is variable rate technology (Zhang et al., 2002). This map-driven approach provides a 
prescription map based on field variability measured by remote sensing. Subsequent variable rate 
applications of fertilizer, herbicide, or other agricultural chemicals (Hedley, 2015) can be made 
using the prescription map. In this process, the use of the Global Positioning System (GPS) and a 

FIGURE 1.1  System diagram of using hyperspectral data in precision farming applications. (Adapted from 
Yao, H. 2004. Hyperspectral imagery for precision agriculture. PhD dissertation, University of Illinois at 
Urbana-Champaign, Urbana, IL.)
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geographic information system (GIS) is also necessary. Additionally, the concept of a “management 
zone” is an important topic in precision farming. Management zones are smaller sections of a large 
field where the field properties of interest are regarded as relatively homogeneous. Remote sensing 
has proved to be quite a useful tool in management zone delineation.

 Several issues demonstrate the importance of remote sensing technologies to precision farming, 
and they are discussed in what follows.

1.2.2 S patial, Spectral, and Temporal Considerations

Three issues relate to the use of hyperspectral remote sensing imagery in agricultural applications. 
They are the spatial, spectral, and temporal issues of an image. One of the advantages of airborne or 
spaceborne remote sensing is the large spatial coverage. Aerial and space remote sensing data can 
cover a large area in a short period of time. Thus, those techniques can provide a fast, accurate, and 
economical method for precision applications. Spatial resolution is an important factor that varies 
dramatically depending on the sensor platform. For proper data interpretation, the spatial resolution 
of remote sensing data and the ground truth should be matched. Sometimes spatial resampling on 
one data type is necessary to meet this requirement.

The second issue is image spectral range and resolution. The spectral range normally is in the 
VIS and NIR regions from 400 to 1000 nm. This is the region where plants show distinct spectral 
signatures under different conditions. Some applications, such as soil characterizations, extend 
the spectral region to shortwave infrared, such as from 1000 to 2500 nm. For spectral resolution, 
agricultural remote sensing has traditionally used multispectral images with a spectral resolution (or 
bandwidth) of several hundred nanometers. Multispectral images are sometimes called broadband 
images, with each broadband covering a specific wavelength range such as blue, green, red, or 
NIR. On the other hand, a hyperspectral image has a bandwidth of one to several nanometers and 
thus provides significant fine image spectral resolution. Hence, hyperspectral imagery provides the 
potential for allowing more detailed information extraction in agricultural applications.

The third issue is related to temporal hyperspectral data acquisition. It pertains to the time of 
acquisition of each image and the time interval between image acquisitions. For example, identifying 
the temporal relationship between image and yield is helpful for yield estimation and management. 
The spatial yield pattern does not appear immediately before harvest. Rather, the yield pattern is 
built up gradually during the growing season. One study found that the spectral reflectance of plants 
had both a temporal and a spatial aspect (Zwiggelaar, 1998). Because this variation in crop spectral 
reflectance during the growing season can be related to yield, it could help growers estimate yield 
during the growing season.

1.2.3  Hyperspectral Narrowband Vegetation Indices

Vegetation indices have been used widely in remote sensing. The most widely known vegetation 
index is the normalized difference vegetation index (NDVI) calculated by using the red and NIR 
wavelengths. The use of hyperspectral images makes it possible to build more refined vegetation 
indices by using distinct narrowbands and improving the indices for the correction of soil background 
effects (Gong et al., 2003). Many hyperspectral vegetation indices (HVIs) have been developed for 
different applications (Roberts et al., 2011; Mulla, 2013). The simplest vegetation index is based 
on individual bands. Filella et al. (1995) used individual image bands located at 430, 550, 680, and 
780 nm to build different indices for wheat nitrogen (N) status evaluation. Blackburn (1998) also 
used individual spectral bands to develop various hyperspectral indices for estimating chlorophyll 
concentrations.

Vegetation indices can be calculated based on band ratio and combinations of bands. Elvidge 
and Chen (1994) used narrowbands with a 4 nm bandwidth at 674 and 755 nm to calculate several 
narrowband indices for the leaf area index (LAI) and percentage green cover and compared the 



7Using Hyperspectral Data in Precision Farming Applications

results with the corresponding broadband indices. Hurcom and Harrison (1998) used the NDVI 
calculated from 677 and 833 nm to measure vegetation cover in a semiarid area. Serrano et al. (2000) 
used two image bands at 680 and 900 nm to compute vegetation indices, including the NDVI, to 
estimate the biomass and yield of winter wheat. Broge and Leblanc (2000) calculated narrowband 
vegetation indices from spectral bands centered at 670 and 800 nm and having a 10 nm bandwidth. 
Daughtry et al. (2000) used discrete bands at 550, 670, and 801 nm to develop narrowband indices 
for N stress estimation in corn.

Vegetation indices were also studied based on data from different platforms. Broge and Mortensen 
(2002) utilized field spectrometer data and spectral bands centered at 550, 650, and 800 nm and 
having a 10 nm bandwidth to calculate various HVIs. The authors also used an aerial hyperspectral 
image, the Compact Airborne Spectral Imager (CASI), and chose, based on their sensitivity to 
chlorophyll, several individual image bands for vegetation index calculation. These indices were 
used for LAI and N prediction over different types of crops. Another study using CASI images 
(Haboudane et al., 2002) calculated several vegetation indices using image bands centered at 550, 
670, 700, and 800 nm for crop chlorophyll content prediction. The reason for choosing 700 nm is 
that it is located at the edge between the region where vegetation reflectance is dominated by pigment 
absorption and the beginning of the red-edge region where reflectance is more affected by vegetation 
structural characteristics. Hyperspectral imagery acquired from a spaceborne Hyperion sensor was 
also used for the calculation of vegetation indices (Gong et al., 2003). This study evaluated 12 
vegetation indices using 168 bands selected from an image after removal of the water absorption 
bands and noise bands. These indices were two-band indices and were constructed using all possible 
two-band combinations.

A common trend in the aforementioned HVIs is the use of individual image bands, where most of 
the time one specific image band pair is selected based on crop characteristics. One reason for doing 
this is that it is simple to construct such indices. Another reason is that it is complicated to construct 
a multiple-narrowband–based index if one follows the traditional construction and comparison 
approach for all possible solutions. For example, even though many vegetation indices have been 
designed, the studies in which they were developed generally only tested several indices for result 
comparison and best index identification. This practice may miss some important indices in the 
vast vegetation index database. Yao (2004) presented a generic approach to automating the process 
for vegetation index selection and generation with hyperspectral data. The study first established a 
collection of available vegetation indices. A genetic algorithm (GA)-based method was then used to 
select the best vegetation index and spectral band combination for a specific application. The reader 
is also referred to a much broader discussion on wavebands and indices in other chapters of the first 
and this edition of Hyperspectral Remote Sensing of Vegetation.

1.2.4 A pplication 1: Soil Management Zoning

Research has been carried out using remotely sensed data for soil property mapping. It is expected 
that soil surface spectral reflectance could be used for soil constituent and nutrient content 
discrimination. In a review on remote sensing of soil properties, Ge et al. (2011a) pointed out that 
many soil properties, such as texture, organic and inorganic carbon content, macro- and micronutrient 
content, moisture content, cation exchange capacity (CEC), electrical conductivity, pH, and iron, 
could be quantified successfully to varying extents. As discussed earlier, soil property maps are used 
to prescribe variable rate applications. For example, a soil pH map is a good resource for decision 
making in variable rate lime applications (Schirrmann et al., 2011). Based on a simulation study 
using soil maps derived from spaceborne hyperspectral images, Casa et al. (2012) pointed out that 
site-specific irrigation could prevent significant water loss better than uniform irrigation. A general 
concept for utilizing remote sensing in soil nutrient mapping, as recommended by Moran et al. (1997), 
could be stated as follows: “Measurements of soil and crop properties at sample sites combined 
with multispectral imagery could produce accurate, timely maps of soil and crop characteristics 
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for defining precision management units.” Some ground- and lab-based studies have focused on 
using reflectance in the VIS and NIR region to determine soil nutrients. It was found that there 
are different sensitive regions in the electromagnetic spectrum for different soil nutrient properties 
under controlled lab conditions. Ben-Dor and Banin (1995) used reflectance curves in the infrared 
region to study six soil properties: clay content, specific surface area, CEC, hygroscopic moisture, 
carbonate content, and soil organic matter (OM) content. The results showed that the optimum 
prediction performance of each property required a different number of bands ranging from 25 to 
3113. Palacios-Orueta and Ustin (1998) found that the total iron and OM contents were the main 
factors affecting soil spectral shape and concluded that the levels of iron and OM could be identified 
from Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) images (NASA, Washington, DC). 
Thomasson et al. (2001) found that the spectral regions from 400 to 800 nm and from 950 to 1500 nm 
were sensitive to soil nutrient composition.

The foregoing results indicate that there were different sensitive regions in the image spectral 
data for different nutrient properties, and such data would be a viable source of information for 
soil nutrient content classification and mapping. In this case, single hyperspectral imagery would 
provide the opportunity for different nutrient classifications using various sensitivity ranges. 
Table 1.1 summarizes some research on soil property sensing with hyperspectral data. With a 
79-band hyperspectral image (400–1400 nm) Ben-Dor et al. (2002) were able to build a multiple 
regression model for each of four soil properties, OM, soil field moisture, soil saturated moisture, 
and soil salinity, each with different bands. Because the sensitive spectral region is valuable for 
soil nutrient identification and mapping using hyperspectral images, identification of such sensitive 
regions remains a major task in hyperspectral remote sensing research.

A more common and traditional method in this application is to explore spectral information 
using only hyperspectral data. Whiting et al. (2006) summarized spectral processing techniques for 
soil classification, mineral, moisture, and nutrient determinations and noted that it was possible to use 
the mineral spectral absorption position and depths to identify mineral contents. Ge and Thomasson 
(2006) incorporated wavelet analysis using conventional regression methods with field spectrometer 
measurements for soil property determination. It was found that Ca, Mg, clay, and Zn could be 
predicted with reasonable R2 values (>0.5). A different ground-based study (Hu et al., 2016) with 
401–2450 nm reflectance data and partial least-squares regression (PLSR) found that the estimation 
of soil plant-available P and K concentrations was not reliable when soil samples were grouped by 
CEC and OM, suggesting separate P and K estimation for each field. DeTar et al. (2008) pointed out 
that some soil properties could be accurately detected using aerial hyperspectral data over nearly 
bare fields. The best regression R2 (0.806) was for percentage sand. Other properties, such as silt, 
clay, chlorides, electrical conductivity, and P, had slightly lower R2 values (0.66–0.76). Bajwa and 
Tian (2005) used first derivatives from aerial hyperspectral data (400–1000 nm) and PLSR to model 
soil fertility factors, including pH, OM, Ca, Mg, P, K, and soil electrical conductivity. They drew the 
conclusion that certain wavebands explained a high degree of variability in the model. Another study 
(Hively et al., 2011) included shortwave near-infrared (SWNIR) airborne hyperspectral data (400–
2450 nm) in six tilled fields. The PLSR results showed that 13 out of 19 agronomically important 
elements under investigation had R2 > 0.5, that is, with carbon (0.65), aluminum (0.76), iron (0.75), 
and silt content (0.79).

Geostatistical techniques were also used with hyperspectral data to incorporate spatial information 
of soil samples for soil property determination. Examples of the techniques, such as regression-
kriging (Ge et al., 2011b) and collocated cokriging (Yao et al., 2014), proved that they could produce 
better results than regression modeling. Yao (2004) applied two geostatistical approaches, collocated 
ordinary cokriging and sequential Gaussian cosimulation, to predict soil nutrient factors. It was found 
that the cosimulation method yielded the best estimation (R2 = 0.71) for K prediction. Figure 1.2 
presents an in-field pH map generated from the cosimulation process (R2 = 0.58). It shows that the 
pH zones can be divided into two regions along the grass waterway located in the middle-left of the 
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TABLE 1.1
Hyperspectral Applications in Soil Property Sensing

Soil Sensing Application
Hyperspectral Narrowband 

Wavelength (nm)
Hyperspectral 

Analysis Technique R2 Reference

Aluminum 400–2450 PLS 0.76 Hively et al. (2011)

Ca 414, 574, 1406, 1854, 1166, 
1806, 1902, 2158, 2318

Discrete wavelet 
transform

0.73 Ge and Thomasson 
(2006)

Carbon 400–2450 PLSR 0.65 Hively et al. (2011)

Chlorides 763, 753, 657, 443 MLR 0.74 DeTar et al. (2008)

Clay 670, 2334, 446, 574, 638, 1086, 
406, 2110, 366, 1678, 1966

Discrete wavelet 
transform

0.56 Ge and Thomasson 
(2006)

Clay 889, 734, 666, 59 MLR 0.67 DeTar et al. (2008)

Electric conductivity (EC) 763, 753, 647, 443 MLR 0.67 DeTar et al. (2008)

Iron 400–2450 PLS 0.75 Hively et al. (2011)

K 1101–2450 PLSR 0.44 Hu et al. (2016)

K 471 Collocated cokriging 0.84 Yao et al. (2014)

Mg 510, 1406, 1726, 1854, 398, 558, 
686, 750, 1422, 1742

Discrete wavelet 
transform

0.73 Ge and Thomasson 
(2006)

OM 471 Collocated cokriging 0.74 Yao et al. (2014)

Organic matter 722, 2328, 705, 1678 MLR 0.83 Ben-Dor et al. (2002)

P 1101–2450 PLSR 0.35 Hu et al. (2016)

P 753, 724, 531, 502 MLR 0.70 DeTar et al. (2008)

P 498 Collocated cokriging 0.67 Yao et al. (2014)

PH 639 Collocated cokriging 0.76 Yao et al. (2014)

pH 986, 947, 889, 763 MLR 0.62 DeTar et al. (2008)

Sand 627, 647, 724, 840 Regression 0.81 DeTar et al. (2008)

Silt content 400–2450 PLS 0.79 Hively et al. (2011)

Silt 995, 957, 637, 579 MLR 0.75 DeTar et al. 2008)

Soil field Moisture 739, 1650, 689 MLR 0.65 Ben-Dor et al. (2002)

Soil salinity (EC) 739, 1650, 2166 MLR 0.67 Ben-Dor et al. (2002)

Soil saturated moisture 2085, 2314, 2183, 1563, 1538 MLR 0.76 Ben-Dor et al. (2002)

Zn 1054, 2334, 958, 462, 494, 662, 
654, 2158, 2350

Discrete wavelet 
transform

0.57 Ge and Thomasson 
(2006)

FIGURE 1.2  In-field variability of soil pH as indicated by sequential Gaussian cosimulation method 
using aerial hyperspectral data. (From Yao, H. 2004. Hyperspectral imagery for precision agriculture. PhD 
dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.)
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field. To the left of the waterway, the soil is acidic with low pH value estimations. To the right of the 
waterway the soil varies from acidic to basic. This analysis thus provided important information to 
assist in decision making on variable rate lime applications. Ge et al. (2007) worked on a regression-
kriging method to analyze soil sampling data and reflectance measurements. The regression-kriging 
model R2 was 0.65 for Na, which was much better than a principal component regression approach. 
Bilgili et al. (2011) also concluded that cokriging and regression-kriging improved the predictions 
of soil properties with reflectance data. Ladoni et al. (2010) reviewed statistical techniques including 
simple regression, the “soil line” approach, principal component analysis, and geostatistics for soil 
OM estimation using remote sensing data. The study pointed out that remote sensing data could help 
in the design of a soil sampling strategy.

1.2.5 A pplication 2: Weed Sensing

Effective weed management is of vital importance for ensuring the profitability of agricultural 
and horticultural crops. However, weed control has relied heavily on the application of herbicides, 
leading to increased environmental contamination that has become of concern to the general public 
and that imposes high costs on producers (Timmermann et al., 2003). This situation calls for more 
effective use of herbicides, that is, applying a minimal dosage of herbicide to only weeds. Recent 
years has seen a growing trend toward organic farming, particularly in vegetable crop production. 
Weed control in organic farming practice excludes the use of synthetic chemicals and often requires 
mechanical means to control weeds without collateral damage to crops. For both reduced herbicide 
application and organic farming scenarios, it is self-evident that there must be an effective and 
reliable weed sensing system that allows for the differentiation of weeds from crops and soils. 
Numerous sensing technologies have been investigated and developed for weed detection (Thorp 
and Tian, 2004), among which optical and machine vision systems dominate. Compared with 
conventional machine vision systems, remote sensing provides a fast and economical means for 
weed mapping. However, because of the similarities between weeds and crops, as well as soil and 
vegetation interactions before canopy closure (Thorp and Tian, 2004), the use of remote sensing for 
weed mapping remains a challenging task.

Hyperspectral imagery has been used from ground-based (Thenkabail et  al., 2004; Huang 
et al., 2016a; Wendel and Underwood, 2016), airborne (Mirik et al., 2013; Skowronek et al., 2017), 
and spaceborne (McIntyre and Corner, 2016) platforms for weed sensing applications. Table 1.2 
presents some studies that used hyperspectral data for weed sensing and mapping. The information 
enrichment offered by hyperspectral sensors has a direct implication for weed detection, which, 
however, has long been a very challenging task stemming from the biological complexity of a rather 
large number of weed species and their similarities to crop plants in the VIS color domain as well as 
in the morphological feature space. To this end, a large amount of research work in the literature has 
been found in the area of developing hyperspectral-based weed detection methods. Though the fine 
spectral resolution of hyperspectral images provides an invaluable source of information for more 
accurate classification, it is also agreed that the high dimensionality of the data presents challenges in 
image analysis and classification. Without the development of effective image processing and pattern 
recognition algorithms, the advantages offered by the rich information in the spectral dimension 
could not be utilized effectively. Furthermore, these algorithms are often application-specific 
and require substantial efforts for exploration and testing. To cope with the high dimensionality 
of hyperspectral data, multivariate analysis and computational intelligence techniques have been 
widely used and reported in the literature. When processing raw hyperspectral data to delineate the 
spectral characteristics of weeds, techniques such as principal component analysis (Koger et al., 
2003; Thenkabail et al., 2004), wavelet transforms (Koger et al., 2003; Okamoto et al., 2007), and 
spectral angle mapping (Hestir et al., 2008) are often used. Commonly found classification algorithms 
include linear or stepwise discriminant analysis (Thenkabail et al., 2004; Nieuwenhuizen et al., 2010; 
Wendel and Underwood, 2016), spectral mixture analysis (Koger et al., 2003; Hestir et al., 2008), 
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artificial neural networks (ANNs) (Goel et al., 2003; Karimi et al., 2006; Nieuwenhuizen et al., 
2010; Eddy et al., 2013), support vector machines (SVMs) (Karimi et al., 2006; Mirik et al., 2013; 
Wendel and Underwood, 2016), mixture-tuned matched filtering (MTMF) (Glenn et al., 2005), 
Maxent modeling classification (Skowronek et al., 2017), and matched filter with logistic regression 
(McIntyre and Corner, 2016).

Using hyperspectral images for vegetation analysis, Thenkabail et al. (2004) identified 22 optimal 
bands (in the 400–2500 nm spectral range) that best characterize and classify vegetation and 
agricultural crops. Accuracies of over 90% were attained when classifying shrubs, weeds, grasses, 
and agricultural crop species. Hyperspectral imaging for weed sensing can be categorized into 
the following typical application areas: mapping invasive weed species (Glenn et al., 2005; Hestir 
et al., 2008), weed stress characterization (Goel et al., 2003; Karimi et al., 2006; Herrmann et al., 
2013; Hadoux et al., 2014), and weed species identification (Koger et al., 2003; Piron et al., 2008). 

TABLE 1.2
List of Hyperspectral Applications in Weed Sensing and Mapping

Weed Sensing 
Application

Hyperspectral 
Narrowband 

Wavelength (nm)

Hyperspectral 
Analysis 

Techniques Results Reference

Weed mapping

•	 Ground based 13–22 bands selected in 
400–2500

PCA, LL R2M, 
SDA, DGVI

>90% accuracy Thenkabail et al. (2004)

•	 Ground based 14 bands selected in 
400–1000

LDA + MLC >90% accuracy Huang et al. (2016a)

•	 Ground based 20 PCA features in 
391–887

LDA, SVM >90% accuracy Wendel and Underwood 
(2016)

•	 Airborne 25 bands in 509–706 SVM 79% preflower, 
91% peak flowering

Mirik et al. (2013)

•	 Airborne 285 bands in 412–2432 Maxent modeling 75% accuracy Skowronek et al. (2017)

•	 Spaceborne 49 bands in 428–917 Matched filter 
classification

>81% accuracy McIntyre and Corner 
(2016)

Weed spectral characterization
•	 Ground based 2151 bands in 

350–2500
Wavelet 87% accuracy Koger et al. (2003)

•	 Ground based 10 bands selected from 
450–900, 900–1650

DA, NN 87% accuracy Nieuwenhuizen et al. 
(2010)

•	 Airborne 72 bands, 409–947 SVM 86% Karimi et al. (2006)

Invasive weed species
•	 Airborne 126 bands in 450–2500 MTMF >87% Glenn et al. (2005)

•	 Ground based 172 bands in 400–900 MLC >94% Samiappan et al. (2017)

Weed stress characterization

•	 Airborne 71 bands in 409–947 GLM Vary with different 
growth stage

Goel et al. (2003)

•	 Ground based 91 bands in 400–850 PLS-LDA 85% Herrmann et al. (2013)

•	 Ground based 160 bands in 415–1000 PLS-LDA 96% Hadoux et al. (2014)

Weed species identification

•	 Ground based Multispectral bands at 
450, 550, and 700

QDA 72% Piron et al. (2008)
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For invasive weed species mapping, Hestir et  al. (2008) used remotely sensed hyperspectral 
images to map invasive weeds in wetland systems. They reported a moderate mapping accuracy 
primarily due to significant spectral variation of the mapped invasive species. Samiappan et al. 
(2017) applied a hybrid approach to wetland plant and weed species mapping. In this approach, 
laboratory hyperspectral data were first used to classify different wetland species to identify optimal 
multispectral bands that could discriminate between species. Second, an unmanned aerial vehicle 
(UAV) was used to take multispectral broadband data over wetlands to map 11 species. The UAV 
multispectral broadband data achieved an overall accuracy of 75% in a 4-class situation and a 58% 
overall accuracy in an 11-class situation.

For weed stress characterization, Goel et al. (2003) conducted research using hyperspectral data 
acquired by a CASI imager to classify the results of four different weed management strategies in 
corn fields where three different N application rates were also employed. Satisfactory classification 
results were obtained when one factor (weed or N) was considered at a time. Ground-based weed 
detection studies had the advantage of using hyperspectral images with both high spectral and 
high spatial resolutions. The results provided support for upscale detection algorithms for airborne 
or spaceborne imagers. One ground-based study (Hadoux et al., 2014) on identifying weeds from 
wheat plants used image spectra data collected at different times and from different locations in a 
field. It was found that spectral pretreatment with logarithm transformation combined with partial 
least-squares linear discriminant analysis (PLS-LDA) produced the best results. Herrmann et al. 
(2013) found it was possible to separate between weeds (grasses and broadleaf weeds) and wheat 
with high spectral and spatial resolution ground-based hyperspectral images using PLS-LDA. When 
hyperspectral images were used to identify seedling cabbages and grass weeds (Deng et al., 2015), 
a spectral angle mapper (SAM) classifier could successfully separate weeds from soil background 
and cabbage leaves.

As for weed species identification, Vrindts et al. (2002) used reflectance spectra to classify 
sugar beets, corn, and seven weed species (Figure 1.3). When tested under controlled laboratory 
conditions, crops and weeds were separated with greater than 97% accuracy using a limited number 
of wavelength band ratios. In testing under field conditions, over 90% of crop and weed spectra were 

FIGURE 1.3  Reflectance spectra of corn, sugar beet, lambsquarter, annual mercury, bluegrass. (From 
Vrindts, E. et al. 2002. Precision Agriculture, 3, 63–80.)
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classified correctly when the model was specific to the prevailing light conditions. Nieuwenhuizen 
et al. (2010) investigated the use of two spectral sensors that employed spectra of 450–900 and 
900–1650 nm for differentiating volunteer potato plants from sugar beets. They found the best 
classification accuracy was achieved when 10 wavebands in the NIR range were coupled with 
an ANN algorithm. Zhang and Slaughter (2011) tested the feasibility of identifying six tomato 
cultivars from two weed species using hyperspectral images in different thermal conditions. The 
classification accuracy was 92.2% using a global calibration method to cope with four temperature 
conditions.

1.2.6 A pplication 3: Crop Herbicide Damage Detection

Detection and assessment of herbicide damage to plants are also important in precision agriculture. 
One main application of such detection is in the estimation of plant damage due to herbicide drift. 
Herbicide drift (EPA, 2015) happens when herbicide particles move into off-target areas under 
weather conditions favorable to drift. It happens more commonly during aerial chemical applications. 
When this occurs, unwanted plant damage can follow when the herbicide lands on off-target plant 
surfaces (Figure 1.4). Farmers are interested in determining the severity of unintended injury as 
early as possible, especially before visible symptoms are observable by the naked eye, in order to 
take appropriate action to best protect their interests. Thus, it is important to be able to detect the 
onset of crop injury caused by herbicide drift and preferably be able to determine possible sources 
and the direction of drift and dosage levels from the drift. The use of hyperspectral data for such an 
application depends on how the data are collected, that is, whether a fiber optic spectrometer or a 
hyperspectral imager is used (Yao et al., 2012).

Table 1.3 provides a summary of research on the use of hyperspectral data for herbicide damage 
detection. Hyperspectral data collected from a fiber optic spectrometer contain information similar 
to data from a hyperspectral imager. The main difference is that a spectrometer measures only 
a point that provides no spatial information about the data. Due to their ease of use, visible NIR 
spectrometers are widely employed in many applications, including herbicide damage assessment 
(Henry et al., 2004; Huang et al., 2012; Suarez et al., 2017). Since reflectance data are a mixed signal 
of all the reflectance within a probe’s field of view, necessary steps must be taken to ensure that 
high-quality spectral data are acquired. One data processing method for obtaining pure endmember 
signals is through spectral unmixing if spectral information from different endmembers is known 

FIGURE 1.4  Glyphosate crop injury figure: soybean injured by off-target drift of aerially applied glyphosate.
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beforehand. If not, precautions must be taken in the data collection. For example, Huang et al. 
(2012) avoided the spectral mixture problem by holding the optical fiber directly over the surface 
of a single leaf. This approach limited the viewing area so reflectance from the entire leaf could not 
be measured. In a field situation, Huang et al. (2016c) had to exclude some data from analysis due 
to spectral mixing of crop plants and weeds. Zhang et al. (2010) conducted a study to evaluate the 
efficacy (or plant damage) of glyphosate in aerial applications. Spectral data were collected with 
a ground-vehicle-mounted spectrometer. Spectral data were processed using NDVI and analysis 
of variance (ANOVA). The results indicated at 17 days after treatment (DAT) that the treatment 
difference was significant, while there was no difference between 1 and 8 DAT. The days after 
treatment value to observe significant treatment differences was much greater than in other studies. 
In one study conducted for the purpose of evaluating field glyphosate damage in non-glyphosate-
resistant (non-GR) soybean and non-GR cotton plants (Zhao et al., 2014), it was found that herbicide 
damage could be detected at 72 h after treatment (HAT) with vegetation indices such as NDVI. 
A physically based leaf radiation transfer model analysis conducted as part of the study further 
indicated that the damage could be detected at 48 HAT. Huang et al. (2016c) further researched 
dicamba drift damage on soybean plants in a field study where vegetation-index-based results showed 
the difficulty of differentiating the dose response of dicamba treatment at 72 HAT. Meanwhile, the 
difference between treatment groups and control was evident at 24 HAT. A recent work (Suarez et al., 
2017) with hyperspectral data on cotton plants applied with the herbicide 2,4-D demonstrated that 
damage could be identified at 2 DAT.

A hyperspectral imager can provide hyperspectral data with both high spectral and spatial 
resolutions. It enables spectral data analysis to be carried out only on the pure plant canopy or 
leaf spectra. A general approach in data preparation is that a segmentation/classification step is 
used to separate plant pixels from other pixels. Then pure plant spectra can be extracted from the 
image for later analysis. Yao et al. (2012) implemented this process in a greenhouse-based study to 
evaluate glyphosate damage to soybean plants. It was found that while the vegetation indices could 
detect plant injury at 24 HAT, the vegetation indices had difficulty in separating treatment groups 
with different dosages. Furthermore, a modified derivative analysis developed in the study could 
potentially detect crop injury at 4 HAT with the first derivatives located at wavelengths of 519, 670, 

TABLE 1.3
List of Hyperspectral Applications in Herbicide Damage Detection

Herbicide Damage 
Application

Hyperspectral 
Narrowband 

Wavelength (nm)
Hyperspectral 

Analysis Technique Results Reference

Paraquat injury on 
corn plants

2,151 bands in 
350–2500

Wavelet Detection with 24 
hours after treatment

Henry et al. (2004)

Glyphosate injury on 
soybean plants

676, 751 NDVI, SAVI, TVI, 
VNNIR, VNIR

Detection with 24 
hours after treatment

Yao et al. (2012)

Glyphosate injury on 
soybean plants

519, 670, 685, 697 Modified first 
derivatives

Detection with 4 hours 
after treatment

Yao et al. (2012)

Glyphosate injury on 
soybean plants

662, 734 SAVI and DVI Detection with 24 
hours after treatment

Huang et al. (2012)

Glyphosate injury on 
cotton plants

400–2500 Canonical analysis Detection 48 h after 
treatment

Zhao et al. (2014)

2, 4-D injury on 
cotton plants

400–900 PLS Detection 2 days after 
treatment

Suarez et al. (2017)

Dicambo injury on 
cotton plants

531, 550, 570, 700 ARI, PRI Detection 24 h after 
treatment

Huang et al. (2016c)
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685, and 697 nm. In addition, the derivatives also demonstrated the ability to differentiate treatment 
groups with different dosages.

1.2.7 A pplication 4: Hyperspectral Imagery for Crop Nitrogen Stress Detection

In-season crop nutrient management, such as side dressing applications of N for corn plants, 
requires crop N content estimation (N stress detection) for the generation of an application map (or 
prescription map). Many studies have suggested the use of remotely sensed canopy reflectance for 
crop N detection. Different N levels in plants affect crop chlorophyll concentrations and result in 
different canopy reflectance spectra (Walburg et al., 1982). For ground-truth estimation, the actual 
plant N level can be obtained by (1) using as-applied plot N level; (2) chemical measurement of plants 
tissues, or (3) estimation of the leaf chlorophyll concentration using a field instrument such as the 
Minolta SPAD meter.

Table 1.4 presents some studies of hyperspectral-based crop N sensing. To estimate corn plant N, 
Zara et al. (2000) found that the slope of the reflectance spectra between 560 and 580 nm produced 
the best results for corn N stress detection with AVIRIS aerial hyperspectral images. Three traditional 
indices (Cassady et al., 2000), NDVI, Photosynthetic Reflectance Index, and Red-Edge Vegetation 
Stress Index (RVSI), were computed using certain bands from AVIRIS images. It was found that 
RVSI had the highest correlation with both applied N and measured chlorophyll levels in corn. Boegh 
et al. (2002) concluded that CASI image green and NIR bands, which are the maximum reflectance 
bands of chlorophyll, were the most important predictors. Haboudane et al. (2002) worked to develop 
a combined modeling-based and index-based approach to predicting corn chlorophyll content using 
CASI imagery. This method used the ratio of an index sensitive to low chlorophyll values to a soil-
adjusted index, both calculated from distinct narrow image bands, to build a prediction model. 
Yao (2004) developed a generic vegetation index generation algorithm and obtained an R2 of 0.79 
for corn plant N estimation. A recent study (Gabriel et al., 2017) indicated that the model R2 for 
corn N prediction could be 0.89. In this work, the spatial resolution from the VIS-NIR airborne 
hyperspectral sensor was 30 × 30 cm. The results were produced from indices (i.e., Transformed 
Chlorophyll Absorption Reflectance Index/Optimized Soil-Adjusted Vegetation Index, or TCARI/
OSAVI) that combined chlorophyll estimation with canopy structure.

Rice is an important staple food for two-thirds of the world’s population. Nguyen et al. (2006) 
developed regression models for rice plant N estimation with R2 from 0.76 to 0.87 for validation data. 
The in-field variation maps from this study are presented in Figure 1.5. Bajwa (2006) stated that PLSR 
models could explain 47% to 71% of the variability in rice plant N. Additionally, in a 3-year study, a 
regression model was reported to have an r = 0.938 for N estimation in rice (Ryu et al., 2009). Inoue 
et al. (2012) reported that PLSR prediction of rice N had better results (R2 = 0.89) with 56 selected 
wavebands (25% of the total) than with all bands. Furthermore, a ratio spectral index (RSI) using 
derivatives from bands at 740 and 520 nm yielded a prediction R2 of 0.90. Mahajan et al. (2017) 
attempted to estimate rice N (R2 = 0.80), phosphorus (R2 = 0.69), and sulfur (R2 = 0.73) content using 
hyperspectral data collected from an Analytical Spectral Devices (ASD) (ASD Inc., Longmont, CO) 
field spectrometer with a wavelength range of 350–2500 nm. Unlike other similar studies, this work 
used reflectance information from the SWNIR region (1000–2500 nm). Research (Onoyama et al., 
2015) was also carried out to incorporate both reflectance and growing degree-days (GDD) to account 
for differences in growing temperature conditions. The PLSR model showed that spectral information 
could not predict variation in the amount of growth caused by weather variation expressed as GDD.

Similar studies for plant N estimation have been conducted on other crops. Christensen et al. 
(2004) found that N content in barley could be predicted with 81% accuracy. Xu et  al. (2014) 
worked on malting barley N estimation using an ASD spectrometer and reported a prediction R2 of 
0.82 with a combined model that integrated the first-order derivatives from five wavebands. Zhao 
et al. (2005) achieved an accuracy of 62.4% in discriminating N in cotton plants with canonical 
discriminant analysis. Working on cotton, Raper and Varco (2015) used a diode array spectrometer 
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with a wavelength range of 400–850 nm. Their research suggested a simplified canopy chlorophyll 
content index using bands from red, red-edge, and NIR regions that produced an R2 of 0.62. Jain 
et al. (2007) developed a regression model for N estimation in potato plants with R2 equal to 0.551. 
Nigon et al. (2015) found potato N estimation could have an R2 of 0.79. Wheat, a major crop, was 
also studied widely for its N estimation. Li et al. (2010) studied N content in winter wheat. The 
R2 was 0.58 in an experimental field and 0.51 in a farmer’s field. Mahajan et al. (2014) worked 
on simultaneously monitoring nitrogen, phosphorus, sulfur, and potassium content in wheat. The 
sensor platform was an ASD 350–2500 nm spectrometer. The study incorporated SWNIR bands in 
the prediction model with an R2 of 0.47 for phosphorus. He et al. (2016) took a different approach 
to spectral data collection, where reflectance was measured from different angles of wheat plants. 

TABLE 1.4
List of Hyperspectral Applications in Crop Nitrogen Sensing

Nitrogen Sensing 
Application

Hyperspectral 
Narrowband 

Wavelength (nm)
Hyperspectral 

Analysis Technique Results Reference

Corn

•	 Airborne 560, 580 Band slope R2 = 0.97 Zara et al. (2000)

•	 Airborne 714, 733, 752 RVSI R2 = 0.82 Cassady et al. (2000)

•	 Airborne 550 Regression R2 = 0.78 Boegh et al. (2002)

•	 Airborne 550, 670, 700, 800 TCARI/OSAVI R2 = 0.81 Haboudane et al. (2002)

•	 Airborne Selected bands from 
400–900

Genetic algorithms 
selected VIs

R2 = 0.79 Yao (2004)

•	 Airborne 550, 670, 700, 800 TCARI/OSAVI R2 = 0.89 Gabriel et al. (2017)

Rice
•	 Airborne 68 bands from 

400–1000
PLSR R = 0.938 Ryu et al. (2009)

•	 Airborne 740 and 520 Ratio of first derivatives R2 = 0.9 Inoue et al. (2012)

•	 Ground based 300–1100 PLSR R2 = 0.76, 0.87 Nguyen et al. (2006)

•	 Ground based 56 selected bands 
from 400–1100

PLSR R2 = 0.89 Inoue et al. (2012)

•	 Ground based 350–2500 NRI1510 R2 = 0.8 Mahajan et al. (2017)

Barley
•	 Ground based 400–750 PLSR 81% accuracy Christensen et al. (2004)

•	 Ground based 496, 499, 689, 797, 
882

Regression of first 
derivatives

R2 = 0.82 Xu et al. (2014)

Cotton
•	 Ground based 400–1000 Canonical discriminant 

analysis
62.4% accuracy Zhao et al. (2005)

•	 Ground based 650, 720, 840 SCCCI R2 = 0.62 Raper and Varco (2015)

Potato
•	 Airborne 401 to 982 PLSR R2 = 0.79 Nigon et al. (2015)

•	 Ground based 710, 750 Ratio index R2 = 0.551 Jain et al. (2007)

Wheat
•	 Ground based 370, 400 Ratio index R2 = 0.58 Li et al. (2010)

•	 Ground based 445, 573, 720, 735 AIVI R2 = 0.84–0.87 He et al. (2016)
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A novel Angular Insensitivity Vegetation Index (AIVI) based on red-edge, blue, and green bands 
was introduced. The most consistent prediction (R2 = 0.84–0.87) from AIVI was observed at ±20° 
(including nadir) with reference to the nadir position.

1.2.8 A pplication 5: In-Season Crop Yield Estimation

Crop yield prediction or estimation is one of the most important activities in the farming industry. 
Traditionally, farmers have estimated crop yield for a whole field or for large parts of a field. This 

(a)

(b)

FIGURE 1.5  In-field variation of measured (a) and calculated (b) values by PLSR of shoot dry weight (SDW), 
shoot N concentration (SN), and shoot N density (SND) in year 2004. The waveband selected by a multiple 
stepwise linear regression for an N nutrition index (NNI) calculation are 977, 583, 702, and 725 nm. (From 
Nguyen, H.T. et al. 2006. Precision Agriculture, 7, 249–264.)
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approach involves manually counting the number of ears per acre and the number of kernels per ear 
after the kernel number is established. The total yield of a field can also be predicted with a yield 
model, using information such as weather, crop type, and up to 170 soil parameters (Villalobos et al., 
1996). Utilizing a yield monitor and GPS, crop yields can be measured and stored with detailed 
location information on the go. In this way, yield maps with both high accuracy and high spatial 
resolution can be generated (Taylor et al., 2001) to be incorporated into the farm GIS database. For 
management practices, yield maps can be used to provide input prescriptions for future growing 
seasons. Although a yield monitor can output yield data with considerable detail in real time, its 
yield estimation is still a “postharvest” estimation.

One commonly used method for in-season yield monitoring is based on remote sensing images 
(Ma et al., 1996; Taylor et al., 1997). Different crop yields can cause different crop canopy reflectance. 
Such reflectance differences can be recorded by images captured from a close distance or by aerial 
or satellite remote sensing systems. Based on satellite data, regression models (Thenkabail et al., 
1994; Hammar et al., 1997) were developed for whole-field yield estimation. Satellite images were 
also used for an in-field yield variability study (Hayes and Decker, 1996). Table 1.5 below presents 
some work in using hyperspectral data for crop yield estimation.

TABLE 1.5
List of Hyperspectral Applications in Yield Estimation

Yield Estimation 
Application

Hyperspectral 
Narrowband 

Wavelength (nm)
Hyperspectral 

Analysis Technique Results Reference

Corn

•	 Airborne Selected bands in 
400–900 (including 
694, 700, 706)

GAs selected VIs R2 = 0.59 Yao (2004)

•	 Airborne 408–947 ANN R = 0.76 Uno et al. (2005)

•	 Ground based 355–2300 PLSR R2 = 0.92 Perbandt et al. (2011)

Sorghum
•	 Airborne 457–922 Regression R2 = 0.69, 0.82 Yang et al. (2004a)

•	 Airborne 457–922 Spectral unmixing R = 0.67, 0.82 Yang et al. (2007b)

•	 Airborne 477–844 SAM R2 = 0.60, 0.81 Yang et al. (2008)

•	 Airborne 550, 670, 800, 825 MSAVI R = 0.79, 0.86 Yang and Everitt (2012)

Wheat
•	 Spaceborne 400–1000 Crop model based Yield range matched Migdall et al. (2009)

•	 Ground based 350–1050 GA + PLSR Best estimation at 125 
days after planting

Thorp et al. (2017)

•	 Ground based 630, 750 NDVI R = 0.74 Reyniers et al. (2004)

Cotton
•	 Airborne 457–922 Regression R2 = 0.61, 0.69 Yang et al. (2004b)

Onion
•	 Ground based 670, 800 TSAVI R2 = 0.67 Marino and Alvino (2015)

Rice
•	 Ground based 730, 780 NDRE r = 0.90 Kanke et al. (2016)
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1.2.8.1  Corn Yield Estimation
Yao (2004) worked on using aerial hyperspectral images for corn yield estimation. The ground-
truth yield ranging from 128 to 259 bushels/acre was obtained with a plot harvester for each 50 m2 
experimental plot. The total number of harvested plots was 570. The R2 value for yield estimation 
with a vegetation index was 0.59. Uno et al. (2005) also worked on corn yield with aerial hyperspectral 
imaging. The ground-truth yield was obtained from four 1 m2 subplots for each 400 m2 treatment 
plot (48 total treatment plots). The highest yield prediction using an ANN was r = 0.76. The study 
concluded that there was no clear difference between ANNs and stepwise multiple linear regression 
models. Perbandt et al. (2011) conducted a study to collect corn plant reflectance data at different 
angles for yield estimation using a field spectrometer. It was found that the best prediction R2 (0.92) 
was with off-nadir measurements rather than with nadir measurements.

1.2.8.2  Grain Sorghum Yield Estimation
Yang et al. (2004a) used aerial hyperspectral images of two Texas fields to estimate grain sorghum 
yield. The ground-truth yield was collected with a grain combine. It was reported that the sorghum 
yield significantly correlated with the VIS and NIR bands. Regression analysis using both principal 
component transformation and stepwise band selection produced similar results. The yield estimation 
R2 was from 0.69 to 0.82 for the two fields. In addition, linear spectral unmixing techniques were 
used to estimate sorghum yield variability using aerial hyperspectral (Yang et  al., 2007b) and 
multispectral broadband (Yang et al., 2007a) images. These techniques were based on the assumption 
that canopy reflectance is a linear mixture of different spectral components (endmembers) such 
as soil and sorghum plants. The multispectral broadband image study gave the best correlation 
coefficient, 0.90. The two-study field with hyperspectral data had the best fraction-based R values 
(0.67 and 0.82). Yang et al. (2008) further applied a SAM algorithm for sorghum yield estimation. It 
was concluded that the SAM technique could be used alone or with other vegetation indices for yield 
estimation with hyperspectral imagery. Yang et al. (2009) also showed that hyperspectral imagery 
had the potential to improve yield estimation accuracy significantly compared with multispectral 
imagery. In this application, relative yield variation can be estimated using a modified soil-adjusted 
vegetation index (MSAVI) image based on one NIR band (800 or 825 nm) and one VIS band (550 
or 670 nm) (Yang and Everitt, 2012).

1.2.8.3  Wheat Yield Estimation
In a study using ground-based canopy reflectance for winter wheat yield estimation, it was found 
that spectral indices, such as infrared/red, the normalized difference (ND), the transformed 
vegetation index, and the greenness index obtained from flowering to milking stages, gave the 
best results (Das et al., 1993). The indices were calculated by integrating the reflectance data taken 
by spectrometer into broadband images. Reyniers et al. (2004) used a line scanner mounted on a 
tractor for hyperspectral data acquisition. In this study, winter wheat was planted on 60 plots of 
12 × 16 m each. The ground-truth yield data were collected through a plot harvester. Narrowband 
NDVI calculated at wavelengths of 630 and 750 nm was used for crop coverage measurement. 
The optically measured crop coverage was positively correlated with grain yield. The correlation 
coefficient was 0.74 between yield and coverage data. Migdall et al. (2009) also provided a modeling-
based approach to simulate winter wheat yield using airborne and spaceborne hyperspectral 
imagery. Thorp et al. (2017) compared broadband reflectance, narrowband reflectance, and spectral 
derivatives to estimate durum wheat traits, including LAI, canopy weight, plant N content, grain 
yield, and grain N content. Reflectance data were collected from a field spectrometer. The study 
developed a GA to identify the most relevant spectral features for the aforementioned durum wheat 
trait estimation. Results showed that the GA-based method had the least root-mean-square errors 
of cross-validation (RMSECV).
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1.2.8.4  Other Crops
Rasmussen (1997) used advanced very-high-resolution radiometer (AVHRR) images for millet yield 
forecasting. The NDVI calculated from the broadband data was used to build a yield regression 
model. The researcher concluded that millet yield could be measured 1 month before harvest. Yang 
et al. (2004b) used aerial hyperspectral images to estimate cotton yield on two fields in Texas. Cotton 
yield ground-truth data were generated using a cotton yield monitor mounted on a cotton picker. 
To compensate for image resolution and geo-registration errors, both the image data and yield data 
were aggregated into 8 × 8 m cells. The stepwise regression analysis produced a yield estimation R2 
of 0.61 and 0.69 for the two experimental fields. The yield variation map of one field is presented in 
Figure 1.6. Pettersson et al. (2006) used a handheld multispectral scanner (400–1000 nm with 10 nm 
intervals) to collect canopy reflectance data on malting barley. The reflectance data were then used 
to generate nine vegetation indices. It was reported that all the vegetation indices were significantly 
correlated with grain yield. The correlation coefficient was 0.9 for the regression models. Marino 
and Alvino (2015) used field spectrometer measurements to estimate onion yield. For ground-truth 
establishment, the study applied ordinary kriging, and four productive zones were identified in the 
field. Among 11 vegetation indices tested in the analysis, it was concluded that the transformed soil-
adjusted vegetation index (TSAVI) seemed to be more effective at identifying onion yield spatial 
variability. In estimating rice yield, Kanke et al. (2016) mentioned that water turbidity affected 
spectral reflectance when canopy coverage was less than 50%. Results showed that rice grain yield 
might be more accurately predicted using a normalized difference red-edge-based index (NDRE, 
r = 0.90) and ratio indices rather than red-based normalized and ratio indices.

1.2.8.5  Hyperspectral Imagery for Temporal Yield Analysis
Research has been carried out to establish the temporal relationship between remote sensing imagery 
and yield. Moran et al. (1997) suggested that remote sensing images from the late growing season 
had the best results for preharvest crop yield prediction. Vellidis et al. (1999) used an unsupervised 
classification method and found that a cotton yield pattern could be identified in the early growth 
stage, within 10 weeks of crop growth, from multispectral broadband color infrared aerial photos. 
Although the aforementioned multispectral image-based research showed that images obtained 
from different times and different broadband vegetation indices could be used for yield estimation, 
problems like when to acquire images and how to properly correlate spectral information from 
hyperspectral imagery with yield still require much more research.

(a) (b)

FIGURE 1.6  In-field yield variability maps generated from (a) an airborne hyperspectral image using a 
nine-band regression model and (b) yield monitor data for a 16 ha cotton field. The nine bands are 499, 546, 
601, 702, 717, 738, 771, 778, and 826 nm. (From Yang, C. et al. 2004b. Precision Agriculture, 5, 445–461.)
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The potential for using hyperspectral image data for yield estimation varied based on the date 
of image data acquisition during the growing season. From a decision-making point of view, it 
is desirable to know when would be the best time for image data collection. The best time can 
be determined by estimation accuracy, economic considerations, and other factors. Of these, the 
ability to accurately estimate crop yield is of utmost importance. Several researchers have worked 
on using hyperspectral imagery for temporal yield analysis. Goel et al. (2003) showed that the largest 
correlation between reflectance spectra and crop yield occurred at a tasseling stage. In a study 
using ground spectrometer data for temporal yield analysis, an ANN model was used (Yang et al., 
2002). The researchers concluded that an ANN could be used to predict yield in the early planting 
stage using ground-spectrometer-based hyperspectral data. Reyniers et al. (2004) pointed out that 
spectral data from midseason were more related to wheat yield measurements at harvest. Yao (2004) 
used an index-based approach to estimate corn temporal yield. The aerial hyperspectral image data 
collected at five different dates were correlated with corn yield. It was found that image bands at 
around 700 nm (the red-edge region), including 694, 700, and 706 nm, were strong indicators of yield 
estimation in all five images. The late-season images showed better correlation with the measured 
corn yield than the early-season images (Figure 1.7). In a recent work, Thorp et al. (2017) found that 
wheat grain yield could be optimally estimated from ground-based canopy spectral measurements 
(collected weekly) between 110 and 130 days after planting.

1.2.9 A pplication 6: Pest and Disease Detection

Changes in plant canopy reflectance due to pest infestation or disease infection can be used for pest 
and disease detection. Similarly, the concept of precision agriculture is also applicable to plant disease 
management, which can lead to site-specific pesticide and fungicide applications. Unlike applications 
discussed earlier, where abiotic plant stress was addressed, detection of pest and disease in the field 
involves sensing plant biotic stress. Due to the diverse nature of many different pests and diseases, 
a significant amount of research has been conducted on plant biotic stress detection in recent years 
(Lowe et al., 2017). According to Mahlein (2016), detection should consider the following factors: 
(1) early detection of onset of attack, (2) separation of different diseases, (3) differentiation of biotic 

FIGURE 1.7  R2-values between corn yield and the best calculated vegetation indices, plotted in days after 
planting (DAP). These indices all included narrowbands either at 694 or 700 nm as selection for red bands. 
(From Yao, H. 2004. Hyperspectral imagery for precision agriculture. PhD dissertation, University of Illinois 
at Urbana-Champaign, Urbana, IL.)
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and abiotic stress, and (4) disease severity quantification. Challenges also exist owing to interactions 
between biotic and abiotic stresses. Here we summarize hyperspectral-based detection applications 
(Table 1.6) based on stress type, that is, pest infestation such as insect attack and biopathogen 
infection such as fungi and rust infection.

1.2.9.1  Pest Infestation
In this category, many studies have focused on aphid detection. Mirik et al. (2012) found robust 
relationships between Russian wheat aphid feeding damage and multispectral broadband vegetation 
indices. The coefficients of determination (R2) were from 0.62 to 0.90 for irrigated wheat, from 0.50 
to 0.87 for dryland wheat, and from 0.84 to 0.87 for a greenhouse experiment. Luo et al. (2013) used 
ASD FieldSpec spectroradiometer measurements (350–2500 nm) to quantify leaf aphid density. 
Results showed that the multivariate linear regression model based on five wavelet features had 
a better R2 (0.72) than results based on six sensitivity spectral indices (R2 = 0.56). Another study 
(Yuan et al., 2014) attempted to discriminate yellow rust (Puccinia striiformis f. sp. Tritici), powdery 
mildew (Blumeria graminis), and wheat aphid with field spectrometer measurements at the leaf 

TABLE 1.6
List of Hyperspectral Applications in Pest and Disease Detection

Weed Sensing 
Applications

Hyperspectral 
Narrowband 

Wavelength (nm)
Hyperspectral 

Analysis Technique Results Reference

Pest infestation

•	 Aphid on wheat Multispectral, 675, 800 R800/R675 R2 = 0.87 Mirik et al. (2012)

•	 Aphid on wheat 350–2500 MLR + wavelet R2 = 0.72 Luo et al. (2013)

•	 Aphid on cabbage 694, 742 LS-SVM >70% accuracy Zhao et al. (2017)

•	 Spider mite 57 bands in 459–1002 Spectral unmixing Infestation detected Fitzgerald et al. (2004)

•	 Leaf hopper 550, 691, 715, 761 LHI-4 R2 = 0.825 Prabhakar et al. (2011)

•	 Planthopper 543, 568, 602 LS-SVM 90% accuracy Zhao et al. (2012)

•	 Mealybug 492, 550, 674, 
768, 1454

MSIs R2 = 0.82 Prabhakar et al. (2013)

Bacterial
•	 Bacterial leaf blight 745 Regression R2 = 0.978 Yang (2010)

Fungal infection
•	 Fusarium in wheat 17 bands in 665–675 

and 550–560
Head blight index 67% accuracy Bauriegel et al. 

(2011a)

•	 Fusarium in wheat 450–700 PLS-LDA 86% accuracy at 8 days 
after inoculation

Menesatti et al. (2013)

•	 Gray mold disease 
in tomato

Selected bands in 
400–780

KNN >94% accuracy Xie et al. (2017)

•	 Cercospora leaf 
spot in sugar beet

570, 698, 734 Cercospora leaf 
index

92% Mahlein et al. (2013)

•	 Sugar beet rust 513, 570, 704 Sugar beet rust index 87% Mahlein et al. (2013)

•	 Powdery mildew in 
sugar beet

520, 584, 724 Powdery mildew 
index

85% Mahlein et al. (2013)

•	 Yellow rust in 
wheat

531, 570 NDVI R2 = 0.91 Huang et al. (2007)

•	 Leaf rust in wheat 455, 605, 695 Leaf Rust Disease 
Severity Indices

R2 = 0.94 Ashourloo et al. 
(2014)
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level during the early grain filling stage. Fisher’s linear discriminant analysis indicated an overall 
accuracy of 0.75. Also at the field level Zhao et al. (2017) conducted a study using a hyperspectral 
imager to detect aphid infestation on Chinese cabbage plants. The results revealed that reflectance 
and textural features at 694 and 742 nm were the most important in distinguishing aphid infestation.

Other pests under investigation included spider mite (Fitzgerald et  al., 2004), leafhopper 
(Prabhakar et al., 2011), planthopper (Zhao et al., 2012), and mealybug (Prabhakar et al., 2013). 
The cotton-plant-feeding strawberry spider mite causes leaf puckering and reddish discoloration in 
early stages of infestation, followed by leaf drop. Fitzgerald et al. (2004) successfully distinguished 
between adjacent mite-free and mite-infested cotton field areas by implementing a spectral unmixing 
process on AVIRIS imagery. Prabhakar et al. (2011) pointed out that there was a significant difference 
in VIS and NIR regions between healthy and leafhopper-infested plants. Spectral data were collected 
with a field spectrometer, and the new leafhopper indices showed high coefficients of determination 
across locations (R2 = 0.521–0.825). Zhao et al. (2012) worked on the detection of injury severity 
of rice plants caused by brown planthoppers. The results demonstrated that the combination of 16 
wavelengths had a classification accuracy of 98% using a least-squares support vector machine 
(LS-SVM) model.

1.2.9.2  Bacterial
Bacterial leaf blight is a vascular disease of irrigated rice. Its serious infestations might result in 
up to 50% yield loss. Yang (2010) found that changes in leaf color and appearance were caused 
by different levels of disease severity, reflected in reflectance spectra differences. The model for 
infestation area estimation of the highly susceptible cultivar had R2 equal to 0.978 based on a single 
spectral band (745 nm).

1.2.9.3  Fungal Infection
Another important disease for many agricultural crops is fungal pathogen infection. Much research 
has been carried out in this area, including on Fusarium in wheat, late blight in tomato plants, fungal 
pathogens in sugar beets, and rust in wheat.

Infection of Fusarium in wheat plants can cause serious yield loss and the production of 
mycotoxins (Bauriegel et al., 2011a). Researchers have used hyperspectral images for the detection 
of Fusarium infection (head blight) in wheat (Bauriegel et al., 2011a,b). The hyperspectral images 
were acquired with a push-broom, line-scanning imaging system (400–1000 nm) in ground-based 
studies. Rather than collecting canopy reflectance commonly seen in other remote sensing research, 
single wheat ears were imaged (Figure 1.8). The fungal infection was introduced manually, with 

(a) (b) (c)

FIGURE 1.8  Examples of image classification of Fusarium-infected wheat ears. (a) RGB image, (b) grayscale 
image according to head blight index, (c) classification result (dark gray/red: diseased, light gray/green: healthy). 
(From Bauriegel, E. et al. 2011a. Computers and Electronics in Agriculture, 75, 304–312.)
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time-series hyperspectral images subsequently acquired. The study found that the head blight could 
be detected using the hyperspectral imaging method at 7 days after inoculation. The best time for 
detection was at the beginning of the medium milk stage, and it was difficult to distinguish at the 
beginning of ripening. A head blight index, which used bands in ranges of 665–675 nm and 550–
560 nm, was developed by Bauriegel et al. (2011a). Menesatti et al. (2013) used both laboratory and 
in-field conditions for Fusarium head blight detection. A PLS-LDA method was used to process the 
hyperspectral images. The results showed that the onset of infection could be identified with 86% 
accuracy at 8 days after inoculation in laboratory conditions, while at the same growth stages, the 
in-field data had a lower accuracy, 63.6%–77%.

Tomato plant late blight caused by the fungal pathogen Phytophthora infestans is a serious disease 
(Zhang et al., 2005). Zhang et al. (2003) used hyperspectral remote sensing for the detection of stress 
in tomatoes induced by late blight disease on a large scale in the field. The study used an AVIRIS 
image with 224 bands within a wavelength range of 400–2500 nm acquired during the growing 
season. The results revealed, based on field reflectance samples measured with a spectrometer, 
that the NIR region, especially 700–1300 nm, was much more valuable than the VIS region for 
the detection of the disease. The disease level was divided into four levels, from light symptoms to 
severe damage. The classification results with the SAM method showed that the late blight diseased 
tomatoes at stage 3 or above could be distinguished from healthy plants. Meanwhile, the less infected 
plants at stage 1 or 2 were difficult to distinguish from the healthy plants. Zhang et al. (2005) also 
analyzed field spectrometer data to study late blight disease. The spectral data showed that the 
diseased tomatoes could be distinguished from healthy ones before economic damage happened. 
Xie et al. (2017) used a hyperspectral imager to detect another tomato plant disease, gray mold 
disease, with spot inoculation in tomato leaves in greenhouse conditions. The detection accuracy 
for distinguishing healthy from diseased leaves exceeded 94%. As a comparison, early detection 
accuracy at one day after inoculation was 66.7%.

Sugar beet leaf diseases may cause losses in sugar yield (Rumpf et al., 2010). Mahlein et al. 
(2010) explored the potential of using hyperspectral data to detect and differentiate three fungal 
leaf diseases in sugar beets. The research used a spectrometer to measure reflectance spectra (400–
1050 nm) of leaves infected with the sugar beet fungal pathogens Cercospora beticola, Erysiphe 
betae, and Uromyces betae, which caused Cercospora leaf spot, powdery mildew, and rust. The 
vegetation indices evaluated, NDVI, Anthocyanin Reflectance Index, and modified Chlorophyll 
Absorption Integral, varied in their ability to assess the different diseases at an early stage of disease 
development, or even before the first symptoms became visible. The conclusion the researchers drew 
was that the use of spectral vegetation indices for the differentiation of these three sugar beet diseases 
was possible when using a combination of two or more indices. Rumpf et al. (2010) focused on using 
SVM classification to differentiate healthy and the aforementioned three types of diseased leaves. 
The detection accuracy was 97% between healthy and all diseased leaves and 86% in classifying 
healthy and three individual disease types. Furthermore, Mahlein et al. (2013) used a hyperspectral 
imager for the detection of these diseases. Four disease-specific indices developed in the research 
yielded classification accuracies of 89%, 92%, 87%, and 85% for healthy leaves and leaves infected 
with Cercospora leaf spot, sugar beet rust, and powdery mildew, respectively.

There are three types of wheat rust disease: yellow rust, leaf rust, and stem rust (Ashourloo 
et al., 2014). Their occurrence is a serious threat to wheat yield and grain quality. Huang et al. 
(2007) used wavelengths of 531 and 570 nm to calculate a normalized vegetation index for yellow 
rust detection in wheat. The infestation ground truth was interpreted as a disease index through an 
independent field measurement and assessment. The resulting R2 was 0.91 between the disease index 
and the vegetation index generated from airborne data. In another study, Yuan et al. (2013) used a 
spectrometer to measure leaf reflectance of inoculated leaves for yellow rust detection at joint (early) 
and grain filling (later) stages. The PLSR models showed a better performance at the later stage, 
with R2 = 0.85, than the jointing stage (R2 = 0.49). Using a wavelet analysis, Zhang et al. (2014) also 
found the later stage had better detection of the disease with R2 = 0.89. The early-stage prediction 
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was also improved with R2 = 0.69 using wavelet analysis. Ashourloo et al. (2014) researched wheat 
leaf rust detection with spectrometer data. It was found that the two Leaf Rust Disease Severity 
Indices developed could produce an R2 of 0.94 for disease estimation. Spectral bands used for the 
Leaf Rust Disease Severity Indices were 455, 605, and 695 nm.

1.2.10 C urrent Trend: UAV in Precision Agriculture

UAVs provide a unique platform (Figure 1.9) for precision agriculture by mounting portable sensors 
to remotely sense crop fields at low altitude, from 10 to 100 m typically. In precision agriculture 
the UAVs that are used are fixed-wing airframes, helicopters, and multirotors (e.g., quadrotor, 
hexcopter, octocopter). The portable sensors used include digital cameras [such as GoPro action 
camera (GoPro, San Mateo, CA, USA)], multispectral broadband cameras [such as Tetracam ADC 
and MCA (Tetracam, Inc., Chatsworth, CA, USA), Micasense RedEdge and Sequoia (Micasense, 
Seattle, WA, USA)], thermal cameras [such as FLIR Vue Pro 640 (FLIR Systems, Wilsonville, OR, 
USA) and ICI 9000 (ICI, Beaumont, TX, USA)], hyperspectral cameras [such as cameras developed 
by BaySpec, Inc. (San Jose, CA, USA) and Rikola Ltd. (Oulu, Finland)], and some other inexpensive 
Light Detection and Ranging (LIDAR) and Synthetic Aperture Radar (SAR) sensors.

Digital cameras, multispectral broadband cameras, and thermal cameras can be operated as 
stand-alone and used on any UAVs, from fixed-wing and helicopters to multirotors. Although the 
body of a portable hyperspectral camera can be small, the camera must attach to a portable computer 
to work. Also, if the camera is line-scanned, a helicopter or multirotor is a better choice to carry it 
than a fixed-wing airframe because of the lesser air disturbance with the UAV.

Hyperspectral sensors used on UAVs are frame-based or line-scanned. Frame-based sensors 
provide full 2D images at every exposure, enabling hyperspectral stereo photogrammetry in UAVs 
without much geometric distortion. However, frame-based hyperspectral sensors provide much less 
information than lined-scanned ones. For example, BaySpec, Inc. developed a frame-based snapshot 
hyperspectral camera, OCI-UAV-2000, and a line-scanned push-broom one, OCI-UAV-1000. In a 
spectral range of 600–1000 nm, the frame-based camera only provides 20–25 bands, while the line-
scanned one provides 100 bands. However, aerial line-scanned hyperspectral sensors always face the 
issue of geometric distortion, which must be fixed before the data can be used.

FIGURE 1.9  UAV remote sensing over a soybean field.
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Multispectral and hyperspectral systems in the VIS-NIR spectral range are used to sense plants 
of weeds and crops in the field. Broadband multispectral cameras can be used to monitor plant 
growth vigor, while hyperspectral sensors can be used to detect subtle changes in plant spectra in 
narrowbands to differentiate species and specify stress from pests and diseases. Table 1.7 explains 
the difference between multispectral and hyperspectral systems in plant sensing in the context of 
UAVs at low altitude for precision agriculture. The table shows the advantages of hyperspectral 
UAV systems. With the high resolution of the imagery (5 mm–5 cm per pixel), they might be able 
to detect small weed patches and even identify weed species. They might identify small pest and 
disease infestations, but they are still limited in the detection of water stress in comparison with 
thermal imaging. However, data quantities from hyperspectral sensors are huge compared with 
data from multispectral broadband sensors. Thus, it is appropriate that, through hyperspectral 
data processing, specific sensitive bands are identified, and then, based on the identified bands, 
narrowband multispectral sensors can be developed. Tetracam MCA, Micasense RedEdge, and 
Sequoia are examples of narrowband multispectral cameras that are used on UAVs.

Digital color and multispectral sensors are widely used on UAVs for precision agriculture (Zhang 
and Kovacs, 2012; Honkavaara et al., 2013; Huang et al., 2016b, 2017). Hyperspectral sensors need 
more operational, data processing efforts on UAVs so their application is still limited. Even so, the 
potential of portable hyperspectral sensors on UAVs is promising in terms of enhancing plant sensing 
in precision agriculture (Honkavaara et al., 2012; Zhang and Kovacs, 2012; Huang et al., 2017), with 
numerous industrial developments from BaySpec, Rikola, HeadWall (Headwall Photonics, Inc., 
Bolton, MA, USA), and Cubert GmbH (Cubert GmbH Real Time Spectral Imaging, Ulm, Germany).

Honkavaara et al. (2013) conducted a study on using a small UAV imaging system to carry 
a portable frame-based hyperspectral sensor with a customized digital camera for NIR imaging 
(both are less than 500 g) for biomass estimation on farmland with wheat and barley plots. With the 
application, a data processing chain was developed for the production of high-density point clouds 
and hyperspectral reflectance image mosaics, which were used as inputs in the precision agricultural 
applications.

Zarco-Tejada et al. (2012) conducted a study on the remote detection of water stress in a citrus 
orchard where UAV airborne data of thermal and hyperspectral imagery were acquired at the time 
of maximum stress difference among treatments, prior to the rewatering phase. The hyperspectral 
imagery was acquired at 40 cm resolution and 260 spectral bands in the 400–885 nm spectral range 
at 6.4 nm full width at half maximum spectral resolution and 1.85 nm sampling interval, enabling 
the identification of pure crowns for extracting radiance and reflectance hyperspectral spectra from 
each tree. With hyperspectral imagery a FluorMOD model (Miller et al., 2003; Pedrós et al., 2004) 

TABLE 1.7
Multispectral and Hyperspectral UAV Plant Sensing

Multispectral Hyperspectral

Spectral bands Blue, Green, Red, Red Edge, NIR 20–100 bands in 400–1000 nm

Information amount Low High

Data amount Relatively small At least 5 times more

Applications
Detection of weeds Big weed patches Small weed patches and species

Detection of pests Big pest infestations Small pest infestations

Detection of diseases Big disease infestations Small disease infestations

Detection of water deficiency Very limited Limited

Detection of crop vigor Works fairly well Works well

Crop yield prediction Works well Works well
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was used to retrieve chlorophyll fluorescence by applying the Fraunhofer line depth (FLD) principle 
(Damm et al., 2011) using three spectral bands to track stress levels at stomatal conductance and 
water potential.

Huang et al. (2017) is undertaking a research project to map the distribution of naturally grown 
glyphosate-resistant (GR) weeds in a soybean field. Hyperspectral plant sensing techniques have 
been developed to detect GR Palmer amaranth (Amaranthus palmeri S. Wats.) and Italian ryegrass 
[Lolium perenne L. ssp. multiflorum (Lam.) Husnot] with accuracies of 90% and 80%, respectively 
(Lee et al., 2014; Reddy et al., 2014). However, hyperspectral weed sensing in the lab or field is time 
consuming and laborious. For example, in fields, sensors are either mounted on a tractor for imaging 
or hand-held by a technician to measure plant spectra in certain areas. This manner of hyperspectral 
data acquisition is tedious, restricted by field conditions, and becomes an obstacle to transferring 
the research findings to practical use. Application of UAVs is a promising alternative to flying over a 
crop field to rapidly map the distribution of GR weeds for precision, site-specific weed management. 
In this project, portable multispectral and hyperspectral cameras were mounted on small UAVs to 
fly at a very low altitude (10–20 m) to quickly determine the distribution of naturally grown GR 
weeds, mainly Palmer amaranth and barnyard grass [Echinochloa crus-galli (L.) P.Beauv], over a 
soybean field.

1.3  CONCLUSIONS

Precision farming practices such as variable rate applications of fertilizer and agricultural chemicals 
require accurate field variability mapping. The value of hyperspectral remote sensing in providing 
useful information for seven applications of precision farming was elucidated. Such information 
included (a) soil property detection, (b) weed detection, (c) herbicide drift sensing, (d) N stress 
detection, (e) crop herbicide damage detection, (f) crop yield estimation, and (g) pest and disease 
detection. When using remotely sensed hyperspectral data for soil management zone delineation, it 
was found that there were different sensitive regions in the electromagnetic spectrum (400–1400 nm) 
for different soil nutrient properties. In addition, the combination of geostatistical techniques and 
remote sensing data holds great potential for soil nutrient mapping. For selective weed control, 
canopy reflectance in the spectral region from 450 to 900 nm, with an emphasis on the region 
from red to NIR, was demonstrated to be important for weed and crop differentiation. Successful 
classification between broadleaved plants and grasses using reflectance spectra has been reported in 
the literature. This could potentially lead to smart herbicide application systems that can correctly 
deliver broadleaf-specific or grass-specific herbicides to correct weed patch targets, resulting in 
improved weed control efficacy and reduction of herbicide usage. Herbicide drift is a situation 
where an applied herbicide lands on off-target crops on windy days. Research has shown that crop 
injury due to herbicide drift can be detected with hyperspectral imaging before visible symptoms 
are observed by humans. This detection information can be used by farmers to take early action 
when a drift incident occurs.

Canopy reflectance has also been used in plant N stress sensing and yield estimation, as well 
as pest and disease detection. In plant N stress sensing applications, the most significant spectral 
region is the VIS to NIR region. Many vegetation indices have been developed for N stress detection. 
Among them the most frequently cited index is the NDVI. The prediction accuracy varied among 
different crops and even for the same crop. For example, the coefficient of determination could 
be as low as 0.47 or as high as 0.87 for N in rice plants. Such variability could stem from many 
different sources, such as plant cultivar, planting date and growth stages, local environment, weather 
conditions, sensor platforms, sensor calibration, and data processing. For crop yield estimation, it is 
generally regarded that canopy reflectance measured in the middle to late growing season gives the 
best prediction results. Many studies have used vegetation indices and explored the VIS-NIR region 
for different crops. The subsequently generated yield map is one of the most important maps for 
precision farming practices. Lastly, we summarized another potential precision farming application 
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using hyperspectral data, which included research on the detection and assessment of plant biotic 
stress, such as insect invasion, onset of disease, and fungal pathogen infection. A significant amount 
of research has been done on the aforementioned plant biotic stress detection in recent years due to 
the diverse nature of many different agricultural pests and diseases.

In closing, hyperspectral remotely sensed data can be an important source of field variability 
sensing and information extraction. This is a crucial step for the implementation of precision farming 
technology, which also consists in management decision making, precision field operation control, 
and results assessment. A great deal of research has focused on the use of canopy reflectance for 
N stress detection and crop yield estimation. The red-edge region where the spectrum shifts from 
the red to the NIR region was found to be important in plant canopy reflectance, as the reflectance 
differences at these wavelengths reflect the differences in internal leaf tissue (mesophyll) structures. 
It was also concluded that three aspects of hyperspectral data, including spatial, spectral, and 
temporal issues, are all important in precision farming applications. With continuous improvement 
in compact hyperspectral imagers, more UAV-based imaging systems will be available for precision 
agriculture applications. This development will greatly improve the three aforementioned issues 
associated with hyperspectral data.

The use of relative reflectance has been reported in many studies. The use of relative reflectance 
values can minimize the influence of variable lighting conditions and the effects of relative positioning 
variation between sensor and object. However, outdoor variable lighting (in particular direct sunlight 
conditions) still poses challenges for developing practicable spectral systems for robust outdoor plant 
sensing. It became obvious that hyperspectral data obtained from different ground-based, airborne, 
and spaceborne sensors for precision farming were generally calibrated in different ways. For this 
reason, it is important that all future studies involving hyperspectral imaging calibrate image sensors 
to produce data in standard radiometric units in order to establish a calibrating standard across all 
sensors. More applications of hyperspectral data in precision farming are expected with better data 
availability and improved data quality.

Finally, one common issue related to hyperspectral remote sensing is the spectral signature 
mixture of different target components. The implementation of different unmixing techniques would 
help to extract canopy spectral reflectance information for better data analysis. Another potential 
direction is the use of geostatistical techniques. We reviewed studies that investigated combining 
such techniques with soil reflectance for soil nutrient mapping. Similar approaches could be extended 
to plant reflectance to improve data interpretation.
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2 Hyperspectral Narrowbands 
and Their Indices in Study 
of Nitrogen Content 
of Cotton Crops

Jianlong Li, Jingjing Zhang, Chunliu Tao, 
Dehua Zhao, and Chengcheng Gang

2.1  INTRODUCTION

The use of remote sensing for precision agriculture applications is very popular. Nitrogen is one 
of the most important fertilizer elements for crop production. Nitrogen is an essential element for 
crop growth, development and yield formulation. Nitrogen content deficiency will bring a series of 
changes to crop leaves, such as color, thickness, water content, form and structure. A lack of Nitrogen 
will directly affect the composition of amino acid, protein, nucleic acid and other materials, which 
will lead to the reduction of crops photosynthesis capacity and the final yield. Thereby, nitrogen 
management is a very important management measure in agriculture produce for obtaining high 
yields and good quality. At the same time, over application of nitrogen will pollute underground 
water and also gets into streams. To overcome this and other similar problems, precision agriculture 
(also referred to as precision farming or site-specific farming) has been put forward. Precision 
nitrogen management is a key content of precision agriculture, which reduces pollution of the water 
resources and yet resulting in sustained high yields over space and time.
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Given the importance of nitrogen in crop growth and yield as well as the need to maintain 
environmentally acceptable levels of N application, many studies in precision farming are focused on 
nitrogen application rate and timing for high yield, crop quality and environmental pollution control 
(Pattey et al. 2001 and Weisz et al. 2001). Under normal conditions, nitrogen fertilizer influences 
chlorophyll concentration in green leaves. Since chlorophyll, a key indicator of crop physiological 
status, has a strong absorbance peak in the red spectral region, empirical models of predicting 
chlorophyll status from spectral reflectance are largely based on red spectra (Broge and Leblanc 
2001, Gitelson et al. 2002 and Sims and Gamon 2002). Arrangement of cells within mesophyllic 
layers of leaves and canopy structure, simulataneously affected with chlorophyll status by nitrogen 
supply, are the most important factors determining canopy near-infrared (NIR) reflectance (Serrano 
et al. 2000, Kumar et al. 2001 and Mutanga et al. 2003).

Traditional methods to determine plant tissue nutrient concentrations in a laboratory are time 
consuming and costly. Remote sensing has a great and realized potential to assess and manage timely 
crop stress affected by the environment from leaf to landscape scales of crop physiology (Daughtry 
et al. 2000 and Zarco-Tejada et al. 2000). Recent studies have found close relationships between plant 
physiological parameters and spectral reflectance. Several studies have documented that N status of 
field crops’ leaves can be assessed by spectral reflectance data of crops’ leaf or canopy.

Red–NIR-based VIs could also be used to estimate crop nitrogen stress (Boegh et al. 2002, 
Strachan et al. 2002 and Hansen and Schjoerring 2003). The red and NIR reflectance data, used 
to generate the popular VIs and monitor crop growth conditions, are acquired from two kinds of 
sensors. Broad-band spectral reflectance, currently the popular remotely sensed data (Table 2.1 of 

TABLE 2.1
Multiple Comparisons of Mean Values of Three Cotton Variables Observed 
on July 15, August 14, and October 1 and Seed Cotton Yield under Different 
Nitrogen Treatments (at 95% Confidence Level)

Meansa

Variables Treatments July l4 August 15 October 1
Seed Cotton 

Yield (kg/hm2)

LAI (m2/m2) N0 0.90a 2.23a 1.34a  

N90 0.97ab 2.75b 1.92b  

N180 1.06bc 3.12c 2.37c  

N360 1.12c 3.25c 2.33c    

CC (%) N30 1.25a 0.85a 0.53a  

N90 1.31ab 1.23b 1.07b  

N180 1.37ab 1.37bc 1.26c  

N360 1.41b 1.52c 1.37c  

Aboveground dry N0 118.7a 426.8a 636.2a  

Biomass (g/m2) N90 130.2ab 488.7b 816.9b  

N180 139.4bc 548.6bc 911.7c  

N360 153.3c 625.2c 1032.3d  

Seed cotton N0 2908.5a

Yield (kg/hm2) N90 3914.9b

N180 4474.9c

N360 4592.3c

a	 Means within columns followed by the same letter (a–d) are not significantly different based on ANOVA 
at 95% confidence level (p ≤ 0.05).
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Volume 1), is obtained from the current generation of earth-orbiting satellites carrying multispectral 
sensors such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 
Moderate Resolution Resolution Imaging Spectroradiometer (MODIS) and Landsat-7 Enhanced 
Thematic Mapper Plus (ETM+). Most of these sensors have several channels among which the red 
NIR and are the most popular bands. Narrow-band spectral data used to monitor crop condition is 
generated from imaging sensors such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
and Compact High Resolution Imaging Spectrometer (CHRIS) Project for on Board Autonomy 
(PROBA).

Many spectral vegetation indices (VIs) have been developed in the past three decades to 
provide more sensitive measurements of plant biophysical parameters and to reduce external noise 
interferences such as those related to soil and the atmosphere. Some VIs were developed based on 
narrowband spectral data and others on broadband sensors. Therefore, although the mathematical 
Equations defining VIs are the same, their calculated values are different, thus affecting their 
stability in predicting agronomic variables such as total green leaf area index.

Broadband and narrowband based vegetation indices have been compared for their ability to 
estimate crop agronomic variables such as green vegetation cover, LAI and CCD. In general, the 
narrowband VIs may be slightly better than their broadband versions for estimating crop variables, 
although some reported no difference between them.

Hyperspectral narrow-band remote sensing provides a perfect opportunity to characterize and 
advance the study N content in plants (Pattey et al. 2001 and Strachan et al. 2002). A number of 
authors (Craig 2001) discussed the superiority of narrow-band/hyperspectral imaging sensors over 
broad-band/multispectral instruments. Multispectral imaging sensors gather spectral data in large, 
non-contiguous ranges of the electromagnetic spectrum, thus, a single band represents the average of a 
relatively large portion of the spectrum. When comparing the predictive powers and stability of broad-
band and narrow-band VIs for deriving crop growth variables, there are some other opinions (Broge 
and Leblanc 2001 and Broge and Mortensen 2002). Besides the indicators of crop growth variables, 
VIs was applied to detect nitrogen stress (Craig 2001 and Strachan et al. 2002). The selection of 
optimum wavebands in hyperspectral data has been performed in a number of cases focused mainly 
on how to improve the correlation between VIs and crop biophysical/biochemical variables. But few 
studies have been focused on how to increase the sensitivity of the VIs to nitrogen stress.

Our objective was to analyze hyperspectral remote sensing capability in detecting characteristic 
differences of agricultural crops under different nitrogen application rates and different growing 
stages. We chose cotton crops to address the overall objective, through three specific sub-objectives, 
which were to:

	 1.	 Identify sensitive hyperspectral wavelengths to different N treatments;
	 2.	Evaluate if the continuum-removal method improves the ability to recognize different 

N status in the spectral wavebands of absorbing chlorophyll (550–750 nm) at full green 
canopy coverage period; and

	 3.	Test canonical discriminant analysis.

2.2  MATERIALS AND METHODS

The narrow wavebands located in specific portions of the spectrum have the ability to provide 
required optimal information sought for a given application. So far, the most common technique to 
extract information content from spectral measurements is the computation of spectral vegetation 
indices (VIs). The normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) 
have been used extensively in correlating remote sensing observations with the characteristics of 
vegetation. In particular, these vegetation indices were found to be quantitatively and functionally 
related to several vegetation parameters such as leaf area index (LAI), percent vegetation cover, 
intercepted photosynthetically active radiation (IPAR), and green biomass.
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To enhance their sensitivities to green vegetation spectral signals and to reduce external effects 
such as noise-related soil and atmospheric influences, many VIs have been developed in the past 
three decades. These VIs can be divided into four groups: (1) Ratio-based VIs, which is based on 
the ratio between red and NIR reflectance. The normalized difference vegetation index (NDVI) and 
ratio vegetation index (RVI) are the most commonly used ratio-based VIs; (2) Orthogonal VIs, which 
are defined by a line in spectral space for identification at bare soils. The transformed soil-adjusted 
vegetation index (TSAVI), second soil-adjusted vegetation index (SAVI2) and modified second soil-
adjusted vegetation index (MSAVI2) are examples of orthogonal VIs; (3) Derivative VIs: Elvidge 
and Chen (1995) introduced the first and second-order derivative green VIs. And (4) Atmospheric 
corrected indices, such as the visible atmospherically resistant index (VARI) (Gitelson et al. 2002). 
These VIs have been shown to be quantitatively and functionally related with canopy parameters 
such as the leaf area index (LAI), aboveground biomass, chlorophyll content (CC) and vegetation 
fraction. Research results indicate these VIs have potential applications in agriculture for forecasting 
and estimating crop productions, monitoring crop conditions, classifying and mapping crops, and 
directing precision farming activities (Serrano et al. 2000, Broge and Mortensen 2002 and Strachan 
et al. 2002).

2.2.1 E xperiment Design and Treatment

2.2.1.1  Experiment 1 (E1)
A completely randomized design experiment containing three replicates was conducted in a cotton 
(Gossypium hirsutum L. cv. Sumian 12) field at Zhejiang University, Zhejiang Province, China 
(30°4′N, 120°10′E). Treatments included three N application rates of 0, 60 and 120 kg N ha−1 (termed 
LN, MN and HN, respectively). The soil of experiment field is sandy, which contains 0.95 g/kg 
total-nitrogen, 148.5 mg/kg available-N, 1.21 g/kg available-P, 72.7 mg/kg available-K and 9.96 g/kg 
organic matters. Each sampling plot consisted of two rows of 0.3 m apart, 3.7 m wide and 5.0 m 
long (3.7 × 5.0 = 17.5 m2) with a density of 50,000 plants/ha. Cotton was sown on April 29 directly 
in fields with north/south row orientation. Phosphorous and potassium fertilizers were supplied in 
adequate amounts according to the general nutrient status of the field as determined by soil samples: 
80 kg/ha P2O5 and 160 kg/ha K2O.

2.2.1.2  Experiment 2 (E2)
A completely randomized design experiment containing three replicates was conducted 
in a cotton (Gossypium hirsutum L. cv. Sumian 3) field at Zhangjiagang, Jiangsu Province, 
China (31°50′N, 120°49′E). The soil of experiment field is sandy, which contains 41.6 mg/kg 
available-N, 47.2 mg/kg total-P, 63.9 mg/kg total-K and 13.2 g/kg organic matters. Treatments 
included three N application rates of 90, 180 and 360 kg N/ha (termed LN, MN, and HN, 
respectively). Each sampling plot consisted of two rows of 0.8 m apart, 0.4 m wide and 14 m 
long (2.4 × 14 = 33.6 m2) with a density of 45,000 plants/ha. Cotton was sown on April 12 
in greenhouse and later transplanted on May 28 to fields with north/south row orientation. 
Phosphorous and potassium fertilizers were also supplied: 180 kg/ha P2O5 and 240 kg/ha K2O. 
Irrigation was not used due to the high rainfall (above 1200 mm) and high ground water table of 
the soil at the study site.

2.2.2 O bserved Dates

According to canopy structure and leaf function of cotton plants, the cotton growth cycle was divided 
into three stages: (1) rapid growth period (early stage when the soil was partially covered by cotton 
and, therefore, its contribution to spectral signals was significant), (2) full green canopy coverage 
period (middle stage when the canopy reached almost 100% cover) and (3) senescent period (late 
stage when cotton bolls were opened and part of the leaves were senesced). Timing of growth stages 
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corresponded to sampling dates of July 15, August 14 and October 1, 2002 in experiment one, and 
of July 12, August 22 and September 29, 2002 in experiment two, respectively, when agronomic and 
hyperspectral data were collected.

2.2.3 C anopy Hyperspectral Reflectance Measurements

A 512-channel spectroradiometer (300–1100 nm) by Analytical Spectral Devices™ (FieldSpec FR) 
was used to acquire cotton canopy spectral data. Noise at both ends of the spectrum limited the useful 
data range to between 400 and 1000 nm in the analysis. Data were collected on cloudless days with 
solar elevations ranging from 50° to 55° to minimize external effects from atmospheric conditions 
and changes in solar position. Prior to the cotton planting, spectral reflectance measurements 
of the bare soil surface were made. Spectral reflectance was calculated as the ratio of measured 
radiance to radiance from a white standard reference panel. Immediately after the white standard 
radiance measurement, two spectral measurements of the cotton canopy were obtained—one with 
the sensor located directly over the center of two rows on a ridge, the other one with the sensor 
located directly over the furrow. Then the two spectra were averaged to represent a single mean field 
spectrum of ridge. The measurements were repeated 10 times for each plot. For experiment 1 (E1), 
reflectance measurements were obtained three times on July 12, August 22 and September 29 by 
the spectroradiometer with 25 o field of view and 1.0 m nadir orientation above the canopy which 
resulted in a sensor field of view of 45 cm diameter. For experiment 2 (E2), reflectance measurements 
were obtained three times on July 15, August 14 and December 1 by the spectroradiometer with 
15 o field of view and 2.3 m nadir orientation above the canopy which resulting in a sensor field of 
view of 60 cm diameter.

2.2.4 B iomass Measurements

After spectral measurement, 10 cotton samples were selected to analyze biophysical variables 
immediately in the same place. First, the samples were dried at 70°C in an oven for 48 hours to 
constant weight, and then dry weight biomass was determined by weight.

2.2.5 A gronomic Variable Measurements

Six cotton plants were harvested on the same days that the canopy spectral measurements were 
made. Each plant was separated into leaves, branches, and stems and then weighed for leaf biomass 
calculations (g/m2). The green leaves from two plants (thus decreasing the workload) were measured 
with a leaf area meter (CI-203, CID) to estimate the total leaf area per sample plot (1.333 m2) in order 
to calculate leaf area index. The leaf area index of cotton was computed as the ratio of green leaf 
area per sampled area (m2/m2). Chlorophyll content was measured from 0.15 g leaf samples that were 
ground in 3 mL cold acetone/Tris buffer solution (80:20 Vol/Vol, pH = 7.8), centrifuged to remove 
particulates, and the supernatant diluted to a final volume of 15 mL with additional acetone/Tris 
buffer. The absorbance of the extract solutions was measured with a U-3000 spectrophotometer at 
663, 647 and 537 nm. The chlorophyll concentration was calculated using the following equation 
(Sims and Gamon 2002):

	 Chla = 0.01373A663-0.000897A537-0.0030464A647

	 Chlb = 0.120405A647-0.004305A537-0.005507A663

where Ax is the absorbance of the extract solution in a 1 cm path length cuvette at wavelength x. The 
units for all the equations were micromoles per milliliter (µmol/mL). Canopy chlorophyll density 
(g/m2) was computed by multiplying chlorophyll content by total leaf weights.
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2.2.6  Data Process and Analysis

The research hypothesis was whether the means of the reflectance between the three treatments 
were significantly different at each wavelength and was statistically tested using one-way analysis 
of variance. From this test one can conclude that there are differences between the groups. The 
statistical tests were done at different time periods (rapid growth period, full green canopy coverage 
period, senescent period) in order to assess the spectral differences between treatments at different 
stages of the plants’ physiological status. Specially, we tested the utility of the visible absorption 
feature (R550–R750 nm) to discriminate different levels of nitrogen concentration after continuum 
removal (defined below). This red absorption feature was selected since it has consistently proved 
to be an indicator of vegetation condition and is not affected by water absorption in fresh plants. 
This is in contrast to the mid-infrared bands where chemical absorption is largely masked by water. 
Continuum removeal normalizes reflectance spectra to allow comparison of individual absorption 
features from a common baseline (Kokaly 2001). The continuum is a convex hull fitted over the top 
of a spectrum utilizing straight-line segments that connect local spectra maxima. The continuum is 
removed by dividing the reflectance value for each point in the absorption pit by the reflectance level 
of the continuum line (convex hull) at the corresponding wavelength. The first and last spectral data 
values are on the hull and therefore the first and last bands in the output continuum-removed data 
file are equal to 1. The output curves have values between 0 and 1, in which the absorption pits are 
enhanced and the absolute variance removed (Schmidt and Skidmore 2001). At first, this method was 
applied to identify mineral component in geology, then applied on vegetation science by Kokaly and 
Clark (1999) to analyze chemical component of several plant dry leaves. In recent years, continuum-
removal measure has been applied to vegetation canopies for measuring biochemical contents of 
plant (Mutanga et al. 2003).

One-way analysis of variance (ANOVA) method is often used to assess significant degree of 
the spectral reflectance difference between different N treatment during four growth stages with 
Statistical Product and Service solutions (SPSS 11.0) software.

2.3  RESULTS AND ANALYSIS

2.3.1 B iomass Analysis under Different Nitrogen Treatment

Biomass is an important agriculture parameter in reflecting crops canopy structure. In this study, 
dry weight of aboveground biomass (DWAB) was selected as an assessment standard. As expected, 
different nitrogen treatments resulted in significantly different DWABs at experiment  1 and 
experiment 2 (Figure 2.1). In general, nitrogen increased cotton DWAB. For these two experiments, 

FIGURE 2.1  The variation of cotton biomass under different treatments at experiments 1 and 2 (HN: high 
nitrogen; LN: low nitrogen).
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dry weight of above ground biomass experienced significant difference between LN-  and 
HN-treatments at their respective three observed dates (p < 0.01).

2.3.2 � Difference of Canopy Spectral Reflectance under Different N Treatments

Figures 2.2 and 2.3 were canopy reflectance spectra and results of one-way ANOVA of canopy 
reflectance among three N treatments at different wavelengths. In general, canopy spectral 
reflectance showed no significant difference between nitrogen treatments in visible light. But 
in near-infrared regions, canopy spectral reflectance showed significant difference between N 
treatments (p < 0.05).

Figure 2.2 showed canopy reflectance spectra under HN, MN and LN treatment decreased in 
turn in NIR region, especially in full green canopy coverage period, which presented a significant 
difference between different N treatments. This vigorous growth stage is not only nutritional growth 
but also the development growth of young cotton buds and bolls. In the senescent period, all of 
canopy spectra reflectance under three different N applications was lower and spectral reflectance 
curves present identical trends in different N treatment, because most cotton leaves had fallen off 
and only a few withered leaves and unpicked cotton bolls were left.

2.3.3 C hanges of Normalized Difference Spectra Characteristic

Figures 2.3 and 2.4 were continuum-removed mean reflectance spectra and results of one-way 
ANOVA of continuum-removed reflectance among three N treatments at the wavelengths of 
chlorophyll maximal absorptance (550–750 nm) at experiment 1 and experiment 2. Results 
suggested that the difference of spectral reflectance between 550 and 750 nm was improved by using 

FIGURE 2.2  Mean canopy spectral reflectance with continuum removed line under different treatments (HN: 
high nitrogen; MN: medium nitrogen; LN: low nitrogen).
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continuum-removed technology. Nitrogen could enlarge spectral values between 550 and 750 nm 
especially in the full green canopy coverage period. One-way ANOVA results showed that there 
had always been some wavelengths at which the canopy reflectance showed significant difference 
between N treatments (p < 0.05). The most sensitive reflectance to N rate was located at two sides 
of the chlorophyll maximal absorptance (680 nm).

2.3.4 M ultiple Variable Comparison Analysis under Different Treatments

Most of the red-NIR Vis were established for the purpose of estimating plant biophysical/biochemical 
variables, and have been related to crop variables such as biomass, LAI, and chlorophyll (Broge and 
Leblanc 2001 and Sims and Gamon 2002 and Serrano et al. 2000 and Kokaly 2001). In general, 
since N conditions resulted in a significant variation in these variables, which has been proved by 
this experiment, it is also possible to discriminate canopies grown under different N treatments using 
these Vis (Mutanga et al. 2003 and Strachan et al. 2002).

As expected, the N fertilizer treatments resulted in broad variations in the three variables 
(Table 2.1). Generally, variable values increased with the N application rates. With cotton growth, 
the difference between N treatments was greater. Multiple comparison analysis was used to 
test if the mean values of the three variables were significantly different between N treatments. 
The results showed that the difference between N1 (no nitrogen applied) and N360 treatments 
(the  highest N rate) were significant (P < 0.05). At middle and late growth stages, the N90 
treatments also was significantly different from other treatments (P < 0.05). At late stages, each 
difference in above ground dry biomass (ADB) between two N treatments was significant at the 
95% level.

FIGURE 2.3  Results of one-way ANOVA of cotton canopy reflectance among the three N treatments at 
different wavelength.
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2.4  DISCUSSIONS

The above results showed that the nitrogen nutrition difference of crops greatly affected the canopy 
spectral reflectance (Figures 2.3 and 2.4). In the visible light region, spectral reflectance at around 
550 nm showed obvious difference tendencies in statistics, especially at the senescent period, due 
to the absorption difference of chlorophyll, which was caused by different nitrogen application and 
lead to the difference of canopy spectral reflectance between different treatments due to the close 
positive linear correlation between nitrogen and chlorophyll.

