Excel VBA

Notes for Professionals

Chapter 10: Workbooks

Section 10.1: when To Use Activeworkbook and ThisWorkboak

orle

100+ pages

of professional hints and tricks

. Disclaimer

m This is an unofficial free book created for educational purposes and is

Goo I Kleer'Co not affiliated with official Excel® VBA group(?%r gompong(s).
Free Programming Books All trademarks and registered trademarks are

the property of their respective owners

(c) ketabton.com: The Digital Library

Contents

ADOUL ... bbb bbb bbb b A b bbb a bbbt s et b et b et b st b e et s aee 1
Chapter 1: Getting started with EXCEel VBA ...ttt bbb enans 2
Section 1.1: Opening the Visual BasiC EAITOr (VBE) iviiiiiiiciiriiniiiieeseesiessieeseesiessiesseeseessseesseesssesssessssssssesssasssnesnne 3
Section 1.2: Declaring VANADIES .iviiiieeiiieieiteeeieeeeieeesteessteeesteessseessssesssssasssssesssstesesssssssssesassesssssesssssasssssessssessnsees 5
Section 1.3: Adding a new Object LIbrary REFEMENCE ...uiiiviiiciiiiieiie ettt sre e sbe e s e s te s be e s ee s be e ba e e 6
SY=Tenilo]a TR S =Y 1@ MY o o o SRRt 10
Section 1.5: Getting Started with the EXcel ODJECt MOAEI ..iiiiiiiiiieiiiiiiciecciteesiee e srre e ssrre e svee s ssrae s sbaessbeessaseeen 12
CRAPLEE 2: AFTQAUS ...ttt ss st se s ae bbb e bbb s bbb s bt b s s e s s bt s s b s sesansnsesrntans 16
Section 2.1: Dynamic Arrays (Array Resizing and DYnamic HANAING) .eeeveeeveeieeniesireeneesieesieeseessseessesssesssesnnes 16
Section 2.2: Populating arrays (AAdING VAIUES) w.eccceeeeceeeririeeeiieeesiteeesteesssteesssseesssseesssssssssessssesssssesessssssssessssssssnnes 16
Section 2.3: Jagged Arrays (Arrays Of AITOUS) ceeeccveeeerieeesieessiseeesiseesseessssessssesssssesssssssssssessssassssasssssasssssasesssnssnses 17
Section 2.4: Check if Array is Initialized (If it contains elemMents OF NOL) vivveiivveeeriieeerveeereeeereeenreeerreeerreeessneeenns 17
Section 2.5: Dynamic Arrays [Array Declaration, RESIZING] ..eeecceeeecieeerieeeiieeeseeeeiieeesteeessseeesssesesssesesssssssessssenens 17
Chapter 3: Conditional StAtEMENTS ...t ae e 19
Section 3.1: The If STATEMENT ciiiiiieeiiieietee et ste e s sre e st e e s ete e sbeeesbaeesabeesesbaessssaesssbaessstasenssassnseasenssessnes 19
Chapter 4: RANGES ANA CEIIS ...ttt bbb bbb bbbttt ae e 21
Section 4.1: Ways to refer 10 @ SINGIE CEII ittt se e s e e e sae e sre e beesas e esbeesbaesssesaseesnens 21
Section 4.2: Creating O RANGE iiiiiiiciieeieiiieeeeeittee e s setteeeesstereesesssteeessestaeessesssteesssssstaessssssanessessssasessasseeeessnssenesssnns 21
SECHON 4.3: OFfSET PrODEITU tiiiviiiisiieeiiiieeiiteeiiieesieeessieeesiseessreesssesssssessssessssssessssesssssasssssesssssessssasssssasssssasssssasssssassnns 23
Section 4.4: Saving a reference to d Cell IN A VAMADIE uviiiiiveeiireeerireeerreeereeerreeeeiresesireeesreeersesesssesssssesssesesssaeennne 23
Section 4.5: How to Transpose Ranges (Horizontal to Vertical & VICE VEISA) wiivveeecieerrieeeeiieeesieeeecreeeeveeessseeeenns 23
Chapter 5: NAOMEA RANGES ...ttt sss st sas st ssss s sas st s s st ssss s sssssssesssssssessssens 25
Section 5.1: Define A NOMEA RANGE .uiiiviiiiiiieiiiieiieeisiieeesiieessteessseessssesssssssssssessssasssssssssssesssssasssssssssessssasssssssssssens 25
Section 5.2: Using Named RANGES IN VBA ..ottt sttt stessteesteestessteesaaessasssaesssesssasssessssesssesssassssesssassns 25
Section 5.3: Manage Named Range(s) UsSing NAME MANGAGEL .uuiivieeecieererieeeiieesieeessreessseessseessssessssessssssssssesssnns 26
Section 5.4: NOMEd RANGE AITAUS veeceeerreeiieeireeiteeiteessesseessaessesssesssssssssssssssssssssessssssssssssessssssnsessssssssssssesssessssesssens 28
Chapter 6: Merged CellS / RANGES ...ttt ssens 29
Section 6.1: Think twice before using Merged CellS/RANGES .iccvivceirieriirireeniesireeseesitessseeseessseesseesssessseessessssesssees 29
Chapter 7: Locating duplicate values in Q FANGE ...ttt sesassenes 30
Section 7.1: FiNd dUPRIICATES IN O FANGE wiiiiiiiiiieeiiieeeitteeetteeeieessteesstteeseseeessstessbeessssasssssasssstessssessssseessssesesssesessesans 30
Chapter 8: User Defined FUNCLIONS (UDFS)cccoovimeinieinieesssisssisesse s sssssssssssssssssssssssssssssssssnes 32
Section 8.1: Allow full column references WithOUL DENGITY civveeiviveeiiereiieeenieeeiree e errreeenreeesrreeessseeessesessvesessvesens 32
Section 8.2: Count UNique VAIUES IN RANGE civuiirviiiciiiiieiieiiieeseesiessieesieeseessteessaessesssessseessesssesssessssesssessssssssesssessnns 33
Section 8.3: UDFE - HEllO WOITA wiiiciiiicieiecitiecite et ssteessite e sevte e ssttessbesssbaessbaesssbaesssbaeanstassssssssssessnsenssseessnsenessseesanee 33
Chapter 9: Conditional formatting USING VBA ...t sas e 36
Nleilolal A RIS elganle1 (o] ale 1 1le]a T Ne o NSRS 36
Section 9.2: Remove cONAItIONA] FOIMIOL viiiiiiiiiiiiiiiiee et ree e erre e eesreeessbeeesreeesaseesrnseessssaeesseesnseeesssseennns 37
Section 9.3: FormatConditionS AAAUNIQUEVAIUESuuiiicuieieiirieiiieeesireesteesiieesstesssssessssaessssesssssesssssesssssesssssessssassnns 37
Section 9.4: FormatConditioNS.AAATODRTO .ueeceeeieeireerreeireeieesteesreessaesseesseessessseessaesssessseessesssesssassssesssesssesssesssessses 38
Section 9.5: FormatConditionS. AAJADOVEAVEITGUE ..uuieecreeeeiieeeeireeeeireeesreeeiteeessseesesteesssseesssseesssssesssssssssssssssesssssaesnns 38
Section 9.6: FormatConditions. AddICONSELCONAITION viiivvveiiiieiiiieeiiieeiiieesireesireeessieeesreesssteesssseessseeesssesssssasesssaesnns 38
Chapter 10: WOIKDOOKS ...ttt bbb bbbttt bbbt b et as b b st bantne 41
Section 10.1: When To Use ActiveWorkbook and ThiSWOrkbDOOKiiceeceiiieicieinieiiesceesee e sreeseesressieessnesseenne 41
Section 10.2: Changing The Default Number of Worksheets In A New WoOrkbookcccceecveercieeeceeescieecieeeeeeen, 41
Section 10.3: ApplicatioN WOIKDOOKS .iiiiiiiiiiiiiiieiiiiieisieessteessireessieesssiee s sbeesstaessbessssteessssassssassnsenssnsssssnsenssssnessnne 41

Section 10.4: Opening A (New) Workbook, Even [f 1t'S AIready OPEN wuuvveeeeeeiiiieiiiiiieeereeeeeeeessssisssisseeseeeeessssssssssnns 42

(c) ketabton.com: The Digital Library

Section 10.5: Saving A Workbook Without ASKING ThEe USEE uiiiiiiceirieiieiiieeneesiessieeseesseesseesseesssesssesssnesssesssassns 43
Chapter 11: Working with Excel Tables in VBA ... ensissssissssessssssssssssssssssssssssns 44
Section 11.1: Instantiating A LISTODJECT ..vvcviiriiriieeritenieeiieestesteesreestesteesseessesseessaesusesssaesssesssesssaesssesssessseesssessseesssens 44
Section 11.2: Working with LIStROWS / LISTCOIUIMNS cuvevuevvevvereeeeeereereeresessessessessessessessessessessessessesessessessessessessessessense 44
Section 11.3: Converting an Excel Table t0 O NOrMAl FANGE .vivcieireeriierieeniestesseeseeseeeseeseessseesseesssesssesssassssessnes 44
Chapter 12: Loop through all Sheets in Active WOrkbook ... 45
Section 12.1: Retrieve all Worksheets Names in ACtive WOIrKDOOK ...iiciieiiieiiiieeiiieesresceecsieessreessveessnseessnneesnns 45
Section 12.2: Loop Through all Sheets in all Files in A FOIAEE iviviiriirieriireerieneenieneeiesieesiesieeseesseeeessesssessesssessesans 45
Chapter 13: Use Worksheet object and not Sheet ObjJect ... 47
Section 13.1: Print the name Of the firsSt ODJECT .iiiviiiviiiiiiiiieirterteee et reesbe e st ssbeesbaesasessbaesrnesns 47
Chapter 14: Methods for Finding the Last Used Row or Column in a Worksheet 48
Section 14.1: Find the Last Non-Empty Cell in 0 COIUMN cuiiviirvienerieenenieesieseesiessesiesssesiesssessesssessesssessessaessesssessesses 48
Section 14.2: Find the Last Non-Empty ROW iN WOIKSNEET ..uviivieiiiriecieecree e creeecreeerree e reeetreeebeeeebaeesanaeenes 48
Section 14.3: Find the Last Non-Empty Column in WOIrKSNEETcciviiriiiiiieiniiiienireentesiessieeseessveesieeseesseesinesnneens 49
Section 14.4: Find the Last Non-EmMpty Cell iN 0 ROW .iivieviererreenieriienentesieneesiessesiesseesseseessessessesesssesasssessasssenses 50
Section 14.5: Get the row of the |ast CElliN O FANGE tovecirerriireeiereeie ettt st et st ese st e besaeessesaeessesaeensesaens 50
Section 14.6: Find Last Row UsSINg NAMEd RANGE .vevvveiriiriieenieerieniieeneesiessreeseesssessseessesssesssesssesssesssassssesssesssaesns 50
Section 14.7: Last cell in RANGE.CUIMTENTRETION .ivcvirveriererreenieritererstesiesisesesssessesssessesssessesssessesssessesssessesssessasssessesses 51
Section 14.8: Find the Last Non-Empty Cell in Worksheet - Performance (Array) .eceevceeeceeneenveesseeseesseesseenns 51
Chapter 15: Creating a drop-down menu in the Active Worksheet with a Combo Box 54
Section 15.1: Example 2: Options NOt INCIUAEA ...vivcieiriiiiiiiieerterieeeestesieesreeseessreesbeestessbeessaesatesseessnesasesssassanesns 54
Section 15.2: JIMi HENAMX MENU ..iveerririeeriereeriereesiesieessesiesssesieessesasssesasssessasssessesssessesssessesssessesssessesssessesssessasssensesses 55
Chapter 16: File SYSTEM ODBJECT ...ttt 57
Section 16.1: File, fOlAEr, ArVE EXISS ..iivirirreriereerieeitesieerteseete st ete st ste st e ste s bt et e sbe e sesbeeatesseesesseesessesnsesseensesseensenses 57
Section 16.2: BASIC file OPEIATIONS veirversrerreeriierireeseeritessieeseesisesseessesssessseesssesssesssassssesssessseesssesssessssesssesssassssesssassse 57
Section 16.3: BASIC fOIAEr OPEITLIONS ..vivverrverrerreerieritererstesiestesessessesssesseessessesssessesssessasssessasssessasssessesssessasssessasssenses 58
Section 16.4: OTher OPEIALIONS .iiviiiivierrierieesterieestesiteeseeseesteesseessessseesseesssessseesseesssesssaesseessseessassssessseessaessesssessseens 58
Chapter 17: PiVOL TADIES ...ttt sssssss st ssssssssssssssssssssssssesssssssssssessessessessessessnns 60
Section 17.1: Adding Fields t0 O PIVOL TADBIE ..iiviiriiiiiiriirieeitestesteesteste st e st s besbessbeesasesbeessaesasassaesssesnsens 60
Section 17.2: Creating A PIVOL TADIE ..vvcverierieeriirieniereenieseenieseesteseesieseessesseessessesssessasssessesssessasssessasssessesssessasssensesses 60
Section 17.3: PIVOt TADIE RANGES .ivuviicieiiiiriiiiieestesiesseeseestessteeseesteesseessaessesssessssesssessssesssesssesssessssesssassssssssesssassss 63
Section 17.4: Formatting the Pivot TADIE DOLA ..vivciiiriiriiieiienierieerieeieereeste st eseesressbeeseesreesseesabessbeesseesasesssessaes 63
Chapter 18: BINAING ..ottt see st ses bbbttt 64
Section 18.1: Early Binding VS Late BINAING ..eecvereerrerieeriererriesieeniesesssesesssessesssessesssessesssessesssessesssessesssessesssessasssessesss 64
Chapter 19: autofilter ; Uses and best PractiCesisssssssesssssessessennes 66
SeCtioN 191 SMNAITTIEIT riiriiiiieeceirie ettt st e e s be e st e s be e sbae st e e baesaeessteasbaesseessseessaesssessseesseesnsesssannns 66
Chapter 20: ApPlICAtion ODJECL ...t ss s ss s ssesasas 70
Section 20.1: Simple Application Object example: Display Excel and VBE VErSION ...cccvvcveevcieeinvieennieesnneessneen 70
Section 20.2: Simple Application Object example: Minimize the EXcel WiINdOW ..cccveieeeieecieeneesiieeseeseeesieeseesnnes 70
Chapter 21: Charts And ChAItING ...t sssssssssessssssssessessssssssessessessns 71
Section 21.1: Creating a Chart with Ranges and a FIXEd NAME ...civiiivieriienieriieineenressieeseeseessseeseesssesssessnesssesnne 71
Section 21.2: Creating AN emMPIY CRAMT eiivieiieienieeeeste sttt sre et e stesteesreestesbesssaesatesbeesssesasesssaesssessasssaesas 72
Section 21.3: Create a Chart by Modifying the SERIES fOrmMUIQ ..iiieiieeeciiceeieceeeeeeie et eas 73
Section 21.4: Arranging Charts INTO G GIIA .uivceereerrierieereerieeseesee st sseeseesteesteesaeessessbeesseessesssessssesssesssessssesssesnes 75
Chapter 22: CustomDocumentProperties in PractiCe ... 79
Section 22.1: Organizing NEW INVOICE NUIMDEIS ..ivcveeiieriireireenierireesseessessreeseesssessseessessseesseesssesssesseesssesssessssesssessses 79
Chapter 23: PowerPoint Integration Through VBA ... sssssssssns 82

Section 23.1: The Basics: Launching POWEIPOINT FrOM VBA ceeeueeiiiiiiiiieeeesiieiiteeeeee e e eessssssrreeeeeesessssssssssssssssseesssss 82

(c) ketabton.com: The Digital Library

Chapter 24: HOW t0 reCOrd 0 MACKO ...ttt bbbt bbb bbbt 83
Section 24.1: HOW tO reCOId G MOCIO uiiiiciiieeiieeerieeesteeesteesitteessseeesseeesseeessseesssseesssssesssssesssssssesesssesessessssseesssseesnn 83
Chapter 25: SQL in EXCel VBA - BESt PraCEICES ..ottt sesesaene 85
Section 25.1: How to use ADODB.CONNECLION IN VBA? uvviiiiiiiieieeeiireeeeeeiteeeeeeebeeeeeesbaeeeesssssesessssssessessssssssesssssasseens 85
Chapter 26: Excel-VBA OPtiMIZALION ...ttt bbbt bbb ae s 87
Section 26.1: Optimizing Error Search by Extended DEDUQUING vivvvveeerveeirvreiireeenireeerireeesreeerveeessseesssseesssesesssasennns 87
Section 26.2: Disabling Worksheet UDAOtiNg cvveeceeecieeecieeeiieeeiieeecieeesiseeesreeesseessssessssssessssesssesssssesssssssssesssssasas 88
Section 26.3: Row Deletion - PErfOrMANCE .uiiiiviiiiiieeiiieeiiieesiieesstesssireessieesssseessseesssseessssesssssessnssssssseessssassssesssnsens 88
Section 26.4: Disabling All Excel Functionality Before executing [arge MACIOS ..ccvvvevreeerireeerveeenveeensveeeseeessseeens 89
Section 26.5: Checking tiMe Of EXECULION .uuiiiiiiieiiie it ecieeeeteeerie e s ete e eeree e s ebee e s teeseteesssteesesteesanteesaseeessasssnseessnseeens 90
Section 26.6: USING WIth DIOCKS ..uiiiiiiciieciieiee sttt este st et e testeesteestesteestaesateetaessseesbeensassssesssaessaesssasnsaesessnsesnses 91
ChApPter 27: VBA SECUIITY ...ttt bbb bbbt bbb bbb et s bbb nas 93
Section 27.1: PaSSWOrd ProteCt JOUN VBA ..iiuiiiieeiiesieeiteeseeeiteesreesteesstessseesssesseessessssesssessssssssesssessssesssesssesssesssessnns 93
Chapter 28: Debugding and TroubleShOOtING ...t eeeseene 94
Section 28.1: IMMEIAtE WINAOW ciicuiiieiiieeiieeeitteeeiteeeieeeeteeestteesettesesbeeesseeseteeesssasasssesssssesssssesssesssnsessssesessessssesan 94
Section 28.2: Use Timer to Find Bottlenecks in PErfOrMUONCE ...iiviecieiiieieciiecieete et st teeseeeeveesteesaeebeessaesnnean 95
Section 28.3: Debugger LOCAIS WINAOW .iiiiiicieeiiiiieiieesteiieesteestessseesseesnesssesssassssesssessssssssesssessssssssesssasssesssesssassns 95
SecCtion 28.4: DEDUG.PIINT cuiiiicieiciiiecciie et et e srie e stte e e rtee s e bee s e e e e etteesateesebeeesaseeesnbasasnsasasssassstessnsenesnstesansenesseensnes 96
SECHION 28.5: STOP uvvereerrrrreeerniireeeeriiteeeessiseeeessssesessssssseessssssseessssssssesssssssssessssssssessssssssessssssesessssssssesssssssasessssssesesssnns 97
Section 28.6: Adding a Breakpoint 10 YOUI COOE ..iiviiimiiiiiiiiiiniesieiireestessteesseessessseessesssesssessssesssesssessssesssesssessnnes 97
Chapter 29: VBA BeSt PrACLICES ...ttt sttt sttt sas s b ss s b st st enens 98
Section 29.1: ALWAYS Use "OPHON EXPDICI" .iiiiiieeeiveieiieesiteeesieeeeiteessieessteessstesssvtesssseessssesssssasssssssssssesssssesssssessnsens 98
Section 29.2: Work with Arrays, NOot With RANGES ..icceecieiiieiiiiiicieeieesieereesieeseeeseessessesssessssesssesssessssssssesssneas 100
Section 29.3: Switch off properties during MACIO EXECULION .iiiiveeccieeiiieeeereeesireeerireeesreeesreeessreesssseeessseessseeesnsens 101
Section 29.4: Use VB constants When QVAIIADIE ...uiiiiiiiiiiieccieicciee ettt svee e tee s sve e sste e s sete s snae e sevee e sneaesane 102
Section 29.5: Avoid USiNg SELECT OF ACTIVATE coiieceeceeeteecteesteesteesteesteesseestaesssessesssaesssesssassssssssessssssssessesssnsns 103
Section 29.6: Always define and set references to all Workbooks and ShEEtSccvvvevveeeciveecceeecciee e e 105
Section 29.7: Use descriptive variable NAMING .uuiicieeeiieeeiieiiieeesieeseieessiesesteessseessssessssesssssesssssesssssessssssssssesssans 105
Section 29.8: DOCUMENT YOUE WOTK .uiiiiiiiiicieiiieeieeieesteesteesseessessseesssesssesssaesssesssassssssssesssessssssssessssssssesssesssessnses 106
SYeTeuile]al?A% A% A =l u do Yol m o TaTo | 11T USSR 107
Section 29.10: Never Assume The WOIKSNEET .iiiviiiiiiiiiiiiiciie st esteesriie e ssvre s ssite e ssbee e s stae s sbeesstaesssbaessnsasssasessnsans 109
Section 29.11: Avoid re-purposing the names of Properties or Methods as your variablesccccceeveeecveeiveenne 109
Section 29.12: Avoid using ActiveCell or ActiveSheet IN EXCEl iiiviviiciiiecieeceeeeee ettt e s 110
Section 29.13: WorksheetFunction object executes faster than a UDF equivalentueeeeeeecveeeeeecveeeeeecneeeeenns 111
Chapter 30: Excel VBA TipS ANA TFICKSccoviiieiieeeteeete ettt s s ss bbb sesane 113
Section 30.1: UsING XIVErUHIAAEN SREELS .iiviiiciiiiieriiiireeitisiesieesresressieestessteessassssesssessssessesssessssesssesssessnsesssessses 113
Section 30.2: Using Strings with Delimiters in Place of DUNAMIC AITAUS .ueiieeeerceeeeieeesireeesireeeesseeesseesssssesseesans 114
Section 30.3: Worksheet .Name, .IndeX Or .COAENGMIE ...uicciierieeiieeieeiieeireeseeereeseeseeeste e seessaeesseessaessseeseesseesnses 114
Section 30.4: Double Click Event fOr EXCEl SNADES ..iivviiciiiiiiieiieesee sttt e stesveesreeseessteesveesnessveesseesssesssaessassneas 116
Section 30.5: Open File Dialog - MUIIPIE FIIES wiiiiiiiecieicieeecieeecieeectieeestte e sereessree s s steesenteessstessssseessesessesesnsasssnsnes 117
Chapter 31: COMMON MISTAKES ...ttt bbb as bt ae bt ae b a s 118
Section 31.1: QUAlIfUING REFEIENCES .uviiiiiiiiiitiiiiecciie ettt ssrree e ste e ssateessetaesbseessbaeesssseessbasesssassssbassnssaeens 118
Section 31.2: Deleting rows or COlUMNS IN G 1OOD uiiicieiieeriieeireeneerieesieeseessreesseessesssesssessssesssesssassssesssesssesssesssassns 119
Section 31.3: ActiveWorkbook vs. ThISWOIKDOOK ...uiiicieieiiieiiieeeciteecciieeeteeesieeseete e s te e esvtessvtesesbeessasaesensnssensesenes 119
Section 31.4: Single Document Interface Versus Multiple Document INterfaces ...iieceervecceeceescieeseeseeenne. 120
CFEAILS ...ttt e bbb bbb b A bbb b bR A b ae b bbbt bbbt s et b st b santne 122

YOU MAY QISO LIKE ...ttt e e et et et et et et e e et e e et e e e st e st et eaeeseeee et eeeaeeseaeeeeaseaeeseaseeeaseseateeeesseseseaes 124

(c) ketabton.com: The Digital Library

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:
https://goalkicker.com/ExcelVBABook

This Excel® VBA Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end
of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Excel® VBA group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

GoalKicker.com -

Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 1. Getting started with Excel VBA

Microsoft Excel includes a comprehensive macro programming language called VBA. This programming language
provides you with at least three additional resources:

1. Automatically drive Excel from code using Macros. For the most part, anything that the user can do by
manipulating Excel from the user interface can be done by writing code in Excel VBA.