Increasing the nitrogen application will increase the content of chlorophyll and biomass of crops, 
which could decrease the spectral reflectance in the visible light region. But this study has shown that 
the differences of canopy spectral reflectance were not stable in visible light. The differences could 
reach 10% relative difference level from spectral band 660–680 nm in the rapid growth period and 
senescent period, due to little plant material present, partially uncovered soil in early growth stage, 
and part of the senesced leaves showing in senescent period. But in the full green canopy coverage 
period the relative difference was not ideal because the canopy coverage in three different treatments 
could reach almost 100% cover and show no obvious difference between each other.

Here, canopy reflectance showed a stable and significant difference in the near–infrared spectral 
region, which is sustainable from the rapid growth period to senescent period. The spectral reflectance 
of plant in the near–infrared is mainly affected by leaf and canopies structure (Serrano et al. 2000). 
The biomass and LAI of plant is added with the increasing of nitrogen amount, which lead to the 
evident difference of reflection spectra in different treatment. This study also showed that in near—
infrared spectra region the spectral difference between different nitrogen applications could reach 

FIGURE 2.4  Continuum removed mean reflectance spectra under different treatments at experiments 1 and 2 
(HN: high nitrogen; MN: medium nitrogen; LN: low nitrogen).
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a 5% significant level. The reflected characteristic in near–infrared spectra provided a possibly for 
distinguishing the nutrition condition of plant nitrogen in different nitrogen treatments.

Results of absorption characteristic in red valley absorption area between 550 and 750 nm in 
normalized difference method showed that the width and depth of absorption characteristic will 
increase with nitrogen application rate increase. In general, it is believed that the absorption center of 
the chlorophyll is 680 nm. This study on two experiments showed the difference of spectra statistics 
at 680 nm was not significant; the best spectral difference among nitrogen treatments existed on 
the absorption valley side of slopes (Figures 2.4 and 2.5). The reason might be that higher levels 
of chlorophyll contents made the red valley wider. Therefore, the normalized difference approach 
can improve the difference of reflected spectra in the visible light region under different nitrogen 
treatments; the best spectral band existed around the 620–640 nm and 690–710 nm regions. These 
results confirmed the research conclusions of Carter (1994) and Mutanga et al. (2003) which indicted 
the sensitive spectra area exists at the 535–640 nm and 685–700 nm. The reason that the normalized 
difference approach improved the difference of reflected spectra in different nitrogen treatments, 
might be that this method can eliminate much of the absolute error by reflectance and can strengthen 
the absorption valley.

2.5  CONCLUSIONS

Increasing the nitrogen (N) application will increase the content of chlorophyll and biomass of crops, 
which typically decreases the spectral reflectance in the visible light region. But this study has shown 
that the difference of canopy spectral reflectance were not stable in visible light and are dependent 
on factors such as crop growth stages and soil background effects. The difference in reflectance, 

FIGURE 2.5  Results of one-way ANOVA showing wavelengths where continuum removed reflectance 
differences between three treatments were significant. Horizontal dashed and solid lines show 95% and 90% 
confidence limits, respectively.
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for example, between 10% difference level from spectral band 660 and 680 nm is as high as 10% 
or greater during the rapid growth period as a result of significant soil background effects (as a 
result of <100% canopy cover) or during senescent period, as a result of last loosing chlorophyll 
(lower reflectance or higher absorption associated with healthier plants with greater canopy cover, 
plant moisture, and biomass). But in the full green canopy coverage period the difference was not 
significant because the canopy coverage in three different treatments could all reach almost 100% 
cover and show no obvious difference between each other. These factors highlight the need to 
use specific narrowbands from targeted portions of the spectrum to better characterize and study 
vegetation.

Overall, the results of this study offer a possibility to estimate cotton canopy quality at the field 
level. The results trigger the need to investigate band depths and slopes, particularly the red edge, 
and to estimate cotton nutrition quality at the canopy level. The development of models that can 
manipulate the influence of factors such as the atmosphere, species mix and non-photosynthetic 
vegetation (standing litter, woody stems, etc.) at different times will be important for further 
hyperspectral remote sensing of cotton quality. Normalized difference methods can successfully 
identify the characteristic of cotton canopies without being affected by spectral reflectance of cotton 
canopies structure and background. These results have an important significance to evaluation of 
nitrogen content in visible spectral areas.
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3 Analysis of the Effects 
of Heavy Metals on 
Vegetation Hyperspectral 
Reflectance Properties

E. Terrence Slonecker

3.1  INTRODUCTION

Absolute definitions of “heavy metals” are elusive in modern science. Many different definitions have 
been proposed. Some are based on density, some on atomic number or atomic weight, and some on 
chemical properties or toxicity [1]. One definition holds that they are elements with a specific weight 
higher than 6 g/cm3 [2]. See Figure 3.1. But no single definition fits well in modern usage. The term 
“toxic metals” has become to some extent synonymous with heavy metals, but that term is equally 
problematic because levels of toxicity are highly variable between different metals and vegetation 
species. At best, heavy metals can be classified as a loosely defined subset of elements that exhibit 
metallic properties and are toxic to living organisms at some level of concentration or exposure. The 
term “heavy metals” itself has been criticized as functionally meaningless [1,3].

Metals in the environment, however, are a real concern for a variety of reasons, including their 
commercial and industrial value, medicinal applications, use in agricultural products, and their 
toxic effects on human and ecological resources as chemical weapons or as fugitive, uncontrolled, 
anthropogenic releases into the environment. Some metals, such as selenium, copper, and zinc, are 
micronutrients that are actually required by most plant and animal life forms in very small doses, 
while others, such as mercury and lead, are toxic and have no known benefit to living organisms.

Although the toxicity of many heavy metals can vary widely, the term has evolved to have 
pejorative connotations that make it synonymous with anthropogenic pollution. Heavy metals can 
occur naturally and can arise from many anthropogenic sources, such as mining and processing of 
other metals, the smelting of copper, the processing of gold, steel, iron, and coal, the preparation of 
nuclear fuels, and the production of industrial construction materials. In addition, many computer 
parts and chips contain heavy metals or involve a production process that results in waste products 
with heavy metals. Electroplating is a primary source of chromium and cadmium pollution. Arsenic 
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has been used extensively in pesticides and in wood treating [4] and, because of its toxicity, has been 
used for years as a base compound for chemical warfare weapons such as Lewisite gas [5].

Hyperspectral remote sensing (HRS), also known as imaging spectroscopy, and, to a greater 
extent, traditional field and laboratory spectroscopy have a long history of being used to investigate 
the identification of metals and their effects on vegetation in the environment. However, fugitive 
metals in the environment do not usually exist in their pure form but rather in a soil-water-vegetation 
matrix as waste rock materials or sediments or as a result of soil deposition. Besides detecting 
the minerals themselves, spectroscopy and imaging spectroscopy can also be used to detect the 
composition and condition of vegetation, which can then be used to interpret mineral deposits or 
metal composition of the soil in the area of vegetation growth. It has long been acknowledged by 
scientists that a relationship exists between vegetation, soils, and underlying mineral deposits [6]. 
In several studies, airborne spectroscopy was used to detect “hidden” mineral deposits through 
forest-covered areas by revealing subtle variations in the reflected spectrum of vegetation under 
stress due to the presence of heavy metals [7–10]. In addition, recent scientific literature reflects a 
growing interest in the spectroscopic identification of environmental hazards, many of which are 
metals in the soils and  vegetation. Another area that has received increased attention in the area of 
spectroscopy of metal stress in vegetation is that of vegetation indices (VIs). This chapter reviews 
the scientific background of spectroscopy and imaging spectroscopy with respect to the effects of 
heavy metals on vegetation reflectance.

3.2  PHYSIOLOGY OF METAL STRESS IN PLANTS

Plants are generally more exposed to pollution risks in the environment because they are stationary 
and cannot avoid interacting with environmental pollutants such as metals. Plants have evolved 
various complex strategies for adapting to heavy metal pollution in soil or water media. Plants 
respond to exposure to heavy metals in several different ways. Metals usually interfere with basic 
plant metabolism, and enzyme activity is often negatively affected. Metals present in plant tissues 
can cause plants to form chelate structures, molecules that enclose and isolate metal ions and cause 
them to lose their functional properties in metabolic cycles such as the citric acid cycle.

Plants generally fall into two categories with respect to strategies for dealing with exposure to 
heavy metals: accumulators uptake metal ions and process them in some manner, storing them in 
internal tissues or reducing or processing them in biochemical reactions, whereas excluders generally 

FIGURE 3.1  The Periodic Table showing the elements generally considered heavy metals. Lanthanides and 
actinides are not shown. (Modified from Shaw, B. et al. In Heavy Metal Stress in Plants: From Biomolecules 
to Ecosystems, 2004; Vol. 2, pp. 84–126.71)
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restrict the uptake of metals by preventing their uptake into plant tissues. This is often accomplished 
by trapping metal ions in the cell walls of the root tissue.

Whether plants are accumulators or excluders, excess metals in the soil or in plant tissues tend 
to have negative effects on plant health, growth, and biomass accumulation and can cause visual 
symptoms at toxic levels. Table 3.1 shows examples of the visual injuries to various flowering plants 
from metal exposure. These visual symptoms also affect the reflectance characteristics of the 
typical vegetation spectra. Figure 3.2a and b show increasing visual damage to plant health and the 
corresponding changes in the blue and red energy absorption troughs at 480 and 680nm, respectively, 
seen as increasing reflectance and a blue shift.

Excess metal exposure negatively affects photosynthetic processes and typically induces a 
general “stress” reaction in plants. In some cases, the absorbed metal ion will replace the central 
magnesium atom in the chlorophyll molecule, which generally causes oxidative stress in the plant. 
This substitution reduces or prevents photosynthetic light harvesting and results in a breakdown of 
photosynthesis [11].

Heavy metal exposure can also interfere with plant-water relations. Metals may alter plasma 
membrane properties, affect enzyme activities, inhibit root growth and elongation, affect osmotic 
potential, and generally inhibit the ability of the plant to acquire water [12]. This may be manifested 
as a general drought-stress response but is actually caused primarily by the interference of heavy 
metals and not simply the lack of water availability.

In general, many different photosynthetic reactions and physiological processes are negatively 
affected by plant exposure to heavy metals. These vary widely among different species and metals, 
but in many cases both light and dark photosynthetic reactions are generally inhibited [13].

3.3  BASIC SPECTROSCOPY OF VEGETATION

Spectroscopy is the study of the interaction between energy and matter as a function of either 
wavelength (λ) or frequency (v). Historically, spectroscopy referred to the use of visible light 
dispersed by a prism according to its wavelength and is the parent science to all visible and near-
infrared (VNIR) HRS. Dating from the nineteenth century [14], spectroscopic techniques have been 
used widely in analytical chemistry and astronomy to identify many elemental substances, minerals, 
and organic compounds.

TABLE 3.1
Examples of Visual Symptoms of Metals Stress in Plants

Metal Characteristics References

Arsenic Red/brown necrotic spots on old leaves, yellow/brown roots, reduced growth [36,37]

Aluminum Stunted growth, inhibition of root elongation, purple
Coloration, curling and yellowing of leaf tips

[72,73]

Cadmium Brown edges to leaves, chlorosis, necrosis, curled leaves, stunted roots [74,75]

Copper Chlorosis, yellow and purple coloration, decreased root growth and leaf biomass [76–78]

Lead Dark green leaves, stunted growth, chlorosis, and blackening of root system [79]

Mercury Severe stunting of seedlings and roots, chlorosis, reduced biomass [80]

Nickel Chlorosis, necrosis, stunting, reduced root and leaf growth [81]

Selenium Interveined chlorosis, black spots, bleaching and yellowing of young leaves, pink spots 
on roots

[17]

Zinc Chlorosis, stunting, reduced root elongation [82]

Source:	 Modified from Shaw, B. et al. In Heavy Metal Stress in Plants-from Biomolecules to Ecosystems, 2004; Vol. 2, 
pp. 84–126.71
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The use of spectral reflectance methods to gain an understanding of photosynthesis and 
related vegetative processes is a field of scientific study that has been ongoing for decades 
[15,16]. Laboratory instruments called spectrometers, spectrophotometers, spectrographs, and 
spectroradiometers are all different names for instruments that essentially use some type of prism 
to separate light into its component parts and measure the reflectance and absorption of each of 
those individual component parts from a target surface. Early instruments separated light into 
the basic colors of the spectrum. Modern instruments separate light into individual nanometers 
of reflectance energy.

In this review, “hyperspectral” remote sensing technology is afforded the broadest possible 
definition. The papers reviewed here represent a variety of spectroscopic remote sensing systems and 
approaches that include individual leaf-level and plant-level analysis under controlled conditions in 
the laboratory to spectroscopic measurements of plants in the field to overhead aircraft and satellite 

(a)

(b)

FIGURE 3.2  (a) Visual effects of arsenic stress on Nephrolepis exaltata (Boston fern). Ferns are planted in 
clean sand amended with, from left to right, 0, 20, 50, 100, and 200 ppm sodium arsenate. (From Slonecker, 
E., Remote Sensing Investigations of Fugitive Soil Arsenic and Its Effects on Vegetation Reflectance. George 
Mason University: Fairfax, Virginia, 2007.36) (b) Laboratory reflectance spectra of arsenic-affected ferns in 
Figure 3.2a above. Spectra were collected with an ASD full-range spectrometer from 15 cm above the canopy 
of each plant. Note the loss of photosynthetic absorption at 680 nm, causing higher reflectance, the blue shift, 
and the general increase in reflectance in shortwave infrared (due to loss of water) with increasing soil arsenic. 
(From Barcelo, J., Poschenrieder, C., Journal of Plant Nutrition 1990, 13, 1–37.12)
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systems. The common thread is that multiple bands of energy reflectance are recorded and analyzed 
with spectroscopic methods.

Different spectroscopic collection perspectives also contain inherent advantages and disadvantages 
that include complications involving the detection and analysis of the reflected energy signal. Outside 
of a pure laboratory setting, field collections generally involve variable solar lighting, background 
effects from soil and other materials, and effects from the bidirectional reflection distribution 
function. Aircraft and especially satellite sensors contain increasingly significant signal noise from 
atmospheric moisture and constituent gases.

The majority of papers and research studies reviewed here involve spectrometers used in either a 
laboratory or field setting. Some utilize aircraft and satellite systems, and a few represent a multiscale 
data collection from the laboratory to field to aircraft or satellite sensor. While the availability and 
applications of aircraft and satellite systems is growing significantly, and this will be a prime focus 
area of future research, hyperspectral research in the laboratory and field represents a critical first 
step in developing and understanding, in repeatable spectral measurement, the effects of heavy 
metals on plant reflectance.

3.4 � SPECTROSCOPY AND IMAGING SPECTROSCOPY 
OF METAL INTERACTIONS WITH PLANTS

Early spectroscopic analysis of vegetation-metal interactions from both laboratory and aircraft 
sensors can be traced to the late 1970s and early 1980s, when researchers such as Collins, Milton, 
and Horler demonstrated repeated shifts in the so-called red edge of typical vegetation reflectance-
based stress or enhanced growth caused by excessive exposure to metals in the soil [7,17,18]. This 
has evolved into a fundamental spectroscopic-plant principle that is still widely used today. The red 
edge of vegetation reflectance is an area usually centered around 720 nm and represented by the 
typical sharp rise in reflectance in the 680–760 nm range of the classic vegetation spectral signature. 
Figure 3.3 shows the classic red edge area of vegetation spectra.

FIGURE 3.3  Red edge. An important region of vegetation spectra is known as the red edge. Much research 
has focused on measuring shifts in this region corresponding to stress or enhancement of chlorophyll. (From 
Slonecker, T. et al., Remote Sensing 2009, 1, 644.37)
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Although the general concept of the red edge is easily understood as the area of a sharp rise 
in reflectance, a variety of definitions and quantitative methods for computing the red edge are 
found in the literature. Ray [19] defined the red edge as the sharp transition between absorption 
by chlorophyll in the visible wavelengths and the strong scattering in the NIR from the cellular 
structure of leaves. The red edge is defined by Horler et al. [18] as the wavelength of maximum 
ΔR/Δλ, where R is reflectance and λ is the specific wavelength. Guyot [20] defines the red edge 
as an inflection in the sharp rise in reflectance between 670 and 760 nm. Although variable in the 
literature, most modern definitions of the red edge involve the peak of the first derivative [21]. 
Additional red-edge-related measurements include a ratio of R740/R720 and a ratio of first derivative 
values D715/D705 [22].

The general movement of the spectral features in the red edge area is one of the keys to its 
analytical strength. When plants are healthy and producing more chlorophyll, the red edge tends to 
shift toward the right to longer wavelengths. This is also usually accompanied by an increase in the 
absorption trough at 680 nm as the plant absorbs more energy in the photosynthetic process. When 
a plant is stressed, such as in the case of excessive heavy metals in the soil, the spectra tend to shift 
toward the left and shorter wavelengths. Stress also tends to produce an increase in reflectance at the 
680 absorption through as less light is being utilized for photosynthesis and chlorophyll production. 
Figure 3.4 shows an example of this stress based on a laboratory experiment with varying levels of 
copper sulfate in the soil.

Horler [18] studied the feasibility of utilizing a red edge measurement as an indication of plant 
chlorophyll status. Using derivative reflectance spectroscopy in the laboratory, plant chlorophyll 
status, and red edge measurements were acquired from single leaves of several different species 

FIGURE 3.4  The “blue” shift in the red edge in laboratory-grown sorghum exposed to different levels of 
copper sulfate in soil. (From Chang, S., Collins, W., Economic Geology 1983, 78, 723.10)
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under heavy metal stress. By using spectroscopic and laboratory methods to measure the chlorophyll 
content of the same leaf samples, direct evidence of the red edge–chlorophyll correlation was 
obtained. Measuring in situ vegetation using a field spectrometer, Ray [19] discovered significant 
differences in the size and shape of the red edge in different types of arid vegetation and found for 
a common yellow grass species that there was no chlorophyll “bump” at the green peak and no 
detectable red edge.

A critical component of spectral analysis of vegetation is the shift in absorption and reflectance 
features that occur as a result of chemical and nutrient exposures. A general relation between increases 
in chlorophyll concentration and a “red shift” toward longer wavelengths has been established by 
several researchers utilizing both laboratory and field spectrographic methods. Gates [23] showed the 
basic relationship between increased chlorophyll and plant health and the shift of the red edge toward 
longer wavelengths. Guyot [20] similarly showed that the red edge inflection point shifts to longer 
red wavelengths as chlorophyll concentrations increase. This general correlation between chlorophyll 
content and red shift was confirmed by Horler [24] and Baret [25] for different crop species.

More important for this specific research topic, however, is the “blue shift” (i.e., shift toward 
shorter wavelengths) of the red edge that occurs when vegetation has undergone stress from some 
mineral or chemical agent. The blue or red shift toward shorter or longer wavelengths, respectively, 
is one of the keys to detecting stress and growth in all green vegetation. The blue shift is usually 
accompanied by a general increase in overall reflectance and an increase in the 680 nm absorption 
feature showing that less light energy is being utilized for photosynthesis.

In some of the first applications comparing field and airborne spectroscopic measurements of 
metal stress, Collins [8] and Chang and Collins [10] showed a blue shift in the 700–780 nm region of 
reflectance spectra from conifers affected by metal sulfide. See Figure 3.4. Similar blue shift results 
have been reported by Schwaller and Tkach from field applications and aerial photographs [26] and 
Milton in the laboratory [17,27]. In a seminal remote sensing research application using both in situ 
and airborne measurements, Rock [28] demonstrated a 5 nm blue shift in spruce and fir species in 
Vermont and Germany as a result of stress caused by airborne pollutant deposition.

Although the underlying physiology is not completely understood, the uptake of heavy metals has 
the effect of reducing photosynthetic activity and the concentration of chlorophyll. One mechanism 
of heavy-metal-induced damage in plants that leads to a reduction in photosynthesis involves the 
in vivo replacement of the central Mg2+ ion in the chlorophyll molecule by a heavy metal ion. This 
replacement is generally toxic to the plant depending on the metal and, at the very least, inhibits 
the overall ability of the plant to conduct photosynthesis. In general, the magnesium-chlorophyll 
molecule has a much higher capacity to release electrons than other metals, and replacement by 
other metals quenches or reduces the ability of the plant to regulate excess light energy and protect 
the plant from damage [11,29,30].

In another classic paper utilizing both lab and field spectral measurements, Horler [18] studied 
the effects of heavy metals on the reflectance spectra of plants. Utilizing both natural vegetation 
growing in known areas of metal concentrations and specific greenhouse experiments, relationships 
were established between metal stress, total chlorophyll, chlorophyll a/b ratios, and reduced 
reflectance at specific wavelengths. Controlled experiments with pea plants and other species 
showed that the general effect of exposure to cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) 
was growth inhibition. Also, the pea plants showed changes in the leaf chlorophyll a/b ratios for 
exposure to Cd and Cu but showed no changes for Pb and Zn. Metal-treated plants in both controlled 
and natural environments showed a decrease in reflectance at 850, 1650, and 2,200 nm and an 
increase at 660 nm. Metal concentration in soil has strong negative correlations to reflectance at 
1650 and 2200 nm and strong positive correlations at 660 nm. In general, the ability to measure 
stress effects from heavy metals is dependent on species, the phase of the growth cycle, and the 
environment.

Kooistra [31] conducted a study to examine the possibilities for in situ evaluation of soil properties 
in river floodplains using field reflectance spectroscopy of cover vegetation. Results determined 
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that a combination of field spectroscopy and multivariate calibration leads to a qualitative relation 
between organic matter and clay content, which are intercorrelated with levels of Cd and Zn. The 
study indicated the potential for these multivariate methods for mapping soil properties using HRS 
techniques. Kooistra [32,33] conducted two additional studies to investigate the relation between 
vegetation reflectance and soil characteristics, including elevated concentrations of the metals Ni, 
Cd, Cu, Zn, and Pb found in floodplain soils along the Rhine and Meuse Rivers in the Netherlands. 
These studies obtained high-resolution vegetation reflectance spectra in the visible to NIR using a 
field radiometer [32]. The relationships were evaluated using simple linear regression in combination 
with two spectral VIs: the difference vegetation index (DVI) and the red edge position (REP). The 
R2 values between metal concentrations and vegetation reflectance ranged from 0.50 to 0.73. The 
results of the study demonstrated the potential of remote sensing data to contribute to the survey of 
spatially distributed soil contaminants in floodplains under natural grasslands, using the spectral 
response of the vegetation as an indicator. Modeling the relationship between soil contamination and 
vegetation reflectance resulted in similar results for DVI, REP, and the multivariate approach using 
partial least-squares (PLS) regression [32,33].

Similar studies were conducted by Clevers et  al. [34,35] in contaminated floodplains in the 
Netherlands. Analysis of field spectrometer measurements of reflectance found that REP and the 
first derivative peaks around 705 and 725 nm were the best predictors of heavy metal contamination. 
Similarly, Slonecker [36,37] showed the spectral relationship between arsenic uptake and spectral 
reflectance in arsenic-hyperaccumulating Pteris ferns using a PLS regression. Rosso et al. successfully 
detected plant stress due to metal pollution at the leaf level and reiterated that more investigations 
need to be undertaken that link their results to canopy-level reflectance [38].

Slonecker [36] used both laboratory spectra and HyMAP imagery spectra of arsenic stress in 
common lawn grasses to map the distribution of fugitive arsenic and other metals in household 
lawns in an urban setting. The hyperspectral imagery was processed with a linear spectral unmixing 
algorithm and mapped with a maximum-likelihood classifier. Classes included grass, arsenic-affected 
grass, trees, buildings, soil, asphalt, and concrete and showed an overall accuracy of 82.9%. Critical 
spectral parameters for identifying arsenic stress were located in the green, red, NIR plateau, and 
water-absorption bands in both laboratory and imagery spectra. Validated against comprehensive 
ground sampling efforts, final maps of the arsenic-affected grass showed an overall producer’s 
accuracy of 55.8% and an overall user’s accuracy of 82.7%. See Figure 3.5.

Gallagher [39] utilized field spectrometry and Ikonos multispectral satellite measurements to 
assess basal area, plant productivity, and chlorophyll content of gray birch growing in soils containing 
elevated metals in a New Jersey Brownfields site. Biomass production, measured by a red/green ratio 
index, showed an inverse relationship (R2 = 0.46 – 0.81) to soil zinc concentration. The relationship 
was stronger when the total metal levels (TMLs) were higher. Threshold TMLs were established for 
several species beyond which the normalized difference vegetation index (NDVI) decreased at both 
the assemblage and individual tree level.

Mars and Crowley [40] utilized AVIRIS and digital elevation model (DEM) data to evaluate 
hazardous waste contamination in southeastern Idaho, including mine waste dumps, wetland 
vegetation, and other relevant vegetation types. With the mapped information and the DEM, the 
delineation of mine dump morphologies, catchment watershed areas above each mine dump, flow 
directions from the dumps, stream gradients, and the extent of downstream wetlands available 
for selenium absorption were determined. Compared to ground-truth maps, the AVIRIS imagery 
correctly identified 76% of all mine waste pixels. Additionally, Mars and Crowley were able to 
characterize the physical settings of mine dumps and test hypotheses concerning the causes of 
selenium contamination in the area [40].

Ren et al. [41] found that rice exposed to lead in the soil weakened the photosynthetic process 
of rice as measured by field spectral measurements. Lead concentrations in rice could be reliably 
predicted by changes in the normalized band absorption depth, blue shifts in the red edge region, 
and the distance of the shift.
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3.5  VEGETATION INDICES

One area that has received recent attention in the area of spectroscopy of metal stress in vegetation 
is that of vegetation indices (VIs), which are mathematical manipulations of digital number 
values of two or more bands of data; they have been a fundamental part of the remote sensing 
analysis of vegetation for decades. VIs typically stretch or enhance a particular part of the reflected 
electromagnetic spectrum (EMS) known to relate to specific vegetation qualities such as chlorophyll 
content, leaf moisture, pigment ratios, and stress level. The search for stressed or unusual growth 
patterns in cover vegetation, such as potential metal stress patterns, has been enhanced by the use 
of one or more VIs reported in the scientific literature.

The most widely known and used VI is the NDVI, which is calculated by the following general 
band formula:

	
NDV

NIR Red
NIR Red

=
−
+

where NIR is the reflectance from the near-infrared band, and R is the reflectance from the red 
visible band. The NDVI was first proposed by Pearson and Miller in 1972 [42] and has been widely 
utilized as a general measure of vegetation condition and has both broadband and narrowband 
formulas for its computation. Although the NDVI has been the most widely used VI, it has clear 
limitations. The NDVI becomes saturated in areas of multilayered canopy and shows nonlinear 
relationships with critical vegetation parameters such as the leaf area index (LAI). As a result, 

FIGURE 3.5  Healthy and stressed grass signatures from both laboratory and hyperspectral imagery. 
The same critical areas in the green, red, near-infrared, and shortwave infrared show the patterns of 
spectral separation between healthy and stressed grass that enable the image processing algorithm to 
separate, identify, and map arsenic-stressed grasses. (From Slonecker, E., Remote Sensing Investigations 
of Fugitive Soil Arsenic and Its Effects on Vegetation Reflectance. George Mason University: Fairfax, 
Virginia, 2007.36)
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substantial efforts have been devoted to developing new indices that improve on the shortcomings 
of the NDVI [43].

VIs have often been developed for specific purposes and optimized to assess a specific condition 
or process. Also, the emergence and increasing availability of hyperspectral data and imagery have 
resulted in a new class of VIs, known as narrowband indices, that capitalize on the increased spectral 
resolution of hyperspectral data.

For example, Penuelas [44] proposed a structurally insensitive pigment index (SIPI) that 
incorporates a NIR band (800 nm) to minimize internal leaf structure effects such as increased 
scattering due to refractive index discontinuities between air and cell walls inside leaves. Gamon [45] 
developed the Photochemical Reflectance Index (PRI) to estimate the physiological parameters of 
sunflowers undergoing nitrogen stress. Huete [46] developed a VI that accounts for, and minimizes, 
the effect of soil background conditions. The soil-adjusted vegetation index (SAVI) equation 
introduces a soil-brightness-dependent correction factor, L, that compensates for the difference 
in soil background conditions. NIR is the reflectance from the near-infrared band, and R is the 
reflectance from the red visible band. Applying a correction for the soil provides more accurate 
information on the condition of the vegetation itself. The Triangular Vegetation Index (TVI) was 
developed as a very precise measure of chlorophyll concentration and absorption and depends on 
very specific narrow wavelengths [47].

Agricultural vegetation applications of both field and airborne hyperspectral data analysis have 
been conducted by several researchers, showing the promise of this technology in monitoring plant 
production for food supplies. Strachan [48] and Daughtry [49] both showed that very narrow, crop-
specific VIs could be developed and utilized from hyperspectral data and applied to the assessment 
of agricultural productivity. In general, the use of VIs has seen a significant increase with the 
development and availability of hyperspectral data. Elvidge and Chen [50], Blackburn [51,52], and 
Thenkabail et al. [53,54] have demonstrated the effectiveness of narrowband VIs, which continues as 
one of the most important analytical approaches in the area of spectroscopic analysis of vegetation. 
Table 3.2 shows the several VIs that are mentioned in this paper along with the spectral calculation 
and literature source.

VIs have also played an important role in the detection and analysis of stress due to heavy metals 
(Table 3.3). Reusen et al. [55] successfully mapped heavy metal contamination in Belgium through 
the expressions of vegetation stress in conifers near abandoned zinc smelting facilities. Utilizing 
imaging data from an airborne hyperspectral sensor (CASI), they utilized a Spectral Angle Mapper 
(SAM) classification to build a mask for pine trees and then computed 18 separate VIs of stress. The 
Edge-Green First derivative Normalized difference (EGFN) VI proved to be the best indicator of 
zinc stress in the pine trees in the surrounding area [55].

Götze et  al. [56] used reflectance spectroscopic methods in both the laboratory and field to 
quantify and separate heavy metal stress in floodplain vegetation. Testing a series of VIs, they 
showed that metal stress could be uniquely separated from other forms of stress such as water or 
nutrient stress. The indices that proved to be most sensitive to the stress from heavy metals in the 
soil were the normalized pigment chlorophyll index (NPCI), the PRI, the REP, and the continuum 
removed band depth at 1730 nm (CR1730) [56].

Using both field and laboratory measurements, Slonecker [36] showed that the PRI was sensitive 
to metal stress in the form of inorganic arsenic, Thorhaug [57] showed that the PRI was sensitive to 
the effects of low salinity in seagrass health, and Gallagher [39] showed that a red/green ratio index 
had an inverse relationship with zinc concentrations in gray birch trees.

Several VIs seem to dominate the literature with respect to metal stress in vegetation. The REP 
described earlier is the most dominant spectral feature used to assess plant stress. It has been used 
by many researchers to evaluate decreases in plant chlorophyll, biomass, or physiological health with 
respect to metal stress [7–10,17,24,34,35,39,41,56,58–63].

The PRI was developed by Gamon et al. [45] as a narrowband hyperspectral indicator of changes 
in the pigment balance of plants due to photosynthetic stress. Originally designed to track diurnal 
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TABLE 3.2
Vegetation Indices Specifically Referenced in This Paper

Name Acronym Formula Reference

Anthocyanin Reflectance Index ARI (1/R550) − (1/R700) Gitleson et al. [84]

Difference Vegetation Index DVI 2.4 * MSS7 – MSS5 Richardson and Wiegand [85]

Modified Triangular Vegetation 
Index 2

MTVI2 1.5[1.2(R800 − R550) − 1.3 
(R670 − R550)]/
SQRT[(2 * (R800 + 1)2) –
(6 * R800 – 5 * SQRT(R670)) – 0.5]

Haboudane et al. [86]

Moisture Stress Index MSI (R1599 − R819) Hunt and Rock [87]

Normalized Difference Vegetation 
Index (Broadband)

NDVI (NIR − RED)/(NIR + RED) Rouse [88]

Normalized Difference Vegetation Index NDVI (R800 − R670)/(R800 + R670) Sims and Gamon [89] 
(Narrowband)

Normalized Pigment Chlorophyll Index NPCI (R680 − R430)/(R680 + R430) Peñuelas et al. [44]

Photochemical Reflectance Index PRI (R531 − R570)/(R531 + R570) Gamon et al. [45]

Red Edge Position REP R1Dmax: (R1D690 − R1D740) Curran et al. [90]

Red Edge Vegetation Stress Index RVSI ((R714 – R752)/2) – R733 Merton [91]

Soil-Adjusted Vegetation Index SAVI (1 + 0.5) (R800 − R670)/
(R800 + R670 + 0.5)

Huete [46]

Structure-Insensitive Pigment Index SIPI (R800 − R445)/(R800 − R680) Penuelas et al. [44]

Triangular Vegetation Index TVI 0.5 * (((120 * (R750 − R550)) −
(200 * (R670 − R550)))

Broge and Leblanc 2000 [47]

TABLE 3.3
Some Key Spectral Features and Vegetation Indices Related to Metal Stress in the Literature

Spectral Feature Metal(s) Vegetation Type Sensor Reference(s)

DVI, REP Ni, Cd, Cu, Pb, Zn Floodplain, ryegrass ASD [32]

EGFN Zn Conifer CASI [55]

NDVI Cr, Pb, Zn, V Gray birch ASD [39]

RGI Ikonos

NDVI Ni, Cd, Cu, Pb, Zn Rice Landsat TM [83]

PRI General HM Floodplain ASD [56]

PRI As Ferns ASD [36,37]

REP Pb Rice ASD [41]

REP Cu Peas, maize PE 554 [61]

Zn Sunflower

REP General HM Floodplain
Bluegrass, ryegrass

ASD [34,35]

RVI Hg Mustard spinach ASD [59]

NDVI, REP

NPCI, PRI, General HM Stinging nettles ASD [56]

REP Reed canary grass

Meadow foxtail

R850 Cd, Cu, Pb, Zn, As Peas PE 554 [18]

R1650 Cd, Cu, Pb, Zn, As Peas PE 554 [18]

CR1730 General HM Floodplain ASD [56]

R2200 Cd, Cu, Pb, Zn, As Peas PE 554 [18]
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changes in photosynthetic efficiency, the PRI is sensitive to changes in carotenoid pigments and the 
epoxidation state of the xanthrophyll cycle. This is a measure of photosynthetic light use efficiency 
and the rate of carbon dioxide uptake. The PRI measures the relative reflectance on either side of 
the green maxima around 550 nm and compares reflectance parameters in both the red and green 
regions simultaneously. Because the change in pigment concentrations due to metal stress in most 
vascular plants is similar, the PRI has been shown to be a successful indicator of a variety of stress 
conditions, including stress from soil metals. Slonecker [36] computed a suite of 67 broadband and 
hyperspectral VIs and used a PLS and stepwise linear regression (SLR) analysis to isolate the best VIs 
for explaining arsenic stress in Boston ferns and arsenic hyperaccumulating Pteris ferns. The results 
showed for the control Boston ferns that the PRI, along with the Moisture Stress Index, the red edge 
vegetation stress index and the modified TVI2 provided the best model for explaining the level of 
arsenic uptake. These indices measure plant stress in one form or another, which generally increases 
with higher concentrations of soil arsenic. The best indices for the hyperaccumulating Pteris ferns 
were the broadband green index (GI), the sum green index (SGI), and the carotenoid reflectance 
index (CRI1), all relating to the green part of the spectrum. Although not fully understood, the 
different indices for stressed and hyperaccumulating species reflect key differences in internal plant 
physiology [36].

Götze et al. [56] found that four indices were highly correlated between heavy metal content and 
chlorophyll content. The R2 values for the NCPI (0.91), PRI (0.75), REP (0.80), and the continuum-
removed spectra at 1730 nm (0.74) were all sensitive to metal stress in plants. Although the underlying 
physiology is not fully understood, the authors speculate that the correlation could be related to lignin 
or protein production in the plant synthesis. Further, this study shows promising results for using 
these values to separate heavy metal stress from water and nutrient stress [56].

3.6  EMERGING STATISTICAL METHODS

A wide variety of analytical methods can be noted in a review of the hyperspectral analysis of 
vegetation and vegetation stress. One of the fundamental issues relates to the fact that the analysis of 
hyperspectral data presents unique analytical problems for standard multivariate techniques because 
of the highly correlative and overlapping nature of data. The large numbers of independent variables 
(>1,500 spectral bands) and the highly correlated nature of those variables stem from the fact that 
each individual spectral band is only a few nanometers away from the spectral bands above and 
below it, and the result is that each spectral band records an energy pattern that is similar to its 
neighboring bands. Highly correlated independent variables create a condition known as collinearity, 
which violates the assumptions of linear regression. To develop a predictive and effective linear 
model, variables must be independent. The overall result of a collinearity condition is that correlated 
independent variables have unstable coefficients, and although the model developed may have a high 
r2 value and low residuals, it will perform poorly outside of the immediate data set that was used to 
develop it.

In recent years, a special statistical technique has emerged that addresses the problems of 
numerous, highly correlated variables. The technique, known as partial least squares (PLS), was first 
introduced in 1966 by Swedish mathematician Herman Wold as an exploratory analysis technique 
in the field of econometrics [64]. It was specifically designed to help researchers in situations of 
small, nonnormally distributed data sets with numerous but highly correlated explanatory variables. 
General PLS and all of its variants consist of a set of regression and classification tasks as well as 
dimension reduction techniques and modeling tools. Sometimes called a “soft” modeling technique, 
the strength of PLS resides in its relaxation, or “softening,” of the distribution, normality, and 
collinearity restrictions that are inherent in standard multiple linear regression techniques [65,66].

The underlying assumption of all PLS methods is that the observed data are generated by a 
system or process that is driven by a small number of latent (not directly observed or intuitive) 
variables. Projection of the observed data to their latent structure by means of PLS is a variation 
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of principal component analysis (PCA). PLS generalizes and combines features from PCA and 
multiple regression and is similar to canonical correlation analysis in that it can also relate a set of 
independent variables to a set of multiple dependent response variables and extract latent vectors 
with maximum correlation [67,68].

The overall goal of PLS processing of laboratory spectral data is the reduction of 2,151 variables 
(bands 350–2,500 spectrometer data) down to a manageable number of variables (approximately 
100) that have a high probability of significance in a predictive model. The PLS regression produces 
a number of significant factors using a “leave-one-out” cross-validation method [60]. At several 
stages in the PLS process, diagnostic checks are performed, sometimes graphically, to help isolate 
variables for deletion in the model that do not have any significant predictive value or are outliers. 
The end result of a PLS run is a variable importance in projection (VIP) table. The VIP represents 
the value of each variable in fitting a PLS model for both predictors and responses. The VIP for 
each factor is defined as the square root of the weighted average times the number of predictors. 
If a predictor has a relatively small coefficient (in absolute value) and a small value of VIP, then it 
is a prime candidate for deletion. Variables with VIP values less than 0.8 and outliers are dropped 
from the variable list. The VIP table results are then typically divided into four to nine groups. The 
PLS analysis process is then repeated on the individual groups of variables. Typically the process is 
iterated two to five times until a manageable subset of variables can be identified based on the top 
VIP scores in each group and some a priori knowledge of the process being modeled. PLS itself can 
be used to construct a predictive model, but it has some drawbacks. One of the strengths of PLS is 
its relaxation of collinearity and distribution assumptions, but this can also result in a set of collinear 
or redundant independent variables. Also, the best combinations of variables are not necessarily 
reflected in the VIP table values.

In spectral applications, a common practice is to take the final subset of variables and then place 
them in a SLR model. The stepwise method is a modification of the forward variable selection 
technique and differs in that variables already in the model do not necessarily stay there. The SLR 
model computes the F-statistic for each variable and contains parameters for significance levels for 
variables to enter and stay in the model. The SLR process computes all possible combinations of 
linear variables and ends when none of the variables outside the model has significance (p-value) 
at or below the entry level and every variable in the model is significant at the stay level. Using 
these sigma-restricted parameterization and general linear model methods, the SLR process simply 
regresses all possible combinations of input variables and returns the model with the best regression 
coefficient and the lowest residuals [36,65].

PLS is also used as an exploratory/data mining and analysis tool in remote sensing. As a relatively 
new technique, the full utilization of PLS is still evolving, but it is clear that it has a major role to 
play in several types of spectral, remote sensing analyses due to the large numbers of potential 
predictive variables and the highly correlated nature of hyperspectral reflectance and hyperspectral 
imaging data.

3.7  SUMMARY AND CONCLUSIONS

This paper has reviewed the hyperspectral applications of detecting the effects on vegetation of 
heavy metals in soil. Most spectral applications have been in the form of laboratory or field studies 
with portable spectrometers, as opposed to hyperspectral imagery applications. But because field 
spectrometers and HRS instruments essentially measure the same phenomenon at high spatial 
and spectral resolutions, these studies serve as a form of benchmark for airborne or spaceborne 
remote sensing development and several studies with airborne or spaceborne HRS instruments, 
such as AVIRIS [40], CASI [55], and HyMAP [36], have successfully demonstrated, metal-specific 
vegetation applications of hyperspectral imagery.

The metals involved included a wide range of elements, including general heavy metal 
contamination, as might be expected in industrial or urban floodplains [31–35,56], and metal-specific 
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applications, such as arsenic [17,36,37,69], lead [41], zinc [55], and selenium [17]. Vegetation targets 
included general forest canopy, general floodplain, common grasses, and species-specific applications. 
Hyperspectral methods included standard applications of the NDVI and red edge and newer methods 
that included VIs such as the PRI, NCPI, and EGFN and a very interesting application of continuum 
removal and 1730 nm [56,70].

Research on hyperspectral detection of heavy metals and their effects on vegetation is in its 
infancy. Although much research has been carried out on other forms of vegetation condition such 
as stress or agricultural productivity, specific attention to metals is currently a primary scientific gap 
that demands research attention.

One of the direct needs for hyperspectral research is developing the ability to differentiate 
metal-induced stress from other types of stress such as a drought or nutrient stress. Greenhouse 
experiments, where stress levels are controlled and then measured with a field spectrometer, could 
be extremely valuable in determining where metal stress can be reliably and uniquely identified in 
spectra and for establishing underlying mechanisms causing spectral variation. Götze et al. [56] 
made a breakthrough in the identification of specific stress agents, and additional work in this area 
is encouraged.

Further, controlled experiments could be conducted to determine whether stress from specific 
metals can be uniquely identified using hyperspectral methods. As various metals interact differently 
with plant biochemistry and photosynthetic processes, it is feasible that stress patterns due to specific 
metals could be identified and utilized effectively. There could also be specific indicator species 
that identify the presence of metals in soil, and development of this line of research would have 
commercial as well as ecological value.

Additional studies that utilize both field and overhead instruments and scale up the spectral 
responses as a function of spatial scale are needed and represent a critical gap in the current state 
of the science. Lastly, data-mining efforts, such as those using PLS, that systematically consider 
thousands or even millions of possible band combinations and compute their statistical relevance 
against a known data set, would be a valuable approach to teasing out very narrow and specific 
spectral parameters that are not fully understood.

3.8  FUTURE APPLICATIONS

A better understanding of the spectral response to metals in soil has three primary and valuable 
applications. First, economic prospecting for metal deposits was one of the early applications and 
remains just as viable today. Second, metals often hinder agricultural productivity, and a method of 
monitoring their presence remotely would have immediate application to food production throughout 
much of the world. Third, the problem of fugitive hazardous wastes in the environment is not one 
that is likely to diminish in the future. As the global population grows, the need for natural resource 
exploitation will increase dramatically, along with the negative side effects of mining, industrial 
byproducts, and both controlled and fugitive wastes. As this review has indicated, there have been 
numerous successful hyperspectral applications of remote sensing for the location and monitoring 
of hazardous metals in the environment. Unlike earlier systems, HRS has the potential to identify 
specific materials based on molecular structure, and although considerable laboratory research 
continues, overhead aircraft and satellite remote sensing applications are still in their infancy due to 
complex atmospheric interferences, cost, and data availability. But all of these factors are steadily 
improving, and there is opportunity for considerable research in the area of hyperspectral monitoring 
of metal effects on vegetation.
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Abundance of Flowering Plants 
Using Hyperspectral Sensing

Tobias Landmann, Hannes Feilhauer, 
Miaogen Shen, Jin Chen, and Suresh Raina

4.1  INTRODUCTION

Flowering is an important phenological response in plants that enables pollination and propagation 
(Galpaz et al., 2006). Flowering plants and pollination-related traits form spatial patterns on regional 
scales that are closely linked to environmental (mostly climatic) gradients (Kühn et  al., 2006; 
Pellissier et al., 2010). Further, spatial patterns emerge on local scales but without the strong relation 
to environmental gradients (Feilhauer et al., 2016; Kohler et al., 2008).

Spatially explicit information on floral patterns may help to monitor the effects of land use 
(Wesche et al., 2012) and restoration programs (Dixon, 2009), improve the assessment and analysis 
of ecosystem services and climate change (Von Holle et al., 2010; Schulp et al., 2014), and increase 
our knowledge of ecosystem functions and plant-pollinator interactions (Burkle and Alarcón, 2011; 
Steffan-Dewenter et al., 2002).

The concept of pollination syndromes states that flower color and architecture determine which 
insects will act as pollinators (Müller, 1881; Van der Pijl et al., 1960). According to this concept, 
bees are, for example, attracted by yellowish and blueish, butterflies by pinkish and reddish, and 
flies and wasps by whitish and brownish flowers. This specialization is further complicated by flower 
architecture which is adapted to the morphological and functional features of the respective insect 
group and by the presence of attractive traits such as UV patterns and floral scents or reward systems 
like nectar. Pollination syndromes offer the great opportunity to infer directly from spectrally easy-
to-map flowering colors the presence or even abundance of specific pollinators. However, the concept 
has been criticized, and several studies show that the syndromes in general do not hold true and are 
subject to local variations (Moeller & Geber, 2005; Ollerton et al., 2009; Waser et al., 1996). Still, at 
least some consistency in pollinator preferences can be assumed (Gong & Huang, 2011) and possibly 
exploited in combination with remote sensing approaches for ecological studies.

Spatial information about ecosystem-specific floral responses and cycles can also be linked to 
climate and provide a clear interpretable signal of ecological changes due to climate change and 
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climate variability (Von Holle et al., 2010). Climate effects often alter the ambient temperature, 
and as a consequence changes in the phenological and floral cycle of plants can occur, although 
these changes are species and biome specific and generalizations cannot be made over larger areas 
(Craufurd & Wheeler, 2009). Floral responses to climate changes, often as short-term changes, 
are, interestingly, expected to also alter changes in interactions between vegetation species, which 
has ramifications for community structural changes and long-term ecosystem functioning (Dunne 
et al., 2003).

In this chapter we will give an overview of the spectral properties of flowering, the importance 
of flower maps, and an overview of challenges and limitations of HS imaging in this regard. Results 
from important case studies will be compared in terms of the potential of HS imaging to map 
flowering fractions, site-specific flowering distribution patterns, and specific traits such as flowering 
color and vegetation-community-associated flowering. The insights from this chapter can help to 
guide the geospatial mapping community and resource managers to design floral mapping routines 
and policies for various applications. These applications could pertain to the role of flowering plants 
for pollination and better management of invasive plant species that can be effectively mapped using 
their floral signals.

4.2  SPECTRAL FLOWERING RESPONSE

Flowering is a mainly short and subtle response that is essentially associated with plant- and canopy-
level decreases in chlorophylls (a and b), while distinct color changes occur due to alternations in 
carotenoid pigmentation levels (Ge et al., 2006). The visible (VIS) waveband region (450–680 nm, 
i.e., the green/blue and red spectral regions) is frequently associated with these flowering-induced 
pigmentation changes at the leaf or plant canopy level (Chen et al., 2009). Floral-induced changes 
in carotenoid and chlorophyll levels essentially decrease absorption in the VIS waveband region. 
Figure 4.1 shows that the spectral response curve for flowering (gray curve and shaded area) for 
Solidago gigantea has a higher reflectance, that is, lower absorption, in the VIS domain than the 
corresponding “green” leaf reflectance (blackish area with white curve). S. gigantea (top right in 
Figure 4.1) belongs to the Asteraceae family and is a yellow flowering weed that is native to North 
America and a common neophyte in Europe. Since the red waveband spectrum (650–680 nm) is 
also the maximum chlorophyll absorption area, wavebands centered here provide particularly good 
separability between flowering and “green” leaved canopies (Sims & Gamon, 2003). In some cases 

FIGURE 4.1  Mean and standard variation spectral response (from 240 to 2300 nm) between flowers and 
green leaves of Solidago gigantea derived from round-based spectrometer readings taken in the laboratory.
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(specific species), increases in plant carotenoid due to flowering increased absorption in the blue 
spectral domain (450–480 nm) (Ge et al., 2006).

Flowering generally results in a higher reflectance in the VIS spectrum and lower reflectance in 
the near-infrared (NIR) and mid-infrared (MIR) waveband regions (Figure 4.1); however, there are 
also spectral response differences, not considering compaction, atmospheric, and mixing effects, 
between species and their various flowering colors (Ni & Li, 2000). Figure 4.2 shows various mean 
spectral response curves for various species (colors) (Kokaly et al., 2017).

4.3  WHY IS IT IMPORTANT TO KNOW ABOUT FLOWERING?

Furthermore, HS-based flowering maps have been proposed in many studies, primarily in the 
Americas, to better and more effectively manage the spread of invasive species. Invasive species maps 
are highly desirable for land managers since the spread of invasive species threatens biodiversity and 
adversely impacts crop and rangeland productivity. Spatially explicit data sets on their spread could 
aid in their early containment. Invasive species were found in many cases to be distinctly separable 
at the canopy level from co-occurring vegetation, especially in the maximum flowering season (He 
et al., 2011; Hestir et al., 2008). Figure 4.3 shows an example of a white flowering noxious weed, 
Parthenium hysterophorus, is distinctly visible and separable from early maize through its white 
flowering. The differences in phenological stages between the two plants, that is, the flowering stage 
and the growth stage, combined with different leaf structures, are often utilized in very high pixel 
resolution optical HS imagery to distinguish invasive weeds from “other” landscape elements and 
plants (He et al., 2011).

Although HS imagery analysis has been successfully applied (i.e., with permissible accuracies and 
thematic depth) in identifying invasive species occurrence and spread risk zones over smaller areas, 
robust and vegetation community-wide HS floral-based mapping routines and general protocols still 
need to be developed. This is especially true with regard to the assimilation of in situ data and when 
monitoring methods rely on multiseasonal data metrics for floral-based mapping.

4.4  CHALLENGES AND MAIN ISSUES

In this section, important confounding factors, which often augment each other, are discussed, with 
solutions for HS-based flowering mapping alluded to in the later part.

FIGURE 4.2  Effect of flower colors on flower spectrum of Petunia, Platycodon, Pansy, and Geranium plants. 
Spectral data for this figure were taken from the USGS Spectral Library version 7. Reflectance (%) versus 
wavelength (nm) is shown.
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Field size (when considering large sunflower or poppy fields versus smaller flowering crops) 
and within-field flowering compaction are the primary influences on spectral variability and the 
floral-based mappability of larger fields (crops) (Miao et al., 2006). The spectral detection of large 
flowering fields with no overstory tree cover (i.e., typical poppy seed fields in central Asia) is feasible 
using spaceborne HS data, even at moderate pixel resolutions (i.e., >30 m) (Wang et al., 2014). 
However, the use of very-high-resolution (<2 m) multispectral data proved to be of limited use for 
the mapping of large fields, except when visual interpretation and extensive reference (field) data 
are used (Tian et al., 2011).

The second profound challenge is spectral mixing of the floral signal with other landscape 
elements largely owing to the subtleness of the floral signal and the relative large contribution of 
background reflectance (i.e., soil) and other bidirectional effects (Andrew & Ustin, 2008). In open-
landscape-based approaches, these effects are amplified by the high intracanopy variability of 
flowering, even within individual trees, and small fractional coverage or compaction of flowering 
plants (Chen et al., 2009). Figure 4.4 illustrates, for a fresh meadow in Germany, that, although some 
bright flowers are highly conspicuous, their fractional coverage is low, in this case only 4.5% for 
all species together. Intracanopy variability can result from “other” phenological processes, such 
as leaf wilting, which occurs alongside flowering within a given plant canopy, and flowering, only 
occurring within one section of the canopy. Figure 4.5 illustrates this “sectional flowering” for a 
Acacia spp. tree canopy in Kenya.

The third challenge is spectral mixing and wavelength sensitivity as a function of the spatial and 
spectral characteristics of the instrument or spatial scale used for mapping. When using canopy-
level field HS and when flowering compaction is high, the most accurate spectral assessment 
results can be attained (between 97% and 99% overall accuracies) (Parker Williams & Hunt Jr., 
2004). Also, compared to very-high-resolution airborne HS data, field-level HS spectral data 
showed more sensitivity to flowering response in the blue absorption spectral region (around 
460 nm) (Ge et al., 2006) largely due to low spectral mixing effects at this waveband in explicit 
canopy HS data (Lass & Callihan, 1997). In airborne HS data and when the per-pixel floral 
fraction and response increase, the visible wavebands (green to red, 525–650 nm) and specifically 
the red spectra (650 nm) become more important in floral response mapping (Jia et al., 2011). 
When performing landscape mapping to segregate several flowering stages (pre-, peak, and post 

FIGURE 4.3  Flowering Parthenium hysterophorus in Somaliland between maize plants that are in the initial 
growth stage.
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flowering stages) and densely flowering vegetation communities from nonflowering communities, 
the spectral sensitivity shifted to more spectral regions, including the red edge (650–690 nm) and 
the NIR region (730–950 nm) (Miao et al., 2006). Essentially, for both in situ assessments and 
landscape mapping, the low detectability potential of flowering and spectral mixing is amplified 
by the nature of the wavelength signal in HS imaging, which is particularly dominated by leaf 
and canopy reflectance.

(a) (b)

FIGURE 4.4  A typical nutrient-poor fresh meadow in the alpine foothills in Southern Bavaria, Germany, 
on June 4, 2013 (a) and the corresponding flower cover fractions. (The flower cover fractions were 
separated with a simple thresholding approach in the RGB color space. The thresholds were determined 
with regions of interest covering a flower sample and visually cross checked.) (b). Species that contribute 
to these flower fractions are the pinkish Primula farinosa (A), the yellowish Potentilla erecta (B), and 
the blueish Polygala amarella (C). Although the flower fraction is very prominent, it only amounts to a 
total of 4.5% cover.

FIGURE 4.5  A sectional flowering Acacia mellifera tree in a agro-ecological landscape in Kenya. Note the 
nonflowering canopy sections on the right side and lower canopy parts.
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Fourth, landscape flower monitoring and flowering magnitudes are affected by asynchronous floral 
cycles between and within various vegetation communities (Feilhauer et al., 2016). Asynchronous 
flowering patterns are often due to small-scale environmental or genetic variability (Almeida-Neto & 
Lewinsohn, 2004). Because of the short-term floral cycles of many vegetation communities, HS 
data acquisition must be ideally timed, which can be difficult in areas with extensive cloud cover 
(Ge et al., 2006).

Thus, one solution to overcoming the mixing effects is to ensure that HS detection takes place at 
the peak flowering period so that “as pure as possible” flowering pixels can be used as “reference” 
for wide-area mapping (Lass & Callihan, 1997). Moreover, high-resolution airborne or spaceborne 
data with a pixel resolution of <1 m are recommended for landscape-based floral mapping. Object-
oriented mapping approaches that capture isolated tree canopies or specific vegetation communities 
could, furthermore, complement pixel-based spectral unmixing to better mitigate the “salt-and-
pepper” effect of floral patterns in open landscapes. This would ultimately help to reduce mapping 
errors due to crown cover geometry and highly variable intracanopy flowering (Figure 4.5) (Abdel-
Rahman et al., 2015). In using spectral mixture approaches for preemptively identified flowering 
vegetation units or clusters, specific reference or dominance areas where flowering is prevalent could 
be effectively identified.

Using results from pilot studies, the next section describes in more detail the usefulness and 
possibilities of HS imaging for floral mapping.

4.5  SYNOPSIS OF CURRENT STUDIES

There are currently only a few experimental studies worldwide on flower mapping. Figure 4.6 
illustrates the thematic depth of the results (vertical axis) as a function of pixel resolution (data 
and output) for the most representative and scientifically accredited floral mapping and assessment 
studies found in the literature (numbered consecutively and itemized on the right). Thematic depth 
(vertical axis) is point graded according to whether only one species or several species or vegetation 
communities were assessed or mapped (so one point is given if only one species was considered 
and two if several were considered) (Figure 4.6). Additionally, another point was added if a hard 
cover output was produced and two points were added if a soft cover result was produced. Soft cover 
results allow for the extraction of floral abundances for each pixel or mapping unit that is relatable 
to the flowering intensity for various vegetation communities or floral intensity differences between 
various phenological floral stages within the same vegetation community (Landmann et al., 2015). 

1 Will iams and Hunt 2002

2 Ge et al. 2006

3 Chen et al. 2009

4 Shen et al. 2010

5 Jia et al. 2011

6 Mirik et al. 2013

7 Landmann et al. 2015

8 Abdel-Rahman et al. 2015

9 Feilhauer et al. 2016
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FIGURE 4.6  Two-dimensional illustration using thematic depth versus pixel resolution for various HS-based 
flower mapping studies numbered 1–9 and deciphered on the right. The thematic depth point scoring scheme 
is also shown (right, bottom).



75Study of Flowering Plants Using Hyperspectral Remote Sensing

In situ canopy studies were considered as having a <1 m “pixel resolution” since the field view of 
these studies varied significantly but in commonality canopy spectroscopy is spatially explicit (i.e., 
<1 m field of view). Only three of the nine studies (i.e., studies 2, 5, and 9) made use of the full 
optical waveband range that is commonly used in spectroscopy (350–2,500 nm). The two outliers 
(1 and 5) are studies that either mapped only one flowering species, resulting in a low thematic 
depth, that is, Jia et al. (2011), who only mapped poppy at the canopy level, or when floral mapping 
results are less spatially explicit due to the pixel size of the input HS data being >5 m (Williams & 
Hunt, 2002).

The assessment (Figure 4.6) essentially revealed that, for all studies with a pixel resolution <2 m, 
the thematic depth increased over time, that is, between the earliest study in 2002 and the latest one 
in 2016. Despite the increase in thematic depth, most of the recent studies did not employ the full 
spectral waveband region but relied solely on the VIS region (Abdel-Rahman et al., 2015; Mirik et al., 
2013). This confirms the suitability of the visible spectrum for differentiating flowering response 
from other vegetative traits that are “other” leaf-level responses. For all flowering response studies 
with a <2 m pixel resolution, the use of airborne data (blue dots in Figure 4.6) led to mapping results 
with greater thematic depth than results attained using in situ spectroscopy data (green dots). In one 
airborne study that utilized multitemporal 0.6 m AISA/Eagle HS imagery (64 bands with a full width 
at half maximum of 8–10.5 nm in the spectral range 450–980 nm), short-term flowering phenology 
could be accurately mapped for various vegetation communities in two different periods (i.e., the 
pre- and the main flowering periods) (Landmann et al., 2015, study 7 in Figure 4.6).

For the current contribution, a flowering intensity map could also be produced for the two flowering 
periods using a straightforward spectral-based linear unmixing approach (Figure 4.7) based on the 

FIGURE 4.7  Left: 0.6 m AISA/Eagle HS imagery captured during peak flowering season for a study area in 
Kenya; Right: corresponding spectral unmixing result on right using spectral endmember flowering, bare soil, 
and green vegetation. Flowering is illustrated as reddish shades; more reddish colors exhibit more per-pixel 
flowering intensity. The zoomed-in image (below) shows a partial flowering tree.
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same AISA/Eagle data mentioned earlier. Reddish shades show intense per-pixel floral spectral 
contributions, and green shades show high spectral abundances of the “green vegetation” spectral 
endmember that corresponds to green foliage or entirely “green” trees and plants with no flowering. 
The results of this study showed the already mentioned limitations of HS for flowering mapping over 
wider areas due to spectral mixing since the authors found that the spectral reference endmember 
for flowering varied significantly if the area of observation was enlarged. Essentially, in an enlarged 
area, other phenological effects, such as leaf browning, had “similar to flowering” spectra that led 
to erroneous results. But on a local scale, if spectral flowering endmembers are carefully selected 
and verified in the field for indicator trees within specific vegetation communities, even intercanopy 
flowering intensity gradients can be feasible mapped. The accuracy of the small area mapping results 
shown in Figure 4.7 varied between 69.6% correctly mapped (for yellow flowering acacia trees) and 
97% for white flowering weeds. The intracanopy variability is clearly visible for larger trees and 
could be accurately mapped (zoomed-in image in Figure 4.7).

In another recent study that also used airborne HS imagery (Abdel-Rahman et  al., 2015) 
(number 8 in Figure 4.6), the authors showed that it was even possible to map various flowering 
vegetation communities as well as their flowering colors. The greater thematic depth of airborne 
data is enabled by the greater ground coverage of airborne sensors (as opposed to ground-based and 
canopy-specific observations), making it possible to effectively map the flowering response from 
various vegetation communities (or species) or various flowering stages for the same community. 
A major limitation of airborne data is, however, the cost and thus only being able to capture short 
phenology cycles of individual plants. This precludes the mapping of other asynchronous flowering 
vegetation communities and makes it challenging to effectively produce a complete floral cycle map 
for a given landscape.

Interesting in this regard is that no study has thus far made use of spaceborne HS data for 
landscape-based floral mapping covering several flowering vegetation communities. This is probably 
due to the fact that flowering response is a short-term response, i.e., 2–3 weeks in the case of poppy 
seeds (Jia et al., 2011), and there are currently no operational spaceborne HS sensors available with 
a high enough temporal revisiting cycle needed for cloud-free detection for specific (i.e., floral) 
observation periods. For instance, the spaceborne HS imager Hyperion has a revisiting cycle of 
16 days, which may not allow for enough data to be collected at critical phenological time periods.

All nine of the mentioned studies (Figure 4.6) make use of an “integrative” approach, defined 
as the amalgamation of several multisensor, multisource data. In all cases, either ground-based 
reference data on floral spectral response or flowering compaction or occurrence data were collected. 
Due to the already mentioned subtleness of the floral response, which is species-, location-, and time-
specific, and the use of site-specific reference data in most studies, flowering response mapping is 
currently performed experimentally and localized rather than operationally.

4.6  CONCLUSIONS AND OUTLOOK

In the context of pollination and climate change effects and landscape ecological studies, floral maps 
that depict the distribution and abundances and floral cycle of melliferous plants and other species 
of ecological importance are important information feeds. In HS-based assessments and mapping 
of floral response, the most important challenges are: the subtleness of flowering, short flowering 
windows for most species, and inter- and intracanopy or plant flowering variability as a function 
of ecological gradients and microclimate conditions. However, the case study assessment showed 
that flower status could be retrieved from in situ and spatially explicit airborne hyperspectral data, 
especially over smaller areas and for vegetation communities with common plant traits. Dense 
time series of hyperspectral Earth Observation data may thus offer the opportunity to analyze 
spatiotemporal dynamics in flowering in future. This applies in particular to a spatial analysis of 
the effects of asynchronous flowering on pollination (e.g., Thomson & Plowright, 1980). Moreover, 
this chapter highlighted the application possibilities of floral mapping for the better management of 



77Study of Flowering Plants Using Hyperspectral Remote Sensing

invasive species. Future mapping endeavors might also be able to operationally support narcotics 
programs that aim to stem the production of poppy seeds.
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Michael Marshall, Itiya Aneece, Daniel Foley, 
Cai Xueliang, and Trent Biggs

5.1  INTRODUCTION

The exchange of carbon dioxide (CO2) and water vapor between the atmosphere and crops is 
complex and fundamental to healthy crop development (Bernacchi and VanLoocke, 2015). Carbon 
assimilation via photosynthesis is the process by which crops use light energy to convert atmospheric 
CO2 to carbohydrates (Chapin et al., 2011). Carbohydrates are used to generate additional plant 
material (biomass), including the harvestable portion known as yield (Y). During carbon assimilation, 
moisture is lost to the atmosphere via transpiration (ETC). Assuming the “big leaf” concept for 
photosynthesis (Dickinson et al., 1998), the regulation of CO2 and ETC flux in the crop canopy is 
determined by the proportion of photosynthesizing canopy area, ratio of internal to atmospheric CO2 
or water vapor, and available solar energy (Steduto et al., 2007). The proportion of photosynthesizing 
canopy area is measured either as the fraction of photosynthetically active radiation (FPAR) or with 
the leaf area index (LAI). It is generally assumed to vary with moisture and nutrient availability, 
temperature extremes, and leaf age (Wang et al., 2014). If too much moisture is transpired during 
the exchange of CO2 and water vapor, for example, crops cannot maintain metabolic function or 
structure, and FPAR declines. Similarly, if crops experience nutrient stress or are exposed to frost or 
a heat wave, FPAR will be lower. If these conditions persist, FPAR will approach zero, and declines in 
Y or total crop failure are likely. The ratio of internal to atmospheric CO2 varies with the type of 
assimilation (C3 or C4). Atmospheric CO2 is generally assumed constant in either case. Assimilation 
in C3 crops (e.g., rice, soy, and wheat) is catalyzed by the RUBISCO enzyme (Collatz et al., 1991). 
The activity of the enzyme increases with rising temperatures until a given threshold in optimal 
performance is achieved. Once temperatures exceed an optimal temperature, catalyzation declines. 
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Assimilation in C4 crops (e.g., maize) is first catalyzed by PEP carboxylase, which acts to concentrate 
CO2 before RUBISCO catalyzation (Collatz et  al., 1992). The concentration has the effect of 
minimizing the temperature dependency, which makes C4 crops better adapted to hot dry climates. 
Carbon assimilation increases with increasing FPAR, since crops prioritize light capture (Monteith, 
1969). Under cloudy or diffuse light conditions, crops may actually assimilate more CO2, because 
more light is able to penetrate deeper into the canopy (Law et al., 2002). Transpiration, on the other 
hand, increases with the total or net radiation absorbed by the canopy (Monteith, 1965). As more 
radiation is absorbed by the crop, sensible heat (H) increases and must be offset by an increase in 
heat generated by ETC to maintain energy balance (Pieruschka et al., 2010).

Socio-ecological conditions make agroecosystems in dry regions of the world particularly 
sensitive to CO2 and water vapor flux (Schlosser et al., 2014). Global climate change is projected to 
increase evaporative demand, which will lead to more frequent and severe droughts (Cook et al., 
2014; Prudhomme et al., 2014). In the near term, Y may increase, because projected increases in 
corresponding CO2 emissions and fertilization can act to decrease ETC. In the long term, however, 
water stress is projected to overtake the CO2 offset, leading to Y declines (Gerten et al., 2011; 
Challinor et al., 2014). Population growth, rapid industrialization and urbanization, water pollution, 
and the increased use of biofuels will likely put further strain on water resources in this century 
(Schewe et al., 2014). The Green Revolution, which began to accelerate in the 1960s, consisted 
of a series of policies and actions that focused on increasing Y to meet the challenges of food 
insecurity. Among these, agricultural land expansion was the most prevalent. As the amount of arable 
land dwindles, this option is no longer sustainable. Other measures must be adopted to optimize 
agricultural production and prevent water scarcity (Porkka et al., 2016).

Increasing crop water productivity (CWP) by maintaining or increasing Y while minimizing 
water lost to the environment (“more crop per drop”) is a key strategy for combating water scarcity 
in dry regions of the world (Brauman et al., 2013). Increasing CWP is referred to here as a strategy 
because it is achieved by the coordinated application of several techniques (Ali and Talukder, 2008). 
Techniques fall into four general categories: physiological, engineering, farm management, and 
economic (Raza et al., 2012). Physiological methods reduce transpiration while maintaining or 
increasing Y. This is commonly done by selecting crop types or varieties with a higher tolerance 
to adverse conditions (Bessembinder et al., 2005). The remaining measures aim to reduce surface 
runoff and evaporation or increase soil infiltration and drainage. Engineering solutions, such as 
drip irrigation systems and irrigation channel lining, improve storage and delivery through physical 
means. They have a high upfront cost, which makes them practical only for farms with access 
to capital. Deficit irrigation and other irrigation scheduling techniques, mulching, and increasing 
crop density, are examples of farm management solutions that act to reduce surface runoff and 
evaporation through biological means. They are more economical than engineering solutions, 
which makes them more attractive to smallholder farmers in developing countries. Conservation 
till, soil amendments, and organic matter additions are examples of farm management solutions 
that increase soil infiltration and drainage by improving soil structure and water holding capacity. 
Unlike physiological, engineering, or farm management techniques, which can be done on individual 
farms, economic techniques are intended to incentivize water savings on many farms. As such, they 
require broad consensus and institutional support. They can be classified as top-down government 
interventions (e.g., water pricing) or market-based interventions (e.g., virtual water trading) (Liu 
et al., 2009; Siebert and Döll, 2010).

The cost-effectiveness of these measures remains highly uncertain over both space and time 
(Evans and Sadler, 2008). Process-based models have been developed to estimate CWP to address 
these uncertainties (Zwart et al., 2010). These models require extensive input data on current field 
conditions that are difficult and costly to obtain. Earth observation via satellite remote sensing can 
partially overcome these challenges, because it captures surface reflectance representing current 
field conditions over large areas over time at low cost (Chi et al., 2016). CWP has been measured 
to a limited extent through its components (Y and ETC) with broadband remote sensing. With 
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broadband remote sensing, a small number of bands or channels known as multispectral broadbands 
(MSBBs) are used to develop multispectral broadband vegetation indices (MBVIs) that characterize 
crop properties using surface reflectance in the visible and very near infrared (VNIR) range of the 
electromagnetic spectrum. Thermal bands are often used for ETC estimation. MBVIs are often too 
coarse spectrally to distinguish biophysical properties related to CWP or its components (Ustin et al., 
2004). Hyperspectral remote sensing involves hundreds of narrow spectral bands or HNBs that are 
used to develop hyperspectral vegetation indices (HVIs). HVIs typically provide a higher level of 
detail that facilitates the characterization of crop-specific properties, such as biomass, moisture, 
pigments, and lignin/cellulose (woody biomass). Although studies have been conducted on the use 
of HVIs to estimate biomass, to the authors’ knowledge no studies have used HVIs to estimate CWP 
directly or through its components Y and ETC. Hyperspectral remote sensing is costlier and more 
data intensive than broadband remote sensing, which may explain the dearth of studies (Goetz, 2009). 
In addition, images from past hyperspectral missions (e.g., Hyperion onboard Earth Observing-1) 
were captured on demand, which resulted in more limited data acquisition.

This chapter presents a methodology that can be used to compare HVIs for CWP estimation. 
The authors originally compiled available hyperspectral (Hyperion) satellite data for the exercise. 
Unfortunately, the number of images was too small for any credible interpretation. MBVIs were 
therefore used instead. Landsat has been widely used to estimate CWP and its components, but 
analyses tend to focus on the red, VNIR, and thermal regions of the electromagnetic spectrum. 
The proposed methodology is a data mining approach and therefore covers a wide range of regions 
of the electromagnetic spectrum. In addition, eddy covariance towers, which measure carbon and 
moisture flux simultaneously over agricultural fields are used for the first time to demonstrate how 
CWP models could be developed from hyperspectral remote sensing. The current state of knowledge 
concerning remote-sensing-based approaches related to CWP is summarized in Section  5.2. 
Section 5.3 demonstrates the use of multispectral broadband remote sensing to estimate CWP and its 
components. Section 5.4 provides concluding remarks, including some insights into the weaknesses 
of the methodology and a path for future work in hyperspectral remote sensing and CWP modeling.

5.2 � REMOTE SENSING OF CROP WATER PRODUCTIVITY 
AND ITS COMPONENTS

CWP is a partial-factor productivity measure that essentially captures the performance of crops or 
other agricultural output in relation to water applied to the system (Molden et al., 2003). In a cropping 
system, CWP is expressed as

	
CWP

Crop yield(kgha or ha )
Water input m ha

=
− −

−

$
( )

.
1 1

3 1
	

(5.1)

CWP is often confused with the term water use efficiency (WUE) (Evans and Sadler, 2008). WUE 
was traditionally defined by irrigation engineers as the ratio of ETC to water diverted via evaporation, 
percolation, seepage, or other losses across an irrigation system. WUE has a number of limitations. 
Efficiency implies that water retained can be expressed as a percentage of the maximum achievable 
limit, which is not possible. In addition, WUE has been confused with a number of other terms, such 
as irrigation efficiency and water footprint, which do not consider crop water use. These definitions 
therefore tend to deemphasize physiological improvements, which may be more practical than 
engineering, farm management, or economic solutions.

CWP above all is a diagnostic tool to help identify problems and opportunities related to 
infrastructure, crops, and water management practices. CWP is a useful supplement to irrigation 
efficiency, which mostly emphasizes engineering solutions. CWP links irrigation efficiency in 
cropping systems with its desired outcome: optimal crop productivity. Therefore, it helps identify 
areas where water supplied is not enough or too much. If it is computed periodically through the 
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growing season, it can also be used to determine whether or not water is provided at the right time. 
All of these can be partly attributed to infrastructure and partly to farm management, for example, 
as those reflected through the classic head-tail effects in which fields at the head of a canal receive 
more water than those at the tail. CWP also facilitates the optimization of cropping patterns and 
tradeoff analysis. For example, Cai et al. (2014) developed a CWP tool for water allocation in a 
small catchment. With the tool, farmers or farm managers are able to explore a number of options 
to optimize CWP, including growing a combination of rainfed or irrigated crops.

CWP should not be confused with water footprint either. Water footprint is a concept concerning 
the resources needed to produce a unit of product. It is frequently used for broad trade and policy 
analysis, but not for a performance assessment or diagnostic analysis of agricultural systems.

There are several variations of CWP as defined in Equation 5.1 (Ali and Talukder, 2008). The 
numerator is commonly expressed as grain seed or other agricultural production with a certain 
moisture content or dry biomass in the case of rainfed systems. CWP expressed with Y is limited to 
a specific crop type or variety. To assess the performance of multicrop systems, Y of various crops 
can be converted into monetary ($) terms by multiplying it by market rates. Even crop residue with 
certain economic value can be valued and tallied. CWP expressed in monetary terms therefore 
is a way of standardization. This standardization is especially useful if one wants to look at crop 
diversification and the returns on limited water supply with alternative crop choices. It is however 
limited to the same agricultural system or similar systems. To enable cross-regional comparisons, 
climate normalization is required (Bastiaanssen and Steduto, 2017).

The denominator in CWP has an even wider range of interpretations and inputs. In one of the first 
and most widely cited papers on the subject, Molden (1997) suggested that CWP of an agricultural 
system can be calculated using, for example, gross inflow, net inflow, irrigation supply, and beneficial 
consumption. Approaches such as these are used to examine the efficiency of an irrigation system 
(Roost, 2008). Increasingly, actual water consumed by a crop (ETC) is used in the denominator to 
estimate CWP. Actual evapotranspiration (ETA) may be used in lieu of ETC because of the difficulty 
to measure ETC. ETA captures not only the water lost from ETc but also water evaporated from 
the soil or crop surface following a watering event. ETA or ETC is used alone in the denominator 
because the hydrological processes are extremely complex in most cropping systems compared to 
natural systems. Irrigation, drainage, water reuse, and on-farm practices all contribute to changes 
in the water cycle, making it difficult to measure the level of water inputs and gauge how efficiently 
they are used.

The use of remote sensing estimates for CWP assessment marked a significant advance in the 
development and application of CWP. The advancement was possible because remote sensing 
data were used to directly estimate and map two important variables: (a) crop biomass/yield and 
(b) ETA (Figure 5.1). The remotely sensed data most commonly used to estimate these variables are 
MBVIs, but hyperspectral narrowbands (HNBs) are also used, though to a much lesser extent. In 
using remotely sensed data, CWP estimation moved away from the assessment of inputs and outputs 
that are uncertain, hard to measure, and nonlinearly related to water consumed by a given crop. 
Moreover, for the first time, CWP could be estimated at the pixel level (typically at 30-m resolution), 
which helped target interventions. Finally, the use of remote sensing allowed CWP to be estimated 
at different scales and for different cropping systems, regardless of data availability on rainfall, 
groundwater, discharge, or irrigation supply.

In the following subsections, remote-sensing-based methods for estimating crop biomass, Y, and 
ETA are reviewed.

5.2.1 C rop Biomass and Yield

Y is typically measured as a function of crop biomass and the harvest index (HI). HI is the crop or 
variety specific fraction of biomass extracted for grain seed or other agricultural production (Hay, 
1995). Remote sensing techniques are used to estimate biomass or Y directly, while HI is estimated 
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using non-remote sensing methods (Kemanian et al., 2007). Traditional ways of estimating biomass 
with field measurements are resource intensive, time consuming, destructive, and difficult to scale 
up (Feng et al., 2013). MBVIs provide a nondestructive way to estimate biomass or Y and enable 
such estimation throughout the growing season and over large areas. Common examples include 
the normalized difference vegetation index (NDVI), the transformed vegetation index (TVI), the 
simple ratio (SR) index, and the difference vegetation index (DVI) (Johnson, 2016; Mutanga and 
Skidmore, 2004). These indices incorporate MSBBs in the red and very near-infrared (VNIR) 
regions of the spectral profile, which correspond with light absorption by pigments in the red region 
and light scattering due to leaf structural elements in the VNIR region. Highly productive vegetation 
generally has high absorption in the red region and high reflectance in the VNIR region. Background 
signatures (such as soil or water) and atmospheric effects can obscure this relationship. Several 
other popular indices exist to minimize this noise, including the Perpendicular Vegetation Index 
(PVI), the weighted difference vegetation index (WDVI), the soil-adjusted vegetation index (SAVI), 
the transformed SAVI (TSAVI), and the modified NDVI (MNDVI). However, these indices often 
saturate in regions with high biomass and vegetation cover and, thus, are not always effective in 
estimating biomass throughout the growing season.

Several studies have demonstrated the benefits of using HNBs to estimate aboveground biomass 
using various indices and methods (Table 5.1). They overcome the saturation problem, resulting in 
higher correlations overall. Marshall and Thenkabail (2015a), for example, found that VNIR was 
most correlated with aboveground crop biomass, especially at 794, 845, 865, 943, 963, and 993 nm, 
followed by the visible at 438, 468, 539, 560, and 631 nm. Feng et al. (2013) also concluded that the 
500, 519, 560, 593, 619, 683, 702, and 728 nm wavebands were most important for predicting rice 
biomass. The Modified Triangular Vegetation Index 2 (MTVI2), calculated using green (550 nm), 
red (670 nm), and VNIR (800 nm) narrowbands, was able to estimate dry biomass for corn, soybean, 
and wheat, with R2 values of 0.95, 0.99, and 0.76, respectively (Liu et al., 2004). Marshall and 
Thenkabail (2015b) compared the ability of HNBs with MSBBs from MODIS, Landsat, IKONOS, 
GeoEye-1, and WorldView-2 to successfully estimate aboveground biomass for rice, alfalfa, cotton, 
and maize. Correlations with biomass were higher with Hyperion HNBs (R2 from 0.71 to 0.98) than 
those with the multispectral satellites, with R2s of 0.10–0.88 for MODIS, 0.32–0.82 for Landsat, 
0.50–0.94 for IKONOS, 0.55–0.95 for GeoEye-1, and 0.36–0.87 for WorldView-2. They also found 

FIGURE 5.1  Remote-sensing-based CWP focuses on consumed water by crop, as opposed to nonconsumptive 
or inflow/outflow side of the water balance. Similarly, the components beneficial to the grower, consumer, etc. 
are indicative of productivity, while the non-beneficial components are not.
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that HNB two-band vegetation indices explained 5%–31% more variability in crop biomass than 
MSBB two-band vegetation indices. Additionally, HNB multiband vegetation indices explained 
3%–33% more variability than did MSBB vegetation indices. Similarly, Mariotto et al. (2013) found 
that the high spatial resolutions of QuickBird and IKONOS images were not sufficient for predicting 
crop biomass without hyperspectral data.

Several HNBs lie outside the visible and VNIR regions that also produce accurate biomass 
estimates. For example, Mutanga and Skidmore (2004) found that incorporating red edge bands 
into traditionally used indices such as NDVI, TVI, and SR, led to higher correlations with biomass 
of a grass species. The MNDVI using a red edge band at 746 nm and a VNIR band at 755 nm had 
an R2 value of 0.78, as opposed to an R2 value of 0.26 when using a red band at 680 nm and a VNIR 
band at 833 nm. Similarly, they found that the SR with the highest R2 value of 0.80 used bands 
at 706 and 755 nm in the red edge region. The most important bands for the TVI were 752 and 
755 nm, also in the red edge region. Marshall and Thenkabail (2015a) also found that the red edge 
region (centered at 722 nm) was important for biomass estimation. The shortwave infrared region 
(SWIR) can also improve biomass estimates. For example, Mariotto et al. (2013) found that for 
predicting crop biomass, 74% of important bands were in the 1051–1331 nm spectral range; 10% in 
the moisture-sensitive spectral range at 970 nm (VNIR); 10% in the 400–550 nm (blue), 501–600 nm 
(green), and 760–900 nm (VNIR); and 6% in the red and red edge (630–752 nm) regions. Longer 
wavelengths have also proved useful. Gnyp et al. (2014), for example, evaluated the normalized ratio 
index (NRI) and GnyLi, which used a combination of 874 nm (VNIR) and 1225 nm (SWIR) and 
VNIR (900, 955 nm) and SWIR (1050, 1220 nm), respectively. They explained 74% of the variability 
in winter wheat biomass, compared to less than 60% with indices from other spectral regions.

TABLE 5.1
Summary of the Most Important Hyperspectral Narrowbands (HNBs) for Aboveground 
Dry (ADB) and Wet (AWB) Biomass per Crop Type and Their Performance versus 
Multispectral Broadbands (MSBBs)

Crop Type Variable HNBs Variability Explained
Percentage Improvement 

over Other Studies

Rice, maize, 
cotton, alfalfa

AWB 794, 845, 865, 943, 
963, 933

84%, 59%, 91%, and 86% 12%, 29%, 14%, 6%

Rice, alfalfa, 
cotton, and maize

AWB 529, 549, 722, 732, 
752, 895, 925, 1104

91%, 81%, 97%, and 94% 5%–31% with two-band 
indices, 3%–33% with 
three-band indices

Pasture grass AWB 706, 722, 746, 752, 
755, 760

78%, 80%, and 79% using 
NDVI, SR, and TVI

52% improvement with 
modified NDVI vs 
traditional

Maize, soybean, 
wheat

ADB 550, 670, 800 95%, 99%, and 76%

Wheat ADB 874, 900, 955, 1050, 
1220, 1225

74% and 78% using NRI 
and GnyLi

At least 10% improvement 
over other indices

Rice AWB and ADB 500, 519, 560, 593, 
619, 683, 702, 728

For tillering to elongation, 
94% and 93.5% for wet 
and dry

For booting to heading, 
89.1% and 78.3% for 
wet and dry

Note:	 In some cases, vegetation indices such as NDVI, SR, TVI, and NRI were used.
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Several factors influence which bands or spectral regions are most important for estimating 
biomass and Y, including crop type, growth stage, crop stress level, and analytical techniques 
used. The most important bands for estimating biomass vary across crops because of differences in 
plant architecture and physiology. For example, erectophiles (with vertical leaf angle) such as rice 
absorb less visible light and scatter more light in the NIR than planophiles (with horizontal leaf 
angle) such as cotton or alfalfa (Marshall and Thenkabail, 2014). Growth stage is also an important 
consideration; biomass is often underpredicted at crop growth stages with low biomass (Marshall 
and Thenkabail, 2014). A more comprehensive review of eco-physiological factors impacting 
HNB-biomass correlations is presented in Osborne et al. (2002). The statistical method and spectral 
transformation selected can also impact the strength and significance of the bands correlated with crop 
biomass. Marshall and Thenkabail (2015a) found that piecewise regression models performed worse 
than stepwise regression, while Marshall and Thenkabail (2014) found that two-band and multiple 
band HNB indices selected using sequential search methods were better at predicting biomass than 
principal component regression. Marshall and Thenkabail (2014) found that correlations between 
first derivative transforms and biomass were higher than with untransformed spectra, especially 
at longer wavelengths. The strong correlations were over a much narrower spectral range because 
the transformation deemphasized background signatures from soil and water in the case of rice. 
Similarly, second derivatives further deemphasized effects from varying solar illumination, which is 
especially important for rice in standing water (Marshall and Thenkabail, 2014). However, Marshall 
and Thenkabail (2015b) found that the untransformed spectra were better in the case of multiband 
vegetation indices than first derivative spectra.

5.2.2 E vapotranspiration

Total actual evapotranspiration, ETA, is the second largest term in the water balance equation 
after precipitation (Katul et al., 2012). ETC, the water used by crops, is the largest component 
of ETA in most locations around the world (Schlesinger and Jasechko, 2014). ETC rates are most 
impacted by meteorological conditions, which are the first-order control on the evaporative demand 
of the atmosphere. ETC is particularly important during the growing season when vegetation is 
productive, whereas soil evaporation is important during the initial stages of crop growth, when 
vegetation cover is low and soil moisture is high. Interception occurs when plant canopies retain 
rainfall, wetting leaf and stem surfaces, with subsequent evaporation of the intercepted water. 
The percentage of rainfall that is intercepted decreases with event size, and its importance in the 
annual water balance depends on the size and distribution of storms and on canopy characteristics. 
For field crops, interception ranges from 7%–36% of growing-season rainfall in semiarid climates 
(growing season rainfall 158–275 mm) (Dunne and Leopold, 1978) to 8%–18% of rainfall in humid 
climates (annual rainfall 1577–1642 mm) (van Dijk and Bruijnzeel, 2001). Interception cannot be 
measured directly with remote sensing, so it is typically modeled as a function of storm size or 
relative humidity (Fisher et al., 2008; Mu et al., 2011). Soil evaporation is approximately the same 
magnitude as evaporation from an open water body when the soil is wet, decreases rapidly with 
decreasing soil moisture and increasing canopy cover, and is usually insignificant after 5–10 mm of 
water has evaporated from the soil (Dunne and Leopold, 1978). Soil evaporation is therefore most 
important in areas with low canopy cover and immediately after rainstorms or in areas receiving 
frequent irrigation.

In contrast to the extensive research that has evaluated MSBBs and HNBs for crop biomass and 
yield, considerably less attention has been paid to ETA estimation (Rodriguez et al., 2011). Biggs 
et al. (2015) provide a comprehensive review of MSBB methods, which typically use vegetation 
indices, thermal bands, or a combination of the two to estimate ETA or its energy equivalent latent 
energy (LE). Vegetation-index methods include empirical methods that correlate ETA with a 
vegetation index, and more complex, process-based models that use vegetation indices to partition 
ETA into its components (Wang et al., 2014). NDVI, SAVI, or SAVI’s successor, the enhanced 
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vegetation index (EVI) (Huete et al., 2002), are primarily used, because they are sensitive to changes 
in biomass and FPAR. The Normalized Difference Water Index and Global Vegetation Moisture 
Index, which rely on the SWIR region sensitive to leaf water absorption, have more recently been 
suggested to improve estimates of ETA (Guerschman et al., 2009; Lu and Zhuang, 2010). Thermal 
methods employ thermal bands to estimate LE as a residual in the energy balance equation and 
include the Simplified Surface Energy Balance (SSEB) (Senay et al., 2007), Atmosphere-Land 
Exchange Inverse (ALEXI) (Anderson et al., 1997) model, Mapping Evapotranspiration at high 
Resolution with Internalized Calibration (METRIC) (Allen et  al., 2007), and Surface Energy 
Balance Algorithm (SEBAL) (Bastiaanssen et al., 1998). Thermal methods estimate sensible heat 
(H) from the radiometric land surface temperature (TR), but the relationship between H and TR 
is not unique and is difficult to estimate directly from remote sensing. Several thermal methods 
(METRIC, SEBAL, and related models) use internal calibration for each image to estimate the 
H-TR relationship by assuming that LE is zero at the driest, hottest pixels in images and equal to 
net radiation at the wettest, coldest pixels. Other methods (ALEXI) use the change in remotely 
sensed temperature during two time periods to constrain an atmospheric boundary layer model 
(Anderson et al., 2007), which requires the use of geostationary or polar-orbiting satellites with 
multiple overpasses per day. Unlike METRIC and SEBAL, which are one-source approaches that 
estimate the combination of evaporation and ETC, ALEXI uses a vegetation index to separate ETA 
into its two primary components (LE and soil heat flux).

ETA from remote sensing can be compared with point measurements of ETA from eddy 
covariance flux towers or Bowen ratio towers and from watersheds where ETA is calculated as a 
residual of the water balance. Accuracies of the main methods (vegetation index, thermal, and 
mixed) are typically in the range of 5%–15% for annual and seasonal ETA (Biggs et al., 2015). 
Accuracies typically decrease with decreasing time scale, so remote sensing methods are most 
accurate for longer time periods (seasonal, annual), where errors average out (Biggs et al., 2015 
and references therein).

Several studies have evaluated HVIs for estimating biomass, FPAR, and other biophysical parameters 
that may constrain ETA, such as crop nutrient or water stress, but few have been performed to 
estimate ETA directly (Rodriguez et al., 2011). Marshall et al. (2016) used ground-based spectroscopy 
and eddy covariance flux tower data to compare several MBVIs and HVIs for estimating ETA 
and its components. In general, MBVIs explained less variability than HVIs: ΔR2 = −0.12 for 
ETA, ΔR2 = −0.17 for ETC, and ΔR2 = −0.14 for soil evaporation. The most highly correlated 
HVIs for ETA were in the red edge centered at 672 nm and visible blue (428–478 nm): R2 = 0.51. 
Several HVIs from the NIR and SWIR were correlated with ETA as well. Similarly, the most highly 
correlated HVI for ETC was also centered on the red edge (672 nm) but performed better with NIR 
and SWIR channels (722–1050 nm) than the visible blue. The best index for ETC (R2 = 0.68) was 
centered at 672 and 733 nm. Correlations between soil evaporation and HVIs were even stronger 
than for ETC. Unlike ETA and ETC, which were estimated well with HVIs from the literature, soil 
evaporation was estimated best with channel combinations centered on 743 nm and a range of NIR 
and SWIR channels (916–1155 nm). The highest correlated index was at 743 and 953 nm (R2 = 0.72). 
The authors noted that the greatest opportunity for improving ETA estimates with HNBs was by 
combining a hyperspectral NDVI for ETC with the new soil evaporation index. The hyperspectral 
NDVI could be used to estimate crop biomass and Y as well.

5.3  DEMONSTRATION OF CWP ESTIMATION USING REMOTE SENSING

Data were collected and analyzed to present a methodology and identify MBVIs that should be 
considered when defining HVIs for CWP estimation when hyperspectral data become more readily 
available. A variant of CWP was computed for the first time from eddy covariance flux towers for 
several crop fields in the United States. The towers regularly measure the accumulation of crop 
biomass and LE over the growing season. Remote sensing data were collected in the footprint 
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of each tower for the analysis. The footprint was defined as the upwind area contributing to the 
flux measurements. The remote sensing data included MBVIs derived from Landsat-7 ETM+. 
The Google Earth Engine (https://earthengine.google.com/) cloud computing platform was used 
to process the large volume of remote sensing data more efficiently. The MBVIs were compared to 
CWP as two-band difference ratios.

5.3.1  Data and Processing

5.3.1.1  Eddy Covariance Flux Towers
Data from seven eddy covariance flux towers in agricultural areas across the United States were 
downloaded from the Ameriflux network (http://ameriflux.ornl.gov/). Each station is summarized 
in Table 5.2. The sites were selected because they had at least 2 years of quality data and at least one 
near cloud-free satellite image toward the end of the growing season. The stations represent a wide 
range of C3 and C4 crops in rainfed and irrigated fields and altogether span 15 years. Gross primary 
production (GPP) (µmol CO2 m−2 s−1) and LE (W m−2) were retrieved or derived for each station. 
The sum of GPP over the growing season (after respiration costs have been discounted) is equal to 
net primary production (NPP) or total crop biomass. The selected images were sufficiently close to 
the end of the growing season for us to compute NPP as the sum of GPP from start of season to the 
date of image retrieval. Start- and end-of-season information was provided by the growers or farm 
managers. It was assumed, based on Ryan (1991), Gifford (1994), and Waring et al. (1998), that plant 
respiration was 50% of GPP. GPP was available to download for four stations: US-Ne1, US-Ne2, 
US-Ne3, and US-Twt. For the other stations, GPP was not available to download. It was instead 
computed from the carbon flux data using the same approach as at the aforementioned stations, that 
of the marginal distribution sampling method (Reichstein et al., 2005). The data were available at 
30-min or 60-min intervals. They were aggregated to a daily time step over daytime hours (incoming 
solar radiation >5 W m−2). Daytime averages were computed instead of daily averages because the 
link between turbulent heat flux and plant response is strong during peak solar hours (Fisher et al., 
2008). Finally, a 5-day exponential moving average filter was applied to account for the time lag of 

TABLE 5.2
Eddy Covariance Flux Towers Used to Estimate Crop Water Productivity

ID Site Name Lat Long Years Crop Type
(R)ainfed
(I)rrigated

Elv
(m)

PPT
(mm)

T
(°C)

US-ARM ARM Southern 36.61 −97.49 2006, 2008, 
2009,

Maize and 
wheat

R 314 843 15

Great Plains 2010 and 2012

US-Bo1 Bondville 40.01 −88.29 2004, 2005, 
and 2007

Maize and 
soy

R 219 991 11.0

US-Ib1 Batavia 41.86 −88.22 2011 Soy R 227 929 9.2

US-Ne1 Mead Irrigated 41.17 −96.48 2007 Maize I 361 887 9.7

US-Ne2 Mead Irrigated 41.16 −96.47 2003, 2008, 
and 2009

Maize and 
soy

I 362 887 9.7

US-Ne3 Mead Rainfed 41.18 −96.44 2008 Soy R 363 887 9.7

US-Twt Twitchell Island 38.11 −121.65 2013 Rice I -5 346 15.9

Note:	 The site identification (ID), site name, and general bioclimatic information, such as annual rainfall (PPT), elevation 
(Elv), and average temperature (T), can be found on the Ameriflux website. Only years when a remote sensing image 
was retrieved and used in the analysis are displayed.

https://earthengine.google.com/
http://ameriflux.ornl.gov/
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crop adaptation to new weather conditions. CWP (kg m−3) was computed using Equation 5.1. Crop 
yield was calculated from NPP using the following equation:

	
Yield NPP

HI
RS MC

=
+ −

*
( )

*
( )1

1
1 	

(5.2)

where RS is the root-to-shoot ratio or proportion of belowground to aboveground biomass and MC is 
the seed moisture content of the grain or seed yield. RS and HI estimates per crop type were taken 
from Prince et al. (2001), while MC estimates were taken from Lobell et al. (2002) (Table 5.3).