2. Create new, custom worksheet functions.

3. Interact Excel with other applications such as Microsoft Word, PowerPoint, Internet Explorer, Notepad, etc.

VBA stands for Visual Basic for Applications. It is a custom version of the venerable Visual Basic programming
language that has powered Microsoft Excel's macros since the mid-1990s.

IMPORTANT

Please ensure any examples or topics created within the excel-vba tag are specific and relevant to the use of VBA
with Microsoft Excel. Any suggested topics or examples provided that are generic to the VBA language should be
declined in order to prevent duplication of efforts.

¢ on-topic examples:

v Creating and interacting with worksheet objects
v The WorksheetFunction class and respective methods
v Using the x1Direction enumeration to navigate a range

¢ off-topic examples:

X How to create a 'for each' loop
X MsgBox class and how to display a message
X Using WinAPl in VBA

VB
Version Release Date
VB6 1998-10-01

VB7 2001-06-06
WIN32 1998-10-01
WIN64 2001-06-06
MAC 1998-10-01
Excel

Version Release Date
16 2016-01-01

15 2013-01-01
14 2010-01-01
12 2007-01-01
11 2003-01-01
10 2001-01-01
9 1999-01-01

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

8
7
5
2

Section 1.1: Opening the Visual Basic Editor (VBE)

Step 1: Open a Workbook

1997-01-01
1995-01-01
1993-01-01
1987-01-01

e I I e L e A e e e A T L e = el

) ' '
ooy 8 BE r - i * %

Step 2 Option A: Press| Alt |+| F11 |

This is the standard shortcut to open the VBE.
Step 2 Option B: Developer Tab --> View Code

First, the Developer Tab must be added to the ribbon. Go to File -> Options -> Customize Ribbon, then check the
box for developer.

GoalKicker.com - Excel® VBA Notes for Professionals 3

(c) ketabton.com: The Digital Library

G | i :
EnErE E.L‘E Customize the Ribbon,
Formulas
) Choose commands from: (i) Customize the Ribbon: i
cwaing |Popular Commands B |Main Tabs B
Save
Language g1 All Chart Types.. - Main Tabs
Borders (v =l [Home
Advanced Calculate Mow Clipboard
" = Center Font
Customize Ribban % Conditional Formatting 4 Alignment
Quick Access Toolbar [EI - Mumber
:E Copy Styles
Add-Ins Custom Sort... Cells
& Cut L Editing
Trust Center A Decrease Font Size I [¥] Insert
@’: Delete Cells.., il Page Layout
2 Delete Sheet Columns ;
i W] F |
X Delete Sheet Rows o g e
[mifl Ervicil [¥] Data
< Fill Calar e
¥ Filter _ E
Font =
A Eont golor II' [V] Add-Ins
ont Size 15 :
Eormat Cells:: [¥] Background Removal
" Format Painter
E Freeze Panes k
A Increase Font Size
Insert Cells...
x Insert Function...
UTY Insert Sheet Columns
&= Insert Sheet Rows blew Tak l ’ hew Giaup l ’ fensme.s l
P Macros o -
o Customizations: |
Merge & Center
= Name Manager = Import/Export ™ |

[0K] l Cancel

Then, go to the developer tab and click "View Code" or "Visual Basic"

Bookl - Excel
Home Insert Page Layout Formulas Data Review View Developer Add-ins Q Tell me what you want to do...
\r] D 27 Record Macra ’ .]:-}l} — = bf. Properties @ ER Map Properties e Import
== = | __ i, L T s :
: -l Use Relative References e & -'Y == 18] View Code 2] Bxpansion Packs [, Export
Visual Macros Add- Excel COM Insert Design ' Source _
Baic L. Macro Security L - Mode Run Dialog {='1 Refresh Data
Code Add-ins Controls XML
Al v & View Code
| Edit the Visual Basic code fora
A | B | C | B} | E | F | G || control. K | L | M | (] | o | 2
i |
L L]
2

Step 2 Option C: View tab > Macros > Click Edit button to open an Existing Macro

All three of these options will open the Visual Basic Editor (VBE):

GoalKicker.com - Excel® VBA Notes for Professionals 4

(c) ketabton.com: The Digital Library

T Microioh Vaud Bac for Baphcations - okl [Oecl] oot

fuari Fommaet Dabug B To

Section 1.2: Declaring Variables

To explicitly declare variables in VBA, use the Dim statement, followed by the variable name and type. If a variable is
used without being declared, or if no type is specified, it will be assigned the type vVariant.

Use the Option Explicit statement on first line of a module to force all variables to be declared before usage (see
ALWAYS Use "Option Explicit").

Always using Option Explicit is highly recommended because it helps prevent typo/spelling errors and ensures
variables/objects will stay their intended type.

Option Explicit

Sub Example()
Dim a As Integer
a=2
Debug.Print a
"Outputs: 2

Dim b As Long
b=a+2
Debug.Print b
"Outputs: 4

Dim c As String

¢ = "Hello, world!"

Debug.Print c

"Outputs: Hello, world!
End Sub

Multiple variables can be declared on a single line using commas as delimiters, but each type must be declared
individually, or they will default to the variant type.

Dim Str As String, IntOne, IntTwo As Integer, Lng As Long

GoalKicker.com - Excel® VBA Notes for Professionals 5

(c) ketabton.com: The Digital Library

Debug.Print TypeName(Str) "Output: String
Debug.Print TypeName(IntOne) 'Output: Variant <--- !!!
Debug.Print TypeName(IntTwo) 'Output: Integer
Debug.Print TypeName(Lng) "Output: Long

Variables can also be declared using Data Type Character suffixes ($ % & ! # @), however using these are
increasingly discouraged.

Dim this$ 'String
Dim this% 'Integer
Dim this& 'Long

Dim this! 'Single
Dim this# 'Double
Dim this@ 'Currency

Other ways of declaring variables are:

e Static like: Static CounterVariable as Integer

When you use the Static statement instead of a Dim statement, the declared variable will retain its value
between calls.

e Public like: Public CounterVariable as Integer

Public variables can be used in any procedures in the project. If a public variable is declared in a standard
module or a class module, it can also be used in any projects that reference the project where the public
variable is declared.

¢ Private like: Private CounterVariable as Integer

Private variables can be used only by procedures in the same module.

Source and more info:

MSDN-Declaring Variables

Type Characters (Visual Basic)

Section 1.3: Adding a new Object Library Reference

The procedure describes how to add an Object library reference, and afterwards how to declare new variables with
reference to the new library class objects.

The example below shows how to add the PowerPoint library to the existing VB Project. As can be seen, currently
the PowerPoint Object library is not available.

GoalKicker.com - Excel® VBA Notes for Professionals 6

(c) ketabton.com: The Digital Library

’i@ Microsoft Visual Basic for . J \
r%- File Edit Miew [Insert Format Debug FRun Tools Add-Ins Window Help

E'Q % _glﬁﬂ ; 'f-'_i) [u POl @ % %\jﬁw ¥ e Ln 35, Coll
Project - VBAProject ﬁi I[G-enerai}
B = 3 B Option Explicit

E-&2 VBAProject (Book1)
E@ Microsoft Excel Objects
Sheeti (Sheetl)

Sheet? (Sheet2)

-
Micrasoft Visual Basic for

tio “‘ -

Step 1: Select Menu Tools --> References. ..
k‘l'- I-P-. L [

Sulr Export toPPT ()

dim ppApp as po[

Sheet? (Sheet3) &1 Points
48" ThisWorkbook 21 Policyltem
-5 Modules & ProtectedviewWindow
ﬁﬁé Module 1

21 ProtectedViewWindows
1 Protection

I PublishObject

1 PublishObjects

End Sub

% File Edit Miew Inset Format Debug Bun |loofs_i Add-Ins Window Help

Sheet3 (Sheet3)
: @ ThisWarkbook
=5 Modules

R R™ I REEEC =S990) UJ_ Bl References.. 13, Coll
Project - mP'rojed ﬁi |'| Additional Controls...
B = | E ' Macros...
E@ VBAProject (Book1) Options...
9 Mcraeaft Bxcel chijecin VBAProject Properties...
Sheetl (Sheet1)
Sheet2 (SheetZ) Digital Signature...

Step 2: Select the Reference you want to add. This example we scroll down to find “Microsoft PowerPoint 14.0
Object Library’, and then press “OK”.

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

- —
£ Microsoft Visual Basic for Applications - Book1 - [Modulel (Codel] | “EN——
I % File Edit Miew Inset Format Debug Bun Tools Add-Ins Window Help
EE-E & 2B =29 b bk NEE 2 @ inizcal
Project - VBAProject _5! i{Gemeral}—
8= 4 ! Option Explicit
=84 VBAProject (Book1)
E| @ Microsoft Excel Objects Sub Export toPPI ()
i] Sheetl {Sheet1)
| Sheet? (Sheet2) Din pplpp L= po - -
] Sheet3 (Shest3) References - VBAProject o]
3] ThisWorkbook
E| 5 Modules Available References: _OK
L8 Modulel
|| Microsoft CneNote PowerPoint Content Service Addir » Cancel |
End Sub _:!Microsoft Onelote Word Button Addin 1.0 Object Lib

[IMicrosoft OneNote Word Content Service Addin 1.0 ¢
[IMicrosoft Outlook 14.0 Object Library Browse.. |
[|Microsaft Outlook SharePoint Sodial Provider
[Microsoft Qutlock Sodial Provider Extensibility ll
I Microsoft Outlock View Control [d
"I Microsoft PenlnputPanel 1.7 Priority
T Marosoft PowsrPoint 14,0 Oblect brary | Hep |

[Microsoft Project 14.0 Task Launch Control

|| Microsoft Publisher 14.0 Cbject Library

[Microsoft Remote Data Services 6.0 Library
[“IMicrosoft Remote Data Services Server 6.0 Library
[IMirrnenft Serint Contral 1.0

N T +

—Microsoft PowerPoint 14.0 Object Library

Location:
Standard

Language:

C:¥Program Files (x86)Microsoft Office\Office 14\MSPFT.OLE

Note: PowerPoint 14.0 means that Office 2010 version is installed on the PC.

Microsoft Visual Basic for &

Step 3: in the VB Editor, once you press CtrI+Space together, you get the autocomplete option of PowerPoint.

|

;o% File Edit View Inset Format

Debug Rumn Tools Add-Ins Window Help
iEE-H # 2E3H =29 ¢) W HET @ Ln5clls a
Project - VBAProject x| | (General)

Option Explicit

=-%% VBAProject (Book1)

E| @ Microsoft Excel Objects
Sheetl (Sheeti)
Sheet? (Sheet)
Sheet3 (Sheet3)

3] ThisWarkbook
EI 23 Modules

After selecting PowerPoint and pressing .,

End Sub

Sub Export toPPT ()

Din pplpp Rs po{

1 Point
21 Paint
1 Points
21 Points
Jris F'nlicyltem

Moo

=F PpActionType

Object Library. This example shows how to select the PowerPoint's object Application.

another menu appears with all objects options related to the PowerPoint

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

—=
PmmﬁvMa1 Basic for 2 n dulel (Code]]
r%- File Edit: VWiew Inset Format Debug Run Tools Add-Ins Window Help

“ @ Lns Col27 !

HER RN AR

.;ﬂq{u

(3

D SEFY

Praject - VBAProject

x|

|lGene ral)

Option Explicit

=% VBAProject (Book1)
E| @ Microsoft Excel Objects

Sub Export toPPT ()

End Sub

Dim ppipp As PowerPoint.ap

i} Application

B autoCorrect |
P Aes

B Axis

B AxisTitle

1 Borders

1 Broadcast -

Step 4: Now the user can declare more variables using the PowerPoint object library.

Declare a variable that is referencmg the Presentation object of the PowerPoint object library.

e —

[Microsoft Visual Basic for Applications - B

% File Edit View Insert Format Debug

== 5

Bun Tools Add-Ins Window Help
EE-E £ ad Z290 p» 1 3 BEFW 4 @ s con !
Project - VBAProject x| | (General)

Option Explicit

[+ Microsoft Excel Cbjects
Sheetl (Sheeti)
Sheet2 (Sheet2)
Sheet3 (Sheet3)

; @ ThisWorkbook

E| @ Modules

1 =-%3 VBAProject (Book1)

Sub Export toPPT ()

End Sub

Din ppipp As PowerPoint.Application
Dim ppPres as PowerPoint.pre

B leroseriztion B

1 Presentations

21 PrintOptions

21 PrintRange L
&1 PrintRanges E
1 PropertyEffect

1 ProtectedviewWindow -

Declare another variable that is referencing the Slide object of the PowerPoint object library.

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

Fﬁ Microsoft Visual Basic for Applications

I-%- File Edit View Insert Format Debug Bun Tools Add-Ins Window Help

EE-H 4 A8 =290) 0 ak SFY 4 @ nicon g
Project - VBAProject x| IlG-eneraE}

= ! Option Explicit

&% VBAProject (Book1)
I =5 Microsoft Excel Objects Sub Export toPFT(}

Sheet2 (Sheet2) Dim pphpp As PowerPoint.Application

Sheet3 (Sheet3) Dim ppPres As PowerPFoint.Presentation

Dim ppSlide as PowerPoint.sl

= ETTH -
1 slideRange

1 Slides

2 slideShowSettings

21 slideShowTransition (5
1 slideShowView

2 slideShowWindow -

End Sub

Now the variables declaration section looks like in the screen-shot below, and the user can start using these

variables in his code.

(ﬁ Microsoft Visual Basic for Applications -

% File Edit View Insert Format Debug Run Tools Add-Ins Window Help

EE-H £ aEA 2S99 o0 a b BFEW 2 @ nigco B
Project - VBAProject x| | [Coneral
—= 4 E Option Explicit
|| =% vBAProject (Book1)
E@ Microsoft Excel Objects Sub Export_toPPT()
] Sheet1 (Sheet1)
| Sheet2 (Sheet2) Din ppipp As PowerPoint.Application

| Sheet3 (Sheet3) Dim ppPres As PowerPoint.Presentation

@ThisWorkbook Din ppSlide A= PowerPoint.Slide
-5 Modules
ﬁﬁg Module 1 ' here write down everything you want to do with the PowerPeoint Class and objects
End Sub

Code version of this tutorial:

Option Explicit
Sub Export_toPPT()
Dim ppApp As PowerPoint.Application

Dim ppPres As PowerPoint.Presentation
Dim ppSlide As PowerPoint.Slide

1

here write down everything you want to do with the PowerPoint Class and objects

End Sub

Section 1.4: Hello World

1. Open the Visual Basic Editor (see Opening the Visual Basic Editor)
2. Click Insert --> Module to add a new Module :

GoalKicker.com - Excel® VBA Notes for Professionals 10

(c) ketabton.com: The Digital Library

E Microsoft Visual Basic for Applications - Book

File Edit View 1nsertiFgrmat Debug Ru

- d Il
- serFarm
Project - VBAProject | ¢ Module |I

= @. Class Module

-8 Solver (SOLVE
=-&% VBAProject (Book1)
EI---@ Microsoft Excel Objects

cEj|sheetl (Sheetl)

----- @ This\WWarkbook

3. Copy and Paste the following code in the new module :
Sub hello()

MsgBox "Hello World !"
End Sub

To obtain :

E Microsoft Visual Basic for Applications - Book] - [Modulel (Code]]

% File Edit View |Insert Format Debug PBun Tools Add-Ins Rubberducl

Tlg ml% q 2 M H gq- a Ln 1

Project - VBAProject

#-&4 Solver (SOLVER.XLAM)
=-&4 VBAProject (Book1)
EI @ Mlcrusuﬂ: Excel Objects

=8 @ Modules
----- Logl® Modulel

| (General)

Sub hellal()
M=gBox "Hello World '™
End Sub

4. Click on the green “play” arrow (or press F5) in the Visual Basic toolbar to run the program:

E Microsoft Visual Basic for Apphications - Book - [Module? (Code]]
% File Edit ¥iew |nsert Format PDebug PRun Tools Add-Ins Rubberduck Window Help
HE-d a4 |9 m] PR @ Ln14 Col

5. Select the new created sub "hello" and click Run :

GoalKicker.com - Excel® VBA Notes for Professionals

n

(c) ketabton.com: The Digital Library

Macros X
Macro Mame:
hello] Run
Cancel
Step Into
Edit
Create
Delete
Macros In: | VBAProject (Book1) =

6. Done, your should see the following window:

Microsoft Excel >

Hello World !

OK

Section 1.5: Getting Started with the Excel Object Model

This example intend to be a gentle introduction to the Excel Object Model for beginners.

1. Open the Visual Basic Editor (VBE)
2. Click View --> Immediate Window to open the Immediate Window (or +[G

E Microsoft Visual Basic for Applications - VBA Immedia

% File Edit | View | Insert Format Debug Rur
- | Code Fr
=] Object Shift+F7
Project - VBAProje Definition Shift+F2
o | ast Position Ctrl+5hift+F2
—r = e Object Browser F2
Immediate Window Ctrl+G |I

3. You should see the following Immediate Window at the bottom on VBE:

GoalKicker.com - Excel® VBA Notes for Professionals 12

(c) ketabton.com: The Digital Library

Immediate E
s
W
£ >

This window allow you to directly test some VBA code. So let's start, type in this console :

?Worksheets.

VBE has intellisense and then it should open a tooltip as in the following figure :

=Eifdd o
= Add?

Application

= Copy

Count

Creator

= Delete W
?Worksheets.

Immediate

Select .Count in the list or directly type .Cout to obtain :

?Worksheets.Count

4. Then press Enter. The expression is evaluated and it should returns 1. This indicates the number of
Worksheet currently present in the workbook. The question mark (?) is an alias for Debug.Print.

Worksheets is an Object and Count is a Method. Excel has several Object (Workbook, Worksheet, Range, Chart ..)
and each of one contains specific methods and properties. You can find the complete list of Object in the Excel VBA
reference. Worksheets Object is presented here .

This Excel VBA reference should become your primary source of information regarding the Excel Object
Model.

5. Now let's try another expression, type (without the ? character):
Worksheets.Add().Name = "StackOveflow"

6. Press Enter. This should create a new worksheet called StackOverflow.:

StackOveflow Sheetl

Ready Eﬁ

To understand this expression you need to read the Add function in the aforementioned Excel reference. You will
find the following:

Add: Creates a new worksheet, chart, or macro sheet.
The new worksheet becomes the active sheet.
Return Value: An Object value that represents the new worksheet, chart,

GoalKicker.com - Excel® VBA Notes for Professionals 13

(c) ketabton.com: The Digital Library

or macro sheet.