5.3.1.2  Landsat Imagery
Thirteen Landsat images corresponding to the Ameriflux measurements over the time period 
of 2003–2013 were deemed suitable for analysis. Images were selected based on three criteria: 
(1)  the flux tower footprint was outside the image striping resulting from the failure of the 
Landsat-7 Scan Line Corrector; (2) the image contained <20% cloud cover; and (3) the image 
preceding and closest temporally to the harvest was selected. In general, images for winter crops 
(wheat) were retrieved in May or June, while for summer crops (maize, soy, and rice) images 
were retrieved in September or October (Table 5.4). In each case, the images were acquired 
within 2 weeks of harvest. The raw (Level 1) Landsat data were converted to surface reflectance 
using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric 
correction algorithm (Masek et al., 2006). Pixels containing clouds or cloud shadows were flagged 
using the C function of the Mask (CFMask) algorithm (Foga et al., 2017). Surface reflectance was 
characterized by blue, green, red, VNIR, and two SWIR bands centered at 485, 560, 660, 830, 
1650, and 2215 nm, respectively. These bands are at 30 m spatial resolution. Landsat-7 contains 
one thermal channel (band 6, at 60 m resolution), which was omitted from the analysis. A 3 × 3 
pixel window in the center of the footprint of each flux tower was averaged and paired with CWP 
estimates for the analysis.

5.3.2 A nalytical Techniques

The MSBBs were converted to MBVIs as two-band difference ratios [(R2 − R1)/(R1 + R2)] and 
related to CWP using linear regression. R1 and R2 in this case are two given Landsat bands. Band 
ratioing was selected over more rigorous mining techniques because of the small sample size 
(N = 15). For this reason, the regression was performed on all crops instead of by crop type. The 
results were first interpreted as λ-λ contour plots (Thenkabail et al., 2000). λ-λ plots are a convenient 
way to display every possible combination and corresponding R2 value. The highest performing 
band combination was then viewed using a scatterplot. Performance was measured with R2 and 

TABLE 5.3
Parameters (HI—Harvest Index, MC—Grain or 
Seed Moisture Content, and RS—Root-to-Shoot 
Ratio) Used to Convert Crop Biomass to Yield

Crop Type RS MC HI

Maize 0.18 0.11 0.50

Rice 0.10 0.09 0.40

Soy 0.15 0.1 0.41

Wheat 0.20 0.11 0.37



89Crop Water Productivity Estimation with Hyperspectral Remote Sensing

cross-validated root-mean-squared error (RMSE). The data were initially transformed to account 
for nonlinearity, but the transformation did not improve the performance of the vegetation indices.

5.3.3 R esults

CWP and its components varied considerably across crop types. Rice lost the most water over the 
growing season (ETA = 0.52 m), which was offset by relatively high Y (0.83 kg m−2) and led to 
moderate CWP (1.60 kg m−3). Similarly, maize lost relatively more water over the growing season 
than other crops (ETA = 0.46 ± 0.05 m) but produced high Y (1.40 ± 0.46 kg m−2), leading to 
the highest CWP of all the crops (3.00 ± 0.89 kg m−3). Soy, on the other hand, produced relatively 
high CWP (1.80 ± 0.48 kg m−3), which was due to low water loss (ETA = 0.43 ± 0.07 mm) instead of 
high Y (0.76 ± 0.18 kg m−2). Wheat was the most water efficient (ETA = 0.35 ± 0.05 m) but had the 
lowest Y (0.53 ± 0.05 kg m−2). This led to the lowest CWP overall (1.53 ± 0.15 kg m−3).

Figure 5.2 shows how each Landsat combination performed when estimating CWP and its 
components (Y and ETA). Figure 5.3 shows the top-performing band combination for each category. 
Landsat bands 1 (blue) and 3 (red) resulted in the highest correlation and lowest error, while Landsat 
bands 5 (SWIR1) and 7 (SWIR2) resulted in the lowest correlation and highest error. Landsat band 1 
for CWP appeared the most important, because it was in each of the top-performing combinations 
(with band 3 R2 = 0.72, RMSE = 0.50 kg m−3; band 2 R2 = 0.32, RMSE = 0.70 kg m−3; band 5 
R2 = 0.31, RMSE = 0.68 kg m−3; and band 7 R2 = 0.30, RMSE = 0.73 kg m−3). Similarly, Landsat 
bands 1 and 3 were the highest performing combination for crop yield (Figure 5.2b), with band 1 
present in all of the top-performing combinations (with band 3 R2 = 0.64, RMSE = 0.31 kg m−2; 
band 7 R2 = 0.34, RMSE = 0.38 kg m−2; band 5 R2 = 0.33, RMSE = 0.40 kg m−2; and band 2 
R2 = 0.28, RMSE = 0.39 kg m−2). Landsat bands were less effective at estimating ETA. Landsat 

TABLE 5.4
Details on Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+) Images Used for the Analysis

ID
Crop 
Type Image ID

Date 
Acquired

ΔEOS 
(Days)

US-ARM Wheat LE70280352006159 6/8/2006 13

US-ARM Maize LE70280352008261 9/17/2008 8

US-ARM Wheat LE70280352009167 6/16/2009 2

US-ARM Wheat LE70280352010170 6/19/2010 3

US-ARM Wheat LE70280352012144 5/23/2012 5

US-Bo1 Soy LE70220322004256 9/12/2004 2

US-Bo1 Maize LE70230322005265 9/22/2005 5

US-Bo1 Maize LE70230322007271 9/28/2007 5

US-IB1 Soy LE70230312011282 10/9/2011 4

US-Ne1 Maize LE70280312007274 10/1/2007 1

US-Ne2 Maize LE70280312003263 9/20/2003 12

US-Ne2 Soy LE70280312008261 9/17/2008 8

US-Ne2 Maize LE70280312009263 9/20/2009 13

US-Ne3 Soy LE70280312008261 9/17/2008 6

US-Twt1 Rice LE70440332013258 9/15/2013 8

Note:	 In each case, the image difference between the acquisition data and end of 
season (ΔEOS) was less than two weeks.
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(a)

(b)

(c)

FIGURE 5.2  λ-λ plots expressing R2 performance of each Landsat band combination with (a) crop yield; 
(b) evapotranspiration; and (c) CWP.
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(a)

(b)

(c)

FIGURE 5.3  Predicted versus observed (a) crop yield; (b) evapotranspiration; and (c) CWP. Solid line: perfect 
correlation (R2 = 1.0). Predicted values were derived from highest performing Landsat bands (1, 3, and 7).
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bands 1 and 7 produced the highest performing combination, with R2 = 0.13 and RMSE = 0.08 m 
(Figure 5.2c).

5.4  DISCUSSION

CWP can vary widely across crop varieties and types (Zwart and Bastiaanssen, 2004). CWP 
for rice and wheat estimated here were on the upper end of published values (0.6–1.6 and 0.6–
1.7 kg m−3), while maize was outside the range of typical values (1.1–2.7 kg m−3), but still less than 
the maximum value published (3.99 kg m−3). The eco-physiological factors that can account for 
some CWP variability were reviewed earlier. Methodological differences can also play an important 
role (Bessembinder et al., 2005). In some studies, yield was estimated just after harvest, while in 
other studies yield was estimated after some period of drying (MC→0). It was assumed for ease of 
comparison that variations in GPP were an order of magnitude greater than crop respiration or HI. 
In this way, respiration became a conservative fraction of GPP summed over the growing season, 
and HI was constant for each crop type. In reality, respiration and HI can vary considerably across 
crop varieties and bioclimatic conditions (Turner et al., 2003). The period over which estimates 
were made can vary among studies, particularly for ETA. Some studies start estimating ETA after 
sowing, while others wait until after emergence. Similarly, some studies estimate ETA only until 
physiological maturity, while others estimate ETA until harvest. During these periods of emergence 
and senescence, soil evaporation and ETC can be high, respectively. Finally, instrumentation can 
be a source of uncertainty. Eddy covariance flux towers are considered the research standard for 
estimating carbon and moisture flux. Alfieri et al. (2011) found that uncertainties on average for 
LE and CO2 flux measured with eddy covariance flux towers were 27 W m−2 and 0.10 mg m−2 s−1, 
respectively. These uncertainties increased dramatically in the afternoon and evening hours, when 
advective conditions are prevalent. Under these conditions, discrepancies with other techniques, such 
as surface renewal, were high (French et al., 2012).

The results of the broadband analysis, though preliminary, will be invaluable to any future 
hyperspectral mission, such as HyspIRI (https://hyspiri.jpl.nasa.gov/). The methodology presented here 
with six spectral bands when applied to HyspIRI with hundreds of spectral bands will undoubtedly lead 
to more evident CWP spectral features and correlations identified as follows. First, the Landsat blue 
band proved to be the most effective predictor of CWP and yield. Red was also important, but to a lesser 
degree. At first glance, this seems counterintuitive, because other studies generally find the strongest 
correlations with crop biomass and Y to be in the red and VNIR. Further, Johnson (2016) observed that 
the red-VNIR relationship is strongest midseason during a crop’s vegetative stage, when FPAR is high. 
Landsat imagery for this study was intentionally collected just before harvest to detect the cumulative 
effects of CWP. At the end of the season, FPAR→0, and the inverse relationship between red and 
VNIR, which vegetation indices like NDVI exploit, diminishes. The spectra become monotonically 
increasing through the visible and VNIR, so visible blue and red may be just as effective, if not more 
so, at estimating yield. Johnson (2016) notes that the advantage of using midseason remote sensing 
data to predict yield is for forecasting purposes. Forecasting potential was not the objective here, but it 
should be explored when hyperspectral data become available. Second, Landsat bands 1–5 and 7 were 
effective at estimating CWP primarily through the Y component. The relationship between these bands 
and ETA was poor. This again could be due to late-season effects since crops are typically on a deficit 
watering regime. Half of the sites analyzed were irrigated. It has been shown that thermal bands, which 
were omitted from the analysis, are effective at estimating ETA. The difference in predictability of the 
two components suggests that CWP cannot be measured directly using the same band combinations. 
Finally, instead of considering continuous estimates of CWP, it might be more advantageous to use 
remote sensing to categorize estimates into low, moderate, and high CWP.

HyspIRI will provide global and continuous coverage of surface reflectance with HNBs for the 
first time. The frequent revisit rate would create the opportunity to compare MBVIs and HVIs 
at important vegetative and reproductive phases of crop development. A combination of spectral 

https://hyspiri.jpl.nasa.gov/
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channels, ideally at early stages of crop development, could be used to forecast Y and CWP at the 
end of the growing season. This would be critical to compare and design preventive strategies to 
maximize food security and minimize water scarcity.
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6.1 � INTRODUCTION: HYPERSPECTRAL REMOTE 
SENSING OF LANDSCAPE COMPONENTS

Green vegetation can be monitored and distinguished using visible (VIS) and infrared (IR) multiband 
and hyperspectral remote sensing methods. The problem has been in identifying and distinguishing 
the nonphotosynthetically active radiation (PAR) landscape components, such as litter and soils, 
from green vegetation [35–38]. Additionally, distinguishing different species of green vegetation is 
challenging using the relatively few bands available on most satellite sensors. This chapter focuses 
both on previously published work by Nagler and others [35–38] that identified hyperspectral remote 
sensing characteristics that distinguish between green vegetation, soil, and litter (or senescent 
vegetation), as well as on new research conducted to aid in distinguishing invasive species from the 
mixed land cover surface.

The main message from the previously published work covered here is that the shortwave infrared 
(SWIR) wavelength range can be used to distinguish plant litter from soils using the cellulose 
absorption feature seen at 2100 nm exhibited by litter [1]. A three-band SWIR index that incorporates 
wavelengths that capture unique absorption differences may prove more useful than the visible to 
near-infrared (VIS-NIR) range in discriminating plant litter from soils.

Quantifying litter by remote sensing methods is important in constructing carbon budgets of 
natural and agricultural ecosystems. Distinguishing between plant types is important in tracking the 
spread of invasive species. Green leaves of different species usually have similar spectra, making 
it difficult to distinguish between species. However, in this chapter we show that phenological 
differences between species can be used to detect some invasive species by their distinct patterns of 
greenness and dormancy over an annual cycle based on hyperspectral data. Both applications require 
methods to quantify the nongreen cellulosic fractions of plant tissues by remote sensing, even in the 
presence of soil and green plant cover. We explore these methods and offer three case studies. The 
first concerns distinguishing surface litter from soil using the cellulose absorption index (CAI), as 
applied to no-till farming practices where plant litter is left on the soil after harvest. The second 
involves using different band combinations to distinguish invasive tamarisk from agricultural and 
native riparian plants on the Lower Colorado River. The third illustrates the use of the CAI and 
normalized difference vegetation index (NDVI) time-series analyses to distinguish between invasive 
buffelgrass (Pennisetum cilliare) and native plants in a desert environment in Arizona. Together the 
results show how hyperspectral imagery can be used to inform applications and solve problems that 
are not amenable to solution by the simple band combinations normally used in remote sensing.

6.1.1 � Distinguishing between Green Vegetation, Soil, 
and Litter Using the CAI in Agricultural Systems

6.1.1.1  Plant Litter
Litter is dead plant material that began as green leaves, stems, or fruits, for example, then fell from 
the canopy to the surface; it gradually decomposes into soil over time. Senescent or dormant leaves 
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on plants can have the same spectral properties as litter and are classified with litter in this chapter. 
In agricultural systems, litter is the straw fraction of annual crops left behind after harvest, as in 
no-till farming. In the context of invasive species, seasonal senescence is a distinguishing feature 
of some invasive species such as buffelgrass, and methods to detect litter can in theory be used to 
track the spread of these species.

6.1.1.2  The Importance of Litter to the Soil System
Litter contributes greatly to soil nutrient and energy cycles. The amount and composition of 
litter change spatially (by region) and temporally (by season) [1,2], and rates of decomposition 
depend upon species physiology, climate/environmental conditions, and microbial activity [3]. 
Litter decomposition is more closely correlated with nutrient release than with energy flows [4,5]. 
Eventually decomposition of litter results in humification and mineralization of the recalcitrant 
carbon fraction. Initially, worms and other macro animals break the litter into smaller fractions with 
greater surface area [6]. Then bacteria and fungi break down complex biochemicals to molecular 
constituents [7]. The remaining litter contains celluloses, hemicelluloses, lignins, and many other 
materials, including organic nitrogen [5]. Finally, organic material is broken down into CO2, water, 
and minerals; nitrogen, phosphorus, calcium, magnesium, and potassium are released [8]. The 
decomposition of litter contributes to atmospheric CO2 concentrations and contributes to nitrogen 
and oxygen cycles [1].

6.1.1.3  Benefits of Litter Left in Agricultural Systems
Part of the interest in quantifying soil litter cover by remote sensing is the recent interest in no-till 
agriculture, a method used to manage residue cover to protect soils from erosion. McMurtrey et al. 
[9] cited agricultural statistics in the United States as follows: 330 million acres of arable land is 
tilled, of which 123 million acres are classified as highly erodible land (HEL); the result is the 
annual loss of 1.25 billion tons of soil. Leaving organic residues on bare soil also affects water 
infiltration, evaporation, porosity, and soil temperatures [10]. The decay of litter adds nutrients to 
the soil, improves soil structure, and facilitates tilling, thereby reducing soil erosion, runoff volumes, 
sediment transport, and movement of pesticides [11]. Maintaining crop residue on the soil surface 
is frequently the most cost-effective method of reducing soil erosion and complying with federal 
regulations [12]. Federal erosion prevention legislation is defined in two acts: the 1985 Food Security 
Act, specifically the Conservation Compliance Provision (Public Law 99-198), and the 1990 Food, 
Agriculture, Conservation and Trade Act (Public Law 101-624) [9]. In response to these laws, farmers 
must implement erosion control practices on highly erodible lands.

6.1.1.4  The Importance of Quantifying Litter
Erosion prediction models, i.e., the Universal Soil Loss Equation and the Water Erosion Prediction 
Project, incorporate crop residue cover estimates, but there is considerable error in these estimates 
[13,14]. Usually line-transect methods are used to measure litter cover in the field, but these 
methods are subject to human error and are time consuming [12,14,15]. More rapid and more 
accurate spectral measurement techniques are needed to improve litter quantification methods 
[9,12,13,16].

6.1.1.5  Senescent Leaves in the Life Cycle of Invasive Species
Tracking the spread of invasive species, particularly introduced range grasses, has become a priority 
goal for lands managers. Many of these species have distinct dormant periods in which leaves are 
dry and brown and have the same spectral properties as litter. While native plants may also have a 
dormant period, it is sometimes possible to distinguish between species by their phenology, focusing 
on the timing of their senescent periods through time series of hyperspectral imagery [61,63]. We 
explore the use of hyperspectral imagery for this purpose as well as for quantifying plant litter and 
crop residues in this chapter.
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6.1.2 �R eflectance Spectra (400–2400 nm) Used in a Lab to Distinguish 
Green Vegetation, Soil, and Litter in the Landscape

6.1.2.1  Distinguishing between Pure Scenes of Plant Litter and Green Vegetation
Remote sensing studies have typically focused on green vegetation because plant canopies are 
dominated by green leaf spectral features and because key biophysiological processes, such as 
photosynthesis, occur in green leaves [1]. Photosynthetically active vegetation has a very distinctive 
spectral reflectance signature in the landscape, with strong absorption in the VIS bands contrasted 
with strong reflectance in the NIR (Figure 6.3). Ratio and difference indices based on energy from a 
band in the VIS (400–700 nm) and in the NIR (700–1100 nm) wavelength ranges were first developed 
by Jordan [17] to assess spectral features in green vegetation for estimating energy accumulation 
in plant canopies, biomass, and the leaf area per unit ground, or leaf area index (LAI). The green 
and nongreen components of a canopy can be separately identified using two wavebands because 
their spectral reflectance curves have unique shapes. In green leaves, pigment concentrations, 
water content, and structure affect leaf optical properties [18]. Chlorophylls and other pigments in 
green vegetation absorb in the blue (450 nm) and red (650 nm) wavelengths, and cell structure and 
thickness control NIR optical properties; reflectance in the green (550 nm) and NIR wavelengths 
thereby produces a step-function reflectance curve [19–22]. The ability to discriminate green and 
nongreen component types by differences in their signatures with these two bands alone is the basis 
for quantifying vegetation parameters for landscape models [23,24].

6.1.2.2  Distinguishing between Pure Scenes of Plant Litter and Soils
The absorption and scattering properties of leaves change as they senesce and decompose [9]. 
Previous work by Woolley [18] showed that during senescence, leaves lose moisture and air spaces 
between cells increase. Spectral changes in the VIS wavelengths occur due to the loss of moisture, 
pigments, and structure. Celluloses and lignins do not readily compost, resulting in high NIR 
reflectance [18]. Woolley [18] showed that dried or senescent plant material has higher reflectance 
than green vegetation at all wavelengths, while Daughtry and Biehl [25] found that litter showed 
reduced NIR scattering and, thus, lower values for reflectance and transmittance. Unfortunately, soil 
spectra are generally similar to those of plant litter, making quantifying litter with remote sensing 
techniques challenging [26–28].

6.1.2.3 � Remote Sensing Techniques (and Their Limitations) to 
Discriminate Litter from Soils and Green Vegetation

To distinguish litter from green leaves and soil, the best waveband regions and resolutions of 
reflectance spectra must be chosen to distinguish plant litter and soils from an integrated scene. 
This entails finding differences between litter hyperspectral reflectance data for a variety of species, 
decay stages, and moisture levels [1,26]. It is important to note wavelength band permutations 
such as minimum/maximum, greater than/less than, and concave/convex relationships without 
emphasizing the absolute magnitude of spectral reflectance. For this study, reflectance was 
measured by sensors that collect data from VIS (400–700 nm), NIR (700–1100 nm), and SWIR 
(1100–2500 nm) wavelength bands. The appropriate wavelength range and resolution were 
examined by looking for differences in the spectral curves of the target types; places where litter 
cellulose and soil minerals absorb energy were seen in the reflectance signatures of nongreen 
components. We explored methods to develop a robust index that would distinguish plant litter 
from soils based on differences in their reflectance curve shapes. Several wavebands, including 
not only the two bands that are commonly used in vegetation studies (VIS and NIR) but also new 
combinations, were examined to find a diagnostic feature so that an index could be devised to 
separate plant litter from soils.
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6.1.2.3.1  The VIS-NIR Wavelength Range
Although the spectral reflectance of a scene is affected by all included components, such as soil, 
green vegetation, shadow, surface roughness, and nonsoil residue [29], the spectral reflectance curves 
of plant litter and soils are often assumed to have the same generally featureless shape in the VIS-
NIR (400–1100 nm) [11,12]. There is a problem in discriminating these photosynthetically inactive 
materials using the VIS-NIR wavelength range because there are generally limited unique features 
to show differences between the various ground components [30]. An exception to this ability to 
discriminate contrasting soil and litter signatures is that the VIS and IR wavelength range does 
depend somewhat on background soil color, for example, if you had an organic or iron-rich soil with 
overlying yellow-colored litter (van Leeuwen, pers. comm.). Spectral vegetation indices produce 
values that vary not only within component type but also between types; for instance, the NDVI 
values for soils (0.08–0.16) and for litter (0.14 to as high as 0.45 for freshly deposited, still green 
litter) [9] share a common range. Consequently, one difficulty in discriminating plant litter from 
soils is that wavelengths in the VIS-NIR range do not provide sufficient separability between soils 
of varying moisture and plant litter of different moisture and ages because their spectral curves are 
similar and, thus, are indistinguishable at any one wavelength [9].

Reflectance in two wavebands has been of some use in discriminating litter from soil. For example, 
McMurtrey et al. [9] measured a separation of soil and crop residue NDVI values. The separability or 
variability of these spectral reflectance curves indicates that the ground components’ spectra are not 
constant, but because their spectra could not be consistently distinguished and were not statistically 
significant at the LSD (0.05) level, they concluded that the VIS-NIR wavelengths (and thus NDVI) 
do not produce absorption peaks that can be used to discriminate soils from litter. The two-band 
index commonly used in vegetation studies (i.e., NDVI) does not provide statistically reliable results 
for detecting differences among the three classes of photosynthetically inactive plant material, soils, 
and photosynthetically active green vegetation. Reflectance (400–1100 nm) in three bands has been 
used in an attempt to distinguish plant litter from soils. McMurtrey et al. [9] found that a third band 
in the blue (450 nm) range, used in conjunction with the VIS and NIR bands, appeared to capture 
major differences in the background components, but this band combination was not tested further. 
This previously published research was undertaken to determine whether key diagnostic differences 
in nongreen component spectra are revealed in other wavelengths or multiple band combinations.

6.1.2.3.2  Ultraviolet Wavelength Range
Other wavelength regions were investigated. Fluorescence techniques were tested to distinguish plant 
litter from soils. Daughtry et al. [16] found that plant litter produced greater fluorescence than most 
soils when illuminated with ultraviolet (320–400 nm) radiation. This method was less ambiguous 
and better suited for discriminating litter from soils than the VIS-NIR reflectance methods, but 
several potential problems inhibit the implementation of the fluorescence technique. For instance, 
(1) excitation energy must be supplied to induce fluorescence, and (2) the fluorescence signal is small 
relative to normal, ambient sunlight [16].

6.1.2.3.3  SWIR Wavelength Range
Few studies have investigated differences in the SWIR reflectance curves of plant litter and soils 
[23]; however, several studies have noted spectral features that are unique to each component in the 
SWIR region [1,31]. A spectral feature common to both litter and soils are two water absorption 
peaks at 1400 and 1900 nm. In the SWIR spectra of dried plants, a cellulose/lignin absorption peak 
(a reflectance trough) was noted at 2100 nm [1]. Work with spectral reflectance indicated that the 
lignocellulose absorption feature at 2100 nm and shoulder peaks at 2000 and 2200 nm were useful 
for discriminating litter from soils [12]. This feature is absent in the spectra of soils, which show no 
cellulose absorption but, rather, a clay mineral absorption feature at 2200 nm [28,31].
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Two different experiments using two instruments were carried out in this work: (1) forest litter 
and soil samples in the VIS-NIR (400–1100 nm) (Figure 6.1) were first examined with a Spectron 
Engineering (Wheat Ridge, CO) SE-590 spectroradiometer, and (2) forest litter, crop residue, 
senescent grass, and soil samples in the VIS-SWIR (400–2500 nm) were then measured with an 
image replicating imaging spectrometer (IRIS) Mark IV spectroradiometer (Figure 6.2). The litter 
types were a general representation of the litter surface beneath a canopy. In total, the spectral 
reflectance of 82 samples of litter (52 forest litter, 24 residues, and 6 grasses) and 7 soils was 
measured. Five types of litter (coniferous and deciduous forest litter, soybean and corn crop residue, 
and senescent grasses) were considered for multiple ages.

6.1.2.4  A Diagnostic Feature: Cellulose Absorption Index
The best wavelength range and resolution for discriminating plant litter from soils were defined using 
three bands in an index called the CAI. Mean spectral reflectance from each sample for three 50 nm 
wide bands were used to calculate CAI as follows:

	 CAI = 0.5(R2023 nm + R2215 nm) − R2100 nm	 (6.1)

where R2.0, R2.1, and R2.2 are the wavebands centered at 2023, 2100, 2215 nm, respectively, with a 
bandwidth of 10 nm. CAI was defined by the relative depth of the spectral absorption at 2100 nm 
because dry litter exhibited this spectral lignocellulose absorption, as demonstrated first by Elvidge 
[1]. When contrasted with dry soil spectra from Stoner and Baumgardner [28], the lack of the 
lignocellulose absorption was evident. The spectral data from soils and plant litter in this work and 
that of [12] showed that both wet and dry soils and plant litter could be distinguished when their 
different absorptions at 2100 nm were calculated according to Equation (6.1). The 50 nm bands 
appeared to be the most useful for discriminating all types of soils from all types of litter. However, 
the usefulness of the index in discriminating wet soils from wet litter might be improved with smaller 
bandwidths, which would capture less of the absorption from the water band at 1900 nm.
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FIGURE 6.1  VIS-NIR spectral reflectance (0.5–1.1 µm) of dry (dashed lines) and wet (solid lines) soils and litter 
types.
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6.1.2.5  Effects of Water on CAI
To evaluate the effect of sample water content on the index, CAI was plotted as a function of 
reflectance in the water absorption band (1900–1950 nm) (Figure 6.3). This band around 1900 nm 
is sensitive to sample moisture content [32]; we use the reflectance in this band to monitor moisture 
in the plant litter and soil samples in the form of a scatterplot. Wet samples (litter and soils) had 
reflectance spectra at 1900 nm that were <25%, while dry samples were generally >25%. For wet 
soils alone, reflectance spectra were <10%, with the exception of the sand, which was very bright 
even when wet. Dry soil samples had reflectance values in the water absorption band >25%, with the 
exception of Houston Black clay, which held more moisture when air-dried than other soils.

The presence of water reduced the reflectance of all samples at all wavelengths and made 
discrimination of litter and soils difficult. Although water absorption dominated the spectral 
properties of both soils and residues in the SWIR, it was possible to discriminate wet litter from wet 
soil using the CAI. More than 90% of the wet plant litter samples had positive CAI values. However, 
five wet litter samples also had negative CAI values. The cellulose absorption feature was negative 
for three wet deciduous samples and two coniferous samples that were all greater than 1 year old. 
All five samples were sufficiently decomposed so that the absorption due to cellulose or lignin fibers 
was easily masked by moisture. Positive CAI values represented the presence of the cellulose spectral 
feature. In the spectra for all the soils, the cellulose feature was absent and thus produced CAI values 
between 0 and −5. Although negative CAI values represented an absence of the cellulose spectral 
feature, they do not necessarily indicate the absence of cellulose, for the lignocellulose feature in 
plant litter samples was present, but sometimes it was masked by water, and negative CAI values 
were produced.

The effect of green vegetation on the CAI was also determined in previously published work 
[36]. Although wet and dry forest litter, crop residues, senesced grass, and soil spectra provided 
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data to represent various ground component spectral reflectance values in the VIS-SWIR range, the 
original study [36] lacked fresh and dry green-leaf reflectance measurements in this range because 
the authors were focusing on nonphotosynthetically active targets prior to producing [37]. Lignin, 
cellulose, and organic compounds found in litter showed distinct absorption peaks in the SWIR 
range that were not present in the signatures of most green vegetation or yellowed leaves [1]. Hence, 
it was expected that green vegetation index values would not confound the use of the index in 
discriminating litter from soils. Information about the spectral behavior of the cellulose feature in 
the SWIR wavelengths provided a way to index the reflectance values and distinguish most litter 
from soils, but whether spectra of green vegetation inhibits the usefulness of CAI to distinguish litter 
from soils was not determined until we looked at mixtures of litter on soils as well as pure green 
vegetation in the next step of this study (Section 6.1.3 below). With the new mixed study, we repeated 
the experiment with pure samples and then proceeded with mixtures. Figure 6.4 shows the typical 
reflectance spectra (400–2400 nm) of pure scenes of black, red, and gray soils and green vegetation 
(top figure) and spectra of four crop residues and two tree litters (bottom figure).

6.1.2.6  Benefits (and Limitations) of CAI
The spectral resolution requirements (i.e., the spectral, bandwidths, position or center of spectral 
bands, and number of spectral bands) and sensor proximity to the target (related to the field of view) 
are some considerations in choosing a sensor for a particular application [33]. A few of the current 
satellite sensors used are Landsat’s Thematic Mapper (TM) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS). The limited spectral range and resolution of most satellite instruments 
currently inhibit their use in discriminating nongreen canopy components using the CAI. The 
bandpasses are too broad for measuring the absorption features of dry plant materials; they lack the 
ability to spectrally discriminate between plant litter types [1]. However, a high-spectral-resolution 
sensor such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) can detect reflectance 
throughout the 400–2500 nm range in continuous narrowbands (10 nm) [34]. Distinguishing plant 
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litter from soils using AVIRIS and other sensor systems designed with narrow bandwidths in the 
SWIR region has not yet been tested. Minimizing atmospheric signals due to aerosols and water 
vapor will be an important prerequisite to quantify the CAI.

6.1.3 S ummary of Pure Scenes of Soils and Litter

This study supports research showing that it is not possible to consistently distinguish plant litter 
from soils using reflectance spectra in the VIS-NIR wavelength range exclusively. The CAI, which 
we developed using reflectance data from the SWIR wavelength region, is effective at distinguishing 
litter from soils and from green vegetation and may improve quantification estimates of plant litter in 
a scene by making them more objective and accurate. Further work could serve to calibrate the CAI 
for quantifying phytomass to improve estimates of productivity and energy balance. Plant litter and 
soils, regardless of moisture content, were distinguishable from each other using spectral reflectance 
data acquired in the VIS-SWIR (400–2500 nm) wavelength region. The developed CAI can be used 
to successfully discriminate litter from soil.

6.1.4 M ixed Scenes of Plant Litter and Soils

The ability to discriminate plant litter from soils using the CAI allows ground components to be 
identified using laboratory spectra of pure samples. In the research described for pure scenes, mixed 
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laboratory samples were not measured and discrimination of mixed components using the CAI was 
not tested. Additionally, the CAI was not tested using field samples.

From the pure scene research it was concluded that the value of this remote sensing method to 
distinguish crop residues from underlying soils and estimate the quantity of litter in field conditions 
must be evaluated for field systems like natural canopies or agricultural lands. This can be done by 
incorporating the experimental CAI values into existing models to derive theoretical estimates of 
field conditions. However, the hypothetical estimates may not be useful if the CAI is incorporated 
into a model applied outside its intended use, such as forest systems, where too many unknown 
variables exist to obtain a fair estimate. Future work to test this methodology in agricultural systems 
alone is recommended to determine whether the CAI is flexible enough to use in noncanopy field 
circumstances. If successful, it may then replace the current tedious methods employed in quantifying 
residues as part of conservation efforts. In this section, we used spectral measurements of laboratory 
samples with varying percent cover (mixed targets) to obtain CAI values and assess its usefulness 
as a function of litter weight and litter cover. We employed both (1) photographs of percent cover 
and (2) SWIR video/images of percent cover to determine whether either the photographs or CAI 
images were necessary to distinguish varying fractions of litter from underlying soils. The use of 
SWIR imaging techniques to estimate percent cover and to replace time-consuming SWIR spectral 
measurement and manipulation techniques is being explored. These can be made using a Vidicon/
CCD camera with the three CAI bands; a CAI image of the different fractions of percent residue 
cover over varying soil backgrounds can be produced.

In the field, soils are rarely completely bare (0% litter cover) or completely covered with plant 
litter (100% cover), except in some no-till cropping systems. Daughtry [35] varied the moisture 
content of soil and litter samples but only simulated the effect of mixed scenes; in the present 
work, the reflectance spectra of wet and dry scenes with different proportions of soil and litter were 
measured. Figure 6.5 shows the dry (upper graph) and wet (lower graph) reflectance spectra for 
various amounts of wheat litter on the surface of black soil. As the coverage of plant litter increased 
in the dry samples, the prominence of the 2100 nm absorption feature also increased. Moisture 
reduced reflectance and masked the absorption feature at 2100 nm in all the wet, mixed samples. 
Nagler et al. [36] also showed that discrimination of wet, pure soils from wet, pure litter was possible 
using the CAI, but here, the wet, mixed samples with >20% litter cover did not show negative CAI 
values as was seen in the dry, mixed samples. Regardless of moisture, adding wheat litter to the black 
soil increased reflectance at all wavelengths. On the other hand, adding soybean residue to the gray 
soil reduced reflectance in the VIS wavelength region but increased reflectance at other wavelengths.

The CAI spectral variable describes the average depth of the cellulose absorption feature at 
2100 nm. Positive CAI values indicate the presence of cellulose, so plant litters typically had positive 
CAI values. Negative CAI values indicate the absence of cellulose. The CAI of soils is typically 
negative [37,36]. Daughtry et al. [38] observed that in wet samples, absorption by water dominated 
the reflectance spectra and nearly obscured the differences in their CAI values. The CAI of each 
mixed scene of plant litter, with seven different levels of cover including the full litter cover, and 
green vegetation, as well as scenes of pure soils (three types), was plotted as a function of reflectance 
in the water absorption band at 1910–1950 nm (Figure 6.6). Green vegetation is shown here as being 
very negative. The mean CAI increased significantly from bare soils (CAI = −0.2) as the amount 
of plant litter on the soil increased to 100% cover (CAI = 5.2). The plant litter had positive CAI 
values and the soils had negative values. The CAI of green leaves from Inoue et al. [39] also had 
large negative values, which indicated that the cellulose absorption feature was obscured by the 
abundance of water in green leaves. The CAI can be used to distinguish green canopy cover from 
underlying nongreen landscape components, but it is also possible—given CAI as a function of 
reflectance in the water absorption band (1910–1950 nm)—to differentiate nongreen components, 
litter, and soils. A multispectral approach may also be employed; for example, the simple ratio 
(reflectance in the 760–900 nm band divided by reflectance in 630–690 nm band [30]) could be used 
to distinguish green vegetation from bare soil, and the CAI could then be used to separate plant litter 
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from soil. Thus, the CAI is relevant to situations where it is important to distinguish residues from 
soils (agricultural systems) and to distinguish green vegetation canopies from underlying nongreen 
vegetation components (natural systems). In this mixed-scene work, the CAI of all three soils was 
negative, but as the amount of litter on the soil surface increased, the CAI of the mixed scenes also 
increased (Figure 6.7). All four residue types showed that mixed scenes with 0% and 10% residue 
levels by weight and black soil underneath were negative, showing that small amounts of residue 
on black soil could not be discriminated from bare soil. However, for gray soils, the mixed-scene 
litter limit varied depending on the litter type. For corn and soybean residues, the mixed scenes 
with 0% and 10% residue levels and gray soil underneath were negative. With black soil underneath 
the 0% and 10% residue levels, the mixed scenes were also negative, showing that small amounts of 
corn and soybean residues on gray and black soil could not be discriminated from bare soil. However, 
for wheat and rice residue, the mixed scenes with 10% residue level and gray soil underneath were 
positive, showing that these could be discriminated from bare soil. For red soil, for wheat and 
soybean residue, the mixed scenes at the 0% and 10% levels were negative, but they were positive 
with corn and rice residues at these percent cover levels. All four crop residue types had positive 
CAI values for mixed scenes of more than 20% residue level. These were significantly different from 
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the CAI values of the soils. For Experiment 2 with the tree litters, both types showed that mixed 
scenes with 0% litter level for black soil were negative, but that any amount of litter (10%, 15%, and 
20% litter level or higher) could be discriminated from black soils using the CAI. The situation was 
different for gray and red soils. Deciduous, broadleaf tree litter at 10%, 15%, and 20% litter levels 
had negative CAI values and could not be discriminated from the underlying gray or red soils. The 
mixed-scene CAI values only became positive at levels greater than 30% litter level. For coniferous 
tree litter over gray soil, the CAI values were positive for litter levels greater than 10%, showing that 
this residue could be easily discriminated from a gray background soil. For coniferous tree litter over 
red soil, the CAI was negative for 10% and 15% residue levels but positive at a 20% residue level.

Residue level by relative weight or relative percent cover (Rel.%C), averaged over three soils, 
is shown for crop and forest litter levels and is linearly related to the CAI (Figure 6.8). Coniferous 
tree litter had the most variability and lowest correlation (R2 = 0.84). Deciduous tree litter had the 
lowest CAI values and a high correlation (R2 = 0.98). Although the discrimination of background 
soils from litter at low densities or residue levels of less than 10% (crop residues) or less than 20% 
(tree litters) may be difficult based on these results, the CAI is a very good predictor of the percent 
of plant litter cover in mixed scenes.

6.1.5 C onclusions for Mixed and Pure Scenes of Soils and Litter

The reflectance spectra of pure and mixed scenes of six plant litter types and three soils were 
measured, and the CAI was calculated using the spectral feature at 2100 nm. The CAI values of pure 
plant litter were significantly larger than the CAI value of pure soils. For the mixed scenes, as plant 
litter cover increased, the CAI increased linearly. The results showed that the CAI was successful 
in distinguishing fractions of litter from underlying soils in mixed laboratory samples. In some soil 
types, such as the red soil in this study, a complication arises from using the depth of the cellulose 
absorption feature at 2100 nm, because the width of the clay mineral absorption feature at 2200 nm 
matches the minor reflectance peak of cellulose at 2200 nm that was induced by absorptions at 2100 
and 2300 nm in plant material, thereby leading to lower CAI values than with either the black or gray 
soils in this study. Therefore, it is recommended that special attention be paid to the shoulder of the 
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absorption feature at 2200 nm before utilizing the countered absorption and reflectance features to 
calculate the CAI. Using a two-way analysis of variance for crop residues, soils were found not to 
be significantly different from one another, although when the statistics were run for tree litters, the 
red soil was indeed found to be slightly significantly different. Thus, only one soil type in this study 
inhibited the detection of tree litter or the ability to quantify litter cover. Because the relationship 
between CAI and litter level did not saturate at low levels of cover in these experiments, this spectral 
variable was useful over nearly the whole range (>70% cover) of mixed soil–litter scenes and was 
generally not affected by soil type. Furthermore, the strong linear relationship between crop residues/
tree litters and CAI promotes the idea of extrapolating these findings to other residue and litter 
species, although new experimental data would first have to be obtained.

FIGURE 6.7  CAI as function of amount of residue for mixed scenes of varying amounts of each crop residue 
and tree litter, shown for each of the three soils.
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The relationships between CAI and percent cover were also determined for each plant litter by 
image analysis of color slides (%C by video) and residue level by weight (Rel.%C); the polynomial 
relationship between CAI and the level by weight was more useful than %C by video for all litters, 
except corn residue. When CAI was regressed with the average percent cover by image analysis 
(%C by video) and average %C by weight (residue level) for each experiment, crop residues, and 
tree litters, the crop residues had more robust coefficients of determination (r2) values than the 
tree litter across all three soil types. However, %C by video (image analysis) was a more effective 
method of discriminating crop residues, while %C by weight (residue level) was more effective at 
discriminating tree litters. The red soil showed a more promising polynomial relationship between 
CAI and percent cover than the other soils for both methods of estimating percent cover (video and 
residue level by weight); percent cover was averaged across crop residues and across tree litters. 
Residue density (g/m2) can be compared with stacked leaves (weight per unit area), similar to LAI; 
this may warrant a new study in which the effect of a range of residue densities, all at 100% cover, on 
CAI is determined. An instrument based on measuring CAI could replace tedious, manual methods 
of quantifying plant litter cover.

6.2 � APPLICATIONS OF HYPERSPECTRAL REMOTE SENSING 
TO INVASIVE SPECIES: RESEARCH APPROACH AND CASE 
STUDIES WITH TAMARISK AND BUFFELGRASS

6.2.1 E cological Importance of Discriminating Invasive Plant Species in the Landscape

Invasive plant species are considered a major threat to global diversity and ecosystem functioning 
[40]. Plant invasions are known to cause undesirable alterations to native plant and animal populations 
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and their community structure and functioning [40]. They can also cause economic loss [1,81]. Of 
the myriad invaders of arid lands, riparian shrubs (e.g., Tamarisk ramosissima and Eleagnus sp.) and 
fire-promoting grasses (e.g., Pennisetum spp., Schismus spp., and Bromus rubens) elicit the greatest 
cause for concern.

Tamarisk (Tamarisk ramosissima) is an invasive shrub that was introduced into the United States 
from Asia for ornamental and erosion prevention purposes [41,42]. In due course, tamarisk emerged 
as a dominant woody species in many riparian sites in the western United States and northern 
Mexico, where it forms dense, low thickets that displace native vegetation, impede water flow, and 
increase sedimentation [42]. Tamarisk has greater salt, drought, and fire tolerance and resistance to 
water stress than native plant species [43,44]. At higher salinities, tamarisk has a clear advantage over 
native trees. Robinson [42] reported that tamarisk covered about 900,000 acres during the 1960s in 
the United States and then spread and occupied about 1.5 million acres by 1987 [44]. However, these 
estimates have not been confirmed by actual surveys, in part due to the difficulty in distinguishing 
between tamarisk and native species by remote sensing methods.

Invasive grasses threaten desert ecosystems by introducing a grass-fire cycle [45,46]. By increasing 
the abundance and connectivity of fine fuels, invasive grasses facilitate increases in fire frequency 
and extent in areas poorly adapted to fire. Invasive grasses recover rapidly following fire, whereas 
most natives do not. Both C3 and C4 grasses have altered fire frequencies to the detriment of natives 
in North America. The C3 grasses Bromus rubens (Mohave and Sonoran Deserts) and Schismus 
arabicus (Mohave and Sonoran Deserts) are seasonally abundant and depend on winter precipitation, 
which varies over interannual and multidecadal time frames (e.g., in accordance with phases of El 
Niño Southern Oscillation and Pacific Decadal Oscillation) [47,48]. C4 grasses are common invaders 
of subtropical and semiarid systems worldwide and exhibit strong dependence on warm season 
precipitation, which in North America is coupled tightly with the influence of the North American 
monsoon. The Sonoran Desert is particularly prone to C4 grass invasion and currently supports 
various stages of invasion by Pennisetum ciliare, Pennisetum setaceum, Eragrostis lehmanniana, 
Melinis repens, and Enneapogon cenchroides, among others. Of particular concern is buffelgrass 
(P. ciliare), which has been planted extensively in pastures in Mexico and is invading southern 
Arizona but has not yet altered fire regimes in the United States. Monitoring the spread of buffelgrass 
in the southwestern United States is a key research priority, but at present there are no remote sensing 
methods to distinguish between buffelgrass and native grasses, cacti, shrubs, and trees.

6.2.1.1  Hyperspectral Reflectance Data as a Monitoring Tool for Invasive Plants
Remote sensing technology has been widely used to monitor weedy and invasive plant species in 
agricultural and forest environments. Several studies have reported the use of aerial photography 
[49,50], multispectral airborne digital imagery [51], hyperspectral imagery [52–54], and multispectral 
satellite imagery like advanced very-high-resolution radiometer sensing [55], Landsat TM [56], and 
SPOT [57] for detecting the spread of different invasive plant species. The application of remote 
sensing to the monitoring of invasive plants has proved helpful in assessing the extent of infestations, 
development of management strategies, and evaluation of control measures for the spread of these 
unwanted plant populations. Studies have been conducted that included the mapping of different 
species of tamarisk using remote sensing imagery. Aerial photography was used for mapping 
Tamarisk chinensis, specifically during early winter months [49], when their leaves turn to orange-
brown colors prior to the leaf drop. Tamarisk parviflora was mapped through the textural analysis 
of aerial photographs [50], during a time when the trees were without leaves and had pink flowers, 
making them distinct from other vegetation. A high-spatial-resolution (0.5 m) airborne hyperspectral 
imager was used to map Tamarisk spp. in riparian habitats of Southern California [58] at a time 
when the trees begin to senesce. A combination of single-band and vegetation indices derived from 
Landsat Enhanced Thematic Mapper Plus (ETM+) images [59] were also used to map Tamarisk 
spp. MODIS and Advanced Spaceborne Thermal Emission and Reflection (ASTER) data [60] were 
also used to map Tamarisk spp. based on vegetation indices. However, most of these studies depend 
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on the distinct visual characteristics of either tamarisk foliage or flowers seen at only one particular 
time of year.

The quest to identify invasive grasses in western deserts has led to similar findings, namely, that 
mapping success is highest when the process is highly manual (e.g., digitization of high-resolution 
aerial imagery [61–64]) or dependent on a phenological opportunity that inconsistently emerges 
from year to year.

6.2.2 R eflectance Spectra (0.4–2.4 µm) Used Outdoors in Natural Settings

6.2.2.1  Remote Sensing
This chapter documents two studies that identify the utility of hyperspectral data and imagery to 
map and monitor invasive species. The first study focuses on the invasive riparian tree salt cedar 
(Tamarisk spp.) in the Lower Colorado River valley, and the second focuses on the invasive C4 grass 
buffelgrass (Pennisetum ciliare) in the Arizona Upland zone of the Sonoran Desert. These studies 
highlight different methodologies for utilizing hyperspectral remote sensing to identify vegetation 
in highly dynamic and sensitive environments.

6.2.3 T amarisk Study

The goal of the tamarisk study was to develop a cost-effective, multiseasonal monitoring approach 
through satellite remote sensing to identify and map tamarisk and other vegetation types growing 
in the study area. The specific objectives were (1) to identify the spectral characteristics of the 
major riparian and agricultural vegetation types in the Lower Colorado River LCR region and 
(2) to determine whether Landsat TM data could be used to map tamarisk (Tamarisk ramosissima) 
infestations in this region.

6.2.3.1  Description of Study Area and Vegetation
This study was conducted in two areas, the Palo Verde Irrigation District (PVID) and Cibola National 
Wildlife Refuge (CWR). The study sites are located in Southern California and Northern Arizona, 
respectively, along the Colorado River. The PVID has a consistent, year-round farming practice 
growing crops such as alfalfa, cotton, melons, corn, wheat, and other grasses. Among these crops, 
alfalfa and cotton cover the largest acreage in the study area. Within the riparian areas of the 
Colorado River and the CWR, there are several native plants, such as honey mesquite (Prosopis 
glandulosa), cottonwood (Populus fremontii), quail bush (Atriplex lentiformis), arrow weed (Pulchea 
sericea), palo verde (Parkinsonia microphylla), and creosote bush (Larrea tridentata). Most of these 
native plant communities have been invaded by and are being replaced by tamarisk. Extensive areas 
of the CWR are covered with tamarisk, threatening the existence of native plant communities.

6.2.3.2  Spectral Reflectance and Image Analysis
Ground-truth observations from 79 sampling locations across the study area were collected. 
Observational data recorded were the spectral reflectance measurements of vegetation, type of plant 
species, plant heights, soil samples, and GPS coordinates for the locations. The study area, overlaid 
with the sampling locations, is shown in Figure 6.9.

Measurements of the canopy-level spectral reflectance of vegetation at various locations within 
the study area were designed to coincide with the acquisition of the Landsat TM imagery that was 
obtained on June 9, 2007. A Fieldspec Pro spectroradiometer (ASD Inc., Boulder, CO, USA) with a 
spectral range of 350–2500 nm was used to collect field reflectance spectra of the vegetation in the 
study area. The foreoptics of the spectroradiometer were aligned vertically and placed at 1 m above 
the surface of the plant canopy, and the instrument was adjusted such that only the reflectance from 
the targeted area filled the field of view (FOV) of the instrument. The fiber optic input device was 
held approximately 1 m above the ground, such that the FOV covered a circle of approximately 50 cm 
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in diameter. The calibration spectra of a white spectralon panel (Labsphere Inc., North Sutton, NH) 
were always acquired before recording of the field spectra. All the spectra were obtained on cloud-
free days, with sunlight as the source of illumination. A total of five spectra were collected for each 
of the sampling locations given in Figure 6.9. The ground-level spectral reflectance acquired at each 
location was averaged to obtain a mean reflectance spectrum for that location and was plotted to 
analyze the spectral differences. The leaves of the selected plants were harvested and the reflectance 
spectra were recorded with a quartz-tungsten-halogen (QTH) lamp as light source. Diffused light 
from a 100 W Lowel Pro-Light was used to illuminate the dorsal side of leaf surfaces at 45° angles 
when spectra were collected in the laboratory. The foreoptics were aligned vertically and the height 
of the foreoptics was adjusted so that only the leaf surface filled the FOV of the instrument. The 
height of the foreoptics was kept constant throughout the experiment. The same experimental setup 
was used to obtain the spectra of all the leaf samples. Spectra were collected from five leaf samples 
of each selected plant type and then averaged to obtain a representative leaf spectrum of the plant. 
The spectral recording and analysis procedure was similar to that of the canopy-level reflectance as 
described earlier.

The Landsat TM image obtained on June 9, 2007, was used in this study. The georeferenced 
and terrain-corrected Landsat TM images were downloaded from the USGS Earth Resources 
Observation and Science Data Center. The Landsat TM image was processed using ERMapper 
image processing software, a commercial product of Earth Resources Mapping, Inc. (now part of 
ERDAS, Redding, CA). Based on the locations of the 79 sampling points, the dark object subtraction 
(DOS) pixel values corresponding to Landsat TM bands 1–5 and 7 were derived from the June 9, 
2007 image. The spectral range of these Landsat TM bands are as follows: band 1: 450–520 nm; 
band 2: 520–600 nm; band 3: 630–690 nm; band 4: 760–900 nm; band 5: 1550–1750 nm; and band 7: 
2080–2350 nm. The dark object of each spectral band is defined as one value less than the minimum 
digital number found in all the pixels of the image [65]. The detailed procedure for DOS and its 

FIGURE 6.9  The Landsat TM image obtained on June 9, 2007, showing PVID and CWR. The CWR is seen 
toward the southern side (bottom) of the image. Ground-truth sampling locations of the study area are shown 
as white dots over the dark vegetated surfaces.
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effects on the removal of atmospheric haze was given elsewhere [65–67]. From the DOS-corrected 
digital number (DN) values of the six 30 m resolution Landsat single bands, all the spectral ratio 
combinations and the NDVI were calculated.

The spectral ratios calculated are as follows: R2,1; R3,1; R3,2; R4,1; R4,2; R4,3; R5,1; R5,2; R5,3; R5,4; 
R7,1; R7,2; R7,3; R7,4; R7,5 and all their inverse ratios, where R represents the ratio and the numbers 
represent the Landsat TM band numbers [66]. The NDVI was calculated using the formula 
NDVI = ((Band4 − Band3)/(Band4 + Band3)) [68]. The spectral ratios and vegetation indices were 
calculated using MINITAB statistical software (MINITAB Inc., State College, PA, USA).

6.2.3.3  Spectral Characteristics of Riparian and Other Vegetation
6.2.3.3.1  Canopy- and Leaf-Level Spectral Reflectance
The averaged canopy-level spectral reflectance of the various native and invasive plant species 
obtained in the riparian sites is shown in Figure 6.10, and the spectra of major crop plants obtained in 
the fields are shown in Figure 6.11. In general, the spectral reflectance of the plants is relatively low in 
the VIS region (400–700 nm), where light absorption by leaf pigments (primarily due to chlorophyll) 
is the determining factor. The absorption maxima of leaf pigments occur in the blue and red at 470 
and 680 nm, respectively, while the familiar green reflectance peak occurs at 550 nm. In the NIR 
and middle-IR regions, these pigments are transparent and internal leaf structure and biochemical 
composition control reflectance. The reflectance spectrum of principal biological interest occurs in 
the near IR between 700 and 1300 nm, where reflectance is high and absorption is minimal (with 
two minor water absorption bands at 975 and 1175 nm); beyond 1300 nm, major water absorption 
bands (at 1450 and 1950 nm) become significant.

Among the spectra of native and invasive plant species, the reflectance of quail bush was higher 
in the NIR region of 700–1300 nm, followed by tamarisk, mesquite, and arrow weed, respectively 
(Figure 6.10). The reflectance values of alfalfa and cotton were higher in the entire spectral range 
from 350 to 2500 nm, compared to that of melons (Figure 6.11).

FIGURE 6.10  Average (n = 5) canopy spectral reflectance of native and invasive plant species located in 
CWR and riparian areas of Colorado River.
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Among the leaf-level spectra of native and invasive plant species, the reflectance of cottonwood 
was higher in the NIR region of 700–1300 nm, followed by quail bush, salt cedar, arrow weed, 
creosote, and palo verde, respectively (Figure 6.12). The reflectance in the VIS region (400–700 nm) 
shows a clear chlorophyll peak at 550 nm for cottonwood compared to other plants (Figure 6.12).

The reflectance values of grass and alfalfa were higher in the entire spectral range from 350 to 
2500 nm, compared to that of cotton (Figure 6.13). All the plants show a clear chlorophyll peak at 
550 nm (Figure 6.13).

FIGURE 6.11  Average (n = 5) canopy spectral reflectance of agricultural crop plants located in PVID.

FIGURE 6.12  Average (n = 5) leaf-level spectral reflectance of native and invasive plant species located in 
CWR and riparian areas of Colorado River.
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6.2.3.4  Landsat TM Spectral Ratios and Image Interpretation
Among all the spectral ratios and vegetation indices calculated from the DOS DN values 
corresponding to the six Landsat TM bands, the NDVI, R1,5, and R1,7 were chosen as the three best 
spectral ratios to differentiate major types of vegetation in the region (Figures 6.14 and 6.15a,b). The 
NDVI values of the alfalfa and melons were significantly (p < 0.05) higher, compared to cotton and 
tamarisk, as shown in Figure 6.14. The dry or senescent grass and soils had NDVI values of less than 
0.2 (Figure 6.14). The ratios R1,7 and R1,5 were significantly (p < 0.05) higher for tamarisk compared 

FIGURE 6.13  Average (n = 5) leaf-level spectral reflectance of agricultural crop plants located in PVID.

FIGURE 6.14  Differences in NDVI for different vegetation types and soil in Lower Colorado River region. 
Bars are ± one standard error from 10 replicates.
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to the rest of the vegetation (Figure 6.15a,b). The alfalfa showed significantly lower values of R1,5 
(p < 0.05) compared to other plants (Figure 6.15b).

The Landsat TM color-composite spectral ratio image, consisting of the band ratios R1,5, NDVI, 
and R1,7 assigned to the colors blue, green, and red, respectively, is shown in Figure 6.14. The fully 
grown alfalfa fields, which were in flowering condition, appear in dark green, and the alfalfa fields 
that were of medium growth appear in light green (Figure 6.16a). The alfalfa fields in flowering 
condition were greater than 40 cm in height, while alfalfa fields of medium growth were in the range 
of 10–40 cm in height. The melon and cotton fields appear in shades of greenish yellow and bluish 
green, respectively (Figure 6.16a). The tamarisk plants appear in light yellow, and all other vegetation 
appears in different shades of red (Figure 6.16a). Masks were created to limit image processing to 
the areas of vegetation, which were identified as pixels with an NDVI of greater than 0.2.

Unsupervised classification images, where the Landsat TM band ratios R1,5, NDVI, and R1,7 
were used as selected inputs for classification, are shown in Figure 6.16b. The different vegetation 

(a)

(b)

FIGURE 6.15  Differences in R1,5 (a) and R1,7 (b) for different vegetation types and soil in Lower Colorado 
River region. Bars are ± one standard error from 10 replicates.
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classes were clearly distinguished in the classified image, and the tamarisk-infested areas of the 
CWR appear distinctly in the image (Figure 6.16b). An accuracy assessment of the classification 
was performed using the ground-truth data obtained over 76 sampling locations during the period 
of Landsat overpass. Each sampling location represents an area of about 30–40 acres. The accuracy 
results given in Table 6.1 show that an overall accuracy of 76% (kappa = 0.71) was obtained using the 
three selected band ratios compared to the low accuracies obtained by the Landsat single-band inputs 
(data not shown). This implies that the selected band ratios are better suited for detecting species with 
distinct characteristics, such as tamarisk, with its distinctive saline and arid adoptive characteristics.

A visual comparison of all the spectral ratio composite images obtained from July 2007 to June 
2008 shows that the tamarisk plants can be clearly mapped separately from other vegetation and are 
reported elsewhere [69]. High densities of tamarisk in the CWR can be clearly seen in all the images, 
and the changes in the level of tamarisk density through spring, summer, and fall are distinctly 
evident, and these results were published elsewhere [69].

6.2.3.5  Discussion and Future Directions
The spectral reflectance of the agricultural plants (alfalfa, cotton, and melons) and tamarisk were 
higher in the NIR (800–1300 nm) region compared to other plants. The reason for this is that all 
four of these plant types have higher green cover and plant biomass than the rest of the vegetation 
types present. Spectral reflectance in the NIR region increases with increased percent green cover, 
plant biomass [70], and LAI [71]. The spectral reflectance of all the agricultural plants from 1300 to 
2500 nm regions was higher than that of tamarisk. It was reported that NIR wavelengths can best 
distinguish the tamariskfrom other vegetation types [72]. However, they employed the tamarisk 
spectra from 400 to 900 nm only [72], whereas our study employs spectra covering the wavelength 
range of 400–2500 nm (Figure 6.10).

(a) (b)

FIGURE 6.16  Landsat TM color-composite spectral-ratio image (NDVI, R1,5, and R1,7 displayed as BGR, 
respectively) of Lower Colorado River region (a). The CWR is shown in insert image. Results of unsupervised 
classification where NDVI, R1,5, and R1,7 were used as ratio inputs (b).
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The leaf-level spectra shows less atmospheric noise in the 1400 and 1900 nm regions compared to 
the canopy-level reflectance. The minor water absorption bands at 975 and 1175 nm are stronger for 
the canopy reflectance than for the leaf reflectance. This is due to multipath reflectance in the case of 
canopy spectra. The canopy-level reflectance differs from the leaf-level spectra because the canopy 
spectra is affected by factors such as leaf orientation, canopy height, diameter, and leaf density, for 
example. Variations in leaf area and leaf angle have a dominant effect on canopy reflectance in a full 
canopy [73]. The interaction of photons with vegetation components in vertical space is known to 
be highly nonlinear. The scattering behavior is defined by the bidirectional reflectance distribution 
function and is beyond the scope of this paper.

The three best spectral ratios selected in this study discriminate the different vegetation types 
based on their biophysical and biochemical properties. The NDVI of the alfalfa and melons was 
higher compared to the cotton and tamarisk (Figure 6.14). The NDVI [74] has been widely used 
to estimate vegetation biomass (LAI), photosynthetic activity, and chlorophyll content. The ratios 
R1,5 and R1,7 were significantly higher for tamarisk compared to the rest of the vegetation types 
(Figures 6.15a,b). This can be attributed to the differences in the physical and chemical composition 
of the tamarisk plants compared to the other vegetation. Tamarisk that has adapted to many different 
saline soil types is known to secrete a variety of ions such as sodium, chlorine, potassium, calcium, 
magnesium, and sulfate [75–77] through its salt glands. During the process of evapotranspiration, 
these salt glands on tamarisk leaves release ions into the transpirational stream, thereby coating all 
the plant leaves with salt [77]. During the field studies in CWR, we noticed that all the tamarisk 
plants had a white powdery salt coating over all their leaves. All the salt accumulation on tamarisk 
leaves makes the leaves appear visually as a bluish green color [78].

The selected Landsat TM spectral ratios (NDVI, R1,5, and R1,7) emphasize the biophysical and 
biochemical differences among selected plants, as well as between the selected plants and other vegetation. 
Assignment of these three ratios to the primary colors green, blue, and red reveals (Figure 6.16a) 
important information that is not apparent in the single-band image (Figure 6.9) made from the same 
Landsat TM data set. This methodology is particularly useful in discriminating and mapping vegetation 

TABLE 6.1
Confusion Matrix for Unsupervised Classification of Spectral Ratio (NDVI, R1,5, and R1,7) Image

Class
Alfalfa 

Flowering
Alfalfa 

Medium Cotton Melons Tamarix
Other 

Vegetation Total

Alfalfa flowering 22 1 0 0 0 0 23

Alfalfa medium 1 5 7 0 0 0 13

Cotton 0 0 6 0 0 2 8

Melons 2 0 3 6 0 0 11

Tamarix 0 0 1 1 11 0 13

Other vegetation 0 0 0 0 0 8 8

Total 25 6 17 7 11 10 76

Class User’s Accuracy (%) Producer’s Accuracy (%)

Alfalfa flowering 95.65 88

Alfalfa medium 38.46 83.33

Cotton 75 35.29

Melons 54.54 85.71

Tamarix 84.61 100

Other vegetation 100 80

Note:	 Overall accuracy = 76.32%; kappa coefficient = 0.71.
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types that do not show strong visible color contrasts. Also, the spectral ratios are more robust and can be 
applied to multiple satellite overpasses for continuous monitoring of the vegetation.

Application of the spectral-ratio, color-composite technique for all the Landsat TM images obtained 
from June, 2007 through June, 2008 (Figures 6.14 and 6.16) reveals the seasonal progression of the 
tamarisk growth. Starting in October the tamarisk gradually loses leaves until January and will 
remain leafless from January to March, then start producing leaves again from March onward until 
leaf production peaks in summer. This seasonal progression also reveals that the spectral ratios are 
robust and can be applied to multiple satellite overpasses to monitor the spread of tamarisk. To map the 
tamarisk along the Arkansas River in Colorado [59], different combinations of single bands, NDVI, and 
tasseled cap transformations for each of the six Landsat ETM+ images obtained in April to October. In 
contrast to the previous study [59], where different Landsat single-band combinations were chosen for 
different Landsat image analyses, the spectral ratios developed in our study are based on DOS-corrected 
spectral ratios that are more robust compared to the combination of single spectral bands; hence, the 
same spectral ratio combination can be used on all dates of Landsat TM data for mapping tamarisk.

In conclusion, spectral-ratio, color-composite Landsat TM images can be used to detect and map 
tamarisk-infested areas in the Lower Colorado River region. These results show that multispectral 
and multitemporal Landsat TM data can be a valuable and cost-effective tool with which natural 
resource managers can develop regional maps depicting where tamarisk infestations occur over large, 
poorly accessible areas. Generating tamarisk distribution maps over time with Landsat TM data and 
combining that information with existing GIS data bases can create models for studying several other 
problems, such as soil salinity, evapotranspiration, forest fire potential, and displacement of native 
vegetation and wildlife caused by the spread of tamarisk.

6.2.4 B uffelgrass Study

The goal of the buffelgrass study was to identify remote sensing strategies that could be effectively 
utilized to map and monitor buffelgrass invasion in the Sonoran Desert. The specific objectives were 
to (1) identify the spectral characteristics of buffelgrass and native vegetation in the Arizona Upland 
(AU) zone of the Sonoran Desert as they varied throughout a single year and (2) identify optimal 
timing for discriminating between buffelgrass and native plants.

6.2.4.1  Study Area
This study focused on a sensitive habitat dominated by saguaro cactus (Carnegiea gigantea) and palo 
verde trees (Parkinsonia microphylla) in the AU zone of the Sonoran Desert in the Santa Catalina 
Mountains (Catalinas) just north of Tucson, AZ (Figure 6.17). The lower piedmont of the Catalinas 
supports some of the most abundant stands of giant saguaro cactus in the world [79]; however, it 
is currently threatened by buffelgrass invasion. The Catalina Mountains are a sky island, with a 
forested summit but surrounded by a sea of desert. The saguaro–palo verde association forms a ring 
at the base of the mountain and has the potential to link high-elevation fuels with urban ignition 
sources in the suburbs of Tucson.

6.2.4.2  Measurements of Community Composition
Field data collection was performed to (1) characterize the community composition of the habitat 
buffelgrass has invaded, is invading, and has not yet invaded and (2) measure the canopy-level 
reflectance of dominant species and cover types found in these communities throughout the year. Ten 
medium to large buffelgrass patches were identified in the study area at elevations ranging from 883 
to 1097 m. Fieldwork occurred between December 2008 and March 2009. At each patch, a transect 
of contiguous 10 × 10 m plots was oriented such that one end started at the center of the patch and 
the other extended beyond the patch edge by at least 20 m. Transects were randomly oriented but 
confined to similar slope, aspect, and geomorphology. Within each plot, species-level projected 
canopy cover was measured using a point-intercept method along a regular 1 m grid.
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6.2.4.3  Field Spectroscopy of Dominant Cover
On six dates between March and October 2007, we recorded the canopy-level reflectance of each major 
species found in the AU habitat at Tumamoc Hill, a small hill dominated by saguaros and palo verdes 
situated about 15–30 km from the field plots. Tumamoc Hill is at a comparable elevation and supports 
vegetation similar to that found in the Santa Catalina Mountains. Hyperspectral reflectance data at 
10 nm intervals between 0.4 and 2.5 µm were measured using an ASD Fieldspec Pro III (Malvern 
Panalytical, Cambridge, UK) with an 8° FOV held at nadir above the target and adjusted in height to 
maintain the target in its FOV. Measurements were made between 10 a.m. and noon local time on cloud-
free days. The ASD spectrometer was periodically calibrated with a calibrated spectralon reference 
panel to avoid saturation. Spectralon panel reference measurements were made before and after target 
measurements to account for solar illumination changes and calculate surface reflectance values. Each 
reflectance reading was the average of five readings that were taken while the instrument was slightly 
moved over the target to capture its variability. The same targets were measured on each of the six 
dates. Throughout the year, approximately 50 targets were measured. The spectra of the most abundant 
species found in the community characterization step are given in Figure 6.18.

6.2.4.4  Spectral Analysis of Sonoran Desert Vegetation
Spectral separability analysis was performed to assess temporal variations in discriminability 
between pure buffelgrass and other cover types as well as to distinguish mixed pixels containing 
different amounts of buffelgrass from pixels without buffelgrass. Due to the low signal-to-noise 
ratio in the SWIR region of the spectrum, a moving-average filter was applied to the SWIR bands. 
We calculated Pearson’s r correlation of spectral signatures of all targets with buffelgrass for all six 
acquisition dates. While the landscape we are interested in is highly mixed, combinations of several 
cover types typically comprise greater than 50% of uninvaded cover: rock, soil, Encelia farinosa, 
Parkinsonia microphylla, and Prosopis glandulosa. We investigated the discriminability of P. ciliare 
from these dominant cover types in more detail, identifying the wavelengths that generate maximum 
differentiability for each season. To assess magnitude differences, we calculated the difference 
between the curves representing the reflectance of each cover type vs. P. ciliare.

FIGURE 6.17  Buffelgrass study area.
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6.2.4.5  Spectral Separability of Mixed Fractional Cover of Buffelgrass
We utilized plot-level cover measurements and predicted hyperspectral reflectance for all 53 plots 
for the 6 ASD reflectance data collection dates. We divided plots into low (<5% P. ciliare cover), 
medium (5%–50%), and high (≥50%) P. ciliare classes and performed a Student’s t-test to examine 
differences between reflectance for high vs. medium and high vs. low cover at each wavelength.

6.2.4.6  Results
Two species comprised 28.4% cover of the low buffelgrass cover plots (48.6% of the total vegetation 
cover): Encelia farinosa and Parkinsonia microphylla (Table 6.2) with no other species comprising 
more than 10% of the vegetation cover. Plots were typically dominated by bare ground with mineral 
soil [mean = 24.8%, standard deviation (SD) = 8.3%] and rock outcrops (mean = 16.4%, SD = 6.9%) 
averaging over 40% cover on the uninvaded plots. Therefore, we chose to focus on the relationships 
between buffelgrass and these four cover types for field-based spectral endmember comparisons. The 
three plant species (Pennisetum ciliare, Encelia farinosa, and Parkinsonia microphylla) exhibited 
different spectral responses to phenological changes during the year, varying in their differentiability 
from each other and from background soil and rock outcrops.

In March, the buffelgrass plants sampled were comprised primarily of senesced blades and 
rachii from previous years’ growth but exhibited some minimal greenup in the form of new leaves 
arising from the base of the plant. This partial greenup, likely the plants’ response to available soil 
moisture from winter precipitation and rising spring temperatures, was short-lived as the plants 
became senescent for the hot, arid foresummer preceding the onset of the North American monsoon. 
By mid-August, the monsoon had manifested in southern Arizona, bringing abundant precipitation 
that stimulated greenup and leaf elongation in buffelgrass plants. The photosynthetically active phase 
diminished significantly by September when the plant was yellow, had curled leaves, and had set 
seed. The plant was almost completely senesced by October and had taken on an orange hue that 
differed from native plants.

FIGURE 6.18  Reflectance of buffelgrass on six dates in 2007. Curves for acquisitions after March 16, 2007, 
are offset in sequence of 10% for each subsequent date on y-axis to increase visibility of curves.
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Spectral characteristics followed buffelgrass phenology and mirrored changes in photosynthetic 
activity, water content, and cellulose/lignin absorption (Figure 6.18). Absorption at 675 nm was 
noticeable in March, August, September, and October, although the August absorption was exemplary 
and the September absorption noteworthy. August was typical of photosynthetically active vegetation 
across the VIS-NIR, SWIR1, and SWIR2 wavelength regions, exhibiting additional absorption 
features near 950, 1150, and 1450 nm. SWIR1 and SWIR2 reflectances were comparatively low 
during August. March and September had somewhat lower SWIR reflectance, likely due to foliar 
water of green basal leaves (March) or stressed green leaves (September). A cellulose/lignin 
absorption feature at 2050 nm was one of the most characteristic features of the buffelgrass spectra 
on five of the six acquisition dates (all dates excluding August 16).

Encelia farinosa followed a bimodal phenological pattern that included spring greenup, floral 
production, midsummer senescence, and monsoon greenup (Figure 6.19). Greenup had started 
by March 16 but was close to full spring production by April. April was also characterized by a 
showy display of yellow composite flowers. Senescence during the arid foresummer resulted in 
shriveled, desiccated leaves. Encelia responded strongly to the summer monsoon and remained 
photosynthetically active between mid-August and late September. By late October, most leaves had 
desiccated and dehisced, leaving behind only the skeleton of this mostly <1 m shrub. The spectral 
reflectance curves show the bimodal growing season and the extended (and more intense) response 
to the monsoon. This is shown by the chlorophyll feature with a peak at 550 nm and absorption at 
675 nm contrasted with strong NIR reflectance and a steep red edge. Additionally, lower SWIR 
reflectance is demonstrated, as is a strongly peaked reflectance at 1650 nm. Floral reflectance is 
evident in the April 16 spectra in the form of a shoulder between the 550 nm peak and 675 nm 
trough. During the arid foresummer, Encelia mostly lost the chlorophyll/carotenoid absorption at 

TABLE 6.2
Percent Cover of Species Found in 15 Plots with <5% Buffelgrass 
Cover on Rocky Slopes in Santa Catalina Mountains

Species Type
Uninvaded Mean Cover % 

(SE)

Encelia farinosa Shrub 16.14 (1.46)

Parkinsonia microphylla Tree 12.56 (2.24)

Prosopis glandulosa Tree 3.80 (2.10)

Janusia gracilis Vine/Shrub 3.20 (1.08)

Jatropha cardiophylla Shrub 2.98 (1.00)

Lycium berlandieri Shrub 2.26 (0.68)

Fouquieria splendens Succulent 1.93 (0.43)

Calliandra eriophylla Shrub 1.76 (0.52)

Eysenhardtia orthocarpa Shrub 1.76 (1.08)

Jacquemontia pringlei Vine/Shrub 1.65 (0.85)

Abutilon incanum Forb 1.60 (0.60)

Cylindropuntia versicolor Succulent 1.38 (0.55)

Evolvulus arizonica Forb 1.32 (0.56)

Opuntia engelmannii Succulent 1.16 (0.95)

Trixis californica Shrub 0.88 (0.35)

All succulents 5.5 (1.3)

All grasses 2.1 (0.43)

All forbs 3.1 (1.0)

All shrubs 31.7 (1.7)

All trees 16.7 (2.8)
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675 nm, while the cellulose/lignin absorption feature manifested slightly (more so in May than 
April). The reflectance of Encelia in the NIR in August exceeded 0.6, significantly higher than other 
vegetation sampled in this study (data not shown). The higher reflectance was mirrored across the 
VNIR wavelength region with a reflectance of over 0.1 at a strong 675 nm absorption feature and 
over 0.15 at the 550 nm chlorophyll peak. Other strongly photosynthetic vegetation we sampled in 
August reflected less than 0.1 at 520 nm and close to 0.05 at 675 nm. This was likely caused by the 
production of reflective trichomes across the surface of the Encelia leaves that act to reduce leaf-level 
temperatures and increase water use efficiency [80]. Foliar water content of leaves was clearly high 
in August and September, as evidenced by relatively low SWIR reflectance values. After September, 
plant deconstruction was rapid, with leaves desiccating, falling off, and blowing away. Remaining 
leaves in October were brown, but the dominant plant cover was composed of dried stems. This is 
reflected in the slight absorption feature at 2050 nm.

Parkinsonia microphylla is a deciduous leguminous tree with green photosynthetic bark and 
small, compound leaves with very small leaflets. The evergreen bark allows it to photosynthesize 
at all times of the year while the small leaves minimize potential for water loss from transpiration 
during the hot, dry summer. Parkinsonia produces leaves in spring as temperatures increase. Leaf-
out occurs in March and April, and floral production is prolific in April. Leaves remain during most 
summers, although activity is typically suppressed during the arid foresummer because, like many 
members of Fabaceae, Parkinsonia leaves have pulvini at the base of the rachii that retract leaves 
and minimize their exposure to sun and wind during times of low water availability or humidity. 
Parkinsonia responds to summer precipitation and remains photosynthetically active throughout the 
summer and fall. Parkinsonia reflectance exhibits signs of photosynthetic activity on all six dates 
(Figure 6.20). While the chlorophyll peak at 550 nm was only apparent from August through late 
October, the absorption feature at 675 nm was evident on all dates. August and September have the 
strongest photosynthetic response, as evidenced by the clear chlorophyll absorption feature in the 

FIGURE 6.19  Reflectance of Encelia farinosa on six dates during 2007. Reflectance spectra following March 
16 are offset on y-axis to increase readability. Note: NIR reflectance (800 nm) for August 16 is actually 10% 
greater than reflectance on September 22.
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550–675 nm range and the higher NIR reflectance (750 nm). The slope of the NIR reflectance from 
750 to 1250 nm was also noticeably negative in the August spectra. Cellulose absorption features 
were barely evident in the March, April, and May spectra.

Buffelgrass most strongly resembled Encelia on the March 16 acquisition date (Figure 6.19). Only 
Encelia had a cellulose/lignin absorption feature on our first date of the year. Both plants had slight 
absorption at 675 nm but largely lacked the chlorophyll absorption feature at 550–675 nm. Senesced 
buffelgrass had a slight orange hue, manifested in the fact that Encelia had a lower slope from 450 
to 650 nm than buffelgrass. Parkinsonia microphylla resembled buffelgrass to a lesser extent but 
exhibited stronger absorption at 675 nm, strong absorption features in the NIR, a less pronounced 
cellulose/lignin feature in SWIR2, and overall less reflectance in SWIR1 and SWIR2. Soil and 
rock differed by virtue of their steep slope from 450 to 700 nm and flat response curves across the 
SWIR1 and SWIR2. In April, buffelgrass was no longer photosynthetically active and resembled 
both rock and soil in the VNIR wavelength region (Figure 6.18). In the SWIR2, buffelgrass was 
the only target with a strong absorption feature at 2050 nm. By late May, all vegetation had slowed 
photosynthetic activity or stopped altogether. Encelia resembled buffelgrass in all parts of the 
spectrum, including the SWIR2 cellulose/lignin absorption wavelengths. Buffelgrass did lack the 
absorption feature found at 1200 nm in both Encelia and Parkinsonia. All plants had greened up 
by August 16 in response to the monsoon. Encelia was exemplary in having increased reflectance 
across the board. The likely cause of this was the production of reflective trichomes that lowered the 
leaf surface temperature and increase water use efficiency [80]. Parkinsonia and buffelgrass were 
almost indistinguishable, with only slight differences in the shape of the chlorophyll absorption and 
slight differences in the overall reflectance in the NIR and depth of the 1200 nm absorption feature. 
By September, buffelgrass photosynthesis had slowed, differentiating it from both Parkinsonia and 
Encelia in the loss of the strong 675 nm absorption and the reappearance of a 2050 nm cellulose/
lignin feature. Based on similar SWIR1/SWIR2 reflectance magnitudes, water content between 
the three plants appeared to be similar. Encelia had desiccated by October 26, while Parkinsonia 

FIGURE 6.20  Spectral reflectance of Parkinsonia microphylla on six dates in 2007. Curves following 
March 16 are sequentially offset by 10% to increase readability.
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remained photosynthetically active. While Encelia’s reflectance shape in the SWIR1/SWIR2 
regions was similar to that of buffelgrass, buffelgrass reflectance in the SWIR1/SWIR2 was higher 
overall, possibly due to lower residual water content. Furthermore, the slope from 450 to 750 nm of 
buffelgrass was quite steep compared to that of Encelia. This was also reflected in a strong orange 
hue to senesced buffelgrass in October that contrasted with that of natives. Encelia remains, for 
example, were mostly gray and light brown.

Overall, buffelgrass exhibited a phenological pattern distinct from that of other dominant native 
plants and background cover. While some of these differences relate to changes in ecosystem function 
(e.g., earlier shut-down of photosynthetic activity in the arid foresummer and following the summer 
monsoon), others relate to changes in ecosystem structure (e.g., the persistence of highly flammable 
grasses year round is evident in a strong cellulose/lignin absorption feature at 2050 nm that is not 
reflected in the native species or uninvaded soil background spectra). The spread of buffelgrass 
across a region that is typically characterized by abundant bare ground surrounding islands of 
shrubs, trees, cacti, and native grasses results in significant changes in both structure and function. 
Hyperspectral remote sensing offers the means to both map and monitor invasions and measure the 
changes in ecosystem structure and function associated with invasions.

6.2.4.7  Conclusions
In summary, the selection of bands in hyperspectral regions is very important for the observation of 
litter or standing senescent vegetation. The CAI was developed and can be applied to many important 
resource management questions. Remote sensing technology can help managers and scientists with 
landscape component discrimination. The phenology of invasive plants that have litter phases can 
be observed with the CAI. In future research, we will validate the use of the CAI for a range of 
applications (e.g., agriculture, natural resources, land degradation) and remote sensing platforms 
with the correct spectral configurations.

The three case studies presented in this chapter show the utility of combining broadband ratios 
such as NDVI with time-series analyses and narrowband hyperspectral ratios to detect landscape 
features such as plant litter and invasive species that are otherwise difficult or impossible to resolve 
with satellite imagery. The CAI makes use of reflectance data in the 400–2500 nm spectral region 
to distinguish between soil, green vegetation, and cellulose-lignin plant litter, even in mixed scenes, 
across different soil types, and in soils with varying moisture contents. It was developed to quantify 
plant litter left on soil as a result of no-till farming. However, the case study with buffelgrass showed 
that the CAI combined with time-series NDVI imagery could be used to detect the spread of this 
invasive species based on its phenology. The CAI remains high for most of the year while plants 
are dormant; then the NDVI signal becomes dominant during the brief summer monsoon season.

In the case of salt cedar, spectral-ratio, color-composite, Landsat TM images can be used to 
detect and map saltcedar -infested areas in the Lower Colorado River region. These results show 
that multispectral and multitemporal Landsat TM data can be a valuable and cost-effective tool that 
natural resource managers can use to develop regional maps depicting where salt cedar infestations 
occur over large, poorly accessible areas. Generating saltcedar distribution maps over time with 
Landsat TM data and combining that information with existing GIS databases, one can create models 
for studying several other problems, such as soil salinity, evapotranspiration, forest fire potential, and 
displacement of native vegetation and wildlife caused by the spread of saltcedar.
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7 Hyperspectral Applications 
to Landscape Phenology

Alfredo Huete, Werapong Koedsin, and Jin Wu

7.1  INTRODUCTION

Phenology is the study of annually recurring biological life cycle events and the drivers and controls of 
their periodicity. Phenology is a characteristic property of ecosystem functioning and influence local 
to global biogeochemical and hydrological processes, including photosynthesis, water cycling, and 
the energy balance (Yang et al., 2014). Plant growth cycles are driven by abiotic and biotic factors, 
including climate (temperature, radiation, precipitation), soil moisture and nutrients, topography, 
species composition, plant functional type, and plant- and leaf-scale phenology (Figure 7.1). Shifts 
in phenology thereby depict plants’ integrated response to climate and environmental changes and 
have become an important source of information on how plants are responding to climate change 
(de Keyzer et al., 2017).

Satellite data, with their synoptic views, repetitive sampling, and high spectral resolution, 
offer numerous opportunities to advance the study of phenology. Thus far, satellite products have 
primarily contributed to studies of “landscape phenology” (Friedl et al., 2006), defined as the 
aggregate seasonal vegetation patterns detected by satellites. Landscape or satellite phenology is 
distinct from traditional definitions of phenology that commonly involve in situ observations of 
individual plants and biological life cycle events, such as budbreak, flowering, pollination, and 
fruiting.

Investigations of hyperspectral vegetation phenology are very limited and have yet to be 
exploited, as remotely sensed seasonal vegetation dynamics have rarely been explored at higher 
spatial and spectral resolutions (Dennison and Roberts, 2003). Yet phenological life cycle events, 
such as flowering, leaf onset, and litterfall, can be quite dramatic visually and, thus, will strongly 
alter canopy optical properties. The measurement and detection of finer spatial-, spectral-, 
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and temporal-scale phenology signals remain a challenge and offer unique opportunities for 
hyperspectral remote sensing methods to contribute to phenology studies.

In this chapter, we review current knowledge on phenology optical signals at the leaf, canopy, 
and landscape scales, provide an overview of current and potential hyperspectral applications to 
assess life cycle events and determine phenophases, and discuss the challenges and limitations of 
hyperspectral sensing in phenology applications.

7.2  SATELLITE REMOTE SENSING OF PHENOLOGY

Satellite phenology involves a composite measure of seasonal canopy foliage dynamics, 
encompassing leaf-on, leaf-off, species foliage composition, and the abundance and structural 
arrangement of leaves in the canopy. Higher temporal frequency satellite data from coarse 
(>250 m) and moderate (30 m) resolution sensors enable the retrieval of phenological profiles 
and generation of phenology products. Coarse satellite data can be from various sensors, such 
as the Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 
Spectroradiometer (MODIS), or the MEdium Resolution Imaging Spectrometer (MERIS), while 
Landsat and Sentinel-2 offer moderate-resolution measures of vegetation seasonality (Clark, 2017). 
Spectral indices, including vegetation indices (VIs), leaf area index (LAI), and chlorophyll index 
products, are most often used to depict continuous changes in vegetation growth over phenological 
cycles.

7.2.1  Phenological Profile Metrics

The landscape growing season profiles are quantified with the use of time-based metrics in order 
to consistently retrieve measures of phenology in space and time and enable long-term and regional 
to global phenology analyses. Commonly used phenology metrics are graphically presented in 
Figure 7.2 and include event-based metrics that depict the start of growing season (SGS), end of 
growing season (EGS), length of growing season (LGS), and peak of growing season (PGS) and 
additionally may include metrics representing minimum greenness value, rate of greenup, and rate 
of drying or curing (Zhang et al., 2003).

In addition to the “timing” of phenophases, one can also retrieve seasonal measures of magnitude, 
such as (1) the seasonal amplitude of greenness values, (2) peak greenness value, (3) minimum 
greenness value, and (4) integrals over the growing season. All phenology metrics can be output in 
image form for further spatial-temporal analysis (Figure 7.2).

(a) (b)

FIGURE 7.1  Phenology of a temperate deciduous forest at Harvard Forest, as viewed through a phenocam. 
(a) Summer. (b) Autumn. (From http://phenocam.sr.unh.edu/webcam/sites/harvard/)

http://phenocam.sr.unh.edu/webcam/sites/harvard/
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7.2.2 C oarse-Resolution Landscape Phenology

Numerous landscape phenology studies and applications have been reported in the literature that 
use foliage-based measures of greenness, such as VIs, and encompass a wide range of biomes from 
tropical and urban areas to northern latitudes (Myneni et al., 1997; Tucker et al., 2001; Huete et al., 
2006; Pau et al., 2010). Spectral mixture analysis (SMA) has also been used to retrieve subpixel 
vegetation spectral features at seasonal time scales. Anderson et al. (2011) applied SMA to MODIS 
time series data to better interpret canopy phenology in Amazon rainforests through the simultaneous 
retrieval of seasonal greening and browning patterns. Khwarahm et al. (2017) employed the MERIS 
Total Chlorophyll Index (MTCI) time series data to estimate the flowering phenophase of birch and 
grass species and predict pollen release dates based on retrievals of two phenological variables, the 
start of season and peak of season.

7.2.3 M oderate-Resolution Landscape Phenology

Kauth and Thomas (1976) originally used Landsat Multispectral Scanner (MSS) data to trace 
growing season dynamics of crops over large agricultural regions. They developed an orthogonal 
“tasseled cap” transform, analogous to a spectral mixture model, to extract greenness, yellowness, 
brightness, and wetness biophysical features for characterizing crop phenophases. More recently, 
fusion techniques have been developed to combine moderate spatial resolution (30 m) Landsat data 
with higher temporal frequency MODIS data to improve phenology products and applications (Roy 
et al., 2008). The two Sentinel-2 satellite sensors, as part of the Copernicus program, are expected 
to further advance phenology studies by offering 5 day repeat acquisitions with 10 m resolution 
capabilities and a 20 m red edge band (Clark, 2017; Vrieling et al., 2018).

(a)

(b)

FIGURE 7.2  Phenology metrics derived from MODIS EVI seasonal profile (a) and its first derivative (b), 
displaying start of growing season (SGS), end of growing season (EGS), length of growing season (LGS), 
and peak of growing season (PGS). The first derivative shows maximum rates of greening and browning as 
well as minimum EVI base values pre- and postseason. (Modified from Ma, X. et al. 2013. Remote Sensing 
of Environment 139, 97–115.)
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Hyperspectral moderate-resolution applications to landscape phenology have been largely carried 
out from airborne platforms, such as the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 
and the spaceborne EO-1 Hyperion sensor. Hyperspectral data add increased spectral fidelity and 
enable a wide range of hyperspectral tools, including higher-order derivative analysis (Tsai and 
Philpot, 1998), band ratioing and continuum removal, lignocellulose absorption index (Elvidge, 1990), 
mixture modeling (Asner and Lobell, 2000), chlorophyll indices (Blackburn, 1998), and spectral 
physiological indices such as the photochemical reflectance index (PRI) (Gamon et al., 1997).

Dennison and Roberts (2003) used multiple endmember spectral mixture analysis (MESMA) 
from AVIRIS to explore seasonal changes of key species in a chaparral woodland biome in 
California, USA. They found significant seasonal spectral changes, consistent with increases in 
nonphotosynthetic vegetation (NPV) during dry seasonal periods; however, such variations in NPV 
inhibited the discrimination between the chaparral species. Knowledge of phenological optical 
variations were deemed important for discriminating chaparral species.

Miura et al. (2003) reported clear differences in diagnostic vegetation absorption features, such 
as the red edge and lignocellulose absorptions, enabling the biochemical characterization and 
discrimination of Brazilian cerrado physiognomies (grass, shrub, tree) with moderate-resolution EO-1 
Hyperion imagery. Huete et al. (2008) found unique phenological patterns of pastures, secondary 
forests, and intact forests in Amazon tropical forests from seasonal Hyperion images. The red edge 
first derivatives showed different phenology responses during the more sunlit dry season, such that 
intact forests increased in greenness, pastures and disturbed forests decreased in greenness, and 
regenerating forests showed initial declines in the early dry season followed by increasing greenness 
during the latter part of the dry season (Figure 7.3). The mixed response from regenerating forests 
was attributed to the mixed functional types (herbaceous understory and developing forest layers), 
in which the shallow-rooted, drying herbaceous layer drove greenness declines, after which the 
herbaceous layer remained stable, revealing the increasing greenness of the forest (Huete et al., 2008).

7.2.4  Phenology—Biophysical Variable Dependencies

Many studies have shown significant differences in the retrieved phenology metrics from variations 
in biophysical variables used to trace the growing season profile. Croft et al. (2014) investigated 
the spatiotemporal variability of chlorophyll content and LAI across a growing season and showed 
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the SGS for LAI to be 1 month earlier than SGS based on chlorophyll content, while the length 
of the growing season varied by 2 months, as the LAI-measure of the EGS was 20–30 days later 
then the chlorophyll-measure of EGS. Yang et al. (2014) found a mismatch between camera-derived 
phenological metrics based on canopy greenness (green chromatic coordinate, or GCC) and the total 
chlorophyll concentration with the seasonal peak of GCC approximately 20 days earlier than the peak 
of the total chlorophyll concentration.

7.2.5 S olar-Induced Chlorophyll Fluorescence

Some of the solar radiation absorbed by chlorophyll in photosynthetic plants can be dissipated as heat 
or reradiated at longer wavelengths in the 650–850 nm region. This reemitted NIR light is known 
as solar-induced chlorophyll fluorescence (SIF) and, as a byproduct of photosynthesis, represents a 
more direct measure of photosynthesis (Guanter et al., 2012). SIF is an independent measurement 
that is more dynamic than greenness and chlorophyll measures, as it will respond more quickly to 
environmental stress (Porcar-Castell et al., 2014) and yield photosynthetic phenological profiles that 
are distinct to VI phenological profiles (Song et al., 2018).

The first global maps of SIF time series data were derived using data from the Greenhouse Gases 
Observing Satellite (GOSAT) (Guanter et al., 2012). The Global Ozone Monitoring Experiment-2 
(GOME-2) instrument on board the MetOp-A platform (Joiner et al., 2013) offers SIF data at a 
finer resolution than GOSAT, yet still fairly coarse (40 km), and more recently, the Orbiting Carbon 
Observatory-2 (OCO-2) mission has nonimage SIF data with dimensions of 1.29 × 2.25 km 
(Sun et al., 2017).

7.3  LEAF- AND PLANT-SCALE PHENOLOGY

Fundamentally, landscape phenology encompasses the aggregate phenology of individual leaves, 
leaf demography and turnover, plant species composition, and canopy structural changes. Multiple 
species impart a spatial aspect when interpreting temporal phenological profiles, and many difficulties 
remain in the interpretation of the dominant sources of phenological variability across scales, from 
leaves to canopies and landscapes (Wu et al., 2016a,b; de Keyzer et al., 2017).

7.3.1 L eaf Age and Ontogeny

Leaves undergo structural and biochemical changes during their life cycle that generate complex 
changes in leaf spectroscopy associated with leaf age, ontogeny (development), chemical composition, 
cell structure, senescence, and physiology (Figure 7.4).

Variations in pigment content (chlorophyll, carotenoids, and anthocyanins) result in leaf color 
variations that provide information about the leaf phenology. In most dicotyledonous plants, expanding 
leaves show increases in area, thickness, chlorophyll content, and photosynthesis rates before leaves 
fully expand; however, certain anthocyanin-producing rainforest trees and African savanna trees show 
a contrasting ontogenetic pattern of “delayed” greening, with maximum levels of chlorophyll delayed 
until sometime after the leaves are fully expanded (Choinski et al., 2003). Young leaves of many tropical 
and subtropical tree species exhibit red coloration caused by the accumulation of anthocyanins (purple/
red pigments) that protect young leaves from too much radiation (Sims and Gamon, 2002). There are 
also plant species with a transient red-coloration phase during the early stages of leaf expansion, such 
as in certain oak tree species, eucalyptus species, and Corymbia gummifera in Australia. Generally, as 
young leaves expand and develop, there is greater absorptance of visible light, accompanied by lower 
transmittance and near constant reflectance (Choinski et al., 2003).

Guyot (1990) reported that leaf optical properties of annual plants and deciduous trees changed 
significantly only during juvenile stages and senescence, remaining constant for most of their life 
cycle. During leaf senescence, chlorophyll pigments decline more rapidly than carotenoids (yellow 
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pigments) (Gitelson et al., 2003). Sims and Gamon (2002) analyzed young, mature, and senesced 
leaves from a wide range of plant functional types and demonstrated how various spectral indices 
could be used to quantify pigments levels and leaf color relationships. To improve upon spectral index 
relationships with pigment content across confounding variations in leaf structural characteristics, 
they developed a set of modified spectral indices, based on use of the 705 nm red edge. They found 
winter deciduous and evergreen functional type groups produced good correlations between SR705 
and chlorophyll, whereas annuals and drought deciduous groups benefitted by use of the modified 
set of spectral indices, which accounted for highly reflective epidermal surfaces found in these 
functional groups.

Albert et al. (2018) investigated leaf chemistry seasonal variations in dominant tree species in 
the Amazon rainforest and reported strong leaf age dependencies of chlorophyll a, b ratios (Chl 
a:b), and this ratio was found to be approximately 30% higher in young leaves than in mature leaves 
and 37% higher in mature leaves compared with old leaves. Total chlorophyll was 90% higher in 
mature than in young leaves, but older leaves had 15% more chlorophyll than mature leaves. A leaf 
demography analysis showed that leaf age composition varied greatly during the dry season, with 
new leaves produced before old leaves dropped. This was consistent with the leaf demography–
ontogeny hypothesis that evergreen rainforest trees exchange old leaves (with low photosynthetic 
capacity) for recently mature leaves (with high photosynthetic capacity) during the dry season while 
maintaining high LAI (Wu et al., 2016b). This demonstrated the importance of leaf-scale phenology 
in explaining forest-scale patterns of dry season photosynthesis.

Chavana-Bryant et al. (2017) developed a predictive, partial least-squares regression model based 
on leaf spectra measurements of 1099 leaves from 12 Amazonian canopy trees in southern Peru. They 
found leaf aging to be a fundamental driver of changes in leaf traits, thereby regulating ecosystem 
processes and remotely sensed canopy dynamics. Their spectra-based model was more accurate in 
predicting leaf age compared with trait-based models, and they found narrowband spectral indices, 
including NDVI, EVI, normalized difference water index (NDWI), and PRI were all leaf-age-
dependent. Their study, as well as others (Wu et al., 2017), have highlighted the importance of leaf 
age in canopy spectroscopy and satellite-derived phenology.

Thus, at the tree crown scale, plant functional traits, leaf age composition, and crown structure 
jointly determine canopy spectroscopy, while at the landscape scale, leaf age demography, relative 

FIGURE 7.4  Leaf reflectance spectra of Amazon tree species Endopleura uchi over a 1 year lifespan, as 
measured with an Analytical Spectral Devices © (ASD) hand-held spectroradiometer. (Courtesy Jin Wu.)
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abundance of deciduous trees over evergreen trees, and understory dynamics dominate satellite 
phenological observations (Wu et al., 2016a, 2017).

7.4  DETECTING LIFE CYCLE EVENTS

Although there are strong spectral contrasts across plant phenophases associated with leaf coloration 
changes, budbreak, onset of new leaves, and flowering, satellite retrieval of such key life cycle 
events remains quite challenging, even using hyperspectral data. Carvalho (2013) showed how 
hyperspectral data could be used to discriminate plant phenological stages and found seasonal 
changes in both leaves and flower spectra. Visible red wavelengths (650–680 nm) provide particularly 
good separability between flowering and green-leaved canopies (Sims and Gamon, 2002). Ge et al. 
(2006) reported species-specific increases in plant carotenoids due to flowering with associated 
increases in blue spectral absorption (450–480 nm).

Flowering status is an important ecological indicator for monitoring plant phenology. Detection 
of flowering plants is important in pollination studies. Chen et al. (2009) studied flowering times 
and flower coverage on the Tibetan Plateau as an indicator of ecological processes. Using in situ 
hyperspectral data, they developed a hyperspectral flower index (HFI) to detect the yellow flowering 
color of Halerpestes tricuspis in an alpine meadow, with the best detection reported when flower 
coverage was greater than 0.10. Khwarahm et al. (2017) used SGS and PGS phenology information 
derived from MERIS MTCI to generate a predictive model that enabled mapping of birch and grass 
flowering across the U.K.

Certain invasive plant species can be detected using their floral signals, and studies have shown 
invasive species to be discernable from co-occurring vegetation during peaks in the flowering season 
(Hestir et al., 2008). However, there remain important limitations in the use of hyperspectral data 
for flowering mapping, including (1) limitations of hyperspectral data for flower mapping over large 
areas due to spectral mixing and confusion with leaf browning; (2) short-term flowering response 
cycles, in which 16 day satellite revisit cycles, such as from Hyperion, are insufficient to capture 
critical flowering periods; for example, Jia et al. (2011) showed that the duration of flowering in poppy 
seeds was only 2–3 weeks; and (3) the subtleness of the floral signal in many species, particularly 
grasses. These limitations make it challenging to effectively produce complete floral cycle maps for 
a given landscape.

Yang et al. (2014) found that senescing leaf redness in deciduous trees was significantly correlated 
with spectral indices of anthocyanin concentration, enabling new ways to quantify vegetation 
senescence remotely. On the other hand, confusion can arise during the plant drying phenophase of 
grasses and dry region plants, in which leaves are neither fully green nor senescent, but fall along 
a continuum.

7.5  PHENOLOGY SPECIES DISCRIMINATION

Several studies have utilized the unique spectral-phenology patterns of land-cover types to generate 
land-use/land-cover classification maps from broadband and hyperspectral data (Somers and Asner, 
2012, 2013; Dudley et al., 2015). Phenology differences are effective for identifying plant species, 
and knowledge of plant phenology can help resolve optimal temporal windows to aid in the spectral 
discrimination of various species and functional types (Bradley, 2014).

Cole et al. (2014) used field spectroscopy to establish a spectral library of phenology variations 
across key moorland species to determine suitable temporal windows for monitoring upland peatland 
systems. They used narrowband hyperspectral indices, red edge position (REP) and PRI, during 
greenup and the cellulose absorption index (CAI) and plant senescence reflection index (PSRI) 
during senescence. By analyzing spectral response changes with phenology and degree of spectral 
variation among species, they found the months of April and July to be most suitable for species 
separability. Ghiyamat and Shafri (2010) used hyperspectral analysis of the chemical composition 
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of foliage and tree phenology to study forest biodiversity and further applied wavelet transforms to 
identify tree species.

Dillen et  al. (2012) showed leaf traits to vary significantly between two co-occurring tree 
species, red oak (Quercus rubra) and paper birch (Betula papyrifera), throughout a growing season. 
Interactions between paper birch and red oak species partly contributed to their contrasting spring 
phenologies, in which paper birch was characterized by much earlier early bud break and rapid leaf 
expansion.

Challenges remain on how to use multidate hyperspectral data for the detection of coastal 
and marine species that present different types of phenological information. Hestir et al. (2015) 
conducted a comprehensive overview of the potential and need for the global mapping satellite 
mission (Hyperspectral Infrared Imager, HyspIRI) for measuring and mapping freshwater 
aquatic ecosystems. Their study found that the temporal resolution of HyspIRI was suitable for 
characterizing the growing season of wetland species phenology in temperate regions and would 
allow the identification and mapping of macrophyte communities but was found to be unsuitable for 
tracking algal blooms.

Phenology-based spectral discrimination methods can be applied to invasive species detection, 
weeds, as well as discerning intra-species variations. Differences in phenological stages between two 
plants are often utilized in hyperspectral imagery to discern invasive weeds from other landscape 
elements and plants. Hyperspectral detection of invasive species relies on knowledge of key phenology 
periods for optimal discrimination of spectral differences between species and the target of interest. 
Bradley (2014) reviews when the phenology approach is most useful or most effective for identifying 
invasive species. Ge et al. (2006) were able to identify and map the different flowering stages of 
the invasive weed, yellow starthistle (Centaurea solstitialis), through spectral characterization and 
modeling of canopy components (stems, buds, opening flowers, and postflowers), using hyperspectral 
data.

Gómez-Casero et al. (2010) were able to discriminate wild oat and the weed canary grass based 
on hyperspectral data applied only during late-season phenology stages. Hestir et al. (2008) found 
that both the invasive pepperweed and water hyacinth exhibited significant spectral variation related 
to plant phenology, and that their discrimination based on phenology influences was moderately 
successful. In a separate case study using airborne hyperspectral data (HyMap), Hestir et al. (2008) 
were successful in identifying invasive vegetation based on the unique phenologies of three separate 
species, however in multiple-date applications the accuracy was variable across dates, hindering the 
determination of phenological stages for each species.

7.6  INFLUENCE OF SPECIES DIVERSITY ON PHENOLOGY

Plant species biodiversity has a large influence on satellite-observed landscape phenological profiles. 
Species composition with varying phenologies and leaf demographies aggregate to produce a larger-
scale “mixed” phenology that is recorded by satellite sensors. Whereas species phenology variations 
may be useful in discriminating species, the aggregate signal from multiple species can confuse the 
interpretation of phenology. This is referred to as the spatiotemporal duality of phenological data (de 
Keyzer et al., 2017), which causes ambiguities to arise from species’ presence.

Climate as well as land-cover changes can influence phenology. Thus, a shift in species 
dominance can alter satellite-measured phenology and be confused with a climate-change-induced 
phenology shift. Exotic species or the emerging presence of an invasive species can gain a foothold 
in a landscape and lead to an apparent shift in phenology (Wilsey et al., 2018). Compositional shifts 
in C3 and C4 species, attributed to elevated CO2 levels, will impact the phenology of grassland areas 
and LGS. Wilsey et al. (2018) reported that native (C4) to exotic (C3) plant conversions in central 
U.S. grasslands have led to highly altered phenology patterns, as the senescence phenophase arose 
on average 36 days later in exotic than native-dominated grasslands. They noted that this conversion 
would have to be considered in developing estimates of how global change will affect phenology in 
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locations where exotics are present, and particularly in cases where their abundance is increasing 
concurrently with climate change.

A highly diverse tropical forest tree canopy can also result in a range of “apparent” phenology 
responses, depending on the extent to which dominant species are synchronous or asynchronous 
with the same or common environmental factors (Figure 7.5). In a regenerating forest, the canopy 
phenological profile represents mixtures of functionally diverse, herbaceous, and developing tree 
layers (Figure 7.3), each with unique phenological responses to dry and wet seasonal periods (Huete 
et al., 2008).

Marine and coastal ecosystems are among the most highly species diverse and productive of 
Earth’s ecosystems, encompassing mangrove, seagrass meadows, algae, coral reef, and plankton 
biologic communities. The phenology of the diverse life forms that grow in these habitats often 
change rapidly, from day to day, in wet and dry seasons and over short distances. A quantitative 
study of phenology is required to provide the information that can be used to assess their complex 
drivers in order to protect and manage wetlands and other coastal resources (Osterman et al., 
2016).

It remains challenging to use multidate hyperspectral data for monitoring the phenology and 
changes in plant communities and species composition in marine and coastal areas. The spectral 
properties of coastal and marine plants are a combination of the optical properties of individual 
vegetative components, effects of growth forms, density, height, tidal stage, and soil type, as 
well as water chemistry and turbidity variations. Hyperspectral remote sensing is an important 
technique to discriminate the main vegetative types, such as mangrove species (Kamal and Phinn, 
2011; Koedsin and Vaiphasa, 2013) and wetland species (Hirano et al., 2003; Pengra et al., 2007; 
Jollineau and Howarth, 2008; Adam et al., 2010; Turpie et al., 2015). Due to the complexity of 
coastal ecosystems, there is a need for accurate spatial, spectral, radiometric, and temporal image 
data and information extraction techniques to process high-dimensional hyperspectral remote 
sensing data.

7.7  CHALLENGES AND FUTURE DIRECTIONS

In this chapter, we explored the optical phenology patterns of variability from leaf to landscape scales 
and focused on the use of hyperspectral remote sensing to improve our understanding and ecological 
interpretation of phenology patterns and responses to biotic and abiotic drivers. An understanding of 
phenology is a prerequisite to interannual studies and predictive modeling of land surface responses 
to climate change.

High-temporal-frequency measurements are critical in obtaining sufficient amounts of cloud-free 
data and achieve greater sensitivity to phenological timing retrievals. Improved temporal fidelity 

FIGURE 7.5  Phenocam images showing dry season phenology dynamics at individual tree crown and 
leaf scales, while whole canopy maintains an evergreen appearance year round. (From 2013–2014, Central 
Amazonian rainforests (ATTO) (Lopes et al., 2016). (Data courtesy of Bruce Nelson, INPA.)
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would be useful for more accurate retrieval of the timing of budbreak, flowering, and peak greenness, 
which even coarse-resolution, high-temporal-frequency satellites may not capture because of 
compositing methods that aggregate data from weekly to monthly intervals. Flowering events and 
peak greenness periods are short-lived and may be missed entirely in current phenology products. 
Improved timing accuracies would be needed for many applications, for example, flowering maps 
and pollen alerts.

Advancements in terms of more accurate phenology assessments require information at 
adequate spectral, spatial, and temporal resolutions. Phenology studies at finer spatial and spectral 
resolutions are still relatively scarce, yet they are valuable for understanding species mixture effects 
on landscape phenology and serve to resolve ambiguities arising from the spatiotemporal duality 
of phenology signals. Hyperspectral spatial domains are important for discriminating key species 
and for better understanding the presence and influence of mixed species. Only in realizing the 
spectral-spatial detail present in fine-resolution hyperspectral data can one effectively interpret and 
characterize phenological variations in coarser-scale satellite imagery. Lastly, hyperspectral data 
have the capability of providing biophysical/biochemical information to existing greenness-based 
phenological profiles for better interpretation of phenology signals and their drivers and controls. 
Hyperspectral remote sensing provides opportunities to advance phenological science by improving 
upon the detection of life cycle events, species detection, and biophysical retrievals, thereby bridging 
the many gaps limiting phenological assessments in coarse-resolution satellite data.

Future directions to advance phenology studies involve the linking of satellite imagery with 
ground-based sensors that measure plant- and canopy-level processes, such as the expanded use of 
in situ sensor platforms capable of long-term ecosystem monitoring and analysis. One example is the 
Mobile Instrumented Sensor Platform (MISP) deployed in the Arctic tundra (Healey et al., 2014). 
This versatile robotic sensor system can detect and monitor plant-to-ecosystem changes and shifts 
in productivity, along with species composition, phenology, structure, and function over seasonal, 
interannual, and decadal time scales.

Unmanned autonomous vehicle (UAV) technology allows flexibility in providing timely data and 
the level of resolution can be selected to meet complex phenological requirements involving unique 
spatial, spectral, and temporal resolutions. There have been advances in research and development 
of hyperspectral sensors specifically designed or adapted for UAV payloads. UAV essentially has 
the capability of effectively filling in current observational gaps in environmental remote sensing 
applications, including phenology. They provide crucial information needed for monitoring coastline 
change, wetland mapping, ecosystem monitoring, and the phenology of coastal and marine plants 
(Klemas, 2015).

A study by Berra et al. (2016) showed that the GCC data derived from UAV RGB images could be 
used to estimate individual tree phenology parameters (such as start of season) in tropical situations. 
UAVs with hyperspectral cameras have been used to successfully map mangroves, wetland vegetation 
communities, and other aquatic vegetation (Husson et al., 2013; Tian et al., 2017; Cao et al., 2018), 
but there have yet to be UAV studies utilizing multidate hyperspectral data in coastal applications. 
These research gaps can ideally test the capabilities of multitemporal hyperspectral data from UAVs 
for monitoring coastal vegetation phenology.

The Phenological Eyes Network (PEN), established in 2003, is a network of long-term ground 
observation sites to validate remotely sensed ecological dynamics, in particular, seasonal/
phenological changes in vegetation (Nasahara and Nagai, 2015). This includes an automatic digital 
fish-eye camera, a hemispherical spectroradiometer, and a sun photometer. There are over 30 PEN 
sites, many of which are integrated with FluxNet or International Long Term Ecological Research 
(ILTER) sites. The collection of in situ, diurnal, and daily hyperspectral data is of immense value 
in understanding the capabilities of hyperspectral data in all aspects of phenological science, from 
leaf and species to individual tree crowns and plant canopy communities. These cross-site long-term 
monitoring infrastructures facilitate collaborations between remote sensing scientists and ecologists.
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8 The Use of Hyperspectral 
Earth Observation Data for 
Land Use/Cover Classification
Present Status, Challenges, 
and Future Outlook

Prem Chandra Pandey, Kiril Manevski, 
Prashant K. Srivastava, and George P. Petropoulos

8.1  INTRODUCTION

Land use/land cover (LULC) are essential variables of the Earth’s system that are intimately 
connected with anthropogenic and physical environments (Chatziantoniou et al., 2017; Otukei and 
Blaschke, 2010). Explicit spatial information on land cover, that is to say, where things are, is useful 
for policy decisions on agricultural resource management, environmental and ecological protection, 
and native habitat mapping and restoration (Ireland and Petropoulos, 2015; Sanchez-Hernandez et al., 
2007). In addition, thematic maps of land use/land cover (LULC) are also linked to systems for 
monitoring desertification and land degradation—key processes evident in many areas on the Earth 
experiencing ongoing climate change (Lamine et al., 2017; Singh et al., 2016). At local and regional 
scales, knowledge of LULC represents a basic dimension of resources available in any geographic 
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unit (Kavzoglu and Colkesen, 2009). At a larger scale, LULC information is of key importance in 
delineating the broad patterns of climate and vegetation that form the environmental context for 
human activities.

To monitor LULC and their interrelationships, remote sensing techniques have been employed 
at various scales. Remote sensing measures reflectance in a spectrally contiguous manner 
from the visible (VIS) to the shortwave infrared (SWIR) parts of the electromagnetic spectrum 
(400–2500 nm). However, the “contiguous” manner differs markedly between remote sensing 
technologies. Since the 1960s–1970s, LULC classification involved routine mapping from “less 
contiguous,” that is, multispectral remote sensing data (Petropoulos et al., 2012a). Since the launch 
of the Landsat missions, the research community has seen a wide range of spaceborne multispectral 
sensors put in orbit for applications in various research and application themes. Such remote sensing 
applications have not looked back after their successful implementation in LULC applications and 
other purposes thanks to their capacity to provide repetitive data over large areas and synoptic 
coverage even for inaccessible locations at different spatial and temporal scales, often free of charge. 
Although multispectral images often come with high spatial resolution, their limited spectral 
resolution, that is, few to several spectral bands, may hamper target identification and detailed 
characterization of LULC. This limitation may be overcome by the use of hyperspectral remote 
sensing. Hyperspectral sensors are delicate tools that possess hundreds of bands between 400 and 
2500 nm in a virtually continuous manner, aiming to resolve target-specific and detailed spectral 
responses—a task considered difficult for any multispectral sensor. For instance, vegetation cover 
and plant species have varying degrees of spectral characteristics depending upon biochemical 
pigments, intracellular spaces, water contents, diversity developmental stages, and phenological 
phenomena, while being governed at times by the surrounding background. At a lower canopy level, 
where spectral predominance is driven by soil backgrounds, the examination of plant species is even 
more troublesome and often unreliable (Curran, 2001). Thus, it follows that multispectral imagery is 
preferred for broader, meaning community-level, vegetation cover analysis, whereas detailed studies 
involving greater discrimination, for example, deciduous vs. evergreen vegetation, are better served 
by hyperspectral remote sensing (Thenkabail et al., 2004a).

This chapter provides information pertaining to LULC mapping from a view of hyperspectral 
remote sensing across scales. First, current advancements in spaceborne hyperspectral LULC studies 
and methods are presented, emphasizing the classification algorithms and associated factors. In this 
context, case studies with critical reviews are also included. Then field-scale hyperspectral remote 
sensing and the basics of detailed plant species discrimination are discussed, alongside the main 
influencing factors and the major methods for data processing. The main focus is on vegetation land 
cover as the most complex in terms of spectral response and variability. This is followed by a brief 
critical overview of the recent rapidly increased use of unmanned aerial vehicle (UAV) platforms in 
remote sensing of LULC. Finally, the chapter concludes with summary information and puts forward 
the challenges associated with more accurate estimation of land cover using hyperspectral data.

8.2  MULTISPECTRAL VERSUS HYPERSPECTRAL REMOTE SENSORS

Since decades ago, multispectral images have been in use for LULC mapping. There is an extensive 
literature describing the use of Landsat data in LULC mapping and other objectives such as tracking 
seasonal droughts on a large scale (Goerner et al., 2009; Thenkabail et al., 2004a; Zhang et al., 2017). 
Landsat satellites were launched by NASA and so far there are eight, the last (Landsat 8) enabling 
processing and analysis of multispectral and thermal data at 30 and 100 m spatial resolutions, 
respectively (Ding et al., 2014). Another well-known multispectral remote sensing platform in space 
is the Moderate Resolution Imaging Spectroradiometer (MODIS) (500–1000 m spatial resolution), 
which has also been used extensively in large-scale LULC mapping (Garcia-Mora et al., 2012). 
Data from these sensors are often considered too coarse for detailed LULC mapping as many Earth 
targets typically contain features that are smaller than the spatial resolution of these multispectral 
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images (Lu and Weng, 2004). To resolve the spatial resolution issue, high-spatial-resolution images 
were introduced with advancements in technology, and to provide accurate results according to user 
requirements, high-spatial-resolution images were incorporated into mapping, such as by IKONOS, 
QuickBird, and WorldView1 and 2. One of the most recent sensors launched by the European Space 
Agency is Sentinel-2, a multispectral device with 13 bands from 443 to 2190 nm (Table 8.1) and a 10 
day repeat cycle. The three red edge bands seem especially attractive, as this part of the spectrum 
is known to contain certain information about fine differences in plant pigments; higher chlorophyll 
content can indicate higher canopy density or complex community structure or higher nitrogen 
content in plant tissue (Alvarez-Añorve et al., 2008). Laurin et al. (2016) showed high potential for 
ecological monitoring using simulated Sentinel-2 data for tropical rainforests in West Africa. Despite 
its potential in terms of good spatial and spectral resolution, studies involving the actual use of 
Sentinel-2 for agro-environmental investigations are very limited because the satellite only started 
providing data in late 2015, so researchers have yet to investigate the actual potential of Sentinel-2 
for drought stress detection and management.

As already mentioned, the spatial resolution interacts with landscape features, and the issue of 
“mixed pixels” arises, where several land-use features are contained in a single pixel of an image. 
Such a mixture becomes especially prevalent in, for example, residential regions where pavement, 
buildings, trees, lawns, roads, parking lots, and asphalt can all occur within one pixel. Natural or 
seminatural landscapes composed of mixtures of agricultural crops or various vegetation types such 
as trees, shrubs, and grasses with varying botanical descriptions are also common in mixed pixels, 
which affects the LULC mapping efficiency of multispectral remote sensing datasets, despite their 
high spatial resolution (Cracknell, 1998; Fisher, 1997). This problem might be mitigated by the 
introduction of hyperspectral imaging systems.

Although both multi- and hyperspectral imaging systems have advantages and disadvantages, 
hyperspectral imaging systems have proven to have huge potential for better discrimination 
between different LULCs and for mapping fragmented landscapes compared to multispectral 
images. Hyperspectral imaging systems, such as Hyperion, HyspIRI, and EnMap, are able to record 
reflected light from land cover in numerous narrow, virtually continuous spectral bands, thereby 
acquiring vast amounts of spectral information observed from higher altitudes (Ben-Dor et al., 2013). 
Hyperspectral sensors capture data by spatial and spectral scanning, nonscanning, or snapshots and 
spatiospectral scanning. This approach has been demonstrated by several researchers and scientists 
(Petropoulos et al., 2011, 2012b; Zomer et al., 2009). Examples of varying contrasts in spectral, 
spatial, and temporal characteristics between several spaceborne multispectral and hyperspectral 
imaging techniques are presented in Table 8.1.

NASA launched the first successful civilian hyperspectral satellite sensor, Hyperion EO-1, 
in Earth’s orbit in November 2000 (Pearlman, 2003). The Compact High Resolution Imaging 
Spectrometer (CHRIS) followed this successful launch in 2001 on the European Space Agency’s 
(ESA) (PROBA) platform (Barnsley et al., 2004). Since the launch of NASA’s Hyperion on the EO-1 
platform, hyperspectral imaging has seen a boost in development and placement in Earth’s orbit for 
observation and analysis. The Hyperion EO-1 sensor was mainly launched to prepare the mineral 
spectral library and mineral mapping by the U.S. Geological Survey (USGS) (Vorovencii, 2009), 
whereas the ESA’s CHRISPROBA was used to gather bidirectional reflectance distribution function 
(BRDF) information for enhanced knowledge of spectral reflectance. The Hyperion EO-1 sensor 
has a ground-coverage field of view (FOV) providing a 7.5 km swath, while the CHRIS sensor is 
a high-spatial-resolution hyperspectral spectrometer (18 m at nadir) with a 14 km swath (Ben-Dor 
et al., 2013).

During the period 2013–2016, the development of the PRecursore IperSpettrale della Missione 
Applicativa (Hyperspectral Precursor of the Application Mission) (PRISMA) by the Italian Space 
Agency (ASI), Germany’s Environmental Mapping and Analysis Program (EnMAP), and NASA’s 
HyspIRI (Hyperspectral Infrared Imager) enabled commercial and research themes to make progress 
compared to multispectral imaging. Two instruments were mounted on HyspIRI in low orbit with 
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an Intelligent Payload Module (IPM) to enable data subsets to be broadcast directly (Knox et al., 
2010). HyspIRI measures the spectral range 380–2500 nm from VIS to IR in 10 nm contiguous 
bands, while a second multispectral instrument measures from 3 to 12 um in the mid-IR to thermal 
IR(TIR) range. The VIS-SWIR/TIR spectra have a spatial resolution of 60 m at nadir with a revisit 
period of 19 days for VIS-SWIR and 5 day revisit time period for TIR. Subsequently, NASA’s Moon 
Mineralogy Mapping (M3) project, in collaboration with the Indian Space Research Organization 
(ISRO), was launched to map the Moon’s surface (Pieters et al., 2009). This was followed by the 
HyspIRI satellite mission discussed earlier (https://hyspiri.jpl.nasa.gov/). In 1980–1983, NASA 
started operating several missions, including a thermal hyperspectral mission known as the thermal 
infrared multispectral scanner (TIMS) (Kahle and Goetz, 1983). The thermal spectral range has 
been shown to be an important and promising region for acquiring mineral-based information using 
TIMS and ASTER sensors.

ISRO’s Moon mission Chandrayan-1 launched in 2008 and carried a Hypespectral Imager (HySI) 
hyperspectral sensor that was useful in delivering information about the mineral composition of 
the lunar surface, mineral mapping, and water molecules present on the surface of the Moon. 
Recently, ISRO announced plans to launch the Hyperspectral Imaging Satellite (HySIS), which 
will be developed using a critical chip called the Optical Imaging Detection Array. HySIS has 55 
spectral bands, which can be used in a range of research themes such as crop and environmental 
monitoring, oil exploration, and mineral mapping. The EnMAP satellite mission (2015) uses a wide 
range of ecosystem parameters including agriculture, forestry, soil and geological environments, 
coastal zones, and inland waters, while HyspIRI will provide products to understand ecosystems 
and deliver important information on natural disasters such as volcanic eruptions, wildfires, and 
drought. On June 23, 2017, a small and lightweight hyperspectral camera was successfully launched 
into space on the Aalto-1 nanosatellite, measuring a wavelength range of 500–900 nm. It is a unique 
hyperspectral tunable spectral imager operating in space due to its miniature size, representing half 
a CubeSat unit (0.5 U) in size, or 5  × 10 × 10 cm. It is a scalable sensing technology that will offer 
opportunities for new nanoscale satellite-based services for land cover or other research domains.

8.2.1  Planned Hyperspectral Remote Sensing Missions

Recognizing the importance of hyperspectral imaging, several countries are planning space missions 
in the near future. The Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM) 
is a joint mission between the Israeli and Italian space agencies that was unveiled on June 16, 
2009, to support research in both countries (Feingersh and Dor, 2015). A SHALOM hyperspectral 
satellite will be launched to perform a joint study of the feasibility of development, launch, and 
operation of commercial satellites. SHALOM is designed with a spatial resolution of 10 and 2.5 m 
for hyperspectral and panchromatic images, respectively. Hyperspectral images will have a 2 day 
revisit time covering 200 km2 daily with 10 m spectral resolution and 241 spectral bands at a range of 
400–2500 nm. The main use of SHALOM will be to investigate and monitor environmental quality, 
crises, the search for mineral and natural resources, monitor water bodies, and facilitate precision 
agriculture activities in Israel and Italy (Ben Dor et al., 2014).

The Italian Space Agency scheduled the launch of the PRecursore Iper Spettrale della Missione 
Applicativa (Hyperspectral Precursor of the Application Mission) (PRISMA) satellite on May 30, 
2018. PRISMA has integrated a hyperspectral sensor with a medium-resolution (panchromatic photo 
camera) sensitive to all colors. PRISMA is a push-broom sensor covering a spectral range of 400–
2500 nm with a swath of 30–60 km and a ground sampling distance (GSD) of 20–30 m (2.5–5 m for 
panchromatic images). This feature will enable PRISMA to detect the chemical-physical composition 
of geometric features of objects it observes.

The ESA plans to launch the FLuorescence Explorer (FLEX) satellite as the eighth Earth 
explorer space mission in 2022 (Colombo et al., 2016; ESA, 2015) to observe vegetation fluorescence 
(Fletcher, 2015). FLEX will contain an array of three instruments to measure parameters such as 

https://hyspiri.jpl.nasa.gov/
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fluorescence, hyperspectral reflectance, and canopy temperature and the features related to them. 
The FLEX mapper, with a 300 m resolution, will be used to monitor croplands and forests due 
to its unique capability of fluorescence detection, an indicator of photosynthesis in both healthy 
and physiologically perturbed vegetation (Jonathan, 2015). The FLEX mapper will provide an 
opportunity to researchers to assess canopy fluorescence at the global level from space to monitor 
global steady-state chlorophyll fluorescence in terrestrial vegetation (Colombo et al., 2016).

The China Centre for Resources Satellite Data and Application (CRESDA) has developed two 
small satellites to monitor environmental resources. HJ-1A is a hyperspectral sensor, while HJ-1B is 
an IR camera. HJ-1A and HJ-1B (huanjing = environment) satellites are mounted on the Huan Jing 
satellite constellation consisting of two more satellites with instruments HJ-1C. These two sensors 
deliver 3–100 m spatial resolution images.

8.3 � SPACEBORNE HYPERSPECTRAL REMOTE SENSING 
STUDIES OF LAND USE/COVER

The superior capacity of hyperspectral systems to segregate and identify several ground features 
compared with traditional multispectral systems has been demonstrated by several researchers (Zhang 
and Ma, 2009). These days, hyperspectral imaging systems are viewed as being among the most 
noteworthy Earth observation information sources (Du et al., 2010) and therefore are used in various 
applications of land cover assessment (Li et al., 2010). Generally, hyperspectral imaging system data 
are preferred over multispectral data sources for digital image classification for land-cover thematic 
maps (Chintan et al., 2004). A complete and extensive review of the classification approaches used 
for remote sensing datasets, including methods suitable for hyperspectral data analysis, can be found 
in Lu and Weng (2007). In general, a commonly utilized land-cover classification group includes 
three key sets, such as pixel-based, subpixel, and object-based classification techniques. These 
categories of classification groups are discussed next.

8.3.1  Pixel-Based Classification

Methods belonging to pixel-based classification approaches perform classification by assigning 
each pixel to the target features of the land cover. This can be accomplished using either supervised 
or unsupervised classifiers. Supervised classifiers utilize samples of known features of each land 
cover class, known as “training sites,” to classify pixels of unknown characteristics of digital images 
(Campbell, 1996). In contrast, unsupervised classifiers aggregate pixels with comparative spectral 
values into unique groups in accordance with predefined statistical criteria whereby the classifier 
joins and reassigns spectral groups into more informative feature classes. Supervised classifiers 
are further broadly subdivided into parametric and nonparametric classifiers. In contrast with 
nonparametric classifiers, for example, artificial neural networks (ANNs), support vector machines 
(SVMs) (Vapnik, 1995), and random forests (RFs) (Clark and Kilham, 2016; Guidici and Clark, 
2017), parametric pixel-based classifiers, for example, maximum likelihood (ML)classifiers (Harris, 
1998) require prior knowledge and learning about cover features with respect to the statistical 
distribution of the information to be characterized for the distinctive classes utilized, information 
that is frequently hard to come by. A pixel-based classification approach that is the most popular 
among all approaches, especially when executed with hyperspectral sensors, is the Spectral Angle 
Mapper (SAM) (Kruse et al., 1993). SAM is a supervised classification approach based on the 
calculation of a spectral angle corresponding to a reference source and the target feature spectral 
characteristics in question. SAM’s popularity is due to its quick, easy, and reliable execution as well 
as implementation for the spectral assessment of digital image spectra with respect to the reference 
spectra. It is a capable classifier algorithm since it overcomes shade influence and suppresses its 
impact on spectra to emphasize target feature reflectance (de Carvalho and Meneses, 2000). Despite 
the capability of pixel-based strategies, most such methods require making assumptions with 
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respect to the likelihood distribution of the training samples (for instance, in ML), which may not 
generally agree or coincide with reality. Other classifiers, for example ANNs, may require critical 
measures of effort in terms of the adjustment and calibration of neural nets before acquiring an 
acceptable accuracy of results.

It is generally accepted that such classification methods do not utilize the concept of the spatial 
dimension of digital images, for example, textural or relevant information exhibited in remotely 
sensed datasets (Yan et al., 2006). Last but not least, a key advantage of both classification approaches 
is that their use is not limited by the so-called Hughes phenomenon, also referred to as the “curse of 
dimensionality” (Hughes, 1968). The Hughes phenomenon occurs when training sites or reference 
sample numbers are inadequate compared with the number of input target features (and therefore 
of classifier parameters). This causes a decline in the accuracy of results as a component of the 
information dimensionality increase with an increased number of spectral channels of digital images 
(Dalponte et al., 2009; Zhang and Ma, 2009). Pandey et al. (2014) demonstrated methods to reduce 
the Hughes phenomenon utilizing segmented principal component analysis (PCA) techniques that 
segregate spectral ranges into several informative discrete spectral groups. Highly informative 
principal component bands of each group (first three only) were considered for the further processing 
and incorporation of information as much as possible, giving rise to enhanced visualization of 
the resultant images. The resultant images were used for classification that generated improved 
results compared to individual images. This technique reduces the Hughes phenomenon because 
it separates full spectral ranges into several groups. Despite the fact that this data problem is not 
looked on account of the several classification approaches, the type of technique used for analysis 
and assessment can be very useful with any type of classifiers used in LULC classification with 
hyperspectral imaging.

8.3.2 O bject-Based Classification

The early period of the 1980s saw the development of new techniques and methods, such as 
object-based classification illustrated by de Kok et  al. (1999). These methods depend on the 
idea that information required to represent target features in a digital image is represented in a 
meaningful object versus the pixel-based methods, where it is represented in a single pixel. The 
initial part of the object-based method was based on image segmentation techniques to isolate 
images into regions where each is homogeneous and no two adjacent areas are homogeneous 
(Pal and Pal, 1993). In the following stage, the segmented image is utilized in conjunction 
with textural and contextual information, in addition to spectral information, to generate a 
thematic classified LULC map. A hierarchy of levels of segmentation, such as a lower level 
and a higher level, can be achieved and be produced for a few large objects and several smaller 
objects belonging to their categories. This method incorporates the statistical values of objects 
from digital images, such as minimum, maximum, and standard deviation, along with their 
spectral characteristics for each spectral channel of the number of pixels used for a given target 
object. Furthermore, physical factors, such as shape, size, tone, texture, compactness, and other 
characteristics, are portrayed for each feature and depicted for the spatial features of the target 
object and can be utilized as part of the classification process to support the object’s perception 
and discrimination (Bock et al., 2005). In this way, the incorporation of spectral and spatial 
information of target features represents a fundamental preferred attribute and advantage of 
object-based classifiers. Although spectral information forms the basis of hyperspectral remote 
sensing image classification and interpretation (Liu and Li, 2013), spectral information alone is 
not useful for classification and mapping, as demonstrated by Bai et al. (2017). To improve the 
accuracy of land-cover-classification results, other parameters should be combined along with 
spectral information. Therefore, Liu and Li (2013) demonstrated an idea to incorporate textural 
properties with spectral data to improve the accuracy and improved land-cover classification. 
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The authors used ANN classifiers on textural products for land-cover mapping and presented 
them as better classifiers compared to only spectral data.

Above all, the error such as “salt and pepper” effect and “edge” display in the thematic image 
generated by pixel based classifiers, are reduced in the object based classification technique. Likewise 
it ought to be noticed that in contrast with pixel-based classifiers, object based classification by and 
large requires higher analyst skills and level of expertise in order to be executed. Likewise, for the 
most part, the precision of segmentation image specifically influences the execution of the object 
based classification. A few researches have demonstrated that better segmentation results can prompt 
object-based image classification and has experienced extraordinary results as compared to pixel-
based classification (e.g., Yan et al., 2006).

8.3.3 S pectral Unmixing

This is an altogether different technique for classification that partitions pixels into several 
spectral segments known as endmembers, and additional information about the general spectral 
response of the pixels is mandatory (Hostert et al., 2003; Okin et al., 2001; Zhang et al., 2006). 
Commonly, the endmembers chosen must be less than the spectral channels of the instrument 
or sensors for this method to be used. Additionally, all endmembers available in a digital image 
ought to be used with a specific end goal to obtain consistent and reliable products. The spectral 
unmixing outcome is one for each particular endmember, with pixel values ranging from zero to 
one, demonstrating the fraction of the first image attributed to the specific endmembers. Subpixel 
classification techniques are largely separated into linear and nonlinear unmixing methods, 
depending upon whether each pixel’s reflectance is a linear or a nonlinear combination of all 
target features within the pixel (Plaza et al., 2009; Small, 2001). Hyperspectral information is 
used in linear methods because it has substantially more spectral channels. Mixing methods are 
additionally useful for smaller or rare target features such as the identification and discrimination 
of alien or intrusive species. An overview of linear mixing methods and distinctive limitations 
can be found in Miao et al. (2006).

8.3.4 S paceborne Hyperspectral Applications for Land Use/Cover Mapping

In recent decades, several airborne and satellite hyperspectral remote sensing sensors have 
been launched. The current availability of such remote sensors has additionally supported the 
improvement of a few techniques for assessment and analysis provided by such sensing systems. 
Hyperion is a spaceborne satellite hyperspectral sensor mounted on board the Earth Observer-1 
(EO-1) satellite, launched by NASA under its New Millennium Program around 2000 (Tables 8.1 
and 8.2). It has a total of 242 spectral channels and acquires images at a 30 m spatial resolution 
and around 10 nm spectral resolution (70 spectral channels are part of the VIS to near-infrared 
(VIS-NIR) and 172 channels form the shortwave infrared (SWIR) part (Han et al., 2002). The 
Hyperion sensor is considered the first main “real and genuine” spaceborne hyperspectral remote 
sensor instrument in Earth’s orbit. The public access and availability of Hyperion data have 
opened one of several opportunities for remote sensing research/studies to explore its potential 
use for assessment and investigation in LULC mapping, as well as other related fields with future 
prospects.

Several studies have observed and analyzed the use of Hyperion data with different pixel-
based classification approaches to land-cover mapping (Goodenough et al., 2003; Pignatti et al., 
2009; Walsh et al., 2008). Moreover, both linear and nonlinear unmixing classification approaches 
integrated with Hyperion sensors for LULC mapping have additionally been explored in a few 
studies (e.g., Pignatti et al., 2009; Walsh et al., 2008). Others have likewise investigated the use 
of object-based approaches to assessing LULC mapping and classification (Walsh et  al., 2008; 
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Wang et al., 2010). For instance, Walsh et al. (2008) analyzed three different classifiers, such as 
Spectral Angle Mapper (SAM), spectral unmixing, and object-based classification integrated with 
a Hyperion sensor, and in particular compared their results and robustness with Hyperion data for 
mapping intrusive/alien plant species in Ecuador, and they further announced that the object-based 
arrangement outperformed the other two classification approaches. Wang et al. (2010) utilized an 
object-based classification approach to Hyperion sensors taken for a test field site in China and 
demonstrated accuracy results from 72% to 88% in classified maps, subject to the number of reference 
classes taken and the total number of classes outlined therein. However, a literature review revealed 
that a couple of studies reported a comparative assessment of the performance of different classifier 
algorithms using a hyperspectral imaging system for land-cover mapping (Petropoulos et al., 2012a). 
For instance, Pal and Mather (2005) analyzed various pixel-based classifiers for comparative results 
and accuracy, including SVMs and ANNs from the multispectral LANDSATETM+ and Digital 
Airborne Imaging Spectrometer (DAIS) airborne hyperspectral sensors, respectively, for two study 
sites located in Spain and the UK. Some authors additionally obtained higher classification accuracy 
results from SVMs compared to two classifiers (ANN and SAM), with an improved accuracy of up 
to approximately 2%–5%. Karimi et al. (2006) assessed the efficiency of SVMs and an ANN for 
classifying hyperspectral imagery over an agricultural field, utilizing information from an airborne 
hyperspectral imaging system flown over test sites in Canada. The authors likewise found the SVMs 
to outperform the ANN classifier, by around 15% and 0.114 in overall accuracy and kappa coefficient, 
respectively.

In another study, Pal (2006) explored the use of SVMs with hyperspectral imagery from the 
DAIS airborne sensor at a test site in Spain and revealed that the overall accuracy of the SVMs 
exceeded 91%. Koetz et al. (2008) inspected the integrated use of hyperspectral and LiDAR-
derived information with SVMs for plant fuel type mapping for a test site in France. Some 
authors revealed overall accuracy and kappa coefficient of 69.15% and 0.645 separately when 
the SVM was used with the hyperspectral data, which increased by 6.3% and 0.115 respectively 
when the two datasets were integrated for the same case study. For example, recently Clark and 
Kilham (2016) conducted a study on a RF algorithm for three independent variables, reflectance, 
MNF (Minimum Noise Fraction), matrices with simulated multitemporal (two seasonal imagery) 
HyspIRI imagery in 2016 at a test site in San Francisco, California (Figure 8.1), to explore 
the algorithm’s ability to classify HypsIRI imagery according to the international Land Cover 
Classification System (LCCS) in two levels of classification complexity. They demonstrated the 
robustness of multitemporal matrices (0.9%–3.1%) and hyperspectral matrices (16.4%–21.8%) 
and concluded that they were superior to other two variables, MNF and reflectance used in 
the study for classification purposes depending upon pixel or polygon scales for the reported 
analysis. Their outcomes were provided keeping in mind the future launch of the hyperspectral 
satellites with enhanced spatial, spectral, and temporal resolutions, which in turn will require a 
sophisticated and accurate classification algorithm for land-cover mapping results particularly 
relevant to regional and global scales.

In another recent study, Guidici and Clark (2017) investigated the multiseasonal land-cover 
classification using simulated HyspIRI imagery with SVM, RF, and neural network (NN) algorithms 
for more heterogeneous landscape in test sites located in the San Francisco area in 2015 (site similar 
to that used previously in a study by the same author and investigated by Clark and Kilham 2016). 
Their outcomes demonstrated an improved classification accuracy of multiseasonal imagery by 2.0% 
(SVM), 1.9% (NN), and 3.5% (RF) compared to single-season imagery (Figure 8.2). A NN has the 
potential to provide improved overall classification accuracy (89.9%), similar to SVM-generated 
classification land-cover results (89.5%), while both outperformed the RF with a difference of almost 
7% in land-cover accuracy. The researchers provided insight into hyperspectral imaging with the 
appropriate use of classification algorithms for improved classification accuracy and an ability to 
interpret distinct target features in the spatial-spectral-temporal domain in remote sensing products 
for analysis and visualization.
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FIGURE 8.1  HyspIRI land-cover classification with multitemporal hyperspectral matrices for 20 LCCS 
classes in (upper part) and 12 LCCS classes (lower part). (Adapted from Clark, M. and Kilham, N., 2016. ISPRS 
J Photogramm Remote Sens, 119: 228–245.)
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8.4  FIELD HYPERSPECTRAL REMOTE SENSING OF LAND USE/COVER

Hyperspectral remote sensing at the field scale, that is, field spectroradiometry, uses spectral 
reflectance as a key variable. The solar irradiance, or the spectral flux that reaches a detector per 
surface unit, dissipates toward the SWIR (1300–2500 nm) from the VIS wavelengths (100–2500 nm). 
This is because atmospheric constituent gases, such as H2O, CO2, O2, O3, CH4, and N2O, selectively 
scatter and absorb incident radiation, thereby forming atmospheric “blinds,” while allowing some 
solar radiation to pass through atmospheric “windows” (Avery and Berlin, 1992). Water vapors are 
the major atmospheric blinds with the strongest absorption at around 1450, 1400, and 1900 nm, thus 
covering significant portions of the near-infrared (NIR) (700–1300 nm) and SWIR compared to 
other atmospheric constituents (Avery and Berlin, 1992; Price, 1998). Further, the reflection of solar 
irradiance from land cover is radiance, a unit widely used in remote sensing as it is independent of 

(a) (b)

(c) (d)

FIGURE 8.2  HyspIRI land-cover classification maps using (a) SVM, (b) RF, (c) NN classification maps. White 
areas indicate pixels that were not classified (e.g., water, clouds, no data), and (d) Natural color mosaic of imagery 
of study site from June 2015. (Adapted from Guidici, D. and Clark, M.L., 2017. Remote Sensing, 9(6): 629.)
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sensor characteristics. Moreover, a proportion of the radiance reflected by a target to that reflected 
by a perfect (lossless) and diffuse (isotropic) standard surface illuminated under similar conditions 
is reflectance. Because spectral reflectance is not a characteristic that is contingent on targets, it is 
referred as a “spectral reflectance factor” R(λ) (Milton et al., 2009). R(λ) is dimensionless, having 
values from 0 to 1, yet may achieve values beyond1, particularly for specular surfaces, for example, 
snow.

Typical spectral reflectances have been described for many land covers such as soil, water, and 
snow (Avery and Berlin, 1992). Vegetation reflectance is much more complex in its pattern and 
variability. Plants use mostly the red and blue bands in the VIS spectrum for photosynthesis driven by 
selective absorption by pigments, leaving the reflected mid-VIS to give leaves their green visual color. 
The most important pigment, chlorophyll-a (Chl-a), absorbs light at approximately 430 and 680 nm, 
whereas Chl-b uses 480 and 660 nm and β-carotene from 400 to 550 nm with two local maxima 
at 470 and 515 nm. Further, the red edge (700–800 nm) is the region of rapid change in reflectance 
before the NIR. Maximum reflectance is reached in the NIR due to internal light scattering in the 
sponge mesophyll and also due to external scattering within the canopy. In the SWIR, water dynamics 
and absorption are prominent, with absorption zones at about 1450–1530 nm and 1900–2000 nm. It 
should be mentioned that for vegetation, as for any land cover, there is a directional reliance on the 
Sun’s position (anisotropy), which is explicitly described by the bidirectional reflectance distribution 
function (BDRF) (Schaaf, 2009). BDRF is a four-dimensional capacity measured in units of inverse 
steradians [sr−1]; the fundamental idea and importance of discussing the BRDF and the directional 
issues of radiation and reflectance are covered in Nicodemus et al. (1977).

Field spectroradiometry provides nondestructive and repeatable spatial measurements in a wide 
spectral range with high precision and accuracy in user-friendly computer formats and compact and 
portable spectroradiometer designs (Milton et al., 2009; Nidamanuri and Zbell, 2011). Nonetheless, 
measuring land cover such as vegetation on a field is challenging because it involves a consideration 
of influencing factors. Consequently, the main factors affecting field spectroradiometry are presented 
next, followed by a discussion of advancements in compiling spectral data. Finally, a summary of 
the statistical tools utilized in vegetation land-cover discrimination using field spectroradiometry 
data is given.

8.4.1  Factors Affecting Field Spectroradiometric Measurements

Spectroradiometers are devices that measure relative spectral radiation over a specified wavelength 
range and calibrated to output spectral measurements (reflectance and transmittance) in absolute 
units (e.g., energy flux density in W m−2 nm−1) for natural and synthetic surfaces and materials. 
Spectroradiometers can be used in both the lab and the field. However, whereas the environment in 
the lab is more controllable, several important factors need to be considered in the field prior to and 
during field spectroradiometric measurements.

First, the instrument-specific “behavior” should be assessed with respect to the environment (e.g., 
heating) and calibration. Before sampling, the device is normally switched on to warm up for no 
less than 30 min so as to decrease its temperature sensitivity (known as “step”), often depicted as a 
sudden deviation in the target reflectance at a particular wavelength (Figure 8.3). The sensitivity drift 
can sometimes be remedied in the field by holding the fiber-optic cable with the sensor away from 
the object and permitting the FOV of the strands to overlap (ASD, 2009). Also, the amount of usable 
information in the spectra depends, among other things, on high signal to- noise ratio (SNR), which 
in turn increases with the number of averaged spectra (ASD, 2009; Milton et al., 2009). Instrument 
calibration for the Sun’s characteristics (illumination, atmospheric and scattering impacts) is 
typically done by measuring a surface with a known reflectance of nearly 100% (white board). The 
most widely recognized is the material Spectralon®, a white reference reflector with 99% reflectance 
made by Labsphere Inc. of North Sutton, NH, USA. Periodic reflectance estimations of the white 
board can provide an estimate of how “perfect” a diffuse reflector is amid field measurements.



161The Use of Hyperspectral Earth Observation Data for Land Use/Cover Classification

Second, atmospheric gases and the Sun’s illumination variation may significantly influence 
reflectance measurements. As discussed earlier, atmospheric gases absorb energy at longer 
wavelengths, and this is somewhat compensated for by reduced spectral resolution in the SWIR 
wavelengths during instrument manufacture (Salisbury, 1998). So as to further diminish these 
environmental factors, the smallest nadir position of the sensor is normally utilized to avoid BRDF 
(Manakos et al., 2010; Pfitzner et al., 2006). Illumination factors, such as background radiance from 
the surroundings, are typically small and insignificant sources of error, except if a large background 
object or something close enough to the land cover obscures a large portion of the solid angle 
viewed by the target. Clouds, shades, and wind attenuate solar irradiance and the target’s reflectance 
(Chang et al., 2005). Therefore, clouds should be avoided as much as possible, and measurements are 
performed during high Sun position, for example, between 11 a.m. and 2 p.m., when the Sun’s height 
varies by less than 30°. At higher latitudes, directional estimations with off-nadir edges and a wider 
FOV are occasionally used (Eklundh et al., 2011). Wind affects the spectral response of land cover as 
the cover, for example vegetation canopy, moves and changes its shadow. Nowadays it is minimized 
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by fast scanning time (100 ms for a complete 350–2500 nm spectrum) of spectroradiometers (ASD, 
2009). In addition, replicated measurements further minimize both the wind and illumination 
synergetic effects and instrumentation factors (Hemmer and Westphal, 2000).

Third, each measurement essentially aims to acquire as pure signals from the land cover of 
interest as possible, which may contain mixed covers if appropriate FOV adjustments to height are 
not considered. The FOV ought to be sufficiently wide to cover a homogeneous species distribution. 
In the meantime, the FOV also ought to limit the underlying soil contribution to the spectral response 
(Ben-Dor et al., 2009). Several relative readings can be taken along different directions over the 
canopy followed by white reference reading in order to justify the variation in output (Manakos 
et al., 2010; Manevski et al., 2012).

8.4.2  Development and Use of Field Spectral Libraries

Extracting field reflectance spectra is crucial for spectral discrimination between land covers 
if variables that influence the measurements are considered. That information becomes part of 
spectral libraries that are composed and stored together as spectral signatures with associated 
metadata (Hueni et al., 2009; Rasaiah et al., 2014). The spectral signatures may represent geo-bio-
chemo-physical dynamics pertaining to the land cover and its environment, such as, for example, 
shadow, moist surface, and the phenology of vegetation, or may aim for a “pure,” that is, reference 
spectra. In both cases, extracting only the necessary information and increasing the uniqueness 
of the reflectance requires a clear approach to developing a spectral library, and it is essential for 
guaranteeing sufficient information quality (Milton et al., 2009; Salvaggio et al., 2005). Most studies 
focus on the use of unaltered field reflectance spectra.

Field reflectance without postcollection quantitative/mathematical manipulations is unaltered 
reflectance (Figure 8.3a). Such reflectance is widely used in land-cover discrimination in a holistic 
approach, that is to say, taking into consideration land cover and its surroundings, such as micro-
pedo-climate, as an integral part of the spectral signature (Rao et al., 2007; Schmidt and Skidmore, 
2003). Hence, unaltered spectral libraries are suitable for solving the spectral variation between 
pixels on hyperspectral imagery, especially for more homogeneous landscapes or when the FOV 
matches the image pixel size (Artigas and Yang, 2006; Rao et al., 2007). Spectral unmixing in 
hyperspectral imagery is also used when the unaltered library contains “reference spectra” to outline 
distinctive features at a specific spatial scale (Zhang et al., 2003). Separating the influence of canopy 
structure or soil background from the spectra or detecting differences in vegetation due to various 
biophysical properties (e.g., canopy thickness, leaf water, or chlorophyll content) can be further 
enhanced with field hyperspectral libraries by the use of vegetation indices (Castro-Esau et al., 2004; 
Price, 1994).

One of the most common numerical manipulations of unaltered reflectance is the continuum 
removal, which is essentially normalization by a continuum line with a high value of associated 
spectral local maxima utilizing straight line segments, as indicated by the following equation:

	
R

R

C
( )

( )

( )

,λ
λ

λ
cr =

	
(8.1)

where R(λ)cr is the continuum-removed spectral reflectance, R(λ) is unaltered (raw) spectral reflectance, 
and C(λ) is the continuum line spectral value (Figure 8.3b). The continuum removal technique 
was initially used in remote sensing for mineral mapping and rock identification studies, and an 
increasing number of studies use them also on vegetation spectra (Manevski et al., 2011; Prasad 
and Gnanappazham, 2015; Psomas et al., 2005). It should be kept in mind that applying continuum 
removal over wide spectral ranges may not necessarily result in better shape characterization because 
low local maxima can be missed by the continuum line, such as the missed local maxima at about 
1300 nm in Figure 8.3b. Moreover, detecting local maxima in noisy bands may introduce artificial 
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reflection/absorption features. Algorithms such as those that are ENVI enabled (ENVI, 2009) can 
characterize local maxima considering the aforementioned drawbacks.

Similarly to the continuum removal, derivatives essentially represent a change of power in the 
reflectance, and first- and second-order derivatives are often applied on spectral libraries. The first 
derivative is calculated for a wavelength halfway between two wavelengths, while the second resolves 
three firmly closed spaced wavelength reflectance values (Petropoulos et al., 2014). Derivatives 
highlight sudden changes in spectra, as illustrated for the red edge inFigure 8.4. Derivatives are 
being utilized to examine various vegetation covers at the leaf scale or to observe vegetation status 
over various soil backgrounds (Frank and Menz, 2003; Kochubey and Kazantsev, 2012). Derivatives 
may also portray vegetation cover status in relation to chlorophyll content (Castro-Esau et al., 2004; 
Kochubey and Kazantsev, 2007), where broadband indices from unaltered reflectance (e.g., NIR/R 
reflectance ratio) are not that sensitive. Morrey (1968) describes in detail these derivatives and their 
advantages.

A number of spectral libraries exist that are designed to hold pure spectra data of different land 
covers. Research is being carried out for the purpose of creating widely used spectral libraries of 
land cover for several target features (e.g., wetlands, deserts, soil, vegetation species) (Hueni et al., 
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2009; Milton et al., 2009). The lack of standardized procedures and metadata collection has for years 
been reported as a limiting factor in field spectroradiometry, in relation to data transferability and 
interpretability (Pfitzner et al., 2006; Rasaiah et al., 2015b). However, recently efforts have been made 
to standardize designs and methods for the collection of spectral data and associated metadata (Rasaiah 
et al., 2014, 2015a,b). One of the most comprehensive spectral libraries is offered by the USGS (http://
speclab.cr.usgs.gov/) and integrates the ASTER spectral library, the Johns Hopkins University (JHU) 
spectral library, and the Jet Propulsion Laboratory (JPL) spectral library (Baldridge et al., 2009). 
This library offers a full compilation of spectral references for several land-cover features, such as 
minerals, vegetation, and artificial materials, measured using several advanced spectroradiometers, 
such as the Beckman 5270 (200–3000 nm), the ASD field spectroradiometer (350–2500 nm), the 
Nicolet Fourier-transform infrared (FTIR) interferometer spectrometer (1,300–15,000 nm), and the 
NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (400–2500 nm). The SPECCHIO 
online spectral database system is also an open-access spectral library from the Remote Sensing 
Laboratories (RSL) of the University of Zurich (http://www.specchio.ch/) that contains a rich source of 
metadata with reference spectra and field-measured spectral information so as to ensure its durability 
and shareability in the scientific community (Hueni et al., 2009).

8.4.3 S tatistical Approaches in Field Spectral Discrimination

Statistical approaches suitable for analyzing field spectral data can be parametric and nonparametric, 
depending on whether or not the data follow a normal, or Gaussian, distribution. Studies have shown 
that vegetation spectral reflectance is quite variable and can follow a Gaussian or other distribution 
(e.g., Manevski et al., 2011, 2012). Parametric tests are often considered robust, particularly when 
the number of samples is large (Robson, 1994). Nonparametric techniques make no assumption 
regarding data distribution and are less sensitive to off-scale values (Manevski et al., 2017). Thus, 
both approaches have their own particularities, qualities, and shortcomings. When coupled with land-
cover spectral data, they should lessen wavelengths to the most significant for spectral discrimination 
without the loss of vital data (Ben-Dor et al., 2009; Thenkabail et al., 2004b). Hence, dimension 
reduction is an important task of statistical methods. These include ANOVA (Adam and Mutanga, 
2009; Manevski et  al., 2011, 2012; Vaiphasa et  al., 2005), correlation analysis (Mariotti et  al., 
1996), linear discriminant analysis (Abdel-Rahman et al., 2010; Clark et al., 2005), and canonical 
discriminant analysis (van Aardt and Wynne, 2001), among others. In relation to the number of 
independent variables (factors) used to explain reflectance variability, the approaches can be grouped 
into univariate and multivariate methods.

Univariate techniques utilize one independent factor (land cover or plant species) in detecting 
differences for one dependent variable (e.g., reflectance). The single-factor ANOVA investigates the 
difference between groups as a deviation of each group’s mean from the “grand mean” (Robson, 1994).
Comparable univariate methods for vegetation discrimination in light of parametric assumptions 
involve t-tests (Jacobsen et al., 1995; Vaiphasa, 2006), analysis of covariance, linear regressions, 
and generalized linear models.

As opposed to the univariate approach, multivariate statistical approaches make no assumptions 
about a Gaussian distribution and may result in better descriptions of combinations of more dependable 
factors that fulfill particular mathematical criteria as a clarification of more autonomous factors. 
Such strategies are utilized both in data dimensionality reduction and for illustrative purposes. PCA 
is a two-step multivariate technique that first decomposes the X-matrix (in this case, the reflectance) 
and then fits a multiple linear regression model, using the principal components instead of the 
original X-variables as predictors (Castro-Esau et al., 2004). Similar to PCA, partial least squares 
(PLS) also takes dependent variables into account during the calculation of the principal components 
(it simultaneously models X- and Y-matrices in order to find the “latent” variables of X that will 
better predict “latent” variables for Y). Canonical discriminant analysis is another data reduction 
method used to clarify the factors (such as wavelength) that separate the best among types (plant 

http://speclab.cr.usgs.gov/
http://speclab.cr.usgs.gov/
http://www.specchio.ch/
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species); it outlines variation among classes, much in the way that PCA compresses the aggregate 
variation (Dimitrakopoulos, 2001). Other techniques include statistical distances that calculate the 
distance between probability functions for two classes, thereby suggesting the probable success of 
between-class discrimination. Such distance measures include the Euclidean, Jeffreys-Matusita, and 
Bhattacharyya distance (Ouyang et al., 2013; Schmidt and Skidmore, 2003).

8.4.4  Field Spectroradiometry Applications for Land Use/Cover Mapping

Since the 1990s, an increasing number of studies have reported land-cover discrimination results 
using field spectroradiometry, focusing primarily on vegetation land cover. Prasad et al. (2015) used 
multiple statistical approaches for the discrimination of mangrove species in India using unaltered 
and continuum-transformed field and laboratory spectral data. Based on their extensive parametric 
and nonparametric and spectral distance analyses, the authors identified green, red edge, and SWIR 
regions as important for vegetation identification and concluded that the continuum removal of 
additive inverse spectra gave better discrimination than continuum-removed spectra. Artigas and 
Yang (2006) discriminated saltmarsh species in the USA within the VIS-NIR spectrum using the 
Mann-Whitney U-test and suggested that the orange and red bands in the VIS, as well as selected bands 
in the NIR, were important. Psomas et al. (2005) have carried out similar tests for discriminating 
dry-mesic meadow species in Switzerland. Apart from band identification, a noteworthy outcome 
of these studies was the seasonal variability of the vegetation spectral signatures. Manevski et al. 
(2012) utilized the Mann-Whitney U-test and successfully discriminated typical Mediterranean 
vegetation and emphasized the seasonal impact of vegetation and its importance in discrimination 
results. This seasonal variability, together with inherent differences between various vegetation land 
covers and even within the same vegetation but different functional groups (e.g., tree or shrub), was 
the main reason for the high but “parallel” variability of the vegetation spectral reflectance, and this 
has implications for the choice of statistical method (Figure 8.5).

Field spectroradiometry has likewise been utilized for assessing and mapping vegetation quality, for 
example, nitrogen content. Mutanga et al. (2003) spectrally discriminated tropical grass under various 
nitrogen treatments using parametric ANOVA tests, coupled with both unaltered and continuum-
removed spectra, and emphasized the need to further map field-scale variation using hyperspectral 
imaging. Lacar et  al. (2001) investigated the potential to discriminate between four grape vines 
(Cabernet Sauvignon, Merlot, Semillon, and Shiraz) in southern Australia using one-way ANOVA, 
combined with Tukey posthoc tests, and emphasized the red edge (∼720 nm) trailed by the green and its 
wings in the VIS as important for their study. In addition to the importance of the red edge for vegetation 
cover identification, Schmidt and Skidmore (2003) discriminated numerous distinctive Dutch saltmarsh 
plant species utilizing nonparametric statistics; while no single band was found to discriminate between 
all the species, the authors still found the NIR bands around 770 nm to be sufficiently powerful; they 
also demonstrated that the red edge can lose statistical importance for vegetation discrimination studies 
when large spectral variability is present in the data. In their comparative study, Manevski et al. (2011, 
2012) concluded that the use of unaltered reflectance narrows the statistical difference between plants 
to bands in the VIS and SWIR spectrum but weakens the difference in the NIR spectrum compared 
to continuum-removed reflectance. Despite the substantial dimension reduction, their discrimination 
results, as for many other studies, still left numerous wavelengths relevant for discrimination of the 
studied species. Adam and Mutanga (2009) have proposed a hierarchical method to discriminate plant 
species that at first includes one-way ANOVA, followed by classification and regression trees and 
spectral distance analysis. This analysis yielded eight bands that are considered to be practical for 
upscaling to airborne or spaceborne sensors for mapping the studied vegetation.

To sum up, the general trend so far points to continuum-removed reflectance as being a more 
powerful input to a nonparametric analysis for the discrimination of vegetation land cover at the 
field scale, when compared with unaltered reflectance and parametric analysis. However, it should 
be emphasized that the number of observations may play an important role for discrimination result 



166 Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation

outputs and should be considered when utilizing spectral libraries for discrimination and land-
cover classification purposes (Manevski et al., 2017). Last but not least, the synergistic use of field 
spectroradiometry and spaceborne hyperspectral imaging for land-cover mapping has not been as 
widely investigated. Land-cover discrimination studies using field spectroradiometry have rapidly 
increased in number, but these results are seldom applied further on hyperspectral imaging data 
(van Aardt and Wynne, 2001, 2007). Rao et al. (2007) illustrated the use of field spectroradiometry 
information of agricultural sites in India, for Hyperion data classification at different spatial scales 
(canopy level and pixel level), thereby achieving notable overall accuracies of 86%–89%. In any 
case, the similarity and inconsistency of the spectral characteristics of land cover definitely raises 
the issue of high mapping vulnerability in the pixel-based analysis of heterogeneous and fragmented 
landscapes (Xie et al., 2008). Apart from further improving field spectroradiometry studies, further 
research should focus on upscaling field studies and the validation of hyperspectral imagery.

8.5 � UNMANNED AERIAL VEHICLES AND HYPERSPECTRAL 
REMOTE SENSING FOR LAND USE/COVER MAPPING

In recent years, many advanced platforms, in terms of small size, light weight, and ease of 
operation, have been developed to carry sensors amid rising demand for improved spatial, 

FIGURE 8.5  Mean reflectance spectrum of common Mediterranean vegetation obtained with aerial-lift 
mobile platform (left) and handheld (right). Spectra are flanked by standard deviation of mean (black lines) at 
95% confidence level. Wavelengths where the variances between three plants compared in each spectral library 
were homogeneous are shaded gray on lower graphs. Spectral regions around 1400, 1940, and 2400 nm were 
removed due to atmospheric noise. (Adapted from Manevski, K. et al., 2012. IEEE J-Stars, 5(2): 604–616; 
with permission.)
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spectral, and temporal resolutions. These include primarily UAVs, commonly known as drones. 
Each platform has its own advantages, and disadvantages, so the choice of platform, and thus 
data resolution, depends on the study objective, but synergies are ongoing and expected to further 
enhance results (Pádua et al., 2017). UAVs’ greatest advantage over field- and spaceborne remote 
sensing is the reduced altitude of their flight, which greatly decreases costs and improves data 
resolution, allowing for higher monitoring frequencies. Also, the thickness of the atmosphere is 
much smaller compared to spaceborne platforms, which mitigates atmospheric effects. However, 
their disadvantage is that they require more flights to cover large areas due to their reduced flight 
time (Gago et al., 2015). As for other data, a possible solution is coupling UAV data with field- or 
spaceborne remote sensing data. The use of UAV data in hyperspectral remote sensing of LULC 
is rather recent (Huang et al., 2017; Natesan et al., 2017). As these data are characterized by a very 
high spatial resolution, they are expected to attract ever more attention since UAVs are expected to 
be increasingly capable of handling the relatively large spectral variability within and also between 
plots/fields, as demonstrated by some studies (Yuan et al., 2017). However, some studies report 
limited classification results, despite increased spectral discrimination between various LULC 
targets from UAV image-derived endmember pixels, possibly due to extensive processing of these 
data that involves corrections for radiative and geometric distortions and noise removal, for example 
(Hunt et al., 2017; Mitchell et al., 2012).

It is noteworthy that, regardless of the remote sensing platform for data acquisition (field-, 
air-, or spaceborne), hyperspectral data per second consist of hundreds of bands that cover the 
electromagnetic spectrum, thus comprising a hyperspectral data cube. While a single cube is 
highly manageable in terms of data processing, many LULC studies involve an ensemble of cubes 
for multiple purposes during multiple steps and so have the characteristics of “big data”: large 
volume, from terabytes (TB = 1024 GB) to petabytes (PB = 1024 TB) and sometimes exabytes 
(EB = 1024 PB), multitemporality (collected on different dates) or multiresolution (collected on 
different scales), and near-real processing time (data should be analyzed in a reasonable time to 
achieve a given task) (Chi et al., 2016). Therefore, LULC studies using hyperspectral data require 
an increasingly practical handling of big data of massive volumes, machine learning, and artificial 
intelligence using supercomputers, which remains challenging. More recently, cloud computing 
platforms have been developed and optimized for data-intensive loads, parallel file systems, and 
database management and multilevel data locality (Ma et al., 2015).

8.6  CONCLUDING REMARKS

The rapid development of remote sensing technology makes it increasingly feasible to derive land-
cover information from hyperspectral Earth observation data acquired at different observational 
scales. Numerous studies have demonstrated that hyperspectral imaging from satellite platforms 
is capable of producing accurate maps of land cover. Validation methods based on error matrix 
statistics have generally shown overall accuracies of 85% and kappa coefficients of 0.80 or higher. 
These are generally regarded as very satisfactory for many practical applications requiring regional 
land-cover maps. However, progress in field-scale remote sensing, such as field spectroradiometry in 
hyperspectral imaging analysis of LULC, has not yet been fully realized in practice. Many studies 
suggest that, indeed, prior to any work that implies land- cover analysis from remotely sensed air- 
and spaceborne imagery at the species level, knowledge of species spectral separability is useful 
and of vital importance. Yet, this is not a trivial task because the comparison of spectral signatures 
obtained from the field with those from satellite hyperspectral remote sensing sensors is hindered 
by various factors, such as the different physical setups of sensors and measurement environments, 
the latter being especially variable over time and space on the Earth’s surface. Also, scale-related 
factors must be taken into account to minimize the remote measurement discrepancy between what 
is actually observed at the ground level and what is perceived from remotely sensed imagery before 
data can be of use.
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Although a novel technology, field spectroradiometry in LULC studies, especially for vegetation, 
have led to remarkable achievements and have proven the significant capability of this technology 
in land-cover analysis over the past 15 years. Vegetation land cover, both agricultural and natural, 
remains the focus in most studies, as the spectral characteristics of plants are dynamically influenced 
by many internal and external factors. Thus, both multi- and univariate statistics are employed and 
have proven their ability to discriminate between vegetation land-cover reflectance, as determined 
by reflectance ANOVA, in VIS bands, and especially in the NIR spectrum, including the red edge. 
Single bands yielded by field-scale dimension-reduction studies for discrimination between targets 
of a certain type of land cover, such as vegetation species, are reported within the NIR, but findings 
must be confirmed on satellite imagery in future investigations. In addition, experiences gained 
through vegetation discriminant analyses at the field scale so far indicate an increasing importance 
of the SWIR spectrum, considering its ability to characterize water content in vegetation cover. Also, 
the link between remote sensing datasets acquired at different spatial scales is present but needs to 
be implemented in order to improve LULC mapping.

Finally, the use of UAVs have become increasingly popular in hyperspectral remote sensing of 
LULC because they offer both increased spatial and spectral resolution. All in all, UAVs can be 
used to improve estimation of land cover from hyperspectral remote sensing data. It is important 
to integrate knowledge on the spectral properties of land-cover targets and the factors affecting 
spectral variations across scales. In this framework, the synergy between field spectroradiometry, 
hyperspectral imaging, and processing techniques is and will be further investigated for various 
types of land cover.
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9 Hyperspectral Remote Sensing 
for Forest Management

Valerie Thomas

9.1  INTRODUCTION

Forests cover about 30% of the Earth’s terrestrial surface (FAO, 2016), play a significant role in the 
climate system, and are integral to numerous ecosystem, cultural, and economic services (Figure 9.1). 
As such, there is considerable interest in sustainable management to conserve forest resources while 
balancing the competing interests for their use. Forest management is a multifaceted endeavor, 
defined as the “application of biological, physical, quantitative, managerial, economic, social, and 
policy principles to the regeneration, management, utilization, and conservation of forests to meet 
specified goals and objectives while maintaining the productivity of the forest” (Helms, 1998, p. 71). 
In practical terms, this often means some type of silviculture practice, protection activity, or forest 
regulation.

Given the large, and often remote, land area covered by forests, remote sensing technologies have 
been widely adopted as part of operational forest management portfolios, mainly to monitor the 
location, type, and amount of forests, as well as changes in them over time. To date, the use of remote 
sensing for forest management has been largely driven by aerial photography and multispectral 
satellite imagery (such as Landsat or SPOT) and (more recently) lidar. Hyperspectral technology 
may allow us to expand our remote characterizations to examine species and biodiversity, forest 
health and condition, stand structure, threats (such as stress or invasive species), and forest ecosystem 
function (Carter, 1994; Goetz, 1995; Lichtenhaler et al., 1996; Martin and Aber, 1996; Green et al., 
1998; Merton, 1998; Ustin and Trabucco, 2000; Curran, 2001; Rocchini et al., 2010; Treitz et al., 
2010; Féret and Asner, 2014; Stein et al., 2014; Thenkabail et al., 2014; Somers et al., 2015; Asner 
et al., 2017). Indeed, most of the vegetation applications of hyperspectral remote sensing discussed 
in other chapters of this book could be applicable to forest management. However, despite the 
many potential benefits of this technology, the use of hyperspectral imagery for operational forest 
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management applications has been extremely limited. Most of the work has been in the realm of 
scientific research or pilot/demonstration studies that show the potential value of hyperspectral data 
in forest conservation, monitoring, and inventory. The reluctance by practicing forest managers to 
adopt adoption hyperspectral remote sensing on a large scale stems from (1) the size and complexity 
of both the hyperspectral data sets and forest ecosystems and (2) lack of repeated hyperspectral 
observations for large regions (in other words, lack of accessible satellite data).

9.2  COMPLEXITIES OF FOREST ECOSYSTEMS

Many factors affect the reflectance of all vegetation and confound remote sensing analysis. These 
include phenology, insolation, illumination geometry, soil characteristics, the nutrient regime, 
hydrology, and spectral similarities between many species. In fact, it has been demonstrated that the 
inherent within-species variability in reflectance, combined with spectral similarities across species, 
has made some species indistinguishable using reflectance alone (Hoffbeck and Landgrebe, 1996). 
Analysis of forest ecosystems is further confounded by highly variable three-dimensional structures, 
particularly in mixed-wood canopies (Figure 9.2). Forests often have complex horizontal and vertical 
species mixtures (causing layering in the canopy), complex canopy architecture, variable height and 
biomass, and within- and across-species variability in leaf area and in foliar biochemistry. Variability 
in leaf morphology and foliar biochemistry has also been demonstrated within a single canopy, 
particularly between sunlit leaves near the top of the canopy and shaded leaves below (Gholz et al., 
1991; Vose et al., 1994; Demerez et al., 1999; O’Neil et al., 2002). Complex canopy architecture, 
particularly the size and location of gaps within the canopy, also influences the light regime (Hardy 
et al., 2004) and can influence the rate of photosynthesis and absorption of light (Todd et al., 2003; 
Thomas et al., 2006a).

When analyzing remote sensing data, the inherent heterogeneity of a forest ecosystem can be 
further magnified by the pixel resolution of the sensor. If the size of the pixel is greater than the 
size of a single tree canopy, the reflectance signal may contain mixed effects of shadow, nonleaf 
reflectance, or species mixtures, for example (Woodcock and Strahler, 1987; St-Onge and Cavayas, 

FIGURE 9.1  Ecosystem, economic, and cultural services of forests.
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1995; Curran and Atkinson, 1999; Treitz and Howarth, 2000; Treitz, 2001). This has resulted in 
considerable research efforts into canopy reflectance modeling in an attempt to quantify or remove 
some of the nonleaf reflectance from signals. Of particular relevance is the body of research in 
geometric modeling, which assumes that a forest is comprised of multiple objects with quantifiable 
dimensions, shapes, and arrangements. The simplest of these models, originally developed for crop 
canopies, are designed to simulate the effect of shadow on canopy reflectance, where the fractions 
of vegetation, soil, and their shadowed components are quantified (e.g., Jahnke and Lawrence, 1965; 
Terjung and Louie, 1972; Jackson et al., 1979).

More complex models combine canopy structural geometry and the principles of radiative transfer 
within crowns, such as the geometric optical-radiative transfer model (GORT) (Li et al., 1995). 
These models, referred to as hybrid radiative transfer models, have been used to characterize canopy 
structure and foliar biochemistry in a variety of heterogeneous forest environments (Kuusk, 1998; 
Dawson et al., 1999; Demerez and Gastellu-Etchegorry, 2000; Hu et al., 2000; Gastellu-Etchegorry 
and Bruniquel-Pinel, 2001; Zarco-Tejada et al., 2001; Gemmell et al., 2002; Kimes et al., 2002; Kötz 
et al., 2004).

Another approach to directly characterizing/measuring/accounting for canopy heterogeneity is 
the fusion of light detection and ranging (lidar) with hyperspectral data, which has also been shown 
to provide better information on canopy structure (lidar), biochemistry (hyperspectral), and function 
(fused). Lidar has been shown to be the ideal technology for characterizing canopy structure, 
including height, crown shape, leaf area, biomass, and basal area (e.g., Næsset, 1997; Magnussen and 
Boudewyn, 1998; Means et al., 2000; Lim and Treitz, 2004; Hopkinson et al., 2005; Thomas et al., 
2006b). Unlike hyperspectral technology, lidar has been adopted in many places for operational use 
in forest inventories (e.g., Næesset, 2007; Woods et al., 2011). Fused lidar and hyperspectral data have 
improved our ability to characterize structure and biochemical variables (e.g., Koetz et al., 2006; 
Asner et al., 2007, 2011, 2015; Thomas et al., 2008) and have yielded substantial information about 
species, ecosystem biodiversity, and function (Varga and Asner, 2008; Colgan et al., 2012; Alonzo 
et al., 2014; Asner et al., 2017).

9.3 � FOREST MANAGEMENT APPLICATIONS OF HYPERSPECTRAL 
REMOTE SENSING

A number of applications for hyperspectral remote sensing can directly benefit forest management 
programs that have national and local implementations. These include, but are not limited to, 

(a) (b)

FIGURE 9.2  Complex forest canopy architecture. (a) Evidence of variable species, canopy height, and 
layering in a boreal mixed-wood forest. (b) Below-canopy variability of a boreal mixed-wood forest.
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information to supplement forest inventories (e.g., species and biophysical variables), improved 
estimation of biomass and carbon (of interest for a variety of purposes, including climate modeling), 
and mapping of wildfire fuels for forest fire risk detection.

9.3.1  Forest Inventories

Forest inventories involve a systematic collection of data about forest stands that are used for a 
variety of local and national purposes. Many countries have their own well-developed and long-
standing system of standardized data collection, which is usually very manually intensive. For 
example, in the United States, the Forest Inventory and Analysis national program has been run 
by the U.S. Department of Agriculture Forest Service since 1930. Finland has a National Forest 
Inventory program that has been operating since 1921. Although the specific methods of data 
collection vary by country, most involve a systematic sampling of trees to attain representative data 
to characterize a given forest stand. At minimum, this includes species, height, and diameter at 
breast height (DBH). From these, stand basal area can be calculated and allometric equations can 
be used to model biomass, volume, and carbon (Table 9.1). At the stand level, some measurement 
is also usually made of stand age and quality. Despite the complexity of forest environments 
discussed earlier, hyperspectral remote sensing can provide information that benefits forest 
inventories, particularly for improved species classifications and mapping certain biophysical 
variables.

9.3.1.1  Forest Species Mapping (and Species Richness)
Numerous authors have demonstrated the potential of hyperspectral remote sensing to improve 
species mapping. A number of authors have used hyperspectral data and indices known to be related 
to foliar pigments to discriminate between canopy species across landscapes (Wessman et al., 1988; 
Fuentes et al., 2001; Clark et al., 2003; Kokaly et al., 2003; Townsend et al., 2003; Plourde et al., 
2007). Others have developed techniques to use fused lidar and hyperspectral data for species 
mapping, which enables the spectral and structural characteristics of canopies to be examined 
concurrently (Asner et al., 2008a,b; Thomas et al., 2009).

TABLE 9.1
Selected Forest Inventory Variables That Have Been Mapped with Remote Sensing

Forest Characteristic Definition Citation

Mean dominant height (m) Mean height of 100 largest trees 
in a hectare

Brack and Marshall (1998), Garcia (1998)

Quadratic mean diameter at 
breast height (cm)

DBHi

n

2∑ Curtis and Marshall (2000)

Total above ground biomass 
(Mg/ha)

Calculated with allometric model 
of the form b × DBH2 × height

Alemdag (1983, 1984)

Crown closure (%) Ground covered by tree crowns 
when viewed from above

Avery and Burkhart (2002)

Total crown projected area 
(m2/m2)

π∑ ( )crown width

plot area

2 Avery and Burkhart (2002), Thomas et al. 
(2006a,b)

Basal area (m2/ha) π
40 000

2

,

DBH

plot area

i∑ Avery and Burkhart (2002)

Stem density (#/ha) Number of trees per hectare Niemann and Goodenough (2003)
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Asner et al. (2008a,b) made significant contributions toward developing more robust techniques 
for species mapping using a combination of hyperspectral and lidar data. They developed techniques 
to identify invasive species in Hawaiian forests, with the hope of eventually being able to map 
forest spread over time. Their approach, which builds upon previous work by Blackburn (2002), 
is to develop masks of sunlit tree crowns at predetermined heights that are clearly visible to an 
airborne or satellite sensor, thereby eliminating the confounding effect of gaps, shadows, and canopy 
architecture. Superimposing this mask on a hyperspectral image, Asner et al. then used a two-stage 
spectral mixture analysis approach to determine (1) the fraction of live and dead canopy within the 
sunlit areas and (2) the fraction of individual species within the sunlit crown.

There have also been numerous studies in which the spectral reflectance of the hyperspectral 
data has been matched directly to the species of interest. Spectral libraries have been developed 
for many species, under a variety of phenological conditions. This has been done at the leaf scale, 
using a portable handheld spectroradiometer (Clark et al., 2005), and at the canopy scale, by locating 
pure pixels (i.e., pixels that contain only one species, also referred to as an endmember) within a 
hyperspectral image (Kokaly et al., 2003) (Figure 9.3).

Spectral matching algorithms, such as the Spectral Angle Mapper (SAM), can be used to match 
spectral patterns of pixels in an image to endmembers by determining the cosine of the angle in 
spectral space, where a low angle implies a close match (Buddenbaum et al., 2005) (Figure 9.4). This 
approach assumes that the spectral response in a pixel is pure, and it tends to work better at higher 
spatial resolutions where there is less mixture of species within a pixel or for broader classes that 
include multiple species with a similar spectral response. In cases where there is a known mixture 
of desired classes within pixels, spectral mixture analysis has been used to quantify the fraction of 
each species within pixels (Darvishefat et al., 2002).

In recent years, research has emerged that embraces the complexity of heterogeneous forest or other 
ecosystems as a characteristic that informs us of its biodiversity. The “spectral diversity” or “spectral 
variation” hypothesis argues that biodiversity should be correlated with spectral heterogeneity, and 
numerous authors have supported this for a range of different ecosystem types (Carlson et al., 2007; 
Rocchini et al., 2010; Féret and Asner, 2014; Warren et al., 2014; Heumann et al., 2015). Asner et al. 
(2017) have used hyperspectral maps of canopy biochemistry and leaf traits to model functional 
diversity in the Amazon rainforest. Further, the Carnegie Airborne Observatory is developing a 

FIGURE 9.3  Spectral signatures for selected boreal and temperate forest species. The boreal species 
signatures were acquired from a CASI hyperspectral sensor with 56 bands from 498 to 916 nm. The temperate 
forest signatures were acquired with the European Space Agency’s HyPlant instrument, with 629 bands from 
380 to 2,537 nm.
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spectronomic database that links spectral signatures, canopy biochemistry, and phylogenetics for 
tropical forests (https://cao.carnegiescience.edu/spectranomics). Again, most of this biodiversity work 
is at the research level and has not yet been successfully implemented for real operational forest 
management scenarios. However, there are clear forest management applications for these approaches, 
particularly in the context of forest biodiversity conservation at global and regional scales.

9.3.1.2  Forest Biophysical Variables
Numerous forest biophysical variables are of interest for forest inventories, including leaf area index 
(LAI), crown closure or crown gaps, tree or canopy height, stem density, crown depth, biomass or 
volume, diameter at breast height (DBH), and amount of dead trees in a stand (Olthof and King, 
1998; Treitz and Howarth, 1999; Sampson, 2000). Although there has been considerable effort to 
monitor these variables using remote sensing, most of the work to date has been through the use of 
broadband sensors, such as Landsat, or through the use of active systems, such as synthetic aperture 
radar (SAR) and lidar. Research has generally followed three paths: (1) the use of broadband indices, 
such as the calculation of the normalized difference vegetation index (NDVI) for the prediction of 
LAI (e.g., Peterson et al., 1987; Herwitz et al., 1989; Spanner et al., 1990; Curran et al., 1992; Shippert 
et al., 1995; Chen and Cihlar, 1996; Green et al., 1997; White et al., 1997; Wang et al., 2005); (2) the 
analysis of spatial statistics, texture, or multivariate statistical techniques (e.g., Yuan et al., 1991; 
Hershey et al., 1998; Olthof and King, 1998; Davison et al., 1999; Phinn et al., 1999; Seed et al., 
1999; Pellikka et al., 2000); or (3) the use of active-sensor metrics to develop predictive regression 
models (e.g., Næsset, 1997; Magnussen and Boudewyn, 1998; Means et al., 2000; Lim and Treitz, 
2004; Hopkinson et al., 2005; Thomas et al., 2006b).

FIGURE 9.4  SAM classification of boreal forest using boreal spectral signatures shown in Figure 9.3 as 
endmembers.

https://cao.carnegiescience.edu/spectranomics
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Hyperspectral research in this area has generally focused either on the use of narrowband indices, 
partial regression analysis, spectral mixture analysis, or canopy reflectance modeling to predict 
biophysical variables of interest. In the case of canopy reflectance modeling, the models predict 
reflectance based on canopy characteristics (e.g., foliar biochemistry, water, leaf morphology, and 
transmittance characteristics), solar-target-sensor geometry, and soil information. For example, Chen 
et al. (1999) used the canopy reflectance model 4-Scale to improve hyperspectral predictions of 
LAI and crown closure in a boreal forest ecosystem. When reflectance is the input, these models 
can be inverted to predict the desired structural information (referred to as inversion modeling). 
This was demonstrated in a coniferous ecosystem for LAI, canopy cover, water content, and dry 
material (Schaepman et al., 2005). Fused lidar and hyperspectral data have also been valuable for 
the prediction of canopy chemistry and leaf mass in numerous environments. For example, Gökkaya 
et al. (2015a,b) used fused hyperspectral and lidar data to examine canopy nitrogen (N), phosphorus 
(P), potassium (K), calcium (Ca), and magnesium (Mg) in a boreal environment, and Asner et al. 
(2016, 2017) mapped foliar N, P, Ca, phenols, lignin, water content, and leaf mass area (LMA) in 
the Andes-Amazon region with a fused lidar-hyperspectral approach.

Although there is a known sensitivity of hyperspectral reflectance and indices to structure and leaf 
area/morphology, the use of hyperspectral data by themselves to predict forest biophysical variables 
has been relatively limited, especially now that many platforms fuse lidar with hyperspectral data. 
Notable exceptions to this include Gong et al. (2003a), Lee et al. (2004), and Schlerf et al. (2005) 
for LAI or volume prediction. Thomas et al. (2011) used hyperspectral indices to predict LAI and 
clumping and found strong relationships between the derivative chlorophyll index (DCI) and clumping 
(Table 9.2). The DCI is calculated as D705/D722, where D  =  derivative of reflectance (Zarco-Tejada 
et al., 2002). Clumping is a variable that describes nonrandom foliage distribution within canopies 
(Chen et al., 2005) and can be thought of as a descriptor of canopy gap distribution. It partially 
drives processes that are strongly affected by the canopy light regime, such as photosynthesis, 
evapotranspiration, and the distribution of canopy foliar nutrients (Stenberg, 1998; Chen et al., 1999; 
Alt et al., 2000; Dreccer et al., 2000; Bernier et al., 2001; Palmroth and Hari, 2001; Baldocchi 
et al., 2002; Liu et al., 2002; Thomas et al., 2006a, 2009). Thomas et al. (2011) demonstrated strong 
relationships between clumping and several canopy nutrients, including N, chlorophyll, carotenoids, 
P, and Mg.

The work of Schlerf et al. (2005) and Thomas et al. (2011) suggests that some hyperspectral 
indices may provide direct insight into volume, canopy height, aboveground biomass/carbon, and 

TABLE 9.2
Logarithmic Bivariate Models to Predict Field Metrics from 
the Mean Derivative Chlorophyll Index

Field Metric versus DCI (n = 24) r2 radj
2 RMSE Plot Mean

Mean dominant height (m) 0.59 0.57 2.16 20.4

Quadratic diameter at breast height (cm) 0.55a 0.53 3.51 19.3

Total aboveground biomass (mg/ha) 0.63 0.61 1740 4426.5

Crown closure (%) 0.35 0.32 10.8 36.6

Total projected crown area (m2/m2) 0.75a 0.74 0.48 1.19

Basal area (m2/ha) 0.64a 0.62 0.08 26.9

Leaf area index 0.63 0.61 0.18 2.3

Stem density (#/ha) No significant relationship.

Note:	 All models are significant.
a	 Residuals not normally distributed.
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crown closure. Expanding upon the work of Thomas et al. (2011), the relationship between airborne 
hyperspectral indices and plot-based stand variables was assessed using simple bivariate regression. 
For most variables, the relationship was shown to be logarithmic (Figure 9.5) and significant, with 
50%–75% of the variance explained by the models (Table 9.1). As expected, given the relationship 
to clumping, crown closure was well predicted by the DCI. These results suggest that hyperspectral 
data are currently being underutilized for the purpose of stand inventories and may offer more 
than just species or foliar biochemistry. An example of the spatial distribution of DCI can be seen 
in Figure 9.6a. Application of the logarithmic bivariate model for mean dominant height (Figure 
9.6b) shows that the spatial distribution is related to the species distribution at the site (refer back 
to Figure 9.4). Most of the tall trees are trembling aspen, and the large patches of lower heights 
correspond to patches of black spruce at the site.

Goodenough et al. (2006, 2008) demonstrated the ability to map biomass and carbon from Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) data using partial least-squares regression analysis 
on reflectance data and the first and second derivatives of reflectance (r2  =  0.82). In their work, they 
also compared the performance of two airborne hyperspectral sensors with significantly different 
signal-to-noise ratios. The AVIRIS sensor, designed and operated by NASA, is known to produce 
high-quality images with a high signal-to-noise ratio. These data were compared to imagery from 
the Airborne Imaging Spectrometer for Applications (AISA) sensor, which had very comparable 
signal-to-noise ratios in the visible and near-infrared wavelengths, but significantly lower values 
in the shortwave infrared (SWIR) wavelengths: 3.43 versus 4.50 relative signal-to-noise values for 
AISA SWIR and AVIRIS SWIR, respectively (Goodenough et al., 2008). They attribute the superior 
performance of AVIRIS to the higher signal-to-noise ratio, as well as to solar geometry effects in the 
AISA data. Their findings highlight one of the limiting factors on the use of hyperspectral imaging 
for operational forest management applications. That is, significant preprocessing of hyperspectral 
data is necessary to derive high-quality reflectance data, which requires considerable user expertise.

9.3.2 C arbon Exchange

Forests are the largest terrestrial carbon stores and make a significant contribution to the global carbon 
cycle, which is widely felt to play a fundamental role in regulating the climate of the Earth. In North 
America, the combined boreal and temperate forests cover a significant portion of our landscape and, 
in addition to the major role they play in the carbon cycle, also have a significant influence on the 
water and energy balance, animal habitats, and the economic functioning of many regions. Despite 
the importance of our forests in climate change and other processes, our understanding of and ability 

FIGURE 9.5  Logarithmic relationship between hyperspectral DCI and mean dominant height. Regression 
statistics shown in Table 9.2.
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to model and predict the carbon cycle remains weak in some areas, and there are numerous ongoing 
research efforts to improve our understanding of forest carbon dynamics. Part of the challenge lies 
in the fact that carbon sequestration processes occur at many spatial and temporal scales and it is 
difficult to envision a measurement/modeling scheme that could adequately represent this variability.