So the Worksheets.Add() create a new worksheet and return it. Worksheet(without s) is itself a Object that can be
found in the documentation and Name is one of its property (see here). It is defined as :

Worksheet.Name Property: Returns or sets a String value that
represents the object name.

So, by investigating the different objects definitions we are able to understand this code Worksheets.Add() .Name =
"StackOveflow".

Add() creates and add a new worksheet and return a reference to it, then we set its Name property to
"StackOverflow"

Now let's be more formal, Excel contains several Objects. These Objects may be composed of one or several
collection(s) of Excel objects of the same class. It is the case for WorkSheets which is a collection of Worksheet
object. Each Object has some properties and methods that the programmer can interact with.

The Excel Object model refers to the Excel object hierarchy

At the top of all objects is the Application object, it represents the Excel instance itself. Programming in VBA
requires a good understanding of this hierarchy because we always need a reference to an object to be able to call
a Method or to Set/Get a property.

The (very simplified) Excel Object Model can be represented as,

Application
Workbooks
Workbook

Worksheets
Worksheet

Range

A more detail version for the Worksheet Object (as it is in Excel 2007) is shown below,

GoalKicker.com - Excel® VBA Notes for Professionals 14

(c) ketabton.com: The Digital Library

Microsoft Excel Objects (Worksheet)

See Also

[Worksheets ['Worksheet)

Hames [Mame] |

Range |
 Areas
— Borders [Border]

|
|
— Font |
|
|

H Interior

— Characters
]—1 Font |
—Name |
{Style |
Borders [Border] |
Font |

Interior |
 FormatConditions [FormatCondition] |
— Hyperlinks [Hyperlink) |
— Validation |
— Comment]

|
|

— Phonetics [Phonetic]
—| Shapes [Shape]

¥

Legend

[] object and collection
L] object only

The full Excel Object Model can be found here.

— Comments [Comment]

— HPageBreaks (HPageBreak]

—I YPageBreaks [YPageBreak]

— Hypeilinks [Hyperlink)

—I Scenarios [5cenario)

— DLEDbijects [DLEDbject)

— Dutline

—i PageSetup

— QueryT ables [QueryT able)

I—IFaramaters [Parameter]

— PivatT ables [PivotT able)

- PivotCache

—IPivutFarmulas [PivotFormula)

—iFivutFields [PivotField]

|‘—'F’iun:ntltlemas [Pivotitem])

—iEuhaFields [CubeField]

— DLEDbijects [OLEDbject)

— ChartDbjects [ChartObject)

Chart

PivotL ayout

— AutoFilter

I—EFiItem [Filter)

Finally some objects may have events (ex: Workbook .WindowActivate) that are also part of the Excel Object Model.

GoalKicker.com - Excel® VBA Notes for Professionals

15

(c) ketabton.com: The Digital Library

Chapter 2: Arrays

Section 2.1: Dynamic Arrays (Array Resizing and Dynamic
Handling)

Due to not being Excel-VBA exclusive contents this Example has been moved to VBA documentation.

Link: Dynamic Arrays (Array Resizing and Dynamic Handling)

Section 2.2: Populating arrays (adding values)

There are multiple ways to populate an array.

Directly

'one-dimensional

Dim arrayDirect1D(2) As String
arrayDirect(8) = "A"
arrayDirect(1)
arrayDirect(2)

B
e

'multi-dimensional (in this case 3D)
Dim arrayDirectMulti(1, 1, 2)

arrayDirectMulti(e, @6, 9) = "A"
arrayDirectMulti(e, @, 1) = "B"
arrayDirectMulti(e, @, 2) = "C"
arrayDirectMulti(e, 1, 98) = "D"

1

Using Array() function

'one-dimensional only

Dim array1D As Variant 'has to be type variant
array1D = Array(1, 2, "A")

'-> arrayiD(@) = 1, arrayliD(1) = 2, arrayiD(2) = "A"

From range

Dim arrayRange As Variant 'has to be type variant

'putting ranges in an array always creates a 2D array (even if only 1 row or column)
'starting at 1 and not 0, first dimension is the row and the second the column
arrayRange = Range("A1:C10").Value

'-> arrayRange(1,1) = value in A1

'-> arrayRange(1,2) = value in B1

'-> arrayRange(5,3) = value in C5

1

'Yoo can get an one-dimensional array from a range (row or column)
'"by using the worksheet functions index and transpose:

'one row from range into 1D-Array:

arrayRange = Application.WorksheetFunction.Index(Range("A1:C10").Value, 3, 0)

'-> row 3 of range into 1D-Array

'-> arrayRange(1) = value in A3, arrayRange(2) = value in B3, arrayRange(3) = value in C3

'one column into 1D-Array:
'limited to 65536 rows in the column, reason: limit of .Transpose

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

arrayRange = Application.WorksheetFunction.Index(_
Application.WorksheetFunction.Transpose(Range("A1:C10").Value), 2, 0)

'-> column 2 of range into 1D-Array

'-> arrayRange(1) = value in B1, arrayRange(2) = value in B2, arrayRange(3) = value in B3

1

"By using Evaluate() - shorthand [] - you can transfer the
'range to an array and change the values at the same time.
'This is equivalent to an array formula in the sheet:
arrayRange = [(A1:C10%3)]

arrayRange = [(A1:C10&"_test")]

arrayRange = [(A1:B10*C1:C10)]

1

2D with Evaluate()

Dim array2D As Variant

"[] ist a shorthand for evaluate()

'"Arrays defined with evaluate start at 1 not @

array2D = [{"1A","1B","1C";"2A","2B", "3B"}]

'-> array2D(1,1) = "1A", array2D(1,2) = "1B", array2D(2,1) = "2A"

'if you want to use a string to fill the 2D-Array:

Dim strValues As String

strValues = "{""1A"",""1B"",""1C"";""2A"", ""2B"",""2C""}"
array2D = Evaluate(strValues)

Using Split() function

Dim arraySplit As Variant 'has to be type variant
arraySplit = Split("a,b,c", ",")
'-> arraySplit(@) = "a", arraySplit(1) = "b", arraySplit(2) = "c"

Section 2.3: Jagged Arrays (Arrays of Arrays)
Due to not being Excel-VBA exclusive contents this Example has been moved to VBA documentation.

Link: Jagged Arrays (Arrays of Arrays)

Sectio? 2.4: Check if Array is Initialized (If it contains elements
or not

A common problem might be trying to iterate over Array which has no values in it. For example:

Dim myArray() As Integer
For i = © To UBound(myArray) 'Will result in a "Subscript Out of Range" error

To avoid this issue, and to check if an Array contains elements, use this oneliner:

If Not Not myArray Then MsgBox UBound(myArray) Else MsgBox "myArray not initialised"

Section 2.5: Dynamic Arrays [Array Declaration, Resizing]

Sub Array_clarity()

Dim arr() As Variant 'creates an empty array
Dim x As Long
Dim y As Long

GoalKicker.com - Excel® VBA Notes for Professionals 17

(c) ketabton.com: The Digital Library

X
y

ReDi

For

in x
Next

'Put
Rang

End

Range("A1", Range("A1").End(x1Down)).Cells.Count
Range("A1", Range("A1").End(x1ToRight)).Cells.Count

m arr(@ To x, @ To y) 'fixing the size of the array

x = LBound(arr, 1) To UBound(arr, 1)
For y = LBound(arr, 2) To UBound(arr, 2)
arr(x, y) = Range("A1").0ffset(x, y) 'storing the value of Range("A1:E18") from activesheet
and y variables
Next

it on the same sheet according to the declaration:
e("A14") .Resize(UBound(arr, 1), UBound(arr, 2)).Value = arr

Sub

GoalKicker.com - Excel® VBA Notes for Professionals 18

(c) ketabton.com: The Digital Library

Chapter 3: Conditional statements

Section 3.1: The If statement

The If control statement allows different code to be executed depending upon the evaluation of a conditional
(Boolean) statement. A conditional statement is one that evaluates to either True or False, e.g. x > 2.

There are three patterns that can be used when implementing an If statement, which are described below. Note
that an If conditional evaluation is always followed by a Then.

1. Evaluating one If conditional statement and doing something if it is True
Single line If statement

This is the shortest way to use an If and it is useful when only one statement needs to be carried out upon a True
evaluation. When using this syntax, all of the code must be on a single line. Do not include an End If atthe end of
the line.

If [Some condition is True] Then [Do something]

If block

If multiple lines of code need to be executed upon a True evaluation, an If block may be used.

If [Some condition is True] Then
[Do some things]
End If

Note that, if a multi-line If block is used, a corresponding End If is required.

2. Evaluating one conditional If statement, doing one thing if it is True and doing something else if it is
False

Single line If, Else statement

This may be used if one statement is to be carried out upon a True evaluation and a different statement is to be
carried out on a False evaluation. Be careful using this syntax, as it is often less clear to readers that there is an
Else statement. When using this syntax, all of the code must be on a single line. Do not include an End If atthe
end of the line.

If [Some condition is True] Then [Do something] Else [Do something else]

If, Else block

Use an If, Else block to add clarity to your code, or if multiple lines of code need to be executed under either a
True or a False evaluation.

If [Some condition is True] Then
[Do some things]

Else
[Do some other things]

End If

Note that, if a multi-line If block is used, a corresponding End If is required.

GoalKicker.com - Excel® VBA Notes for Professionals 19

(c) ketabton.com: The Digital Library

3. Evaluating many conditional statements, when preceding statements are all False, and doing something
different for each one

This pattern is the most general use of If and would be used when there are many non-overlapping conditions that
require different treatment. Unlike the first two patterns, this case requires the use of an If block, even if only one
line of code will be executed for each condition.

If, ElseIf, ..., Else block

Instead of having to create many If blocks one below another, an ElseIf may be used evaluate an extra condition.
The ElseIf is only evaluated if any preceding If evaluation is False.

If [Some condition is True] Then
[Do some thing(s)]

ElseIf [Some other condition is True] Then
[Do some different thing(s)]

Else '"Everything above has evaluated to False
[Do some other thing(s)]

End If

As many ElseIf control statements may be included between an If and an End If asrequired. An Else control
statement is not required when using ElseIf (although it is recommended), but if it is included, it must be the final
control statement before the End If.

GoalKicker.com - Excel® VBA Notes for Professionals 20

(c) ketabton.com: The Digital Library

Chapter 4: Ranges and Cells

Section 4.1: Ways to refer to a single cell

The simplest way to refer to a single cell on the current Excel worksheet is simply to enclose the A1 form of its
reference in square brackets:

[a3] = "Hello!'"

Note that square brackets are just convenient syntactic sugar for the Evaluate method of the Application object,
so technically, this is identical to the following code:

Application.Evaluate("a3") = "Hello!"
You could also call the Cells method which takes a row and a column and returns a cell reference.
Cells(3, 1).Formula = "=A1+A2"

Remember that whenever you pass a row and a column to Excel from VBA, the row is always first, followed by the
column, which is confusing because it is the opposite of the common A1 notation where the column appears first.

In both of these examples, we did not specify a worksheet, so Excel will use the active sheet (the sheet thatis in
front in the user interface). You can specify the active sheet explicitly:

ActiveSheet.Cells(3, 1).Formula = "=SUM(A1:A2)"

Or you can provide the name of a particular sheet:

Sheets("Sheet2").Cells(3, 1).Formula = "=SUM(A1:A2)"

There are a wide variety of methods that can be used to get from one range to another. For example, the Rows
method can be used to get to the individual rows of any range, and the Cells method can be used to get to
individual cells of a row or column, so the following code refers to cell C1:

ActiveSheet.Rows(1).Cells(3).Formula = "hi!"

Section 4.2: Creating a Range

A Range cannot be created or populated the same way a string would:

Sub RangeTest()
Dim s As String
Dim r As Range 'Specific Type of Object, with members like Address, WrapText, AutoFill, etc.

' This is how we fill a String:
s = "Hello World!"

' But we cannot do this for a Range:

r = Range("A1") '//Run. Err.: 91 Object variable or With block variable not set//

' We have to use the Object approach, using keyword Set:
Set r = Range("A1")

End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 21

(c) ketabton.com: The Digital Library

It is considered best practice to qualify your references, so from now on we will use the same approach here.
More about Creating Object Variables (e.g. Range) on MSDN . More about Set Statement on MSDN.

There are different ways to create the same Range:

Sub SetRangeVariable()
Dim ws As Worksheet
Dim r As Range

Set ws = ThisWorkbook.Worksheets(1) ' The first Worksheet in Workbook with this code in it

" These

Set r
Set r
Set r
Set r
Set r

are all equivalent:

ws.Range("A2")

ws.Range("A" & 2)

ws.Cells(2, 1) ' The cell in row number 2, column number 1

ws.[A2] 'Shorthand notation of Range.

Range("NamedRangeInA2") 'If the cell A2 is named NamedRangeInA2. Note, that this is

Sheet independent.

Set r
Set r

Set r

Set r

Set r
End Sub

ws.Range("A1").0ffset(1, 0) ' The cell that is 1 row and @ columns away from A1

ws.Range("A1").Cells(2,1) ' Similar to Offset. You can "go outside" the original Range.

ws.Range("A1:A5").Cells(2) 'Second cell in bigger Range.
ws.Range("A1:A5").Item(2) 'Second cell in bigger Range.
ws.Range("A1:A5")(2) 'Second cell in bigger Range.

Note in the example that Cells(2, 1) is equivalent to Range("A2"). This is because Cells returns a Range object.
Some sources: Chip Pearson-Cells Within Ranges; MSDN-Range Object; John Walkenback-Referring To Ranges In
Your VBA Code.

Also note that in any instance where a number is used in the declaration of the range, and the number itself is
outside of quotation marks, such as Range("A" & 2), you can swap that number for a variable that contains an
integer/long. For example:

Sub Rangelteration()
Dim wb As Workbook, ws As Worksheet
Dim r As

Set wb
Set ws

For i

Range

ThisWorkbook
wb .Worksheets (1)

1T To 10

Set r = ws.Range("A" & i)
" When i = 1, the result will be Range("A1")
" When i = 2, the result will be Range("A2")

1

etc.

' Proof:
Debug.Print r.Address

Next i
End Sub

If you are using double loops, Cells is better:

Sub RangeIteration2()
Dim wb As Workbook, ws As Worksheet
Dim r As

Set wb
Set ws

Range

ThisWorkbook
wb .Worksheets(1)

GoalKicker.com - Excel® VBA Notes for Professionals

22

(c) ketabton.com: The Digital Library

For i = 1 To 10
For j =1 To 10
Set r = ws.Cells(i, j)
" When i = 1 and j = 1, the result will be Range("A1")
" When i = 2 and j = 1, the result will be Range("A2")
' When i = 1 and j = 2, the result will be Range("B1")

' etc.
" Proof:
Debug.Print r.Address
Next j
Next i

End Sub

Section 4.3: Offset Property

o Offset(Rows, Columns) - The operator used to statically reference another point from the current cell. Often
used in loops. It should be understood that positive numbers in the rows section moves right, wheres as
negatives move left. With the columns section positives move down and negatives move up.

i.e

Private Sub this()
ThisWorkbook.Sheets("Sheet1").Range("A1").0ffset(1, 1).Select
ThisWorkbook.Sheets("Sheet1").Range("A1").0ffset(1, 1).Value = "New Value"
ActiveCell.Offset(-1, -1).Value = ActiveCell.Value

ActiveCell.Value = vbNullString
End Sub

This code selects B2, puts a new string there, then moves that string back to A1 afterwards clearing out B2.

Section 4.4: Saving a reference to a cell in a variable
To save a reference to a cell in a variable, you must use the Set syntax, for example:

Dim R as Range
Set R = ActiveSheet.Cells(3, 1)

later...

R.Font.Color = RGB(255, @, 9)

Why is the Set keyword required? Set tells Visual Basic that the value on the right hand side of the = is meant to be
an object.

Section 4.5: How to Transpose Ranges (Horizontal to Vertical
& vice versa)

Sub TransposeRangeValues()
Dim TmpArray() As Variant, FromRange as Range, ToRange as Range

set FromRange = Sheets("Sheet1").Range("al:a12") "Worksheets(1).Range("al:p1")
set ToRange = ThisWorkbook.Sheets("Sheet1").Range("a1")
'"ThisWorkbook.Sheets("Sheet1").Range("al")

TmpArray = Application.Transpose(FromRange.Value)
FromRange.Clear

GoalKicker.com - Excel® VBA Notes for Professionals 23

(c) ketabton.com: The Digital Library

ToRange.Resize(FromRange.Columns.Count, FromRange.Rows.Count).Value2 = TmpArray
End Sub

Note: Copy/PasteSpecial also has a Paste Transpose option which updates the transposed cells' formulas as well.

GoalKicker.com - Excel® VBA Notes for Professionals

24

(c) ketabton.com: The Digital Library

Chapter 5: Named Ranges

Topic should include information specifically related to named ranges in Excel including methods for creating,
modifying, deleting, and accessing defined named ranges.

Section 5.1: Define A Named Range

Using named ranges allows you to describe the meaning of a cell(s) contents and use this defined name in place of
an actual cell address.

For example, formula =A5*B5 can be replaced with =Width*Height to make the formula much easier to read and
understand.

To define a new named range, select cell or cells to name and then type new name into the Name Box next to the

formula bar.
Al - e
A B C D E F

1

2

3

4

5 15 20

6 %

7

Note: Named Ranges default to global scope meaning that they can be accessed from anywhere within
the workbook. Older versions of Excel allow for duplicate names so care must be taken to prevent
duplicate names of global scope otherwise results will be unpredictable. Use Name Manager from
Formulas tab to change scope.

Section 5.2: Using Named Ranges in VBA
Create new named range called ‘MyRange’ assigned to cell A1

ThisWorkbook .Names.Add Name:="MyRange", _
RefersTo:=Worksheets("Sheet1").Range("A1")

Delete defined named range by name
ThisWorkbook .Names("MyRange") .Delete
Access Named Range by name

Dim rng As Range
Set rng = ThisWorkbook.Worksheets("Sheet1").Range("MyRange")
Call MsgBox("Width = " & rng.Value)

GoalKicker.com - Excel® VBA Notes for Professionals 25

(c) ketabton.com: The Digital Library

Access a Named Range with a Shortcut

Just like any other range, named ranges can be accessed directly with through a shortcut notation that does not
require a Range object to be created. The three lines from the code excerpt above can be replaced by a single line:

Call MsgBox("Width = " & [MyRange])

Note: The default property for a Range is its Value, so [MyRange] is the same as [MyRange] .Value

You can also call methods on the range. The following selects MyRange:

[MyRange] .Select

Note: One caveat is that the shortcut notation does not work with words that are used elsewhere in the
VBA library. For example, a range named Width would not be accessible as [Width] but would work as
expected if accessed through ThisWorkbook .Worksheets("Sheet1").Range("Width")

Section 5.3: Manage Named Range(s) using Name Manager
Formulas tab > Defined Names group > Name Manager button
Named Manager allows you to:

Create or change name

Create or change cell reference
Create or change scope

Delete existing named range

pwN-

GoalKicker.com - Excel® VBA Notes for Professionals 26

(c) ketabton.com: The Digital Library

Bookl - Microsoft Excel

F /| Dat R
ormulas ata EVIE Edit Nm ? [--R_
I;.-.u-"-'l"';- & Reference § m
b Math & Trig = fame: Height . A ks
unction Financia [Date & Time = Bl More Fundtions Manager TP Workbook ,_‘l o
Function Library Dd | Comment: -
am - &
LA B c | D G ¥
1 Refersto: | —gheet115BsS =
2] [ox [concel |
e | 2
4 | —
5 15 20 300
- - ™
65| Name Manager ¥ = 1}
T
g | [nNew. |[edt. Delete Eilter
150- Name Yalue Refers To Scope Comment
{ 128 Height 0 =Sheet1!$855 Workbook
11 1 width 15 =Sheet 115455 Workbook
12 4
13|
14
15 4
16 |
17 |
]-Bl
15 Refers to: :
20 | |#|7 | | =Sheet1!5845
21
2 [oee]|
23 . ’

Named Manager provides a useful quick look for broken links.

.

—
Mame Manager M
o) o) o
Mame Value Refers To Scope Comment
=1 Height 20 =5heet11$B55 Warkbook
L= 1y olume =#REF!5853 Warkbook
=1 Width 15 =Sheet1! 5455 Workbook
Refers to:
K| [=sreriss £
A

GoalKicker.com - Excel® VBA Notes for Professionals

27

(c) ketabton.com: The Digital Library

Section 5.4: Named Range Arrays

Example sheet

Units - (" 5| 50
A B C D i - ﬁ*
5 : —{ Mame Manager 2
2 | mew.. || Edt. || Delete Filter -
3
4‘ Mok Units Mame Value Refers To Scope Comment
O {"50""52,,, =5Sheet1!4845:58416
i January 20 =1 Year_Max =Sheet115E57 Warkbook
6 February 52 = Year_Min =Sheet1lsESs Workbook
7 March 48 Max
B April 46 Min
9 May 61
10 June 55
11 July 65
12 August B8
13| September 62 Refers th:
14 october | 60 (X|v] [heetnsossssss =
15| November 50 I '
16 December 48
17
Code

Sub Example()
Dim wks As Worksheet
Set wks = ThisWorkbook.Worksheets("Sheet1")

Dim units As Range

Set units = ThisWorkbook.Names("Units").RefersToRange

Worksheets("Sheet1").Range("Year_Max").Value
Worksheets("Sheet1").Range("Year_Min").Value

End Sub
Result
Month Units
January 50
February 52
March 48 Max 68
April 46 Min 46
May 61
June 535
July 65
August 63
September 62
October 60
Movember 50
December 43

WorksheetFunction.Max(units)
WorksheetFunction.Min(units)

GoalKicker.com - Excel® VBA Notes for Professionals

28

(c) ketabton.com: The Digital Library

Chapter 6: Merged Cells / Ranges

Section 6.1: Think twice before using Merged Cells/Ranges

First of all, Merged Cells are there only to improve the look of your sheets.

So it is literally the last thing that you should do, once your sheet and workbook are totally functional!

Where is the data in a Merged Range?

When you merge a Range, you'll only display one block.

The data will be in the very first cell of that Range, and the others will be empty cells!

One good point about it : no need to fill all the cells or the range once merged, just fill the first cell! ;)
The other aspects of this merged ranged are globally negative :

¢ If you use a method for finding last row or column, you'll risk some errors

¢ If you loop through rows and you have merged some ranges for a better readability, you'll encounter empty

cells and not the value displayed by the merged range

GoalKicker.com - Excel® VBA Notes for Professionals

29

(c) ketabton.com: The Digital Library

Chapter 7: Locating duplicate values in a
range

At certain points, you will be evaluating a range of data and you will need to locate the duplicates in it. For bigger
data sets, there are a number of approaches you can take that use either VBA code or conditional functions. This
example uses a simple if-then condition within two nested for-next loops to test whether each cell in the range is
equal in value to any other cell in the range.

Section 7.1: Find duplicates in a range

The following tests range A2 to A7 for duplicate values. Remark: This example illustrates a possible solution as a
first approach to a solution. It's faster to use an array than a range and one could use collections or dictionaries or
xml methods to check for duplicates.

Sub find_duplicates()
' Declare variables
Dim ws As Worksheet ' worksheet
Dim cell As Range cell within worksheet range
Dim n As Integer ' highest row number
Dim bFound As Boolean boolean flag, if duplicate is found
Dim sFound As String: sFound = found duplicates
Dim s As String message string
Dim s2 As String ' partial message string
' Set Sheet to memory
Set ws = ThisWorkbook.Sheets("Duplicates")

non 1

" loop thru FULLY QUALIFIED REFERENCE
For Each cell In ws.Range("A2:A7")

bFound = False: s2 = "" ' start each cell with empty values
' Check if first occurrence of this value as duplicate to avoid further searches
If InStr(sFound, "|" & cell & "|") = @ Then
For n = cell.Row + 1 To 7 ' iterate starting point to avoid REDUNDANT SEARCH
If cell = ws.Range("A" & n).Value Then
If cell.Row <> n Then ' only other cells, as same cell cannot be a duplicate
bFound = True ' boolean flag

1

found duplicates in cell A{n}
s2 = s2 & vbNewLine & " -> duplicate in A" & n
End If
End If
Next
End If
' notice all found duplicates
If bFound Then
' add value to list of all found duplicate values
" (could be easily split to an array for further analyze)
sFound = sFound & cell & "|"
s = s & cell.Address & " (value=" & cell & ")" & s2 & vbNewlLine & vbNewlLine
End If
Next
Messagebox with final result
MsgBox "Duplicate values are " & sFound & vbNewLine & vbNewlLine & s, vbInformation, "Found
duplicates”
End Sub

1

Depending on your needs, the example can be modified - for instance, the upper limit of n can be the row value of
last cell with data in the range, or the action in case of a True If condition can be edited to extract the duplicate

GoalKicker.com - Excel® VBA Notes for Professionals 30

(c) ketabton.com: The Digital Library

value somewhere else. However, the mechanics of the routine would not change.

GoalKicker.com - Excel® VBA Notes for Professionals

31

(c) ketabton.com: The Digital Library

Chapter 8: User Defined Functions (UDFs)

Section 8.1: Allow full column references without penalty

It's easier to implement some UDFs on the worksheet if full column references can be passed in as parameters.
However, due to the explicit nature of coding, any loop involving these ranges may be processing hundreds of
thousands of cells that are completely empty. This reduces your VBA project (and workbook) to a frozen mess while
unnecessary non-values are processed.

Looping through a worksheet's cells is one of the slowest methods of accomplishing a task but sometimes it is
unavoidable. Cutting the work performed down to what is actually required makes perfect sense.

The solution is to truncate the full column or full row references to the Worksheet.UsedRange property with the
Intersect method. The following sample will loosely replicate a worksheet's native SUMIF function so the
criteria_range will also be resized to suit the sum_range since each value in the sum_range must be accompanied by a
value in the criteria_range.

The Application.Caller for a UDF used on a worksheet is the cell in which it resides. The cell's .Parent property is the
worksheet. This will be used to define the .UsedRange.

In a Module code sheet:

Option Explicit

Function udfMySumIf(rngA As Range, rngB As Range,
Optional crit As Variant = "yes")
Dim c As Long, ttl As Double

With Application.Caller.Parent

Set rngA = Intersect(rngA, .UsedRange)

Set rngB = rngB.Resize(rngA.Rows.Count, rngA.Columns.Count)
End With

For ¢ = 1 To rngA.Cells.Count
If IsNumeric(rngA.Cells(c).Value2) Then
If LCase(rngB(c).Value2) = LCase(crit) Then
ttl = ttl + rngA.Cells(c).Value2
End If
End If
Next c

udfMySumIf = ttl

End Function

Syntax:
=udfMySumIf(*sum_range*, *criteria_rangex, [*criteriax*])

GoalKicker.com - Excel® VBA Notes for Professionals 32

(c) ketabton.com: The Digital Library

E3 - e | =udfMySumif{A:A,B:B, "YES")
l_a [s [& | b [PEWI F [6

1 | numbers nclude

i 17 Yes

H —

5 15 Yes

b

7

8

i) 1B Yes

10|

Ei

1z

13 1B Yes

14

15

16

17

While this is a fairly simplistic example, it adequately demonstrates passing in two full column references (1,048,576
rows each) but only processing 15 rows of data and criteria.

Linked official MSDN documentation of individual methods and properties courtesy of Microsoft™.,

Section 8.2: Count Unique values in Range

Function countUnique(r As range) As Long
'"Application.Volatile False ' optional
Set r = Intersect(r, r.Worksheet.UsedRange) ' optional if you pass entire rows or columns to the

function
Dim c As New Collection, v
On Error Resume Next ' to ignore the Run-time error 457: "This key is already associated with

an element of this collection”.
For Each v In r.Value ' remove .Value for ranges with more than one Areas
c.Add 0, v & ""
Next
c.Remove optional to exclude blank values from the count
countUnique = c.Count
End Function

nuooa

Collections

Section 8.3: UDF - Hello World

1. Open Excel
2. Open the Visual Basic Editor (see Opening the Visual Basic Editor)
3. Add a new module by clicking Insert --> Module :

GoalKicker.com - Excel® VBA Notes for Professionals 33

(c) ketabton.com: The Digital Library

E Microsoft Visual Basic for Applications - Book

File Edit View 1nsertiFgrmat Debug Ru

- d Il
- serFarm
Project - VBAProject | ¢ Module |I

= @. Class Module

-8 Solver (SOLVE
=-&% VBAProject (Book1)
EI---@ Microsoft Excel Objects

cEj|sheetl (Sheetl)

----- @ This\WWarkbook

4, Copy and Paste the following code in the new module :

Public Function Hello() As String

'Note: the output of the function is simply the function's name
Hello = "Hello, World !"

End Function

To obtain:

E Microsoft Visual Basic for Applications - Bookl - [Medulel (Code]]

%Eile Edit Wiew |Insert Format Debug Bun Tools Add-lns Rubberduck Window Help

[& - d B9 b B BEFY @ e call

Project - VBAProject

-84 Solver (SOLVER.XLAM)
%% VBAProject (Book1)
EI @ Microsoft Excel Objects
B Sheetl (Sheetl)
- Lg% ThisWorkbook
@ Modules
----- Ly Module1

| [General)

Public Function Hello() As String

'Hote: the output of the function iz =imply the function's name
Hello = "Hello, World '™

End Function

5. Go back to your workbook and type "=Hello()" into a cell to see the "Hello World".

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

H S
File Home Insert Page Layout Formulas

Qj D * Record Macro ’ ﬁﬂ' -

LJ EUSE Relative References o 1

Visual Macros _ Add- Excel COM

Basic %, Macro Security ins Add-ins Add-i
Code Add-ins

o1 - :> _Hello()

A | B | C D
$|Hellc}, world ! |

GoalKicker.com - Excel® VBA Notes for Professionals

35

(c) ketabton.com: The Digital Library

Chapter 9: Conditional formatting using

VBA

Section 9.1: FormatConditions.Add

Syntax:
FormatConditions.Add(Type, Operator, Formulal, Formula2)
Parameters:
Name Required / Optional Data Type
Type Required XIFormatConditionType
Operator Optional Variant
Formula1 Optional Variant
Formula2 Optional Variant

XIFormatConditionType enumaration:

Name
x|IAboveAverageCondition

xIBlanksCondition
xICellValue
xIColorScale
x|Databar
xIErrorsCondition
x|IExpression
XllconSet
xINoBlanksCondition
xINoErrorsCondition
x|TextString
x|TimePeriod
xITop10
xlUniqueValues

Formatting by cell value:

With Range("A1").FormatConditions.Add(x1CellValue, x1lGreater, "=100")

With .Font
.Bold = True
.ColorIndex =
End With
End With
Operators:
Name
x|Between
xIEqual
x|Greater

x|GreaterEqual
xlLess
xlLessEqual
xINotBetween
xINotEqual

Description
Above average condition

Blanks condition
Cell value

Color scale
Databar

Errors condition
Expression

Icon set

No blanks condition
No errors condition
Text string

Time period

Top 10 values
Unique values

3

GoalKicker.com - Excel® VBA Notes for Professionals

36

(c) ketabton.com: The Digital Library

If Type is xIExpression, the Operator argument is ignored.

Formatting by text contains:
With Range("al:a10").FormatConditions.Add(x1TextString, TextOperator:=xlContains, String:="egg")

With .Font
.Bold = True
.ColorIndex = 3
End With
End With
Operators:
Name Description
xIBeginsWith Begins with a specified value.
xIContains Contains a specified value.

xIDoesNotContain Does not contain the specified value.
xIEndsWith Endswith the specified value
Formatting by time period

With Range("al1:a10").FormatConditions.Add(x1TimePeriod, DateOperator:=x1Today)
With .Font
.Bold = True
.ColorIndex = 3
End With
End With

Operators:
Name
xlYesterday

xITomorrow
xlLast7Days
xlLastWeek
xIThisWeek
xINextWeek
xlLastMonth
xIThisMonth
xINextMonth

Section 9.2: Remove conditional format

Remove all conditional format in range:
Range("A1:A10") .FormatConditions.Delete

Remove all conditional format in worksheet:

Cells.FormatConditions.Delete

Section 9.3: FormatConditions.AddUniqueValues

Highlighting Duplicate Values

With Range("E1:E100").FormatConditions.AddUniqueValues
.DupeUnique = x1Duplicate
With .Font
.Bold = True

GoalKicker.com - Excel® VBA Notes for Professionals 37

(c) ketabton.com: The Digital Library

.ColorIndex = 3
End With
End With

Highlighting Unique Values

With Range("E1:E100").FormatConditions.AddUniqueValues
With .Font
.Bold = True
.ColorIndex = 3
End With
End With

Section 9.4: FormatConditions.AddTop10

Highlighting Top 5 Values

With Range("E1:E100").FormatConditions.AddTop10
.TopBottom = x1Top10Top
.Rank = 5
.Percent = False
With .Font
.Bold = True
.ColorIndex = 3
End With
End With

Section 9.5: FormatConditions.AddAboveAverage

With Range("E1:E100").FormatConditions.AddAboveAverage
.AboveBelow = xlAboveAverage

With .Font
.Bold = True
.ColorIndex = 3
End With
End With
Operators:
Name Description
XIAboveAverage Above average
XIAboveStdDev Above standard deviation

XIBelowAverage
XIBelowStdDev

Below average
Below standard deviation

XIEqualAboveAverage Equal above average
XIEqualBelowAverage Equal below average

Section 9.6: FormatConditions.AddlconSetCondition

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

A
1 | 13
2 = 22
3 = 33
4 = 30
b = 23
L 40
7 |dn 50
8 | 4
9 = 20
10 | 13
11 | b
12 |dp 45
13 |2 30
14 |dp v
15 | 12

Range("al:a10").FormatConditions.AddIconSetCondition
With Selection.FormatConditions(1)

.ReverseOrder = False

.ShowIconOnly = False

.IconSet = ActiveWorkbook.IconSets(x13Arrows)
End With

With Selection.FormatConditions(1).IconCriteria(2)
.Type = x1ConditionValuePercent
.Value = 33
.Operator = 7

End With

With Selection.FormatConditions(1).IconCriteria(3)
.Type = x1lConditionValuePercent
.Value = 67
.Operator = 7

End With

IconSet:
Name
xI3Arrows

xI3ArrowsGray
xI3Flags
xI3Signs
xI3Stars
xI3Symbols
xI13Symbols2
xI3TrafficLights1
xI3TrafficLights2
xI3Triangles
X|4Arrows
xl4ArrowsGray
x|I4CRV
xl4RedToBlack
xl4TrafficLights

xI5Arrows

GoalKicker.com - Excel® VBA Notes for Professionals

39

(c) ketabton.com: The Digital Library

xI5ArrowsGray
x|5Boxes
xI5CRV
xI5Quarters

Directional

=2 =
A=W AAAV
RIS AIASDAV
I

Shapes

C® 0008

[WAY _ L Xof X
| JOROX

Indicators

Q08 v X

> PP

Ratings

* I v olll il o] uifl
@IOOO il uill il aif] il
BEEEE

More Rules...

Type:
Name
x|ConditionValuePercent

x|ConditionValueNumber
x|ConditionValuePercentile
xlConditionValueFormula

Operator:
Name Value
x|Greater 5

x|GreaterEqual 7

Value:

Returns or sets the threshold value for an icon in a conditional format.

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 10: Workbooks
Section 10.1: When To Use ActiveWorkbook and Thisworkbook

It's a VBA Best Practice to always specify which workbook your VBA code refers. If this specification is omitted, then
VBA assumes the code is directed at the currently active workbook (ActiveWorkbook).

1

--- the currently active workbook (and worksheet) is implied
Range("A1").value = 3.1415
Cells(1, 1).value = 3.1415

However, when several workbooks are open at the same time -- particularly and especially when VBA code is
running from an Excel Add-In -- references to the ActiveWorkbook may be confused or misdirected. For example, an
add-in with a UDF that checks the time of day and compares it to a value stored on one of the add-in's worksheets
(that are typically not readily visible to the user) will have to explicitly identify which workbook is being referenced.
In our example, our open (and active) workbook has a formula in cell A1 =EarlyOrLate() and does NOT have any
VBA written for that active workbook. In our add-in, we have the following User Defined Function (UDF):

Public Function EarlyOrLate() As String
If Hour(Now) > ThisWorkbook.Sheets("WatchTime").Range("A1") Then
EarlyOrLate = "It's Late!"
Else
EarlyOrLate = "It's Early!"
End If
End Function

The code for the UDF is written and stored in the installed Excel add-in. It uses data stored on a worksheet in the
add-in called "WatchTime". If the UDF had used ActiveWorkbook instead of ThisWorkbook, then it would never be
able to guarantee which workbook was intended.

Section 10.2: Changing The Default Number of Worksheets In
A New Workbook

The "factory default" number of worksheets created in a new Excel workbook is generally set to three. Your VBA
code can explicitly set the number of worksheets in a new workbook.

'--- save the current Excel global setting
With Application
Dim oldSheetsCount As Integer
oldSheetsCount = .SheetsInNewWorkbook
Dim myNewWB As Workbook
.SheetsInNewWorkbook = 1
Set myNewWB = .Workbooks.Add
'--- restore the previous setting
.SheetsInNewWorkbook = oldsheetcount
End With

Section 10.3: Application Workbooks

In many Excel applications, the VBA code takes actions directed at the workbook in which it's contained. You save
that workbook with a ".xIsm" extension and the VBA macros only focus on the worksheets and data within.
However, there are often times when you need to combine or merge data from other workbooks, or write some of
your data to a separate workbook. Opening, closing, saving, creating, and deleting other workbooks is a common
need for many VBA applications.

GoalKicker.com - Excel® VBA Notes for Professionals 41

(c) ketabton.com: The Digital Library

At any time in the VBA Editor, you can view and access any and all workbooks currently open by that instance of
Excel by using the Workbooks property of the Application object. The MSDN Documentation explains it with
references.

gection 10.4: Opening A (New) Workbook, Even If It's Already
pen

If you want to access a workbook that's already open, then getting the assignment from the Workbooks collection is
straightforward:

dim myWB as Workbook
Set myWB = Workbooks("UsuallyFullPathnameOfWorkbook.x1lsx")

If you want to create a new workbook, then use the Workbooks collection object to Add a new entry.

Dim myNewWB as Workbook
Set myNewWB = Workbooks.Add

There are times when you may not or (or care) if the workbook you need is open already or not, or possible does
not exist. The example function shows how to always return a valid workbook object.

Option Explicit
Function GetWorkbook(ByVal wbFilename As String) As Workbook
'--- returns a workbook object for the given filename, including checks
for when the workbook is already open, exists but not open, or
does not yet exist (and must be created)
*** wbFilename must be a fully specified pathname
Dim folderFile As String
Dim returnedWB As Workbook

1

1

'--- check if the file exists in the directory location
folderFile = File(wbFilename)
If folderFile = "" Then
'--- the workbook doesn't exist, so create it
Dim pos1 As Integer
Dim fileExt As String
Dim fileFormatNum As Long
'--- 1in order to save the workbook correctly, we need to infer which workbook
type the user intended from the file extension
pos1 = InStrRev(sFullName, ".", , vbTextCompare)
fileExt = Right(sFullName, Len(sFullName) - pos1)
Select Case fileExt
Case "xlsx"
fileFormatNum
Case "xlsm"
fileFormatNum = 52

1

51

Case "xls"
fileFormatNum = 56
Case "xlsb"
fileFormatNum = 50
Case Else
Err.Raise vbObjectError + 1000, "GetWorkbook function", _
"The file type you've requested (file extension) is not recognized. " & _
"Please use a known extension: xlsx, xlsm, xls, or xlsb."
End Select

Set returnedWB = Workbooks.Add
Application.DisplayAlerts = False
returnedWB.SaveAs filename:=wbFilename, FileFormat:=fileFormatNum

GoalKicker.com - Excel® VBA Notes for Professionals 42

(c) ketabton.com: The Digital Library

Application.DisplayAlerts = True
Set GetWorkbook = returnedWB

Else
'--- the workbook exists in the directory, so check to see if

' it's already open or not
On Error Resume Next
Set returnedWB = Workbooks(sFile)
If returnedWB Is Nothing Then
Set returnedWB = Workbooks.Open(sFullName)
End If
End If
End Function

Section 10.5: Saving A Workbook Without Asking The User

Often saving new data in an existing workbook using VBA will cause a pop-up question noting that the file already

exists.
To prevent this pop-up question, you have to suppress these types of alerts.

Application.DisplayAlerts = False 'disable user prompt to overwrite file

myWB.SaveAs FileName:="NewOrExistingFilename.x1lsx"
Application.DisplayAlerts = True 're-enable user prompt to overwrite file

GoalKicker.com - Excel® VBA Notes for Professionals

43

(c) ketabton.com: The Digital Library

Chapter 11: Working with Excel Tables in

VBA

This topic is about working with tables in VBA, and assumes knowledge of Excel Tables. In VBA, or rather the Excel
Object Model, tables are known as ListObjects. The most frequently used properties of a ListObject are ListRow(s),
ListColumn(s), DataBodyRange, Range and HeaderRowRange.

Section 11.1: Instantiating a ListObject

Dim lo

as ListObject

Dim MyRange as Range

Set lo

‘or

Set lo

‘or

Set lo

Sheet1.ListObjects(1)

Sheet1.ListObjects("Tablel")

MyRange.ListObject

Section 11.2: Working with ListRows / ListColumns

Dim lo
Dim 1r
Dim 1lc

Set 1r
Set 1r

as ListObject
as ListRow
as ListColumn

lo.ListRows.Add
lo.ListRows(5)

For Each 1r in lo.ListRows

1r.
1r.
Next

Set 1c
Set 1c
Set 1lc

Range.ClearContents
Range(1, lo.ListColumns("Some Column").Index).Value = 8

lo.ListColumns.Add
lo.ListColumns(4)
lo.ListColumns("Header 3")

For Each 1lc in lo.ListColumns

1c.
1c.
Next

Section 11.3: Converting an Excel Table to a normal range

Dim lo

Set lo

DataBodyRange.ClearContents 'DataBodyRange excludes the header row
Range(1,1).Value = "New Header Name" 'Range includes the header row

as ListObject

= Sheetl1.ListObjects("Tablel")

lo.Unlist

GoalKicker.com - Excel® VBA Notes for Professionals

44

(c) ketabton.com: The Digital Library

Chapter 12: Loop through all Sheets in
Active Workbook

Section 12.1: Retrieve all Worksheets Names in Active
Workbook

Option Explicit
Sub LoopAllSheets()

Dim sht As Excel.Worksheet

' declare an array of type String without committing to maximum number of members
Dim sht_Name() As String

Dim i As Integer

' get the number of worksheets in Active Workbook , and put it as the maximum number of members in
the array

ReDim sht_Name(1 To ActiveWorkbook.Worksheets.count)

i=1

' loop through all worksheets in Active Workbook

For Each sht In ActiveWorkbook.Worksheets
sht_Name(i) = sht.Name ' get the name of each worksheet and save it in the array
i=1i+1

Next sht

End Sub

Section 12.2: Loop Through all Sheets in all Files in a Folder

Sub Theloopofloops()

Dim wbk As Workbook
Dim Filename As String
Dim path As String

Dim rCell As Range

Dim rRng As Range

Dim wsO As Worksheet
Dim sheet As Worksheet

path = "pathtofile(s)" & "\"

Filename = Dir(path & "*.x1??")