Carbon cycling is often described in terms of net ecosystem productivity (NEP) or net primary 
productivity (NPP). NEP and NPP are fundamental ecological concepts that not only are critical to 
regional-, national-, and global-scale carbon budgets and climate models, but also indicate terrestrial 
land surface conditions and ecological processes (Ciais et al., 2005; Kashian et al., 2006; Bo et al., 
2007). Unfortunately, there are significant problems and inaccuracies with current global NEP and 
NPP models, often resulting in poor correlation between measured NEP at micrometeorological flux 
stations and national- or global-scale model predictions. A large number of national- and global-
scale carbon models calculate NPP from the fraction of photosynthetically active radiation absorbed 
by the canopy (fPAR) and a light use efficiency (LUE) term that is considered constant for a given 

(a)

(b)

FIGURE 9.6  (a) Spatial patterns of DCI across a boreal mixed-wood forest in northern Ontario, Canada.  
(b) Mean dominant height mapped using model described in Table 9.2 and Figure 9.5.
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vegetation type and is typically biome-specific (Running et al., 1999; Ahl et al., 2004). However, 
growing evidence suggests that LUE varies according to many factors across and within ecosystems, 
including ecosystem type, stand age, species composition, nutrient availability, and vegetation stress 
(e.g., Goetz and Prince, 1996, 1998; Medlyn, 1998; Turner et al., 2003a,b; Ahl et al., 2004; Drolet 
et al., 2005; Jenkins et al., 2007). To improve global terrestrial models of NEP, it is essential to 
develop a deeper understanding of the factors that control LUE.

Research at satellite and airborne scales suggest that hyperspectral remote sensing has much 
to offer for the improved accuracy of global carbon exchange models, though it is underutilized 
in this context. These data have a direct role to play in improved species mapping (e.g., Wessman 
et al., 1988; Fuentes et al., 2001; Clark et al., 2003; Kokaly et al., 2003; Townsend et al., 2003; 
Plourde et al., 2007; Asner et al., 2008a,b, 2017; Thomas et al., 2009), characterization of vegetation 
structure (e.g., Schlerf et  al., 2005; Thomas et al., 2011), quantification of aboveground carbon 
and biomass (e.g., Schlerf et al., 2005), mapping of fPAR and LUE (Thomas et al., 2009), nutrient 
availability (e.g., Zarco-Tejada et al., 2001, 2004; Gökkaya et al., 2015a,b; Asner et al., 2016, 2017), 
vegetation stress, vegetation water content, and wildfire regimes. As shown by many researchers, 
this is particularly true when such data are fused with other lidar data.

9.3.3 W ildfire Fuel

Another forest management application where hyperspectral remote sensing can make a direct 
contribution is the mapping of forest fire risk, particularly with regard to the type and quantity of fire 
fuel, which can affect the behavior and intensity of fires. This topic is attracting increasing attention 
and urgency, with observed increases in the frequency and intensity of fires due to climate change 
(Tymstra et al., 2007; Flannigan et al., 2009) and exurban encroachment into forested areas (Syphard 
et al., 2007a,b). There is an identified need for a better understanding of the spatial distribution of 
different wildfire fuel types and amounts, as well as areas that have been previously burned (Ustin 
et al., 2004; Jia et al., 2006; Varga and Asner, 2008).

Wildfire fuels include all dead or living vegetation that can be ignited (Miller, 2001). Their 
arrangement and availability, including the structure of the canopy itself, will determine whether 
the burn will be a ground-surface or crown fire (Miller, 2001; Cruz et al., 2003). Hyperspectral 
remote sensing can be used to map the spatial distribution of wildfire fuel properties, providing 
much-needed information on the type and arrangement of a fire, as well as the location and severity of 
previous burns. Most of the work in this area has focused on the use of narrowband vegetation indices 
or radiative transfer modeling to map fuel properties within the canopy. This may include canopy 
moisture content (Jacquemoud and Ustin, 2003; Li et al., 2005; Riano et al., 2005), amount of dry 
or senescent carbon or degree of fuel curing (Melillo et al., 1982; Fourty et al., 1996; Serrano et al., 
2002), canopy stress detection and foliar biochemistry (Ustin and Trabucco, 2000; Smith et al., 2003), 
and relative amount of photosynthetic versus nonphotosynthetic materials (Varga and Asner, 2008).

Another approach to fire fuel mapping follows the species classification work discussed earlier. 
Some researchers have collected the field reflectance spectra of a number of fuel attributes and used 
those spectra as endmembers (i.e., pure spectra). The researchers have attempted to quantify the 
relative fraction of endmembers at the subpixel level using spectral mixture analysis (e.g., Ustin 
et al., 2004; Green et al., 1998; Clark et al., 2003; Jia et al., 2006) and at the pure-pixel level using 
spectral matching algorithms (e.g., Jia et al., 2006).

Although fire fuel attribute mapping is really in the research phase, some attempts have been 
made to move toward operational capabilities in this area. To assist forest planners, ENVI, one of the 
software packages used to analyze hyperspectral data, has combined a number of vegetation indices 
that detect canopy water content, greenness, and dry carbon into a “Fire Fuel Tool,” which produces 
a map of relative fire risk based on a combination of these three attributes (RSI, 2009). The tool 
requires limited user expertise, both in its operation and interpretation of results, setting the stage 
for the adoption of the technique by users beyond the research community.
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In addition to wildfire fuel mapping, hyperspectral remote sensing has also been used as an 
input to fire behavioral models. Fire behavior is largely controlled by topography, weather, and the 
availability of fuel (Miller, 2001). Topography and weather are generally well known and accurately 
characterized across space and time. Fire behavior models range in complexity from simple empirical 
approaches (Andrews, 1986; Finney, 1998) to complex physics models based upon thermodynamics 
and the conservation of mass, momentum, and energy (e.g., Linn, 1997; Dupuy and Larini, 1999; 
Porterie et al., 2000; Grishin, 2001a,b). For many of these models, fire fuel attributes are averaged 
over large areas or broad ecological types. With advances in the ability to map complex wildfire fuel 
characteristics from hyperspectral data, fuel maps can now be directly input into some models, for 
example FIRETEC (Linn, 1997), to provide more accurate simulations of fire behavior (e.g., Bossert 
et al., 2000; Dennison et al., 2000).

9.4  POTENTIAL FUTURE APPLICATIONS

9.4.1  Fusion with Lidar

It is clear that a highly valuable form of data fusion is the integration of lidar data with hyperspectral 
data. Such integration can provide insight into both the structure and function of a forest environment 
and serve as an indicator of many types of risks and processes. This type of data fusion has 
the potential to advance research in numerous areas, including the characterization of height, 
aboveground biomass and carbon, bidirectional reflectance modeling, species mapping, geometric 
optical and radiative transfer modeling, ecosystem modeling, prediction of canopy biochemistry and 
photosynthesis parameters, and modeling of canopy photosynthesis and carbon exchange.

As noted in Section 9.2, the fusion of lidar with hyperspectral data has improved our ability to 
characterize structure and biochemical variables (e.g., Koetz et al., 2006; Asner et al., 2007, 2011, 
2015; Thomas et al., 2008). Although lidar is typically used by itself to characterize forest height 
and biomass, some work has shown that the fusion of hyperspectral reflectance with lidar data can 
also improve estimates of aboveground biomass (Laurin et al., 2014). This has implications for future 
work in the modeling of carbon stocks and fluxes, particularly in light of emerging international 
programs such as Reducing Emissions from Deforestation and Forest Degradation (REDD) and 
REDD+ (http://www.fao.org/redd/en/), which provide financial incentives to reduce deforestation 
and forest degradation in tropical forests. The fusion of lidar and hyperspectral data may allow for 
significant improvements in our ability to accurately monitor forest biomass and carbon, which could 
help satisfy the measurement, reporting, and verification (MRV) requirements of REDD+.

Thomas et al. (2008) used fused lidar and hyperspectral data to scale estimates of chlorophyll from 
leaf to canopy, to improve species classifications, and to model the spatial variability of the fraction 
of photosynthetically active radiation absorbed by the canopy (fPAR) for a boreal mixed-wood 
ecosystem (Thomas et al., 2006a). These data have been incorporated into models of photosynthesis 
and carbon exchange that, in conjunction with meteorological data collected continuously at a flux 
tower site, allow for the analysis of variability within the footprint of the flux tower (Thomas et al., 
2009). Thus, they provide insight into the importance of canopy architecture on canopy function.

The fusion of lidar and hyperspectral data can also be used to model the vertical light profile of a 
canopy and its relationship to foliar biochemistry and photosynthesis parameters through the use of 
GORTs. A number of studies at the leaf scale have successfully predicted foliar biochemistry based 
on leaf reflectance and transmittance using leaf optical models (e.g., PROSPECT) (Jacquemoud 
et al., 1996; Baret and Fourty, 1997; Fourty and Baret, 1998). At the canopy scale, radiative transfer 
(RT) models are used to model the interaction of solar radiation with vegetation elements and can 
describe the spectral reflectance of a forest stand. The simplest of these models assume that canopies 
are homogeneous and can be described by simple geometric shapes (e.g., SAIL).

More complex models, such as GORT models, attempt to represent canopy geometry by modeling 
gaps and shadows within the canopy (e.g., GeoSAIL, GORT). By coupling radiative transfer models 

http://www.fao.org/redd/en/
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with leaf optical models (e.g., PROSPECT-SAIL, PROSPECT-GeoSAIL) and running backwards 
simulations, numerous researchers have predicted canopy biochemistry from remotely sensed 
reflectance data (Jacquemoud et al., 2000; Zarco-Tejada et al., 2004; Malenovský et al., 2006). 
Unfortunately, due to the complexity of forest canopy architecture and the confounding factors 
highlighted earlier, validation of these inversion model predictions with leaf samples has been 
challenging. Despite that, significant advances have been made incorporating detailed information 
about the vertical and horizontal distribution of canopy available from airborne lidar data directly 
to the geometric-optical RT models. Some work has been done to use radiative transfer models to 
simulate lidar waveforms and to predict tree height, spacing, gap distribution, foliar chlorophyll, and 
water content from lidar data (e.g., Peterson et al., 2001; Kotchenova et al., 2003; Koetz et al., 2006, 
2007). More recently, the Discrete Anisotropic Radiative Transfer (DART 5) model has been applied 
with lidar and hyperspectral data to natural and urban landscapes (Gastellu-Etchegorry et al., 2015), 
and this remains an exciting area for future research.

9.4.2 T he Need for Repeated Global Measurements

One of the major limitations to the use of hyperspectral remote sensing in a forest management context 
is the lack of large-area measurements taken with consistent sensor settings and repeated over time, 
such as would be possible with satellite-based hyperspectral sensors (Table 9.3). This has resulted in 
work being done from airborne platforms, in localized contexts, primarily for scientific objectives.

Satellite-based hyperspectral remote sensing offers the potential for more accurate derivations 
of geochemical, biochemical, and biophysical variables that drive regional and global ecosystem 
process models. For instance, satellite hyperspectral data could be used to improve the accuracy of 
maps of species (or communities of species), to derive foliar pigment and nutrient concentrations for 
large areas, and to estimate LAI, fPAR, and parameters of photosynthesis. Satellite hyperspectral 
data, acquired continuously, would provide this information across landscapes continually altered 
by disturbance and recovery processes, land-use management and change, and climate change. This 
would improve our understanding of biogeochemical cycling and the impact of land management 
decisions on these processes.

Although several satellite-based hyperspectral sensors have been proposed in the past two 
decades, very few sensors have been launched, and none designed to provide global mapping. NASA’s 
Hyperion sensor provided 220 bands of data across visible, near-infrared, and SWIR wavelengths 
(i.e., 0.4–2.5 µm) at 30 m resolution (Folkman et al., 2001). Hyperion was part of the Earth Observing 
(EO-1) mission, originally intended to validate several instrument and spacecraft bus technologies. 
The satellite was launched in 2000, with a design life of 18 months. It ran out of fuel in 2017. 
Hyperspectral data were not collected continuously from this sensor but were acquired according to 
user requests. This made large-area forest management applications challenging, because a single 
scene is relatively small (i.e., 7.7 km wide by 42 or 185 km long), and the dates of acquisition could 
conflict with other users, in which case acquisitions would be prioritized. The other satellite-based 

TABLE 9.3
Selected Current and Future Hyperspectral Satellite Missions

Sensor Agency/Nation Spectral Range (Bands) Spatial Resolution (m) Launch (Lifespan)

Hyperion NASA 400–2500 nm (220 bands) 30 2000 (16+ years)

CHRIS ESA 400–1050 nm (19 bands)
Reprogrammable (63 bands)

17
34

2001 (still operating)

EnMap Germany 420–2450 nm 30 2019 (5+ years)

Hyspiri NASA 380–2500 nm 60 In study stage

PRISMA Italy 400–2500 nm (240 bands) 30 2018 (5 years)
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option is the CHRIS sensor on the European Space Agency’s Proba-1 mission. CHRIS has a higher 
spatial resolution (17 m) but fewer bands (up to 62). It was launched in 2001, with a 2-year lifespan, 
and is still in operation (ESA, 2017).

Research success at the satellite scale lends credence to the potential use of satellite hyperspectral 
for forest management in ways that are simply not possible with the existing suite of technologies. In 
forest contexts, Hyperion has been used for improved mapping of forest species (Goodenough et al., 
2003), species communities (Thenkabail et al., 2004), various invasive species (Asner et al., 2006), 
crown closure and LAI (Gong et al., 2003a,b; Pu et al., 2005), drought stress (Asner et al., 2004), 
biomass and carbon mapping (Asner et al., 2004; Thenkabail et al., 2004), and canopy nitrogen (Smith 
et al., 2003). Similarly, CHRIS has been used to map forest successional stages (Galvão et al., 2009), 
canopy structure and heterogeneity (Koetz et al., 2005), chlorophyll fluorescence (Raddi et al., 2005), 
foliar biochemistry and water content (Kneubühler et al., 2008), and wildfires (Valencia et al., 2005).

Several satellite-based hyperspectral sensors are tentatively being planned in different countries, 
but these missions often experience launch delays or are designed to demonstrate the technology 
involved rather than actual operation. None of the sensors described in the previous edition of this 
book (EnMap, Hyspiri, and PRISMA from Germany, the United States, and Italy, respectively) 
were launched according to original plans. Germany does plan to launch the EnMAP mission by 
2019 (2014 in the earlier edition of this book) (EnMap, 2017), which, if the launch is successful, 
will provide repeated global coverage, enabling forest planners to study the impacts of management 
decisions on the function of biogeochemical cycling in a way never before possible.

9.4.3  Hyperspectral Sensors on Unmanned Aerial Vehicles

Hyperspectral sensors have been successfully miniaturized for unmanned aerial vehicles (UAVs), 
but they have not been widely used in forests to date. There are certain forest applications for which 
hyperspectral UAVs are ideally suited. These include multitemporal mapping over constrained areas, 
such as monitoring water stress over a citrus orchard (Zarco-Tejada et al., 2012; Gonzalez-Dugo 
et al., 2013), or monitoring stress and damage events in targeted areas, such as bark beetle damage at 
the tree level (Näsi et al., 2015) or stress in olive orchards (Calderón et al., 2013). UAV technologies 
are evolving, as are the regulatory frameworks for their operation (which vary by country). It is likely 
that this area will see significant advances over the next 5–10 years.

9.5  CONCLUSIONS

Although the applications for hyperspectral remote sensing in a forest management context are 
numerous, the technology is currently being underutilized for this purpose. It is evident that 
hyperspectral imaging is part of the solution to global monitoring and predictions for biogeochemical 
cycling, forest biophysical variables, and forest physiology and function. Many successes have been 
demonstrated at the laboratory and local scales, but consistent, repeatable results are necessary 
at national and global scales (i.e., through the use of satellite-based technologies) before the full 
potential of this technology can be realized for forest management and policy. With rising social, 
political, and scientific concerns surrounding land-use change, global forest loss, forest degradation, 
and the role of the world’s forests in the global carbon cycle and climate, satellite-based hyperspectral 
data will likely become a critical tool for informing global modeling efforts and enhancing our 
understanding of the function of remote boreal and tropical ecosystems.
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10 Characterization of 
Pastures Using Field and 
Imaging Spectrometers

Izaya Numata

10.1  INTRODUCTION

Livestock grazing occupies 26% of the noniced terrestrial surface of the planet and is distributed 
across diverse ecosystems [1]. This land-cover type is of interest in terms of feed availability for 
livestock production and plays an important role in regional ecosystem functioning. It is critical to be 
able to measure accurately pasture biophysical and biochemical properties and their changes under 
human-environment interactions in order to provide information relevant to management practices. 
Remote sensing has played an important role in monitoring pasture dynamics and providing estimates 
of pasture properties using multispectral sensors. From the pasture management perspective, one of the 
ultimate goals for the use of remote sensing would be the quantification of biophysical and biochemical 
properties of pasture based solely on remotely sensed data, data that are available at low cost and that 
do not require time-consuming and costly field sampling and subsequent laboratory analysis. Near-
infrared spectroscopy (NIRS) has been used as a laboratory method for the rapid evaluation of chemical 
composition and widely adopted to estimate forage quality parameters [2]. Despite the contributions of 
previous studies based upon multispectral sensors, the accuracy of broadband remote sensing data for 
grass estimation is still limited due to their spatial and spectral resolution [3].
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In the past decade, hyperspectral remote sensing of pasture has made significant progress 
in the detection and quantification of pasture biophysical (e.g., biomass) and biochemical (e.g., 
nutrients and water) variables by identifying critical wavebands and exploiting new absorption 
features. Despite these efforts, an integrated and comprehensive knowledge of hyperspectral 
remote sensing of pasture is needed. This chapter describes the state of the art of hyperspectral 
remote sensing of pasturelands, highlighting recent advances made using field-based and imaging 
spectrometers.

10.2 � FIELD AND IMAGING SPECTROMETERS FOR 
PASTURE CHARACTERIZATION

Laboratory or in situ spectrometer measurements are necessary steps in identifying basic spectral 
characteristics of different vegetation species and establish relationships between vegetation 
attributes and hyperspectral measures [4,5]. A number of studies on pasture/grass characterization 
have been conducted using field spectrometers for a wide range of focuses such as the estimates 
of biophysical [biomass and leaf area index (LAI)] and biochemical concentrations (pigments, 
nutrients, and water content), fractional cover, litter-based estimates to pasture degradation, and 
more [6–11]. As most grasslands and pastures are composed of vegetation 1 m or less in height, 
field-based analysis of pasture at the canopy level via a field spectrometer is a practical way to 
assess relationships between field data and remote sensing measurements. Moreover, sources of 
errors and their impacts on analyzed relationships can be assessed easily at field levels. Field-
based experiments are used for broader spatial scales using imaging spectrometers or used in the 
inversion of radioactive transfer (RT) models to estimate vegetation properties. Reflectance spectra 
from distinct grass species or vegetation materials measured in the field can be stored in spectral 
libraries and used as reference or ideal spectra to calibrate imaging spectrometers and map distinct 
species at larger spatial scales.

While laboratory analysis is performed under controlled conditions, vegetation spectra measured 
in situ are governed by many factors, such as canopy vertical and spatial structure, the presence of 
live and dead materials, and the diversity of background (discussed in the next section). Thus, to have 
good relationships between grass biophysical and biochemical parameters and field spectra, reliable 
measurements of both field grass and field spectrometers should be taken.

Imaging spectroscopy provides biophysical and biochemical measurements of landscapes. 
Compared to field experiments for pasture, a small number of studies still use imaging spectrometers 
for pasture characterization. Currently, several airborne [e.g., Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS), Hydice, HyMap, CASI) and satellite (e.g., Hyperion) imaging spectrometers 
with different spectral and spatial resolutions are available. One of the goals in using hyperspectral 
remote sensing for pastures is to extract biophysical and biochemical attributes (biomass, LAI, 
biochemical concentrations) and detect their spatial distributions through quantitative analytical 
methods [9,12,13]. Another goal is to improve discrimination of grasslands from other land-cover 
types that are spectrally ambiguous in the broad spectral band domain. For example, discrimination 
between dry pasture and bare soil and between green pasture and secondary forest is a real challenge 
for land-cover mapping in the Amazon using broadband sensors like Landsat [14,15]. Spatial patterns 
of pasture characteristics at landscape scales provide relevant information for land owners to make 
decisions on management strategies.

10.3 � CONTROLLING FACTORS FOR BIOPHYSICAL AND 
BIOCHEMICAL CHARACTERISTICS OF PASTURE

Several factors alter grass biophysical and biochemical characteristics, which also directly affect 
grass spectral reflectance signatures (Table 10.1). Hill [16] lists several grass physical characteristics 
important for remote sensing, including (a) height and variation in height, (b) proportion of bare 
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soil, (c) leaf area, (d) leaf orientation or leaf angle distribution, (e) density of reflective or absorptive 
structures, (f) proportion of live and dead materials, and (g) spatial arrangement of structures. In 
addition, natural and human-related factors such as climate, soils, species composition in pastureland, 
variable grazing pressures, and age of grass all influence grass biophysical and biochemical 
properties. Some of the issues will be highlighted in what follows.

10.3.1 S tructure

Asner [6] and Asner and Heidebrecht [17] provide excellent summaries of vegetation spectral 
properties and their changes as a function of vegetation structure. The authors emphasized the 
complexity of these factors by using an inverse radiative model. Grass structure influences interactions 
between radiation and grass canopy and the responses of radiation (reflected or scattered) to remote 
sensors. Vertical structure and the spatial arrangement of structures of grass vary according to grass 
species. Figures 10.1 and 10.2 illustrate structures of two predominant grass species used in Brazilian 
Amazon pastures.

Brachiaria brizantha, an African grass species widely distributed in the Brazilian Amazon, 
presents a highly heterogeneous surface. This species has stout erect culms and forms bunched 
crowns. This creates a tufted structure that does not cover the soil surface evenly, which results 
in the significant effect of soil background on vegetation reflectance (Figures 10.1a, 10.2a, b). 
Brachiaria decumbens is low growing and more decumbent and forms a dense cover, creating a 

(a)

(b)

FIGURE 10.1  Grass structure: (a) Brachiaria brizantha; (b) Brachiaria decumbens.

TABLE 10.1
Physical and Chemical Features That Influence the Interaction between Grassland 
Vegetation and Radiation Sources for Remote Sensing

Physical and chemical features

Grass height and variation in height

Soil coverage

Leaf area

Leaf orientation or leaf angle distribution

Density of reflective and absorptive structures

Proportion of senescent or dead materials

Moisture content

Pigmentation

Spatial arrangement of structures

Variability of all of the preceding due to species diversity and management

Source:	 Hill, M.J. 2004. In S.L. Ustin (Ed.), Manual of Remote Sensing Volume 4. Remote Sensing for Natural Resource 
Management and Environmental Monitoring (pp. 449–530). Hoboken, NJ: John Wiley & Sons [16].
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more homogeneous canopy surface (Figures 10.1b, 10.2c,d). In pastures, grass structures are heavily 
altered by grazing [14]. Average reflectance signatures and the spectral variability of the two species 
are strongly related to their structural differences especially at the in situ scale (Figure 10.2c,d). 
Numata et al. [14] observed that the variation in canopy structure within the field of view of a field 
spectrometer contributes to the spectral variability of canopy reflectance, even for those areas with 
the same amount of biomass. In the case of these two species, the heterogeneous and complex canopy 
structure of B. brizantha makes biomass estimation more challenging [11].

(a) (b)

(c) (d)

(e) (f)

FIGURE 10.2  (a) Canopy of B. brizantha; (b) overview of B. brizantha; (c) canopy of B. decumbens; 
(d) overview of B. decumbens; (e) averaged reflectance of B. brizantha and B. decumbent; (f) standard deviation 
from averaged reflectance of two species (number of sample spectra = 69).
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10.3.2  Foliar Chemical Composition

Chemical constituents such as chlorophyll a and b, protein, lignin, cellulose, water, and others 
influence vegetation reflectance and are related to pasture quality (Figure 10.3). The absorption 
features found in the visible spectrum (430–660 nm) such as chlorophyll absorptions are correlated 
with major nutrients important for animal production, while the shortwave infrared (SWIR) 
region (1700–2400 nm) is highly characterized by lignin-cellulose absorptions [4]. Green and live 
leaf reflectance is determined primarily by water, pigment, and carbon content, while dry leaf 
reflectance shows strong signals of lignin and cellulose content (Figure 10.3). In green leaf, the 
absorption features of nitrogen (N), phosphorus (P), lignin, cellulose, and other constituents in 
NIR and SWIR are obscured by leaf water content [18–20]. These chemical constituents determine 
forage quality and shape characteristic absorption features in the reflectance spectra of forage plants. 
These spectral characteristics associated with chemical composition indicate grass physiological 
conditions and vigor and provide information on nutrient status important for animal productivity. 
Thus, absorption features and their shapes (area and depth) are used to estimate the concentrations 
of chemical compounds as well as to distinguish grass from different land covers [21] or different 
grass species [22].

10.3.3 N onphotosynthetic Vegetation and Background Effects

Most studies of grass/pasture characterization using remote sensing emphasize only green materials 
to estimate biomass or chemical elements. However, nongreen or nonphotosynthetic vegetation 
(NPV), referring to senesced or dead grass and litter, is an important component in pasture especially 

FIGURE 10.3  Reflectance spectra with characteristic absorption features associated with plant chemical 
constituents for live and dry grass. (Adapted from Hill, M.J. 2004. In S.L. Ustin (Ed.), Manual of Remote 
Sensing Volume 4. Remote Sensing for Natural Resource Management and Environmental Monitoring (pp. 
449–530). Hoboken, NJ: John Wiley & Sons [16].)
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in dry regions or in dry weather conditions and plays a critical role in shaping overall grass spectral 
reflectance. NPV has its greatest effect in the SWIR region between 2000 and 2400 nm, mainly 
in connection with the concentration of lignin-cellulose in dry plant residue, as discussed earlier 
(Figure 10.3). Variation in NPV has a significant impact on vegetation indices (VIs) such as the 
normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI) [23]. 
Changes in substrate reflectance beneath the grass canopy, including litter on the surface and exposed 
soil, affect the reflectance of grass canopies with lower vegetation coverage. Litter and soil have very 
high spectral signatures throughout the range 400–2500 nm, and their signals can dominate the 
reflectance of grass canopies of low coverage [24,25]. Neglecting the effects of background such as 
litter and soil fractions in grassland may cause erroneous estimation of biophysical characteristics 
such as grass biomass through remotely sensed data. Hyperspectral data have the potential to detect 
vegetation covers, green vegetation NPV, and soil cover, as well as their combinations [21,24,26]. 
Monitoring of changes in these covers can provide better characterization of grass ecosystem change.

10.4  HYPERSPECTRAL APPROACHES TO PASTURE CHARACTERIZATION

A large number of spectral bands in hyperspectral systems provide an opportunity to develop a 
range of new measurements or refine conventional approaches to the estimation of grass properties 
(Table 10.2). In what follows, some typical approaches important for pasture/grass characterization 
are presented.

10.4.1  Vegetation Indices

VIs, such as simple ratios and the NDVI, with two or more bands are widely used to estimate the 
biophysical and biochemical properties of vegetation. These VIs explore the contrast between two 

TABLE 10.2
Key Spectral Bands Related to Vegetation Properties and Forage Quality

Band (nm) Vegetation Parameters References

430 Chlorophyll a, nitrogen Knox et al. [82]

460 Chlorophyll b, nitrogen

470 Total plant pigment concentration Blackburn [83]

530 Chlorophyll-a absorption Gamon et al. [84]

660 Nitrogen Carter [85]

695 Crude Protein Punagalli et al. [64]

700 Total chlorophyll, nitrogen Carter [85]

720 Total chlorophyll, leaf mass Horler et al. [86]

775 Crude protein Kawamura et al. [47]

800 Lignin Punagalli et al. [64]

820 Leaf mass, leaf area index, Lipid Carter [85], Punagalli et al. [64]

970 Phosphorus Knox et al. [82]

990 Crude protein Punagalli et al. [64]

1540 Cellulose, vegetation water content Carter [85]

1740 Crude protein

2060 Protein, nitrogen Carter [85])

2270 Crude protein

2280 Cellulose, sugar, starch, leaf mass Carter [85]

2300 Leaf mass, vegetation water content Carter [85]

2450 Cellulose, protein, nitrogen Carter [85]

2470 Cellulose, protein Kumar et al. [87]
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or more spectral bands. In the case of the conventional NDVI, low reflectance in the red, due to 
chlorophyll absorption, and high reflectance in the NIR, related to multiple scattering effects, are 
used to estimate vegetation greenness [27]. One advantage of using hyperspectral data is that we 
can develop a new NDVI with different combinations of two narrowbands from the red and NIR 
regions that are averaged out over the broadbands of multispectral sensors. Many research studies 
of hyperspectral remote sensing of pasture employ spectral indices to estimate specific vegetation 
properties [12,28].

A typical approach to determining the best narrowband VIs is to calculate all possible combinations 
of two bands and identify a combination that has the highest coefficient of determination (R2) with 
a target variable [29,30]. Many two-band combinations derived from hyperspectral data for the 
estimation of a target variable in a recent study showed much better performance than the traditional 
red-NIR band combination. For example, Mutanga and Skidmore [29] found that the standard red-
NIR-based NDVIs derived from a laboratory-based hyperspectral analysis performed poorly in 
estimating the dense biomass of tall grass due to the saturation level observed in dense vegetation. 
However, a modified NDVI with 746 and 755 nm bands had a high R2 (0.78 compared to 0.25 with 
the standard NDVI), showing the potential of hyperspectral data to overcome saturation problems 
with a high-density grass canopy. Darvishzadeh et al. [12] successfully developed narrowband-
derived NDVIs and SAVI with two bands selected from two-dimensional correlation plots for the 
prediction of grass LAI in Majella National Park using HyMap data. Fava et al. [31] analyzed the 
variability of reflectance and vegetation properties in different pasture growth stages, determined the 
impact of this variability on VI-based assessment of pasture properties, and evaluated the potential 
of narrowband NDVI and SR for assessing biomass and LAI as well as canopy N.

10.4.2 R ed Edge

Like all green vegetation covers, green grasses have been characterized by a maximum slope in the 
red edge between 680 and 750 nm. Chlorophyll concentration is strongly correlated with the point 
of maximum slope between very low reflectance in the red resulting from chlorophyll absorption 
and very high reflectance in the NIR due to internal cellular scattering in this region [4]. This 
region of chlorophyll absorption deepens and expands as chlorophyll concentration increases and 
consequently the red-edge position moves to a longer wavelength [32].

The structure of the chlorophyll red edge is best identified through the first derivative of vegetation 
reflectance. Due to the strong relationship between chlorophyll concentration and plant productivity, 
the location of a red-edge point has been used to estimate nutritional status [33,34]. Additionally, 
LAI and biomass have been found to be well correlated to red-edge parameters in the first derivative 
reflectance curves or VIs with red-edge wavebands [33,35]. Jago et al. [36] generated red-edge 
position images by a linear equation for chlorophyll estimation and observed high correlation with 
grassland canopy chlorophyll concentration (r = 0.84).

Cho and Skidmore [35] compared red-edge positions extracted by two methods (the Lagrangian 
and linear extrapolation) from HyMap images acquired in two different years and found a high 
correlation with field grass biomass (R2 > 0.50). These results indicate the red-edge-based method 
may be widely used for grassland monitoring of vigor, nutritional status, and biomass production as 
imaging spectrometer data become more available [16].

The red edge has also been used to study plant stress due to nutrient deficiency [37,38] and 
contamination with pollutants such as gas and metals [39,40]. A shift in red-edge position may be 
used as an indicator of plant stress. One of the typical approaches is to identify nutrient deficiency 
in grass based upon the shift of the red-edge position. Mutanga and Skidmore [41] related the red-
edge position to N supply to Cenchus ciliaris grass in a greenhouse. They observed that the red-edge 
position of grass canopies was shifted from the control at 703 nm to the high N treatment at 725 nm.

Kooistra et al. [39] studied the effects of soil metal concentrations on grass and other vegetation 
based upon red-edge positions derived from the first derivative calculated from the 690–720 nm 
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absorption feature and other VIs. Some satisfactory relationships were found between the red-edge 
position and soil metals such as Pb (R2 = 0.61) and Cu (R2 = 0.51). The researchers also observed 
that the red-edge positions from grass reflectance increased as soil metal concentrations decreased. 
Smith et al. [40] used ratios of the magnitude of the derivatives from the red-edge region as an index 
of plant stress responses to soil-oxygen depletion from natural gas leakage. They found that the ratios 
of the magnitude derivative at 725 nm to that at 702 nm were less in areas where gas was present. 
The plant stress responses based upon these ratios were identified for long-term leaks in all studied 
crops but for short-term leaks only in grass. These studies demonstrate the potential of hyperspectral 
remote sensing for plant stress study.

10.4.3 S pectral Transformations

Across a full spectral range in the optical wavelength (400–2500 nm), vegetation reflectance 
presents several spectral absorptions associated with biochemical attributes. Several transformation 
approaches are used to enhance the use of spectral features of vegetation spectra. Common 
approaches include first and second derivatives, the logarithm of reciprocal reflectance, continuum 
removal, and other combinations. The depth and the area of these absorptions and indices based 
upon these features have been increasingly employed for pasture characterization. A study by 
Kokaly and Clark [19] has been one of the most important references for many research studies on 
hyperspectral remote sensing of vegetation. Their methodology was developed originally to enhance 
and standardize known chemical absorption features usually affected by the effects of factors such 
as water on carbon related absorption features in the SWIR region and exposed soil. The approach 
uses a continuum removal method [42] that normalizes the spectral curves of the absorption features 
by establishing a common baseline between the edges of the absorption region (Figure 10.4). In this 
way, differences in absorption strengths are enhanced. Absorption depth is the normalized depth 
of an absorption feature from the common baseline. Band depths within absorption features are 
divided by the band depth at the center of the feature, called normalized band depths. Stepwise 
multiple linear regression (MLR) is used to analyze normalized band depths for all wavelengths 
in continuum-removed absorption features and select the most sensitive wavelengths to a target 
vegetation parameter in each absorption feature [4,20]. Then linear equations are developed between 
band depth and associated vegetation measurements.

The method has contributed to improving the estimation of chemical constituents such as N, P, 
crude protein, digestibility, lignin and cellulose [8–10,43–46], biomass [29,31,47], and grass species 
discrimination [22]. The use of this methodology for imaging spectrometers for the estimation of 
biochemical concentration in different vegetation types has been successful [48,49], which indicates 
the applicability of this technique for grassland and pasture to landscape scales.

(a) (b)

FIGURE 10.4  Illustration of a normalized spectral absorption depth: (a) a spectral absorption feature with 
established common line and (b) normalized spectral curve by common baseline.
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10.4.4 S pectral Mixture Analysis

Spectral mixture analysis (SMA) provides fractional cover measurements related to a land surface 
within a pixel or the field of view of a sensor [50,51]. Mixture modeling is based upon an assumption 
that a measured spectral signal is the sum of the signals from the components weighted by their 
fractions [50]. For an ecosystem like grazing pasture, usually four components are considered, 
including green vegetation (GV), senesced vegetation or NPV, soil, and shade. SMA has been found 
to be very useful for estimating fractional covers of the main components of a landscape, including 
pastures and grasslands [11,15,21,52,53].

SMA involves the following basic steps: (1) selection of endmembers that represent major materials 
or components existing in the instantaneous field of view or pixel and (2) unmixing or solving the 
mixing equation, linear or nonlinear, for the fractions of the selected endmembers. This method has 
been widely used for multispectral data, and the potential of hyperspectral data to accurately estimate 
vegetation covers using SMA has been evaluated by several researchers. Their results indicate that 
hyperspectral data provide more accurate estimates of fractional cover measurements compared to 
multispectral data [11,17]. For example, NPV and soil fractions are not easily separated spectrally in 
the visible and NIR region in the broadband domain, but these materials can be differentiated based 
on lignin-cellulose absorption bands in the SWIR [21,24,26]. Using AVIRIS as a high-performance 
hyperspectral airborne sensor with high signal-to-noise ratios, Asner and Heidebrecht [17] found 
that the SWIR 2000–2300 nm was a crucial spectral region to estimate accurate fractional covers 
of PV, NPV, and bare soil for shrub and grassland sites.

Numata et al. [11] compared pasture fractional covers including shade-normalized NPV, GV, 
and soil estimated by the field reflectance spectra (ASD Inc., Boulder, CO, USA), the Hyperion, 
and convolved Landsat data from the Hyperion data to field grass covers estimated by charge 
coupled device (CCD) data (i.e., NPV, GV, and soil) as reference, all measured from the same 
field transects in Rondônia in the Amazon. NPV and GV fractions derived from field reflectance 
spectra were the closest values and statistically the same as that of the reference. Between the 
reference and Hyperion, NPV and GV fractions showed the largest differences and soil fractions 
had smaller, observable differences in fractions that were not statistically significant. However, 
Landsat-derived fractions such as NPV and GV showed larger gaps and were statistically different 
from the same fractions compared to the reference, overestimating NPV and underestimating GV 
(Table 10.3). The results indicate that hyperspectral data provided more accurate grass fractional 
covers than Landsat data. This is especially true for pastures in dry regions or degraded pastures 
where senesced grass and bare soil are present and affect spectral signatures of these pastures 
[15]. Fraction images derived from EO-1 Hyperion imagery for a pasture area in the Amazon are 
shown in Figure 10.5.

10.4.5 S tatistical Methods

Statistical models using original spectral bands or transformations from hyperspectral data as 
independent variables have been employed to improve estimation of vegetation parameters or to 
develop predictive relationships between hyperspectral reflectance and plant constituents of grassland. 
One of the challenges of hyperspectral data is the extraction of critical spectral information. Multiple 
regression with hyperspectral data suffers from multicollinearity or spectral overfitting when the 
number of observations is smaller than the number of wavelengths studied and when input data show 
a high correlation [4,54]. To avoid this problem, the selection of a few contiguous regions of known 
absorption features is recommended [10,19]. Stepwise multiple regression has been widely used to 
select an optimal set of spectral bands for estimating vegetation parameters [19,55]. The advantage 
of this technique is that the derived features are easily interpretable from a physical point of view 
[56]. However, this approach still suffers from multi-collinearity and the extensive spectral overlaps 
of individual properties [47].
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Partial least-squares regression (PLSR) [57] is another approach that can be used to reduce a large 
number of spectral bands with a high degree of collinearity to a smaller number of noncorrelated 
latent variables. This method operates similarly to principal component analysis, but instead of 
decomposing the spectra into a set of eigenvectors, scoring and regressing them against response 
variables, for example vegetation parameters, as a separate step, PLSR uses the response variable 
information during data decomposition. However, the physical interpretation of the latent variables is 
difficult, as with principal components [57]. The PLSR method has high predictive abilities and has 
been used to develop predictive models of feed quality including N, crude protein, lignin, cellulose 
[25,45,58], and LAI [59,60]. Kawamura et al. [60] coupled PLSR with other approaches, such as 
genetic algorithms and iterative stepwise elimination, to further improve spectral band selection and 
removal of redundant spectral bands from hyperspectral data. The successive projections algorithm 
(SPA) is also a method to reduce variable collinearity. SPA selects important wavelengths by using 
projection operators in a vector space with the maximum projection values on the orthogonal 
space of the previous selected wavelengths to avoid collinearity. When coupled with MLR (SPA-
MLR), predictive relationships are established between the wavelengths selected by SPA and target 
constituents of vegetation. Wang et al. [28] observed that SPA-MLR outperformed PLS and SMLR 
from the perspective of prediction accuracy, model simplicity, and robustness for canopy-level grass 
nutrient estimation.

10.5 � APPLICATIONS OF HYPERSPECTRAL REMOTE 
SENSING FOR PASTURE ESTIMATION

10.5.1  Pasture Quality

Pasture nutritional quality is an indicator of grass nutrient deficiency and degradation as well as 
animal grazing distribution patterns [61]. The concentrations of numerous nutrients have been found 

TABLE 10.3
Shade-Normalized Fractional Coversa of NPV, GV, and Soil for CCD, ASD, 
Hyperion/EO-1, and Convolved ETM+/Landsat 7 Spectra from Hyperion

Measurements Mean Std. Dev. p-Value

Field measurements (CCD) 
(63 measurements)

NPV 0.81 0.06 –

GV 0.16 0.05 –

Soil 0.04 0.07 –

ASD field spectrometer 
(63 measurements)

NPV 0.80 0.17 0.8086

GV 0.13 0.13 0.3878

Soil 0.08 0.12 0.2380

Hyperion/EO-1  
(12 pixels)

NPV 0.85 0.11 0.3589

GV 0.10 0.07 0.1241

Soil 0.05 0.06 0.8419

ETM+/Landsat 7  
(12 pixels)

NPV 0.94*b 0.14 0.0078

GV 0.07* 0.07 0.0095

Soil −0.01 0.09 0.1951

Source:	 Numata, I. et al. 2008. Remote Sensing of Environment, 112, 1569–1583 [11].
a	 The NPV, GV, and soil fractions were generated from full optical range reflectance (400–2500 nm) 

and were normalized by shade fraction to minimize illumination problems [11]. Fraction values vary 
from 0 to 1.

b	 Statistically significant mean differences relative to CCD fraction determined using a t-test at 0.95 
level are marked by *.
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(a) (b)

(c) (d)

(e)

FIGURE 10.5  Fraction images of a pasture area in the southwestern Amazon derived from EO-1 Hyperion 
imagery. (a) NPV. (b) GV. (c) Soil, (d) Shade, and (e) Endmembers.
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to be well correlated with spectral features, reflectance indices, and spectral transforms derived from 
hyperspectral data [10,19,48,54]. N is one of the most important elements and is strongly related to 
chlorophyll activity and often associated with protein, which promotes the photosynthetic process. 
As chlorophyll determines spectral reflectance in the visible region, strong relationships between 
visible absorption bands and N concentration have been identified [10,54]. P is a fundamental element 
in tissue composition in addition to being one of the components of nucleic acids and enzymes. 
Compared to N, P has received less attention but is an important nutrient for pasture management. 
This has been considered a limiting element in forage production in the tropics like Amazonia and 
the African savanna [62].

Most narrowbands and absorption features highly correlated with nutrients are concentrated in 
the visible spectrum, particularly in the red-edge region [8,10,19,63]. Mutanga et al. [63] found that 
within the red-edge region, those bands selected by stepwise linear regression for the prediction of 
nutrients were most frequently located around 680 nm, a region of pigment absorption. The green 
reflectance region (550–580 nm) was another important region for nutrient prediction.

On the other hand, weak correlations between nutrients and hyperspectral data have been 
observed in the SWIR [10]. For example, in fresh grass canopies, leaf mineral contents such as P, K, 
and S, are usually difficult to be estimated due to the presence of water that masks the biochemical 
absorption features, particularly in the SWIR region [19,20]. Additionally, internal scattering and 
mixing of spectral signatures obscures the absorption signal of nutrients due to differences in the 
physical structure of the canopies of different species [8]. Continuum-removal methodology by 
Kokaly and Clark [19] minimizes these effects on biochemical absorption features and enhances 
absorption strengths.

Mutanga et  al. [10] evaluated four absorption variables derived from continuum-removed 
absorption features to predict canopy N, P, potassium (K), calcium (Ca), and magnesium (Mg) 
concentrations in five African grass species in the field through MLRs. The continuum removal 
derivative reflectance (CRDR) variable yielded the highest coefficients of determination of 0.7, 
0.8, 0.64, 0.5, and 0.68, with low errors for N, P, K, Ca, and Mg, respectively. In a similar study, 
Kawamura et al. [8] used PLSR models for the prediction of N, P, K, and sulfur (S) and biomass from 
grass with absolute reflectance, first derivative reflectance (FDR), and CRDR as input variables for 
PLSR models. Again, CRDR had the highest R2 values for all minerals; 0.90, 0.94, 0.81, and 0.94 
for N, P, K, and S, respectively.

Besides these major nutrient elements, many efforts have been made to develop predictive 
models for the estimation of other constituents such as crude protein, fibers, and digestibility using 
hyperspectral data and statistical methods at different spatial scales [13,45–47,58,64]. Crude protein 
involves N protein and nonprotein nitrogen. Digestibility is a measure of how much of a forage 
can be digested, usually measured as dry matter digestibility. Fiber fractions consisting of lignin, 
cellulose, and cutin are indigestible and negatively correlated to major nutrients including N, crude 
protein, and digestibility.

Thulin et al. [45] used PLSR and spectral transforms derived from field spectrometers to develop 
predictive models for crude protein, fiber (lignin and cellulose), and digestibility from temperate 
pastures in Victoria, Australia. They obtained the best predictive models with continuum removal 
with spectral bands normalized to the depth of the absorption features for digestibility [adjusted 
R2 = 0.82, root-mean-square error of prediction (RMSEP) = 3.94), CRDR for crude protein 
(adjusted R2 = 0.62, RMSEP = 1.87), and cellulose (adjusted R2 = 0.73, RMSEP = 2.37). Other 
studies also obtained moderately good results for predictive models for crude protein [47] from field 
spectra in temperate pastures.

These studies recommended specific spectral regions sensitive to different pasture quality 
parameters. For example, the concentration of crude protein is correlated with wavelengths in the 
visible and NIR, but also SWIR, including 1721, 1738, 2266–2277, and 1950–2400 nm [47,58,64]. 
For the prediction of digestibility and fiber contents (i.e., lignin and cellulose) using field and imaging 
spectrometers, Thulin et al. [45,46] found the spectral regions of the chlorophyll absorption and 
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red edge and SWIR as the main wavelengths. The same spectral regions were found useful for the 
prediction of N, P, K, Ca, and Mg in African grasses [10].

While most studies on pasture quality assessment using hyperspectral sensors have been done in 
laboratory and in situ levels, efforts have also been made to map grass chemical constituents using 
spectrometers. Mutanga and Skidmore [9] integrated continuum removal absorption features from the 
visible (550–757 nm), SWIR (2015–2199 nm), and red-edge position derived from HyMap imagery 
and neural networks to map grass N concentration in an African savanna rangeland (Figure 10.6a). 
While the method used obtained a high coefficient of determination (R2 = 0.92) with an RMSE of 
0.02 for the training dataset, the predictive capability with the test data set indicated 60% of the 
variation in grass nitrogen concentration with an RMSE of 0.13 (Figure 10.6c). Using the same 
method, Mutanga and Kumar [65] estimated and mapped grass P concentration in the same African 
rangeland and obtained a coefficient of determination of 0.63 with an RMSE of 0.07 for the test data 
set (Figure 10.6b,d). They also found that the input of SWIR bands greatly contributed to improving 
the estimation of grass P concentration, and the prediction errors were drastically reduced when the 
visible and SWIR bands were used together compared with using the visible input only.

10.5.2 L eaf Area Index

LAI is one of the main drivers of canopy primary productivity and has been a key variable in most 
ecosystem models. LAI can be directly measured by optical remote sensing of vegetation, including 
grasslands and pastures. VIs, such as simple band ratio (SR), NDVI, SAVI, and others derived 
from multispectral sensors, have been widely used to estimate LAI over large regions. Narrow 
spectral bands derived VIs potentially provide additional improvements over two broadband-based 

(a) (b)

(c) (d)

FIGURE 10.6  Maps showing spatial distribution of concentration (%) of nitrogen (a) and phosphorus (b) and 
scatterplots obtained from the best-trained neural network used for mapping. Scatterplots of nitrogen (%) (c) 
and phosphorus (%) (d). (From Mutanga, O. and Skidmore, A.K. 2004a. Remote Sensing of Environment, 90, 
104–115 [9]; Mutanga, O. and Kumar, L. 2007. International Journal of Remote Sensing, 28, 4897–4911 [65].)
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VIs to estimate LAI. Fava et al. [31] had the best performance for LAI estimation with an SR 
of 895 nm/730 nm (R2 = 0.76), compared to thea more widely used near-infrared – red ratio, 
780 nm/680 nm with (R2 = 0.39). They found that the best combination of VIs for LAI were found 
in the NIR to SWIR regions, 1105 nm/1229 nm for NDVI (R2 = 0.61) and 1998 nm/1402 nm for 
SAVI (R2 = 0.64).

Besides simple relationships with these VIs, grass LAI estimation using hyperspectral data can 
be performed using statistical and physical models. Darvishzadeh et al. [12,59] investigated PLSR 
and the inversion of the PROSAIL radiative transfer model for LAI estimation in a Mediterranean 
grassland using both field spectrometer and HyMap airborne images. These results indicate the 
potential of hyperspectral data to improve LAI estimation by remote sensing.

LAI estimates may be very challenging in mixed grassland, where soil and litter effects 
significantly influence grass reflectance. He et al. [7] evaluated the performance of 15 different 
VIs in estimating the LAI of grassland in the semiarid Western region of Canada. Although the 
relationships between grassland LAI and studied VIs were statistically significant, their predictive 
capabilities were low (R2 = 037–0.44). A new VI was developed in this study that incorporates the 
cellulose absorption index (CAI) that varies as a function of the proportion of litter as a litter factor 
in the adjusted transformed soil-adjusted vegetation index (ATSAVI). This index improved the LAI 
estimation capability by about 10% (R2 = 55%). The results indicate the potential contribution of 
hyperspectral data to improving the LAI estimation by minimizing the effects of litter.

10.5.3 B iomass

Pasture biomass is directly related to pasture and animal productivity (meat and milk), and its 
quantification is one of the most important, but also challenging applications of remote sensing 
for pasture research (Table 10.4). Several efforts have been made to estimate biomass in pastures 
and grassland using multispectral satellite data, and most of them have established generally good 
relationships between field data and remote sensing derived measures [67,68]. The potential of 
hyperspectral data for the estimation of grass biomass has been evaluated across different spatial 
scales, such as controlled laboratory, in situ, and landscape scales [9,28,44,47,56,66,69].

Although reflectance is directly related to LAI, the relationship between reflectance and biomass 
is indirect. This implies that the same LAI may be representative of different amounts of biomass, 
depending on the relationships between various canopy structural and density characteristics [16]. 
Biomass estimation is more problematic particularly for pasture areas with high vegetation density. 

TABLE 10.4
Results of Biomass Estimation Using Hyperspectral Derived Measures

Authors Sensor Location Grass Type
Best Band 

Combination (nm) R2 R2 (NDVIa)

NDVI Mutanga and 
Skidmore [9]

Field South Africa Dense canopy 
grass

745/755 0.78 0.25

Cho et al. [71] HyMap Italy Mixed grass 771/740 0.7 0.4

Cho et al. [71] HyMap Italy Mixed grass 695/786 in 2004
740/786 in 2005

0.56 in 2004
0.64 in 2005

SR Fava et al. [31] Field Italy Mixed grass 920/729 0.77 0.35 (standard SR)

NBDb Mutanga and 
Skidmore [29]

Field South Africa Dense canopy 744,689,653,556 
(selected by stepwise 
linear regression)

0.86 0.31–0.32

a	 R2 for standard NDVI.
b	 NBD = normalized band depth [19].
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This is because the conventional NDVI using red and NIR bands reaches a level of saturation above 
certain LAI levels (2–3) [70]. Thus, the conventional NDVI is not appropriate for biomass estimation 
in dense grass [3,68]. To overcome this problem, two new narrowband combinations for NDVI have 
been tested from hyperspectral data (Table 10.2). Mutanga and Skidmore [9] found that, although 
the standard red-NIR-based NDVIs derived from the laboratory hyperspectral analysis performed 
poorly in estimating dense biomass of tall grass (Cenchrus ciliaris), a modified NDVI with 746 
and 755 nm bands had a high R2 (0.78 compared to 0.25 with the standard NDVI). However, they 
found that SR yielded higher coefficients of determination (R2 = 0.80 on average) with biomass as 
compared to NDVI (average R2 = 0.77). Narrowbands in the red edge (680–780 nm) have been found 
to be more sensitive to canopy biomass compared to red-NIR bands [9,68].

In a similar study, Mutanga and Skidmore [9] found that continuum-removed absorption 
features, such as band depth ratio, band depth index, and band area, calculated with the bands 
selected by stepwise linear regression from the red-edge region, had much higher coefficients of 
determination relationships (R2 > 0.80), with dense grass biomass (Cenchrus ciliaris) measured in 
the laboratory compared to standard red-NIR NDVIs (R2 = 0.31–0.32). Kawamura et al. [8] also 
found high prediction capabilities of standing biomass (R2 > 0.85) using first-derivative reflectance 
and continuum-removed derivative reflectance in a PLSR model in New Zealand.

Cho et  al. [71] used HyMap, an airborne hyperspectral sensor, to identify the best spectral 
measures for the prediction of grass biomass in Majella National Park, Italy. Like other laboratory- 
and field-based studies, those NDVIs were derived from the red-edge region (725–800 nm) and had 
much higher correlations compared to the traditional NDVI. The researchers also found that PLSR 
models with the six selected continuum-removed bands produced the highest correlation and lowest 
standard error for biomass prediction, compared to single variables such as the original reflectance, 
first derivative, and continuum-removed reflectance.

In the dry season in the Amazon, where a significant amount of dry grass material is found in pasture, 
Numata et al. [11] evaluated hyperspectral data to estimate live biomass, dead biomass individually, 
and both combined at the canopy level for two grass species. The results were highly affected 
by structural differences between two species (Figure 10.2) (Section 10.3). Brachiaria decumbens 
(Figure 10.2b) had better coefficients of determination between biomass and hyperspectral data than 
Brachiaria brizantha in general. Continuum removal of water absorption depth (WAD) and area 
(WAA) derived from the water absorption region (1100–1250 nm) showed the highest coefficients of 
determination for aboveground biomass, including total biomass (R2 = 0.35–0.57) and live biomass 
(R2 = 0.31–0.54), whereas lignin-cellulose absorption depth and area (2105–2230 nm) performed 
best for senesced biomass (R2 = 0.25–0.64), and NDVI performed very poorly. Beeri et al. [66] 
estimated photosynthetic vegetation (PV) and NPV biomass based upon an accumulated continuum-
removal reflectance between 991 and 1306 nm and broad- and narrowband-based NDVIs derived 
from HyMap in the Northwestern Glaciated Plains and the Northwestern Great Plains. Again, the 
continuum-removal-based data performed best for PV and NPV combined biomass data and for PV 
biomass data. The lowest relative error was found when PV live biomass was measured alone. The 
researchers also note that the performance of NDVIs was affected by the presence of NPV, which 
masks spectral responses in the red and NIR.

10.5.4  Pasture Degradation Analysis

About 20% of the world’s pastures and rangelands are in some stage of degradation [1], and several 
factors cause pasture degradation, such as overgrazing, compaction, and erosion caused by livestock 
action, soil, and climate. Multispectral satellite sensors have been used to assess the effects of land 
degradation around watering points, grazing intensity, soil biogeochemistry, and climate on grass 
biophysical changes [14,24,68,72].

Grazing is one of the main driving factors in pasture biomass change and can lead to pasture 
degradation. Hyperspectral remote sensing has been utilized to assess the impacts of grazing intensity 
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on vegetation changes at pastureland and ecosystem levels. Most studies of this sort have analyzed 
impacts on pasture structural changes based upon fractional covers of PV, NPV, bare soil, and, in 
some studies, shade derived from SMA. Elmore and Asner [73] investigated the effects of grazing 
intensity on soil carbon stocks in Hawaii by estimating plant litter cover based upon NPV derived 
from AVIRIS. They observed that intensively grazed areas were characterized by higher exposed 
substrate or soil fraction and lower NPV fraction. As the distance from a grazing center of a pasture 
area increases, substrate fraction decreased, whereas NPV fraction increased. Furthermore, NPV 
had the strongest relationship with grazing intensity. The researchers concluded that high levels of 
NPV could be used to identify areas of lower grazing intensity in their study area (Hawaii). A similar 
study conducted by Harris and Asner [74] detected a grazing gradient with fractional covers derived 
from AVIRIS in a rangeland in Utah and demonstrated the potential of airborne hyperspectral 
sensors’ ability to assess rangeland conditions based upon accurately estimated fractional covers 
sensitive to grazing.

In a field study, Asner et al. [75] characterized the vegetation structures of Amazonian pastures 
with different planting ages in different soil types based upon NPV and PV derived from photon 
inverse models applied to grass reflectance measured by a field spectrometer. LAI and NPV area 
index (NPVAI) estimated from spectral reflectance through photon transport modeling were highly 
correlated with field LAI and NPVAI, and these fractional covers varied according to grass ages and 
soil texture. Furthermore, the variation of soil biogeochemical elements P and Ca across the sample 
pastures were well correlated with canopy LAI+NPVAI inversion calculated from hyperspectral 
data.

10.5.5 S pecies Discrimination

Understanding the distribution of different grass species in landscapes is essential for measuring 
ecological characteristics such as plant functional types. Hyperspectral data have been used in 
species distinction by developing spectral libraries for spectrally distinct species and creating species 
maps derived from airborne hyperspectral sensors [76]. In a laboratory-based analysis, Schmidt 
and Skidmore [22] measured spectral reflectance from eight African grass species to compare the 
reflectance and the continuum-removed reflectance curves for each of all possible two-species pairs 
to assess whether these species were spectrally separable. They found that bands that maximized the 
discrimination between species occurred in the visible region (550–680 nm), indicating that pigment 
concentrations vary between species.

On the other hand, the normalization of the absorption curves in the NIR region by continuum 
removal improves our ability to discriminate grass species. Yamano et al. [77] used derivative 
reflectance in the visible and NIR regions for the distinction analysis of four predominant grass 
species in Inner Mongolia. They found that fourth-derivative peaks around 670 and 720 nm 
were an effective discriminator for distinguishing the grass species Caragana microphylla 
from others. However, the discrimination capability of hyperspectral data may largely depend 
on the season and requires ad hoc calibrations to select a specific model and set of bands for 
species discrimination [78]. A recent study suggests that hyperspectral data have been a useful 
tool in the detection of invasive species within pasture and cropland [79–81]. At the landscape 
scale, species discrimination by hyperspectral data can be further complicated by background 
diversity [23].

10.6  CONCLUSIONS

The advances made through hyperspectral remote sensing in characterizing pastures have shown the 
potential to improve our ability to more accurately estimate biophysical and biochemical properties 
compared to broadband systems, which may help increase livestock productivity through informed 
management. Some specific conclusions include the following:
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Chlorophyll, red-edge, and SWIR regions are recommended for the estimation and prediction of forage 
nutrients, digestibility, and fibers. In particular, narrowbands in the red edge (680–780 nm) have been 
found to be more sensitive to pigments, nutrients, and even canopy biomass compared to red-NIR bands.

PLSR combined with absorption-based spectral transformation data enhances the predictability 
of pasture attributes.

The ability to accurately estimate NPV and bare soil is one of the greatest advantages of 
hyperspectral remote sensing of pasture over multispectral remote sensing, especially for pastures 
in dry regions or degraded pastures where senesced grass and bare soil are present and affect spectral 
signatures of these pastures.

Despite the potential improvement of pasture characterization via hyperspectral data, the results 
of research studies discussed in this chapter represent a site- and time specific-biophysical condition 
of pasture, and currently available imaging spectrometers are not adequate for regularly monitoring 
pastures and grasslands. The ultimate goal of hyperspectral remote sensing of pastureland would be 
to map and monitor spatial and temporal patterns of pasture quality. This can be addressed in the 
near future as the data of new hyperspectral sensors such as HyspIRI, EnMap, and PRISM,satellite 
hyperspectral sensors become available.
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11 Hyperspectral Remote Sensing 
of Wetland Vegetation

Elijah Ramsey III and Amina Rangoonwala

11.1  INTRODUCTION

Wetlands exert a higher influence on biogeochemical fluxes among land, atmosphere, and hydrologic 
systems than their 1% worldwide occurrence would suggest (Sahagian and Melack 1996). Despite 
their importance, wetlands continue to face high detrimental pressures from natural and human-
induced forces (Ramsey 1998, Kumar and Sinha 2014). Remote sensing offers the single best source 
of timely, synoptic wetland status and trend information at a variety of spatial and temporal scales 
(Wickland 1991, Adam et al. 2010, Guo et al. 2017).

The remote sensing of wetlands does not generally differ in technique or process from remote-
sensing-based mapping of other terrestrial features (e.g., Ramsey 2005). Differences exist because 
of the higher spectral and spatial variability of wetlands due to their occupying a unique interface, 
or ecotone, between aquatic and upland ecosystems (Mitsch and Gosselink 2000, Adam et al. 2010). 
Although there are environmental factors that affect all vegetation, such as climate, soils, and 
geology, the uniqueness of wetland vegetation stems from the biophysical features that define this 
ecotone. Near the coast, infrequent to near-constant inundation by fresh to saline waters promotes 
adaptations that set wetland plants apart from all other terrestrial plants. As the spatial and temporal 
complexities in flushing strength and salinity increase, so do the variety and complexity of wetland 
species, forms, and associations. Lacustrine and riparian wetlands reveal that this uniqueness of 
species is primarily in response to seasonal and longer-term cycles of hydrology or changing water 
inputs into the systems. Coastal wetlands experience complexities common to inland lacustrine and 
riparian wetlands, but their proximity to the sea adds to their complexity (Mitsch and Gosselink 
2000, Federal Geographic Data Committee 2013).
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Tidal flushing that carries pulses of elevated saltwater dominates the dynamics of coastal wetlands. 
Tidal periods and amplitudes vary in time and space; however, all coastal regions experience tidal 
flooding and most a 28-day cycle exhibiting neap (low) to spring (high) amplitudes. Especially 
near rivers, coastal wetlands may experience freshwater flooding, sometimes alternating with tidal 
flooding. Storms can augment the tidal amplitudes because of associated wind and storm surges. 
Storm surges carrying water with elevated salinity can invade the normally fresher wetland zones 
impacting less salt-tolerant wetland species. Excessive flood duration, or water logging, can also 
adversely impact coastal wetlands. Drought, fire, invasive plants, and human development are 
additional forces that contribute to the spatial complexity of these coastal wetland systems.

The overall results of these spatially and temporally varying forces are highly dynamic and 
diverse wetland ecotones that transition from the coastal ocean to the upland ecosystem. Effective 
management for the preservation of these coastal wetlands requires monitoring that can discern 
local changes on a regional scale. A variety of remote sensing mapping techniques can provide that 
monitoring discernment, including those applications uniquely available when using airborne and 
satellite hyperspectral image data.

11.1.1 B enefits of Hyperspectral Data

The benefits of hyperspectral imaging (HSI) narrowband data compared to broadband multispectral 
(MS) data depend on the spectral resolutions of the HSI and MS sensors. Both sensor types can record 
in the same reflected electromagnetic (EM) energy range from around 400 to 2500 nm; MS sensors 
record that EM information in fewer spectral bands (about 3–16 bands) than HSI sensors (often over 
100 bands). In addition, to accommodate this high number of spectral bands, HSI sensor bands are 
narrower (typically around or less than 10 nm) than those used in common MS sensors (Figure 11.1) 
(Liu et al. 2009). In essence, an HSI sensor records a more continuous spectral record, whereas an 
MS will record only selected broad areas of the reflected EM range. MS bands normally include 
the blue, green, and red visible (VIS) bands (400–700 nm), one or more near-infrared (NIR) bands 
(700–1300 nm), and one or more shortwave infrared (SWIR) bands (1300–2500 nm), which often are 

FIGURE 11.1  Spectral response curves of EO-1 Advanced Land Imager (ALI) sensor bands 2 (green 
reflectance band), 3 (red reflectance band), and 4 (NIR reflectance band) (dashed lines) and similar curves for 
colocated EO-1 Hyperion sensor (solid lines) approximated as Gaussian distributions (Liu et al. 2009). Three 
Hyperion bands are plotted for each ALI band.
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centered on SWIR transmission peaks (approximately 1500–1750 nm, SWIR1, approximately 2000–
2500 nm, SWIR2). Well-known MS satellite sensors are carried by the Landsat, Quickbird, SPOT, 
and Sentinel satellites. Heavily used airborne HSI sensors include the National Aeronautics and 
Space Administration’s (NASA) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the 
privately owned Compact Airborne Spectrographic Imager (CASI). The recently decommissioned 
EO-1 satellite carried both the Hyperion hyperspectral sensor and the Advanced Land Imager (ALI) 
broadband MS sensor. The Hyperion and ALI sensor combination illustrates the tradeoff in the 
quantity of spectral information extracted from each ground-resolution element (or pixel) and the 
imaged area (e.g., Figure 11.1). Both sensors had 30-m pixel resolutions; however, the Hyperion 
sensor with 224 bands had a nominal 7.6-km-swath width, whereas the ALI with nine MS bands 
and one panchromatic band collected data over a much larger 37-km-swath width.

By using a high-density, multi-narrowband spectral recording, HSI sensors provide spectral 
discrimination similar to laboratory spectrophotometers (e.g., Figure 11.1). If the HSI sensor on board 
an aircraft or satellite were moved to within a few hundred meters of the Earth’s surface, the HSI 
record would simulate a spectrophotometer. The main difference would be the variable illumination 
and the diffuse nature of the surface target. Because there is a higher number of spectral channels 
(or bands) with higher spectral resolutions, many mapping applications operationally performed 
with broadband sensor systems have been enhanced with HSI image data. Some of these classical 
broadband applications include land-cover-type mapping, change detection, biomass determination, 
and prototyping sensors for planned systems.

Regarding hyperspectral imagery, specialized processing of high-resolution spectra can map 
spectral variations within a pixel. This specialized processing can partition each pixel into percent 
occurrences of various target compositions on the basis of determined spectral differences. By 
applying linear processing to HSI data, the classical broadband point classifications are transformed 
into continuous classifications of percent occurrences (i.e., fractional abundances) of land-cover 
features (i.e., types and conditions), which is particularly useful for characterizing wetlands. 
Analogously to spectral analyses in a laboratory, HSI sensor data can also be used to detect subtle 
variation in the reflectance of plant leaves if the canopy structure and background influences can be 
removed from the recorded reflectance.

Although it is not always necessary for spectral changes in leaves to be linked to abnormal plant 
canopy change, it is always helpful (Ramsey and Rangoonwala 2005). Defining the biophysical 
indicator of change at the plant leaf level allows for the construction of a more targeted monitoring 
strategy. If the vegetation change cannot be defined at the plant leaf level, the ability to document the 
change at the canopy level via synoptic optical remote sensing is hindered (Ramsey and Rangoonwala 
2009). Successful HSI applications account for changes of biochemical properties at the plant leaf 
level (Ramsey and Rangoonwala 2005), changes in biophysical structure (density and orientation) 
at the plant canopy level (Ramsey et al. 2015), and atmospheric influences in the surface reflectance 
(Ramsey and Rangoonwala 2006).

The advantage of HSI spectral alignment over that of MS sensors is realized only if the spectral 
autocorrelation within the EM response from the terrestrial target does not eliminate the more 
effective spectral isolation available from HSI sensors (e.g., Warner and Shank 1997). Unlike mineral 
reflectance spectra from nonvegetated landscapes that often exhibit well-defined spectral features, 
vegetation reflectance spectra tend to have wide and more subtle features that reflect pigment 
absorptions. Even though features are apt to be spectrally broad, the use of available image processing 
techniques can remove or at least diminish spectral autocorrelation in HSI data, enhancing the 
effectiveness of the classification (e.g., Warner and Shank 1997, Wang and Sousa 2009, Thenkabail 
et al. 2013).

The near spectrally continuous HSI data can be used to determine single bands and combinations 
of spectral bands that best address the mapping objective (Thenkabail et al. 2013). If successful 
mapping can be performed with a small number of spectral bands, then the mapping can be greatly 
simplified. If these selected bands are replicated on operational multispectral satellite sensors, the 
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mapping process can be further simplified by transfer to that operational remote sensing system. HSI 
data analysis provides sufficient narrowband coverage for a trained image analyst to define the most 
appropriate spectral bands (or regions) for any mapping exercise. This unique, advanced spectral 
analysis function cannot be replicated by spectral analyses that are based on broadband MS data.

11.1.2 C hapter Outline

This chapter focuses on those applications of HSI that illustrate the more common vegetation canopy 
compositional (characteristic spectra-based mapping) and inferential prediction analysis. Within 
that focus, the application of hyperspectral remote sensing to mapping and monitoring wetlands is 
demonstrated in US coastal wetland forests and marshes that share a wide variety of similarities with 
many coastal and inland wetland vegetation types worldwide (Figure 11.2).

This chapter includes descriptions of mangrove biophysical mapping, invasive vegetation detection 
and mapping, marsh dieback onset and progression mapping, and other applied research projects that 
present how hyperspectral information can increase the detail over that available from broadband 
spectral analyses. The conveyance of HSI applications is facilitated by partitioning these wetlands 
into three broad components: plant leaf, plant canopy, and the nonplant background. In each project 
description, the plant leaf and canopy reflectance are coupled. Background and shaded vegetation 
reflectance contributions to the canopy reflectance are discussed where appropriate. In all cases the 
canopy structure is considered necessary for interpreting the vegetation canopy reflectance; in two 
cases, this coupling is demonstrated. These examples incorporate the application of light-interaction 
models (based on radiative transfer equations), direct measurements, and above the top of canopy 
(TOC) reflectance.

Even though spectral and spatial resolutions and timing are explicitly stated in all project 
descriptions, in this discussion, the focus is on the advantages of biophysical HSI mapping. Multiple 
HSI studies have specifically considered the tradeoffs of spectral and spatial resolutions (e.g., Rosso 
et al. 2005, Belluco et al. 2006, Adam et al. 2010, Kumar and Sinha 2014) and timing (e.g., Artigas 
and Yang 2005, Flores-de-Santiago et al. 2013, Tuominen and Lipping 2016). In addition, results 

FIGURE 11.2  Locations of USGS projects that used hyperspectral remote sensing techniques in wetland 
settings. BLH = bottomland hardwoods; Cyp = Cypress.



223Hyperspectral Remote Sensing of Wetland Vegetation

described in this discussion are most relevant to the environment and conditions of the project. 
Direct comparability may be diminished in contrasting environmental conditions (Yang et al. 2009) 
or difference in season promoting a contrast in pigment (Flores-de-Santiago et al. 2013) or water 
content (Adam et al. 2010).

11.2  HYPERSPECTRAL REMOTE SENSING OF WETLAND FORESTS

Wetland forests occupy various flood and salinity regimes. Of the swamp types, only mangroves are 
evergreen and tolerant of saline waters. Mangroves occupy 75% of the world’s coastlines between 
25°N and 25°S latitude (Ramsey and Jensen 1996). Although new world mangroves (red mangrove 
[Rhizophora mangle L.], black mangrove [Avicennia germinans L.], white mangrove [Laguncularia 
racemosa]) thrive in the more southern portions of the Gulf of Mexico (hereafter Gulf), black 
mangroves have tenaciously established footholds as far north as 30° latitude. Situated at the ocean 
and land interface, mangrove swamps directly experience frequent tidal flooding and the many 
perturbations of the coastal ocean.

Baldcypress (Taxodium distichum) and bottomland-hardwood-dominated forests can make up 
major parts of deciduous freshwater swamps, and, in contrast to mangrove forests, these swamps 
extend well into the temperate zones. Baldcypress swamps can occupy more permanently flooded 
portions of a wetland forest or isolated oxbows that constitute the remnant of former meanders in 
riparian flood plains (Mitsch and Gosselink 2000). Bottomland hardwoods (BLHs) are found in 
intermittently flooded floodplain forests that occur along rivers and streams throughout the central 
and southern United States (King and Keeland 1999). These forests can occur on an elevation 
gradient between drier upland hardwood forests and more persistently flooded swamps.

11.2.1 M angrove Forests

HSI mapping of mangroves has been carried out worldwide (Yang et al. 2009), some in regions where 
mangrove species dominances are completely or predominantly physically separable (Held et al. 
2003, Koedsin and Vaiphasa 2013, Zhang and Xie 2013), some in areas where a single mangrove 
species occurrence is physically separable from nonmangrove land covers (Yang et al. 2009). In 
areas where mangrove species co-occur as communities within the HSI ground resolution, these 
inseparable mangrove species are combined into single classes (Kumar et al. 2013).

In a study of mangroves located in the southern Gulf off the southwest coast of Florida 
(Figure 11.2), ground-based measurements of canopy closure, laboratory leaf spectral measurements, 
and helicopter-based spectroradiometer measurements were obtained primarily in the month of 
October in the five mangrove types defined by Lugo and Snedaker (1974) as basin, overwash, fringe, 
riverine, and dwarf (Ramsey and Jensen 1996). Within the five community types, strands dominantly 
comprised a mixture of red and black mangroves with sporadic and most often minor inclusion of 
white mangroves. An initial finding of the study was high correspondence (83% R2) between the 
mangrove leaf area index (LAI), or the number of canopy leaf layers, and normalized difference 
vegetation index (NDVI) obtained from Satellite Pour l’Observation de la Terre (SPOT) red and 
NIR image data (Jensen et al. 1991). Field and image data used to calculate LAI and NDVI were 
collected within all community types and species mixtures. The question was why the NDVI-LAI 
relationship appeared to be nonspecies specific. In response to that question, this study’s objectives 
were to determine (1) the leaf spectral and structural (LAI and LAD [leaf angle distribution or leaf 
canopy orientation]) changes within and between mangrove species and (2) the relationships between 
the canopy VIS and NIR (VNIR) spectral variability and canopy species composition and structural 
variability.

Leaves were collected at 23 nondisturbed mangrove sites throughout the northern Ten Thousand 
Islands off the southwest coast of Florida (Ramsey and Jensen 1996). Typically, eight to ten leaves 
taken from small branches near the TOC composed each of the three spectral leaf samples per tree. 
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Limited to the 400–1000 nm portion of the VNIR, spectral reflectance of the 18 red (from 16 sites), 
10 black (separate sites), and 7 white (separate sites) leaf samples were obtained using flat-plate 
methods (Ramsey and Jensen 1996). The reflectance spectra from the multiple samples per tree 
were averaged. The multiple addition of reflected light from the lower second layer of leaves in the 
stack was estimated by adaption of a method introduced by Lillesaeter (1982). The estimated second 
leaf reflectance addition was subtracted from the flat-plate reflectance to obtain the leaf reflectance 
estimate.

Results of the leaf spectral analyses showed that the average high to low reflectance range 
was 0.021 and 0.024 in the VIS and 0.04 and 0.05 in the NIR within the black and red species, 
respectively (Ramsey and Jensen 1996). The white mangrove leaf reflectance ranges were 0.04 in 
the VIS and 0.05 in the NIR (Ramsey, unpublished data). The red-black, red-white, and black-white 
average leaf reflectance differences were −0.01, −0.02, −0.01 in the VIS and −0.02, 0.04, 0.06 in 
the NIR. The average VIS and NIR reflectance ranges within each species relative to the differences 
between each species’ average reflectance suggest that differentiation of the species in the mixed 
composition stands would be difficult if only the leaf spectral characteristics were considered (an 
example is given in Figure 11.3a).

Results presented here indicate that between-species mean reflectance differences at best equaled 
the within-species leaf reflectance variances in the VNIR. Even though possible environmental or 
seasonal differences may have weakened the comparison with our results, successful classification 
of red, black, and white mangrove leaves with the addition of SWIR to the VNIR spectral record 
was reported (Wang and Sousa 2009, Zhang et al. 2014). If that success is carried forward, then 
the necessary base for species spectral discrimination at the canopy level will be met (Ramsey and 
Rangoonwala 2009).

Extension of species discrimination at the leaf level to the mangrove canopy level is not 
always straightforward and can involve adjustment of determined leaf-level relationships to 
accommodate the varied contributions to the canopy reflectance (Ramsey and Rangoonwala 
2006, Wang and Sousa 2009). Where mangrove species dominances are physically separated 
as monotonic regions, successful species classifications have resulted. Of these, one explicitly 
showed the importance of canopy structure by coordinated use of HSI and polarimetric synthetic 
aperture radar (SAR) (Held et  al. 2003), while another included texture in the classification 

(a) (b)

FIGURE 11.3  (a) (Basin) Mangrove top of canopy leaf spectra acquired using a stacked-plate reflectance 
design. The basin site contained about 40% red, 30% white, and 30% black mangroves. (b) (Background) 
Figure 11.2 shows the location of the mangrove sites in southwest Florida. (Adapted from Ramsey, E., III and 
Jensen J. 1996. Photogramm Eng Rem S, 62(8), 939–948.)
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by implicitly incorporating canopy structure (Zhang and Xie 2013). In environments of mixed 
mangrove species compositions, canopy structure is likely to be less discriminating than 
where mangroves occur in monospecies clusters. In those cases, spectral identity increases its 
importance in discriminating species.

Another result of the laboratory spectral analyses was related to the leaf-litter spectra 
(Figure 11.3b) (Ramsey and Jensen 1996). Interestingly, even though spectra of the leaves could not 
separate mangrove species, the leaf litter collected within stands dominated by each of the single 
species spectrally differed throughout the VNIR wavelengths. Although no linkage to the length 
of decomposition in each of the litter samples was considered, these spectral differences illustrate 
the importance of considering the changing background reflectance as a spectral component of the 
canopy reflectance (Ramsey and Rangoonwala 2006, Adam et al. 2010).

Even though VNIR leaf spectral properties would not singularly separate the mangrove species, 
canopy VNIR spectra representing a 20-m instantaneous field of view (IFOV) of the TOC were 
highly variable (Figure 11.4) (Ramsey and Jensen 1996). The canopy spectra were collected from 
a helicopter platform with a handheld radiometer at the 23 mangrove sites. The question was what 
caused the high variability in canopy reflectance.

To understand the cause of the canopy reflectance differences, a radiative transfer (RT) model 
was implemented by following the construction outlined in Goudriaan (1977). Particulars of the 
model, assumptions, inputs, and validations are described in Ramsey and Jensen (1995). RT model 
predictions of the helicopter-based mangrove canopy reflectance spectra were >97%. Even though 
the analyses showed that canopy reflectance was most sensitive to VNIR leaf reflectance and only 
moderately sensitive to LAI or LAD, the high spectral variance observed in the canopy reflectance 
was largely a function of LAI. The LAI dominance implied the lack of consistent leaf reflectance 
differences, and the modeled stability of LAD as spherical across black, red, and white mangrove 
canopies limited their influence on the canopy reflectance. Because of that, LAI was highly correlated 
to canopy reflectance but not to the species of mangrove.

FIGURE 11.4  Range of mangrove canopy reflectance spectra calculated from top of canopy site-specific 
upwelling (∼20-m instantaneous field of view from helicopter platform) and surface downwelling light 
measurements (mean ± one standard deviation, n = 23). The 23 sites included basin, overwash, fringe, 
riverine, and dwarf forest sites containing mixtures of black, red, and white mangroves. Location of mangrove 
sites shown in Figure 11.2. (Adapted from Ramsey, E., III and Jensen J. 1996. Photogramm Eng Rem S, 62(8), 
939–948.)
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LAI values predicted with the RT model were validated with ground-based measurements at 
93% accuracy (Figure 11.5a) (Ramsey and Jensen 1995, 1996). The NDVI extracted from canopy 
reflectance spectra (e.g., Figure 11.4) within defined narrow bandwidths had a correspondence with 
the predicted canopy LAIs of 78% (Figure 11.5b) (Ramsey and Jensen 1995). Field-observed LAIs 
are overlain for comparison (not used in R2 calculation). The NDVI and LAI correspondence was 
limited to NDVI > 0.73. The field analyses and RT modeling based on hyperspectral data explained 
the high correspondence found by Jensen et al. (1991) between field mangrove LAI and broadband 
NDVI values obtained from SPOT image data.

11.2.2 B aldcypress Forests

The cypress family includes 142 conifer species collectively exhibiting a near-global distribution 
(Cupressaceae, http://www.conifers.org/cu/Cupressaceae.php [Accessed October 10, 2017]). 
Baldcypress (Taxodium distichum [L.] Rich.) is a species of the cypress family that is widely 
distributed in the eastern and southeastern United States, especially in river floodplains (Plants 
Profile, http://plants.usda.gov/java/profile?symbol=TADI2 [Accessed October 10, 2017]). These trees 
grow in a wide variety of coastal and inland environments; however, in southeastern US wetland 
forests, baldcypress trees commonly occupy the more frequently flooded areas, where they often 
occur with water tupelo (Nyssa aquatica) trees in swamps along the northern Gulf. Baldcypress are 
deciduous and typically exhibit more open canopies than observed in mature, minimally disturbed 
BLH forests. Baldcypress leaves are needlelike, whereas tupelo leaves are somewhat narrow and 
elliptical.

The spectral detection of baldcypress swamps is enhanced by its unique environment and canopy 
structures. Basic baldcypress forest mapping is not usually problematic for broadband optical sensors; 
however, hyperspectral mapping may reveal subtle changes in these swamps that could indicate 
detrimental and abnormal stresses not obtainable with broadband sensors. Saltwater intrusion related 
to relative sea-level rise and land subsidence has caused widespread diebacks of coastal baldcypress 

(a) (b)

FIGURE 11.5  (a) Mangrove canopy leaf area index (LAI) observed as calculated from site canopy closure 
measurements and predicted with radiative transfer (RT) canopy model using measured background (e.g., 
Figure 11.3b Background), leaf (e.g., Figure 11.3a Basin), and canopy reflectance spectra (e.g., Figure 11.4) 
inputs. (Adapted from Ramsey, E., III and Jensen J. 1996. Photogramm Eng Rem Sen, 62(8), 939–948.) (b) NDVI 
versus predicted LAI (open circles) by RT model and calculated LAI from field measurements (solid circles). 
(From Ramsey, E., III and Jensen J. 1995. in J. Lyon and J. McCarthy (Eds.), Wetland and Environmental 
Applications of GIS. CRC Press, Boca Raton, FL, 61–81.)

http://www.conifers.org/cu/Cupressaceae.php
http://plants.usda.gov/java/profile?symbol=TADI2
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swamps, commonly termed “ghost forests” (Krauss et al. 1998). HSI would be the most appropriate 
tool to survey broad areas to detect abnormal changes in these forests before irreversible change 
becomes imminent. Hindrances to consistently detecting subtle changes in the more vulnerable 
baldcypress swamps are the typically open canopies and the persistent subcanopy flooding. Other 
obstructions to the detection of abnormal change are the commonly mixed tupelo and baldcypress 
stands. The combination of these factors can create high variability in the canopy reflectance 
that complicates the determination of leaf spectral responses to salt stress. For example, leaves 
composing a mixed baldcypress and tupelo forest stand exhibit significant differences in the green to 
red-edge wavelength region (Figure 11.6a), a region particularly important in detecting leaf pigment 
changes (e.g., Ramsey and Rangoonwala 2005). Canopy reflectance based on TOC recordings 
from a helicopter (observed) and EO-1 Hyperion sensor (predicted) exemplify that complexity 
(Figure 11.6b). The flat green to red-edge wavelength region within the canopy reflectance spectra 
reflects the high proportion of baldcypress (approximately 75%), a third of those exhibiting browning, 
the low water tupelo proportion, and the low canopy closure resulting in a relatively high surface 
contribution. To detect baldcypress-water tupelo degradation near its onset, the canopy reflectance 
needs to separate not only the leaf and background components but also the leaf component by 
species. Though challenging, plant-leaf spectral monitoring based on hyperspectral mapping would 
be useful for monitoring, conservation, and restoration of these at-risk coastal forests.

11.2.3 B ottomland Hardwood Forests

BLH forests occupy about 2.8 million ha in the Lower Mississippi River Alluvial Valley of the 
United States and comprise a variety of deciduous species. As in mangrove mapping, the ability to 
monitor separately the different bottomland communities would greatly enhance the value of the 
information obtainable from remote sensing data. BLH forests act as carbon sinks, provide habitat 
for fish and wildlife, offer flood protection, and make many other contributions to the natural and 

(a) (b)

FIGURE 11.6  (a) The complexity of leaf spectra comprising a senescing baldcypress-water tupelo forest. 
The leaf spectra were obtained following Daughtry et al. (1989). Typically, three leaf spectral samples per 
tree were collected. Each cypress leaf sample contained multiple needles, while a single leaf composed each 
tupelo sample. A constant offset (−0.07) was applied in order to align the baldcypress leaf spectra with the 
tupelo spectrum in the blue wavelength region. (b) Canopy reflectance spectra obtained from radiometer data 
collected from helicopter platform (observed) and predicted from EO-1 Hyperion image data using methods 
described in Ramsey and Nelson (2005).
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human environments (DeWeese et al. 2007). While preservation of these contributions depends on 
maintaining BLH composition and species density, introduction of invasive species and human-
mediated hydrologic modification change species compositions, and thereby BLH function, altering 
their ecological contributions (DeWeese et  al. 2007). For example, White (1983) classified the 
BLH forests in southern Louisiana and on the Mississippi border into two community classes. The 
classification represented two different BLH forests in terms of function and species composition. The 
cause of the stand composition differences of the two BLH forest classes was related to hydrologic 
modification resulting in different hydroperiods (i.e., hydrologic regimes) for these two types, each 
dominating physically separate portions of the wetland landscape (White 1983).

As part of a hurricane impact study, attempts were made to separately classify the two BLH 
forest classes with prehurricane Landsat and SAR 25-m image data (Ramsey et al. 2009b). These 
classification attempts were unsuccessful. In a separate study that combined the 25-m damage classes 
with 3 years of daily Moderate Resolution Imaging Spectroradiometer (MODIS) data, a temporal 
difference in foliage onset of the two BLH classes was observed in the early spring (Ramsey et al. 
2011). Even though the daily temporal resolution of the MODIS product provided discrimination of 
the two classes, the spatial scale is not conducive to the needed stand-level (around 25 m) monitoring. 
Further, the 25-m optical sensor systems cannot provide the high-frequency data required.

Remote sensing classifications of hardwood forests have been made at the dominant overstory 
species and mixed community levels (Hill et al. 2010, Shao et al. 2014). In each of these, multitemporal 
classification of the broadband image data produced the highest accuracies. The best two-date 
classification combined spring and fall for discrimination of hardwood species and communities. 
A more effective mapping strategy could be to collect an HSI image in the spring, the period of 
maximum spectral contrast as observed with daily MODIS data, and apply spectral analysis to fully 
discriminate the two BLH forest communities.

11.3  HYPERSPECTRAL REMOTE SENSING OF INVASIVE PLANTS

An applied research study of the mapping of Chinese tallow (Triadica sebifera), an invasive tree 
species, was undertaken in the north-central Gulf coastal region (Figure 11.2) (Ramsey and Nelson 
2005, Ramsey et al. 2005a,b). The wetland environments within the study area included baldcypress 
and BLH forests along with palustrine and estuarine marshes.

The initial mapping of Chinese tallow was conducted with color-infrared (CIR) aerial photography 
to prove that tallow was separable from all other co-occurring vegetation (Ramsey et al. 2002). 
The CIR mapping was successful because it occurred during fall senescence when tallow leaves 
progressively turned from green to red (Figure 11.7), and the 1-m spatial resolution was fine enough 
to capture small clumps of red leaves.

Although successful, the 1-m CIR mapping was costly and spatially limited. To be cost-effective 
for resource management, the detection system must offer regional coverage and high repeatability 
at low cost. A satellite mapping system can provide cost-effective regional coverage; however, the 
tradeoff is a coarser spatial resolution. The CIR mapping showed that tallow is scattered or occurs 
in small clumps of a few trees dispersed throughout marsh and wetland forests. In that case, the 
satellite regional mapping must detect tallow within an image pixel containing mixed and varying 
compositions of vegetation. A late-fall collection of EO-1 satellite Hyperion sensor hyperspectral 
data with a 30-m ground spatial resolution was chosen to accomplish that regional monitoring of 
Chinese tallow.

Mapping success was set at detection of tallow comprising at and above 10% of the TOC 
occurrences within each 30-m pixel. To be detected consistently at that level, the VIS data must be 
reproducible to <1% and the NIR to <5%. To obtain that level of reproducibility, the Hyperion data 
were transformed to TOC reflectance estimates (Ramsey and Nelson 2005).

Transformation entailed the establishment of 34 calibration sites spatially distributed throughout 
the EO-1 coverage. Helicopter-based upwelling radiance and downwelling irradiance spectra were 
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collected the same day as the Hyperion data (Figure 11.8). The helicopter-based data were used to 
calculated TOC reflectance at each site. Similar to the RT construction used in the mangrove canopy 
reflectance simulation, programs built on equations derived by Turner and Spencer (1972) were 
enclosed within an optimization procedure (Himmelblau 1972, Ramsey and Nelson 2005).

The optimization minimized the difference between the helicopter-based and predicted TOC 
reflectance spectra of each site. The optimized atmospheric variables were used to transform the 

FIGURE 11.7  Leaf reflectance of single tallow leaves collected from a few trees growing in fall senescence 
period. Yellow, green, and bright, medium, and dark red refer to the mix of different leaf colors exhibited 
by tallow at one site and at one time. Only red and possibly yellow leaves contrasted with the surrounding 
vegetation. The location of the tallow sites is shown in Figure 11.2. (Adapted from Ramsey, E., III et al. 2005b. 
Int J Remote Sens, 26, 1611–1636.)

FIGURE 11.8  Near concurrent measurements of downwelling irradiance and upwelling reflected radiance 
as measured by Hyperion sensor and helicopter-based radiometer over a forest site in southwest Louisiana (a 
slight bias was added to the helicopter spectra for clarity). The forest site location is shown in Figure 11.2.
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Hyperion data to TOC reflectance data. Validation confirmed that the TOC maximum reflectance 
error was <1% in the VIS and <5% in the NIR (Figure 11.9a,b) (Ramsey and Nelson 2005).

The CIR mapping determined that leaf senescence and tallow occurrence patterns were extremely 
varied and that large (>30 m) monotypic stands of tallow did not exist within the region (Ramsey 
et  al. 2002). These extreme physical heterogeneities and the lack of large tallow stands in the 
Hyperion scene excluded the more conventional creation of hyperspectral characteristic spectra 
from homogeneous stands within the image or from leaf spectral libraries.

A more appropriate approach was provided by a multivariate analysis technique, polytopic vector 
analysis (PVA). PVA extracted characteristic spectra directly from the input canopy reflectance 
without requiring that spectra form and type be defined a priori as in spectral libraries or as extracted 
from homogeneous imaged areas (Ehrlich and Crabtree 2000, Ramsey et al. 2005a,b). The PVA-
calculated characteristic spectra corresponded to percent occurrences per 30-m Hyperion pixel of 
red tallow, live vegetation, and senescent vegetation. The senescent vegetation occurred in marshes 
and most cypress-tupelo forests. Live vegetation included canopy shadows. A fourth characteristic 
spectrum was created in the PVA that exhibited a form similar to yellow vegetation; however, this 
spectrum corresponded primarily to noise.

Loadings representing the tendency of each TOC reflectance spectrum to align with the tallow, 
live, and senescent characteristic spectra were compared to classifications of photography collected 
at each site at the time of the helicopter-based upwelling radiance recordings (Ramsey et  al. 
2005a,b). The loadings represented the percent occurrences of tallow, live, and senescent vegetation. 
Correspondence demonstrated that 78% of the tallow percent occurrences were mapped correctly. 
Calculated confidence limits for individual predicted values indicated that tallow occurrences made 
up 10% (<10 × 10 m) of the 30-m pixel were detected 68% of the time and 15% (<12 × 12 m) 
occurrences were detected 85% of the time. In addition, 92% of live and 82% of senescent vegetation 
occurrences were mapped accurately.

The application of the characteristic spectra transformed the Hyperion image into three images 
that represented continuous percent occurrences per 30-m pixel of tallow, live, and senescent 

(a) (b)

FIGURE 11.9  Canopy reflectance of two bottomland hardwood sites, one with 17% tallow and one without 
tallow. (a) Helicopter-based canopy reflectance of the two sites. (b) Same comparison of the two sites, however, 
Hyperion-based canopy reflectance. The arrows indicate the slight differences in reflectance related to the 
tallow percent occurrence differences at the two sites. (Adapted from Ramsey, E., III and Nelson G. 2005. Int 
J Remote Sens, 26, 1589–1610.)
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vegetation (Ramsey et al. 2005a). In contrast to a point classifier, the continuous classifier ranged 
from 0% to 100% (Figure 11.10).

The final validation was performed with oblique photography to confirm the predicted occurrences 
of tallow outside the selected 34 validation sites. The comparison showed high correspondence 
between the mapped tallow occurrences and the photography spatial distribution. The final step 
associated the mapped tallow percent occurrences with land-cover types and possible land-based 
activities that promoted tallow establishment (Figure 11.11). The latter information relied on 
Landsat land-cover classifications and knowledge of land-cover activities drawn from successive 
map production every 3 years over a 9-year period (Ramsey et al. 2001). The land-cover mapping 
followed protocols outlined by the National Oceanic and Atmospheric Administration’s Coastal 
Change Analysis Program (C-CAP) (Klemas et al. 1993).

Land-cover-type association was accomplished by spatially cross tabulating occurrences of tallow 
with each of the defined C-CAP land covers (Ramsey et al. 2005a). The cross tabulations were 
based solely on senescent red tallow occurrences and therefore were conservative estimates. Results 
showed that the highest correspondence of tallow was with wetland forests (BLH and cypress) 
(Figures 11.11 and 11.12a–c). The highest tallow occurrences were in BLH forests. That tallow was 
present in the flooded baldcypress forests is a testament to the invasiveness of the Chinese tallow. 
Cross tabulation suggested that relatively high occurrences of tallow within the coastal marsh were 
located on the numerous cheniers and scattered topographically higher coastal lands (Figures 11.11 
and 11.12e,f). Additionally, even though percent occurrences were low, tallow was associated with 
the C-CAP water class. These associations were linked to tallow occurring on artificial levees 
lining the ubiquitous canals within the marsh. These narrow and linear features are mixed with 
the surrounding water in the Landsat pixel and subsequently hidden within the C-CAP water class. 
By linking tallow occurrences determined from satellite HSI to land-cover type produced from 
broadband Landsat data, we were able to take the first steps toward determining the relationship of 
various wetland land covers and activities to the establishment and location of tallow trees.