Set wsO = ThisWorkbook.Sheets("Sheet1") 'included in case you need to differentiate_
between workbooks i.e currently opened workbook vs workbook containing code

Do While Len(Filename) > ©
DoEvents
Set wbk = Workbooks.Open(path & Filename, True, True)
For Each sheet In ActiveWorkbook.Worksheets 'this needs to be adjusted for specifiying
sheets. Repeat loop for each sheet so thats on a per sheet basis
Set rRng = sheet.Range("al1:a10080") 'OBV needs to be changed
For Each rCell In rRng.Cells
If rCell <> "" And rCell.Value <> vbNullString And rCell.Value <> 0 Then

'code that does stuff

GoalKicker.com - Excel® VBA Notes for Professionals 45

(c) ketabton.com: The Digital Library

End If
Next rCell
Next sheet
wbk.Close False
Filename = Dir
Loop
End Sub

GoalKicker.com - Excel® VBA Notes for Professionals

46

(c) ketabton.com: The Digital Library

Chapter 13: Use Worksheet object and not
Sheet object

Plenty of VBA users consider Worksheets and Sheets objects synonyms. They are not.

Sheets object consists of both Worksheets and Charts. Thus, if we have charts in our Excel Workbook, we should be

careful, not to use Sheets and Worksheets as synonyms.

Section 13.1: Print the name of the first object

4 4 v M | Chartl . Sheetl . Sheet2

Option Explicit

Sub CheckWorksheetsDiagram()
Debug.Print Worksheets(1).Name
Debug.Print Charts(1).Name
Debug.Print Sheets(1).Name

End Sub

The result:

Sheet1
Chart1
Chart1

GoalKicker.com - Excel® VBA Notes for Professionals

47

(c) ketabton.com: The Digital Library

Chapter 14: Methods for Finding the Last
Used Row or Column in a Worksheet

Section 14.1: Find the Last Non-Empty Cell in a Column

In this example, we will look at a method for returning the last non-empty row in a column for a data set.
This method will work regardless of empty regions within the data set.

However caution should be used if merged cells are involved, as the End method will be "stopped" against a merged
region, returning the first cell of the merged region.

In addition non-empty cells in hidden rows will not be taken into account.

Sub FindinglLastRow()
Dim wS As Worksheet, LastRow As Long
Set wS = ThisWorkbook.Worksheets("Sheet1")

'"Here we look in Column A
LastRow = wS.Cells(wS.Rows.Count, "A").End(x1Up).Row
Debug.Print LastRow

End Sub

To address the limitations indicated above, the line:
LastRow = wS.Cells(wS.Rows.Count, "A").End(x1Up).Row

may be replaced with:

1. for last used row of "Sheet1":

LastRow = wS.UsedRange.Row - 1 + wS.UsedRange.Rows.Count.

2. for last non-empty cell of Column "A" in "Sheet1":

Dim i As Long
For i = LastRow To 1 Step -1
If Not (IsEmpty(Cells(i, 1))) Then Exit For
Next i
LastRow = i

Section 14.2: Find the Last Non-Empty Row in Worksheet

Private Sub Get_Last_Used_Row_Index()
Dim wS As Worksheet

Set wS = ThisWorkbook.Sheets("Sheet1")
Debug.Print LastRow_1(wS)
Debug.Print LastRow_0(wS)

End Sub

You can choose between 2 options, regarding if you want to know if there is no data in the worksheet :

e NO: Use LastRow_1 : You can use it directly within wS.Cells(LastRow_1(wS), ...)
¢ YES : Use LastRow_0 : You need to test if the result you get from the function is 0 or not before using it

GoalKicker.com - Excel® VBA Notes for Professionals 48

(c) ketabton.com: The Digital Library

Public Function LastRow_1(wS As Worksheet) As Double
With wS
If Application.WorksheetFunction.CountA(.Cells) <> 0@ Then
LastRow_1 = .Cells.Find(What:="*", _

After:=.Range("A1")
Lookat:=x1Part, _
LookIn:=x1Formulas, _
SearchOrder :=x1ByRows, _
SearchDirection:=x1Previous,
MatchCase:=False) .Row

Else
LastRow_1 = 1
End If
End With
End Function

Public Function LastRow_0(wS As Worksheet) As Double

On Error Resume Next

LastRow_0 = wS.Cells.Find(What:="*", _
After:=ws.Range("A1")
Lookat:=x1Part, _
LookIn:=x1Formulas, _
SearchOrder :=x1ByRows, _
SearchDirection:=x1Previous,
MatchCase:=False) .Row

End Function

Section 14.3: Find the Last Non-Empty Column in Worksheet

Private Sub Get_Last_Used_Row_Index()
Dim wS As Worksheet

Set wS = ThisWorkbook.Sheets("Sheet1")
Debug.Print LastCol_1(wS)
Debug.Print LastCol_8(wS)

End Sub

You can choose between 2 options, regarding if you want to know if there is no data in the worksheet :

¢ NO: Use LastCol_1: You can use it directly within wS.Cells(...,LastCol_1(wS))
¢ YES : Use LastCol_0: You need to test if the result you get from the function is 0 or not before using it

Public Function LastCol_1(wS As Worksheet) As Double
With wS
If Application.WorksheetFunction.CountA(.Cells) <> 0 Then
LastCol_1 = .Cells.Find(What:="*", _

After:=.Range("A1")
Lookat:=x1Part, _
LookIn:=x1Formulas, _
SearchOrder :=x1ByColumns, _
SearchDirection:=x1Previous,
MatchCase:=False).Column

Else
LastCol_1 = 1
End If
End With
End Function

The Err object's properties are automatically reset to zero upon function exit.

GoalKicker.com - Excel® VBA Notes for Professionals

49

(c) ketabton.com: The Digital Library

Public Function LastCol_0(wS As Worksheet) As Double
On Error Resume Next
LastCol_0 = wS.Cells.Find(What:="*", _
After:=ws.Range("A1"), _
Lookat:=x1Part, _
LookIn:=x1Formulas, _
SearchOrder :=x1ByColumns, _
SearchDirection:=x1Previous,
MatchCase:=False).Column
End Function

Section 14.4: Find the Last Non-Empty Cell in a Row

In this example, we will look at a method for returning the last non-empty column in a row.

This method will work regardless of empty regions within the data set.

However caution should be used if merged cells are involved, as the End method will be "stopped" against a merged

region, returning the first cell of the merged region.
In addition non-empty cells in hidden columns will not be taken into account.

Sub FindinglLastCol()
Dim wS As Worksheet, LastCol As Long
Set wS = ThisWorkbook.Worksheets("Sheet1")

'"Here we look in Row 1
LastCol = wS.Cells(1, wS.Columns.Count).End(x1ToLeft).Column
Debug.Print LastCol

End Sub

Section 14.5: Get the row of the last cell in a range

'if only one area (not multiple areas):
With Range("A3:D20")

Debug.Print .Cells(.Cells.CountLarge).Row

Debug.Print .Item(.Cells.CountLarge).Row 'using .item is also possible
End With 'Debug prints: 26

'with multiple areas (also works if only one area):
Dim rngArea As Range, LastRow As Long
With Range("A3:D20, E5:I50, H20:R35")
For Each rngArea In .Areas
If rngArea(rngArea.Cells.CountLarge).Row > LastRow Then
LastRow = rngArea(rngArea.Cells.CountLarge).Row
End If
Next
Debug.Print LastRow 'Debug prints: 56
End With

Section 14.6: Find Last Row Using Named Range

In case you have a Named Range in your Sheet, and you want to dynamically get the last row of that Dynamic
Named Range. Also covers cases where the Named Range doesn't start from the first Row.

Sub FindinglLastRow()

GoalKicker.com - Excel® VBA Notes for Professionals

50

(c) ketabton.com: The Digital Library

Dim sht As Worksheet
Dim LastRow As Long
Dim FirstRow As Long

Set sht = ThisWorkbook.Worksheets("form")

'Using Named Range "MyNameRange"
FirstRow = sht.Range("MyNameRange").Row

' 1in case "MyNameRange" doesn't start at Row 1
LastRow = sht.Range("MyNameRange").Rows.count + FirstRow - 1

End Sub

Update:

A potential loophole was pointed out by @Jeeped for a a named range with non-contiguous rows as it generates
unexpected result. To addresses that issue, the code is revised as below.

Asumptions: targes sheet = form, named range = MyNameRange

Sub FindinglLastRow()
Dim rw As Range, rwMax As Long
For Each rw In Sheets("form").Range("MyNameRange") .Rows
If rw.Row > rwMax Then rwMax = rw.Row
Next
MsgBox "Last row of 'MyNameRange' under Sheets 'form': " & rwMax
End Sub

Section 14.7: Last cell in Range.CurrentRegion

Range.CurrentRegion is a rectangular range area surrounded by empty cells. Blank cells with formulas such as =""

or ' are not considered blank (even by the ISBLANK Excel function).

Dim rng As Range, lastCell As Range
Set rng = Range("C3").CurrentRegion ' or Set rng = Sheet1.UsedRange.CurrentRegion
Set lastCell = rng(rng.Rows.Count, rng.Columns.Count)

Section 14.8: Find the Last Non-Empty Cell in Worksheet -
Performance (Array)

¢ The first function, using an array, is much faster
e If called without the optional parameter, will default to .ThisWorkbook.ActiveSheet
e If the range is empty will returns Cell(1, 1) as default, instead of Nothing

Speed:

GetMaxCell (Array): Duration: 0.0000790063 seconds
GetMaxCell (Find): Duration: 0.0002903480 seconds

.Measured with MicroTimer

Public Function GetlLastCell(Optional ByVal ws As Worksheet = Nothing) As Range
Dim uRng As Range, uArr As Variant, r As Long, c As Long
Dim ubR As Long, ubC As Long, 1Row As Long

GoalKicker.com - Excel® VBA Notes for Professionals

51

(c) ketabton.com: The Digital Library

If ws Is Nothing Then Set ws = Application.ThisWorkbook.ActiveSheet

Set uRng = ws.UsedRange
uArr = uRng
If IsEmpty(uArr) Then
Set GetlLastCell = ws.Cells(1, 1): Exit Function
End If
If Not IsArray(uArr) Then

Set GetlLastCell = ws.Cells(uRng.Row, uRng.Column):

End If
ubR = UBound(uArr, 1): ubC = UBound(uArr, 2)

For r = ubR To 1 Step -1 -

For ¢ = ubC To 1 Step -1
If Not IsError(uArr(r, c)) Then
If Len(Trim$(uArr(r, c))) > © Then

1Row = r: Exit For
End If
End If
Next
If 1Row > 0 Then Exit For

Next
If 1Row = © Then 1Row = ubR

For ¢ = ubC To 1 Step -1 T

For r = 1Row To 1 Step -1
If Not IsError(uArr(r, c)) Then
If Len(Trim$(uArr(r, c))) > @ Then

Exit Function

last row

last col

Set GetlLastCell = ws.Cells(lRow + uRng.Row - 1, ¢ + uRng.Column - 1)

Exit Function
End If
End If
Next
Next
End Function

'Returns last cell (max row & max col) using Find
Public Function GetMaxCell2(Optional ByRef rng As Range =
Const NONEMPTY As String = "=*"

Dim 1Row As Range, 1Col As Range

Nothing) As Range 'Using Find

If rng Is Nothing Then Set rng = Application.ThisWorkbook.ActiveSheet.UsedRange

If WorksheetFunction.CountA(rng) = 0 Then
Set GetMaxCell2 = rng.Parent.Cells(1, 1)

SearchDirection:=x1Previous,

Else
With rng
Set 1Row = .Cells.Find(What:=NONEMPTY, LookIn:=x1lFormulas,
After:=.Cells(1, 1),
SearchDirection:=x1Previous,
SearchOrder :=x1ByRows)
If Not 1Row Is Nothing Then
Set 1Col = .Cells.Find(What:=NONEMPTY, LookIn:=xlFormulas,
After:=.Cells(1, 1), _
SearchOrder :=x1ByColumns)
Set GetMaxCell2 = .Parent.Cells(1lRow.Row, 1Col.Column)
End If
End With
End If

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

End Function

MicroTimer:

Private Declare PtrSafe Function getFrequency Lib "Kernel32" Alias "QueryPerformanceFrequency"
(cyFrequency As Currency) As Long

Private Declare PtrSafe Function getTickCount Lib "Kernel32" Alias "QueryPerformanceCounter"
(cyTickCount As Currency) As Long

Function MicroTimer() As Double
Dim cyTicks1 As Currency
Static cyFrequency As Currency

MicroTimer = 0
If cyFrequency = 0 Then getFrequency cyFrequency 'Get frequency
getTickCount cyTicks1 'Get ticks

If cyFrequency Then MicroTimer = cyTicks1 / cyFrequency 'Returns Seconds
End Function

GoalKicker.com - Excel® VBA Notes for Professionals

53

(c) ketabton.com: The Digital Library

Chapter 15: Creating a drop-down menu in
the Active Worksheet with a Combo Box

This is a simple example demonstrating how to create a drop down menu in the Active Sheet of your workbook by
inserting a Combo Box Activex object in the sheet. You'll be able to insert one of five Jimi Hendrix songs in any
activated cell of the sheet and be able to clear it, accordingly.

Section 15.1: Example 2: Options Not Included

This example is used in specifying options that might not be included in a database of available housing and its
attendant amenities.

It builds on the previous example, with some differences:

1. Two procedures are no longer necessary for a single combo box, done by combining the code into a single
procedure.

2. The use of the LinkedCell property to allow for the correct input of the user selection every time

3. The inclusion of a backup feature for ensuring the active cell is in the correct column and an error prevention
code, based on previous experience, where numeric values would formatted as strings when populated to
the active cell.

Private Sub cboNotIncl_Change()

Dim n As Long
Dim notincl_array(1 To 9) As String

n = myTarget.Row
If n >= 3 And n < 10000 Then
If myTarget.Address = "G" & n Then

'set up the array elements for the not included services
notincl_array(1) = "Central Air"

notincl_array(2) = "Hot Water"

notincl_array(3) = "Heater Rental"

notincl_array(4) = "Utilities"

notincl_array(5) = "Parking"

notincl_array(6) = "Internet"

notincl_array(7) = "Hydro"

notincl_array(8) = "Hydro/Hot Water/Heater Rental"
notincl_array(9) = "Hydro and Utilities"

cboNotIncl.List = notincl_array()
Else
Exit Sub
End If
With cboNotIncl
'make sure the combo box moves to the target cell

.Left = myTarget.Left
.Top = myTarget.Top

GoalKicker.com - Excel® VBA Notes for Professionals 54

(c) ketabton.com: The Digital Library

'adjust the size of the cell to fit the combo box
myTarget.ColumnWidth = .Width * 0.18

'make it look nice by editing some of the font attributes
.Font.Size = 11
.Font.Bold = False

'populate the cell with the user choice, with a backup guarantee that it's in column G

"GS" & n Then

If myTarget.Address
.LinkedCell = myTarget.Address

'prevent an error where a numerical value is formatted as text
myTarget.EntireColumn.TextToColumns

End If
End With
End If 'ensure that the active cell is only between rows 3 and 1000

End Sub
The above macro is initiated every time a cell is activated with the SelectionChange event in the worksheet module:

Public myTarget As Range
Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Set myTarget = Target

'switch for Not Included
If Target.Column = 7 And Target.Cells.Count = 1 Then

Application.Run "Modulel.cboNotIncl_Change"
End If

End Sub

Section 15.2; Jimi Hendrix Menu

In general, the code is placed in the module of a sheet.

This is the Worksheet_SelectionChange event, which fires each time a different cell is selected in the active sheet.
You can select "Worksheet" from the first drop-down menu above the code window, and "Selection_Change" from
the drop down menu next to it. In this case, every time you activate a cell, the code is redirected to the Combo Box's
code.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
ComboBox1_Change

End Sub

Here, the routine dedicated to the ComboBox is coded to the Change event by default. In it, there is a fixed array,
populated with all the options. Not the CLEAR option in the last position, which will be used to clear the contents of
a cell. The array then is handed to to the Combo Box and passed to the routine that does the work.

GoalKicker.com - Excel® VBA Notes for Professionals 55

(c) ketabton.com: The Digital Library

Private Sub ComboBox1_Change()

Dim myarray(® To 5)
myarray(0) = "Hey Joe"
myarray(1) = "Little Wing"
myarray(2) = "Voodoo Child"
myarray(3) = "Purple Haze"
myarray(4) = "The Wind Cries Mary"
myarray(5) = "CLEAR"

With ComboBox1

.List = myarray()
End With
FillACell myarray()

End Sub

The array is passed to the routine that fills the cells with the song name or null value to empty them. First, an
integer variable is given the value of the position of the choice that the user makes. Then, the Combo Box is moved
to the TOP LEFT corner of the cell the user activates and its dimensions adjusted to make the experience more fluid.
The active cell is then assigned the value in the position in the integer variable, which tracks the user choice. In case
the user selects CLEAR from the options, the cell is emptied.

The entire routine repeats for each selected cell.

Sub FillACell(MyArray As Variant)
Dim n As Integer
n = ComboBox1.ListIndex
ComboBox1.Left = ActiveCell.Left
ComboBox1.Top = ActiveCell.Top
Columns(ActiveCell.Column).ColumnWidth = ComboBox1.Width * ©.18
ActiveCell = MyArray(n)
If ComboBox1 = "CLEAR" Then
Range(ActiveCell.Address) = ""
End If

End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 56

(c) ketabton.com: The Digital Library

Chapter 16: File System Object

Section 16.1: File, folder, drive exists

File exists:

Sub FileExists()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
If fso.FileExists("D:\test.txt") = True Then
MsgBox "The file is exists."
Else
MsgBox "The file isn't exists."
End If
End Sub

Folder exists:

Sub FolderExists()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
If fso.FolderExists("D:\testFolder") = True Then
MsgBox "The folder is exists."”
Else
MsgBox "The folder isn't exists."
End If
End Sub

Drive exists:

Sub DriveExists()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
If fso.DriveExists("D:\") = True Then
MsgBox "The drive is exists."
Else
MsgBox "The drive isn't exists."
End If
End Sub

Section 16.2: Basic file operations

Copy:
Sub CopyFile()

Dim fso as Scripting.FileSystemObject

Set fso = CreateObject("Scripting.FileSystemObject")

fso.CopyFile "c:\Documents and Settings\Makro.txt", "c:\Documents and Settings\Macros\"
End Sub

Move:

Sub MoveFile()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
fso.MoveFile "c:*.txt", "c:\Documents and Settings\"
End Sub

Delete:

Sub DeleteFile()
Dim fso
Set fso = CreateObject("Scripting.FileSystemObject")
fso.DeleteFile "c:\Documents and Settings\Macros\Makro.txt"

GoalKicker.com - Excel® VBA Notes for Professionals

57

(c) ketabton.com: The Digital Library

End Sub

Section 16.3: Basic folder operations

Create:

Sub CreateFolder()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
fso.CreateFolder "c:\Documents and Settings\NewFolder"
End Sub

Copy:
Sub CopyFolder()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
fso.CopyFolder "C:\Documents and Settings\NewFolder", "C:\"
End Sub

Move:

Sub MoveFolder()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
fso.MoveFolder "C:\Documents and Settings\NewFolder", "C:\"
End Sub

Delete:

Sub DeleteFolder()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
fso.DeleteFolder "C:\Documents and Settings\NewFolder"
End Sub

Section 16.4: Other operations

Get file name:

Sub GetFileName()

Dim fso as Scripting.FileSystemObject

Set fso = CreateObject("Scripting.FileSystemObject")

MsgBox fso.GetFileName('"c:\Documents and Settings\Makro.txt")
End Sub

Result: Makro.txt

Get base name:

Sub GetBaseName()

Dim fso as Scripting.FileSystemObject

Set fso = CreateObject("Scripting.FileSystemObject")

MsgBox fso.GetBaseName("c:\Documents and Settings\Makro.txt")
End Sub

Result: Makro

Get extension name:

Sub GetExtensionName()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")
MsgBox fso.GetExtensionName("c:\Documents and Settings\Makro.txt")

GoalKicker.com - Excel® VBA Notes for Professionals

58

(c) ketabton.com: The Digital Library

End Sub

Result: txt

Get drive name:

Sub GetDriveName()
Dim fso as Scripting.FileSystemObject
Set fso = CreateObject("Scripting.FileSystemObject")

MsgBox fso.GetDriveName("c:\Documents and Settings\Makro.txt")
End Sub

Result: c:

GoalKicker.com - Excel® VBA Notes for Professionals

59

(c) ketabton.com: The Digital Library

Chapter 17: Pivot Tables
Section 17.1: Adding Fields to a Pivot Table

Two important things to note when adding fields to a Pivot Table are Orientation and Position. Sometimes a
developer may assume where a field is placed, so it's always clearer to explicitly define these parameters. These
actions only affect the given Pivot Table, not the Pivot Cache.

Dim thisPivot As PivotTable
Dim ptSheet As Worksheet
Dim ptField As PivotField

Set ptSheet = ThisWorkbook.Sheets("SheetNameWithPivotTable")
Set thisPivot = ptSheet.PivotTables(1)

With thisPivot
Set ptField = .PivotFields("Gender")
ptField.Orientation = x1lRowField
ptField.Position = 1
Set ptField = .PivotFields("LastName")
ptField.Orientation = x1lRowField
ptField.Position = 2
Set ptField = .PivotFields("ShirtSize")
ptField.Orientation = x1ColumnField
ptField.Position = 1
Set ptField = .AddDataField(.PivotFields("Cost"), "Sum of Cost", x1Sum)
.InGridDropZones = True
.RowAxislLayout xlTabularRow

End With

Section 17.2: Creating a Pivot Table

One of the most powerful capabilities in Excel is the use of Pivot Tables to sort and analyze data. Using VBA to
create and manipulate the Pivots is easier if you understand the relationship of Pivot Tables to Pivot Caches and
how to reference and use the different parts of the Tables.

At its most basic, your source data is a Range area of data on a Worksheet. This data area MUST identify the data
columns with a header row as the first row in the range. Once the Pivot Table is created, the user may view and
change the source data at any time. However, changes may not be automatically or immediately reflected in the
Pivot Table itself because there is an intermediate data storage structure called the Pivot Cache that is directly
connected to the Pivot Table itself.

GoalKicker.com - Excel® VBA Notes for Professionals

60

(c) ketabton.com: The Digital Library

Creates

Pivot Cache W

Saurce Data

K5
X5
XL
XL
5

5
2XL
L

M

XL
L

A B G
2 |Mildred Ferguson Female
3 Phiip Cole Male
4 | Johniny Martin Male
5 |Sean Holmes Male
6 |Steve Dunn Kale
7 Ronald Schrmidt Male
8 Richard Winght Kale
8 Diane Roberls Female
10 | Joshua Weaver Male
11 Teresa Schmidt Female
12 |Lois Burke Femake
13 |Adan Mecdonald Make
14 Randy Edwards Male
16 Raymond Flores Make

=

§7.56
$9.83
559
5312
5794
5200
5624
5983
5072
5761
824
TN
$8.39
$8.53

=R -~ R e RS R FE L R

Pivot Table

A B
LastMName { Ay =

Sum of Cost Column Lat -
Row Labels - Female
2XL

3N

L 5 9.83
LY 3 [F:1]
5 § 824
XL

X5 & 7.56

Grand Total § 33.24

(Internal Excel data store)

Pivot Cache

Male Grand Total
§ 2054 % 2054
g B53 % 853
5 083
§ BO3 % 1564
g 994 % 18.18
§ 312 % 342
5 08l 5 1738
5 5899 § 93.23
Linked to
Pivot Table

If multiple Pivot Tables are needed, based on the same source data, the Pivot Cache may be re-used as the internal
data store for each of the Pivot Tables. This is a good practice because it saves memory and reduces the size of the

Excel file for storage.

GoalKicker.com - Excel® VBA Notes for Professionals

61

(c) ketabton.com: The Digital Library

Source Data

A B C] =
! FirstMame LastMame Gender ShirtSize Cost
2 Mildred Ferguson Femabe X5 §7.56
3 | Philip Cole Male XS £9.83
4 Jokniny Martin Make 2XL 5591
5 | Sean Holmes Male XL 5312
6 | Steve Dunn Make 5 5784
T Ronald Schmidi Male 5 52.00
8 Richard Wiright Make 2XL 5824
4 Diane Roberls Female L 5983
10 | Joshua Weaver Make M 5072
11 Teresa Schmidi Female M 5761
12 Lois Burke Female 5 $8.24
13 Adan Meodonakd Make M 5T
14 Randy Edwards Male 2XL $8139
15 Raymond Flores Male XL $8.53

Creates
Pivot Cache

As an example, to create a Pivot Table based on the source data shown in the Figures above:

Sub test()

Dim pt As PivotTable

oD 0 U s b -

11
12

A

LastName (Al

Pivot Table

B

Sum of Cost Column Lat -
Row Labels - Female

XL
aXL

Pivot Cache

(Internal Excel data store)

L= - Rl =S R P R R

W

c

Male
§ 2054
5 g.53
983
781 § 8.03
824 5 0494
5 3.12
TEE 8 983
33.24 § 5999
Linked to

A B
LastMame)] -
Sum of Cost Column Lal -
Row Labels - Female
XL
L
L : 983
M -] 781
5 5 824
AL
xS 5 T.568
Grand Total % 33.24

Set pt = CreatePivotTable(ThisWorkbook.Sheets("Sheet1").Range("A1:E15"))

End Sub

Function CreatePivotTable(ByRef srcData As Range) As PivotTable
'--- creates a Pivot Table from the given source data and

1

1

Dim thisPivot As PivotTable
Dim dataSheet As Worksheet
Dim ptSheet As Worksheet
Dim ptCache As PivotCache

'--- the Pivot Cache must be created first...

Set ptCache = ThisWorkbook.PivotCaches.Create(SourceType:=x1Database,

1

assumes that the first row contains valid header data
for the columns

SourceData:=srcData)

Set ptSheet = ThisWorkbook.Sheets.Add
= ptCache.CreatePivotTable(TableDestination:=ptSheet.Range("A3"))

Set thisPivot

Set CreatePivotTable

End Function

thisPivot

--- ... then use the Pivot Cache to create the Table

Pivot Tables

c

20.54
853

803
.94
a1z
883
§9.99

Grand Total
20.54
853
9.83
1564
18.18
312
17,38
93.23

L BET R R R R T

Grand Total
20.54
B53
983
1564
1818
312
17.38

o 0 U B 0D WA O S

GoalKicker.com - Excel® VBA Notes for Professionals

62

(c) ketabton.com: The Digital Library

References MSDN Pivot Table Object

Section 17.3: Pivot Table Ranges

These excellent reference sources provide descriptions and illustrations of the various ranges in Pivot Tables.

References

e Referencing Pivot Table Ranges in VBA - from Jon Peltier's Tech Blog
e Referencing an Excel Pivot Table Range using VBA - from globaliconnect Excel VBA

Section 17.4: Formatting the Pivot Table Data

This example changes/sets several formats in the data range area (DataBodyRange) of the given Pivot Table. All
formattable parameters in a standard Range are available. Formatting the data only affects the Pivot Table itself, not
the Pivot Cache.

NOTE: the property is named TableStyle2 because the TableStyle property is not a member of the PivotTable's
object properties.

Dim thisPivot As PivotTable
Dim ptSheet As Worksheet
Dim ptField As PivotField

Set ptSheet = ThisWorkbook.Sheets("SheetNameWithPivotTable")
Set thisPivot = ptSheet.PivotTables(1)

With thisPivot
.DataBodyRange .NumberFormat = "_(S* #,##0.00_);_(S* (#,##0.00);_($* "-"?22_);_(@_)"
.DataBodyRange.HorizontalAlignment = x1Right
.ColumnRange.HorizontalAlignment = x1Center
.TableStyle2 = "PivotStyleMedium9"
End With

GoalKicker.com - Excel® VBA Notes for Professionals 63

(c) ketabton.com: The Digital Library

Chapter 18: Binding

Section 18.1: Early Binding vs Late Binding

Binding is the process of assigning an object to an identifier or variable name. Early binding (also known as static
binding) is when an object declared in Excel is of a specific object type, such as a Worksheet or Workbook. Late
binding occurs when general object associations are made, such as the Object and Variant declaration types.

Early binding of references some advantages over late binding.

¢ Early binding is operationally faster than late binding during run-time. Creating the object with late binding in
run-time takes time that early binding accomplishes when the VBA project is initially loaded.

¢ Early binding offers additional functionality through the identification of Key/Item pairs by their ordinal
position.

¢ Depending on code structure, early binding may offer an additional level of type checking and reduce errors.

e The VBE's capitalization correction when typing a bound object's properties and methods is active with early
binding but unavailable with late binding.

Note: You must add the appropriate reference to the VBA project through the VBE's Tools - References
command in order to implement early binding.

This library reference is then carried with the project; it does not have to be re-referenced when the VBA
project is distributed and run on another computer.

"Looping through a dictionary that was created with late binding’
Sub iterateDictionarylLate()
Dim k As Variant, dict As Object

Set dict = CreateObject("Scripting.Dictionary")
dict.comparemode = vbTextCompare 'non-case sensitive compare model

'populate the dictionary

dict.Add Key:="Red", Item:="Balloon"
dict.Add Key:="Green", Item:="Balloon"
dict.Add Key:="Blue", Item:="Balloon"

'iterate through the keys
For Each k In dict.Keys

Debug.Print k & " - " & dict.Item(k)
Next k
dict.Remove "blue" "remove individual key/item pair by key
dict.RemoveAll 'remove all remaining key/item pairs

End Sub

'"Looping through a dictionary that was created with early binding'
Sub iterateDictionaryEarly()

Dim d As Long, k As Variant

Dim dict As New Scripting.Dictionary

dict.CompareMode = vbTextCompare 'non-case sensitive compare model
'populate the dictionary

dict.Add Key:="Red", Item:="Balloon"
dict.Add Key:="Green", Item:="Balloon"

GoalKicker.com - Excel® VBA Notes for Professionals 64

(c) ketabton.com: The Digital Library

dict.Add Key:="Blue", Item:="Balloon"
dict.Add Key:="White", Item:="Balloon"

'iterate through the keys
For Each k In dict.Keys

Debug.Print k & " - " & dict.Item(k)
Next k

'iterate through the keys by the count
For d = 0 To dict.Count - 1

Debug.Print dict.Keys(d) & " - " & dict.Items(d)
Next d

'iterate through the keys by the boundaries of the keys collection
For d = LBound(dict.Keys) To UBound(dict.Keys)

Debug.Print dict.Keys(d) & " - " & dict.Items(d)
Next d
dict.Remove "blue" "remove individual key/item pair by key
dict.Remove dict.Keys(0) ‘remove first key/item by index position
dict.Remove dict.Keys(UBound(dict.Keys)) "remove last key/item by index position
dict.RemoveAll 'remove all remaining key/item pairs

End Sub

However, if you are using early binding and the document is run on a system that lacks one of the libraries you
have referenced, you will encounter problems. Not only will the routines that utilize the missing library not function
properly, but the behavior of all code within the document will become erratic. It is likely that none of the
document's code will function on that computer.

This is where late binding is advantageous. When using late binding you do not have to add the reference in the
Tools>References menu. On machines that have the appropriate library, the code will still work. On machines
without that library, the commands that reference the library will not work, but all the other code in your document
will continue to function.

If you are not thoroughly familiar with the library you are referencing, it may be useful to use early binding while
writing the code, then switch to late binding before deployment. That way you can take advantage of the VBE's
IntelliSense and Object Browser during development.

GoalKicker.com - Excel® VBA Notes for Professionals 65

(c) ketabton.com: The Digital Library

Chapter 19: autofilter ; Uses and best
practices

Autofilter ultimate goal is to provide in the quickest way possible data mining from hundreds or thousands of rows
data in order to get the attention in the items we want to focus on. It can receive parameters such as
"text/values/colors" and they can be stacked among columns. You may connect up to 2 criteria per column based in
logical connectors and sets of rules. Remark: Autofilter works by filtering rows, there is no Autofilter to filter
columns (at least not natively).

Section 19.1: Smartfilter!

Problem situation

Warehouse administrator has a sheet ("Record") where every logistics movement performed by the facility is
stored, he may filter as needed, although, this is very time consuming and he would like to improve the process in
order to calculate inquiries faster, for example: How many "pulp" do we have now (in all racks)? How many pulp do
we have now (in rack #5)? Filters are a great tool but, they are somewhat limited to answer these kind of question in
matter of seconds.

A B C D E F G H I J
1 | Control Num| | DESCRIP’I’IOI.‘I’| QUANTT + | LOCATI + | DATE [~ | ACTIOf = | | 1. How many “Pulp” do we have now? (Total) | 1. How many “Pulp” do we have now? (In Rach
2 9005124 Pulp 42 Rack #5 4-0ct-16 In
15 9005137 Pulp 67 Rack#1 21-Nov-15 Out
16 9005138 Pulp 92 Rack#3 19-Jun-15 Out
42 9005164 Pulp 48 Rack #5 1-Dec-15 In
45 9005167 Pulp 53 Rack #5 17-Mar-15 Qut
50 9005172 Pulp 13 Rack #3 3-Dec-15 In
55 9005177 Pulp 30 Rack#2 15-Sep-16 In
55 9005178 Pulp 90 Rack#3 = 27-Jan-16 Out
68 5005190 Pulp 67 Rack#7 25-Aug-16 Out
70 9005192 Pulp 62 Rack#6 7-Nov-15 Out
71 9005193 Pulp 46 Rack #7 1-Dec-15 Out
72 9005194 Pulp 6 Rack#2 18-Dec-16 Out
83| 9005205 Pulp 86 Rack#6 30-Mar-16 Out |
L2 9005224 Pulp 78 Rack #3 7-5ep-16 Out
09| 9005231 Pulp 19 Rack#1 21-May-15 In
115/ 9005237 Pulp 33 Rack#6 14-Jan-15 Out
21| 9005243 Pulp 46 Rack#1 25-Sep-15 Out
Lz4| 9005246 Pulp 48 Rack #1 3-Jan-15 In
25| 9005247 Pulp 39 Rack#3 8-May-16 Out
L42 9005264 Pulp 63 Rack #1 15-Nov-15 In
L4& 9005268 Pulp 50 Rack #2 30-Nov-16 In
54| 9005276 Pulp 11 Rack #4 8-Dec-15 In
56/ 9005278 Pulp 40 Rack #1 5-Jun-16 In
169) 9005291 Pulp 84 Rack#4 21-Sep-16 Out
74| 9005296 Pulp 31 Rack#1 3-May-16 In
82| 9005304 Pulp 61 Rack #7 9-Apr-16 Out
190/ 9005312 Pulp 57 Rack #1 2-Jul-15 Out
a2 9005314 Pulp 56 Rack #2 12-Feb-15 In
200 9005322 Pulp 43 Rack #7 27-5ep-16 Out
02| 9005324 Pulp 97 Rack#1 16-Apr-16 In
205/ 9005327 Pulp 80 Rack#6 8-Nov-16 In
14| 9005336 Pulp 82 Rack #5 27-Jul-15 In
215/ 9005337 Pulp 27 Rack#4 17-Sep-16 In
218/ 9005340 Pulp 51 Rack#3 16-Nov-15 Out

Record ()]

Macro solution:

The coder knows that autofilters are the best, fast and most reliable solution in these kind of scenarios since the
data exists already in the worksheet and the input for them can be obtained easily -in this case, by user input-.
The approach used is to create a sheet called "SmartFilter" where administrator can easily filter multiple data as
needed and calculation will be performed instantly as well.

He uses 2 modules and the Worksheet_Change event for this matter

GoalKicker.com - Excel® VBA Notes for Professionals 66

(c) ketabton.com: The Digital Library

Code For SmartFilter Worksheet:

Private Sub Worksheet_Change(ByVal Target As Range)
Dim ItemInRange As Range
Const CellsFilters As String = "C2,E2,G2"
Call ExcelBusy
For Each ItemInRange In Target
If Not Intersect(ItemInRange, Range(CellsFilters)) Is Nothing Then Call Inventory_Filter
Next ItemInRange
Call ExcelNormal
End Sub

Code for module 1, called "General_Functions"

Sub ExcelNormal()
With Excel.Application
.EnableEvents = True
.Cursor = x1Default
.ScreenUpdating = True
.DisplayAlerts = True
.StatusBar = False
.CopyObjectsWithCells = True
End With
End Sub
Sub ExcelBusy()
With Excel.Application
.EnableEvents = False
.Cursor = xlWait
.ScreenUpdating = False
.DisplayAlerts = False
.StatusBar = False
.CopyObjectsWithCells = True
End With
End Sub
Sub Select_Sheet(NameSheet As String, Optional VerifyExistanceOnly As Boolean)
On Error GoTo Err@1Select_Sheet
Sheets(NameSheet) .Visible = True
If VerifyExistanceOnly = False Then ' 1. If VerifyExistanceOnly = False
Sheets(NameSheet) .Select
Sheets(NameSheet) .AutoFilterMode = False
Sheets(NameSheet) .Cells.EntireRow.Hidden = False
Sheets(NameSheet) .Cells.EntireColumn.Hidden = False
End If ' 1. If VerifyExistanceOnly = False
If 1 = 2 Then '99. If error
Err@1Select_Sheet:
MsgBox "Err@1Select_Sheet: Sheet " & NameSheet & " doesn't exist!", vbCritical: Call
ExcelNormal: On Error GoTo -1: End
End If '99. If error
End Sub
Function General_Functions_Find_Title(InSheet As String, TitleToFind As String, Optional InRange As
Range, Optional IsNeededToExist As Boolean, Optional IsWhole As Boolean) As Range
Dim DummyRange As Range
On Error GoTo Err@1General_Functions_Find_Title
If InRange Is Nothing Then ' 7. If InRange Is Nothing
Set DummyRange = IIf(IsWhole = True, Sheets(InSheet).Cells.Find(TitleToFind, LookAt:=x1Whole),
Sheets(InSheet).Cells.Find(TitleToFind, LookAt:=x1Part))
Else ' 1. If InRange Is Nothing
Set DummyRange = IIf(IsWhole = True, Sheets(InSheet).Range(InRange.Address).Find(TitleToFind,
LookAt :=x1Whole), Sheets(InSheet).Range(InRange.Address).Find(TitleToFind, LookAt:=x1Part))
End If ' 1. If InRange Is Nothing
Set General_Functions_Find_Title = DummyRange

GoalKicker.com - Excel® VBA Notes for Professionals 67

(c) ketabton.com: The Digital Library

If 1 = 2 Or DummyRange Is Nothing Then '99. If error
Err@1General_Functions_Find_Title:

If IsNeededToExist = True Then MsgBox "Err@1General_Functions_Find_Title: Ttile '" &
TitleToFind & "' was not found in sheet '" & InSheet & "'", vbCritical: Call ExcelNormal: On Error
GoTo -1: End

End If '99. If error
End Function

Code for module 2, called "Inventory_Handling"

Const TitleDesc As String = "DESCRIPTION"
Const TitlelLocation As String = "LOCATION"
Const TitleActn As String = "ACTION"
Const TitleQty As String = "QUANTITY"
Const SheetRecords As String = "Record"”
Const SheetSmartFilter As String = "SmartFilter"
Const RowFilter As Long = 2
Const ColDataToPaste As Long 2
Const RowDataToPaste As Long = 7
Const RangeInResult As String = "K1"
Const RangeOutResult As String "K2"
Sub Inventory_Filter()
Dim ColDesc As Long: ColDesc = General_Functions_Find_Title(SheetSmartFilter, TitleDesc,
IsNeededToExist:=True, IsWhole:=True).Column
Dim ColLocation As Long: ColLocation = General_Functions_Find_Title(SheetSmartFilter,
TitleLocation, IsNeededToExist:=True, IsWhole:=True).Column
Dim ColActn As Long: ColActn = General_Functions_Find_Title(SheetSmartFilter, TitleActn,
IsNeededToExist:=True, IsWhole:=True).Column
Dim ColQty As Long: ColQty = General_Functions_Find_Title(SheetSmartFilter, TitleQty,
IsNeededToExist:=True, IsWhole:=True).Column
Dim CounterQty As Long
Dim TotalQty As Long
Dim TotalIn As Long
Dim TotalOut As Long
Dim RangeFiltered As Range
Call Select_Sheet(SheetSmartFilter)
If Cells(Rows.Count, ColDataToPaste).End(x1lUp).Row > RowDataToPaste - 1 Then
Rows (RowDataToPaste & ":" & Cells(Rows.Count, "B").End(x1lUp).Row).Delete
Sheets(SheetRecords) .AutoFilterMode = False
If Cells(RowFilter, ColDesc).Value <> "" Or Cells(RowFilter, ColLocation).Value <> "" Or
Cells(RowFilter, ColActn).Value <> "" Then ' 1. If Cells(RowFilter, ColDesc).Value <> "" Or
Cells(RowFilter, ColLocation).Value <> "" Or Cells(RowFilter, ColActn).Value <> ""
With Sheets(SheetRecords).UsedRange
If Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value <> "" Then .AutoFilter
Field:=General_Functions_Find_Title(SheetRecords, TitleDesc, IsNeededToExist:=True,
IsWhole:=True).Column, Criterial:=Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value
If Sheets(SheetSmartFilter).Cells(RowFilter, ColLocation).Value <> "" Then .AutoFilter
Field:=General_Functions_Find_Title(SheetRecords, TitleLocation, IsNeededToExist:=True,
IsWhole:=True).Column, Criterial:=Sheets(SheetSmartFilter).Cells(RowFilter, CollLocation).Value
If Sheets(SheetSmartFilter).Cells(RowFilter, ColActn).Value <> "" Then .AutoFilter
Field:=General_Functions_Find_Title(SheetRecords, TitleActn, IsNeededToExist:=True,
IsWhole:=True).Column, Criterial:=Sheets(SheetSmartFilter).Cells(RowFilter, ColActn).Value
'"If we don't use a filter we would need to use a cycle For/to or For/Each Cell in range
'to determine whether or not the row meets the criteria that we are looking and then
'save it on an array, collection, dictionary, etc
'"IG: For CounterRow = 2 To TotalRows
'"If Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value <> "" and
Sheets(SheetRecords).cells(CounterRow, ColDescInRecords).Value=
Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value then
"Redim Preserve MyUnecessaryArray(UnecessaryNumber) ''Save to array:
(UnecessaryNumber)=MyUnecessaryArray. Or in a dictionary, etc. At the end, we would transpose this

GoalKicker.com - Excel® VBA Notes for Professionals 68

(c) ketabton.com: The Digital Library

values into the sheet, at the end

'both are the same, but, just try to see the time invested on each logic.