11.4 � HYPERSPECTRAL REMOTE SENSING OF MARSH WETLANDS

Multiple marsh types can occupy estuarine to lacustrine coastal wetlands; however, dominant types 
were used to encapsulate hyperspectral methods most relatable to marshes (Figures 11.13a–e). Within 
saline marshes, smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus romerianus) 
produce nearly constant rates of live and dead turnover, showing no clear seasonal trends after reaching 
maturity (Ramsey et al. 2004). Needlerush and cordgrass exhibit more vertical than horizontal canopy 
orientations; however, the dominant leaf orientation can change from top to bottom. The brackish salt-
hay or saltmeadow cordgrass (Spartina patens) and fresh maidencane (Panicum hemitomon) marshes 
occupy the more interior coastal marshes of the Gulf coast (Ramsey et al. 2004). Salt-hay marshes tend 
to be hummocky with vertical shoots rising above a layer of thick and lodged (nearly horizontal) dead 

FIGURE 11.10  An illustration of classifications of a pixel based on hyperspectral and broadband sensors. 
(Left) PVA percent composition classification (green 62.5% live vegetation, red 12.5% red tallow, brown 
25% senescing foliage, and yellow 12.5% shadowed foliage) based on hyperspectral data. (Right) A point 
classification (single or combined class per pixel) based on broadband image data.
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material. As in needlerush and cordgrass marshes, salt-hay marshes appear to have low turnover with 
little seasonal pattern in live and dead composition. Maidencane marsh canopies exhibit yearly turnover. 
Beginning with nearly vertical shoots in the early spring, the canopy gains height and increasingly adds 
mixed orientations and density through the late spring to summer, then begins fall senescence. The 
maidencane seasonal turnover and its implications in interpreting canopy hyperspectral reflectance 
spectra demonstrate canopy reflectance and structure coupling.

11.4.1 C anopy Reflectance and Structure

Although spectral and structural variability is high between as well as within the marsh types, 
observed seasonal and growth patterns suggest a commonality of these variables within each marsh. 

FIGURE 11.11  Chinese tallow in wetland forest and marsh. The continuous color compositions of varying 
mixtures of the red, blue, and green hues represent the varying percent occurrences of tallow, live vegetation, 
senescent foliage, and senescing cypress-tupelo forest (see legend and Figure 11.10 for interpretation). The 
yellow vector outlines BLH and cypress wetland forests and the red vector the palustrine and estuarine marshes. 
Wetland coverages determined from the Landsat Thematic Mapper C-CAP classifications. (Adapted from 
Ramsey, E., III et al. 2005a. Int J Remote Sens, 26, 1637–1657.) White box outlines reference Figure 11.12. 
Gray denotes upland mask.
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To best encapsulate the range and covariance of canopy spectra and structure profiles, seasonal 
changes of a maidencane fresh marsh structure are described with respect to canopy hyperspectral 
reflectance differences (Figure 11.14a,b). Outside of external factors that result in dieback and 
regrowth, particularly burns (Ramsey et al. 2009a), the only marsh in the four introduced that 
completes a full senescence and regrowth cycle is maidencane (see Figure 11.2 for general locations).

(a) (b) (c)

(d) (e) (f)

FIGURE 11.12  (Top, Figure 11.11 box 1) Tallow in a wetland forest (cyan) and palustrine marsh (light 
purple). Arrows highlight tallow occurrences. (a) 2005 TM image (5, 4,1), (b) C-CAP classified TM image, 
(c) continuous color composition (see legend in Figure 11.11). (Bottom, Figure 11.11 box 2) Tallow in an 
estuarine marsh (dark purple). (d–f) As previously. Only the highest tallow percent occurrences are highlighted. 
The overwhelming majority of occurrences are low and not discernable in these depictions. (Adapted from 
Ramsey, E., III et al. 2005a. Int J Remote Sens, 26, 1637–1657.)

(a) (b) (c) (d) (e)

FIGURE 11.13  (a) Marsh canopy reflectance. Reflectance calculated from helicopter upwelling radiance (an 
average of up to seven per site) and field downwelling irradiance measurements in late spring. Ground and 
helicopter (red dot locates site center) views of (b) Juncus romerianus, (c) Spartina alterniflora, (d) Spartina 
patens, and (e) Panicum hemitomon marshes.



234 Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation

To document canopy structure, up to 22 light attenuation profiles (LAPs) were obtained at each 
maidencane marsh site in coordination with helicopter-based radiometer upwelling light recordings 
from the same sites. Collection techniques and analyses of these LAPs have been fully described 
(Ramsey et al. 2004). The canopy LAPs are represented as a function of canopy LAI and LAD as

	 Lz = Lsun · EXP - (LAI · LAD) · Z,	 (11.1)

where Lz is the measured photosynthetically active radiation (PAR) (sunlight from 400 to 700 nm) 
at a height = Z above the ground surface (0 cm). Lsun PAR is the sunlight illuminating the TOC 
(Figure 11.14a). The Lz/Lsun ratio is the fraction of PAR that penetrates to any depth below the TOC.

Canopy reflectance was estimated by dividing the helicopter-based recorded upwelling light 
with simultaneous downwelling recordings of a separate radiometrically and spectrally aligned 
radiometer or by using before and after recordings of downwelling sunlight reflected from diffuse 
cards of constant reflectance (Ramsey and Jensen 1996, Ramsey and Nelson 2005, Ramsey and 
Rangoonwala 2006) (Figure 11.14b). The upwelling radiometer recordings ranged from about 380 
to 1100 nm with nominal band center spacing of 2.6 nm and an estimated spectral bandpass of 
10 nm (Markham et al. 1995). No surface flooding was observed during the collection of the LAP 
and radiance recordings. Canopy LAPs and reflectance spectra of a single maidencane marsh site 
illustrate the covariance of these two variables. In this example, the coupled response of the marsh 
canopy LAI and LAD were not separated. This coupling suited the purpose of the example; however, 
decoupling of these canopy structure variables has been accomplished (Ramsey et al. 2016).

The combined LAP and reflectance information shown in the graphics indicates that the canopy 
comprised standing dead stalks in winter (December). By early spring (April), the canopy had added 
new green shoots and lost dead plant material. The summer (July) canopy LAP indicates a denser 
(or higher LAI) and less vertical (more mixed orientation components or changing LAD) canopy. 
The July reflectance spectrum indicates the canopy contained a higher percentage of live biomass 

(a) (b)

FIGURE 11.14  Light penetration and canopy reflectance of same single 30 × 30 m maidencane marsh 
(Panicum hemitomon) site (location of marsh shown in Figure 11.2). The error bars on the graphs represent 
variance of replicates. Note that light penetration represents the combined leaf angle distribution (LAD) and 
leaf area index (LAI) as a canopy structure indicator. (a) The light penetration curves illustrate winter dieback, 
spring turnover of dead material, summer regrowth, and the beginning of fall senescence. (b) The canopy 
reflectance spectra show complementary changes in green leaf material. Note the change in VIS reflectance 
amplitudes and the movement of the red edge (far red, at around 700 nm) from higher to lower wavelengths 
with the loss and gain of live plant material.
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than either the winter or spring canopies. The dramatic change in the early fall (October) reflectance 
signified a high decrease in live plant material. The concurrent LAP suggests that the decrease in live 
material did not represent a large loss of canopy plant material. Instead, the combined information 
of the LAP and reflectance suggests that the live material senesced in place.

This maidencane example helps to illustrate the need for canopy structure data as well as canopy 
hyperspectral data to correctly and fully interpret changes in the marsh condition. These changes in 
the canopy reflectance foretell adverse changes in the plant canopy condition, which is more fully 
illustrated in the smooth cordgrass example.

11.4.2  Detecting Subtle Changes

In contrast to maidencane marsh, saline smooth cordgrass marsh maintains a more stable canopy 
reflectance and structure throughout the year (Ramsey et al. 2004). Although reflectance and structure 
are more stable temporally, they are not uniform spatially. Like many marsh types, cordgrass exists 
in a variety of forms that have adapted to the differences in inundation and salinities. Canopy 
structures are short to tall and dense to moderately sparse, and changes in form can occur in response 
to changes in topography as small as a centimeter (Stout 1984). Interlaced within these spatially 
changing forms is the varying exposure of the background, which is primarily mud. Further, the 
varying moisture content of mud mixed with litter affects the spectral nature of the reflectance 
intensity (Figure 11.15).

11.4.2.1  Tall Form Cordgrass Marsh Dieback
Our first demonstration of applying hyperspectral techniques for mapping abnormal marsh change 
took place in expansive stands of tall form cordgrass marsh in the north central Gulf (Ramsey 
and Rangoonwala 2005). Overlain on the tapestry of structural forms, a spatially distributed and 

FIGURE 11.15  Reflectance as a function of mud background and water content. Wet and moist refer to 
high and moderate mud-water contents, respectively, based on visual observations. “Mud and dead” refers 
to relatively low mud-water content and the presence of dead marsh vegetation. Ground-based refers to 
measurements obtained about 2 m above the ground level. Note the abrupt reflectance increase around 700 nm 
in the “mud and dead” spectrum indicates live leaf material was present, even though visually the marsh was 
brown. (Adapted from Ramsey, E., III, and Rangoonwala A. 2009. in Remote Sensing of Coastal Environments, 
Y. Wang, (Eds.), CRC Press, Remote Sensing Applications Series.)
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seemingly spatially heterogeneous coastal cordgrass marsh dieback occurred (see Figure 11.2 
for general location). The reasons for the sudden dieback were unknown. It spread rapidly, but 
without obvious patterns. Only its predominant association with the cordgrass marsh was somewhat 
unifying. Reconnaissance of the dieback distribution began soon after the recognition that the 
phenomenon was occurring at the landscape scale. Visually, the occurrences of dieback seemed to 
be fairly certain; however, the myriad of dieback severities was difficult to describe. Complex color-
coded classifications were used to define the visual progression of dieback, such as yellow-green or 
brown-green, for example. There was a need to quantify the onset and progression of dieback on a 
landscape scale.

An in situ remote sensing strategy was developed to determine whether spectral indicators of 
dieback onset and progression existed at the leaf level, and if so, whether these indicators could be 
transferred to satellite hyperspectral or broadband sensor systems. The strategy first established a 
metric for assessing change and the relative change magnitude (Ramsey and Rangoonwala 2005, 
2006, 2009). The metric was based on the concept that each isolated dieback occurrence began in a 
localized area and spread outward. A transect from the most severe portion of the dieback through 
progressively less-impacted marsh and finally to the local healthy marsh simulated the temporal 
dieback progression. The inclusion of the local healthy marsh was to account for the naturally 
occurring cordgrass spatial differences in the observed disparities in dieback progression from site 
to site. The conceptual model was tested at four dieback sites scattered within a 12 × 12 km region 
of cordgrass marsh experiencing sudden dieback (Ramsey and Rangoonwala 2005).

Leaf reflectance and transmittance spectra were obtained from two to three plants collected 
every 5 m along transects spanning the dead to local healthy marsh (Ramsey and Rangoonwala 
2005). Three leaf samples each containing the three to five greenest leaves from the plant sample 
per transect location were analyzed. The reflectance spectra from the most extensive dieback site 
showed a nearly progressive change in blue (400–500 nm) and red (600–700 nm) magnitudes 
(Figure 11.16).

FIGURE 11.16  Leaf reflectance spectra from dead (dashed line) to local healthy (solid line) marsh at a dieback 
site. The insert exhibits the red band reflectance increase with dieback progression. The same progression was 
shown in the blue band and similar but less monotonic in the green and red-edge bands (vertical lines and 
labels locate band centers noted in Figure 11.18). (Adapted from Ramsey, E., III and Rangoonwala, A. 2005. 
Photogramm Eng Rem S, 71, 299–311.)
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In both blue and red wavelength regions, plant leaf reflectance decreased from the severest 
dieback region to the healthiest marsh. Similar but more variable correspondences were exhibited 
in the green (500–600 nm) and red-edge (around 770 nm) spectral bands. The progressive changes 
of these VIS reflectance bands with transect distance supported the concept of dieback onset in a 
localized area as well as its progressive outward spread.

The progressive changes also confirmed that a spectral indicator of the dieback progression was 
obtainable (Ramsey and Rangoonwala 2005). The direction of changes and their similar but different 
correspondences of the blue-red and green–red-edge bands to the transect progression also supported 
the existence of a spectral indicator of dieback onset and progression. Considering only the most 
common and usually dominant green leaf pigments, carotene (CAR) and chlorophyll a and b (CHL) 
(Gitelson et al. 2002), a reason for the similarities and differences of leaf reflectance with respect 
to the dieback was proposed based on the representation of absorption in the reflectance spectrum 
(Figure 11.17) (Kirk 1994).

CAR and CHL pigments exhibit high absorptions in the blue band, with a maximum between 
440 and 460 nm. Secondary CHL absorption peaks are exhibited between about 600–700 nm, with 
the main CHL-a peak near 670 nm. Green and red-edge bands also experience CHL absorption, 
although situated in the tails of the pigment absorption spectra. The spectrally varying strengths of 
the pigment absorptions indicated that small changes in pigment concentrations would be represented 
as dramatic changes in the green and red-edge bands but by relatively small changes in the blue and 
red bands. In fact, this difference in spectral sensitivity as suggested by Gitelson and Kaufman (1998) 
was used to provide greater discernment of the dieback onset and progression.

Changes in leaf pigment absorptions are related to changes in the leaf reflectance and transmittance 
per wavelength (λ) via Kirchoff’s radiation law as

	 %absorption(λ) = 1 − [%reflectance(λ) + %transmittance(λ)].	 (11.2)

The relationship is also illustrated by combining the three spectral variables in the same 
graphic (Figure 11.18). Inspection of all leaf spectra representing the four dieback transects found 
that narrow-wavelength bands located in the blue, green, red, red-edge, and NIR maximized the 
spectral information obtainable as related to changes in the CHL and CAR pigment concentrations. 
Even without the need to use the whole spectrum (400–1100 nm), the availability of hyperspectral 
information provided the ability to closely define the spectral positions and widths best suited for 

FIGURE 11.17  Absorption spectra of chlorophyll and carotene. Note the blue and red bands are located near 
peak absorptions, and the green and red-edge bands are located at the tails of these absorptions. (Adapted 
from Kirk, J. 1994. in Light & Photosynthesis in Aquatic Ecosystems, Second Edition, Cambridge University 
Press, Cambridge, 229–233.)
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the dieback onset and progression mapping. Landsat bands are overlain on the same leaf spectra to 
illustrate their general lack of specificity. The Landsat overlay also points out the lack of a red-edge 
band, an important spectral region in this study, as in many others. Leaf spectral analyses indicated 
that the red and blue bands best represented the larger and presumably older diebacks and the green 
and red-edge bands best represented the presumably younger diebacks. It is also noteworthy that 
trends in CHL and CAR concentrations estimated from a selection of narrow VIS reflectance bands 
(Gitelson et al. 2002) indicated that the younger diebacks were in fact in transition (Mendelssohn and 
McKee 1988). This further supports the older to younger dieback depiction drawn from the blue-red 
band and green–red-edge band comparisons. HSI provided the bands and bandwidths appropriate 
for the algorithm.

To provide a single indicator conducive to most operational broadband sensors, an NIR/green 
simple ratio was used (Gitelson and Kaufman 1998). Overall, the NIR/green ratio performed better 
than the more common NIR/red simple ratio and provided an indication of the dieback onset at 
each location (Ramsey and Rangoonwala 2005). Both ratios help desensitize dieback onset and 
progression mapping to atmospheric influences, variable soil background reflectance, and changing 
canopy compositions (plant and background) (e.g., Ehrlich et al. 1994). The next step was to transfer 
this spectral information from the plant leaf level to the plant canopy level.

The method used to transfer the plant leaf results to the plant canopy was helicopter-based radiance 
collections (Ramsey and Rangoonwala 2006, 2009). This technique allowed targeted and controlled 
collections with little atmospheric influence. Photographs of each marsh site collected with the 
radiance recordings were classified into generalized amounts of green to yellow to brown marsh 
and visible background classes corresponding to the spectral composition classes (Ramsey and 
Rangoonwala 2006). The photographic classes provided validation of the composition percentages 
calculated from the canopy reflectance spectra.

FIGURE 11.18  reflectance and transmittance spectra calculated from direct measurements of smooth 
cordgrass leaves. Solid bars: bands selected to determine changes in leaf that were indicative of dieback 
progression; dashed-line bars: VIS and NIR bands available on Landsat sensor. Note the lack of a Landsat 
red-edge band. The leaf sample was obtained from a dieback site in coastal Louisiana (Figure 11.2). (Adapted 
from Ramsey, E., III and Rangoonwala, A. 2005. Photogramm Eng Rem S, 71, 299–311.)
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The circles in Figure 11.19a illustrate the general location and spatial extent of the canopy 
reflectance spectra in Figure 11.19b. As expected from the plant leaf spectral analyses, the canopy 
VIS reflectance increases as the impact becomes more severe. The canopy reflectance associated 
with the dead transect portion is dominated by the mud background, whereas the canopy reflectance 
at the healthy end represents the local healthy marsh reflectance.

As in the invasive mapping with Hyperion data, PVA was used to extract the healthy and dead 
characteristic reflectance spectra (Ramsey and Rangoonwala 2006). The characteristic spectra 
defined from canopy reflectance spectra of the transect sites and a more inland reference cordgrass 
site provided a method to deemphasize the background variability and to isolate those influences 
related to plant leaf reflectance within the marsh canopy (Ramsey and Rangoonwala 2006). These 
two PVA characteristic spectra were applied to 13 transect canopy reflectance spectra and 10 
additional sites depicting cordgrass marsh at various stages of dieback.

Loadings based on the PVA hyperspectral analyses representing the tendency of the canopy 
reflectance to align with healthy or dead spectra were compared to marsh classifications of each 
of the 23 sites (Ramsey and Rangoonwala 2006). In addition, NIR/green and NIR/red ratios 
calculated for each site from the pertinent canopy reflectance spectrum were compared to the marsh 
classifications. The PVA loadings better aligned with the plant leaf transect results and the marsh 
classifications than did NIR/green or NIR/red indicators of marsh dieback progression (Ramsey 
and Rangoonwala 2006). Of the two ratios, the NIR/green ratio exhibited higher alignment with the 
classifications than NIR/red and had a higher correspondence with the PVA results (Ramsey and 
Rangoonwala 2009). PVA analysis based on the whole canopy reflectance spectra (400–1000 nm) 
produced the best depiction of marsh dieback progression, and the NIR/green band ratio produced 
lower but acceptable results.

Classification of the PVA results was accomplished with a distance-clustering procedure (SAS® 
Enterprise). The classification defined three broad categories: healthy, impacted, and severely 
impacted (including dead) (Ramsey and Rangoonwala 2006, 2009). Overall, based on hyperspectral 
data analyses, differences in the severity of dieback impact were indicated in the impacted and 
dead marsh categories. In addition, results based on the PVA whole spectra analyses captured the 

(a) (b)

FIGURE 11.19  Marsh canopy sampling strategy and transect canopy reflectance spectra. In the left portion 
(a), circles along the transect overlain onto photo taken during helicopter overflight represent IFOV of 
helicopter radiometer, dead (4d); intermediate-1 (4i1); intermediate-2 (4i2); and local healthy (4 h). On the 
right (b), canopy reflectance associated with each of the four target areas depicted by circles on the transect. 
Note that the progressively higher VIS canopy reflectance spectra simulate the leaf transect reflectance spectra 
shown in Figure 11.16. The dieback transect site was located in coastal Louisiana (Figure 11.2). (Adapted from 
Ramsey, E., III and Rangoonwala A. 2006. Photogramm Eng Rem S, 72, 641–652.)
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spectral variability in the nonimpacted or healthy cordgrass marshes, which was expected given the 
high variability in physical controls. Based on that natural spectral variability, marsh status based 
on visual color-coded classification did not provide a consistent strategy for monitoring the status 
of these coastal resources.

11.4.2.2  Short Form Cordgrass Marsh Dieback
The second demonstration of applying hyperspectral techniques for mapping abnormal marsh 
change took place in a short form cordgrass marsh lying at the apex of a tidal creek connected to the 
DelMarVA lagoon off the northern coast of Virginia (Figure 11.2) (Marsh et al. 2016). In contrast to 
the approximately twice daily flooding of the Gulf Coast marsh, flooding by saline lagoon waters is 
more irregular, occurring at higher tides. Similar to the Gulf Coast event but on a much smaller scale, 
a dieback occurred in 2004, as evidenced by fairly large areas of dead and completely denuded marsh 
scattered throughout the cordgrass marsh. Near the dieback region, a large region of cordgrass marsh 
existed visually unaffected by the dieback. Beginning with the appearance of the dieback and in 
tandem with ecologists’ collecting biophysical information along transects within the marsh dieback, 
leaf spectra were collected within and outside the dieback region over 4 years from 2004 to 2007.

As in the Gulf study (Ramsey and Rangoonwala 2005), leaf samples were collected along 
transects in the dieback marsh; however, collections were at sites designated as healthy, intermediate, 
and dead marsh along transects established by ecological researchers (Marsh et al. 2016). Outside the 
dieback, leaf samples were collected at three marsh platform sites and at one site at the tidal creek 
apex at times nearly coincident with collections in the dieback marsh.

The spectral analysis techniques and spectral indicators applied were those substantiated in 
the Gulf Coast dieback study (Ramsey and Rangoonwala 2005). In this study, the availability of 
biophysical indicators of marsh condition provided a means of testing the performance of the spectral 
indicators to determine marsh condition. Of the Gulf Coast indicator suite, the red band, NIR/red 
vegetation index (VI), and chlorophyll pigment spectral based indices had the highest discriminatory 
strengths in the marsh condition (Marsh et al. 2016). Based on the collections in 2005, spectral 
thresholds for healthy, intermediate, and dead marsh were calculated for each of the three indicators 
(Figure 11.20a).

(a) (b) (c)

FIGURE 11.20  Only the NIR/red indicator of marsh condition is shown. (a) Spectral indicators of healthy 
(H), intermediate (I), and dieback (D) marsh at dieback transects T5, T6, T7, and T8 in 2005. The horizontal 
lines locate the H, I, and D means of each condition class calculated from the 2005 transect samples. X-axis 
labels represent transect number and condition class (e.g., 5-H). (b) The spectral indicators and spectral-
condition thresholds were validated by comparison to samples collected in 2007 and field biophysical 
measurements (transect number-condition class-year, e.g., 5-H-7). (c) Calibrated and validated thresholds 
applied to nondieback marsh samples collected from 2004 to 2007 (site-year, e.g., B1–4). (Adapted from 
Marsh, Q. et al. 2016. J Coast Conserv, 20(4), 335–350.)
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An evaluation of the consistency of the spectral thresholds was provided by application to spectral 
indicators based on collections in the final year of the dieback in 2007 compared to 2005 spectral 
indicators (Figure 11.20b) (Marsh et al. 2016). All spectral indices were highly consistent from 2005 
to 2007, except for a dramatic improvement in condition at a site that had been classified as dieback 
in 2005. Independent biophysical measurements confirmed that the marsh at that site had improved 
from a dead state in 2005 (7-D-5) to healthy in 2007 (7-D-7), exactly tracking the spectral-condition 
indicator change.

These spectral-condition indicators and thresholds were applied to the samples collected outside 
the dieback (Figure 11.20c) (Marsh et al. 2016). In 2004, none of the four sites visually exhibited signs 
of marsh dieback; however, the spectral indices for these nondieback marsh platform sites indicated 
stress. This interpretation based on the spectral indices and thresholds was supported by biophysical 
measurements in the area. Additional evidence corroborating the utility of the spectral indicators 
and thresholds was the capture of conditions resembling a small-scale dieback in 2006, 2 years after 
the dieback peak (Figure 11.20c). While the change in spectral indicator magnitudes did not reach 
dieback levels, they suggested a downturn in marsh condition. This downturn was supported by 
biophysical measurements. The ability of the spectral indicators to document coordinated changes 
in marsh condition at multiple sites located in separate marsh areas is a critical result of this work. 
The alignment of spectral indicator results between dieback and nondieback areas, combined with 
the proven robustness of the thresholds, demonstrates the effectiveness of the spectral thresholds to 
quickly assess marsh condition status. These spectral indicators and thresholds are extendable to 
satellite remote sensing data platforms.

11.5  SUMMARY AND FUTURE DIRECTIONS

The benefits of HSI to remote sensing mapping of wetlands are based on the uniqueness of vegetation 
(at the species or cover-type level), spectral responses to heterogeneous growing conditions, and 
phenodynamics of the wetland system. The mixtures of vegetation types, densities, heights and 
forms, high spatial complexity, and dominant role of flooding in controlling the wetland landscape 
resulted in the development of unique remote sensing solutions to detect, map, and monitor these 
dynamic systems. As demonstrated in this chapter, the ability to overcome these complexities relies 
on targeted applications of HSI that are enhanced when supplemented with pertinent plant leaf 
spectral and canopy structure and background information.

Five studies were used to demonstrate the advantage of HSI in mapping and monitoring wetland 
ecosystems. The first coupled hyperspectral image and field data within an RT model. Limited to the 
VNIR wavelength range, the application of the RT model determined that the non-species-specific 
relationship between VNIR broadband image data and mangrove canopy LAI resulted from a high 
conformance in canopy orientation (LAD) and a lack of species specificity in VNIR leaf spectral 
properties. The RT model-predicted LAIs had a 93% correspondence to field-based LAIs and a 78% 
correspondence with NDVI values obtained from VNIR hyperspectral canopy reflectance spectra. 
The RT results also indicated that, although non-species-specific, leaf VNIR reflectance site-specific 
differences may provide stand-level indicators of mangrove condition and changes. Studies that 
extended the reflectance from the VNIR to include the SWIR showed successful discrimination 
of the mangrove species at the leaf level. Classification discrimination at the canopy level was 
accomplished when species dominances were physically separable at the pixel level, and in two 
cases, structure information was included in the classification.

The second study that mapped the occurrence of invasive plants in a wetland landscape illustrated 
how broadband mapping requiring a high spatial resolution (1 m) could be regionalized with moderate-
spatial-resolution (30 m) hyperspectral data and image processing. The regional hyperspectral mapping 
provided not only the invasive tallow detection as obtained in the broadband 1-m mapping but also 
provided a continuous classification of tallow, live, and senescing vegetation percent occurrences 
within the 30-m pixel. The continuous tallow percent occurrence classification was used to create an 
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added-value product for resource managers. An integration of land resource information created from 
broadband data and tallow occurrences created from the hyperspectral data provided new information 
about the risk of tallow establishment by land-cover type and land activities.

The third study illustrated the coupling between marsh canopy structure and hyperspectral 
reflectance. The demonstrated coupling showed that the correct interpretation of marsh trends 
can require concurrent information describing the canopy structure (e.g., LAI and leaf orientation 
distribution). The study found that increased hyperspectral mapping performance can be realized 
by utilizing remote sensing data that are more revealing about the marsh canopy structure, such as 
radar or lidar, in concert with HSI collections.

The fourth and fifth studies demonstrated the ability of hyperspectral data processing to capture 
subtle leaf and canopy spectral changes related to the onset and progression of dieback in spectrally 
complex marshes. Although analyses based on the whole VNIR spectra best predicted dieback 
onset and progression, enhanced mapping performance compared to broadband sensor systems was 
illustrated when the hyperspectral data were transformed to user-specified narrow-width bands. The 
bands were placed at leaf reflectance features exhibiting high variability and closely aligned with the 
major leaf pigment spectral absorption regions in the VIS. The heightened information captured by 
the hyperspectral reflectance spectra enabled tracking of dieback progression and recovery, revealed 
subtle changes in marsh condition, and showed that the same marsh experiencing similar stress levels 
can produce dramatically different outcomes.

Finally, baldcypress and BLH wetland forests were described in terms of where HSI mapping 
could be advantageously applied. One of those advantages is the use of hyperspectral data and 
processing to detect the onset of baldcypress stress caused by saltwater intrusion into these freshwater 
swamps. Early stress detection would promote successful remediation before irreversible change. 
More effective separation of BLHs by community could also be an advantage of HSI mapping. 
Mapping could be applied in a period of known maximum spectral contrast to establish the locations 
and extents of the separate BLH communities. Once established, HSI mapping could monitor the 
BLH forest communities in order to detect detrimental change. Reestablishment of community 
extents would occur each year during maximum spectral contrast.

HSI provided increased information about the status or condition of a wetland canopy beyond what 
was obtainable from broadband sensors in all described comparisons. In each case, the hyperspectral 
mapping advantage was based on the use of high-quality canopy reflectance spectra largely free 
from atmospheric distortions and illumination variability. After the high-fidelity reflectance data 
sets were obtained, specialized tools were required that could transform the reflectance data into 
information about the wetland condition with enough precision so that subtle changes could be 
detected. These transformations to reflectance and spectral characteristics are often arduous and 
detailed. As demonstrated, however, obtaining the mapping objective often depends on the use of 
HSI. Also introduced was the need at times to incorporate new and more detailed field collection and 
analysis techniques. Often, particularly in investigative works, mapping success relies on targeted 
and well-structured field campaigns that provide consistent and pertinent biophysical data that can be 
related to the hyperspectral reflectance data. Those biophysical and reflectance relationships provide 
quantitative interpretation of the reflectance data and the ultimate transformation of the reflectance 
data into meaningful products and information that can only be provided by HSI.

In addition to using hyperspectral data collections in wetland mapping projects, applied research 
should increase integration of hyperspectral data with broadband optical, radar, and lidar data 
sources. Broadband and HSI integration can be simple, as demonstrated in the invasive tallow 
mapping (Ramsey et al. 2005a) or using lidar-generated topography to improve the hyperspectral 
classification of a marsh (Yang and Artigas 2010). More refined and complete integrations would use 
hyperspectral data to enhance the information of broadband data and extend that enhanced mapping 
performance throughout the broadband swath extent, providing wider coverage and thereby higher 
repeat frequency (Ramsey and Rangoonwala 2009). HSI integration with radar would help account 
for the marsh structure (Ramsey et al. 2016) and provide an additional source of wetland forest 
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structure (Held et al. 2003, Simard et al. 2010), particularly when the lack of solar illumination or 
clouds obscure optical collections. Radar data could also be useful for monitoring the hydrologic state 
of observed wetlands, such as flooding in marshes and swamps. Similar to what was discovered with 
broadband and HSI integration, current research is pursuing the integration of optical and radar in 
an effort to provide a more consistent and on-demand land-cover-monitoring system. This integrated 
mapping should include HSI as well. The full integration of hyperspectral, broadband, and radar 
image data would advance the relevance of remote sensing for the unique spatial, compositional, and 
functional setting of dynamic coastal wetlands.
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12 Hyperspectral Remote 
Sensing of Fire
A Review

Sander Veraverbeke, Philip Dennison, Ioannis Gitas, 
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Le Kuai, Ran Meng, Dar Roberts, and Natasha Stavros

12.1  INTRODUCTION

Fire is a ubiquitous disturbance agent in the terrestrial biosphere, and it occurs in ecosystems that 
range from tropical rainforests to deserts and boreal forests (Bond and Keeley, 2005; Bowman et al., 
2009). Fire occurs in a variety of forms, including high-intensity crown fires to long-duration ground 
fires in organic soils with relatively low intensity (van der Werf et al., 2017). Ecosystems and fire 
regimes are rapidly changing at historically unprecedented rates (Gillett et al., 2004; Westerling, 
2006; Dennison et al., 2014; Stavros et al., 2014). For example, fire activity has significantly increased 
in boreal forest ecosystems (Gillett et al., 2004; Turetsky et al., 2011; Veraverbeke et al., 2017) and 
declined in savannas (Andela and van der Werf, 2014; Andela et al., 2017). Agricultural fires are an 
increasing threat to the sustainable management of tropical forests and peatlands (van Marle et al., 
2017). In many regions, recent changes in fire regimes have caused permanent shifts in species 
composition (Zedler et al., 1983; Tulloch et al., 2016), resulting in changes in landscape heterogeneity 
(Airey Lauvaux et al., 2016; Boucher et al., 2017). These ecological changes caused by fire have 
strong implications for biodiversity, land use, carbon and water cycling, and climate. Intensification 
of the fire regime in many areas contributes to increasing atmospheric carbon dioxide (Keppel-
Aleks et al., 2014; Veraverbeke et al., 2015), while vegetation regrowth following a fire can be a 
multidecadal carbon sink (O’Halloran et al., 2012).
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Fire is a temporally dynamic process in which fuels, climate and weather, and humans interact at 
timescales ranging from milliseconds to millennia (Bowman et al., 2009). The combustion process 
itself, which occurs when heat, oxygen, and fuel are combined, is relatively short-lived. In years to 
weeks before fire, however, droughts and heat waves increase the susceptibility of fuels to ignition 
and subsequent fire spread (van der Werf et al., 2003; Abatzoglou and Kolden, 2011). Fires spread 
over landscapes for several hours to months depending on fuel continuity and synoptic weather 
patterns (Parks, 2014; Veraverbeke et al., 2014a). The first weeks to years after a fire, post-fire 
landscapes are often susceptible to landslides and floods (Barro and Conard, 1991; Doerr et al., 2006; 
Diakakis et al., 2017). At decadal timescales, fuel biomass accumulates over decades in synergy 
with climate and sometimes land management decisions (Hanson and Odion, 2014). At millennial 
timescales, fires mediate biome boundaries and continental vegetation composition and structure 
(Lehmann et al., 2014; Rogers et al., 2015; Veraverbeke et al., 2017).

The fire disturbance continuum discriminates between discrete temporal phases during which 
fire processes occur (Jain et al., 2004). The fire disturbance continuum includes pre-fire, active, 
and post-fire environments (Figure 12.1). The pre-fire environment refers to the type, structure, 
condition, and amount of fuels as influenced by climate, weather, and land management. The active 
fire environment is the phase during which fires spread over the landscape. Topography, fuels, 
and fire weather influence active fire behavior and intensity. Fire intensity describes the physical 
combustion process of energy release from organic matter (Keeley, 2009) and is directly related 
to fire emissions (Wooster et al., 2005). Finally, the post-fire environment is what is left after the 
fire is extinguished. The post-fire environment is often described interchangeably with the terms 
fire and burn severity (Boer et al., 2008; Keeley, 2009). Here we define fire severity as the degree 
of environmental change caused by a fire as evidenced immediately after the fire without recovery 
effects (Lentile et al., 2006; Veraverbeke et al., 2010; Morgan et al., 2014). Conversely, burn severity 
gauges both the immediate fire-induced change and vegetation recovery.

Remote sensing has been successfully applied in all stages of the fire disturbance continuum for 
several decades. Success stories include fuel type mapping (Roberts et al., 2003; Mitri and Gitas, 2006; 
Peterson et al., 2013; Marino et al., 2016), fire risk assessments (Chuvieco et al., 2004; Meng et al., 
2017; Yu et al., 2017), active fire detection (Giglio et al., 2003; Schroeder et al., 2014), burned area 
mapping (Roy et al., 2005; Gitas et al., 2008; Giglio et al., 2009; Katagis et al., 2014), fire/burn severity 
assessments (Eidenshink et al., 2007; Veraverbeke et al., 2010), and vegetation recovery mapping (Riaño 
et al., 2002; van Leeuwen et al., 2010; Veraverbeke et al., 2012a). These applications have primarily 
capitalized upon broadband multispectral remote sensing data. Broadband multispectral remote sensing 
is the simultaneous acquisition of calibrated radiance units in a limited number (generally on the order 
of between 3 and 15) of non-contiguous broad (generally wider than 20 nm) spectral bands. In contrast, 
narrowband hyperspectral remote sensing is the simultaneous acquisition of calibrated radiance units 
in many (generally more than 100) narrow (generally 20 nm or smaller) spectrally contiguous bands. 
Hyperspectral imaging, or imaging spectroscopy, refers to the acquisition of coregistered images over 
contiguous narrow spectral bands (Schaepman et al., 2009). Hyperspectral remote sensing has proven 
its utility in a wide range of Earth system science domains, among others those focused on greenhouse 
gases (Roberts et al., 2010; Dennison et al., 2013), plants (Johnson et al., 1994; Roberts et al., 1998; 
Asner et al., 2000; Somers et al., 2010; Ustin et al., 2012), minerals (Hook et al., 1991; van der Meer and 

FIGURE 12.1  Temporal phases in fire disturbance continuum.
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Bakker, 1997; Baugh et al., 1998), snow and ice (Painter et al., 2003; Dozier et al., 2009), coastal and 
inland water (Hoogenboom et al., 1998; Salem et al., 2005; Kudela et al., 2015), urban environments 
(Roessner et al., 2001; Roberts et al., 2012), and fire (Dennison and Roberts, 2009; Schepers et al., 
2014; Veraverbeke et  al., 2014b). These studies were conducted based on airborne hyperspectral 
(AHS) remote sensing, often based on data from the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) (Green et al., 1998) or the Airborne Prism Experiment (APEX) (Itten et al., 2008). To date, 
Hyperion on the Earth-Observing One (EO-1) platform, acquiring data between 2000 and 2017, has 
been the only spaceborne hyperspectral imager that acquired data in the visible to shortwave infrared 
(VSWIR) spectral range (approximately between 0.4 and 2.5 µm) (Pearlman et al., 2003). In the next 
few years, several spaceborne hyperspectral sensors may be launched: Environmental Mapping And 
Analysis Program (EnMAP) (Stuffler et al., 2007), Hyperspectral Imager Suite (HISUI) (Iwasaki 
et al., 2011), Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 2015), Precursore Iperspettrale Della 
Missione Applicativa (PRISMA) (Labate et al., 2009), and the Space-borne Hyperspectral Applicative 
Land and Ocean Mission (SHALOM) (Feingersh and Ben Dor, 2016). These missions will greatly 
increase the availability and application of hyperspectral data.

With upcoming spaceborne hyperspectral missions and the proven utility of hyperspectral data in fire 
applications, we provide a review of the current state of the art in hyperspectral remote sensing of fire. 
We therefore review developments in the pre-fire, active fire, and post-fire stages of the fire disturbance 
continuum. The primary focus of this review is on applications where hyperspectral data provide a clear 
improvement over multispectral data or on novel opportunities that arise from hyperspectral data that 
are not possible based on multispectral data. We also propose avenues for further research.

12.2  HYPERSPECTRAL FIRE APPLICATIONS

12.2.1  Pre-Fire Applications

The pre-fire environment refers to fuel composition, condition, amount, and structure (Chandler 
et al., 1983) and how these change through time as a function of climate, weather, land management, 
and land use.

First, fuel composition refers to the type (e.g., grass or shrub) and size of fuels. The composition 
of fuels affects its chemical composition and, thus, the available energy content that then affects fire 
intensity, the physical combustion process of energy release from organic matter (Agee, 1993; Keeley, 
2009). Fuel composition influences fire management strategies. For example, it may be desirable to 
protect against high-severity canopy fires by prescribing fire to reduce fuels in many ecosystems. Certain 
functional environments, such as old growth forests, however, are home to protected or endangered 
species (Tews et al., 2004), and failure to protect these environments during prescribed burns would 
result in diversity loss (Kennedy et al., 2008; Rockweit et al., 2017). The size of fuels, defined as the 
ratio between surface area and volume, will influence fire intensity and moisture loss (Agee, 1993). 
Second, fuel condition refers to the moisture content and the live or dead fuel status. These parameters 
influence fuel drying and combustion (Pickett et al., 2010). Moisture content affects the flammability of 
fuels and, thus, fire behavior such as ignition probability, fire spread rate, and consequent smoke impacts 
(Anderson, 1970; Forkel et al., 2012). Furthermore, fuel moisture content can influence the vulnerability 
of plants to disease and mortality and, thus, vulnerability to fire (McDowell et al., 2008). Third, fuel 
amount refers to the amount of fuels available to burn and is often associated with biomass. Fourth, 
fuel structure refers to the vertical and horizontal connectivity of fuels, whereby vertical connectivity 
is defined by the connection of ladder fuels, and horizontal connectivity is defined by the fractional 
cover and density of vegetation. Fuel structure influences fire spread rates.

Multispectral remote sensing of fuel composition by mapping plant functional types has capitalized 
upon classification and vegetation index approaches (Hansen and Reed, 2000; Loveland et al., 2000; 
Friedl et al., 2002; Bartholomé and Belward, 2005; Rollins et al., 2006; Nelson et al., 2013; Ryan 
and Opperman, 2013). Similarly, retrieving fuel moisture and photosynthetic, that is, live, versus 
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nonphotosynthetic, that is, dead, vegetation from multispectral data is often based on spectral 
indices (Gao, 1995; Liu and Kogan, 1996; Anderson et al., 2004; Jackson et al., 2004), sometimes 
augmented with land surface temperature data from thermal bands (Verbesselt et al., 2002; Chuvieco 
et al., 2003). Retrievals of fuel amount can be based on empirical relationships between field and 
vegetation index data that are then spatially extrapolated (Dong et al., 2003; Wessels et al., 2006). In 
a similar way, vegetation indices have also been used as predictors of canopy cover (Larsson, 1993). 
Robust relationships and useful applications of multispectral pre-fire remote sensing are abundant. 
However, the fact that reflectance data from a few bands, often combined in a spectral index, results 
in high correlations with multiple fuel attributes demonstrates that some of these attributes are highly 
correlated, yet broadband remote sensing may not be able to fully capture subtle differences that may 
exist within fuel attributes and plant species.

The multiple and narrow spectral bands from hyperspectral remote sensing allow different 
approaches to determine fuel attributes like fuel composition and condition (Schimel et al., 2013; 
Thompson et al., 2017). Fuel composition and fractional cover can be determined from spectral 
mixture analysis (SMA) (Roberts et al., 2006). SMA calculates cover fractions of different ground 
cover classes and thereby leverages the spectral information over multiple wavebands (Adams et al., 
1986; Roberts et al., 1998). Because there is inherent variability within a ground cover class, often many 
sample spectra, or endmembers, can be used for a single class. Multiple endmember SMA (MESMA) 
is an extension of SMA that accounts for variability within endmember classes (Roberts et al., 1998; 
Rogge et al., 2006), which is beneficial for fuel type composition and cover fraction retrievals. For 
fuel type composition mapping, the ground cover classes can be as specific as ecosystem type and 
contain multiple slightly variable spectra (Figure 12.2). Ground cover classes can also be defined as 
green vegetation (GV), nonphotosynthetic vegetation (NPV), and substrate (Roberts et al., 1998). The 
spatial distribution of GV, NPV, and substrates in a Californian landscape is shown in Figure 12.3. 
Multitemporal mapping of these ground cover fractions demonstrates drought effects on fuels and 
their flammability. Figure 12.4, for example, shows the effects of the California drought between 
2013 and 2016 on the fraction of alive vegetation, defined as the ratio between the GV fraction and 
the sum of the GV and NPV fractions. Fuel moisture content can be derived from hyperspectral 
signals in spectral regions with high water absorption (Yebra et al., 2013). This approach necessitates 
a clear discrimination between atmospheric and fuel moisture, for example through radiative transfer 
modeling (Ustin et al., 1998). An alternative approach is to retrieve equivalent water thickness from 

FIGURE 12.2  Example of a vegetation spectral library. The mean (+) and mean plus/minus one standard 
deviation (.) of five spectra per vegetation type are plotted. Atmospheric water vapor absorption regions were 
removed.
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SWIR bands between approximately 1.2 and 2.5 µm, a spectral region that is highly influenced by 
water absorption (Gao and Goetz, 1990, 1995). Hyperspectral data can be further useful in deriving 
variables that relate to fuel accumulation. For example, leaf area index (LAI) as a proxy of stand 
productivity (Gitelson et al., 2014), and thus fuel accumulation, can be derived from the water content 
retrieval from hyperspectral data (Roberts et al., 2004). Another indirect way in which hyperspectral 
data can improve the retrieval of biomass is by providing additional information (e.g., fractional 
cover of species) that informs the use of allometric equations, for example, in synergy when using 
other sensor technologies such as light detection and ranging (LiDAR) (Koch, 2010).

12.2.2 A ctive Fire Applications

Applications developed for active fires fall into two major categories: (1) fire detection, in which 
the goal is to identify spectra containing active fire (Dennison and Roberts, 2009), and (2) fire 
temperature retrieval, in which the goal is to model fire temperature from emitted radiance (Dennison 
et al., 2006). Fire temperature retrieval may provide additional outputs from modeling, such as 
subpixel fire fractional area.

(a)

(b)

FIGURE 12.3  (a) True color composite from the Airborne Visible/Infrared Imaging Spectrometer over parts 
of Santa Monica mountains in California, USA. The composite used the bands centered at 0.65 µm (red), 
0.55 µm (green), and 0.45 µm (blue). (B) False color composite inputting NPV (red), GV (green), and substrate 
(blue) covers fractions retrieved from MESMA. Suboptimal retrievals were masked in black.
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Radiance emitted directly from a fire is dependent on the temperature of the burning biomass 
and flame, the emissivity of the burning biomass and flame, and the depth of the flame. Traditional 
broadband methods for detecting fire and estimating fire temperature and intensity use brightness 
temperature, which assumes that fire is a blackbody emitter (Giglio et al., 2003; Zhukov et al., 2006; 
Roberts and Wooster, 2008; Schroeder et al., 2014). For a blackbody, emitted radiance increases and 
peak emission shifts to shorter wavelengths as fire temperature increases (Figure 12.5).

Background blackbody surfaces at typical Earth surface temperatures emit most of their radiance 
in the thermal infrared (TIR) (8–12 µm) and longer wavelengths (Figure 12.5). As temperature 
increases above 600 K, radiance in the mid-infrared (MIR) (3–5 µm) and SWIR sharply increases. 
Smoke is a strong scatterer and absorber at wavelengths shorter than 1.2 µm, such that the visible 
(0.4–0.7 µm) and near-infrared (NIR) (0.7–1.2 µm) spectral regions have limited utility for active fire 
applications. At longer wavelengths, smoke transmittance is very high, and smoke has a very minor 
impact on emitted radiance. Thus, the SWIR and MIR spectral regions are most useful for measuring 
flaming and smoldering combustion (Dennison and Matheson, 2011). The SWIR spectral region 
demonstrates a very strong difference in emitted spectral radiance across the range of temperatures 
typical for smoldering and flaming combustion (650 K to higher than 1500 K).

While multiple active fire applications of hyperspectral data have assumed that fire within an 
instantaneous field of view (i.e., a pixel) is a single temperature blackbody (Dennison et al., 2006; 
Dennison and Matheson, 2011; Matheson and Dennison, 2012), the actual shape of emitted radiance 
is a critically important question. Emitted radiance from a single pixel will be a composite of multiple 
flaming and smoldering elements, each with their own range of temperatures. At-sensor radiance 

(a)

(b)

FIGURE 12.4  Decreases in alive vegetation fraction, defined as the ratio between the GV fraction and the 
sum of the green and non-photosynthetic vegetation fractions, derived from multiple endmember spectral 
mixture analysis, in California’s Santa Monica Mountains between (a) 2013 and (b) 2016 during the California 
drought. Suboptimal retrievals were masked in white.
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itself will be a combination of burning and nonburning surfaces within the instantaneous field of 
view. Reflected solar radiance will also be included in at-sensor radiance if a fire is imaged during 
the day. Flames have lower emissivity than background materials, but the impact of flame emissivity 
will depend on path length through flame and the soot content of the flame (Giglio and Kendall, 
2001; Riggan et al., 2004).

Dennison and Matheson (2011) tested the blackbody assumption by comparing emitted radiance 
acquired simultaneously by AVIRIS and the MODIS/ASTER airborne simulator (MASTER) (Hook 
et al., 2001) over a single fire. Fire temperatures modeled using AVIRIS SWIR data were compared to 
fire temperatures modeled using MASTER multispectral MIR and TIR data. Both models assumed 
blackbody emission, and temperatures retrieved from the two data sets were found to be poorly 
correlated below 800 K. Matheson and Dennison (2012) investigated spatial scaling of AVIRIS 
data over four fires and found decreases in modeled fire temperatures as spectra were aggregated up 
to coarser spatial resolutions. Based on fire complexity across spatial scales, uncertain emissivity, 
and results from previous experiments, the blackbody assumption should be regarded with caution 
(especially for cooler fires).

Regardless of whether blackbody emission approximates actual fire emitted radiance, maximum 
spectral radiance values produced by fire are an important concern for remote measurement. 
Sensors designed for measuring land and water surfaces typically do not have a high enough 
saturation threshold to adequately capture peak emission from wildfires, especially at a finer spatial 
resolution, where fire can comprise a higher percentage of individual pixels (Realmuto et al., 2015). 
For example, SWIR bands in AVIRIS data frequently saturate over the hottest parts of wildfires, 
especially when flown on the lower altitude Twin Otter platform (Dennison et al., 2006; Matheson 
and Dennison, 2012).

Detection of fire within hyperspectral data presents two challenges. Typically, hyperspectral 
data are acquired during the day, in which case emitted radiance must be reliably separated from 
the reflected solar radiance background to accurately detect fire. Also, fire may represent a small 
percentage of a larger pixel, which effectively dilutes the strength of the emitted radiance signal and 
makes emitted radiance more difficult to separate from the reflected solar radiance background. 
Dennison and Roberts (2009) compared all possible normalized difference index combinations of 
AVIRIS bands in radiance data acquired over the 2003 Simi fire in California, USA. The presence 
of fire in a pixel increases spectral radiance in longer-wavelength SWIR bands more rapidly than in 
shorter-wavelength SWIR bands, and indices combining two bands spanning the range of the SWIR 
spectral region produced the most accurate detection of pixels containing fire. They named the most 
accurate index the Hyperspectral Fire Detection Index (HFDI):

FIGURE 12.5  Blackbody emission curves across a range of temperatures. (After Dennison, P.E., Matheson, 
D.S., 2011. Remote Sens. Environ. 115, 876–886. https://doi.org/10.1016/j.rse.2010.11.015.)

https://doi.org/10.1016/j.rse.2010.11.015
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where L2.43µm is the spectral radiance around 2.43 µm, and L2.06µm is the spectral radiance around 
2.06 µm.

Dennison and Roberts (2009) further performed a sensitivity analysis on the HFDI, noting the 
impacts of fire temperature, subpixel fractional area, atmospheric path length and water vapor, and 
solar zenith angle on the index. HFDI takes advantage of an atmospheric carbon dioxide absorption 
feature at 2.06 µm. Reflected solar radiance experiences atmospheric carbon dioxide absorption on 
both the downwelling and upwelling paths, while emitted radiance only experiences absorption on 
the upwelling path (Dennison, 2006). This difference allows improved separation of fire from the 
background surface, but it also effectively prohibits remote measurement of carbon dioxide emissions 
directly over a fire.

Excited potassium has line emission features at 0.767 and 0.770 µm. Potassium emission has 
been detected over fires using imaging spectrometer data, including AVIRIS (Vodacek et al., 2002) 
and EO-1 Hyperion (Amici et al., 2011). Finer spectral resolution improves discrimination of the 
potassium emission feature, but the primary limitation of this technique remains scattering and 
absorption by smoke within the NIR spectral region (Dennison and Roberts, 2009).

Hyperspectral temperature retrieval methods are based on a spectral mixing model approach 
(Giglio et al., 2003). The general form of spectral mixing models used for spectral radiance (Lλ) is
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where Li,λ is the radiance of endmember i at wavelength λ, fi is the fraction of endmember i, n is the 
number of endmembers, and ελ is the residual error. A background endmember can include emitted 
radiance or reflected solar radiance, depending on the wavelength regions included in the model 
(Dennison and Matheson, 2011). Most models use a single blackbody emitted radiance endmember 
for fire (i.e., n = 2). In simple two-band models, the temperature of the fire is solved for using the 
brightness temperature of the measured pixel and the brightness temperature of the background. In 
models with more than two bands, endmembers spanning a range of temperatures can be compared, 
and the endmember that produces the lowest model error is used subsequently to assign the fire 
temperature to a pixel (Dennison et al., 2006). In either case, each endmember is multiplied by a 
fractional cover. All fractions in the model sum to one, and fractional cover of the fire endmember 
represents the subpixel fire percentage. This type of mixing model assumes that radiance from fire 
and background endmembers mix linearly, an assumption that is difficult to test in reality. The 
mixing of model retrievals of fire temperature has also frequently been applied to multispectral 
airborne and satellite remotely sensed data (Matson and Holben, 1987; Oertel et al., 2004; Riggan 
et al., 2004; Zhukov et al., 2006; Eckmann et al., 2008, 2009; Giglio and Schroeder, 2014).

The larger spectral dimensionality provided by hyperspectral data permits the application of more 
complex mixing models. For example, Dennison et al. (2006) created a three-endmember multiple 
endmember mixing model that included background endmembers for different vegetation types, soil 
and ash, a range of emitted radiance endmembers that included modeled atmospheric absorption, 
and a shade endmember that controlled for the absolute level of radiance. A major advantage of 
this approach is that it simultaneously produces maps of fire temperature, fire fractional area, and 
background land-cover type (Figure 12.6). Dennison and Matheson (2011) applied a similar three-
endmember model but extended both the background and fire endmembers through the MIR and TIR 
and expanded the number of potential endmembers to include both smoke- and non-smoke-covered 
backgrounds. However, the lack of reference data for validation of retrieved fire temperature remains 
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a limitation. To date, in situ temperature measurements and hyperspectral imagery have not been 
collected concurrently over a fire.

12.2.3  Post-fire Applications

12.2.3.1  Fire and Burn Severity
Fire and burn severity are often loosely defined as the degree of environmental change caused by a fire 
(Key and Benson, 2006). Fire severity refers to the fire-induced change without vegetation recovery 
effects, while burn severity represents the combined effect of the immediate fire impact and longer-
term recovery (Lentile et al., 2006; Veraverbeke et al., 2010; Morgan et al., 2014). Severity often 
refers to different ecosystem characteristics depending on ecoregion and application. In grasslands, 
for example, combustion completeness, the ratio of combusted to available biomass, is an important 
indicator of severity. In temperate ecosystems, severity often refers to tree mortality, while in boreal 

(a) (b)

(c) (d)

FIGURE 12.6  (a) Color composite from the Airborne Visible/Infrared Imaging Spectrometer over parts of 
active 2003 Simi fire in California, USA. The composite used the bands centered at 1.70 µm (red), 1.10 µm 
(green), and 0.66 µm (blue). (b) Land cover, (c) fire temperature (K), and (d) fire fraction derived from multiple 
endmember spectral mixture analysis. (After Matheson, D.S., Dennison, P.E., 2012. Remote Sens. Environ. 
124, 780–792. https://doi.org/10.1016/j.rse.2012.06.026.)

https://doi.org/10.1016/j.rse.2012.06.026
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ecosystems, the depth of burning in organic soils is the main indicator of severity (Turetsky et al., 
2011; Rogers et al., 2014; Veraverbeke et al., 2015). Severity data are used in two main applications. 
First, in the USA, severity maps are operationally used by burned area emergency response (BAER) 
teams to diagnose risk to infrastructure and safety and prioritize post-fire rehabilitation efforts 
(Eidenshink et  al., 2007). Second, several studies recognize the potential of severity maps to 
optimize fire emissions estimates (French et al., 2008; De Santis et al., 2010). De Santis et al. (2010) 
used remotely sensed estimates of severity to optimize combustion values. Similarly, Veraverbeke 
and Hook (2013) used a remotely sensed indicator of tree mortality in a fire emissions model and 
demonstrated that emissions estimates with a remotely sensed tree mortality layer were more than 
50% lower than without. Rogers et al. (2014) demonstrated the utility of a severity spectral index for 
estimating fire emissions in boreal ecosystems, and Veraverbeke et al. (2015, 2017) further integrated 
this spectral index in a statistical model of carbon combustion together with other environmental 
layers for these ecosystems.

In multispectral remote sensing, the Normalized Burn Ratio (NBR) (López García and Caselles, 
1991) has become the most widely used spectral index for assessing fire and burn severity, often 
applied on Landsat imagery (French et al., 2008). NBR relates to vegetation vigor and moisture by 
combining NIR and SWIR reflectance. After a fire, there is generally a decrease in NIR reflectance 
and an increase in SWIR reflectance. The differenced NBR (dNBR) (Key and Benson, 2006) is 
obtained after bitemporal differencing pre- and post-fire NBR images. The principles of the dNBR 
index are transferable to hyperspectral remote sensing. The limited availability of spaceborne 
hyperspectral data and the need for advance planning in airborne campaigns have resulted in very 
few opportunities to test the performance of a hyperspectral dNBR (Stavros et al., 2016). A rare 
example of such a pre-/post-fire airborne image acquisition is from van Wagtendonk et al. (2004) 
for a fire in Yosemite National Park in the USA. They, however, found no increased sensitivity of a 
hyperspectral dNBR to ground measurements of severity in comparison with the Landsat-derived 
dNBR. Further opportunities to optimize the hyperspectral dNBR recently arose from acquisitions 
over two large California wildfires in areas that were part of the HyspIRI preparatory airborne 
campaign (Figure 12.7). Schepers et al. (2014) tested several hyperspectral indices derived from a 
post-fire image over a heathland ecosystem in Belgium. They found that the strength and form of the 
relationships between spectral indices and ground measures of severity varied by vegetation type, 
necessitating a vegetation stratification to derive optimal results.

(a) (b)

FIGURE 12.7  (a) Post-fire color composite from the Airborne Visible/Infrared Imaging Spectrometer over 
parts of 2013 Rim fire in California, USA. The composite used the bands centered at 2.10 µm (red), 0.88 µm 
(green), and 0.69 µm (blue). (b) Hyperspectral differenced Normalized Burn Ratio over the same area. Clouds 
and water bodies were masked and are depicted in white.
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While spectral indices can be powerful proxies of biophysical properties, they only use spectral 
information from two or three bands. By doing so, they do not take advantage of the wealth of 
spectral information available in hyperspectral remote sensing (Figure 12.8). SMA is a powerful 
analysis tool for severity assessments with the additional advantage that the output of SMA are 
quantitative abundance estimates of the ground cover classes, without the need for calibration with 
field data, as with spectral indices (Solans Vila and Barbosa, 2010; Somers et al., 2010) (Figure 12.9). 
SMA has been applied on multispectral post-fire imagery (e.g., Smith et al., 2007; Fernandez-Manso 
et al., 2009; Quintano et al., 2013; Veraverbeke and Hook, 2013; Meng et al., 2017); however, a few 
studies have leveraged the higher spectral resolution from hyperspectral remote sensing (Kokaly 
et al., 2007; Lewis et al., 2007, 2008, 2011; Robichaud et al., 2007; Veraverbeke et al., 2014b). 
Kokaly et al. (2007) used AVIRIS data in a hyperspectral classification of ground cover classes. 
Lewis et al. (2007, 2008, 2011), Robichaud et al. (2007), and Veraverbeke et al. (2014a,b) derived 
cover fractions of ground classes, including charcoal, ash, GV, scorched vegetation, NPV, soil, 
and substrates. These estimates, and especially the GV and charcoal fractions, were significantly 
correlated with ground measurements of severity in a variety of case studies in temperate and boreal 
ecosystems (Figure 12.9b). Lewis et al. (2008) also found a relationship between ash cover derived 
from hyperspectral SMA and soil water repellency. Veraverbeke et  al. (2014a,b) demonstrated 
improvements of 7% to 44% in estimating ground cover fractions from hyperspectral data compared 
to multispectral data. These improvements were the result of the high dimensionality of hyperspectral 
data that aids discrimination between ground cover classes (Figure 12.10). Discrimination of 
charcoal hinges on its characteristic low reflectance for NIR wavelengths (Figures 12.8 and 12.10a). 
GV is spectrally different from other ground cover classes owing to its combined high NIR and low 
SWIR reflectance (Figures 12.8 and 12.10b). Separability of NPV from substrate is usually more 
challenging in visible to SWIR spectral regions (Figure 12.10c,d) (Roberts et al., 1993).

12.2.3.2  Vegetation Recovery
Various fire-affected variables can be measured and modeled in post-fire environments. Following 
the prior definition of burn severity, vegetation recovery can be part of a severity assessment 
(Lentile et al., 2006; Veraverbeke et al., 2010; Morgan et al., 2014). Post-fire species structure and 
composition and vegetation succession are crucial variables in understanding ecosystem responses to 

FIGURE 12.8  Spectral signatures of non-photosynthetic vegetation, green vegetation, substrate, and charcoal. 
Atmospheric water vapor absorption regions were removed.
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fire disturbance and climate change (Capitanio and Carcaillet, 2008; Chu and Guo, 2013). Especially 
in forest ecosystems, the spatial distribution of various forest components, such as tree height and 
sapling density, defines forest structure, while species richness and abundance characterize forest 
composition and biodiversity (McElhinny et al., 2005).

The terms vegetation recovery, vegetation regrowth, and vegetation regeneration are used, often 
interchangeably, to describe the various stages of post-fire vegetation succession in fire-affected 
ecosystems (Johnstone and Kasischke, 2005; Mitri and Gitas, 2012; Veraverbeke et al., 2012b). These 
terms refer to the recovery process of species or ecosystems to a pre-disturbance state. Fires can 
also lead to permanent changes in vegetation composition and structure, decreased vegetation cover, 
biomass loss, and the alteration of landscape patterns (Pérez-Cabello et al., 2009). Consequently, 
detailed monitoring of post-fire vegetation dynamics helps define the ecological impact of fires on 
ecosystem functioning and allows implementation of effective restoration measures (Gouveia et al., 

(a) (b)

(c) (d)

FIGURE 12.9  (a) Post-fire color composite from the Airborne Visible/Infrared Imaging Spectrometer over 
parts of 2011 Canyon fire in California, USA. The composite used the bands centered at 2.10 µm (red), 0.88 µm 
(green), and 0.69 µm (blue). (c) Ground cover fractions of charcoal and (d) green vegetation derived from 
spectral mixture analysis. (b) Correlation between charcoal fraction and Geo Composite Burn Index, a field 
measurement of fire severity. (De Santis, A., Chuvieco, E., 2009. Remote Sens. Environ. 113, 554–562. https://
doi.org/10.1016/j.rse.2008.10.011.)

http://doi.org/10.1016/j.rse.2008.10.011
http://doi.org/10.1016/j.rse.2008.10.011
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2010; van Leeuwen et al., 2010; Gitas et al., 2012; Veraverbeke et al., 2012b). Fire severity, post-fire 
meteorological conditions, fuel type, topography, and soil properties are all factors that influence 
recovery patterns (Moreira et al., 2009; Veraverbeke et al., 2010; Pausas and Fernández-Muñoz, 2012).

Broadband multispectral remote sensing has been used extensively to assess post-fire vegetation 
recovery at various temporal and spatial scales (Díaz-Delgado et al., 2003; Goetz et al., 2006; Gouveia 
et al., 2010; Leon et al., 2012). The existence of long time series of multispectral imagery spanning 
consecutive decades, combined with free data distribution policies, has substantially increased its 
use in post-fire recovery applications. Most of these studies rely on vegetation abundance proxies 
derived from vegetation indices like the normalized difference vegetation index (NDVI) and NBR, 
often processed using advanced trajectory analysis algorithms (Leon et al., 2012; Katagis et al., 2014; 
Storey et al., 2016; Zhao et al., 2016).

Few post-fire monitoring applications have used hyperspectral data owing to limited data 
availability. Hyperspectral data have been useful in vegetation studies unrelated to fires since they 
provide detailed information about vegetation abundance and composition (Elvidge and Chen, 1995; 
Thenkabail et al., 2004). For example, hyperspectral data have been successfully used for forest 
species mapping (Stagakis et al., 2016), land cover classification (Dennison and Roberts, 2003; 
Stavrakoudis et al., 2012; Pontius et al., 2017), plant stress detection (Hernández-Clemente et al., 
2011), and forest photosynthesis monitoring (Hernandez-Clemente et al., 2016).

In a preliminary study on monitoring post-fire succession in California’s Santa Monica 
Mountains, AVIRIS-derived vegetation indices were tested for their ability to detect variations in 
the photosynthetic activity of chaparral (Qiu et al., 1998). The NDVI was used along with specific 
narrowband indices, the photochemical reflectance index (PRI) (Gamon et al., 1997), and the water 
band index (WBI). The findings indicated that including narrowband indices facilitated detection 
of sensitive changes in photosynthetic activity that were not associated with changes in canopy 
structure. Multitemporal AVIRIS imagery was used in another post-fire vegetation regeneration 
in the Santa Monica Mountains (Riaño et al., 2002). Riaño et al. (2002) found that GV fraction 
performed equally well in both northern mixed chaparral and south coastal sage scrub communities, 
as opposed to NDVI measurements, which were affected by phenological variations. Also in 
California, Somers et  al. (2016) demonstrated the utility of MESMA-derived cover fraction to 

(a) (b)

(c) (d)

FIGURE 12.10  Spectral separability of (a) charcoal, (b) green vegetation, (c) non-photosynthetic vegetation, 
and (d) substrate. Spectral separability was calculated from between- and within-class variability of endmember 
spectra. (Somers, B. et al., 2009. Int. J. Remote Sens. 30, 139–147. https://doi.org/10.1080/01431160802304625; 
Veraverbeke, S. et al., 2014b. Remote Sens. Environ. 154, 153–163. https://doi.org/10.1016/j.rse.2014.08.019.)

https://doi.org/10.1080/01431160802304625;
https://doi.org/10.1016/j.rse.2014.08.019
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monitor post-fire vegetation recovery (Figure 12.11). In a similar application, multitemporal AHS 
imagery and SMA were combined to monitor post-fire recovery in Spain (Huesca et al., 2013).

AVIRIS data sets were further used for mapping of sapling density regeneration (Potter et al., 
2012) and assessment of coarse woody debris (CWD) distribution (Huang et al., 2009) in Yellowstone 
National Park, USA. Potter et al. (2012) built statistical relationships between ten different vegetation 
indices and field estimations of sapling density. The resulting statistical models had high coefficients 
of determination (R2) ranging between 0.78 and 0.83. Huang et al. (2009) performed fusion of 
synthetic aperture radar and AVIRIS data sets for quantifying CWD.

To track ecological changes caused by fire across multiple spatial and temporal scales, Lewis 
et al. (2017) made combined use of AHS data, spaceborne high, that is, QuickBird, and medium, 
that is, Landsat, spatial resolution multispectral imagery collected on anniversary dates spanning 
10 years after three large wildfires in Montana, USA, 2003. They used MESMA to derive post-fire 
char, soil, GV, and NPV fraction maps at different recovery times. Retrievals from hyperspectral 
imagery had stronger correlations with ground measurements one year post-fire, and with vegetation 
canopy data 10 years post-fire.

Mitri and Gitas (2010, 2012) applied object-based image analysis on single-date EO-1 Hyperion 
images for classifying forest regeneration and vegetation recovery in fire-affected areas on the 
Greek island of Thasos. The use of objects offers several advantages over traditional pixel-based 
methods and allows for a more realistic representation of the real world, especially when applied 
on high spatial resolution images (Benz et al., 2004). In their initial work, Mitri and Gitas (2010) 
also showed promising results in mapping regeneration of different pine species and discriminating 
areas of young and mature pine stands. In their subsequent work, mapping results were improved 
by combining hyperspectral information from Hyperion with high resolution multispectral images 
(Mitri and Gitas, 2012). Vegetation indices derived from Hyperion were also useful for estimating 
post-fire recovery in Mato Grosso in the southern Amazon in Brazil (Numata et al., 2011). In this 
study, selected narrowband indices outperformed the NDVI in detecting subtle changes in the 
physiological properties of disturbed forests.

Despite the limited number of applications due to data limitations, hyperspectral data provide 
opportunities for post-fire monitoring that are not supported by broadband multispectral imagery. 
The reviewed applications mostly hinged on single-date or a small number of hyperspectral 

(a) (b) (c) (d)

FIGURE 12.11  Time series of surface composition between 2004 and 2013 in area of 2009 Jesusita fire in 
California, USA, as derived from Airborne Visible/Infrared Imaging Spectrometer (a) on August 6, 2004, (b) 
just after the fire on August 26, 2009, (c) on April 30, 2010, and (d) on June 6, 2013. The false color composites 
input non-photosynthetic vegetation (red), green vegetation (green), and substrate and ash (blue) cover fractions 
retrieved from multiple endmember spectral mixture analysis. Suboptimal retrievals and missing data were 
masked in black. (After Somers, B. et  al., 2016. in: Ruckebush, C. (Ed.), Data Handling in Science and 
Technology. Elsevier, pp. 551–577. https://doi.org/10.1016/B978-0-444-63638-6.00017-6.)

https://doi.org/10.1016/B978-0-444-63638-6.00017-6
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airborne or spaceborne images. Current limitations in deploying airborne campaigns limit further 
exploration of the possibilities that arise from hyperspectral data in post-fire recovery studies. The 
upcoming hyperspectral satellite missions in an era of open data policies will enable more systematic 
exploitation of hyperspectral information in post-fire monitoring studies.

12.3  FUTURE PERSPECTIVES

12.3.1 A utomated Image-Based Endmember Extraction for Spectral Mixture Analysis

SMA, and in particular MESMA that accounts for within-class endmember variability, is a popular 
image analysis technique in all phases of the fire disturbance continuum: before, during, and after 
a fire. In the studies reviewed here, endmember spectra were most often measured in the field using 
a field spectroradiometer or derived from imagery or existing spectral libraries (Baldridge et al., 
2009). This approach was feasible and effective for local-scale studies, like those based on the 
limited air- and spaceborne hyperspectral data opportunities reviewed here. The large data sets 
that will originate from the upcoming spaceborne hyperspectral missions, however, will require 
automated and image-specific endmember bundle retrievals. The importance of this concept has 
been discussed, and image-based endmember retrieval techniques have been developed (Bateson 
et al., 2000; Roth et al., 2012; Somers et al., 2012), yet without large-scale application and thorough 
validation over space and time. Techniques like MESMA may be applied to generate standardized 
products for future hyperspectral missions to, for example, quantify GV, NPV, and substrate 
fractions. However, to achieve this, spectral libraries and revised methods are required to provide 
fractions that are comparable across large geographic regions, multiple years, and seasons (Dudley 
et al., 2015). Fire studies focused on pre-fire composition or post-fire recovery will likely be able 
to leverage information from these products. Specific attention will be required for active fire and 
severity studies because these applications need additional endmembers that are foreign to vegetation 
or substrate studies. Spectral signatures of active fires can be modeled from the Planck function 
for different temperatures (Figure 12.5). Inclusion of the active fire endmember could consist of 
spectral signatures from multiple temperatures or could capitalize upon iterative optimization 
techniques. Fire severity studies need the inclusion of a charcoal or ash endmember, which could 
simply be implemented by extending the three-endmember model of GV, NPV, and substrate to a 
four-endmember model that adds the charcoal/ash endmember. The implementation of this addition 
could be restricted to burned areas only, especially when a separate burned area retrieval would be 
available from the suite of satellite products.

12.3.2 O ptimizing Hyperspectral Fire Severity Indices

Hyperspectral data are powerful for fire severity assessments because they allow accurate within-
pixel fractional cover estimates of ground cover classes, among others charcoal, that are indicative 
of severity (Veraverbeke et al., 2014b; Lewis et al., 2017; Meng et al., 2017). A more traditional 
method of mapping fire and burn severity is the dNBR. The dNBR has the advantage of conceptual 
simplicity and computational efficiency and may therefore complement more sophisticated retrievals 
(Veraverbeke and Hook, 2013). The Landsat dNBR is the most often used approach to assessing 
fire and burn severity (Key and Benson, 2006; French et al., 2008). In multispectral remote sensing, 
commonly one band combination per sensor allows for the calculation of the dNBR. In hyperspectral 
remote sensing, however, several band combinations lead to multiple dNBR definitions that are 
slightly different. Perhaps there exists an optimal combination of NIR and SWIR narrowbands. So 
far, this exercise has not been undertaken partly because of the limited availability of pre-/post-
fire image pairs required for dNBR calculation (Stavros et al., 2016). However, opportunities that 
arise from two recent California wildfires imaged by AVIRIS as part of the HyspIRI preparatory 
airborne campaign allow such an investigation. Investigations could focus on relationships with field 
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measurements of severity and spectral index optimality for multiple band combinations (Pinty and 
Verstraete, 1992; Roy et al., 2006).

12.3.3 S ynergy between Hyperspectral and Light Detection and Ranging Data

Hyperspectral and LiDAR data are complementary. Hyperspectral data can discriminate between 
fuel composition, amount, and condition, yet LiDAR data can provide additional information 
regarding the three-dimensional (3D) structure of fuels (Riaño et al., 2003). By doing so, the 
synergy between hyperspectral and LiDAR technologies can effectively be referred to as 3D 
imaging spectroscopy. This synergy has been explored in a few pre-fire applications (Varga 
and Asner, 2008; Colgan et  al., 2012; Levick et  al., 2015). Colgan et  al. (2012) used LiDAR 
to identify individual tree crowns and estimate canopy height, while hyperspectral data guided 
tree species discrimination. This approach was successful for mapping fuels in Kruger National 
Park in South Africa. Levick et al. (2015) applied similar methods in the same study area and 
found that areas with higher fire frequency were associated with reduced tree cover and shifts 
in canopy height distribution. Varga and Asner (2008) combined hyperspectral and LiDAR data 
to map the 3D structure of grass fuels in Hawaii Volcanoes National Park, USA. They therefore 
combined fractional cover estimates of NPV from SMA on hyperspectral data with canopy heights 
from LiDAR. Their derived fire fuel index is a proxy of flammability and fire spread potential. 
Combined hyperspectral and LiDAR data have rarely been exploited in post-fire applications. This 
research gap is likely explained by shortages in synergistic image acquisitions, especially from 
both before and after fires. Post-fire charcoal fractional cover or dNBR derived from hyperspectral 
images, combined with changes in canopy height distribution, could significantly refine carbon 
emission estimates from fires, especially if these post-fire retrievals are supplemented with 
knowledge on pre-fire fuel composition and amount. Chen (2017) provided some initial insight on 
complementarities between the dNBR and MESMA fractional covers derived from hyperspectral 
imagery and canopy height derived from LiDAR in a post-fire environment (Figure 12.12). The 
MESMA output allows greater separation in riparian areas compared to the dNBR, whereas the 
canopy heights from LiDAR are indicative of residual standing biomass, even in areas mapped 
as ash by MESMA. Such synergistic research opportunities are rare within airborne campaigns; 
however, AHS and LiDAR data from before and after fires cover large parts of two recent 
California fires and present an ideal case study (Stavros et al., 2016).

12.3.4  Hyperspectral Thermal Applications

Hyperspectral TIR data can provide complementary information to visible and SWIR data in fire 
applications. These applications include detection of water- and temperature-induced stress in 
plant species based on spectral changes in TIR emissivity (Ullah et al., 2012; Buitrago et al., 2016; 
Meerdink et al., 2016) and the detection and quantification of particulate and gaseous emissions 
from active fires (Hulley et al., 2016; Kuai et al., 2016). Identifying plant species (Ullah et al., 
2012; Meerdink et al., 2016) and detecting water- and temperature-induced stress in plant species 
(Buitrago et al., 2016) using spectral emissivity have so far only been demonstrated with laboratory 
measurements in controlled environments, but they have the potential to provide information on plant 
stress and moisture content and, thus, pre- and post-fire fuel condition. For example, Buitrago et al. 
(2016) found that plants exposed to water and temperature stress showed significant changes in their 
TIR spectra, which were linked to changes in cuticle thickness and structure. More work is required 
to apply these methods to hyperspectral TIR data from air- or spaceborne platforms.

Hyperspectral TIR measurements over active fires are presently limited due to detector saturation 
limits and the lack of suitable air- and spaceborne instrumentation. Wildfires have thus far not been 
a prime target for most airborne thermal missions, and wildfire occurrence is ephemeral, limiting 
acquisition windows for airborne campaigns. The Hyperspectral Thermal Emission Spectrometer 
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(HyTES), an airborne imaging spectrometer with high spectral resolution (256 bands between 7.5 
and 12 µm), wide swath (1–2 km), and high spatial resolution (2 m at 1 km altitude flying height), 
has acquired data over four small active fires in California since deployment in 2013, but these have 
only been considered targets of opportunity acquired en route to other destinations. Hyperspectral 
satellite sensors like the Infrared Atmospheric Sounding Interferometer (IASI), (Aires et al., 2002), 
the Tropospheric Emission Spectrometer (TES), (Beer, 2006), and the Atmospheric Infrared Sounder 
(AIRS), (Tobin et al., 2006) have the capability to observe large gaseous emissions from fires, but 
they are limited by their coarse spatial resolutions of 10 km or more and insensitivity to near-surface 
concentrations due to sensor saturation issues. AHS TIR sensors such as HyTES, on the other hand, 
have the imaging capability to detect gaseous emission sources at pixel sizes of a few meters and have 
sufficient spectral information to resolve the spectral absorption signatures of a variety of different 
trace gases, including methane (CH4), ammonia (NH3), hydrogen sulfide (H2S), sulfur dioxide (SO2), 
nitrogen dioxide (NO2), and nitrous oxide (N2O) (Hulley et al., 2016; Kuai et al., 2016). The primary 
gas species emitted from wildfires, CO2 and CO, do not exhibit spectral absorption features in the 
TIR region; however, other biomass burning gases, such as CH4 and NH3, are detectable with high 
confidence (Hulley et al., 2016). Biomass burning is a major source of atmospheric NH3 (Hegg 
et al., 1988; Whitburn et al., 2015). Examples of the absorption features of CH4 and NH3 are shown 
in Figure 12.13. AHS TIR data have the ability to discriminate these gases within a single plume 
pixel. A further unique advantage of TIR data for fire applications is that nighttime observations 
allow easier detection of gas emissions since the collapsed nocturnal planetary boundary layer 
results in higher near-surface concentrations. In addition, the ability to detect fires is greater at night 
since during the day active fires can be confused with warm ground surfaces, especially with lower 
spatial resolution sensors.

(a)

(b)

(c)

FIGURE 12.12  (a) Hyperspectral differenced NBR and (b) surface composition (as in Figure 12.11b) derived 
over the 2009 Jesusita burned area in California, USA, as derived from Airborne Visible/Infrared Imaging 
Spectrometer. (c) Canopy height model (m) derived from an airborne light detection and ranging acquisition 
in December 2009. (After Chen, M., 2017. Reconstructing Fire Severity and Post-Fire Recovery in a Southern 
California Watershed Using Hyperspectral Imagery and LiDAR. University of California, Santa Barbara.)
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During active fires, hyperspectral TIR data have the ability to quantify surface and near-surface 
air temperature in the vicinity of the fires and downwind concentrations of NH3 and CH4. For the 
latter, a hybrid clutter matched filter and plume dilation algorithm is first used to identify target plume 
pixels (Hulley et al., 2016), followed by a more computationally intensive quantitative retrieval (QR) 
of gas concentrations. The QR algorithm has been successfully applied to CH4 with an error between 
20% and 25% and for NH3 with an error between 50% and 80% due to uncertainties from instrument 
noise and spectral interferences from air temperature, surface emissivity, and atmospheric water 
vapor (Kuai et al., 2016).

HyTES detected an NH3 plume over the Gulch fire, a small fire in southern Utah, USA, in July 
2014 (Figure 12.14). The fire plume exhibited NH3 mole fraction enhancements of up to 5.5 ppb. 
This is approximately 10 ppb lower than emissions from the El Segundo natural gas power plant 
in Los Angeles, USA, observed in prior HyTES campaigns. The magnitude of NH3 and particulate 
emissions are primarily determined by combustion type (Yokelson et al., 1997; Reid et al., 2005; Liu 
et al., 2014). Incomplete combustion products include CO, CH4, NH3, C2–C3 hydrocarbons, methanol 
(CH3OH), formic and acetic acids, and formaldehyde (CH2O) (Yokelson et al., 1997; Bertschi et al., 

FIGURE 12.13  Absorption features of (a) CH4 and (b) NH3 extracted from high-resolution transmission 
molecular absorption 2012 database (HITRAN) (Rothman et  al., 2013) convolved to spectral response 
functions of Hyperspectral Thermal Emission Spectrometer. Spectral regions with high intensity represent 
absorption features.

FIGURE 12.14  (a) An ammonia (NH3) plume from fire emissions and (b) land surface temperature over active 
fire region in Utah, USA, in July 2014 derived from Hyperspectral Thermal Emission Spectrometer imagery.
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2003). The observed NH3 values are within expectations for the creeping and smoldering conditions 
and incomplete combustion of the Gulch fire.

Because TIR spectrometers rely on the thermal emission and thermal contrast between the 
ground and gas for detection, particulate scattering from smoke has little effect on the signal. This 
suggests potential for combined analysis of both the particulate and gaseous emissions from fires 
by flying HyTES with a multiangle polarimeter imager such as the Airborne Multi-angle Spectro 
Polarimetric Imager (AirMSPI) (Diner et al., 2013). AirMSPI is an airborne prototype instrument 
used for obtaining multiangle polarization imagery. AirMSPI could be used to assess the relative 
contribution of organic, non-organic, and black carbon particles to total airborne particle emissions, 
while HyTES could provide information on concentrations of gaseous emissions and temperature. 
Synergistic use of hyperspectral thermal and multiangle observations would help constrain biomass 
burning emissions and particulate composition of smoke to help model and predict the impacts 
of future emissions on air quality and climate change. Another interesting synergy is between 
hyperspectral VSWIR, MIR, and TIR data. The VSWIR spectral region is more sensitive to high 
temperatures between approximately 800 and 1500 K and, thus, ideally suited for hot flaming fires. 
The MIR and TIR spectral regions, in contrast, are more sensitive to lower temperatures between 
approximately 300 and 800 K, and thus better suited for cooler smoldering fires. The combined use 
of hyperspectral VSWIR, MIR, and TIR data thus offers opportunities to better characterize the full 
range of fire temperatures on Earth.

12.4  CONCLUSIONS

Hyperspectral remote sensing has proven utility in all temporal stages of the fire disturbance 
continuum. In pre-fire applications, hyperspectral data allow for detailed assessment of fuel 
composition, amount, and condition. Fire temperatures and gaseous emissions can be determined 
from active fires with hyperspectral data. After a fire, hyperspectral information from charcoal, 
ash, and vegetation are indicative of fire severity and ecosystem recovery. So far, hyperspectral fire 
applications have almost exclusively leveraged airborne data in the visible to SWIR. The number 
of studies is limited because airborne campaign planning generally does not include ephemeral fire 
occurrence. Despite the limited number of studies, these examples demonstrate the feasibility and 
maturity of hyperspectral data processing for large-scale applications when such data sets would 
become available from spaceborne platforms. Scheduled missions like EnMAP, HyspIRI, and 
PRISMA will provide opportunities to further explore linkages between ecosystem properties and 
fires at regional to global scales. The maturity of applications based on visible to SWIR regions is 
contrasted by upcoming innovative developments in the mid- to thermal infrared regions. Recent 
AHS TIR developments show the potential for significant advances in retrieving fire temperature 
and gaseous emissions. Further research should focus on preparing the readiness of processing 
techniques for large-scale hyperspectral applications in the visible to SWIR, increasing airborne 
acquisition and data exploration of fires with hyperspectral thermal data, and building synergistic 
capacities between hyperspectral data and structural data from light or radio detection and ranging 
instruments.
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13 Hyperspectral Data in 
Long-Term, Cross-Sensor 
Continuity Studies

Tomoaki Miura and Hiroki Yoshioka

13.1  INTRODUCTION

Numerous satellite optical sensors have been launched and planned for launch for monitoring and 
characterization of the Earth system and its behaviors. These sensors have been providing and will 
continue to provide systematic observations of terrestrial vegetation at various spatial, spectral, 
and temporal resolutions. Spectral vegetation indices (VIs) are among the most widely used 
satellite data products in monitoring temporal and spatial variations of vegetation photosynthetic 
activities and biophysical properties. VIs are optical measures of vegetation canopy “greeness,” 
a direct measure of photosynthetic potential resulting from the composite property of total leaf 
chlorophyll, leaf area, canopy cover, and structure (Huete et al., 2014). Although they are not 
intrinsic physical quantities, VIs are widely used as proxies in the assessments of many canopy 
state and biophysical process variables, including leaf area index (LAI), fraction of absorbed 
photosynthetically active radiation, vegetation fraction, and gross primary production (e.g., 
Myneni et al., 1997; Sims et al., 2008).

The uses of these observations greatly increase when data sets from multiple sensors are combined, 
for example, multidecadal land-cover characterization and change detection via multisensor data 
sources (e.g., Bhattarai et al., 2009; Jepson et al., 2010; Paudel and Andersen, 2010), synergistic 
applications of multiresolution remote sensing for forest and rangeland inventory (e.g., DeFries et al., 
2007; Miettinen and Liew, 2009), and development of multisensor, long-term data records for climate 
studies (Eidenshink, 2006; Pinzon and Tucker, 2014; Zhang et al., 2014).

Applications of multisensor observations, however, require consideration and account of 
continuity and compatibility due to differences in sensor/platform characteristics that include 
band position, spatial resolution, and overpass time (e.g., Batra et  al., 2006; Teillet et  al., 
1997). Multisensor VI continuity becomes a critical and complicated issue because it involves 
consideration of differences in both sensor/platform characteristics and product generation 
algorithms, a requirement that needs to be addressed (Swinnen and Veroustraete, 2008). The 
underlying issue in multisensor VI continuity is that VI values for the same targets will not be 
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directly comparable because input reflectance values differ from sensor to sensor (Teillet et al., 
1997; Yoshioka et al., 2003). Swinnen and Veroustraete (2008) provide a comprehensive list of 
factors to be taken into consideration for extending the Système Pour l’Observation de la Terre 
(SPOT) VEGETATION normalized difference vegetation index (NDVI) time series back in time 
with National Oceanic and Atmospheric Administration (NOAA) advanced very-high-resolution 
radiometer (AVHRR) data.

Hyperspectral remote sensing, in particular imaging sensors, has great potential in addressing 
several key issues of multisensor VI continuity and providing deeper insights and understanding of 
the issues. An ultimate advantage of using hyperspectral remote sensing for multisensor continuity 
studies is that it allows one to analyze the effects of multiple factors simultaneously (Teillet et al., 
1997). Specific issues of multisensor VI continuity that can be addressed with hyperspectral remote 
sensing include the following:

	 1.	Spectral: A large number of narrow spectral bands that continuously cover the visible–
near-infrared–shortwave infrared (VIS-NIR-SWIR) wavelength regions can be spectrally 
convolved to simulate spectral responses of virtually any broadband sensors. The simulated 
data can be used for multisensor comparisons devoid of misregistration (e.g., Kim et al., 
2010). It should be noted that, although the word simulation is used here, the resultant, 
spectrally aggregated values are actual observations.

	 2.	Spatial: Current and future hyperspectral sensors provide or will provide medium-resolution 
images (3–100 m spatial resolution, with 30 m being typical) with swaths of 3–150 km, with 
30 km being typical. These resolutions are fine enough and these swath widths are wide 
enough to allow for the simulation of various pixel footprint sizes via spatial aggregation. 
The aggregated data can be used to examine VI compatibility across multiple resolutions 
(Huete et al., 2005).

	 3.	Algorithmic: The effects of algorithmic differences (e.g., atmospheric correction schemes) 
can be examined on spectrally or spatially aggregated data from hyperspectral imagery, 
although limited in types of algorithms that could be tested (e.g., Miura et al., 2013).

	 4.	Angular: Many current and future satellite hyperspectral sensor systems have or will have 
a cross-track pointing capability. Although limited in the range of possible observation 
geometry, multiangular hyperspectral observations could be used to address bidirectional 
reflectance distribution function (BRDF) effects on multisensor VI continuity.

The purpose of this chapter is to discuss the potential uses of hyperspectral remote sensing data 
in long-term VI continuity for global change studies. We present analysis results obtained from a 
regional set of Earth Observing-One (EO-1) hyperspectral Hyperion images (Pearlman et al., 2003; 
Ungar et al., 2003) over the conterminous United States along with literature reviews for this purpose.

13.2  MATERIALS

Five sites within the conterminous United States were selected based upon the availability of nearly 
cloud-free Hyperion scenes, the availability of in situ atmospheric measurements from the Aerosol 
Robotic Network (AERONET) (Holben et al., 2001), and a diversity of land-cover types. Level 1R 
Hyperion scenes were obtained for the five sites for the dates listed in Table 13.1. For each Hyperion 
scene, Level 2 AERONET data were acquired for a 2 h time period bracketing the image acquisition 
time (±1 h) (Table 13.1).

Hyperion images were spectrally convolved to spectral bandpasses of various satellite sensors 
described in Section 13.3. The spectral response curves of these satellite sensors were splined to 
Hyperion band center wavelengths for each Hyperion pixel (Miura et al., 2013) because each pixel 
had a slightly different spectral calibration (spectral smile) (Pearlman et al., 2003).
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The convolved images were first converted to top-of-atmosphere (TOA) reflectances and 
then corrected for atmosphere with the 6S radiative transfer code (Vermote et al., 2006). The 6S 
radiative transfer code was constrained by scene-specific geometric conditions extracted from the 
corresponding image metadata and in situ AERONET atmospheric data (Table 13.1). We performed 
three types of atmospheric correction: (1) partial correction for molecular scattering and ozone 
absorption; (2) partial correction for molecular scattering, and ozone and water vapor absorptions; 
and (3) total correction including aerosol scattering and absorption. The continental aerosol model 
was assumed for all aerosol corrections based on the aerosol model selection criteria described in 
Kaufman et al. (1997).

Three VIs were computed and evaluated in this study. The normalized difference vegetation 
index (NDVI) was computed from the TOA and atmospherically corrected reflectances as 
(Tucker, 1979)

	
NDVI =

−
+

ρ ρ
ρ ρ
NIR red

NIR red

,
	

(13.1)

TABLE 13.1
List of Study Sites, Hyperion Image Properties, and In Situ Atmospheric Properties

Geographic 
Location

Latitude/
Longitude
(degrees)

Elev.a

(m) Biome Type
Date

(yyyy/mm/dd)
θs/θv

b

(degrees)

cOzone
(Dobson)

cW.V.d

(cm-atm)

cAOTe

(550 nm)

Harvard 
Forest, MA

42.532/−72.188 322 Broadleaf 
Forest

2001/09/05
2008/05/07
2008/05/25
2008/05/30
2008/06/07
2008/12/03

40.5/3.6
32.2/12.1
28.5/4.8
28.6/12.8
26.2/10.1
67.1/5.2

302
362
353
351
347
303

0.76
0.76
0.76
1.28
3.29
0.64

0.03
0.13
0.05
0.17
0.17
0.04

Walker 
Branch, TN

35.958/−84.287 365 Broadleaf 
Forest

2001/08/14 31.3/2.3 308 2.46 0.27

Maricopa, 
AZ

33.069/−111.972 360 Broadleaf 
Cropland/
Open 
Shrubland

2001/05/24
2001/07/27
2001/08/28
2001/12/02
2001/12/18

23.3/5.5
26.4/5.4
32.3/5.0
58.6/4.6
60.5/4.7

317
295
287
275
280

1.11
2.77
2.76
0.98
0.41

0.06
0.07
0.09
0.05
0.04

Konza 
Prairie, KS

39.102/−96.610 341 Prairie 
Grassland/
Cereal Crop

2002/10/19
2009/05/08

52.3/2.6
29.4/1.3

285
340

0.98
2.12

0.02
0.10

Sevilleta, 
NM

34.355/−106.885 1477 Semi-arid 
Grassland/
Open 
Shrubland/
Cereal Crop

2001/10/19
2009/01/16
2009/09/25
2009/10/05
2009/11/05
2009/12/06

48.8/5.0
61.5/16.9
40.8/4.3
45.2/18.6
54.2/12.1
60.8/5.7

275
290
278
277
271
276

0.46
0.50
0.91
1.11
0.69
0.47

0.02
0.02
0.03
0.02
0.02
0.04

a	 Elevation.
b	 θs: solar zenith angle, θv: view zenith angle.
c	 The values in these columns were obtained from the Aerosol Robotic Network (AERONET) website (http://aeronet.gsfc.

nasa.gov/) (Holben et al., 2001).
d	 Atmospheric water vapor.
e	 Aerosol optical thickness.

http://aeronet.gsfc.nasa.gov/
http://aeronet.gsfc.nasa.gov/
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where ρred and ρNIR are the red and NIR reflectances, respectively. The enhanced vegetation index 
(EVI), developed as a standard satellite vegetation product for Terra and Aqua MODIS, was computed 
from the atmospherically corrected reflectances (Huete et al., 2002):

	
EVI =

−
+ − +

2 5
6 7 5 1

.
.

,
ρ ρ

ρ ρ ρ
NIR red

NIR red blue 	
(13.2)

where ρblue is the blue reflectance to correct for aerosol influences. Jiang et al. (2008) developed a 
two-band EVI without a blue band (EVI2), which achieves the best similarity with the EVI and, thus, 
is applicable to sensors without a blue band such as AVHRR (e.g., Kim et al., 2014):

	
EVI2 2 5

2 4 1
=

−
+ +

.
.