If .Cells(1, 1).End(x1Down).Value <> "" Then Set RangeFiltered = .Rows("2:" &
Sheets(SheetRecords).Cells(Rows.Count, "A").End(x1lUp).Row).SpecialCells(x1CellTypeVisible)

'"If it is not <>"" means that there was not filtered data!

If RangeFiltered Is Nothing Then MsgBox "Err@1Inventory_Filter: No data was found with the
given criteria!", vbCritical: Call ExcelNormal: End

RangeFiltered.Copy Destination:=Cells(RowDataToPaste, ColDataToPaste)

TotalQty = Cells(Rows.Count, ColQty).End(x1lUp).Row

For CounterQty = RowDataToPaste + 1 To TotalQty

If Cells(CounterQty, ColActn).Value = "In" Then ' 2. If Cells(CounterQty, ColActn).Value = "In"

TotalIn = Cells(CounterQty, ColQty).Value + Totalln

ElseIf Cells(CounterQty, ColActn).Value = "Out" Then ' 2. If Cells(CounterQty, ColActn).Value =
"In"

TotalOut = Cells(CounterQty, ColQty).Value + TotalOut

End If ' 2. If Cells(CounterQty, ColActn).Value = "In"

Next CounterQty

Range(RangeInResult).Value = Totalln

Range(RangeOutResult).Value = -(TotalOut)

End With

End If ' 1. If Cells(RowFilter, ColDesc).Value <> "" Or Cells(RowFilter, CollLocation).Value <>
"" Or Cells(RowFilter, ColActn).Value <> ""
End Sub

Testing and results:
:
A B C D E F G H 1 J K L M N o P Q R s T u v w X ¥ z AL AB
912 9013034 Batch weight 21 Rack #1 9-Jun-16 Out
913 9013035 Pectin 72 Rack #7 22-Jun-16 In
914 9013036 Sugar 28 Rack #1 5-Aug-15 In
915 9013037 Solids content 51 Rack #7 11-Sep-16 In
916 9013038 Pulp 45 Rack #2 9-Apr-16 Out
917| 9013039 Batch weight 19 Rack #4 6-Apr-15 Out
918 9013040 Citric Acid 98 Rack #4 17-Jun-16 Out
919 9013041 Citric Acid 97 Rack #1 29-Feb-16 In
920 9013042 Pulp 57 Rack#5 25-Nov-16 Out
921 9013043 Citric Acid 42 Rack #2 27-Feb-16 In
922| 9013044 Batch weight 54 Rack #1 16-Sep-15 Out
923 9013045 Solids content 12 Rack #4 13-Jul-15/In
924 9013046 Pulp 79 Rack #4 13-Jul-15 Out
925 9013047 Citric Acid 36 Rack#4 15-Nov-16 Out
926 9013048 Sugar 35 Rack#3 5-Feb-16 Out
927 9013049 Pulp 63 Rack #6 16-Dec-16 Out
928 9013050 Solids content 48 Rack #4 1-Mar-15 In
929 9013051 Pulp 39 Rack#4 31-May-16 Out
930 9013052 Pulp 47 Rack #6 26-Feb-16 In
931 9012053 Sugar 6 Rack #6 3-Mar-16 Out
932 9013054 Pulp 53 Rack #2 11-Sep-15 Out
933 9013055 Solids content 87 Rack #4 19-Jan-15 Out
934 9013056 Sugar f‘} 48 Rack #7 23-Nov-16 In
935 9013057 Solids content 62 Rack#6 15-May-16 Out
936 9013058 Batch weight 61 Rack #3 3-Dec-16 Out
937 9013059 Citric Acid 64 Rack #7 7-Feb-16 Out
938 9013060 Sugar 91 Rack #7 23-Sep-15 Out
939 9013061 Citric Acid 29 Rack #1 7-Jul-16 Out
940 9013062 Citric Acid 31 Rack#6 17-Feb-16 In
941 9013063 Batch weight 53 Rack #1 5-Apr-15 Out
942 9013064 Citric Acid 25 Rack #6 30-Jul-15 Out
943 9013065 Citric Acid 68 Rack #4 22-Mar-16 Out
944 9013066 Boiling time 22 Rack #6 17-Jun-15 In
945 9013067 Pectin 99 Rack#2 2-Nov-16 Out
946 9013068 Solids content 79 Rack #2 17-Nov-16 Out
Smartfilter | Record ® [l v

As we saw in the previous image, this task has been achieved easily. By using autofilters a solution was provided
that just takes seconds to compute, is easy to explain to the user -since s/he is familiar with this command- and
took a few lines to the coder.

GoalKicker.com - Excel® VBA Notes for Professionals 69

(c) ketabton.com: The Digital Library

Chapter 20: Application object

Section 20.1: Simple Application Object example: Display Excel
and VBE Version

Sub DisplayExcelVersions()

MsgBox "The version of Excel is " & Application.Version
MsgBox "The version of the VBE is " & Application.VBE.Version

End Sub

The use of the Application.Version property is useful for ensuring code only operates on a compatible version of
Excel.

Section 20.2: Simple Application Object example: Minimize the
Excel window

This code uses the top level Application object to minimize the main Excel window.
Sub MinimizeExcel()

Application.WindowState = x1Minimized

End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 70

(c) ketabton.com: The Digital Library

Chapter 21: Charts and Charting

Section 21.1: Creating a Chart with Ranges and a Fixed Name

Charts can be created by working directly with the Series object that defines the chart data. In order to get to the
Series without an exisitng chart, you create a ChartObject on a given Worksheet and then get the Chart object
from it. The upside of working with the Series object is that you can set the Values and Xvalues by referring to
Range objects. These data properties will properly define the Series with references to those ranges. The downside
to this approach is that the same conversion is not handled when setting the Name; it is a fixed value. It will not
adjust with the underlying data in the original Range. Checking the SERIES formula and it is obvious that the name is
fixed. This must be handled by creating the SERIES formula directly.

Code used to create chart

Note that this code contains extra variable declarations for the Chart and Worksheet. These can be omitted if
they're not used. They can be useful however if you are modifying the style or any other chart properties.

Sub CreateChartWithRangesAndFixedName()

Dim xData As Range
Dim yData As Range
Dim serName As Range

'set the ranges to get the data and y value label
Set xData = Range("B3:B12")

Set yData = Range("C3:C12")

Set serName = Range("C2")

'get reference to ActiveSheet
Dim sht As Worksheet
Set sht = ActiveSheet

'create a new ChartObject at position (48, 195) with width 460 and height 360
Dim chtObj As ChartObject

Set chtObj = sht.ChartObjects.Add(48, 195, 400, 300)
'get reference to chart object

Dim cht As Chart

Set cht = chtObj.Chart

'create the new series

Dim ser As Series

Set ser = cht.SeriesCollection.NewSeries

ser.Values = yData

ser.XValues = xData

ser.Name = serName

ser.ChartType = x1XYScatterLines

End Sub

Original data/ranges and resulting Chart after code runs

Note that the SERIES formula includes a "B" for the series name instead of a reference to the Range that created it.

GoalKicker.com - Excel® VBA Notes for Professionals 71

(c) ketabton.com: The Digital Library

Chartz v | Jr | =SERIES("B",Sheet1!B3:3B$12,Sheet1!1$C$3:5C$12,1)
A B c D E F G
1]
2 A B
| u |] L}
3 | 8/4/2016 94
4 | 8/5/2016 21
5 | 8/6/2016 25
6 | 8/7/2016 80
7 | 8/8/2016 52 e
8 | 8/9/2016 27
9 | 8/10/2016 32
10| 8/11/2016 80
11| 8/12/2016 20
12| | 8/13/2016] 10}
13|
14 |
15 | B
i | 100
17 *
18 . a0 \
19 a0

2 S — i
1 — i J5 [\
B | [\

| /
R [N4
28 | | H ® L

29 "

30 | [10 L=

31 _

32 0 ! ! ' ' ! !

3l 8/2/2016 8/4/2016 8/6/2016 8/8/2016 8/10/2016 B/12/2016 8/14/2016

d R

Section 21.2: Creating an empty Chart

The starting point for the vast majority of charting code is to create an empty Chart. Note that this Chart is subject
to the default chart template that is active and may not actually be empty (if the template has been modified).

The key to the ChartObject is determining its location. The syntax for the call is ChartObjects.Add(Left, Top,
Width, Height). Once the ChartObject is created, you can use its Chart object to actually modify the chart. The
ChartObject behaves more like a Shape to position the chart on the sheet.

Code to create an empty chart

Sub CreateEmptyChart()

'get reference to ActiveSheet

GoalKicker.com - Excel® VBA Notes for Professionals 72

(c) ketabton.com: The Digital Library

Dim sht As Worksheet
Set sht = ActiveSheet

'create a new ChartObject at position (0, 0) with width 400 and height 360
Dim chtObj As ChartObject

Set chtObj = sht.ChartObjects.Add(6, ©, 400, 300)

'get refernce to chart object

Dim cht As Chart

Set cht = chtObj.Chart

'additional code to modify the empty chart

1

End Sub

Resulting Chart

b -]
m
[}
]
m
-
[
o

,

frengl Vs S = R IR VRN I S W% T o RS

ek | b A
b

e

—

et

121 -
[S o= TR [I 5 B NS W5 TR O

[t

a2 a2
b

Section 21.3: Create a Chart by Modifying the SERIES formula

For complete control over a new Chart and Series object (especially for a dynamic Series name), you must resort
to modifying the SERIES formula directly. The process to set up the Range objects is straightforward and the main
hurdle is simply the string building for the SERIES formula.

The SERIES formula takes the following syntax:
=SERIES(Name, XValues, Values, Order)

These contents can be supplied as references or as array values for the data items. Order represents the series
position within the chart. Note that the references to the data will not work unless they are fully qualified with the
sheet name. For an example of a working formula, click any existing series and check the formula bar.

GoalKicker.com - Excel® VBA Notes for Professionals 73

(c) ketabton.com: The Digital Library

Code to create a chart and set up data using the SERIES formula

Note that the string building to create the SERIES formula uses .Address(, ,, True). This ensures that the external
Range reference is used so that a fully qualified address with the sheet name is included. You will get an error if
the sheet name is excluded.

Sub CreateChartUsingSeriesFormula()

Dim xData As Range
Dim yData As Range
Dim serName As Range

'set the ranges to get the data and y value label
Set xData = Range("B3:B12")

Set yData = Range("C3:C12")

Set serName = Range("C2")

'get reference to ActiveSheet
Dim sht As Worksheet
Set sht = ActiveSheet

'create a new ChartObject at position (48, 195) with width 400 and height 360
Dim chtObj As ChartObject
Set chtObj = sht.ChartObjects.Add(48, 195, 400, 300)

'get refernce to chart object
Dim cht As Chart
Set cht = chtObj.Chart

'create the new series
Dim ser As Series

Set ser = cht.SeriesCollection.NewSeries

'set the SERIES formula
'=SERIES(name, xData, yData, plotOrder)

Dim formulaValue As String

formulaValue = "=SERIES(" & _
serName.Address(, , , True) & "," & _
xData.Address(, , , True) & "," & _
yData.Address(, , , True) & ",1)"

ser .Formula = formulaValue
ser.ChartType = x1XYScatterLines

End Sub
Original data and resulting chart

Note that for this chart, the series name is properly set with a range to the desired cell. This means that updates will
propagate to the Chart.

GoalKicker.com - Excel® VBA Notes for Professionals 74

(c) ketabton.com: The Digital Library

Chart 5 | Jx | =SERIES(Sheet3!SC$2,5heet3!SB$3:5B$12,Sheet3!1$C$3:5C$12,1)
| A | B _ C | & | E | ® | & | B | 1
1

1 | | L]

2 A B I

1 L}] | |

3 | 8/4/2016 76

4 | 8/5/2016 86

5 | 8/6/2016 30

6 | 8/7/2016 20

7| 8/8/2016 84

8 | 8/9/2016 4 o

9 | 8/10/2016 83

10 | 8/11/2016 63

11| 8/12/2016 8

12 | | 8/13/2016] 88|

13 | _
14 |+
15 | B [
16| 100 .I.a-“:
17| =
| |
18, % i Ih.d
19| 50 P i #

2 *\ N N

% — v JL R

22| &0

U\

24 | 50

| R

Ln
——
S—_—
i
|
I
[—

m

40

ra ra
] | h
i
]
r— |
-
F—

30

ra

oo
Iy
[
I
|

T o

30 10

31 | % ®

32 o ' ' ' ' '

2] 8/2/2016 8/4/2016 &/6/2016 8/8/2016 8/10/2016 8/12/2016 B/14/2016
a4 |

Section 21.4: Arranging Charts into a Grid

A common chore with charts in Excel is standardizing the size and layout of multiple charts on a single sheet. If
done manually, you can hold down while resizing or moving the chart to "stick" to cell boundaries. This
works for a couple charts, but a VBA approach is much simpler.

Code to create a grid

This code will create a grid of charts starting at a given (Top, Left) position, with a defined number of columns, and a
defined common chart size. The charts will be placed in the order they were created and wrap around the edge to
form a new row.

Sub CreateGridOfCharts()

GoalKicker.com - Excel® VBA Notes for Professionals 75

(c) ketabton.com: The Digital Library

Dim int_cols As Integer
int_cols = 3

Dim cht_width As Double
cht_width = 250

Dim cht_height As Double
cht_height = 200

Dim offset_vertical As Double
offset_vertical = 195

Dim offset_horz As Double
offset_horz = 40

Dim sht As Worksheet
Set sht = ActiveSheet

Dim count As Integer
count = @

'iterate through ChartObjects on current sheet

Dim cht_obj As ChartObject

For Each cht_obj In sht.ChartObjects
'use integer division and Mod to get position in grid
cht_obj.Top = (count \ int_cols) * cht_height + offset_vertical
cht_obj.Left = (count Mod int_cols) * cht_width + offset_horz
cht_obj.Width = cht_width
cht_obj.Height = cht_height

count = count + 1

Next cht_obj
End Sub

Result with several charts
These pictures show the original random layout of charts and the resulting grid from running the code above.

Before

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

A B C D E F G H M N @ | P

.

2 A B C o] B2 c2 D2

3 8/4/2016 g 43 38 9 43 38

4 8/5/2016 56 72 14 56 72 14

5 B/6/2016 78 45 58 78 45 58

& B/7/2016 34 10 90 34 10 oo

7 82

3 B 32

9 : - 47| 30

10 : 73 | 80

a0 [3 20 *
11 : - 46
12 : - 25 | &0 D2
» * cn

13 0 Y 100

1 40 Po— + 50 & *

i — - ;

16 20 30 = &0

17 10 - * +* 20 o ¥

18 0 70 20 N +D2
19 27 O PR S P ORLED [P Ao) | &0 ¥ - *

M ¥ 30 *

20 BZ =0 20

21 40 ¥ ¥ 10 *

22 50 30 0 . + .

23 g0 — 8/2/2016 8/5/2015 8/10/2016 B8/14/2016
24 70 CZ

25 &0 Py + 30

26 | 50 — a0 .

40 " +B - *

27 .. 70

28 e &0

29 0 50 3 s

30 10 + 2 40 * sc2 ¢h

31] (1] . r . r r ! g Y | |
32 8/2 /2088 /2 EyE (2EVR /28160 [HE /M 2016 20 n
33 10 =

34 0 ,

35 2/ /28 (2EIE /2 EYE (2 B1E0 /HYIR [H18 (2016

36
After

GoalKicker.com - Excel® VBA Notes for Professionals 77

(c) ketabton.com: The Digital Library

A B c D F G [| M N 0 P Q
;
2 A B C B2 c2 D2
3 B/4/2016 9 43 38 9 43 38
4 B/5/2016 56 72 14 56 72 14
5 B/6/2016 7B 45 5B 7B 45 5B
6 8/7/2016 34 10 90 34 10 90
7 B/8/2016 35 82 74 35 82 74 o
3 B/9/2016 57 32 40 57 32 40
9 8/10/2016 40 47 2 40 47 2
1n:| 8/11/2016 [73 93 8 73 93 | _|
1 8/12/2016 12 46 28 12 45 28
12 8/13/2016 52 25 37 52 25 37
13
14
15 B C D
16 90 90 100
7 80 - 20 50 = —~
18 70 70 —~ = a0
*
19 60 60 70
. * 50
20 50 50 3 ¥
* - 50
21 40 PR #B | 40 +C 10 R #D
22 30 * 30 * 0 M - *
* ¥
23 20 20 20
24 10 - ¥ 10 * 10 hd
25 a 0 0 -~
26 8/2/20864/20065/ 2088 /2 8180 /21 (A6 2016 822062085 2 0B, (2 880, e [2EL 2016 B/2/20E08, 25 /2R (28 160/ AN /S 2016
27
28 B2 C2 D2
@ 30 30 100
30
21 20 ¥ 80 50 i -
70 70 + * 80
&0 5 60
33 * &0 £
50 50 5
34 . * - 50
40 4 +B2 | 40 +C2 R +D2
35 . ® N 40 — s +
30 30 0
36 * W
o 20 20
i 10 - — 10 10 *
38 0 : : : : ; . 0 : ; ; ; ; . 0 : - .
38 822 2 B 2 BB 2 B 160/ R BN 201 6 82 /22,2 (BYE /2 (BB, /26,150 /Y12 [H1& (2016 8/2/2016 8/5/2016 8/10/2016 8/14/2016
40
GoalKicker.com - Excel® VBA Notes for Professionals 78

(c) ketabton.com: The Digital Library

Chapter 22: CustomDocumentProperties in
practice

Using CustomDocumentProperties (CDPs) is a good method to store user defined values in a relatively safe way
within the same work book, but avoiding to show related cell values simply in an unprotected work sheet *).

Note: CDPs represent a separate collection comparable to BuiltinDocumentProperties, but allow to create user
defined property names of your own instead of a fixed collection.

*) Alternatively, you could enter values also in a hidden or "very hidden" workbook.

Section 22.1: Organizing new invoice nhumbers

Incrementing an invoice number and saving its value is a frequent task. Using CustomDocumentProperties (CDPs) is
a good method to store such numbers in a relatively safe way within the same work book, but avoiding to show
related cell values simply in an unprotected work sheet.

Additional hint:

Alternatively, you could enter values also in a hidden worksheet or even a so called "very hidden" worksheet (see
Using xIVeryHidden Sheets. Of course, it's possible to save data also to external files (e.g. ini file, csv or any other
type) or the registry.

Example content:
The example below shows

e a function NextInvoiceNo that sets and returns the next invoice number,

¢ a procedure DeletelnvoiceNo, that deletes the invoice CDP completely, as well as

¢ a procedure showAllCDPs listing the complete CDPs collection with all names. Not using VBA, you can also list
them via the workbook's information: Info | Properties [DropDown:] | Advanced Properties | Custom

You can get and set the next invoice number (last no plus one) simply by calling the above mentioned function,
returning a string value in order to facilitate adding prefixes. "InvoiceNo" is implicitly used as CDP name in all
procedures.