.
ρ ρ

ρ ρ
NIR red

NIR red 	
(13.3)

EVI2 was computed from the atmospherically corrected reflectances.

13.3  SPECTRAL COMPATIBILITY ANALYSES

One key sensor characteristic that varies widely among sensors is the spectral bandpass filters and 
many previous studies focused on this “spectral” issue (e.g., Gallo et al., 2005; Gao, 2000; Gitelson 
and Kaufman, 1998; Gunther and Maier, 2007; Ji et al., 2008). Figure 13.1 shows the normalized 
spectral response curves of red, NIR, and blue (when available) bands for moderate- to coarse-
resolution satellite sensors designed or used for monitoring and biophysical characterization of global 
vegetation. The bandwidths of AVHRR/2 channels (Figure 13.1a) are the widest, followed by those 
of the AVHRR/3 sensors (Figure 13.1b), by SPOT-4 and -5 VEGETATION and Advanced Earth 
Observing Satellite (ADEOS)-II Global Imager (GLI) 250 m bands (Figure 13.1c), and by Terra and 
Aqua MODIS (Figure 13.1c). The narrowest are the spectral bands of those sensors designed for 
both oceanic and terrestrial measurements, that is, SeaWiFS, ADEOS-II GLI (1 km), GOSAT CAI, 
and GOCM-C SGLI (Figure 13.1d). The blue bands of these oceanic/terrestrial sensors, except for 
GLI, are located at slightly longer wavelengths than those of the terrestrial sensors (i.e., MODIS, 
VEGETATION, and GLI 250 m). Uniquely positioned are the Visible Infrared Imaging Radiometer 
Suite (VIIRS) spectral bands. While the VIIRS NIR band is similar to that of MODIS, the VIIRS 
red band is more similar to the AVHRR/3 counterpart than the MODIS counterpart, and the VIIRS 
blue band is positioned at slightly longer wavelengths, similar to those of the oceanic/terrestrial 
sensors (Figure 13.1d).

Spectral convolution of hyperspectral data has been one of the standard methodologies used 
for assessing and evaluating the effects of these spectral bandpass differences on VI compatibility 
and continuity (Kim et al., 2010; Miura et al., 2006; Steven et al., 2003; Trishchenko et al., 2002; 
Trishchenko, 2009; Yoshioka et al., 2006). This approach is advantageous because it makes it possible 
to examine the continuity/compatibility of pairs of sensors that do not have actual overlapping 
periods of observations.

Previous studies that used this methodology can be divided into two major categories: (1) 
empirical studies and (2) theoretical studies. Empirical studies have focused on predicting target 
sensor reflectance or VI values from those of a source sensor by regression. Polynomials have been 
assumed as an analytical form that relates reflectance or VI values from two different sensors. 
Some studies used first-order polynomials and concluded that simple linear relationships would 
hold for relating the NDVI from two different sensors (Gallo et al., 2005; Steven et al., 2003; 
van Leeuwen et al., 2006), whereas other studies used second-order polynomials as they found 
nonlinearity in intersensor NDVI and reflectance relationships (Miura et al., 2006; Trishchenko 
et al., 2002; Trishchenko, 2009). Kim et al. (2010) showed that the EVI and EVI2 cross-sensor 
relationships were also modeled satisfactorily well with the first-order polynomial model. Whereas 
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these studies used the ordinary least-squares approach to fit polynomial models, Ji and Gallo 
(2006) asserted that considering measurement errors of independent variables more accurately 
characterized intersensor NDVI relationships (i.e., unbiased) and proposed a set of new statistics, 
“agreement coefficients.”

Theoretical studies were motivated to take into account ecosystem parameters (e.g., LAI and soil 
brightness) in developing a spectral transformation algorithm that theoretically guarantees “exact” 
translations (Yoshioka et al., 2003, 2012). Based on the physics of atmosphere-vegetation-photon 
interactions, Yoshioka et al. (2005) theoretically justified the existence of and derived the functional 
form of interrelating VIs from two sensors. They also showed that this “vegetation isoline” approach to 
interrelating VIs across sensors resulted in an approximately 50% reduction in variability around the 
trend in cross-sensor VI relationships. The “exactness” of the translation results with this technique 
was also demonstrated using a simulated hyperspectral data set (Miura et al., 2008). Noting that 
the isoline-based translation equation is a ratio of two polynomials, Yoshioka et al. (2006) reduced 
the isoline-based translation equation into a quadratic polynomial. Although the coefficients of the 
polynomial could vary with surface and atmospheric conditions, this work theoretically justified the 
use of a polynomial form for multisensor translations of VIs.

(a)

(b)

(d)

(c)

FIGURE 13.1  Normalized spectral response curves of red, near-infrared, and blue bands for select moderate-
resolution sensors.
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An issue with these previous studies, however, is that each of them was limited in their spatial 
extent, seasonal coverage, and land-cover type. Therefore, an extension of the results to different 
land-cover types, geographic areas, or seasons is questionable. Satellite hyperspectral remote sensing 
has the great potential to be an excellent data source for expanding continuity analyses to global, 
full-season analyses.

Using the Hyperion data set described in Section 13.2, NDVI, EVI2, and EVI relationships of 
the sensors in Figure 13.1 to the Terra MODIS sensor are examined (MODIS VI minus source 
sensor VI plotted against source sensor values) in Figures 13.2 through 13.4. These comparisons 
assumed a total atmospheric correction scenario at 1 km spatial resolution with the MODIS point 
spread function (PSF) (see the next section for the MODIS PSF). The figures show how cross-sensor 
VI relationships (including magnitude and linearity) vary as a function of spectral bandpass. For 
example, Terra and Aqua MODIS are spectrally perfectly compatible for all three VIs examined in 
this chapter (Figures 13.2j, 13.3j, and 13.4a), and it can also be seen that cross-sensor relationships 
to MODIS are generally more linear for EVI2 and EVI than for NDVI (Figures 13.2–13.4).

The simulated data set if expanded to include more scenes can be divided into subsets based 
on geographic areas, seasons, or land-cover types to examine geographic, seasonal, or land-cover 
dependencies of cross-sensor VI relationships.

13.4  SPATIAL COMPATIBILITY ANALYSES

Another key sensor characteristic that varies across sensors is spatial resolution (PSF). Although 
it is critical, the spatial issue of continuity has not received as much attention as the spectral issue. 
Central to VI spatial compatibility is the scale-invariance properties or scaling uncertainties of VIs 
with the influence of land surface heterogeneity (Chen, 1999; Friedl et al., 1995; Hall et al., 1992; Hu 
and Islam, 1997). The VI scaling uncertainties arise when a VI involves a nonlinear transformation 
of input reflectance data. In other words, an average of fine-resolution VI values is not equal to a 
VI value computed from coarser-resolution reflectance (Hu and Islam, 1997), and the degree of this 
difference is expected to vary with surface heterogeneity and VI formula (Friedl et al., 1995; Huete 
et al., 2005; Obata et al., 2012a). In what follows, we compare the fine-grained VIs and the coarse-
scale VIs using the NDVI as an example.

The fine-grained NDVI can be aggregated to a coarser-resolution pixel by (Hu and Islam, 1997; 
Huete et al., 2005)
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where two surface types with the fractional amounts of f1 and f2( f1 + f2 = 1) are assumed. This 
quantity is not generally equal to the coarser-resolution NDVI computed from the reflectances at the 
resolution analyzed, which can be expressed using the fine-grained reflectances as
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(13.5)

and, thus,

	 NDVI NDVI NDVI NDVIcoarse fine coarse fine≠ ≡ − ≠or D 0.	 (13.6)
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These two quantities are equal, or the quantity D is equal to zero (1) when either f1 or f2 is equal 
to zero (i.e., homogeneous case) (Huete et al., 2005) or (2) when the L1 norms of the two endmember 
spectra are equal (i.e., ρNIR,1 + ρred,1 = ρNIR,2 + ρred,2) (Obata et al., 2012b; Yoshioka et al., 2008). 
Theoretically, at least, the former applies to the EVI and EVI2 formulas (Huete et al., 2005).

In practice, this implies that VIs derived at a higher resolution could not be used simply as an 
enhanced resolution of VIs at a lower resolution, that is, their sensitivities to actual surface changes 
are different. This in turn requires an investigation into whether VIs from multiple sensors with 
various spatial resolutions and PSFs show compatible or different sensitivities to actual vegetation 
changes for VI-based change detections. The existing and planned hyperspectral sensors provide 
images at medium resolutions (30–60 m), which can spatially be aggregated to simulate various 
resolutions as low as their swath widths. Therefore, with hyperspectral imagery, scaling uncertainties 
can be analyzed separately (single-factor analysis) and simultaneously with the effect of spectral 
bandpass differences (two-factor analysis). In what follows, two examples of such hyperspectral data 
analyses are provided for the demonstration purpose.

In the first example, the Hyperion scenes in Table 13.1 were spatially aggregated to 60, 120, 240, 
480, and 960 m spatial resolutions at the VI (fine-grained data) and reflectance (coarse-grained data) 
levels assuming a square PSF and a total atmospheric correction scenario. The fine-grained VIs were 
subtracted from the coarser-grained counterparts to assess scale-induced deviations (differences) 
at the different resolutions (D in Equation 13.6). In Figure 13.5, the derived differences where the 
MODIS spectral responses were assumed for both the fine- and coarse-grained data (single-factor 
case) are plotted for the NDVI, EVI2, and EVI for the Maricopa scene of May 24, 2001. The 
plotted differences were the largest for the NDVI and the smallest for the EVI2, suggesting that 
the NDVI is subject to larger scaling uncertainties than the EVI2. For all three VIs, in general, 
mean, maximum, and minimum differences decreased with increasing resolutions, while standard 
deviations of the difference increased (Figure 13.5). This indicates that the scale-induced deviation 
is generally larger for higher-resolution differences (i.e., 30 m vs. 960 m), although extremely large 
deviations are more likely to be encountered for smaller resolutions (i.e., 30 m vs. 60–130 m). The 
nature of this monotonic change of NDVI scaling errors is discussed in detail for a two-endmember 
linear mixture model in Obata et al. (2012b) and Yoshioka et al. (2008).

Plotted in Figure 13.6 are the derived differences for the same Maricopa scene in which the 
MODIS spectral responses were assumed for the coarse-grained data, but the Landsat-5 TM spectral 
responses for the fine-grained data, simulating synergistic applications of multiresolution remote 
sensing (two-factor case). Two differences from Figure 13.5 can be observed. First, large systematic 
differences were introduced due to spectral bandpass differences, which were approximately 0.035 
for the NDVI (Figure 13.6a), around 0.03 for the EVI2 (Figure 13.6b), and approximately 0.02 

(a) (b) (c) (d)

(e) (f ) (g) (h)

FIGURE 13.4  Same as Figure 13.2, but for the EVI.



290 Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation

(a)

(b) (c)

FIGURE 13.5  Univariate statistics of NDVI, EVI2, and EVI differences between their coarse- (MODIS 
bandpasses) and fine-grained (MODIS bandpasses) averaged values computed from the May 24, 2001, Hyperion 
image over Maricopa, AZ, USA. The numbers accompanying the filled triangles are standard deviations of the 
differences: (a) NDVI; (b) EVI2; and (c) EVI.

(a)

(b) (c)

FIGURE 13.6  Same as Figure 13.5, but differences between the coarse- (MODIS bandpasses) and fine-
grained (Landsat-5 TM bandpasses) averaged values.
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for the EVI (Figure 13.6c). Second, standard deviations of the differences for this two-factor case 
(Figure 13.6) were larger and more uniform across the resolutions than those for the single-factor 
case (Figure 13.5). These results simply suggest that scale-induced deviations in VIs can be larger 
when comparing multiresolution sensor data with different spectral bandpasses than with the same 
bandpasses. A more thorough analysis is required to understand the mechanism by which scaling 
uncertainties are affected by spectral bandpass differences.

In the second example, the Hyperion scenes in Table 13.1 were used to simulate the AVHRR 
Global Area Coverage (GAC) sampling scheme and the MODIS Climate Modeling Grid (CMG) 
aggregation for assessing the scaling uncertainties between these two products. A GAC pixel value 
represents the mean of four out of each five consecutive samples along the scan line, and only data 
from each third scan line are processed and stored, which are performed onboard the sensor in real 
time (Pinheiro et al., 2006). As a result, the spatial resolution of GAC data near nadir is about 1.1 × 
4 km with a 3 km gap between pixels along the track. In contrast, a MODIS CMG pixel is created 
by aggregating all pixels inside the 0.05° CMG grid (approximately 5 × 5 km) (Didan, K., personal 
communication).

Spectrally convolved Hyperion scenes were first aggregated to AVHRR 1.1 km and MODIS 500 m 
resolutions, which were then aggregated to GAC and CMG pixels. We assumed a bell-shaped PSF 
and a triangular PSF in the scan direction for AVHRR and MODIS, respectively, and a rectangular 
PSF in the track direction for both AVHRR and MODIS (Schowengerdt, 2006; Wolfe et al., 2002). 
VIs were computed from the simulated GAC pixels, and five of these pixels were averaged to generate 
fine-grained VI values approximately equal to the CMG pixel size. These spatial aggregations and 
averaging of Hyperion pixels were performed carefully and systematically so that the derived fine-
grained GAC and coarse-grained CMG pixels were colocated without misregistration.

In Figure 13.7a,b, only the effects of the spectral bandpass difference between Terra MODIS and 
NOAA-14 AVHRR on the NDVI and EVI2, respectively, were assessed for the two spatial resolutions. 
MODIS-AVHRR cross-sensor NDVI and EVI2 relationships for the GAC resolution were basically 
the same as those for the CMG resolution, that is, the trends in the relationships were the same for 
the two resolutions. In fact, these trends in cross-sensor relationships were also very similar to those 
observed for 1 km resolution (see Figures 13.2d and 13.3d for the NDVI and EVI2, respectively). 
In Figure 13.7c,d, only the effects of the spatial resolution difference between the CMG and GAC 
resolutions (scaling uncertainties) are assessed for the NDVI and EVI2, respectively, by fixing the 
spectral bandpasses. There were large variations in scale-induced differences for all four cases (MODIS 
NDVI, AVHRR NDVI, MODIS EVI2, and AVHRR EVI2), ranging from −0.05 to 0.05 at most 
for MODIS NDVI (Figure 13.7c); however, these scaling uncertainties did not appear to introduce 
any systematic differences (i.e., mean differences ≈0). In Figure 13.7e,f, the combined effects of the 
spectral bandpass and spatial resolution differences between MODIS CMG and AVHRR GAC VIs are 
assessed for the NDVI and EVI2, respectively. For both the NDVI and EVI2, the trends in cross-sensor 
relationships remained similar to those due only to the spectral bandpass difference; however, the 
secondary scattering about the mean trends became larger due to the scale-induced variations. These 
results suggest that MODIS CMG and AVHRR GAC VIs can be combined to generate a long-term data 
record but would be accompanied by added uncertainties due to scaling differences.

The two preceding examples can be expanded to a larger data set to obtain more reliable estimates 
of scaling uncertainties. The demonstrated capability of hyperspectral data to analyze multiple 
factors one at a time and all at once will also make it possible to derive error budgets for those 
multiple factors. Although an example is not provided here, hyperspectral data can also be used in the 
same way as described earlier to assess the impact of misregistration on cross-sensor VI continuity.

13.5  ALGORITHM DIFFERENCES

The impacts of algorithm differences posed by sensor characteristic differences on multisensor 
VI continuity/compatibility are another area that requires careful and thorough investigations. 
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Atmospheric correction is one key algorithm difference that exists among sensor products. 
Hyperspectral remote sensing can be an effective means to address the impacts of various atmospheric 
correction schemes on cross-sensor VI continuity/compatibility. In what follows, we demonstrate this 
using the Hyperion scenes in Table 13.1.

Various atmospheric correction schemes for satellite remote sensing have been developed, but 
the work by Kaufman and Sendra (1988) and Tanré et al. (1992) can be considered to have laid 
the foundation for operational atmospheric corrections of multispectral data in the solar reflective 
region over global land surface. The Global Inventory Modeling and Mapping Studies AVHRR 
NDVI product is corrected only for stratospheric aerosol effects (Pinzon and Tucker, 2014), whereas 
other AVHRR products, including the Long-Term Data Records NDVI (Franch et al., 2017) and 
the Conterminous USA and Alaska 1 km AVHRR (Eidenshink, 2006) are corrected for molecular 

(a) (b)

(c) (d)

(e) (f )

FIGURE 13.7  (a) NDVI and (b) EVI2 differences due to spectral bandpass differences for CMG and GAC 
resolutions; (c) NDVI and (d) EVI2 differences due to resolution differences for AVHRR and MODIS spectral 
bandpasses; (e) NDVI and (f) EVI2 differences due to both spectral bandpass (MODIS vs. AVHRR) and spatial 
resolution (CMG vs. GAC) differences. Here, a GAC pixel is an average of five GAC pixels and, thus, written 
as “GAC × 5.”
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scattering, and ozone and water vapor absorptions. A total atmospheric correction scheme was 
implemented for the MODIS VI and VEGETATION NDVI products; however, their algorithms and 
atmospheric data sources are different (Maisongrande et al., 2004; Vermote and Saleous, 2006). For 
National Polar-orbiting Partnership (NPP) and Joint Polar Satellite System VIIRS, three VI products 
are generated: a TOA NDVI without any atmospheric correction and an atmospherically corrected, 
top-of-canopy (TOC) NDVI and TOC EVI (Vargas et al., 2013).

In Figure 13.8, cross-sensor NDVI relationships are examined for two atmospheric correction 
schemes: no correction (TOA NDVI) and total correction (TOC NDVI). A GAC sampling scheme 
was assumed for the simulated AVHRR data, whereas a CMG aggregation scheme was used for all 
the other simulated sensor data (Section 13.4). Cross-sensor NDVI relationships of both NOAA-14 
AVHRR/2 and NOAA-17 AVHRR/3 with other sensors changed with atmospheric correction schemes 
(Figure 13.8a,b,d,g,h), and thus separate cross-calibrations are required for establishing continuity 
for the TOA-NDVI and TOC-NDVI. In contrast, NOAA-14 AVHRR and NOAA-17 AVHRR, and 
Terra MODIS and NPP VIIRS had excellent continuity/compatibility; their cross-sensor NDVI 
relationships were the same regardless of the atmospheric correction schemes (Figure 13.8c,f). Once 
a cross-sensor NDVI relationship is established, this can be used to relate the NDVI at either the 
TOA or TOC level for these sensor pairs. The SPOT-4 VEGETATION sensor also showed relatively 
robust cross-sensor NDVI relationships with Terra MODIS and NPP VIIRS (Figure 13.8e,i).

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

FIGURE 13.8  Cross-sensor NDVI plots for two atmospheric correction schemes: (a) Terra MODIS vs. NOAA-
14 AVHRR/2; (b) SPOT-4 VEGETATION vs. NOAA-14 AVHRR/2; (c) NOAA-17 AVHRR/3 vs. NOAA-14 
AVHRR/2; (d) Terra MODIS vs. NOAA-17 AVHRR/3; (e) Terra MODIS vs. SPOT-4 VEGETATION; (f) Terra 
MODIS vs. NPP VIIRS; (g) NPP VIIRS vs. NOAA-14 AVHRR/2; (h) NPP VIIRS vs. NOAA-17 AVHRR/3; 
(i) NPP VIIRS vs. SPOT-4 VEGETATION.
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In Figures 13.9 and 13.10, we examine a scenario where total atmosphere-corrected VIs from 
Terra MODIS and SPOT-4 VEGETATION were compared with partial atmosphere-corrected VIs 
from NOAA-14 AVHRR and NPP VIIRS. For all the sensor pairs examined, cross-sensor NDVI 
and EVI2 relationships varied with atmospheric corrections. For both the NDVI and EVI2, larger 
changes were observed for the relationships involving NOAA-14 AVHRR/2 (Figures 13.9a,b and 
13.10a,b). The smallest change was observed for cross-sensor EVI2 relationships involving NPP 
VIIRS (Figure 13.10c,d).

Overall, these example analyses show important implications for cross-sensor VI continuity/
compatibility. It is worthwhile to note that, based on the Hyperion simulation analyses presented 
here, AVHRR/2 and AVHRR/3, as well as MODIS and VIIRS, maintain excellent continuity for the 
NDVI regardless of atmospheric corrections.

13.6  ANGULAR EFFECTS

Other sensor and platform characteristics that require consideration are the sun-target-sensor 
geometry and temporal resolution. While the polar-orbiting wide field of view sensors such as 
AVHRR, MODIS, VEGETATION, and VIIRS, discussed earlier, provides nearly daily global 
coverage, they acquire and build up sequential angular views over a period of hours to days (Diner 
et al., 1999). For time series applications of VIs, this varying observation geometry is considered 
a source of noise, so various attempts have been made to normalize this noise, including multidate 
temporal compositing (Holben, 1986; van Leeuwen et al., 1999) or BRDF-based adjustments to 
nadir-viewing geometry (Schaaf et al., 2002; Vermote et al., 2009). Since the BRDF changes as a 
function of wavelength and since orbital and scanning characteristics differ from sensor to sensor 

(a) (b)

(c) (d)

FIGURE 13.9  Cross-sensor NDVI plots for four different atmospheric correction schemes: (a) Terra MODIS 
vs. NOAA-14 AVHRR/2; (b) SPOT-4 VEGETATION vs. NOAA-14 AVHRR/2; (c) Terra MODIS vs. NPP 
VIIRS; and (d) SPOT-4 VEGETATION vs. NPP VIIRS. Only NOAA-14 AVHRR and NPP VIIRS values were 
subjected to various atmospheric correction schemes.
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(including overpass time), the BRDF effect is another issue of multisensor VI continuity that needs 
to be addressed. Satellite hyperspectral remote sensing has great potential to contribute to this issue. 
The Hyperion sensor onboard the EO-1 satellite, for example, was capable of imaging within one 
adjacent World Reference System-2 (WRS-2) path in both the east and west directions, giving the 
sensor three imaging opportunities with three different view angles per its 16-day orbital repeat 
cycle. It is, however, unlikely that a large enough number of multiangular hyperspectral images can 
be obtained over the same target for a short period of time from a single sensor, considering the 
attainable imaging frequency together with the influence of cloud cover (Galvão et al., 2009). Such 
observations may only be realized after several hyperspectral sensors are successfully launched in 
the future.

13.7  DISCUSSIONS

In this chapter, we have discussed the potential uses of satellite hyperspectral remote sensing in 
multisensor VI continuity/compatibility studies for global long-term monitoring. Some aspects of 
such uses have been demonstrated using the regional Hyperion data set over the conterminous United 
States. They included spectral compatibility and spatial compatibility analyses, scaling uncertainty 
analysis, and the effects of atmospheric correction algorithm differences.

It is important to note that upcoming hyperspectral missions can serve not only as a means 
of detailed and highly precise characterization of terrestrial vegetation but also as a spaceborne 
reference for establishing multisensor continuity and compatibility among current, past, and future 
multispectral sensors. Future hyperspectal missions will provide wider imaging swaths to cover 
larger land surface areas than the currently achieved coverage. The multiangular hyperspectral 
observation capability may be one of the next important steps in the field of hyperspectral 
remote sensing.

(a) (b)

(c) (d)

FIGURE 13.10  Same as Figure 13.9, but for EVI2 with three different atmospheric correction schemes.
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14.1  INTRODUCTION

This book is focused on studies of vegetation on Earth using hyperspectral remote sensing methods. 
However, it is appropriate to extend the application of these methods to other rocky bodies in our 
solar system for a variety of reasons. First, minerals, soils, and rocks form the substrate on which 
vegetation grows on Earth. Compositional analyses of these components with hyperspectral data 
provide essential background information for distinguishing, identifying, and removing their effects 
on vegetation spectra. Second, variation in the distribution and chemical and physical properties of 
soil and rock has been demonstrated to have a significant effect on factors such as moisture retention, 
dust production, and the presence and distribution of biological species ranging from bacteria, fungi, 
grasses, shrubs, trees, and small mammals to humans [1]. These factors in turn can have profound 
influences on human health.

Recent advances in the development and use of hyperspectral data for rocks, soils, and minerals 
have led to improvements in our understanding of how such data are collected, calibrated and 
otherwise processed, and applied to understand the geology and biology of materials on Earth and 
other planetary surfaces. Geologic remote sensing research over the last 40 years has developed or 
improved upon methods for image processing and analysis, data set validation, remote and in situ 
data collection, and field calibration and has established nominal wavelengths for the detection of 
common minerals [2–9]. Early studies used multispectral measurements in the visible, near-infrared, 
and shortwave infrared (VNIR/SWIR) range (400–2500 nm) to map weathering and alteration 
minerals [4,10–12]. The advent of hyperspectral VNIR/SWIR measurements from airborne and 
spaceborne platforms and better calibration enabled the emergence of imaging spectroscopy, and 
images with high-resolution spectral data for each pixel could be directly compared to the reference 
spectra of pure minerals and used for remote mineral identification [6,13]. For the past 20 years, 
much research has been focused on the development of image analysis and processing techniques 
for hyperspectral VNIR/SWIR data, with particular attention paid to atmospheric correction and 
unique mineralogical identification [14–17].

Primary rock-forming minerals as well as many secondary weathering and alteration minerals 
exhibit wavelength-dependent, or spectral, absorption features throughout the visible and infrared 
wavelengths [18–22]. These features result from the selective absorption of photons with discrete 
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energy levels and are dependent on the elemental composition, crystal structure, and chemical 
bonding characteristics of a mineral and are, therefore, diagnostic of mineralogy [7,20,23,24]. The 
identification of a material based on its infrared spectrum requires access to the spectra of well-
characterized specimens. Thus, the infrared spectral properties for many natural and artificial 
materials have been measured in the laboratory and constitute the empirical basis for the surface 
mapping applications of infrared remote sensing applied to Earth and other planets [18–22,25–27]. 
Archives of infrared spectral data for rocks, minerals, and vegetation are available for reference from 
the United States Geological Survey (USGS) spectral library (http://speclab.cr.usgs.gov) [26] and 
the NASA Jet Propulsion Laboratory (JPL) Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) spectral library (http://speclib.jpl.nasa.gov) [27]. (Note: The “ASTER 
spectral library” was renamed the “ECOSTRESS spectral library” and version 1.0 released on 
February 2, 2018. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) is a multispectral thermal infrared instrument that was launched to the International 
Space Station on June 28, 2018.)

As described here, geologic analyses of remotely acquired multi- and hyperspectral data 
on planetary bodies have resulted in major scientific discoveries that help to put Earth science 
into a broader context. For example, correlating orbital remote sensing data for Mars from the 
Mars Reconnaissance Orbiter, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 
instrument with those of high-resolution views of boulders, craters, and sediment layers by the High-
Resolution Imaging Science Experiment (HiRISE) has helped to identify the likely presence of water 
at the surface of Mars through the discovery of minerals such as gray hematite, clays, and sulfur-rich 
soils [28,29]. Similar nodules have been observed in southern Utah [30,31], where they appear to 
have formed by precipitation from fluid that leached out iron-rich minerals and precipitated them at 
more chemically favorable locations in the host sandstone. This discovery continues to be explored, 
in part because on Earth it is known that bacteria can make such concretions form more quickly 
[31,32]. The recent discovery of the presence of water on the surface of the Moon using hyperspectral 
Moon Mineralogy Mapper (M3) data [33] indicates that water has been much more common on that 
body and elsewhere in our solar system than previously thought. These and other discoveries tell 
us that we still have much to learn about the geology and biology of Earth and other planets in our 
solar system. Fortunately, remote sensing analyses such as those described in this book provide the 
tools needed for such future discoveries.

14.1.1  Planetary Bodies and Hyperspectral Instruments

14.1.1.1  Earth
There is currently a host of Earth observing instruments that acquire hyperspectral images in the 
400–2500 nm wavelength range [6,34–36]. There has been an increasing number of commercial 
companies (too numerous to count) designing, building, and flying imaging spectrometers on aircraft 
as well as uninhabited aerial vehicles. Table 14.1 summarizes the specifications for a selection of 
these terrestrial imaging spectrometers.

14.1.1.2  Mercury
The MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) spacecraft 
performed two flybys of Mercury in 2008 and a third in September 2009. MESSENGER became 
the first spacecraft to enter orbit around Mercury in March 2011. After completing its primary and 
two extended missions, MESSENGER used its remaining fuel for a planned deorbit and impacted 
onto Mercury in April 2015. The Mercury Atmospheric and Surface Composition Spectrometer 
(MASCS) instrument obtained spectra (300–1450 nm) of the surface. The purpose of the MASCS 
was to help determine the surface mineralogy of Mercury and to help characterize the exosphere (i.e., 
the outermost layer of Mercury’s tenuous atmosphere). The MASCS consisted of two instruments: 
an Ultraviolet-visible Spectrometer (UVVS) designed primarily for observations of the exosphere, 

http://speclab.cr.usgs.gov
http://speclib.jpl.nasa.gov
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and a Visible-InfraRed Spectrograph (VIRS) intended to provide observations to determine surface 
mineralogy. http://www.messenger-education.org/instruments/mascs.htm.

14.1.1.3  Moon
The NASA M3 was a hyperspectral, push-broom imaging spectrometer that was a guest instrument 
on Chandrayaan-1, the first mission to the Moon from the Indian Space Research Organization 
(ISRO). Intended for both global mapping and targeted operation, the main objective of M3 was to 
allow scientists to examine lunar mineralogy at high spatial and spectral resolution [37]. M3 targets 
included such features as outcrops exposed at the walls and central peaks of large craters, complex 
volcanic terrain, boundaries where different kinds of rocks converge, unusual or rare compositions, 
and lunar polar regions [37].

14.1.1.4  Mars
Mars has intrigued humankind since before the beginning of recorded history. Until the 1960s, 
Mars was believed to be a lush planet with canals and agricultural irrigation [38]. This belief 
became the basis for such science fiction classics as The War of the Worlds by H.G. Wells. The 
first flyby of Mars by Mariner IV in 1965 put an end to such fantasies, revealing the red planet as a 
cold, arid desert. While the use of remote sensing observations to track vegetation is meaningless 
for Mars, there are many other applications, such as the monitoring of seasonal changes in surface 
volatiles or the identification of minerals. The understanding of NIR observations of a planetary 
surface devoid of vegetation may provide insights into remote sensing of terrestrial surfaces with 
sparse or nonexistent vegetation, for example, extremely arid deserts and ice-covered regions. 
Several spacecraft have visited Mars over the last five decades. Since 1997, three rovers, one 
lander, and four orbiters have successfully arrived at Mars and sent back valuable data to Earth. 
Most of these spacecraft far exceeded their nominal mission lifetimes (Table 14.1). Two of these 
spacecraft, Mars Express and Mars Reconnaissance Orbiter, carried VNIR/SWIR imaging 
spectrometers, which are still functional at the time of this writing. The OMEGA (Observatoire 
pour la Minéralogie, l’Eau, les Glaces et l’Activité) instrument is a visible and infrared mineral 
mapper on board the Mars Express orbiter designed to globally map minerals, water (hydrated 
minerals or ice), and ice. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 
is a high-spatial-resolution (20–200 m/pixel) imaging spectrometer designed to target regions to 
detect and map minerals and ice.

14.1.1.5  Main Belt Asteroids: Ceres and Vesta
The Dawn spacecraft has visited the two largest of the main asteroid belt (MAB) objects: asteroid 
4 Vesta and 1 Ceres. Ceres is sufficiently large that it is also classified as a dwarf planet, containing 
30% of the total mass of the MAB. Dawn carries three types of instruments: two German Framing 
Cameras (FC1 & FC2), an Italian VNIR/SWIR slit spectrometer (VIR), and an American Gamma 
Ray and Neutron Detector (GRaND). The primary focus has been comparing and contrasting the 
surface of these two very different and distinct planetary bodies.

14.1.1.6  Jupiter
The Near-Infrared Mapping Spectrometer (NIMS) instrument on the Galileo spacecraft was the 
first imaging spectrometer to be sent to the outer solar system. Galileo was launched in 1989 on a 
grand tour of the solar system that crossed paths with Venus, Earth and the Moon (twice), and two 
small asteroids before finally arriving at Jupiter in late 1996, just in time to witness the kamikaze 
comet Shoemaker-Levy 9 crash into the giant planet. For more than 6 years, Galileo orbited Jupiter 
and made 29 successful close flybys of its major moons and many distant observations of Jupiter’s 
atmosphere and rings and entourage of satellites. Each of the objects visited by Galileo became targets 
for scientific observations and calibration exercises for the novel NIMS instrument; in Section 14.2.6 
we focus on results from the Jupiter system, the primary scientific objective.

http://www.messenger-education.org/instruments/mascs.htm
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14.1.1.7  Saturn
The goals of the Visual and Infrared Mapping Spectrometer (VIMS) aboard the Cassini spacecraft 
included study of the composition, dynamics, clouds, and thermophysics of the atmospheres of 
Saturn and Titan and the identification and mapping of surface compositions of Titan, the other 
icy Saturnian satellites, and Saturn’s rings. VIMS was an imaging spectrometer that covered the 
350–5170 nm spectral region [39]. The VIMS visible-light channel was a multispectral imager that 
covered the spectral range from 350 to 1050 nm and used a frame transfer charge-coupled device 
(CCD) detector on which spatial and spectral information was simultaneously stored. The VIMS 
infrared channel was a spatial-scanning spot spectrometer that covered the wavelength range from 
850 to 5170 nm.

14.1.1.8  Pluto and the Kuiper Belt
NASA’s New Horizons spacecraft was launched in 2006. After a 2007 Jupiter flyby and gravity 
assist, it encountered the Pluto system in 2015 [40]. Following the Pluto flyby, the mission was 
extended to send the spacecraft to explore a small Kuiper belt object in early 2019. New Horizons 
maps spectral reflectance at visible and near-infrared wavelengths using an imaging spectrometer 
system called Ralph [41], which provides four visible-wavelength channels from 400 to 975 nm and 
256 near-infrared channels from 1200 to 2500 nm. Ralph collects data without use of moving parts 
to minimize risk of potential failures during the long cruise to the outer solar system. Spatial and 
spectral scanning are accomplished by rolling the entire spacecraft. The immobile design saves mass 
and provides great durability, but it creates challenges for data processing, described in Section 14.2.8. 
Table 14.1 also summarizes the specifications for imaging spectrometers on planetary missions.

14.1.1.9  Future/Forthcoming Instruments
One future Earth observing hyperspectral sensor mission recommended by the National Research 
Council, Decadal Survey (Earth Science and Applications from Space: National Imperatives 
for the Next Decade and Beyond) is the Hyperspectral Infrared Imager (HyspIRI) mission [42]. 
HyspIRI will have (1) a hyperspectral imaging spectrometer measuring radiance in the 380–
2500 nm range with 10 nm spectral resolution, 60 m pixels, and a 19 day equatorial revisit time and 
(2) a multispectral imager measuring radiance in seven channels in the 7,500–12,000 nm (thermal 
infrared region) plus one channel at 4000 nm (mid-infrared region) for measuring hot spots due to 
fires or volcanic activity, with 60 m pixels and a 5 day revisit time (due to a wider swath than the 
VNIR/SWIR hyperspectral imager). The goals of the HyspIRI mission as related to VNIR/SWIR 
hyperspectral measurements are to detect responses of ecosystems to human land management and 
climate change variability, including studying the patterns and spatial distribution of ecosystems 
and their components; ecosystem function, physiology, seasonal activity, and relation to human 
health; biogeochemical cycles; and land surface composition [42]. See the HyspIRI website for more 
information: https://hyspiri.jpl.nasa.gov.

In 2018, the Italian Space Agency (ASI: Agenzia Spaziale Italiana) plans to launch the PRecursore 
IperSpettrale della Missione Applicativa (PRISMA) spacecraft into sun-synchronous Earth orbit as 
a preoperational technology demonstration mission. PRISMA will be a medium-resolution (30 m/
pixel) hyperspectral imaging spectrometer with 250 channels in the VNIR/SWIR (400–2500 nm) 
spectral region. The instrument will also acquire coregistered panchromatic imagery at 5 m/pixel 
[43]. Additionally, the German space agency is planning a 2019 launch of its hyperspectral satellite 
mission, Environmental Mapping and Analysis Program (EnMAP), which will also feature a VNIR/
SWIR hyperspectral imaging spectrometer capable of acquiring 30 m pixel data on a global scale.

The Europa Jupiter System Mission (EJSM) planned for launch in 2020 will include the Jupiter 
Europa Orbiter and the Jupiter Ganymede Orbiter. The mission will explore the Jupiter system, 
focusing on potential habitable environments among the planet’s icy satellites, with special emphasis 
on Europa and Ganymede because of the possibility they support internally active oceans. As part 
of the planned science payloads, hyperspectral imaging instruments are planned (via competitive 

https://hyspiri.jpl.nasa.gov
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selection) that will nominally cover the 800–2500 nm spectral region, with a targeted spectral 
resolution of 4 nm and instantaneous field of view (FOV) smaller than 100 m (https://solarsystem.
nasa.gov/missions/ejsm).

NASA’s Lucy mission is planned for launch in 2021 to tour the Trojan asteroids orbiting in 
Jupiter’s L4 and L5 Lagrange points. It will carry an updated version of the Ralph instrument called 
L’Ralph to distinguish it from the New Horizons version. Key changes include use of a much larger 
format infrared detector array (2048 × 2048 pixels, rather than 256 × 256) that is sensitive out to 
longer wavelengths (at least 3400 nm, compared with 2500 nm). L’Ralph will also make use of a 
scan platform and a scan mirror to provide more control over the scan rate.

14.1.1.10 � Synergy with Remote Measurements outside the VNIR/SWIR Spectral Range
14.1.1.10.1  Thermal Infrared (TIR) Imaging and Spectroscopy
The thermal infrared (TIR) spectral range (∼7,000–14,000 nm) has long been used for terrestrial and 
planetary geologic studies to map surface materials based on differences in wavelength-dependent 
spectral features. Numerous studies have demonstrated the use of TIR imaging for applications 
including mineral and lithologic mapping, geothermal site characterization, determination of 
mineral and soil properties, estimation of energy fluxes, estimation of evapotranspiration and 
soil moisture, drought monitoring, detection of fires and volcanic thermal features, and mapping 
vegetation species [44–54]. Improvements in infrared detector technology over the last 30 years 
have led to the advent of hyperspectral imaging spectrometers operating in these longer wavelength 
regions. In addition, recent studies have made advances in the identification of plant species using 
TIR spectral measurements [54,55]. Currently there are a number of airborne hyperspectral TIR 
imaging spectrometers in use, including the Spatially Enhanced Broadband Array Spectrograph 
System (SEBASS) [56], the airborne hyperspectral imager (AHI) [57], the Itres TASI-600 (http://
www.itres.com), the Specim AisaOWL (http://www.specim.fi), the Telops Hyper-Cam (http://telops.
com/products/hyperspectral-cameras), and the Hyperspectral Thermal Emission Spectrometer 
(HyTES), built and operated by NASA’s Jet Propulsion Laboratory (https://hytes.jpl.nasa.gov) [58].

The VNIR/SWIR and TIR spectral ranges have traditionally been treated separately for a variety 
of reasons. Differences in the source of radiance (solar reflection vs. thermal emission) require 
different approaches to the acquisition, calibration, and processing of data. Also, infrared detector 
technology has played a role in the spectral ranges that are measured by different instruments. The 
complementary nature of these two wavelength regions has been explored in detail using multi-
instrument packages or instruments capable of making multichannel spectral measurements in both 
wavelength regions [45,59–61]. Some minerals exhibit diagnostic spectral features in one wavelength 
region, but not the other [62]. Also, some minerals that often occur together in nature have overlapping 
spectral features, making unique mineral identification ambiguous using one wavelength region 
alone. Therefore, the synthesis of VNIR/SWIR and TIR provides a way to identify minerals more 
uniquely and remotely map more minerals and mineral assemblages [62].

14.1.1.10.2  Mars Orbiter Laser Altimeter (MOLA) and Lunar Orbiter Laser Altimeter (LOLA)
Laser altimeters placed in orbit around Mars and the Moon provide not only high-spatial-resolution 
topographic models but also are important in determining accurate placement of images and 
geometric registration among multiple imaging and hyperspectral planetary data sets. Sophisticated 
cartographic techniques allow spatial projection of images onto regional digital elevation models 
that improve overall accuracy of feature positions and minimize distortions or seams in large 
image mosaics. This is often essential to enable understanding particular surface features observed 
in multiple data sets (often acquired at different spatial resolutions). Further, knowledge of local 
topographic slopes is key in radiometrically calibrating data to compensate for photometric effects 
induced by millimeter-scale surface properties, light reflected from nearby features (e.g., crater rims), 
or light reflected by atmospheres (e.g., Mars, Titan).

https://solarsystem.nasa.gov/missions/ejsm
https://solarsystem.nasa.gov/missions/ejsm
http://www.itres.com
http://www.itres.com
http://www.specim.fi
http://telops.com/products/hyperspectral-cameras
http://telops.com/products/hyperspectral-cameras
https://hytes.jpl.nasa.gov


308 Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation

14.1.1.10.3  Neutron/Gamma Ray
The use of gamma ray and neutron detectors to map surface and near-surface (typically, less than a 
meter deep) elemental abundances is seeing wide application on Mars [63,64], the Moon [65,66], and 
asteroids [67]. The detector footprint of the surface is altitude dependent but typically varies from 
600 km in diameter for Mars to 5 km for the Moon.

14.1.2 O verview of Hyperspectral Analysis Techniques

14.1.2.1  Radiometric Calibration
Radiometric calibration of hyperspectral imagers varies among instruments, but most employ some 
type of onboard calibration using integrating spheres illuminated either by sunlight or onboard 
illumination. Shutter systems are often used for the acquisition of dark measurements to track real-
time noise variations with sensor temperature and exposure times. Stray-light corrections can be 
necessary, often using a combination of preflight measurements or models and in-flight observations 
of stars or planetary surfaces with minimal spectral or textural variations to serve as working “flat 
field” observations as supplements to any similar onboard observations. Calibrated scene radiances 
are often converted to relative reflectance by convolving the solar flux at the planet’s solar distance 
with specific bandpasses.

14.1.2.2  Atmospheric Correction/Compensation
In the VNIR/SWIR wavelength range, radiance measured at the sensor contains information about 
surface-reflected radiance as well as radiance scattered by molecules and aerosols in the atmosphere 
and absorbed by atmospheric gases. Of all the gaseous constituents of Earth’s atmosphere, seven 
gases produce strong absorption of radiance in the VNIR/SWIR region: H2O, CO2, O3, CH4, N2O, 
CO, and O2 [68]. Although H2O is not the most abundant gas, it is one of the most important in terms 
of how much it decreases the transmissivity of the atmosphere due to strong absorption. There is also 
a significant amount of variation in the distribution of these gases, especially H2O, both spatially and 
temporally. In addition to the absorbing effects of atmospheric gases, molecules and aerosols in the 
atmosphere scatter solar radiance. The modeling of atmospheric absorption and scattering processes 
is known as radiative transfer theory and is reviewed in more detail by Hapke [69–70].

For the atmospheric correction of terrestrial VNIR/SWIR hyperspectral data, a radiative 
transfer modeling approach is commonly used to correct for the effects of atmospheric conditions, 
backscattered radiance, albedo, and viewing geometry [71].

14.1.2.3  Spectral Indices
Similar to many terrestrial studies, first-order analyses of planetary data sets often involve the use 
of ratios or slopes between bands, often in combination with band depths computed at wavelengths 
diagnostic of particular minerals [72]. Such techniques provide computationally efficient means 
of identifying overall trends in spectral signatures, covering potentially large regions of planetary 
surfaces. Such products often provide necessary overviews of regions, from which anomalous 
spectral features can subsequently be investigated using higher spectral or spatial resolution 
observations.

In early lunar studies, ratios of narrow band telescopic images acquired at 400 and 560 nm were 
used to estimate the weight percent of TiO2 in the mare [73,74]. Early Martian spectroscopy made use 
of ratios and slopes to estimate dust contamination and movement on local and regional surfaces [75], 
whereas more recent analyses using CRISM hyperspectral data use a combination of slopes, ratios, 
and band depths to routinely provide maps of a suite of mineral and surface types [76]. In the outer 
solar system, relatively lower albedo contaminants on Europa’s trailing hemisphere exhibit steep 
positive spectral slopes (red color) up to 1000 nm. Slight differences in this slope are likely owing 
to variations in the water abundance and grain size of ice/contaminant mixtures [77].
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14.1.2.4  Spectral Mixture Modeling
Natural geologic surfaces are often partially covered with nongeologic materials (e.g., vegetation) 
or composed of mixtures of minerals with varying grain sizes and differing degrees of compaction/
solidification. These factors influence remote spectral measurements and can limit the number of 
pixels that can be classified and mapped accurately.

Mixing can exist at various scales and affects the measured infrared spectral properties of an 
area. When minerals in a FOV are physically separated such that there is no scattering between 
components, the spectral signature of the area represents the sum of the fractions of each component 
and is thus a linear mixture. Intimate mixing occurs at smaller scales when different minerals are 
in close contact on a single scattering surface. The presence of rock coatings causes another type 
of mixing that varies depending on the thickness of the coating and the wavelength of the scattered 
radiation. Moreover, at the smallest scales, molecular mixing occurs when a liquid such as water is 
adsorbed onto a mineral surface or vegetation [24].

Even high-spatial-resolution (<2 m pixels) remote sensing measurements can have contributions 
from multiple subpixel-scale components. A simple semiquantitative approach can be used by 
calculating linear mixtures of reference spectra from spectral libraries and comparing them to 
remote and field spectra. Reference spectra for pure minerals can be chosen based on initial spectral 
analyses or a priori knowledge of the geology and surface minerals expected in a study area. Linear 
combinations of these pure mineral spectra can be compared to image spectra, and spectral mixtures 
can be matched to image spectra to identify the dominant mineral phases present and estimate 
percentages of different mineral constituents. This semiquantitative treatment of linear mixtures 
for mineral mapping relies primarily on spectral feature shapes and locations, which are sufficient 
to detect the presence or absence of the dominant mineralogy of mixed pixels and produce mineral 
maps used to interpret geological and geochemical environments. Using TIR data [78] and both 
VNIR/SWIR and TIR data [62] showed that a linear unmixing technique that models the percentage 
of each endmember composition can be used to identify individual surface minerals within a single 
pixel. More quantitative modeling requires well-calibrated spectral measurements and rigorous 
solutions to the equations of radiative transfer theory [70].

14.2  HYPERSPECTRAL MISSIONS AND CASE STUDIES

14.2.1 E arth

14.2.1.1  AVIRIS, AVIRIS-NG, and Hyperion
The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) is a hyperspectral imaging spectrometer 
developed by NASA’s JPL and has been in continuous operation since 1989. It measures radiance in 
224 continuous channels between 380 and 2500 nm with 10 nm spectral sampling (Table 14.1). It has 
an instantaneous field of view (IFOV) of 1 mrad (0.057°) and a total field of view (TFOV) of 33° [14]. 
The signal-to-noise ratio (SNR) at 600 nm is >1000:1 and at 2200 nm is >400:1 [79].

The AVIRIS Next Generation (AVIRIS-NG) instrument is the successor to AVIRIS and has been 
in operation since 2011 [79]. AVIRIS-NG measures radiance in 427 continuous channels between 380 
and 2510 nm with 5 nm spectral sampling. The instrument has IFOV and TFOV characteristics similar 
to those of its predecessor, but newer detector technology permits a factor of 2 improvement in SNR.

Hyperion was a spaceborne hyperspectral imager that was launched on the NASA EO-1 satellite 
in 2000 (Table 14.1). It measured radiance in 220 spectral channels from 400 to 2500 nm with 30 m 
pixels across a 7.5 km swath [36].

14.2.1.2  Calibration and Analysis Techniques
For AVIRIS data, the fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) 
method can be used [71]. The FLAASH method uses a version of the moderate resolution atmospheric 
radiance and transmission (MODTRAN) model [80,81] to calculate the atmospheric parameters and 
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at-surface reflectance. For MODTRAN calculations the average atmospheric profile for a typical 
continental location at midlatitudes during the summer, a visibility of 23 km, and a typical aerosol 
profile model for a rural area are commonly assumed. In addition, a spectral “polishing” routine 
[71,82] can be used to eliminate spectral artifacts that remain after atmospheric correction and to 
account for random channel-to-channel noise. The FLAASH method uses a running average across 
nine adjacent spectral channels to effect this polishing.

Calibrated surface reflectance spectra can be directly compared to reference spectra for pure 
minerals that are archived in spectral libraries. Both the USGS and JPL have spectral libraries available 
via the Internet and contain VNIR/SWIR spectra for over 2000 minerals and rocks combined. The 
most recent version of the USGS digital spectral library can be found at http://speclab.cr.usgs.gov and 
is described in [26]. The JPL ASTER spectral library (recently renamed to the ECOSTRESS spectral 
library) is a compilation of spectra of rocks and minerals measured at JPL, the USGS, and Johns 
Hopkins University and can be found at http://speclib.jpl.nasa.gov and is described in [27].

A comprehensive analysis of multichannel image data incorporates classification techniques based 
on spectral variability within a scene, the physical laws governing radiative transfer and scattering, 
its relation to field site measurements, and reliance on reference spectral libraries for matching band 
position, depth, and shape. The information contained in the spatial and spectral data can be displayed 
in three different ways: (1) in image space, where the spatial relationships between pixels are shown, 
(2) in spectral space, where spectral variations within a single pixel are shown, or (3) in feature space, 
where the spectral variations of each pixel are plotted as points (or vectors) in n-dimensional space, 
where n is the number of wavelength channels [83]. All three of these display methods can be utilized 
to maximize the amount of information extracted from multichannel image data.

A series of processing steps has become standard in hyperspectral data analysis that yields 
reproducible results, although some subjective decisions are required of the user [84,85]. These 
methods, from [85,86], can be implemented in the Environment for Visualizing Images (ENVI®) 
software package, currently owned by Harris Geospatial Solutions (http://www.harrisgeospatial.com/
SoftwareandTechnology/ENVI.aspx). The methods can be summarized as follows: (1) atmospheric 
correction and calibration to reflectance, (2) transformation to minimize noise and reduce data 
dimensionality, (3) location of spectrally “pure” pixels, (4) selection of spectral endmembers, and 
(5) pixel classification and mapping of spectral endmembers. The purpose of this methodology is to 
focus only on information that is relevant to characteristic mineralogical features within an image.

14.2.1.3  Case Study
Hyperspectral VNIR/SWIR data have been used to identify and map a wide range of surface 
weathering and hydrothermal alteration minerals associated with acid mine drainage [87,88], mineral 
exploration targets, and the surface expression of active and fossil geothermal systems [62,86,89].

In the example shown in Figure 14.1, AVIRIS data were used to map surface minerals associated 
with the active geothermal system at Steamboat Springs, Nevada. Steamboat Springs is an active 
geothermal system about 16 km south of Reno. It is characterized by exposures of recent siliceous 
sinter deposits, hydrothermally altered country rock, and structurally controlled open fissures 
venting H2S-rich steam. The Steamboat Springs system has been described as a modern analog to 
ancient hydrothermal systems associated with epithermal precious metal deposits throughout the 
Great Basin of the western United States [90–92]. Recent sinter deposits are composed of opaline 
silica, which transforms to β-cristobalite and chalcedony with increasing depth and age [92]. Also, 
as a result of the remote mineral mapping from [62], hydrous Na-Al sulfate crusts (tamarugite 
and alunogen) have been discovered forming around some active fumaroles. In the subsurface, 
sulfuric acid (H2SO4) solutions produced by H2S reaction with atmospheric O2 above the water table 
leaches the surrounding rock leaving opal, residual quartz, or quartz + alunite, adularia, or kaolinite/
montmorillonite alteration assemblages. These minerals are characteristic of a steam-heated acid 
sulfate-type alteration system [93] and are exposed at the surface locally as outcrops of argillized 
and acid-leached granodiorite and basaltic andesite.

http://speclab.cr.usgs.gov
http://speclib.jpl.nasa.gov
http://www.harrisgeospatial.com/SoftwareandTechnology/ENVI.aspx
http://www.harrisgeospatial.com/SoftwareandTechnology/ENVI.aspx
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In the Steamboat Springs region, AVIRIS data mapped the distribution of opal, kaolinite, and 
alunite in generally unvegetated areas (Figure 14.1). The mapped regions are displayed over a 
grayscale image of AVIRIS reflectance channel 28 (650 nm). The AVIRIS spectrum in orange, 
from the main sinter terrace, matches the reference spectrum from the USGS spectral library for 
opal. The broad spectral feature around 2250 nm and the strong features at 1400 and 1900 nm are 
indicative of opal. The Analytical Spectral Devices (ASD) (Boulder, CO, USA) field spectrometer 
data from both sites also match the opal spectrum. X-ray diffraction (XRD) analyses indicate that 
opal is the dominant mineral phase present at this site. The AVIRIS spectrum in blue, from the 

FIGURE 14.1  (a) AVIRIS true color composite over Steamboat Springs, Nevada, displaying channels 28, 
18, 8 as RGB, respectively. Roads and urban areas are evident by their spatial patterns and textures. Healthy 
vegetation is in various shades of green, dry desert vegetation is dark purple to greenish-brown, and bright 
white indicates areas of exposed rock or soil. The spatial resolution for the AVIRIS image is 18 m. (b) AVIRIS 
spectral mineral map. The three regions mapped are distinguished by their dominant mineralogy, noted in 
the legend. (c) AVIRIS spectra (left) from representative field sites (1, 2, and 3—triangles on map) are color 
coordinated to the mineral map legend. (From Vaughan, R.G. 2004. Surface Mineral Mapping at Virginia 
City and Steamboat Springs, Nevada with Multi-Wavelength Infrared Remote Sensing Image Data. PhD 
dissertation, University of Nevada, Reno, 273 pp. [62])
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acid-sulfate alteration area, matches the USGS library reference spectrum for alunite. The broad, 
asymmetric doublet feature around 2200 nm, and the secondary features at 1760 nm are indicative 
of alunite. The ASD field spectrum from this site also matches the AVIRIS spectrum, and XRD 
analyses of samples from this site indicate the presence of alunite, quartz, kaolinite, and minor 
opal. The AVIRIS spectrum in magenta, also from the acid sulfate alteration area, matches the 
reference spectrum for kaolinite. The sharp doublet feature around 2200 nm is indicative of kaolinite. 
The ASD spectrum from this site matches the AVIRIS spectrum, and XRD analyses indicate the 
presence of kaolinite [62].

14.2.2 M ercury

14.2.2.1  MASCS
The MASCS (Table 14.1) instrument aboard the MESSENGER spacecraft used a compact Cassegrain 
telescope to focus reflected light from Mercury or its atmosphere for analysis by both the UVVS and 
the VIRS. The UVVS employed a scanning grating monochromator with three spectral channels 
(115–190, 160–320, and 250–600 nm) that provided a spectral resolution varying from 0.2 nm at UV 
wavelengths to 0.5 nm at visible wavelengths [94]. VIRS was a point spectrometer with a 0.023° FOV 
covering the wavelength range 320–1450 nm at 5 nm spectral resolution. It used two linear diode 
arrays in the visible (320–950 nm) and near infrared (900–1450 nm) [95,96]. The first two channels 
of the UVVS instrument were used in combination with the VIRS instrument for surface studies.

14.2.2.2  Calibration and Analysis Techniques
Calibration of VIRS data to radiance involves the use of dark current measurements and corrections 
for scattered light within the spectrograph. In-flight observations of standard stars validated 
laboratory data acquired prelaunch to within 10%. Reflectance was calculated as radiance factor 
(I/F), that is, the ratio of measured surface radiance to that from a perfect Lambertian surface 
normally illuminated by the Sun. Comparison of MASCS data on the Moon (acquired during its 
flight to Mercury) to ground-based lunar observations [96] provided confidence in the calibration of 
the data. However, Domingue et al. [97] pointed out some differences between MASCS and ground-
based observations of Mercury in the near infrared.

14.2.2.3  Case Study
The UVVS instrument’s observations of the exosphere of Mercury demonstrated in detail spatial 
variations in sodium, calcium, and magnesium atoms and ions liberated by solar wind and 
micrometeorite interactions with the surface [98,99]. The unusual differences between the temporal and 
spatial distributions of these elements were studied while MESSENGER was in orbit around Mercury.

The MASCS VNIR spectra of Mercury did not exhibit any diagnostic spectral absorption features 
that could be attributed to specific minerals. Holsclaw et al. [96] used analyses of oxygen-metal 
charge transfer absorptions and subtle spectral slopes in the visible wavelengths (and the lack of 
identifiable 1000 nm absorptions) to suggest a surface composition with low amounts of Fe2+-bearing 
silicates and relatively abundant, spectrally neutral opaque minerals. Such low-Fe2+ silicates could 
span the range from plagioclase feldspars to Mg-rich olivine and pyroxenes. Izenberg et al. [100] 
used MASCS spectra to differentiate four spectral units suggestive of compositional variations. 
They did not find evidence for sulfide absorption bands in the bright, blue, irregular depressions 
known as “hollows” where such materials are hypothesized to be abundant [101]. They confirmed 
evidence for an ultraviolet absorption likely consistent with <2–3 wt% FeO in silicates, as well as 
submiscroscopic metallic iron or opaque minerals. These observations were also modeled by Trang 
et al. [102] to suggest that both submicroscopic Fe and C were needed, with global averages of 
3.5 wt% and 1.9 wt%, respectively. Space weathering effects on Mercury are expected to be similar 
(if not enhanced) to those on the Moon, where vapor-deposited iron-rich nanophase particles coat 
many grains, resulting in few spectral features.
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14.2.3 M oon

14.2.3.1  Moon Mineralogy Mapper (M3)
The M3 imaging spectrometer (Table 14.1) used a HgCdTe detector array for measuring electromagnetic 
radiation with wavelengths from 430 to 3000 nm (0.43–3 µm) [37]. This wavelength range covers 
the spectral range where diagnostic absorption features occur for all common lunar rock-forming 
minerals and hydrous phases. For global mapping, M3 obtained data in 86 spectral channels. For 
targeted operation, M3 divided the approximately 2600 nm range to which it is sensitive into 260 
discrete bands, each of which is only 10 nm wide. This is considered very high spectral resolution 
and was designed to enable M3 to detect the fine detail required for mineral identification. Unlike 
previous lunar spectrometers, M3 included sensitivity at the longer wavelength range from 2500 to 
3000 nm, which is sensitive to small amounts of OH and H2O. This spectral region is dominated by 
solar reflection, although a small component of emitted thermal radiation was also noted at these 
longer wavelengths when the lunar surface was warmer than ∼250–300 K. M3 was intended to map 
the entire lunar surface from an altitude of 100 km at 140 m spatial sampling and 40 nm spectral 
sampling, with selected targets mapped at 70 m spatial and 10 nm spectral resolution. Although more 
than 80% coverage of the Moon was obtained by M3 at low-sun and a spatial resolution of ∼140 m/
pixel and significant scientific discoveries were made, the Chandrayaan-1 spacecraft suffered from 
technical difficulties throughout the mission; these difficulties precluded accomplishment of many 
of the goals of M3.

Designed for simplicity, reliability, and accuracy, M3 used a compact system of optics known 
as an Offner design, which produces little or no distortion, either spatially or spectrally [37]. M3 
used the so-called push-broom method of image acquisition in which the instrument passively 
sweeps the scene below as it flies, recording 600 pixels of data simultaneously. Each of those 600 
pixels simultaneously records images in each of 260 spectral channels. The primary M3 product 
was an “image cube” that was 600 pixels wide, infinitely long over time as the instrument flies, 
and 260 spectral channels deep. The FOV was 24° (or 40 km on the ground at 100 km altitude), 
allowing contiguous orbit-to-orbit measurements at the equator that minimized variations in lighting 
conditions.

14.2.3.2  Calibration and Analysis Techniques
Prior to launch, laboratory calibration measurements were made to determine the spectral, 
radiometric, spatial, and uniformity characteristics of M3 [37]. The spectral range for the 260 channels 
was determined to span from 404 to 2993 nm with 9.96 nm sampling. The absolute radiometric 
calibration was determined with respect to a US National Institute of Science and Technology (NIST) 
traceable standard at the 5% uncertainty level. The FOV of the M3 was measured to be 24.3°, and 
the cross-track sampling was measured as 0.698 mrad. Spectral cross-track uniformity and spectral 
IFOV uniformity of the M3 are critical calibration characteristics.

The M3 ground calibration data files allowed M3 data to be calibrated to the at-sensor radiance 
and were further calibrated to the equivalent of reflectance data for scientific analysis. This 
calibration method involved dividing the radiance data by a solar spectrum and photometrically 
correcting all data to the same viewing geometry to eliminate variations due to lighting 
conditions [37]. For warm surfaces, a small thermal component at wavelengths beyond 2000 nm 
was removed [103]. Lunar samples returned to Earth by the Apollo missions were used as 
“ground truth” for calibrating the M3 data. Assuming that lunar samples are representative of 
specific portions of the lunar surface, the sample properties were used to calibrate the remote 
sensing data [37]. The Apollo 16 site was well suited for this because it is largely dominated 
by one type of material (feldspathic breccias), unlike most other landing sites, which contain 
diverse lithologies [37]. The Apollo 16 region is one of the prime Lunar International Science 
Calibration/Coordination Targets proposed for cross calibration of lunar data obtained by 
various missions [37].
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14.2.3.3  Case Studies
14.2.3.3.1  Water
“The search for water on the surface of the anhydrous Moon remained an unfulfilled quest for 
40 years” [33]. However, M3 on Chandrayaan-1 detected absorption features near 2.8–3.0 µm on 
the surface of the Moon during some portions of the day (Figure 14.2). The 3.0 µm absorption 
feature was identified and the measurement was extended to longer wavelengths by two independent 
spacecraft: the NASA Cassini mission VIMS and the High-Resolution Instrument Infrared (HRI-IR) 
spectrometer on the NASA Deep Impact EPOXI mission [104,105]. For silicate bodies, such features 
are typically attributed to hydroxyl- or water-bearing materials. On the Moon, the feature is seen as 
a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh 
feldspathic craters [33]. The general lack of correlation of this feature in sunlit M3 data with neutron 
spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and 
water are ongoing surficial processes [33]. The hydration signatures were observed by HRI-IR to be 
dynamic, with diurnal changes that differed for mare and highland units and returned to a steady 
state entirely between local morning and evening [105]. The observed hydration variation requires 
a ready daytime source of water group ions and is considered consistent with a solar wind origin 
[104,105]. In this scenario, hydrogen ions from the Sun are carried by the solar wind to the Moon, 
where they interact with oxygen-rich minerals at the top millimeters of the lunar soil to produce the 
observed H2O and OH molecules [104,105]. Hydroxyl/water production processes may feed polar 
cold traps and make the lunar regolith a candidate source of volatiles for human exploration [33]. 

(a) (b)

(c)

FIGURE 14.2  M3 data taken 2 months apart during morning (a) [optical period 1 (OP1)] and afternoon 
(b) [optical period 2 (OP2)] solar illumination. The large Chadwick crater (diameter 30 km) is located on the 
lunar far side at 258.7°E, 52.7°S. Spectra in panel (c) are scaled reflectance for areas 1 and 2, relative to a local area 
of strong solar illumination that exhibits a relatively weak 3 µm band in the scene (this reference location varies 
with geometry). Background soil region 2 (50 × 50 pixels) exhibits a moderately weak and consistent 3 µm band 
strength. Region 1 within the crater (20 × 20 pixels) exhibits a more prominent apparent band strength, perhaps 
sensitive to solar illumination. Black boxes in (a) and (b) (50 × 15 pixels) indicate the reference area selected for 
spectral ratios. (Modified from Pieters, C.M. et al. 2009. Science, 326, p. 568, doi: 10.1126/science.1178658. [33])



315Hyperspectral Analysis of Rocky Surfaces on Earth and Other Planetary Bodies

Such hydration by solar wind particles may occur throughout the solar system on all airless bodies 
with oxygen-bearing minerals on their surfaces. Although abundances are not definitively known, 
as much as 1000 water molecules parts per million (0.1%) could be present [104].

14.2.3.3.2  Spinels
M3 data were also used to search for unusual and, in some cases, new rock types. Recent research 
has identified two spinel-rich rock types at widely spaced locations on the lunar surface [106]. The 
first is a pink spinel rich in magnesium and iron, and the second is a black or very dark chromite-rich 
spinel [106]. Both types of spinel have distinctive spectral absorption features in the M3 data near 
2 µm [106]. As observed in 2 µm band depth maps, the pink spinels occur near Mare Moscoviense 
on the lunar far side as several small, diffuse deposits that are not obviously dark or associated with 
any crater or steep slope that has exposed fresh material [106].

Elsewhere in the solar system such spinel-rich surfaces have been observed in a few main-
belt asteroids, where the spinel absorption feature near 2 µm is thought to indicate the presence 
of abundant calcium- and aluminum-rich inclusions (CAIs) such as those found in carbonaceous 
chondrite meteorites [107]. Current ideas about the origin of these deposits include the preservation 
of unusual deep-crustal or plutonic materials exposed on the surface or the presence of primitive 
material that has been deposited onto the lunar surface [108].

Dark, chromite-rich spinels are observed in the Sinus Aestuum region on the lunar near side [109]. 
These deposits are distinctly different from those on the far side in that they have lower albedo and 
additional spectral features at visible and 1000 nm wavelengths [109]. They are observed in a region 
with prominent pyroclastic volcanic deposits; these are believed to have been derived from depths of 
several hundred kilometers within the Moon and thus provide a link to mantle compositions [109].

14.2.4 M ars

14.2.4.1  Hyperspectral Instruments
14.2.4.1.1  OMEGA
The OMEGA instrument (Table 14.1) is a visible and infrared mineral mapper on board the Mars 
Express orbiter designed to globally map minerals and water (hydrated minerals or ice). The OMEGA 
imaging spectrometer uses two bore-sighted telescopes for a spectral range from 500 to 5200 nm. 
The first telescope uses a silicon CCD (whisk broom) to image the spectral range from 0.5 to ∼1 µm. 
The second telescope uses two InSb detector arrays (push broom) to image the spectral range from 
∼1000 to 5200 nm [110]. OMEGA has an IFOV of 1.2 mrad, resulting in a spatial resolution of 
∼300 m close to periapsis (250 km) and ∼5 km at an altitude of 4000 km.

14.2.4.1.2  CRISM
The CRISM (Table 14.1) is a high-spatial-resolution (9–200 m/pixel) imaging spectrometer designed 
to target regions to detect and map minerals and ices. CRISM uses a 10 cm diameter Ritchey-
Critien telescope that feeds a pair of Offner convex-grating spectrometers. One spectrometer uses a 
Silicon detector array (VNIR), and the second spectrometer (IR) uses an array of HgCdTe diodes. 
A fully gimbaled optical system allows for motion compensation that enables a spatial resolution of 
9–19.7 m. CRISM can also operate in mapping mode (no motion compensation) at 100 or 200 m/
pix. CRISM’s spectral range is from 362 to 3920 nm [9].

14.2.4.2  Calibration and Analysis Techniques
OMEGA Calibration. OMEGA data are processed using standard processes. DN levels are converted 
to radiances [W·sr−1·m−2], and I/F is calculated by dividing by the solar flux [W·sr−1·m−2] corrected 
for the appropriate Sun-Mars distance [110,111]. Unlike most hyperspectral imagers, where the 
calibrated data are provided, OMEGA provides the raw data and the calibration software to construct 
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both calibrated radiances and geometric coordinates for each spectrum. The advantage of this 
methodology is that as calibration software is updated, users do not need to download new image 
cubes, but instead they download the new software and reprocess their raw cubes.

CRISM Calibration. A complete description of CRISM calibration can be found in [9]. CRISM 
uses a shutter and an integrating sphere as part of the internal calibration systems. The shutter in 
its closed position allows for the measurement of bias, dark current, and thermal background. A 
partially opened shutter acts as a mirror, allowing the full view of the integrating sphere.

Spectral Smile. Imaging spectrometers are ideally designed such that one dimension of the 
CCD is spatial and the other dimension is spectral. Ideally, this means that any row of pixels will 
correspond to a common wavelength while any column corresponds to a common surface location. 
Due to minor flaws in optics and alignment, this is almost never the case, causing wavelength 
positions to shift. If one were to create a contour of a single wavelength across the CCD, it would 
appear as a smile (or frown).

Atmospheric Corrections. The atmosphere of Mars is composed of 95% CO2 [112], which produces 
several absorption features at or near surface spectral features. The presence of these overlapping 
atmospheric features can introduce error into surface spectral indices by either creating a deeper 
absorption feature (atmospheric line directly overlaps the surface spectral feature) or introducing a 
slope into the continuum estimate (atmospheric line is adjacent to the surface feature). In addition, 
atmospheric scattering can introduce a color slope, causing the surface to appear bluer.

One simple technique to remove most of the atmospheric lines, but not spectral slopes due to 
scattering, is the volcano scan [113]. The volcano scan technique involves calculating the ratio 
between the absorption line strengths observed at the top of a volcano (e.g., Olympus Mons) and the 
base of the volcano. If the surface on top of the volcano has the same photometric properties (e.g., 
albedo) as the base (which is the case for many volcanos on Mars since these regions are typically 
covered by thick layers of dust), then the ratio of the line strengths is due to the atmosphere. A few 
of the absorption lines are at wavelengths that do not overlap with surface spectral features. These 
line strengths are then used to calculate the ratio among the volcano scan line strengths, which can 
then be used to correct the atmospheric line strengths that do overlap with surface spectral features. 
The volcano scan method is useful for a quick analysis of spectral features but is inadequate to 
remove scattered light in the continuum. One approach is to use a Monte Carlo model designed to 
simulate multiple scattering of light from dust and ice aerosols in the atmosphere [114,115]. This 
approach is often combined with a volcano scan method to correct spectra for both scattering and 
gas absorption. Another method is to use a physics-based radiative transfer model that incorporates 
the optical properties of the gases and the aerosols (e.g., DISORT) [116]. This method requires a 
priori knowledge of atmospheric optical depths. This approach, while the most accurate (similar to 
MODTRAN), is also the most computer intensive.

One of the most common vegetation indices is the normalized difference vegetation index 
(NDVI), where one compares the reduction of reflectivity in the NIR versus that in the red. 
This reduction in reflectivity is due to the absorption of water. Surface volatiles and exposed 
minerals can be identified in a similar manner, using absorption features unique to either a 
specific mineral or a suite of minerals. Viviano-Beck et al. [117] outlined the most common 
spectral indices used by CRISM to identify ice and minerals. Many spectral indices measure the 
depth of absorption bands, while others measure spectral slope. Many of these indices are less 
sensitive to atmospheric corrections, especially if the spectral feature is not near an atmospheric 
spectral feature.

14.2.4.3  Case Studies
Ehlman and Edwards [118] compiled a review of the mineral composition of the Martian surface 
based on both spacecraft and in situ measurements (Figure 14.3). Much of this story was a result 
of NIR and SWIR spectroscopy identifying and mapping the distributions of phyllosilicates and 
sulfates.
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(a) (b) (c)

(d) (e)

(g) (h) (i)

(f )

FIGURE 14.3  Mars’s aqueous environments as seen by HiRISE and CRISM false color IR images and 
composites. (a) Rocks disrupted by the Isidis impact and exposed 500 m deep in the Nili Fossae trough 
contain low-calcium pyroxene breccia blocks (green) partially altered to Fe/Mg smectite and contained within 
a smectite-bearing matrix. (b) An eroded stratigraphy in Nili Fossae with Mg carbonates (green) formed 
by alteration of an eroded olivine-rich unit that in turn overlies Mg-smectite clays (blue). Ridges indicate 
conduits of subsurface fluid flow. Olivine is also enriched in sand dunes. (c) Aluminum phyllosilicates overlie 
nontronite-bearing sediments at Mawrth Vallis and may have formed by top-down, near-surface leaching. 
(d) Prehnite, chlorite, and illite are associated with the ejecta of small craters north of Syrtis Major and indicate 
excavation of hydrothermally altered materials. (e) Sedimentary beds in the Holden crater fan deposit host Fe/
Mg phyllosilicates. (f) Chloride salt, possibly halite, overlies older smectite clay–bearing knobs in a shallow 
depression near 205°E, 33°S. (g) Interbedded sulfate- and kaolinite-bearing sediments in Columbus crater 
paleo lake deposits. (h) Silica as seen from orbit in layered units around Valles Marineris. Scale bar is 200 m 
unless otherwise indicated. (i) CRISM visible/SWIR spectra of ancient Martian terrains show mineralogic 
diversity. Data are not shown at the 1.65 µm CRISM filter boundary or within the 2.0 µm atmospheric CO2 
absorption. (Modified from Ehlman, B.L. and Edwards, C.S. 2014. Annual Review of Earth and Planetary 
Sciences, 42, pp. 291–315, doi: 10.1146/annurev-earth-060313-055024. [118])
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14.2.4.3.1  Phyllosilicates, Sulfates, and Alteration Minerals
Prior to the arrival of imaging infrared spectrometers (e.g., OMEGA), Martian history was defined 
by epochs based on visible imaging—morphology, crater counts, and so forth. With the arrival of 
the French-led instrument OMEGA on board the European spacecraft Mars Express, a new way of 
viewing Martian history emerged. This new view was based on mineralogical composition derived 
from spectral absorption features. Not only were broad classes of minerals identified and mapped 
(e.g., olivines and pyroxenes), but specific minerals (e.g., nontronite, Fe-rich chlorites, saponite, 
and montmorillonite) were identified and mapped [119,120]. The new view of composition loosely 
correlates with the timeline determined from visible imaging but tells a story that surface materials 
changed from neutral-pH (or slightly alkaline) conditions early in Mars history to acidic alteration 
at a later epoch [121,122].

In addition to providing the first high-spectral-resolution details of Mars’ primary igneous 
mineralogy (e.g., olivine and pyroxene), OMEGA found evidence for spatially extensive hydration 
and alteration of the oldest Martian terrains, in the form of hydrated clay minerals [119,120]. These 
OMEGA-based detections motivated targeted observations by the later CRISM instrument. The 
higher spatial resolution of CRISM (18 m/pixel in targeted mode) has helped confirm most of 
OMEGA’s clay mineral detections, revealed numerous, less extensive occurrences of clay minerals, 
and allowed these to be placed in a stratigraphic context.

CRISM data have extended earlier observations by OMEGA that aluminum-bearing clay minerals 
such as kaolinite and beidellite tend to occur stratigraphically above iron and magnesium-bearing 
clay minerals [118]. Whereas OMEGA was only able to reliably detect this mineral sequence in large 
exposures within the Valles Marineris region, the higher spatial resolution of CRISM has enabled 
detections in smaller valley systems and in the walls of impact craters throughout the oldest Martian 
terrains [118]. This sequence suggests a near-global transition early in Mars’ history from neutral to more 
acidic alteration conditions, possibly coupled with enhanced leaching of the surface crust [121–123].

14.2.4.3.2  Ices
The polar caps are the most active regions on Mars and the most dynamic processes visible from 
Earth. The annual cycling of atmospheric CO2 into the seasonal CO2 ice caps is a driving force of 
the Martian climate. The polar layered deposits, with thousands of layers whose thickness is only 
resolvable with submeter spatial resolution from orbit, may contain a record of past climates. The 
polar regions contain the majority of known H2O ice deposits, distributed between the residual caps 
and near-surface ice in the regolith. CO2 ice has several spectral features throughout the infrared 
(e.g., 1435, 2340 nm) Unfortunately, CO2 ice has many spectral features located at or near the same 
wavelengths as the gas bands (e.g., 1435 nm). One of the few exceptions is the doublet at 2345 nm. The 
presence of H2O ice is easily detected by the presence of broad spectral features at 1500 and 2000 nm.

While the seasonal monitoring and mapping of the seasonal caps date back to Herschel (1784) 
[124], the ability to correctly identify the seasonal cap composition as CO2 ice did not occur until 
the 1960s. See references [125] and [126] for a historical overview. In 2001, Kieffer and Titus 
[127] recognized that the northern seasonal cap was surrounded by a H2O-ice annulus during the 
springtime retreat. This conclusion was based on comparing thermal observations (CO2 ice is 
typically at ∼145 K) with visible observations. The bright edge of the seasonal cap was too warm 
to be CO2 ice and was hypothesized to be H2O. This hypothesis was later spectrally confirmed by 
OMEGA in 2005. In addition to spectrally confirming the presence of the H2O-ice annulus, OMEGA 
also observed the presence and distribution of H2O ice intimately mixed with the dominant CO2 ice 
through much of the seasonal cap.

14.2.5 M ain Belt Asteroids: Ceres and Vesta

The Dawn mission to the MAB was a first in solar system exploration in that it was the first spacecraft 
to orbit two separate planetary bodies. All other planetary spacecraft missions consist of landers, 
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orbiters, or flybys. Flyby missions occasionally end by entering orbit around the last body visited. 
Dawn visited and orbited the two largest asteroids within the MAB, 1 Ceres and 4 Vesta. Vesta lies 
in the dryer inner part of the MAB, while Ceres is in the outer “icier” part. This provided a unique 
opportunity in comparative planetology.

14.2.5.1  Dawn Mission Visible and InfraRed Spectrometer
The Dawn VIR slit spectrometer is composed of two subsystems: VNIR and SWIR. The VNIR 
subsystem has a spectral range from 250 to 1000 nm, while the SWIR subsystem measures from 950 
to 5000 nm. The spectral frames are 256 pixels (spatial) by 432 pixels (spectral) with a slit width of 
64 mrad. The VIR heritage can be traced back to the Cassini VIMS instrument.

14.2.5.2  Calibration and Analysis Techniques
The calibration of VIR spectra consists of a number of standard steps. The first step is to remove the 
effects of optical misalignment. Defective pixels and data spikes due to high-energy particles are 
also removed. Saturated pixels are identified and removed. Finally, the calibration matrix is applied. 
As with many instruments, the calibration coefficients for even and odd detectors are different. 
VIR makes use of several filters sandwiched into the CCD to ensure only the correct wavelength 
passes through. While this is necessary to reduce the effects of multiple orders of wavelengths, the 
boundaries between the filters result in scattered light. Early calibration efforts did not correct for 
this effect. A complete discussion of calibration can be found in [128]. Once the data have been 
radiometrically calibrated, each band must be projected into either a common image space or a map. 
This step is necessary to ensure that each pixel spectrum is from the same location on the surface 
(i.e., spectral/spatial alignment).

There are three commonly used approaches in the analysis of VIR data: spectral indices, linear 
spectral fitting, and Bayesian spectral fits. Several spectral indices are used to map minerals on 
surfaces. The primary indices focus on either band depth or band center. Examples of this are 
spectral indices for olivine, pyroxenes, howardite–eucrite–diogenite (HED) meteorites, and a range 
of hydrated minerals. Pyroxenes have broad spectral features at 1000 and 2000 nm. Olivine has a 
broad feature at 1000 nm. The band centers of the spectral features shift with composition, allowing 
identification of a suite of minerals within each mineral family. Hydrated minerals provide several 
narrower features that correspond to hydroxyl and absorbed water bonds.

Spectral fitting is another useful approach, though it is more time intensive. The use of linear 
combination [129] of a known library of mineral spectra is useful when trying to identify small 
outcrops of a mineral. This is especially useful when the mineral is spectrally bland within the 
wavelength region of interest. Dark carbonaceous chondritic material is featureless within VIR’s 
spectral range.

The last commonly used approach is Bayesian nonlinear spectral fitting. This approach has 
mainly been used to separate the reflection component from the thermal emission component at 
the longer wavelengths (3000–5000 nm) [130]. Because the Dawn spacecraft does not have a TIR 
instrument, all surface temperatures are derived from the VIR 4000–5000 nm spectral region. In 
addition, removal of thermal emission from the 3000 nm region is important in determining the 
presence and abundances of water ice and hydrated minerals. Since this spectral region is on the 
Wein side of the Planck function, VIR is not sensitive to surface temperatures below 180 K. This 
essentially limits surface temperature determinations to those observations at the low to middle 
latitudes during local midday.

14.2.5.3  Case Studies
The surface of Vesta was expected to be composed mainly of pyroxene minerals based on spectral 
reflectivity [131]. It was suggested early on that Vesta was the source of HED meteorites, based on 
similar reflection spectra [132]. Dawn VIR observations confirmed that the surface of Vesta was 
largely composed of iron-bearing pyroxene-rich minerals comparable to HEDs [133]. In general, 
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the surface can be divided into regions of bright material and dark material. The dark albedo 
material is composed of carbonaceous chondritelike opaque material [129]. These dark areas also 
tend to be higher in hydrated minerals, also consistent with a carbonaceous chondritic composition 
[133]. The bright material could represent pristine areas and are generally composed of howardite-
rich eucrites [134]. Additionally, there are outcrops of olivine-rich materials in several craters, 
including Bellicia and Arruntia craters [135]. The lack of large olivine outcrops, especially in 
the area surrounding the deep impact crater, Rheasilvia, puts definite constraints on the interior 
structure of Vesta.

The surface temperatures derived from VIR reveal a surface covered in a fine regolith with a 
thermal inertia of 30 +/− 10 m−2 s−0.5 K−1 [136]. There is a range of thermal inertia on Vesta, with 
regions north of the equator having lower thermal inertia, suggesting more weathering or processing, 
and outcrops of higher thermal inertia around the relatively young Marcia crater [136]. The higher 
thermal inertia is most likely due to compaction following degassing of near surface volatiles. These 
results suggest a surface similar to the Moon with few or no rocks on the surface.

Ceres, based on estimated planetary mass and size, was expected to be a very icy world with 
an extremely young relaxed surface [137,138]. Telescopic observations have purportedly observed 
plumes of water vapor that are transient but appear to originate from the surface at midlatitudes 
[139]. Instead, Dawn found a heavily cratered surface that could not have more than 30% ice to rock 
mixtures [140].

Unlike Vesta, which is quite bright, Ceres has an optical albedo of 0.09 and a bond albedo of 0.03. 
VIR spectra confirm a surface consistent with carbonaceous chondrites. Spectral features observed 
by VIR suggest the widespread presence of ammoniated phyllosilicates, which is generally found 
in the outer Solar System [141]. This suggests either that Ceres formed in the outer part of the Solar 
System and migrated inward to its current orbit or the ammoniated phyllosilicates are exogenic in 
origin and were delivered to the surface via impacts.

There are small areas that are bright, the largest ones occurring in Oxo and Occator craters 
[142,143]. VIR has identified these bright deposits as containing both sodium carbonates and 
ammonium salts [144]. It has been suggested that these deposits are evaporates, the result of 
sublimation from an aqueous solution [144–146]. While water is not generally stable on the surface of 
Ceres [147,148], small deposits of exposed water ice have been discovered in permanently shadowed 
regions [149,150]. Observations of Ceres’ surface temperatures and estimates of thermal inertia are 
preliminary but generally suggest a surface with low thermal inertia [151].

14.2.6 J upiter

14.2.6.1  NIMS
A detailed description of the NIMS instrument (Table 14.1) design, calibration, and operation was 
presented in [152]. NIMS’s spectral range, from 700 to 5200 nm, allowed measurements of both 
reflected sunlight and emitted thermal radiation. The instrument used a 228 mm aperture, f/3.5 
Ritchey-Chretien telescope with an equivalent focal length of 800 mm. The incident beam was 
reflected onto a wobbling secondary mirror that could scan through 20 fixed positions to provide 
whisk-broom spatial coverage in one direction, while the motion of a scan platform provided spatial 
coverage in either direction. The beam was directed through a chopper to a wobbling diffraction 
grating that was rotated in steps to generate spectral coverage at the commanded spectral resolution, 
up to 408 wavelengths. The chopper ensured that no light reached the detectors while the diffraction 
grating was in motion. The beam was focused onto an array of 17 detectors: 2 silicon detectors for 
NIR wavelengths and 15 indium antimonide (InSb) detectors sensitive to longer wavelengths. The 
focal plane assembly, including the detectors and their preamplifiers, was radiatively cooled to 64 K. 
The system had an IFOV of 0.5 × 0.5 mrad (leading to spatial resolutions of tens to hundreds of 
kilometers per “nimsel” for many of the Jovian satellite encounters) and an angular FOV of 0.5 × 10 
mrad. A “nimsel” is a NIMS pixel with all the spectral wavelengths spatially colocated.
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14.2.6.2  Calibration and Analysis Techniques
NIMS faced many challenges in its mission, including the harsh radiation environment of Jupiter. 
The instrument was shielded within a 3 mm thick tantalum enclosure, but even so, the SNR degraded 
sharply during encounters with satellites in the inner reaches of Jupiter’s radiation belts. The 
spacecraft suffered a downlink bottleneck caused by the failure of its high-gain antenna, severely 
limiting the data volume returned by each instrument during the mission. Contamination was also a 
concern, and NIMS was equipped with covers, shields, and shades to protect it from thruster firings 
and thermal influences from the spacecraft. Spectral calibration (subject to change, due to thermal 
effects or vibration of the diffraction grating during launch) was provided by an onboard InGaAs 
LED lamp that emitted at a known wavelength. A radiometric calibration target, consisting of an 
extended, near-field blackbody source heated to a known temperature, was mounted on the spacecraft 
within the NIMS FOV. A photometric calibration target that diffusely reflected sunlight was also 
placed in view of the scan platform. Independent verification of many of the spectral detections made 
by NIMS took place during the millennium passage of the Cassini spacecraft en route to Saturn. 
Cassini’s VIMS confirmed several weak absorption bands in the spectra of the Galilean satellites 
Io, Europa, Ganymede, and Callisto [153]. The NIMS instrument operated successfully throughout 
Galileo’s 14-year mission despite failures of two of the InSb detectors and the temperature sensor 
of the radiometric calibration target.

14.2.6.3  Case Study
NIMS is credited with the first detection of ammonia ice clouds in the atmosphere of Jupiter [154] 
and made important observations of water vapor that demonstrated moist convection in Jovian 
lightning storms [155,156]. NIMS thermal observations were critical to understanding the nature 
and distribution of active volcanos on Io [157] and the energetics of their eruptions [158]. NIMS did 
not identify the mineralogy of the lavas but provided an indirect indication that they must be made 
up of silicates, since their eruption temperatures were too high for other candidate materials. NIMS 
produced global maps of Io’s surface SO2 ice abundance and grain size at spatial resolutions from 
100 to 350 km/nimsel, using the deep absorption band centered at 4100 nm together with the relative 
strengths of weaker bands [159,160]. Water ice grain sizes were measured on the icy satellites Europa, 
Ganymede, and Callisto using a similar approach [161]. On Europa, NIMS found that the water ice 
bands were distorted, leading to suggestions of the presence of hydrated phases of salts [162] or 
sulfuric acid [163]. NIMS did not specifically identify the visibly red endogenic material that is 
associated with tectonic ridges and other young geological features on Europa but found associations 
between these features and the degree of distortion of the water ice bands. Several compounds 
attributed to radiolysis were identified on the surfaces of the icy moons, including H2O2 (through a 
band at 3500 nm) [164], SO2 (4050 nm), and CO2 (4260 nm). CO2 signatures were particularly strong 
on Callisto and the older terrain on Ganymede [165,166], perhaps due to radiolysis of meteoritic 
carbonaceous material. A weak feature attributed to CN (4570 nm) was also seen on Callisto.

NIMS’s mission ended in September 2003, when the Galileo spacecraft plunged deliberately into 
Jupiter to ensure that the risk of biological contamination of Europa was eliminated.

14.2.7 S aturn

14.2.7.1  VIMS
Cassini’s VIMS (Table 14.1) was a primary orbital instrument to study the composition, dynamics, 
clouds, and thermophysics of the atmospheres of Saturn and Titan and the identification and mapping 
of surface compositions of Titan, the other icy Saturnian satellites and rings. VIMS consisted of two 
instrumental subsystems covering different spectral ranges [39]. The VIMS-VIS (visible) channel 
was a multispectral imager that covered the spectral range from 350 to 1050 nm with 96 spectral 
channels with a spectral resolution of 7.3 nm and used a frame transfer CCD detector on which spatial 
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and spectral information was simultaneously stored. The VIMS-IR (infrared) channel covered a 
wavelength range from 850 to 5170 nm using 256 spectral channels with a spectral resolution of 
16.6 nm. The two spectrometers had many modes, but they typically employed effective IFOVs 
of 0.5 × 0.5 mrad. The largest spectral cubes made were 64 × 64 (lines and samples), although 
much smaller spatial views were often used to save on data volume. During Cassini’s approach to 
Titan, VIMS observational sequences commenced several hours before closest approach, providing 
hemispheric mapping with full spectral cubes with spatial resolutions ≤50 km/pixel. About 4 h 
before closest approach, 2 × 2 mosaics provided coverage of the disk. Resolutions of ∼10 km/pixel 
were achieved ∼0.5 h before closest approach when regional mosaics could be acquired. Isolated 
cubes, rarely acquired during close flybys, could yield resolutions as high as 250 m/pixel.

14.2.7.2  Calibration and Analysis Techniques
The two imaging spectrometers that composed VIMS were calibrated separately [39]. The VIMS-
VIS channel was calibrated in Italy prior to integration at JPL with the VIMS-IR channel that was 
also calibrated by JPL. Final tests of the integrated instrument included only filter transmission 
and mineral target measurements. Spectral calibration characterized the bandpass for each spectral 
channel over the FOV and as a function of temperature. Central wavelengths of the VIMS-IR channels 
varied by <1 nm; because the sampling interval was about 16 nm, this was a small shift. Likewise, the 
VIMS-VIS wavelength variations were <0.3 nm compared to the 7 nm sampling interval. Preflight 
calibration included radiometric/flat field response, geometric, polarimetric, spectral, and solar port 
response. Cooling the thermal vacuum chamber walls with liquid N2 simulated the flightlike thermal 
environment. The simulated thermal environment was quite accurate as the in-flight temperatures 
of optics and focal planes were within a few Kelvin of those in the test chamber. In the case of 
analysis of VIMS data by the authors of this chapter, ISIS-3 (the USGS publicly available Integrated 
Software for Imagers and Spectrometers) has been used for radiometric and geometric corrections 
and for subsequent spectral analysis and correlations with other Cassini data sets. For VIMS cubes, 
ISIS-3 provides a set of end-to-end tools (https://isis.astrogeology.usgs.gov/Installation/index.html) 
that start with raw data publicly available from the NASA PDS and generate high-level products 
that have been radiometrically corrected and transformed to a wide variety of map projections. 
ISIS-3 also provides a suite of interactive tools for spectral analysis, generation of control nets, and 
mosaicking to cartographic standards.

14.2.7.3  Case Study
Titan affords a rich solar system laboratory to study active organic synthesis on a global scale—it 
may exhibit chemical pathways holding clues to the primordial prebiotic organic chemistry that led 
to the emergence of life on Earth. Methane makes up a few percent of Titan’s thick cold nitrogen 
atmosphere. Moving in a global cycle, the methane forms clouds, rain, rivers, lakes, and seas akin to 
Earth’s hydrological cycle. In the upper atmosphere, methane and nitrogen are energetically broken 
down and recombine to form a vast spectrum of organics ranging from simple gases to large complex 
molecules. These form mixtures of organic liquids and aerosol solids that rain onto the surface. 
Spectral evidence for the composition of the lakes derived from VIMS observations is the subject here.

Able to penetrate the thickly absorbing, hazy atmosphere through a series of atmospheric 
windows, VIMS is the primary Cassini instrument used to study Titan’s surface composition. 
Sunlight penetrates to the surface through narrow transmission windows that are separated by deep 
methane absorption bands. Within atmospheric windows with wavelengths <1000 nm, surface 
signals are swamped by multiple scattering from aerosols. Aerosol scattering becomes decreasingly 
effective at longer wavelengths. As a result the surface is visible only through atmospheric windows 
centered at 940, 1080, 1280, 1600, 2000, 2700, 2800, and 5000 nm; all of these are in the spectral 
range of the VIMS-IR channel.

Long before Cassini-Huygens arrived at Saturn in 2004 there was the expectation of finding 
hydrocarbon lakes. In mid-2005 the Cassini Imaging Science Subsystem photographed a large dark 

https://isis.astrogeology.usgs.gov/Installation/index.html
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feature suggestive of a lake near the south pole (later named Ontario Lacus) [167]. In 2006 Cassini 
synthetic aperture radar images of the north polar region revealed a vast array of lakelike features 
north of 75° [168]. But the evidence for their being liquid was based morphological pattern and 
extremely low radar cross section. VIMS provided additional evidence for the composition of the 
lakes.

It had been predicted that the lakes would consist largely of methane and nitrogen with several 
tens of percent ethane [169]. Methane would be hard to detect owing to the abundant methane in 
the atmosphere, and nitrogen exhibits no features in the atmospheric windows, but ethane was a 
possibility. During a close flyby of Titan in late 2007, VIMS observed Ontario Lacus and collected 
a sequence of four spectral cubes [170]. Spectra from inside and outside the lake are quite similar, 
dominated by the absorption bands in the atmosphere. Spectral differences do exist, however, in 
particular in the 2000 and 5000 nm windows. Ratios of spectra from the interior of the lake and from 
a nearby area outside cancel effects of the strong atmospheric absorptions and reveal spectral features 
in these two bands. Spectra with nearly identical path lengths were used to minimize residuals from 
strong atmospheric absorptions in the ratios. Ratios are shown for the dark lake interior and for a 
narrow annulus resembling a beach just inside the bright shoreline. The ratio spectra are nearly 
flat across the rest of the windows, showing that the strong atmospheric absorptions were mostly 
canceled out.

Brown et  al. [170] identified two well-developed spectral features in the ratios: a narrow 
absorption at 2018 nm and a broad absorption in the 5000 nm window that shows a steep drop at 
∼4800 nm, continuing downward to the end of the VIMS spectral range. Clark et al. [171] provided 
derived optical constants for liquid ethane measured in the laboratory. Brown et al. [170] derived 
model ethane spectra from these optical constants (red line in Figure 7.3)—most of ethane’s narrow 
absorption bands fall within the deep atmospheric window, with the narrow exception of a feature 
near the 2000 nm window that matches what is seen in the ratio spectra of the lake. The steep drop 
in reflectance beyond 4800 nm is a strong indicator of lake composition. This is characteristic of 
alkanes, including ethane, propane, and butane [171,172]. The presence of propane, butane, and 
higher-order alkanes could explain the continued drop beyond the ethane absorption feature modeled 
in the 5000 nm window by Brown et al. [170]. Although the VIMS spectra cannot detect liquid 
methane, theoretical work by Mitri et al. [173] on Titan’s hydrocarbon lakes shows that if ethane is 
present, methane is most probably a major component as well.

14.2.8  Pluto

14.2.8.1  New Horizons Ralph
Ralph has a 75 mm aperture reflecting telescope with a 650 mm focal length. A dichroic beamsplitter 
divides the beam between two separate focal planes, the Multi-spectral Visible Imaging Camera 
(MVIC) and the Linear Etalon Imaging Spectral Array (LEISA), both of them passively cooled. 
Unlike most other instruments described in this chapter, Ralph obtains data without use of any 
internal moving parts. The entire spacecraft is rolled to provide spatial and spectral coverage. The 
MVIC focal plane has seven CCD arrays, most of them operated in time-delay integration (TDI) 
mode. MVIC’s FOV is scanned across a scene while reading out the CCD arrays at a matched rate. 
Four of the CCDs, operated in concert, are fitted with color filters to cover wavelengths from 400 
to 975 nm. LEISA, Ralph’s infrared component, uses a 256 × 256 HgCdTe detector array. Linear 
variable interference filters are affixed to the array, making each row of pixels sensitive to a specific 
wavelength of infrared light between 1.2 and 2.5 µm. As with MVIC, the FOV of LEISA is swept 
across the scene by rolling the spacecraft. Frames are recorded at a rate so that the scene has 
moved by about a pixel between each successive frame. LEISA’s primary filter provides a spectral 
resolution (λ/Δλ) of 240 over the full wavelength range. An additional filter provides a higher 
spectral resolution of 560 over a narrow wavelength range from 2.1 to 2.25 µm, where diagnostic 
absorption bands for ices of N2, NH3, and CH4 are located.
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14.2.8.2  Calibration and Analysis Techniques
Ralph radiometric calibration is based on a combination of preflight ground measurements and 
in-flight observations. MVIC is sufficiently sensitive that observations of stellar clusters can provide 
numerous simultaneous observations of stars with known brightnesses. Repeated observations of 
clusters NGC 6405, 6475, and 3532 were used to monitor instrument calibration [174]. LEISA is less 
sensitive, requiring relatively bright stars. Its calibration is based primarily on Vega and Arcturus 
observations. Flat fields for both MVIC and LEISA obtained prior to launch were found to be less 
satisfactory than hoped for, and with no mechanism to insert a flat field target into Ralph’s FOV, 
the only way to get in-flight flat fields was to use solar system targets during flybys. Flat field 
observations were done during the Jupiter flyby by slewing the Ralph field rapidly across Jupiter 
perpendicular to the usual scan orientation, in order to blur out spatial information. This worked 
reasonably well, but not for all wavelengths. Jupiter reflects too little light at the wavelengths of its 
strong CH4 absorption bands. Thus, the procedure was repeated in the Pluto system, using Pluto 
itself as the flat field source.

A particular challenge with New Horizons Ralph is that the spacecraft must be rolled to sweep the 
instrument’s FOV and wavelength channels across a scene. This motion is driven by monopropellant 
thrusters rather than reaction wheels and can only be controlled to within a deadband. The tighter 
the deadband, the more frequently thruster firings are required. Whenever a thruster fires, the rate 
and direction of motion change, although the readout rate remains constant. The spacecraft records 
its orientation at a 1 Hz rate, and this information can be used by the ISIS-3 software to map-project 
each pixel of each frame to the appropriate location on the target body’s surface. One additional 
complication is that New Horizons flies past its targets at roughly 14 km/s. The finite duration 
of Ralph scans, especially for the LEISA observations of infrared wavelengths, means that the 
spacecraft-target geometry changes appreciably over the course of the scan. One way to handle such 
a data set would be to compile a long list of spatial plus spectral samples and test models against that 
list. But it is far more convenient to work with image cubes in which two axes are spatial and one is 
spectral. To create image cubes that minimize the distortion from spacecraft motion, ISIS-3 software 
is used to project the data to an orthographic or point-perspective view of the target body from the 
spacecraft’s location at the midtime of the scan. This procedure merges together pixels from different 
phase and emission angles, leading to modest geometric errors. For Pluto, the last LEISA scan before 
closest approach was the most affected, with the image cube combining footprints differing in phase 
and emission angle from midscan values by as much as ±1.6°.

14.2.8.3  Case Study
LEISA was designed to be sensitive to characteristic vibrational absorption bands of ices of CH4, 
CO, and N2, all known from preencounter telescopic observations to exist on Pluto and to be 
heterogeneously distributed in longitude [175,176]. During the hours before closest approach, New 
Horizons scanned LEISA across the encounter hemisphere of Pluto at spatial scales ranging from 3 
to 10 km/pixel. These observations provided detailed maps of the geographic distribution of the three 
volatile ices, providing insights into the processes governing their distribution. Each of the ices has 
distinct distributions in latitude, longitude, and altitude [177], pointing to the complex influence of 
seasonally varying patterns of insolation [178,179] driving sublimation and condensation at distinct 
rates for the different ices, with N2 being the most volatile and CH4 being the least volatile of the three.

Pluto’s equatorial latitudes were observed to be mostly devoid of volatile ices [180], featuring 
a belt of dark, reddish maculae, typified by Cthulhu Macula on the encounter hemisphere. But 
low latitudes are not entirely free of volatile ices. Notable exceptions include the bladed terrain 
of Tartarus Dorsa, strikingly rugged high-altitude ridges rich in CH4 ice, possibly analogous to 
terrestrial penitentes [181]. Another site of equatorial volatile ices is the deep basin of Sputnik 
Planitia, where N2 appears to be the dominant species, but CH4 and CO are also present [182]. These 
ices form a sufficiently deep deposit to be actively convecting, a style of glaciation not previously 
seen anywhere in the Solar System [183–185].
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At midlatitudes, CH4 ice preferentially appears on mountain tops and crater rims, and further 
north it occurs across broad plains. Retreating scarps cut into those plains, as in Piri Planitia [186], 
exposing a substrate featuring absorptions by H2O ice, which is inert at Pluto surface temperatures and 
is likely representative of the underlying “bedrock.” Such scarps could be related to the million year 
Milankovich-like “mega-seasonal” cycles that arise from Pluto’s polar precession and the evolution 
of its eccentric heliocentric orbit [178,179,187]. N2 and CO ices also appear at these latitudes, but 
mostly in topographic lows such as Burney crater, where the higher pressure helps stabilize them 
from sublimation.

Further north, the polar region of Lowell Regio is currently experiencing continuous summer 
sunlight. CH4 ice is prevalent there, forming deposits on the order of a kilometer in thickness. These 
deposits are punctuated by a variety of deep pits including clusters and aligned rows of pits that are 
clearly not impact craters. They are more likely related to some eruptive process or to subsurface 
melting and undercutting of the CH4 ice mantle [188]. There is little evidence of the more volatile N2 
and CO ices at polar latitudes, suggesting that they have already sublimated away from the northern 
pole in the current summer season [180,182].

New Horizons Ralph was also able to map nonvolatile materials on Pluto’s surface. Chief among 
these was the previously mentioned broad expanses of dark, reddish material that are especially 
prevalent at equatorial latitudes. This material is thought to be carbon-rich, macromolecular 
tholins. It likely originates as photochemical haze in Pluto’s upper atmosphere, although radiolytic 
production from Pluto’s surface ices is also possible. H2O ice also has prominent absorptions at 
LEISA wavelengths, allowing it to be mapped. It is associated with the dark red material in some 
places, especially toward the peripheries of the maculae. H2O ice also appears in rugged mountain 
ranges along the western margin of Sputnik Planitia, such as Al-Idrisi and Baré Montes. Curiously, 
an area especially rich in H2O ice is seen around a few of the pits in the CH4-ice-rich midlatitudes at 
Supay Facula. The H2O ice there does not appear to be exposed “bedrock” as in Piri Planitia, as there 
is no morphological contrast between it and the surrounding CH4-dominated terrain. It is a puzzle 
how inert H2O ice could come to be superposed on seasonally mobile CH4 ice unless some sort of 
eruptive process had recently emplaced it. It has to be a relatively young deposit, since any ancient 
surface would eventually accumulate a veneer of photochemical haze settling out of the atmosphere, 
as in Cthulhu and the other dark equatorial maculae. (Note: Pluto feature names mentioned in this 
chapter are a work in progress. They include a mix of formally approved and informal names.)

14.3  CONCLUSIONS AND FUTURE CHALLENGES

Hyperspectral analyses of planetary surfaces in the VNIR and SWIR wavelengths are used to 
constrain their geology and mineralogy and as a means of understanding their history and evolution. 
The methods used to acquire and calibrate planetary data sets share many similarities with those 
used for terrestrial observations of vegetated and rocky surfaces on the Earth. In fact, many of the 
techniques developed for the study of planetary hyperspectral data sets germinated from studies 
using Earth-based observations. Even though other planetary bodies in our solar system almost 
certainly do not have vegetation like the Earth (the focus of this volume), there are several reasons 
for scientific interactions between those studying imaging spectroscopy (or hyperspectral remote 
sensing) applications for the Earth and those studying other planetary bodies using similar sensors.  
First, most of the design of hyperspectral sensors that gather data in the 400–2500 nm range is 
the same whether they are deployed to study the Earth or other planetary bodies. Second, the 
methods and techniques of hyperspectral data processing, interpretation, and analysis are similar 
irrespective of which planetary bodies are being studied. For example, hyperspectral data analysis 
methods discussed in various chapters of this volume, such as subpixel analysis, band ratios, 
principal component analysis, spectral matching techniques, linear and nonlinear unmixing, and 
various classification techniques, can be applied across planetary hyperspectral data sets. Third, 
preprocessing algorithms, such as radiometric, geometric, and atmospheric corrections, are similar 
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or can be used with slight modifications for various planetary bodies. Fourth, as we have learned 
from previous chapters, the background influence from factors such as soils on spectral reflectivity is 
significant. Thus, the lessons learned in soil spectral reflectivity studies, considering their chemical-
physical-moisture properties, on one planet should be applicable to other planetary bodies as well. 
For example, certain narrow bands or their combinations best predict soil organic matter or other 
soil properties. Fifth, hyperspectral narrow bands provide an opportunity to compute hundreds or 
thousands of material identification indices, such as indices that provide the best results in modeling 
and mapping soil characteristics. This understanding, too, can be used across planetary bodies. 
Sixth, the spectral libraries available for soils, rocks, vegetation, and soils with varying moisture 
content measured from terrestrial materials are also useful in spectral matching techniques for 
other planetary surfaces to identify and label targets by matching ideal spectra with target spectra. 
For example, an absorption feature found around 2800–2900 nm in data gathered by the Moon 
Mineralogy Mapper hyperspectral sensor onboard Chandrayaan-1 led to the detection of hydroxyl/
water (about 0.1% of total volume of material) on the Moon.

Planetary bodies range from those without atmospheres to those with atmospheres much thicker 
than the Earth’s. Despite the challenges associated with specific data sets, valuable information 
regarding the composition and mineralogy of planetary surfaces has been derived. More importantly, 
many of the data sets acquired now provide well-calibrated observations that will enable future 
researchers to explore these surfaces in more detail using analytical techniques yet to be developed. 
Such future work will include improved methods of eliminating interference from atmospheric 
contamination, particularly on bodies that experience atmospheric variability from seasonal changes. 
Ongoing work regarding unmixing of complicated rock and mineral mixtures using laboratory 
analyses and field studies will continue to improve the precision and accuracy of determining 
compositional variability and mineral abundances using remotely sensed hyperspectral data sets.

The instruments and case studies described here together document a highly active field of research 
that has important implications for remote sensing studies of the Earth. Not only do the results of 
such planetary remote sensing studies help us to understand the nature and distribution of materials 
such as rocks and soils, but also they have been invaluable in detecting evidence of water in places 
in our solar system we had long believed to be dry. There is a clear link between water and life in 
our solar system [189] (http://mepag.jpl.nasa.gov/reports/MEPAG_Goals_Document_2010_v17.pdf). 
Scientists are now in the process of unraveling and extending links between observed geological 
and biological materials such that we will soon be able to characterize habitable environments both 
on and off the Earth. Finally, as scientists continue to discover numerous exoplanets, some of which 
may be habitable, the knowledge of hyperspectral signature becomes pivotal and will play a crucial 
role in gathering knowledge on the exoplanets.
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Goals here are to provide readers with an overview of chapters and contents. This they can read in 
the very beginning, before moving on to the individual chapters. Or they can read it at the very end to 
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Hyperspectral remote sensing, also referred to as imaging spectroscopy, is a mechanism for 
gathering data in narrowbands (10 nm or less) across the electromagnetic). Hyperspectral data 
are typically gathered in 1 to 10 nm bandwidths per band, leading to hundreds or thousands of 
narrowbands over a wavelength range. Hyperspectral narrowband (HNB) data are gathered 
throughout the electromagmetic spectrum in the visible (400–700 nm), red-edge (701–760 nm), 
near-infrared (NIR) (761–920 nm), water-absorption NIR (921–980 nm), far NIR (981–1300 nm), 
shortwave infrared (SWIR) (1301–3000 nm), middle-infrared (MIR) (3001–5000 nm), thermal-
infrared (TIR) (8000–15,000 nm), and so on. However, even a few (e.g., 20) HNBs selected 
continually along a wavelength range (400–2500 nm) are also called hyperspectral data. It is not 
so much the number of bands that defines hyperspectral data, but rather an adequate number (e.g., 
20 or 30) of targeted nonredundant HNBs (Thenkabail et al., 2013, 2014a,b; Thenkabail 2015) at 
specific sections of the spectrum along given wavelengths. Nevertheless, in most cases, hyperspectral 
data are acquired continually in hundreds or thousands of HNBs leading to spectral signatures of 
various earth features.

Here authors explore the challenges of processing a large amounts of data through the use of 
various data dimensionality reduction techniques to eliminate redundancies and optimize remaining 
data for a given application, thereby unlocking rich spectral signatures for analysis. Opportunities 
to advance remote sensing science in various vegetation and crop studies are presented throughout. 
The computation of hyperspectral vegetation indices (HVIs) and numerous other methods and 
techniques are central to most; with recent advances in cloud computing, machine learning, and 
artificial intelligence have enabled a “paradigm shift” in how remote sensing science is approached, 
and this greatly benefits hyperspectral remote sensing data analysis and applications.

15.1  USING HYPERSPECTRAL DATA IN PRECISION FARMING APPLICATIONS

Precision farming implies farming with precise knowledge of the within-field variability where 
every portion of the farm is studied and understood in great detail. The causes of within-
field variability are wide ranging and include factors such as soils, management (e.g., tillage 
versus no tillage, drainage versus no drainage), inputs (e.g., nitrogen, potassium, phosphorous 
applications), genomics (e.g., cultivars), watering methods (irrigation versus rainfed), composting 
(e.g., organic or inorganic), mechanization (e.g., tractors or combine versus animal plowing), and 
a host of other factors (e.g., pests, diseases). Any one or a combination of these factors causes 
within-field variability. Precision farming requires us to understand and manage these within-
field variabilities to ensure optimal productivity of the entire farm. Integrated use of spatial 
technologies such as remote sensing, geographic information systems (GISs), and the Global 
Positioning Systems (GPS), along with modeling and decision support systems (DSSs), has now 
been widely applied to obtain information required for precision farming. Mulla (2013) presents 
a detailed assessment of advances made over the last 25 years in the use of remote sensing in 
precision farming, its current level of maturity, and knowledge gaps requiring inputs for further 
advances. Remote sensing allows for characterization, modeling, and mapping of almost any 
crop variable; this is due to current advances in sensor data from multiple platforms acquiring 
data in visible, NIR, SWIR, TIR, Light Detection and Ranging (LiDAR), radar, and microwave 
parts of the spectrum with adequate spatial and temporal resolution. Spectral resolution data are 
available both in broadbands, such as in Landsat, and narrowbands (10 nm or less) from imaging 
spectrometers on various platforms acquiring data throughout the electromagnetic spectrum. 
As a result, crop characteristics for precision farming are widely studied using both broadband 
remote sensing (e.g., Figures 15.1 and 15.2) and narrowband hyperspectral remote sensing (e.g., 
Figures 15.3 and 15.4). Crop characteristics such as biomass and the leaf area index (LAI) 
of crops are modeled using the Landsat-5 Thematic Mapper (TM) broadband remote sensing 
indices and mapped as illustrated in Figures 15.1 and 15.2. The geoprecision regarding where 
these variabilities occur specifically on a farm and accuracies of modeling and mapping them 
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have seen significant improvements using HNBs and HVIs for all sorts of crop variables (e.g., 
Figures 15.3 and 15.4) in a wide range of crops and study sites from across the world (Thenkabail 
et al., 2000, 2002a,b, 2004a,b, 2012, 2013, 2014a,b; Thenkabail 2015; Thenkabail et al., 2004; 
Marshall and Thenkabail, 2014; Marshall et al., 2015a,b; Aneece and Thenkabail, 2018). Specific 
HNBs and HVIs were used in those studies to evaluate a wide array of crop variables required for 
precision farming. Li et al. (2018) used field spectroscopy data and determined that leaf nitrogen 
content (LNC) was best studied with seven HNBs centered at 445, 556, 657, 764, 985, 1082, and 
1194 nm, and leaf phosphorous content (LPC) was best studied with six HNBs centered at 755, 
832, 891, 999, 1196, and 1267 nm. HNB data were also increasingly acquired on a real-time basis 
through the use of drones or unmanned aerial vehicles (UAVs) that fly miniature sensors of all 
kinds. This ensures data availability for any place anytime, as long as one can collect, operate, 
and process data from drones.

(a) (b)

(c) (d)

(e) (f )

FIGURE 15.1  Within-field spatial variability in LAI and WBM: (a) barley, (b) wheat, (c) chickpea, (d) vetch, 
(e) lentil, and (f) cumin. Variability of individual farms related to VIs involving any two combinations of 
Landsat-5 TM bands at 2, 3, 4, and 5 for the April 6, 1998 image. (From Thenkabail, P.S. 2003. International 
Journal of Remote Sensing, Volume 24, Issue 14, Pages 2879–2904.)
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FIGURE 15.3  Hyperspectral data acquired from handheld spectroradiometer for wheat (erectophile) and 
soybean (planophile) crops at different growth stages. Study sites: Syria. (Modified from Thenkabail, P.S. et al. 
2000. Remote Sensing of Environment, Volume 71, Issue 2, Pages 158–182.)

FIGURE 15.2  Temporal variations in LAI and NDVI for 1986, 1988, and 1998 images compared with base 
1984 image, which had no crop. (From Thenkabail, P.S. 2003. International Journal of Remote Sensing, 
Volume 24, Issue 14, Pages 2879–2904. DOI: 10.1080/01431160710155974.)



343Fifty Years of Advances in Hyperspectral Remote Sensing of Agriculture and Vegetation

In Chapter 1, Dr. Haibo Yao et al. focus on precision farming applications using hyperspectral 
data. They highlight the need to have high spatial, high spectral, and frequent coverage (temporal) 
resolutions of imagery for precision farming applications. Preferably, 5 m or less spatial resolution, 
10 nm wide or less spectral resolution covering all parts of the spectrum (visible, NIR, SWIR, TIR, 
LiDAR, radar, microwave), and frequent temporal coverage (e.g., weekly) would be ideal for a wide 
range of precision farming applications. They also highlight the importance of various unique 
HVIs to study different crop characteristics required in precision farming. The chapter presents 
and discusses specific parameters modeled and mapped for precision farming applications and 
include: (1) soil properties such as organic matter, electrical conductivity, potassium, manganese, 
pH, soil moisture, and soil salinity; (2) weed studies such as weed species and invasive species; 
(3) herbicide damage like paraquat injury in corn, glyphosate injury in soybeans, and dicambo 
injury in cotton; (4) N variability in various crops; (5) yield variability of various crops; and 
(6) pest infestations like aphids on wheat, bacterial leaf blight, and fungal infections. They also 
showed how yields of corn crops are mapped during various phenological growth stages using 
temporal imagery. The proliferation of UAVs or drone-based imaging, where hyperspectral 
(typically, 400–2500 nm range imaging spectrometers with 1 to 10 nm bandwidths), thermal, and 
LiDAR sensors were flown to acquire data for precision farming applications, was addressed. 
Recent advances by CubeSats and SmallSats that have global coverage potential and acquire data 
from unique sensors, including hyperspectral and hyperspatial examples, are also likely to become 
popular. When data from these satellites reach a certain maturity level with good calibration and 
frequency of acquisition, they will become the ideal global platform for acquiring data required 
for precision farming.

FIGURE 15.4  Wheat and barley crops at critical growth phases. Data acquired using handheld 
spectroradiometers in Syria. (Modified from Thenkabail, P.S. et al. 2000. Remote Sensing of Environment, 
Volume 71, Issue 2, Pages 158–182.)
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15.2 � HYPERSPECTRAL NARROWBANDS AND THEIR INDICES ON 
ASSESSING NITROGEN CONTENTS OF COTTON CROPS

Plant nitrogen (N) is crucial for crop productivity. The study of N variability in farms and addressing 
it are essential components of any precision farming effort. At the same time, maintaining optimal N 
application, without overapplication that leads to polluting the ground and surface water resources, is 
important in sustainable and environmentally friendly agriculture. Inoue et al. (2012) illustrate how 
spectral reflectivity changes with N application for rice crops (Figure 15.5). Zhou et al. (2016) showed 
strong relationships between canopy N content (CNC) and hyperspectral indices of winter wheat 
that varied with growth stages but was not influenced by cultivars, growing conditions, or nutritional 
status. They also suggest that growth stages before and after heading growth stages were the best 
to assess CNC, whereas periods around heading provided poorer results; N needed to be monitored 
throughout crop growth stages to ensure corrective measures when N was deficient or in excess and 
was best predicted for each crop at specific growth stages. Zhao et al. (2018) suggested the use of 
HNBs centered at 710 and 512 nm and a normalized difference spectral index computed using these 
wavebands to best predict N in corn crops. The best spectral indices for estimating leaf N accumulation 
(LNA) in wheat were found to be two-band HVIs involving HNBs: 860 and 720 nm, 990 and 720 nm, 
736 and 526 nm, and 725 and 516 nm (Yao et al., 2010). Wang et al. (2012) suggested a three-band 
HVI, (R924 − R703 + 2 × R423)/(R924 + R703 − 2 × R423), as the best to study LNC in rice and wheat 
crops. Optimal bandwidths were 36 nm for 924 nm, 15 nm for 703 nm, and 21 nm for 423 nm. Wang 
et al. (2018) presented the same for both LNC and CNC of forest canopies. CNC was estimated more 
accurately than LNC. In contrast, Corti et al. (2017) suggested that N content was best estimated at the 
leaf level and not at the plant level in studying spinach canopies. Overall, both LNC and CNC of plants 
were successfully studied by numerous researchers over the years using HNBs or HVIs.

Chapter 2, by Dr. Jianlong Li et  al. focuses on determining the N content of cotton crops 
and study cotton in its various distinct growth stages using hyperspectral measurements from a 
handheld spectroradiometer. Wet biomass and dry biomass, yield, and various agronomic variables 
(e.g., chlorophyll a, chlorophyll b, LAI) are studied for various N applications. The dry weight of 
aboveground biomass of cotton improved significantly with increased N application. The authors 
establish that canopy spectral reflectance to N application was more sensitive in the NIR than in 
the visible. Their results suggest that the difference in spectral reflectance between 550–750 nm 
was improved using a continuum-removal approach (Gomez et al., 2008). They infer that the most 
sensitive reflectance to N rate application was located at two sites (e.g., 690 and 710 nm) of chlorophyll 
maximal absorption centered at 680 nm. Overall, they suggest that the best HNBs to study N were 
around the 620–640 nm and 690–710 nm regions.

FIGURE 15.5  Some typical reflectance spectra of rice canopies in visible to near-infrared wavelength regions. 
These spectra are from the ground-based data set in Japan. Numbers indicate the canopy nitrogen content, or 
CNC (g m−2) values. (From Inoue, Y. et al. 2012. Remote Sensing of Environment, Volume 126, Pages 210–221.)



345Fifty Years of Advances in Hyperspectral Remote Sensing of Agriculture and Vegetation

15.3 � HYPERSPECTRAL ANALYSIS OF THE EFFECTS OF HEAVY 
METALS ON VEGETATION REFLECTANCE

The presence of heavy metals, such as mercury (Hg), iron (Fe), lead (Pb), copper (Cu), zinc (Zn), 
vanadium (V), arsenic (As), manganese (Mn), tallium (TI), chromium (Cr), molybdenum (Mo), 
strontium (Sr), and cadmium (Cd), is detrimental to the health of soils, vegetation, water, animals, 
and humans. Various HNBs are sensitive to specific heavy metals in subtle and distinct ways (e.g., 
Figure 15.6). Researchers (Ren et al., 2009; Li et al., 2010; Hu, 2011; Wang et al. 2018) have shown 
that (Figure 15.6) (Wang et al., 2018): (1) Pb, Zn, Cu, and As concentrations in paddy leaves lie 
around 460, 560, 660, and 1100 nm (Ren et al., 2010); (2) Pb in vegetation is best monitored using 
450, 550, 670, 760, and 1240 nm (Li et al., 2010); (3) heavy-metal-contaminated plants are best 
studied using 554, 631, and 557 nm (Hu, 2011); (4) 1240 nm reflectance is negatively but linearly 
correlated with their metal content (Rosso et al., 2005); and (5) 782 nm was the optimal waveband for 
detecting Cd in Brassica rapa chinesis leaves. Detection of heavy metals using hyperspectral data is 
the preferred approach compared to broadband remote sensing. This is because HNB data suppress 
noise and enhance the signal of the targeted metals through spectral derivatives from HNBs, as well 
as from HVIs (Wang et al., 2018). Thus, the detection of heavy metals is largely dependent on the 
covariation with the spectrally responsive metals or organic matter in the soil (Wang et al., 2018). 
Heavy metals are negatively correlated with plant chlorophyll concentrations (Liu et al., 2010). Shi 
et al. (2016) showed (R716−R568)/(R552−R568) good correlation in estimating soil arsenic in rice 
fields. Overall, visible and NIR bands often correlated best. However, a number of studies showed 
the great importance of red-edge (700–760 nm) bands in studying stress due to heavy metals.

In Chapter 3, Dr. Terry Slonecker et al. studied the effects of heavy metals on vegetation. They 
began by exploring existing methods and techniques for determining heavy metals through vegetation 
studies of various kinds (Slonecker et al., 2009). Healthy vegetation absorbs greatly in the red portion 
(630–690 nm) and reflects greatly in the NIR (>760–920 nm). Between the red and the NIR is the 
red edge (>690 to 760 nm), where there occurs a swift change from high absorption of the red to high 
reflectance of the NIR. The intermediate region, between the red and the NIR, of the electromagnetic 
spectrum where this change occurs is called the red edge. Healthy plants experience a so-called red 
shift in the red-edge portion, whereas stressed plants experience a so-called blue shift in the red-edge 
portion. The greater the stress (or when the plant is senescing/dry), the greater the blue shift of the 
spectral signature in the red-edge portion of the spectrum. Naturally, vegetation affected by heavy metals 

FIGURE 15.6  Correlation coefficient between spectral response and six levels of metal concentration in 
vegetation over wavelength range 400–2500 nm. (From Ren et al. 2010, Wang, Z. et al. 2018. Agricultural and 
Forest Meteorology, Volumes 253–254, Pages 247–260.)
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experiences a blue shift. This concept is well explained as the authors discuss the stress-sensitive indices 
that use the red-edge and other sensitive portions of the spectrum, such as the Red-Edge Position (REP), 
Red-Edge Vegetation Stress Index (RESI), Photochemical Reflectance Index (PRI), and Normalized 
Pigment Chlorophyll Index (NPCI), and compare these indices with the performance of a number of 
other indices. They show that the indices most sensitive to plant stress from heavy metals in the soil were 
NPCI, PRI, REP, and the continuum-removed band depth at 1730 nm (CR1730).

15.4 � MAPPING THE DISTRIBUTION AND ABUNDANCE OF 
FLOWERING PLANTS USING HYPERSPECTRAL SENSING

Flowers constitute an important commercial enterprise both in natural and controlled (e.g., 
greenhouse) environments. In many parts of the world, the beginning of flowering is the first 
indication of the dawn of spring. Flowers have an important function in pollination and are a source 
of food and energy for bees to sustain and generate honey. Many other creatures, such as butterflies, 
depend heavily on flowering plants for sustenance and survival. They are widely used in daily life for 
offerings and to greet loved ones and wish them well. Flowering status, including flowering date and 

(a) (b)

(c) (d)

FIGURE 15.7  Mean spectral reflectance of: (a) succession class in leaves, (b) succession class in flower heads, 
(c) seasons in leaves, and (d) seasons in flowers heads. (From Carvalho et al. 2013. International Journal 
of Applied Earth Observation and Geoinformation, Volume 24, Pages 32–41. ISSN 0303-2434, https://doi.
org/10.1016/j.jag.2013.01.005.)

https://doi.org/10.1016/j.jag.2013.01.005
https://doi.org/10.1016/j.jag.2013.01.005
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degree of flowering, could reflect ecological processes in assessing plant phenological response to 
global warming (Chen et al., 2009). Remote sensing is a powerful tool to map flowers. Since flowers 
have distinct spectral signatures compared to plants, it is feasible to track when plants flower and in 
mapping and monitoring flower farms (Figure 15.7). The presence of flowers consistently provides 
better species discrimination using hyperspectral data, with 500–600 nm being the most crucial 
wavebands when data are acquired in the 475–900 nm range, as shown by Gross and Heumann 
(2014). Chen et al. (2009) demonstrated high accuracies in mapping the flowering of Halerpestes 
tricuspis (Ranunculaceae) on the Tibetan Plateau. They proposed a hyperspectral flower index 
(HFI) = 100[(R600 − Rv600)/(1 − L* R550 − R670)], where reflectance data are obtained from 
600, 550, and 670 nm waveband centers, and v600 is the reflectance of pure green vegetation at 
600 nm (Chen et  al., 2009). Campbell and Fearns (2018) determined that to attain high flower 
presence accuracies with Apis mellifera (the European honey bee), having an average forage radius 
of less than 1 km from their hive, two factors are crucial: (1) image pixel size and (2) vegetation 
background. When background errors are minimized and pixel resolution is high, the percentage 
of flowers can be calculated with as little as 2% flower cover (Campbell and Fearns, 2018). Flower 
head pyrrolizidine alkaloids, which are involved in plant defense against herbivores, can be detected 
through hyperspectral reflectance (Carvalho et al., 2013) (Figure 15.7).

In Chapter 4, Dr. Tobias Landmann discusses the importance of flower mapping using the distinctive 
spectral characteristics of flowers, and studies the challenges and limitations of hyperspectral remote 
sensing in flower mapping. The importance of visible light in the 450–680 nm region for detecting 
and characterizing flowers is discussed. However, it is better to characterize flower signatures in the 
entire spectral range (e.g., 400–2500 nm). Flowers, depending on color and maturity, reflect quite 
distinctly relative to the rest of the plant. Once these characteristics are understood, it becomes easier 
to categorize and map different flower types from different plants and species. However, hyperspectral 
data need to be acquired with adequate spatial resolution, which will depend on the field and plant 
size. For example, farms with such flowers as sunflowers, poppies, tulips, and seasonal grasses, when 
spread across large fields, can be studied with good accuracy using hyperspectral data acquired 
at a pixel resolution of 5 to 30 m. In contrast, flower characterization and mapping when shrubs, 
bushes, and other plants are spread across the landscape intermittently require hyperspectral imaging 
spectrometer data acquired from imagery with a very fine spatial resolution of less than 5 m. Chapter 4 
provides a fine synopsis of the existing state of knowledge in characterizing and mapping flowers 
using hyperspectral data in different environments using different sensors from various platforms.

15.5  CROP WATER PRODUCTIVITY OF WORLD CROPS

Crop water productivity (CWP) (kg/m3) is defined as crop productivity (CP) (kg/m2) divided by crop 
water use (CWU) (m3/m2). In simpler terms it is referred to as “crop per drop.” CWP is often confused 
with water use efficiency (WUE), but they are distinct concepts. WUE is simply the efficiency in 
water use without any reference to productivity. One definition of WUE is the ratio of the amount 
of water delivered to a field to the amount of water released at a reservoir. Water is transported from 
the reservoir to the field through various mechanisms (e.g., open channel flow, closed pipes), during 
which many losses (e.g., evaporation, percolation) occur. In contrast, CWP is the water used to produce 
biomass, or grain yield. CWP is also defined in terms of economic value. Thus, the CWP is defined as
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Remote sensing is widely used in studies of CWP (Biradar et al., 2008; Platonov et al., 2008; Cai et al., 
2009;  Teixeira et al., 2015). An overview of the CWP modeling and mapping methods are illustrated 
in Figures 15.8 and 15.9 and involve: (1) mapping croplands (e.g., irrigated and rainfed), major crop 
types, and cropping intensities by, for example, developing automated machine learning algorithms 
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(AMLAs) on the Google Earth Engine (GEE) cloud computing platform (Thenkabail et al., 2012; 
Thenkabail and Wu, 2012; Teluguntla et al., 2017, 2018; Xiong et al., 2017a); (2) crop productivity 
(productivity per unit area, kg/m2) mapping through multisensor remote sensing spectrobiophysical 
modeling and extrapolating to larger areas using remote sensing (Biradar et al., 2008; Platonov et al., 
2008); (3) water use (actual evapotranspiration, or ETA (m3/m2) assessments of irrigated (blue water) 
and rainfed (green water) crops through SEBAL or surface energy balance modeling (Mariotto 
et al., 2011; Biggs et al., 2015, 2016); and (4) CWP, productivity per unit of water or “crop per drop” 
(kg/m3), modeling and mapping (Biradar et al., 2008; Platonov et al., 2008; Cai et al., 2009; Teixeira 
et al., 2015). All of these can be modeled and mapped at various spatial resolutions (e.g., 250, 30, 
and 5 m) using multisensor remote sensing data that “pinpoint” areas of high and low CWP, thereby 
helping us to: (a) focus on areas of low CWP, (b) assess causes of low CWP, and (c) take remedial 
measures to raise areas of low CWP to higher levels, leading to a blue revolution. This in turn will 
lead to informed application of management practices and associated water savings exactly where 
they are needed. The “new water” can then be diverted to environmental and urban uses or simply 
held as “water banks” (both above- and below ground) for lean years.

However, recent research has clearly demonstrated the potential for significant advances in 
modeling and mapping CWP using hyperspectral data (Mariotto et al., 2013; Thenkabail et al., 
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FIGURE 15.8  CWP mapping protocol for selected crops. The logical steps involved in producing the CWP 
maps of five leading world crops (rice, wheat, corn, cotton, alfalfa) are illustrated. This will “pinpoint” areas of 
high and low water productivity, which in turn will lead to establishing areas under various levels of low water 
productivity. Then the scenario analysis will help determine various quanta of water saved if the low water 
productivity levels are improved to various higher levels of water productivity. The water thus saved (“new 
water”) will then be diverted to alternative water uses (e.g., urban, environments) or simply held as “water 
banks” for utilization during lean years.
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2013; Marshall and Thenkabail, 2014, 2015a,b; Marshall et al., 2016). These studies indicate unique 
HVIs that clearly increase accuracies of CP and CWP modeling and mapping relative to broadband 
remote sensing studies reported in the previous paragraph. The computation of unique HVIs is 
feasible thanks to discrete HNBs in which data are acquired, providing possibilities to gather data 
from specific portions of the spectrum (e.g., Figure 15.10).

FIGURE 15.9  CWP modeling and mapping using automated algorithms on Google Earth Engine (GEE) 
cloud computing are illustrated here. The process involved the use of extensive in situ data to model and map: 
(a) crop types, (b) crop productivity, and (c) water productivity. The GEE cloud computing will allow regional 
to global CWP studies over very large areas using multisensor remote sensing.

FIGURE 15.10  Graphic representation of DWI, which is the sum of the depths at 970 and at 1200 nm of the 
top of canopy (TOC) reflectance, with respect to the baseline formed between the peaks at 850 and 1080 nm. 
The two spectra correspond to different CWC values (blue spectrum 459 g/m2, orange spectrum 359 g/m2). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) (From Pasqualotto, N. et al. 2018. International Journal of Applied Earth Observation and 
Geoinformation, Volume 67, 2018, Pages 69–78.)
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In Chapter 5, Dr. Michael Marshall et al. provide a clear methodology for modeling and mapping 
CWP using remote sensing. The methods and approaches presented in the chapter can be applied 
to multispectral broadband (MBB) remote sensing or HNB remote sensing. The chapter extensively 
discusses the hyperspectral approach but illustrates the results using Landsat-7 Enhanced Thematic 
Mapper Plus (ETM+) data because of the lack of availability of hyperspectral images from space. 
The methods are illustrated using rice, wheat, corn, and soybean crops. First, these crop types were 
mapped using remote sensing. Second, CP (kg/m2) models were developed through relationships 
between crop yield (Y) (kg/m2) with various HVIs. In Chapter 5, Marshall et al. showed that the 
aboveground wet biomass (AWB) and the aboveground dry biomass (ADB) were consistently 
modeled with higher R2 values using HNBs relative to MBBs. Improvements were 5%–31% for 
two-band HVIs and 3%–33% for three-band HVIs. In this regard, it is worthwhile referring to the 
Marshall and Thenkabail (2015b) study, which showed that the HNB-based AWB (kg/m2) models 
(R2 = 0.71–0.98) explained significantly higher variability relative to MBB-based AWB models 
derived from Landsat (R2 = 0.32–0.82), IKONOS (R2 = 0.50–0.94), GeoEye-1 (R2 = 0.55–0.95), 
and WorldView-2 (R2 = 0.36–0.87) for rice, wheat, corn, cotton, and alfalfa crops. Similar results 
were also obtained by Mariotto et al. (2013) and Thenkabail et al. (2013). Third, the most highly 
correlated HVIs to determine ETA or CWU were the red-edge band centered at 672 nm and a visible 
blue band in the 428–478 nm spectral region, which provided an R2 value of 0.51. CWU (ETA) 
was typically obtained using various surface energy balance methods such as the Surface Energy 
Balance Algorithm (SEBAL) (Bastiaanssen et  al., 1998a,b), its modified version, the Mapping 
Evapotranspiration at high Resolution with Internalized Calibration (METRIC) (Allen et al., 2007), 
or other methods such as the Simplified Surface Energy Balance (SSEB) (Anderson, 2011; Senay, 
2013) and the Atmosphere-Land Exchange Inverse (ALEXI) (Anderson et al., 2011) model. CWP can 
then be derived by simply dividing CP by CWU. In Chapter 5, to verify and validate CWP, they have 
demonstrated the use of eddy covariance flux tower data which measured crop biomass and latent 
heat flux (LE) over a growing season. An interesting outcome presented in the chapter was the CWP 
values determined for various crops: (1) Wheat crop used the least water, but produced low yields 
resulting in lowest CWP (1.53 ± 0.15 kg m3); (2) rice crop used the most water, but also produced 
high yields resulting in moderate CWP (1.60 kg m3); (3) Soybean crop used low water quantities, but 
produced high yields resulting in high CWP (1.80 ± 0.48 kg m3); (4) Corn crop used high water, but 
also produced very high yields resulting in highest CWP (3.00 ± 0.89 kg m3) among the four crops.

15.6 � HYPERSPECTRAL REMOTE SENSING TOOLS FOR QUANTIFYING 
PLANT LITTER AND INVASIVE SPECIES IN ARID ECOSYSTEMS

Plant litter is important for enhancing soil organic matter, naturally enriching soils, stabilizing soils 
from erosion, practicing organic agriculture, and improving crop productivity. Plant litter can also 
be used as fuel, fertilizer, and biomass energy. In contrast, when plant litter is burned, as happens 
quite often in many agricultural fields around the world, carbon is released to the atmosphere. Thus, 
proper management of crop residues is crucial for sustainable agriculture, improved food production, 
and avoiding carbon pollution. Conservation tillage accounts for more than 30% of crop residue 
cover (CRC) in comparison to nonconservation tillage, which accounts for less than 30% of the CRC 
(Zheng et al., 2012). Over the years, tillage has been mapped using Landsat images, beginning with 
the pioneering work of Van Deventer et al. (1997). Zheng et al. (2012) used Landsat TM and Landsat 
ETM+ data to classify CRC into three categories (CRC < 30%, 30% < CRC < 70%, CRC > 70%) 
and obtained high levels of accuracy with overall accuracies exceeding 90%, producer accuracies 
of 83%–100%, and user accuracies of 75%–100%. They further showed strong (R2 of 0.89) linear 
relationships between CRC and minimum normalized difference tillage index (minNDTI), where 
NDTI = (B5 − B7)/(B5 + B7), with B5 and B7 being the Landsat TM and ETM+ bands 5 and 7. 
Various tillage-based indices are shown in Table 15.1. Daughtry et al. (2006) showed that Landsat 



351Fifty Years of Advances in Hyperspectral Remote Sensing of Agriculture and Vegetation

TM data had poor correlations with corn and soybean crop residues. In contrast, their study showed 
CRC of corn and soybean fields were linearly related to the cellulose absorption index (CAI) derived 
using Hyperion data. CAI measures the relative intensity of cellulose and lignin absorption features 
near 2100 nm (Daughtry et al., 2006). CAI = (R2023 + R2215 nm) − R2100 nm.

Table 15.1 describes the average depth of the cellulose absorption feature, with positive values 
of CAI indicating the presence of cellulose (Nagler et al., 2003). Nagler et al. (2003) studied litter 
from four crops (corn, soybean, rice, and wheat) and two tree species (coniferous and deciduous) and 
showed that the mean CAI of the soils was −2.0, whereas the mean CAI of the plant litter was 5.2. 
(For an overview of invasive species see Chapter 9.) The big advantage of using hyperspectral data in 
invasive species studies is the distinct endmember spectra (e.g., 26) one can develop for each species 
(e.g., Figure 15.11). This in turn helps separate and classify various species (invasive and native) with 
greater degrees of accuracy compared to broadband remote sensing data (Chapter 9).

Chapter 6 by Dr. Pamela Nagler et al. has distinct and important components on studying plant 
litter and separating and classifying invasive species. The literature reviewed focuses importantly 
on separating plant litter from soils as it is difficult yet vital to do so in the 400–1100 nm region 
since both materials have very similar spectra. Second, fluorescence is better suited than the 400–
1100 nm spectra in separating litter from soils, but these spectra suffer from a relatively small 
fluorescence signal. Third, SWIR (1400–3000 nm) provides specific wavebands where litter is best 
classified. Chapter 6 demonstrated the strengths of CAI (Table 15.1) in modeling and mapping plant 
litter and recommends the use of HNB data from sensors such as the Airborne Advanced Visible/
Infrared Imaging Spectrometer and spaceborne Hyperion that acquire data in very narrow spectral 
wavebands (10 nm or finer) or in HNBs to derive CAI. Chapter 6 also provides a detailed study of 
two invasive species affecting the western United States, including Salt Cedar or tamarisk (Tamarisk 
ramosissima) along riparian vegetation zones and buffelgrass in the Sonoran Desert. Both species 
expand with detrimental effect to native vegetation, causing ecological and economic harm. Most 
remote sensing studies have not been very successful at separating Salt Cedar from other plants 
owing to an absence of time-series images and adequate spatial resolution to map these fragmented 
species spread across the landscape and not necessarily as contiguous distributions. In particular, 

TABLE 15.1
Satellite-Based Tillage Indices

Sensor Tillage Index Formula Description Reference

Landsat CRIM SM/SR SM: distance from point Μ 
to soil line; SR: distance 
between soil and residue 
lines at point Μ

Biard and Baret (1997)

Simple tillage 
index (STI)

NDTI
Modified CRC
NDI5; 
NDI7

B5/B7

(B5 − B7)/(B5 + B7)
(B5 − B2)/(B5 + B2)
(B4 − B5)/(B4 + B5); 
(B4 − B7)/(B4 + B7)

B2: Landsat TM/ETM+ 
band 2; B4: TM/
ETM+ band 4; B5:  
TM/ETM+ band 5; B7:  
TM/ETM+ band 7;

Van Deventer et al. (1997)

Sullivan et al. (2006)

McNairn and Protz (1993)

Hyperion CAI 0.5(R20 + R22) − R21 R20 and R22; the reflectance 
on the shoulders at 2021 
nm and 2213 nm

Daughtry et al. (2006)

ASTER LCA 100(2 × B6 − B5 − B8) B5, B6, B7, B8: ASTER 
SWIR bands 5, 6, 7, and 8

Daughtry et al. (2005)

SINDRI (B6 − B7)/(B6 + B7) Serbin et al. (2009)

Source:	 Zheng, B. et al. Remote Sensing of Environment, Volume 117, Pages 177–183.
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images acquired during the flowering phenological phase of the tamarisk were found helpful in 
achieving greater accuracies. Dr. Nagler et al. showed that reflectance in the NIR region of 800–
1300 nm were higher for Salt Cedar and for three crops (alfalfa, cotton, and melons) compared to 
other vegetation in the landscape. Further, reflectances of all crops were higher in the 1300–2500 nm 
region relative to tamarisk. They recommend specific vegetation indices (e.g., NDVI) (R1,5 and 
R1,7; where R is reflectance and 1, 5, and 7 are Landsat bands), and color composites help separate 
tamarisk-infested areas. The second invasive species studied was buffelgrass. It is spread across 
the Sonoran Desert and often mixed with several other native species and in different proportions. 
Phenology is important in separating buffelgrass from other species as absorption in 675, 950, 1150, 
1450 nm wavelengths for buffelgrass was exemplary during the month of August and was noticeable 
in September, as reported in Chapter 6. The authors also found that the cellulose/lignin absorption 
feature at 2050 nm was most the characteristic feature for the buffelgrass on six of the seven dates 
of the images acquired in different months. Nevertheless, use of HNB data and HVIs along with use 
of imagery with good temporal coverage and spatial resolution will likely provide the best solution 
to accurately classifying invasive species.

15.7  HYPERSPECTRAL PHENOLOGY APPLICATIONS

Vegetation phenology is an integrative environmental indicator of climate change, and the long-term 
observations of these changes help us to understand climate change trends over space and time (Peng 
et al., 2018; Workie and Debella, 2018). For example, certain plants flower at the start of the spring 
season. Tracking this flowering event tells us whether the spring seasons started on time, early, or 
late. Also, when seasons begin and end in different parts of the world, there are inferences one can 
draw on climate from that. In agriculture, understanding and monitoring crop phenology is crucial to 
determining their growth, health, seasonality, and productivity. Tracking crop phenology at specific 
farms helps to determine whether a particular crop is grown or changed across seasons or years. For 
example, a field growing wheat will have a shorter growing season compared to cotton or sugarcane. 
Phenology also helps us study whether there was delayed, failed, or normal irrigation or rainfall for 
crops during a growing season. In recent years, field-based networks of phenocams have been used 
to gather data on phenology in many parts of the world, such as by the National Phenology Network 

FIGURE 15.11  Spectral signatures of the six endmembers used in BI-ICE algorithm for unmixing CHRIS/
PROBA imagery. All spectra are derived from the purest CHRIS pixels for each class. (From Stagakis, S. et al. 
2016. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 119, 2016, Pages 79–89.)
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(NPN) in the United States (Denny et al., 2014). However, time-series remote sensing in various 
spatial, spectral, and temporal resolutions is widely recognized as the gold standard for monitoring 
phenology of vegetation of all sorts including agricultural crops. Land surface phenology (LSP) 
studies using remote sensing have addressed habitat quality (Weber et al., 2018), agricultural crops 
(Lausch et al., 2015), mangrove forests (Pastor-Guzman et al., 2018), forests (White et al., 2014), 
and multiple types of other ecosystems (Peng et al., 2018). Obtaining remote sensing data at various 
phenological growth stages significantly increases classification accuracies of crops and vegetation 
as well as quantifying their biophysical and biochemical characteristics. Few studies exist on the use 
of hyperspectral data in phenology studies. However, hyperspectral data hold the key to advancing 
phenology studies (e.g., Christian et al., 2015; Lausch et al., 2015) using remote sensing because 
they can be gathered for specific species or crop or vegetation types in HNBs, making it possible to 
quantify specific biophysical and biochemical quantities as well as offering the potential to study 
specific phenological measures like flowering, greenup, and maturity. For example, as shown in 
Figure 15.12, in a 3-species study using 89 hyperspectral bands (de Moura et al., 2017) during a 
specific observation period (July 29–September 25), brightness increased from the left to the right 
side of PC1 with gains in leaves (Figure 15.12). Nonphotosynthetic vegetation (NPV) increased from 
the bottom to the top of PC2 with losses in leaves (Figure 15.12) (de Moura et al., 2017).

In Chapter 7, Dr. Alfredo Huete et al. begin by defining phenology in terms of conventional in 
situ approaches that study individual plant biological life cycle events, such as bud break, flowering, 
pollination, and fruiting, whereas landscape phenology (LSP) defines aggregate seasonal vegetation 
patterns sensed by satellites. The chapter identifies the key phenology matrices studied under LSP 
using remote sensing data considering the: (1) “timing” in the start of growing season, end of 
growing season, length of growing season, peak of growing season, minimum greenness value, rate 
of greenup, and rate of drying or curing and (2) “magnitude” involving the seasonal amplitude of 
greenness values, peak greenness value, minimum greenness value, and integrals over the growing 
season. This is followed by a study of phenological matrices using coarse- and moderate-resolution 
remote sensing. Quantitative parameters like LAI and biomass are widely used in LSP studies using 

FIGURE 15.12  First two scores from PCA applied to reflectance of 89 bands (437–898 nm) of hyperspectral 
camera, showing canopy spectral variations between three species (n = 7650 pixels from 17 dates). In the 
observation period (July 29–September 25), brightness increased from the left to the right side of PC1 with 
gains in leaves. NPV increased from the bottom to the top of PC2 with losses in leaves. (From de Moura, Y.M. 
et al. 2017. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 131, Pages 52–64.)
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remote sensing. Hyperspectral data are especially useful in species-level studies of phenology at the 
leaf scale and plant scale and are helpful in advancing phenology studies using remote sensing to the 
next level by enabling study of such phenological parameters as leaf coloration changes, bud break, 
onset of new leaves, and flowering.

15.8 � LAND COVER, FORESTS, WETLAND, AND URBAN 
APPLICATIONS USING HYPERSPECTRAL DATA

Determination of land cover and land use (LCLU) and LCLU change (LCLUC) is among the most 
important, common, and widely used applications of remote sensing. Remote sensing is now widely 
accepted as the only source of data for mapping LULCC over very large areas. Indeed, LULCC 
studies are conducted using remote sensing data of a wide range of resolutions (e.g., 10 km, 1 km, 500 
m, 250 m, 30 m, 10 m, 1 m) acquired from spaceborne, airborne, drone-mounted, and ground-based 
sensors. These sensors allow us to study diverse forms of LULC that include croplands, rangelands, 
forests, wetlands, urban, deserts, water bodies, and combinations of these. Depending on the sensor 
spectral, spatial, radiometric, and temporal resolutions, details of each LULC, such as crop type, 
forest type, wetland class, and others, are obtained. Nevertheless, imaging spectroscopy data or 
hyperspectral data add a new dimension to LULC classification by enabling new capabilities or 
advancing capabilities or supplementary/complementary capabilities relative to other sensors. These 
advances in HNB data relative to MBB data include the ability to: (1) map additional LULC classes, 
(2) discern classes such as species types (e.g., in forests or wetlands or rangelands or croplands), 
(3) achieve greater accuracies, (4) accurately quantify, model, and map a wide range of biophysical 
and biochemical characteristics of vegetation, and (5) develop specific HVIs for specific vegetation 
quantities. For example, in a complex and fragmented ecosystem, Pignatti et al. (2009a,b) showed the 
potential of Hyperion data in mapping land cover and vegetation diversity up to the fourth level of the 
COoRdinate INformation on the Environment (CORINE) legend. They compared 30 m, 242 band 
(acquired in 400–2500 nm spectral range) Hyperion data–derived land cover and vegetation classes 
with that of Multispectral Infrared Visible Imaging Spectrometer (MIVIS) airborne hyperspectral 
imagery, which has a 6–7 m spatial resolution with four spectrometers in the visible and near-
infrared (VNIR), SWIR, and TIR ranges to demonstrate the capability of Hyperion in mapping 
complex classes (e.g., Figure 15.13). Jafari and Lewis (2012) derived endmembers with EO-1 
Hyperion hyperspectral data in an arid land study area. They showed that one endmember was highly 
correlated (R2 = 0.89) with cottonbush (Maireanaaphylla) vegetation cover that was distributed as 
patches throughout the study area. Another endmember was highly correlated (R2 = 0.68) with the 
total vegetation cover of green and gray-green perennial shrubs (e.g., Mulga, Acacia aneura). Chen 
et al. (2017) used high-spatial-resolution airborne hyperspectral data to classify and map land cover 
in the city of Pavia in northern Italy using a spectral mixture analysis technique and achieved an 
overall accuracy of 97.24% that involved mapping vegetation, impervious surface, soil, water, and 
shadow. Urban study capabilities (e.g., Figure 15.14) of hyperspectral data were illustrated by Behling 
et al. (2015) using airborne HyMap data that had 126 spectral bands with data acquired at a 3–6 m 
spatial resolution.

Chapter 8 by Dr. Pandey et al. begins by providing an overview of the strengths of hyperspectral 
data as opposed to multispectral data and lists some of the past, present, and upcoming hyperspectral 
sensors. This is followed by a brief overview of the existing LULC studies using hyperspectral data 
and the key pixel-based and object-based classification methods that can be used for hyperspectral or 
multispectral data analysis. The rest of the chapter overwhelmingly focuses on tools, methods, and 
approaches of acquiring hyperspectral data from field-based spectroradiometers or through UAVs. 
They highlight the importance of having a thorough knowledge of spectral libraries and a good 
understanding of spectral characteristics at the species or vegetation-type level in order to properly 
study, model, or map LULC in diverse ecosystems of the world.
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15.9  HYPERSPECTRAL REMOTE SENSING FOR FOREST MANAGEMENT

The importance of remote sensing in forest management studies cannot be overemphasized. Remote 
sensing provides information about forest classification, carbon sequestration or release, selective 
logging, timber harvesting, sustainable forest management, forest health and disease, species 
identification, and other characteristics like biomass and LAI estimations. Forests are complex 
ecosystems, diverse in nature, and are often inaccessible. They are home to the planet’s rich flora, 
fauna, and biodiversity. Forest management is currently conducted using a wide array of remote 
sensing data such as submeter to 5 m IKONOS (Kayitakire et al., 2006), 5–10 m Satellites Pour 
l’Observation de la Terre (SPOT) (Wolter et al., 2009), 30 m Landsat (Pasquarella et al., 2018), and 
250 m to 1000 m Moderate Resolution Imaging Spectroradiometer (MODIS) (Wheeler et al., 2018). 
Kayitakire et al. (2006) determined forest structural variables like top height, circumference, stand 
density, and age variables were estimated using 1 m data of IKONOS-2 with R2 values of the best 
models ranging from 0.76 to 0.82. The researchers suggest that the structural variables determined 
using Landsat TM/ETM and SPOT High Resolution Visible(HRV) sensors have limitations for 
operational applications. Wolter et al. (2009) studied forests in northern Minnesota, USA, using 
SPOT-5 5 to 10 m data and established R2 values of 0.82–0.93 for canopy diameter, 0.82–0.90 for 
diameter at breast height, 0.69–0.92 for tree height, 0.52–0.68 for vertical length of live crowns, 
and 0.71–0.74 for basal areas. Landsat has enabled the world’s first 30 m forest cover change data 
set (Hansen et al., 2013). Further, spectral-temporal features derived from Landsat time series of all 

FIGURE 15.13  (a) MIVIS and (b) Hyperion classification maps obtained by applying the MD algorithm with 13 
CORINE classes (up to fourth level). The MIVIS thematic map was spatially resampled to the Hyperion spatial 
resolution. (From Pignatti et al. 2009. Remote Sensing of Environment, Volume 113, Issue 3, Pages 622–634.)
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available observations (1985–2015) relative to more conventional single-date and multidate inputs 
helped significantly improve forest type mapping (Pasquarella et al., 2018). More frequently available 
MODIS data at 250 or 500 m can be used to rapidly detect tree cover loss pixels, which can then be 
field verified (Wheeler et al., 2018).

Forests remove about 30% of greenhouse gas (GHG) emissions from the atmosphere, but also 
cause about 10% of emissions due to swift forest degradation, and the capacity of remaining forests 
to act as sinks is dwindling (Union of Concerned Scientists, 2013; Le Quéré et al., 2016; Houghton 
et al., 2017; Rights and Resources Initiative, 2018). However, forest carbon estimates vary widely 
(Asner et al., 2004; Houghton, 2008) as a result of knowledge gaps (Bates et al., 2008), data and 
methods used (Brown et al., 2001), and rapid changes in tropical land use (Nepstad et al., 2008), 
resulting in “missing” carbon in the global carbon budget (DeFries et al., 2004; Bates et al., 2008). 
Given forest diversity, complexity, and vast stretches of inaccessibility, remote sensing is the best 
source of data to study forests. Nevertheless, the issue is complicated by differing spatial, spectral, 
radiometric, and temporal resolutions of imagery (Malhi and Wright, 2004; Lu, 2006), which are 
inadequately addressed in studies of various forest characteristics. Future forest carbon cycling 
trends attributable to losses and regrowth associated with global climate and land-use change are 
uncertain and have often alternated between sources and sinks in Asia (Dixon et al., 1994; Phillips, 
2009). The long-term net flux of carbon between terrestrial ecosystems and the atmosphere has 

FIGURE 15.14  Linking categories derived from hyperspectral urban surface material classification based 
on 2004 HyMap data of Dresden (left) and 1999 HyMap data of Potsdam (right). The insets show the original 
variety of urban surface materials. (From Behling, R. et al. 2015. Ecological Indicators, Volume 48, Pages 
218–234.)



357Fifty Years of Advances in Hyperspectral Remote Sensing of Agriculture and Vegetation

been dominated by two factors: (1) changes in the total area of forests and (2) per-hectare changes 
in forest biomass resulting from management and regrowth (IPCC, 2007; Houghton, 2008). Apart 
from regional-level uncertainties (Nepstad et al., 2008), the carbon flux of tropical forests is greatly 
influenced by uncertainty in the regenerative capacity of forests and in harvest and management 
policies (Nepstad et al., 2008). The need to remove uncertainties and errors in carbon storage and 
change calculations from rainforests is more urgent than ever before. Under the United Nations 
Framework Convention on Climate Change (UNFCCC), countries must report regularly the state of 
their forest resources and emerging mechanisms, such as Reducing Emissions from Deforestation 
in Developing Countries (REDD), which are likely to require temporally and spatially fine-grained 
assessments of carbon stocks (UNFCCC, 2008). Whereas remote sensing is considered the best 
option for rapid and consistent reporting of spatially explicit carbon flux dynamics in rainforests 
(Brown et al., 2001; Asner et al., 2004; DeFries et al., 2004, Malhi and Wright, 2004), research on 
uncertainties and errors (Thenkabail et al., 2004b) are inadequate for an operational system. For 
example, there are no regionwide data on the transition between primary and secondary forests 
across the uplands of Asia. Nevertheless, tropical secondary forests and agroforests and plantations 
are important sinks in the global carbon cycle, affecting global climate, and have an important role 
within the Clean Development Mechanism (CDM) of the Kyoto Protocol (Brown et al., 2001). Other 
significant uncertainties exist. Recent research in neotropical forests has shown that during drought 
years, the net flux of several billion tons of carbon dioxide (CO2) is released into the atmosphere 
due to reduced tree growth and mortality, more than the combined annual emissions of Japan and 
Europe (Phillips, 2009).

Nevertheless, Hyperspatial data (<10 m), such as IKONOS or SPOT, or data frequently available with 
daily coverage of MODIS have significant limitations in modeling and mapping forest biophysical (e.g., 
biomass, LAI), and biochemical (e.g., chlorophyll, pigments) quantities. These advances are achievable 
through hyperspectral data (Thenkabail et al., 2004a,b) gathered over a continuous spectrum (Liu and 
Wu 2018). For example, Näsi et al. (2018) used hyperspectral cameras based on a tunable Fabry-Pérot 
interferometer to assess outbreaks of destructive bark beetle species that posed a serious threat to 
urban boreal forests in North America and Fennoscandia. Individual spruces were classified as healthy, 
infested, or dead with an overall accuracy of 79%, and when there were two groups (healthy versus 
dead), the overall accuracy increase to 93%. Forest fuel availability was studied to establish forest 
canopy fuel metrics—such as fuel load, live fuel moisture content, and live-dead ratio—by integrating 
airborne laser scanning (ALS) and high-resolution airborne hyperspectral data (AHS) (Ramirez et al., 
2018). Opportunities to significantly advance carbon storage and flux estimates through improved 
land-use class (LUC) estimates and modeling exist with the evolution in spaceborne hyperspectral, 
hyperspatial, and advanced multispectral sensors (Melesse et al., 2007), as a result of improvements in 
the spatial, spectral, radiometric, and temporal properties as well as in optics and signal-to-noise ratio 
of data. High spatial resolution allows location while high spectral resolution allows identification of 
features. Hyperspectral remote sensing sensors also facilitate direct measurement of canopy chemical 
content (e.g., chlorophyll, nitrogen), forest species, chemistry distribution, timber volumes, and water 
(Asner and Martin, 2008) and improved biophysical and yield characteristics (Thenkabail et al., 2003, 
2004a,b; Asner et al., 2004). Thenkabail et al. (2004b) demonstrated an increased accuracy of about 30% 
in LUC and biomass when 30 hyperspectral wavebands were used relative to 6 nonthermal Landsat TM 
bands. Hyperspatial data have demonstrated the capability to extract individual tree crowns from 1 m 
panchromatic data. Agroforest successional stages have been mapped and their varying carbon sink 
strengths assessed using IKONOS (Thenkabail et al., 2004a). In contrast, forest structure variables (e.g., 
biomass, LAI) were poorly predicted by older-generation sensors (Pignatti et al., 2009b). Hyperspectral 
data, such as from the 242-band Earth Observing-1 (EO-1) Hyperion, offer advanced capabilities to 
classify complex forests such as tropical forests (Ferreira et al., 2007). A number of machine learning 
algorithms have been applied on cloud computing platforms to rapidly classify forests. Ferreira et al. 
(2007), for example, showed that support vector machines and random forests provided the best match 
with reference data (Figure 15.15) when using four distinct machine learning algorithms (Figure 15.15).
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In Chapter 9, Dr. Valerie Thomas provides an overview of various forest-type ecological services 
and their rich and complex systems. Dr. Thomas describes how remote sensing is used in various 
forest applications such as forest inventories, species identification, and modeling and mapping 
forest biophysical and biochemical quantities. Forest quantities measured using multispectral and 
hyperspectral remote sensing included tree height, depth at breast height, aboveground biomass, 
crown area, basal area, LAI, and stem density. The chapter provides illustrations of a number of these 
applications like measuring dominant height using derivative chlorophyll index and mean dominant 
height. This is followed by a discussion of the literature on carbon studies and forest fuel assessments 
using various hyperspectral remote sensing studies. Dr. Thomas also points to future advances 
where LiDAR data will be fused with hyperspectral data to advance accuracies of metrics on 
forest characteristics such as biomass and carbon assessments. Tree height data from LiDAR, when 
combined with biophysical and biochemical measurement capabilities from Hyperspectral data, 
will lead to these advances. Further, repeated coverage from the forthcoming hyperspectral sensors 
like HyspIRI, EnMAP, and PRISMA, as well as repeated acquisitions from UAVs from multiple 
sensors (e.g., LiDAR, Hyperspectral), are harbingers of a new era in remote sensing. Dr. Thomas 
concluded that hyperspectral data have many known, proven capabilities to advance forest studies, 
but utilization of the data for those purposes is very limited at present.

FIGURE 15.15  Classification images in the rainy and dry seasons generated by different techniques using all 
metrics. (The reference map was published by Ferreira et al. 2007. International Journal of Remote Sensing, 
Volume 28, Pages 413–429.) Note: vegetation physiognomies sensed by Hyperion over Brasilia National Park 
(BNP): (1) Campo Limpo (Savanna Grassland—SG); (2) Campo Limpo with Murundus (SGm); (3) Campo 
Sujo (Shrub Savanna—SS); (4) Campo Sujo with Lychnophora ericoides (popular name = arnica) and Vellozia 
squamata (canela de ema) (SSa); (5) Campo Cerrado (Wooded Savanna—WES); (6) Campo Cerrado with 
Trembleya parviflora (WESt) (quaresmeira); (7) Cerrado sensu stricto (Woodland Savanna—WS); and (8) Mata 
de Galeria (Riparian Forest—RFt). (From Toniol, A.C. et al. 2017. Remote Sensing Applications: Society and 
Environment, Volume 8, Pages 20–29.)
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15.10 � CHARACTERIZATION OF PASTURES USING 
FIELD AND IMAGING SPECTROMETERS

Pasture lands are both natural and managed. They contain important and unique flora and fauna with 
rich biodiversity. Grazing periods of pasture lands last from a few weeks in well-managed rotation 
systems to years on extensively managed pastures and are superimposed on climate-driven phenology 
(Jakimow et al., 2018). A good understanding of pasture productivity, phenology, and nutritional quality 
will help assess carrying capacity and animal health. Worldwide, about 25% of the terrestrial area is 
pastureland, mainly for animal grazing and for natural habitats of various kinds. In many countries such 
as Brazil, pasturelands for cattle grazing are in deforested land areas. Dry pasture also easily catches 
fire that spreads swiftly over large stretches of land. These factors lead to substantial release of GHGs 
(Davidson et al., 2012). Pastures are mapped with a great degree of accuracy using remote sensing data of 
various kinds and are one or more of the classes in many remote sensing products (Biradar et al., 2009; 
Thenkabail et al., 2009a,b; Salmon et al., 2015; Jakimow et al., 2018). However, difficulties are found in 
mapping pastoral nomadic livestock systems, which are dependent on variable seasonal rains (Hopping 
et al., 2018). Also, various pasture biophysical and biochemical quantities are best characterized using 
HNB data that need to be gathered on pasture spectral characteristics, as well as other vegetation (e.g., 
Figure 15.16). This will help clearly separate distinct spectral characteristics of various vegetation 
categories. For example, a meta-analysis of 77 grassland and shrubland studies determined that the 
performance of hyperspectral data depended on the traits being studied, with an R2 value of 0.79 for LAI, 
0.77 for chlorophyll, 0.80 for carotenoids, 0.75 for phosphorous, 0.74 for nitrogen, 0.69 for plant water, 
and 0.64 for lignin (Cleemput et al., 2018). Fava et al. (2009) showed a simple ratio involving HNBs 
in the NIR (770–930 nm) and in the red edge (720–740 nm) yielding the best performance for green 

FIGURE 15.16  Pixel-weighted spectra (bold line) and standard deviation (±SD, dashed line) of reflectance 
by species. Observe the subtle as well as very distinct differences in spectral reflectivity in specific wavelength 
range (e.g., in 400–700 nm) between various tree types. (From Liu, H., Wu, C. 2018. International Journal 
of Applied Earth Observation and Geoinformation, Volume 68, Pages 298–307. ISSN 0303-2434, https://doi.
org/10.1016/j.jag.2017.12.001.)

https://doi.org/10.1016/j.jag.2017.12.001
https://doi.org/10.1016/j.jag.2017.12.001
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biomass with an R2 value of 0.73, LAI with an R2 value of 0.73, and nitrogen with an R2 value of 0.73. 
Pullanagari et al. (2016) used 1 m spatial resolution airborne data in the range 380–2500 nm with 448 
HNBs to predict pasture nutrient concentrations such as nitrogen (N), phosphorus (P), potassium (K), 
sulfur (S), zinc (Zn), sodium (Na), manganese (Mn), copper (Cu), and magnesium (Mg). The majority 
of nutrients (N, P, K, Zn, Na, Cu, and Mg) were best predicted by random forest regression algorithms 
followed by S and Mn, which were best predicted by support vector regression (SVR) by Pullanagari 

(a) (b) (c)

(d) (e) (f )

FIGURE 15.17  Spatially registered nutrient concentration maps of (a) nitrogen, (b) phosphorus, (c) potassium, 
(d) manganese, (e) sodium, (f) magnesium,� (Continued)
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et al. (2016). Such understandings will help establish nutrient concentration maps (e.g., Figure 15.17) that 
are so crucial to determining the quality of pasture available as feed.

The focus of Chapter 10 by Dr. Izaya Numata et al. was the study of pasture using field-based 
and imaging spectroradiometer-based instruments. For this they reviewed and identified biophysical 
and biochemical variables of pastureland or grasslands. The biophysical and biochemical variables 
included grass height, soil coverage, leaf area, leaf orientation, moisture content, pigmentation, and 
several other parameters considered specific to pasture species. They presented studies of species 
such as B. brizantha and B. decumben. The chapter outlines detailed methods and approaches used in 
pasture characterization that are discussed under the following sections: (1) vegetation indices (VIs), 
(2) red-edge indices, (3) spectral transformations, (4) spectral mixture analysis, and (5) statistical 
methods. The specific applications of hyperspectral data in pasture studies were: (1) pasture quality, 
(2) LAI, (3) biomass, (4) pasture degradation analysis, and (5) species discrimination. Pasture quality 
was assessed in terms of the levels of N, P, K, Ca, and Mg using both field-based spectroscopy and 
imaging spectroscopy. The researchers highlighted the importance of 680 nm and 550–580 nm 
wavebands in quantifying N, P, K, Ca, and Mg. The CAI provided the best relationships with LAI. 
A review of the studies relating pasture biomass to hyperspectral data yielded R2 values between 
0.56–0.86. The current state of pasture degradation studies and species discrimination studies using 
hyperspectral data are discussed.

15.11  HYPERSPECTRAL REMOTE SENSING OF WETLAND VEGETATION

The Ramsar Convention defined wetlands as “areas of marsh, fen, peatland or water, whether natural 
or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, 
including areas of marine water the depth of which at low tide does not exceed six metres” (Ramsar, 
2013). Wetlands occupy 4%–6% of the Earth’s land area and globally store about 771 billion tons of 

(g) (h) (i)

FIGURE 15.17 (Continued)  Spatially registered nutrient concentration maps of (g) sulfur, (h) zinc, and 
(i) copper of mixed pastures derived from canopy reflectance acquired by AisaFENIX airborne imaging 
spectrometer. (From Pullanagari, R.R. et al. 2016. ISPRS Journal of Photogrammetry and Remote Sensing, 
Volume 117, Pages 1–10.)
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GHGs (20% of all carbon on Earth) (Hansen et al., 2002; Pelley, 2008; Tiner, 2009; Lopez et al., 2013). 
This is about the same amount of carbon as is now in the atmosphere. However, they also release 
methane, a GHG (Pelley, 2008) that is 22 times more potent than CO2, on a per-unit-mass basis, in 
absorbing long-wave radiation on a 100-year time horizon (Zhuang et al., 2009). Nearly 60% of the 
planet’s wetlands have been destroyed in the past 100 years, mostly due to agriculture. That is because 
they are widely accepted as rich agroecosystems with unique flora, fauna, biodiversity, rich soils, and 
abundant water relative to uplands. In Asia, wetlands are extensively used for agriculture, especially 
rice cultivation, which overwhelmingly takes place in lowlands. In contrast, the wetlands of Africa 
are increasingly considered “hotspots” for agricultural development and for expediting Africa’s Green 
and Blue Revolutions. In Africa, currently, these wetlands (especially inland valley wetlands) are 
unutilized or highly underutilized in spite of their rich soils and abundant water availability as a result 
of: (a) limited road and market access and (b) prevailing diseases such as malaria, trypanosomiasis 
(sleeping sickness), and onchocerciasis (river blindness). However, the utilization of inland valley 
wetlands for agriculture is becoming unavoidable in West and Central African countries due to 
increasing pressure for food from a ballooning human population and as a result of the difficulty in 
finding arable uplands. Nevertheless, studies are currently under way to prioritize the use of wetlands 
for conservation versus agricultural development (Thenkabail et al., 2009b). In Africa, since most 
wetlands are still intact, there is immense pressure to develop them to ensure food security on the 
continent. Indeed, many consider wetlands as the best hope for Africa’s Green and Blue Revolutions 
(WARDA, 2006) and a far better option for food security than the alternative of building large dams, 
which would result in greater destruction of pristine rainforests (FAO, 2008).

Several studies discuss methods of wetland mapping using remote sensing (Lunetta et al., 1999; 
Thenkabail et  al., 2000; Harvey and Hill, 2001; Lyon, 2001; Ozesmi and Bauer, 2002; Hirano 
et al., 2003; May et al., 2003; Töyrä and Pietroniro, 2005; Wagner et al., 2007; Wright and Gallant, 
2007; Jones et  al., 2009; Lyon and Lyon, 2011; Lopez et  al., 2013). High levels of accuracy in 
identifying and mapping wetlands are feasible when multidate, multisensor, very-high-spatial-
resolution images are used (e.g., Lan and Zhang, 2006; Becker et al., 2007; Gilmore et al., 2008). 
Ramsey et al. (1998) found that an integrated synthetic aperture radar (SAR)-optical (TM and CIR) 
fusion product improved the accuracy of wetland classes by up to 20%. SAR data are sensitive to 
relative elevation differences and soil moisture and are ideal for characterizing lowlands (with higher 
moisture) and uplands (with far lower moisture) (Wagner et al., 2007). Recent research (Thenkabail 
et al., 2000; Kulawardhana et al., 2007; Islam et al., 2008; Jones et al., 2009; Lyon and Lyon, 2011) 
has demonstrated the ability to attain high levels of accuracy in mapping wetlands using multiple 
data. These data included: (1) Global Land Survey 2005 (GLS2005) Landsat 30 m, (2) Japanese 
Earth Resources Satellite (JERS) SAR 100 m, (3) MODIS Terra/Aqua 250–500 m, (4) Space Shuttle 
Topographic Mission (SRTM) 90 m, and (5) a suite of secondary data sets (e.g., soils). Automated 
methods of wetland recognition involved (Lan and Zhang, 2006; Islam et al., 2008; Jones et al., 
2009): (a) algorithms to rapidly identify wetland streams using SRTM Digital Elevation Model or 
DEM data, (b) thresholds of SRTM-derived slopes, (c) thresholds of spectral indices and wavebands, 
and (d) automated classification techniques. First, wetlands are topographical lowlands, so the 
DEM data offer a significant opportunity to identify lowlands from uplands. Automated methods 
involving the SRTM-derived wetland boundaries have four known limitations (Islam et al., 2008): 
(i) turning out nonexistent or spurious wetlands, (ii) providing non-smooth alignment, (iii) resulting 
in spatial dislocation of streams, and (iv) absence of stream width. Second, the SRTM DEM data 
were used to derive local slope maps in degree using the Slope function of ArcInfo Workstation 
GIS. A threshold-of-degree slope provides areas of wetlands or low-lying areas and nonwetlands. 
Third, the wetlands in the images can be highlighted by enhancing images (Lyon and McCarthy, 
1995; Lunetta et al., 1999; Lyon and Lyon, 2011; Lopez et al., 2013). The thresholds of indices and 
wavebands will automatically separate wetlands from nonwetlands (Kulawardhana et al., 2007; 
Schowengerdt, 2007) with adequate accuracies. Numerous researchers have also attempted wetland 
separation through automated classification techniques on various remotely sensed data (Jensen 
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et al., 2002; Fuller et al., 2006; Lan and Zhang, 2006) without first identifying and separating 
wetland areas from other land units. However, as Ozesmi and Bauer (2002) point out, this leads to 
difficulties of wetland categorization because of spectral confusion (Lan and Zhang, 2006). This 
is because the automated classification techniques are applied on entire image areas that include 
wetlands and other land units that often have significantly similar spectral properties. Classification 
accuracies improve when multitemporal data are used along with ancillary data such as soils and 
topography (Ozesmi and Bauer, 2002) in a GIS modeling framework (Sader et al., 1995; Lyon, 2001; 
Fuller et al., 2006; Lopez et al., 2013). Automated methods are rapid, but need to be supplemented 
by semiautomated methods to increase accuracies and decrease errors of omission and commission. 
The aforementioned methods were used to map wetlands of Ghana (Figure 15.18) using Landsat 
ETM+ data and SRTM data. However, to study wetland characteristics like what species of plants 
exist in the wetlands, one needs to use hyperspectral data (e.g., 2). In Figure 15.19, Rebelo et al. (2018) 
illustrated hyperspectral data of six wetland species gathered using a 350–2349 nm range handheld 
spectroradiometer. They demonstrated the capability of the hyperspectral data in establishing plant 
functional traits (PFTs) of four morphological and three biochemical traits. The morphological traits 
studied were leaf area, specific leaf area, leaf mass, and leaf length/width ratio. The biochemical 
traits studied were lignin and cellulose content. The researchers also studied three other traits: 
total biomass, leaf C/N ratio, and cellulose concentration. HNB data used in the study explained 
38%–98% of the variability of these traits. Similarly, hyperspectral data from various platforms can 
be used to advance our knowledge of wetland characterization and mapping (Lopez et al., 2013).

In Chapter 11, Dr. Elijah Ramsey highlighted the importance of hyperspectral data in wetland 
vegetation characterization and the study of their traits. For this, they first examined species-level 
studies pertaining to wetland forest species with a specific focus on mangrove forests, baldcypress 
forests, and bottom hardwood forests. One needs to consider several issues in these studies that 
include: (1) platforms from which the data are acquired, (2) resolutions (spatial, spectral, temporal), 
(3) whether spectra are gathered for leaves or plants, (4) background influences, (5) species type, 
and (6) other factors (e.g., date on which data are gathered that is linked to plant phenology). These 
issues are discussed in detail by studying the forest types mentioned. Quantities such as LAI modeled 

FIGURE 15.18  Wetlands of Ghana mapped using Landsat 30 m ETM+ data. In the entire country of Ghana, 
there is 11.4% (2,714,946 ha) of total geographic area (23,853,300 ha). Only 5% (130,000 ha) of these wetlands 
are cultivated. Color: red: wetlands with dense natural vegetation, cyan and yellow: wetlands with some 
cultivation, blue: water body.
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using HNBs and HVIs are presented and discussed. Radiative transfer (RT) models predict LAI 
by explaining 78%–93% of the variability. Second, they show the strength of studying invasive 
species like Chinese tallow in wetland forest and marsh. Through continuous color compositions of 
varying mixtures of the red, blue, and green hues, the models showed how occurrences of tallow, 
live vegetation, and senescent foliage were distinguished. This is followed by the study of marsh 
wetland species such as Juncus romerianus, Spartina alterniflora, Spartina patens, and Panicum 
hemitomon. Methodological issues pertaining to distinguishing subtle changes in spectra at the 
leaf and canopy levels for considering the six issues listed earlier were discussed using various 
wetland plant species as examples. Overall, HNBs and HVIs clearly showed significant advantages in 
classifying and quantifying various wetland characteristics relative to multispectral broadband data.

15.12  HYPERSPECTRAL REMOTE SENSING OF FIRE: A REVIEW

Detecting and studying fire, both natural (e.g., wildfires) and human-caused (e.g., agricultural stubble 
burning), are important in terms of understanding and quantifying GHGs such as carbon dioxide 
(CO2), carbon monoxide (CO), methane (CH4), and nitrous oxide (N2O) released to the atmosphere. 
Today, an estimated 5.6 gigatons of carbon, globally, are released into the atmosphere each year 
due to fossil fuel burning and an additional 2.4 gigatons of carbon per year from tropical forest 
fires (Source: NASA Earth Observatory). Fire activity is determined by a wide range of factors, 
including long- and short-term climatic conditions, climate seasonality, wind speed and direction, 
topography, and fuel biomass (Alvarado et al., 2017) determining that drought during ignition season 
was the single biggest cause for natural fires in the savannas. Over the years, Landsat and similar 
high-resolution data have been widely used in studying fire occurrence and spread, scars left by 
fires, and regrowth. Remote sensing is used to study both prefire assessment of potential fire areas 
as well as postfire assessments of vegetation regrowth. Remote sensing has also been used to study 
a wide range of fires such as those from coal mines (Wang et al., 2015a,b), agricultural stubble 
burns (Smith et al., 2007; Vadrevu et al., 2011), volcanoes (Trifonov et al., 2017), and natural fires in 
forests and savannas. Remote sensing helps assess the damage caused to homes and other property 
through prefire and postfire. Broadly, remote-sensing-based methods have been investigated for fire 
danger management activities and are categorized into two major groups: fire danger monitoring 

FIGURE 15.19  Illustrative figure showing spectral population of six example species (one for each spectral 
group (SG1-6)). Solid line: mean spectrum; shaded zone: variation (SD). (From Rebelo et al. 2018. Remote 
Sensing of Environment, Volume 210, Pages 25–34. ISSN 0034-4257, https://doi.org/10.1016/j.rse.2018.02.031.)

https://doi.org/10.1016/j.rse.2018.02.031
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and fire danger forecasting systems (Chowdhury and Hassan, 2015). Multitemporal images are used 
to compute normalized difference vegetation index (NDVI) and the normalized burn ratio (NBR) 
index to study fire occurrence and fire’s impacts prior to and following fire occurrence (Cost dos 
Santos et al., 2018). The two widely used remote sensing indices for pre- and postfire assessments 
are as follows (Cost dos Santos et al., 2018; Figure 15.20):

	 NDVI = (NIR−red)/(NIR + red);

	 NBR = (NIR-SWIR)/(NIR + SWIR).

where NIR = near-infrared band, SWIR = shortwave infrared band, and red = red band.
Cooler-temperature objects (i.e., temperatures up to 500 K) emit most of their radiance in the TIR 

(8–12 µm) and MIR (3–5 µm) regions of the electromagnetic spectrum, whereas hotter-temperature 
objects (e.g., smoldering and flaming combustion above temperatures of 500 K) emit more of their 
radiance in the SWIR (1.4–2.5 µm) (Matheson and Dennison, 2012). Hyperspectral data covering 
a wavelength range of 1.2–2.5 µm can be used to detect fires and model fire temperature and 
background land cover (Matheson and Dennison, 2012). Dennison and Matheson (2011) improved 
upon the fire temperature algorithm presented in Dennison et  al. (2006) using a hyperspectral 
fire detection index (HFDI) for fire detection, as well as separate spectral libraries of background 
endmembers for smoke, nonsmoke, and fire pixels (Matheson and Dennison, 2012):

	 HFDI = (L2429nm − L2061nm)/(L2429nm − 15. L2061nm);

where L stands for radiance at the specified wavelength (Matheson and Dennison, 2012).
In Chapter 12, Dr. Sander Veraverbeke et al. approached the fire mapping task in three stages: 

prefire, active fire, and postfire. The researchers reviewed the relevant studies and discussed such 
topics as fuel types, fire risk assessment, active fires, burned area mapping, and vegetation recovery 
postfire. Prefire assessments were conducted by mapping PFTs through a VI approach. In contrast, 

FIGURE 15.20  Fire study methods overview using Landsat and similar data. (From Costa dos Santos, J.F. 
et al. 2018. Science of The Total Environment, Volume 616–617, Pages 1347–1355.)
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HNB data fuel composition and condition were determined from spectral mixture analysis (SMA) 
(Roberts et al., 2006) taking ground cover classes green vegetation, NPV, and substrate. These 
topics are discussed and then authors highlight the two challenges of detecting active fires using 
hyperspectral data. First, since hyperspectral data are acquired during the day, the emitted radiance 
from the objects must be separated from the reflected solar radiance. The second challenge is the 
need to detect fire from a fraction of a pixel. The HFDI (Matheson and Dennison, 2012), the most 
accurate HNB index to detect fire, is based on the fact that fire detection capability increases at longer 
wavelengths versus shorter wavelengths. Postfire studies are conducted using NBR and difference 
NBR (dNBR). The dNBR detects prefire and postfire differences in NBR. However, SMA will allow 
for use of data from multiple narrowbands, unlike the two-band VIs. Thus, narrowbands further 
advance our knowledge of fire studies. Postfire vegetation recovery studies are important to see how 
ecosystems recover after fire and to establish which species are most resilient. These multispectral 
broadband studies involve the use of NDVI and NBR in vegetation recovery. However, HNBs offer 
many more opportunities in terms of numerous additional HNBs, HVIs that help study species types, 
and vegetation biophysical and biochemical quantities. Finally, the chapter presents and discusses 
the hyperspectral thermal data that complement the data in prefire, active-fire, and postfire studies.

15.13 � HYPERSPECTRAL DATA IN LONG-TERM CROSS-SENSOR VEGETATION 
INDEX CONTINUITY FOR GLOBAL CHANGE STUDIES

Ever-increasing numbers of satellites offers a huge advantage to the myriad of Earth Resources 
Applications as the frequency of data acquisition increases. However, utilization of data from multiple 
sensors becomes feasible only when there is accurate intersensor calibration and normalization. 
All Earth Observation (EO) satellite data suffer from drift and biases relative to their prelaunch 
calibration (Gorroño et al., 2017). This calls for the development of a systematic sensor calibration, 
normalization, and within- and across-sensor calibration relationships. For this, each sensor needs to 
be continually calibrated and progressive sensor degradation accounted for by applying calibration 
equations, leading to the normalization of data over time and space. There are many excellent 
examples of within- and across-sensor calibration studies. For example, Chander et  al. (2009) 
provided calibration coefficients for Landsat multispectral scanner (MSS), TM, ETM+, and EO-1 
Advanced Land Imager (ALI). Goward et al. (2012) showed the intersensor relationships involving 
ResourceSat-1 Advanced Wide Field Sensor (AWiFS) and Landsat TM/ETM+ sensors. Multisensor 
NDVI applications will benefit most if atmospheric corrections are adequately addressed and 
translation equations applied (e.g., Figure 15.21) (Van Leeuwen et al., 2006). Some multisensor 
discrepancies might be more complex, but they can be overcome using error reducing analysis 
techniques like data smoothing and normalization (z-score) (Van Leeuwen et al., 2006). HNB data 
can be used to simulate multiple sensors and develop intersensor relationships, as illustrated in Figure 
15.21 between high-spatial-resolution IKONOS and multispectral broadband Landsat ETM+. Once 
such relationships are developed, it becomes feasible to utilize data from multiple satellite sensors 
for the myriad of Earth Resources Applications.

In Chapter 13, Dr. Tomoaki Miura uses hyperspectral data for cross-sensor studies using VIs 
from multiple sensors. Hyperion hyperspectral data from five sites in the USA as well as in situ 
atmospheric measurements from the Aerosol Robotic Network (AERONET) stations were gathered 
for the study. Three VIs were used including NDVI and two enhanced vegetation indices (EVIs). The 
VI interrelationships were developed between a number of satellite sensors, such as Terra MODIS, 
NOAA-14 AVHRR/2, NOAA-17 AVHRR/3, NPP VIIRS, and SPOT-4 VEGETATION. Specific 
issues of multiple sensors addressed in developing intersensor VI relationships were spectral, 
spatial, algorithmic, and angular. They highlight that the value of hyperspectral data is not only 
in improving the characterization and modeling of Earth resource studies but also in facilitating 
intersensor calibration by developing relationships between the band reflectivity of different sensors 
or VIs derived from different sensors.
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15.14 � HYPERSPECTRAL ANALYSIS OF ROCKY SURFACES 
ON EARTH AND OTHER PLANETARY SYSTEMS

Many planets in our Solar System have numerous Earth-like features. For example, Mercury, Venus, 
Earth’s Moon, and Jupiter’s moon Io all have channels formed by lava, and Mars has had an extensive 
fluvial history involving dissection by water (Baker et al., 2015). Sites associated with serpentinization 
processes, both on Earth and throughout the Solar System, are becoming increasingly compelling 
for the study of habitability and astrobiology (Amador et al., 2018). Data from sensors like Compact 
Reconnaissance Imaging Spectrometer for Mars (CRISM) can be used to study serpentinization processes 
(Amador et al., 2018). Hyperspectral studies in the 400–3000 nm region acquired using three different 
imaging spectrometers (Goswami and Annadurai, 2008) during the Chandrayaan-1 mission to the Moon 
were used to detect hydroxyl lunar water. Rocks and minerals found on Earth are also found on other 
planets, so the same hyperspectral imaging spectroscopy tools and techniques used on Earth can also 
be used on those planets (e.g., Figure 15.22). There are many compelling synergies in the use of imaging 
spectroscopy or hyperspectral data of Earth and other planets. The first synergy occurs in the imaging 
spectroscopy instrumentation itself. The design and development of hyperspectral instrumentation to 
study various planets have overwhelming similarities. Second, the processes of gathering, storing, and 
preprocessing of data have many similarities. Third, the methods for data mining, data reduction, and 
overcoming data redundancies are complementary/supplementary. Fourth, preprocessing methods and 
techniques, such as atmospheric correction and conversion of radiance to reflectance, are similar. Fifth, 
application studies of different planets can share image analysis knowledge for analyzing rocks, minerals, 
soils, ice, hydroxyl water, gases, and others (e.g., extinct volcanoes). Sixth, full-range, solar-reflected 
hyperspectral microscopy to support Earth remote sensing research is being increasingly discussed 
(Slonecker et al., 2018). This becomes apparent as we consider the various chapters of this multivolume 
book and compare those data, methods, and approaches to the study of other planets presented and 
discussed by Dr. Greg Vaughan coauthors.

Chapter 14, by Dr. Greg Vaughan et al. provides a compelling presentation and discussion of 
hyperspectral imaging spectroscopy studies of many planets and show us where and how opportunities 
exist for collaboration with those studying Earth. Each application can inform the other regardless 

FIGURE 15.21  IKONOS NDVI versus ETM+ NDVI based on simulated data for these bands from African 
savannas. Hyperspectral spectroradiometer data were used to simulate ETMz and IKONOS bands. Land-cover 
types used include shrubs, grasses, weeds, agriculture, and soils. (From Thenkabail, P.S. 2004. International 
Journal for Remote Sensing, Volume 25, Issue 2, Pages 389–408.)
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of planet or moon. Hyperspectral studies such as those of EO-1 Hyperion and Hyperspectral 
Infrared Imager (HyspIRI), are discussed here, while hyperspectral imagers used for other planetary 
applications are discussed by Dr. Greg Vaughan et al. including: (1) the MErcury Surface, Space 
ENvironment, Geochemistry, and Ranging (MESSENGER) for Mercury, (2) Observatoire pour 
la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) for Mars, (3) Near-Infrared Mapping 
Spectrometer (NIMS) for Jupiter, (4) Visual and Infrared Mapping Spectrometer (VIMS) for Saturn, 
and (5) New Horizons for Pluto. These and several other forthcoming hyperspectral sensors used 
in the study of various planets are discussed in the chapter. This is followed by hyperspectral data 
analysis, such as radiometric and atmospheric corrections. For example, atmospheric correction 
algorithms, such as the fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) or 
moderate-resolution atmospheric radiance and transmission (MODTRAN), are commonly applied 
to data acquired from any imaging sensors on the planets. Methods of data analysis, such as spectral 
indices and spectral mixture analysis, are discussed. Finally, the chapter explores several case studies 
using imaging spectroscopy data, such as the study of atmospheric compositions, aerosol depth/
thickness, minerals, soils, rocks, ice, and hydroxyl water on various planets.

FIGURE 15.22  Near-infrared reflectance library spectra used for target transformation. Black lines and 
associated wavelength centers indicate important spectral absorptions used to distinguish between spectral types. 
The ∼2.51 µm Mg-carbonate absorption is marked to show how the absorption center shifts to longer wavelengths 
depending on the carbonate cation. (From Amador, E.S. et al. 2018. Icarus, Volume 311, Pages 113–134.)
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