Dim sNumber As String
sNumber = NextInvoiceNo ()

Example code:

Option Explicit

Sub Test()
Dim sNumber As String
sNumber = NextInvoiceNo()
MsgBox "New Invoice No: "
End Sub

& sNumber, vbInformation, "New Invoice Number"

Function NextInvoiceNo() As String
' Purpose: a) Set Custom Document Property (CDP) "InvoiceNo" if not yet existing
b) Increment CDP value and return new value as string
' Declarations
Dim prop As Object

GoalKicker.com - Excel® VBA Notes for Professionals 79

(c) ketabton.com: The Digital Library

Dim ret As String
Dim wb As Workbook
' Set workbook and CDPs
Set wb = ThisWorkbook
Set prop = wb.CustomDocumentProperties

If Not CDPExists("InvoiceNo") Then
' set temporary starting value "6"

prop.Add "InvoiceNo", False, msoPropertyTypeString, "0"
End If

ret = Format(Val(prop("InvoiceNo")) + 1, "0")
' a) Set CDP "InvoiceNo" = ret
prop("InvoiceNo").value = ret
b) Return function value
NextInvoiceNo = ret
End Function

Private Function CDPExists(sCDPName As String) As Boolean
' Purpose: return True if custom document property (CDP) exists
' Method: loop thru CustomDocumentProperties collection and check if name parameter exists

' Site: cf.
http://stackoverflow.com/questions/23917977/alternatives-to-public-variables-in-vba/23918236#23918236
"vgl.:

https://answers.microsoft.com/en-us/msoffice/forum/msoffice_word-mso_other/using-customdocumentproper
ties-with-vba/971ef15eb-b089-4c9b-a8a7-1685d073fb9f
' Declarations
Dim cdp As Variant element of CustomDocumentProperties Collection
Dim boo As Boolean ' boolean value showing element exists
For Each cdp In ThisWorkbook.CustomDocumentProperties
If LCase(cdp.Name) = LCase(sCDPName) Then

1

boo = True ' heureka
Exit For ' exit loop
End If
Next
CDPExists = boo " return value to function

End Function

Sub DeletelInvoiceNo()
" Declarations
Dim wb As Workbook
Dim prop As Object
' Set workbook and CDPs
Set wb = ThisWorkbook
Set prop = wb.CustomDocumentProperties

' Delete CDP "InvoiceNo"

If CDPExists("InvoiceNo") Then
prop("InvoiceNo").Delete
End If

End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 80

(c) ketabton.com: The Digital Library

Sub showAll1lCDPs()
" Purpose: Show all CustomDocumentProperties (CDP) and values (if set)

' Declarations
Dim wb As Workbook
Dim cdp As Object
Dim i As Integer
Dim maxi As Integer
Dim s As String

' Set workbook and CDPs

Set wb = ThisWorkbook

Set cdp = wb.CustomDocumentProperties
Loop thru CDP getting name and value
maxi = cdp.Count

For i = 1 To maxi

On Error Resume Next ' necessary in case of unset value
s =s &Chr(i +96) & ") " & _
cdp(i).Name & "=" & cdp(i).value & vbCr
Next i

1

Show result string
Debug.Print s
End Sub

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 23: PowerPoint Integration
Through VBA

Section 23.1: The Basics: Launching PowerPoint from VBA

While there are many parameters that can be changed and variations that can be added depending on the desired
functionality, this example lays out the basic framework for launching PowerPoint.

Note: This code requires that the PowerPoint reference has been added to the active VBA Project. See
the References Documentation entry to learn how to enable the reference.

First, define variables for the Application, Presentation, and Slide Objects. While this can be done with late binding,
it is always best to use early binding when applicable.

Dim PPApp As PowerPoint.Application
Dim PPPres As PowerPoint.Presentation
Dim PPSlide As PowerPoint.Slide

Next, open or create a new instance of the PowerPoint application. Here, the On Error Resume Next call is used to
avoid an error being thrown by GetObject if PowerPoint has not yet been opened. See the Error Handling example
of the Best Practices Topic for a more detailed explanation.

'"Open PPT if not running, otherwise select active instance
On Error Resume Next
Set PPApp = GetObject(, "PowerPoint.Application")
On Error GoTo ErrHandler
If PPApp Is Nothing Then
'"Open PowerPoint
Set PPApp = CreateObject("PowerPoint.Application")
PPApp.Visible = True
End If

Once the application has been launched, a new presentation and subsequently contained slide is generated for
use.

'Generate new Presentation and slide for graphic creation
Set PPPres = PPApp.Presentations.Add
Set PPSlide = PPPres.Slides.Add(1, ppLayoutBlank)

'"Here, the slide type is set to the 4:3 shape with slide numbers enabled and the window
'maximized on the screen. These properties can, of course, be altered as needed

PPApp.ActiveWindow.ViewType = ppViewSlide
PPPres.PageSetup.SlideOrientation = msoOrientationHorizontal
PPPres.PageSetup.SlideSize = ppSlideSizeOnScreen
PPPres.SlideMaster.HeadersFooters.SlideNumber.Visible = msoTrue
PPApp.ActiveWindow.WindowState = ppWindowMaximized

Upon completion of this code, a new PowerPoint window with a blank slide will be open. By using the object
variables, shapes, text, graphics, and excel ranges can be added as desired

GoalKicker.com - Excel® VBA Notes for Professionals 82

(c) ketabton.com: The Digital Library

Chapter 24: How to record a Macro

Section 24.1: How to record a Macro

4 ¥

The easiest way to record a macro is the button in the lower left corner of Excel looks like this: m

When you click on this you will get a pop-up asking you to name the Macro and decide if you want to have a
shortcut key. Also, asks where to store the macro and for a description. You can choose any name you want, no
spaces are allowed.

rHn.=-_l::|::-rt:£ Macro l ? ﬁ]ﬂ

Macro name:

i Maqr01|

Shortcut key:
Ctri+

Store macro in:
This Workbook E3

Description:

| ok || cance

LS .

If you want to have a shortcut assigned to your macro for quick use choose a letter that you will remember so that
you can quickly and easily use the macro over and over.

You can store the macro in "This Workbook," "New Workbook," or "Personal Macro Workbook." If you want the
macro you're about to record to be available only in the current workbook, choose "This Workbook." If you want it
saved to a brand new workbook, choose "New Workbook." And if you want the macro to be available to any
workbook you open, choose "Personal Macro Workbook."

After you have filled out this pop-up click on "Ok".

Then perform whatever actions you want to repeat with the macro. When finished click the same button to stop
recording. It now looks like this:

1 ¥

T

Now you can go to the Developer Tab and open Visual Basic. (or use Alt + F11)

GoalKicker.com - Excel® VBA Notes for Professionals 83

(c) ketabton.com: The Digital Library

-5 Modules

488 CLLICodes
428 Createlist
428 EmailUzers
428 FormatUserData
422 modMagbox
422 Module1

428 Module2

428 Module3

You will now have a new Module under the Modules folder.
The newest module will contain the macro you just recorded. Double-click on it to bring it up.

| did a simple copy and paste:

Sub Macrol()

i

Macrol Macro

Selection.Copy

Range("A12").Select

ActiveSheet.Paste
End Sub

If you don't want it to always paste into "A12" you can use Relative References by checking the "Use Relative

J |__1 ® Record Macro

i (o Use Relative References
Visual Macros

Basic ! Macro Security

References" box on the Developer Tab: Eride

Following the same steps as before will now turn the Macro into this:

Sub Macro2()

' Macro2 Macro

Selection.Copy
ActiveCell.Offset (11, ©).Range("A1").Select
ActiveSheet.Paste

End Sub

Still copying the value from "A1" into a cell 11 rows down, but now you can perform the same macro with any
starting cell and the value from that cell will be copied to the cell 11 rows down.

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 25: SQL in Excel VBA - Best
Practices

Section 25.1: How to use ADODB.Connection in VBA?

Requirements:
Add following references to the project:

¢ Microsoft ActiveX Data Objects 2.8 Library

¢ Microsoft ActiveX Data Objects Recordset 2.8 Library

References - VBAPraoject >
Available References:
v| Visual Basic For Applications A Cancel

| Microsoft Excel 16.0 Object Library

v| OLE Automation

w| Microsoft Office 16,0 Ohject Library Browse...

w| Microsoft ActiveX Data Objects 2,8 Library

M| Microsoft ActiveX Data Objects Recordset 2.8 Librar
AccessibilityCpladmin 1.0 Type Library

Active DS Type Library Priority
ActiveMovie control type library Help
AdHocR.eportingExcelClientLib +*

Adobe Photoshop CC 2017 Object Library
Adobe Photoshop CC 2017 Type Library
AdobeAAMDetect 1.0 Type Library
AFANdimAPONIR

£ >

Microsoft ActiveX Data Objects Recordset 2.8 Library

Location: C:‘Program Files\Common Files\System\adomsador23. b
Language: Standard

Declare variables

Private mDataBase As New ADODB.Connection
Private mRS As New ADODB.Recordset
Private mCmd As New ADODB.Command

Create connection
a. with Windows Authentication

Private Sub OpenConnection(pServer As String, pCatalog As String)

Call mDataBase.Open("Provider=SQLOLEDB;Initial Catalog=" & pCatalog & ";Data Source=" & pServer
& ";Integrated Security=SSPI")

mCmd .ActiveConnection = mDataBase
End Sub

b. with SQL Server Authentication

Private Sub OpenConnection2(pServer As String, pCatalog As String, pUser As String, pPsw As String)
Call mDataBase.Open("Provider=SQLOLEDB;Initial Catalog=" & pCatalog & ";Data Source=" & pServer
& ";Integrated Security=SSPI;User ID=" & pUser & ";Password=" & pPsw)
mCmd .ActiveConnection = mDataBase
End Sub

Execute sql command

GoalKicker.com - Excel® VBA Notes for Professionals 85

(c) ketabton.com: The Digital Library

Private Sub ExecuteCmd(sql As String)
mCmd . CommandText = sql
Set mRS = mCmd.Execute

End Sub

Read data from record set

Private Sub ReadRS()
Do While Not (mRS.EOF)
Debug.Print "ShipperID: " & mRS.Fields("ShipperID").Value & " CompanyName: " &
mRS.Fields("CompanyName").Value & " Phone: " & mRS.Fields("Phone").Value
Call mRS.MoveNext
Loop
End Sub

Close connection

Private Sub CloseConnection()
Call mDataBase.Close
Set mRS = Nothing
Set mCmd = Nothing
Set mDataBase = Nothing
End Sub

How to use it?

Public Sub Program()

Call OpenConnection("ServerName", "NORTHWND")

Call ExecuteCmd("INSERT INTO [NORTHWND].[dbo].[Shippers]([CompanyName], [Phone]) Values ('speedy
shipping', ' (503) 555-1234"')")

Call ExecuteCmd("SELECT * FROM [NORTHWND].[dbo].[Shippers]")

Call ReadRS

Call CloseConnection
End Sub

Result

ShipperlID: 1 CompanyName: Speedy Express Phone: (503) 555-9831

ShipperID: 2 CompanyName: United Package Phone: (503) 555-3199

ShipperID: 3 CompanyName: Federal Shipping Phone: (503) 555-9931

ShipperlID: 4 CompanyName: speedy shipping Phone: (503) 555-1234

GoalKicker.com - Excel® VBA Notes for Professionals 86

(c) ketabton.com: The Digital Library

Chapter 26: Excel-VBA Optimization

Excel-VBA Optimization refers also to coding better error handling by documentation and additional details. This is
shown here.

Section 26.1: Optimizing Error Search by Extended Debugging

Using Line Numbers ... and documenting them in case of error ("The importance of seeing Erl")

Detecting which line raises an error is a substantial part of any debugging and narrows the search for the cause. To
document identified error lines with a short description completes a successful error tracking, at best together with
the names of module and procedure. The example below saves these data to a log file.

Back ground

The error object returns error number (Err.Number) and error description (Err.Description), but doesn't explicitly
respond to the question where to locate the error. The Erl function, however, does, but on condition that you add
*line numbers) to the code (BTW one of several other concessions to former Basic times).

If there are no error lines at all, then the Erl function returns 0O, if numbering is incomplete you'll get the procedure's
last preceding line number.

Option Explicit

Public Sub MyProc1()

Dim i As Integer

Dim j As Integer

On Error GoTo LogErr

10 j=11/29 ' raises an error
okay:

Debug.Print "i=" & 1

Exit Sub

LogErr:

MsgBox LogErrors("MyModule", "MyProc1", Err), vbExclamation, "Error " & Err.Number
Stop

Resume Next

End Sub

Public Function LogErrors(_
ByVal sModule As String, _
ByVal sProc As String, _
Err As ErrObject) As String
Purpose: write error number, description and Erl to log file and return error text
Dim slLogFile As String: sLogFile = ThisWorkbook.Path & Application.PathSeparator &
"LogErrors.txt"
Dim sLogTxt As String
Dim 1File As Long

1

1

Create error text
sLogTxt = sModule & "|" & sProc & "|Erl " & Erl & "|Err " & Err.Number & "|" & Err.Description

On Error Resume Next
1File = FreeFile

Open sLogFile For Append As 1File
Print #1File, Format$(Now(), "yy.mm.dd hh:mm:ss "); sLogTxt

GoalKicker.com - Excel® VBA Notes for Professionals 87

(c) ketabton.com: The Digital Library

Print #1File,
Close 1File
Return error text
LogErrors = sLogTxt
End Function

1

'Additional Code to show log file

Sub ShowLogFile()
Dim sLogFile As String: sLogFile = ThisWorkbook.Path & Application.PathSeparator & "LogErrors.txt"

On Error GoTo LogErr
Shell "notepad.exe " & sLogFile, vbNormalFocus

okay:

On Error Resume Next

Exit Sub

LogErr:

MsgBox LogErrors("MyModule", "ShowLogFile", Err), vbExclamation, "Error No " & Err.Number

Resume okay
End Sub

Section 26.2: Disabling Worksheet Updating

Disabling calculation of the worksheet can decrease running time of the macro significantly. Moreover, disabling
events, screen updating and page breaks would be beneficial. Following Sub can be used in any macro for this
purpose.

Sub OptimizeVBA(isOn As Boolean)
Application.Calculation = IIf(isOn, x1CalculationManual, x1lCalculationAutomatic)
Application.EnableEvents = Not(isOn)
Application.ScreenUpdating = Not(isOn)
ActiveSheet.DisplayPageBreaks = Not(isOn)
End Sub

For optimization follow the below pseudo-code:

Sub MyCode()
OptimizeVBA True
"Your code goes here
OptimizeVBA False

End Sub

Section 26.3: Row Deletion - Performance

Deleting rows is slow, specially when looping through cells and deleting rows, one by one

A different approach is using an AutoFilter to hide the rows to be deleted

Copy the visible range and Paste it into a new WorkSheet

Remove the initial sheet entirely

GoalKicker.com - Excel® VBA Notes for Professionals 88

(c) ketabton.com: The Digital Library

¢ With this method, the more rows to delete, the faster it will be

Example:

Option Explicit
'Deleted rows: 775,153, Total Rows: 1,000,009, Duration: 1.87 sec

Public Sub DeleteRows()
Dim oldWs As Worksheet, newWs As Worksheet, wsName As String, ur As Range

Set 0ldWs = ThisWorkbook.ActiveSheet
wsName = oldWs.Name
Set ur = oldWs.Range("F2", oldWs.Cells(oldWs.Rows.Count, "F").End(x1Up))

Application.ScreenUpdating = False
Set newWs = Sheets.Add(After:=oldWs) 'Create a new WorkSheet

With ur "Copy visible range after Autofilter (modify Criterial and 2 accordingly)
.AutoFilter Field:=1, Criterial:="<>0", Operator:=x1And, Criteria2:="<>"
oldWs.UsedRange.Copy

End With

'"Paste all visible data into the new WorkSheet (values and formats)

With newWs.Range(oldWs.UsedRange.Cells(1).Address)

.PasteSpecial x1PasteColumnWidths

.PasteSpecial x1PasteAll

newWs.Cells(1, 1).Select: newWs.Cells(1, 1).Copy
End With

With Application
.CutCopyMode = False
.DisplayAlerts = False

oldWs.Delete
.DisplayAlerts = True
.ScreenUpdating = True
End With
newWs.Name = wsName
End Sub

Section 26.4: Disabling All Excel Functionality Before
executing large macros

The procedures bellow will temporarily disable all Excel features at WorkBook and WorkSheet level
e FastWB() is a toggle that accepts On or Off flags
e FastWS() accepts an Optional WorkSheet object, or none
¢ If the ws parameter is missing it will turn all features on and off for all WorkSheets in the collection

o A custom type can be used to capture all settings before turning them off
o At the end of the process, the initial settings can be restored

Public Sub FastWB(Optional ByVal opt As Boolean = True)
With Application
.Calculation = IIf(opt, x1lCalculationManual, xlCalculationAutomatic)
If .DisplayAlerts <> Not opt Then .DisplayAlerts = Not opt

GoalKicker.com - Excel® VBA Notes for Professionals 89

(c) ketabton.com: The Digital Library

If .DisplayStatusBar <> Not opt Then .DisplayStatusBar = Not opt
If .EnableAnimations <> Not opt Then .EnableAnimations = Not opt
If .EnableEvents <> Not opt Then .EnableEvents = Not opt
If .ScreenUpdating <> Not opt Then .ScreenUpdating = Not opt
End With
FastWS , opt
End Sub

Public Sub FastWS(Optional ByVal ws As Worksheet, Optional ByVal opt As Boolean = True)
If ws Is Nothing Then
For Each ws In Application.ThisWorkbook.Sheets
OptimiseWS ws, opt

Next
Else
OptimiseWS ws, opt
End If
End Sub
Private Sub OptimiseWS(ByVal ws As Worksheet, ByVal opt As Boolean)
With ws
.DisplayPageBreaks = False
.EnableCalculation = Not opt
.EnableFormatConditionsCalculation = Not opt
.EnablePivotTable = Not opt
End With
End Sub

Restore all Excel settings to default

Public Sub X1ResetSettings() ‘default Excel settings
With Application
.Calculation = xlCalculationAutomatic
.DisplayAlerts = True
.DisplayStatusBar = True
.EnableAnimations = False
.EnableEvents = True
.ScreenUpdating = True
Dim sh As Worksheet
For Each sh In Application.ThisWorkbook.Sheets
With sh
.DisplayPageBreaks = False
.EnableCalculation = True
.EnableFormatConditionsCalculation = True
.EnablePivotTable = True
End With
Next
End With
End Sub

Section 26.5: Checking time of execution

Different procedures can give out the same result, but they would use different processing time. In order to check

out which one is faster, a code like this can be used:

timel = Timer

For Each iCell In MyRange
iCell = "text"
Next iCell

GoalKicker.com - Excel® VBA Notes for Professionals

90

(c) ketabton.com: The Digital Library

time2 = Timer

For i = 1 To 30
MyRange.Cells(i) = "text"
Next i

time3 = Timer

debug.print "Proc1 time: " & cStr(time2-time1)
debug.print "Proc2 time: " & cStr(time3-time2)

MicroTimer:

Private Declare PtrSafe Function getFrequency Lib "Kernel32" Alias "QueryPerformanceFrequency"
(cyFrequency As Currency) As Long

Private Declare PtrSafe Function getTickCount Lib "Kernel32" Alias "QueryPerformanceCounter"
(cyTickCount As Currency) As Long

Function MicroTimer() As Double
Dim cyTicks1 As Currency
Static cyFrequency As Currency

MicroTimer = 0

If cyFrequency = 0 Then getFrequency cyFrequency 'Get frequency

getTickCount cyTicks1 'Get ticks

If cyFrequency Then MicroTimer = cyTicks1 / cyFrequency 'Returns Seconds
End Function

Section 26.6: Using With blocks

Using with blocks can accelerate the process of running a macro. Instead writing a range, chart name, worksheet,
etc. you can use with-blocks like below;

With ActiveChart
.Parent.Width = 4006
.Parent.Height = 145
.Parent.Top = 77.5 + 165 * step - replacer * 15
.Parent.Left = 5
End With

Which is faster than this:

ActiveChart.Parent.Width = 4600

ActiveChart.Parent.Height = 145

ActiveChart.Parent.Top = 77.5 + 165 * step - replacer * 15
ActiveChart.Parent.Left = 5

Notes:

¢ Once a With block is entered, object can't be changed. As a result, you can't use a single With statement to
affect a number of different objects

¢ Don't jump into or out of With blocks. If statements in a With block are executed, but either the With or
End With statement is not executed, a temporary variable containing a reference to the object remains
in memory until you exit the procedure

e Don't Loop inside With statements, especially if the cached object is used as an iterator

* You can nest With statements by placing one With block within another. However, because members of outer

GoalKicker.com - Excel® VBA Notes for Professionals 91

(c) ketabton.com: The Digital Library

With blocks are masked within the inner With blocks, you must provide a fully qualified object reference in an
inner With block to any member of an object in an outer With block.

Nesting Example:

This example uses the With statement to execute a series of statements on a single object.
The object and its properties are generic names used for illustration purposes only.

With MyObject

.Height = 1600 'Same as MyObject.Height = 160.
.Caption = "Hello World" 'Same as MyObject.Caption = "Hello World".
With .Font
.Color = Red 'Same as MyObject.Font.Color = Red.
.Bold = True 'Same as MyObject.Font.Bold = True.
MyObject.Height = 200 "Inner-most With refers to MyObject.Font (must be qualified
End With
End With

More Info on MSDN

GoalKicker.com - Excel® VBA Notes for Professionals 92

(c) ketabton.com: The Digital Library

Chapter 27: VBA Security

Section 27.1: Password Protect your VBA

Sometimes you have sensitive information in your VBA (e.g., passwords) that you don't want users to have access
to. You can achieve basic security on this information by password-protecting your VBA project.

Follow these steps:

Open your Visual Basic Editor (Alt + F11)

Navigate to Tools -> VBAProject Properties...

Navigate to the Protection tab

Check off the "Lock project for viewing" checkbox

Enter your desired password in the Password and Confirm Password textboxes

ok W=

Now when someone wants to access your code within an Office application, they will first need to enter the
password. Be aware, however, that even a strong VBA project password is trivial to break.

GoalKicker.com - Excel® VBA Notes for Professionals 93

(c) ketabton.com: The Digital Library

Chapter 28: Debugging and
Troubleshooting

Section 28.1: Immediate Window

If you would like to test a line of macro code without needing to run an entire sub, you can type commands directly
into the Immediate Window and hit ENTER to run the line.

For testing the output of a line, you can precede it with a question mark ? to print directly to the Immediate
Window. Alternatively, you can also use the print command to have the output printed.

While in the Visual Basic Editor, press CTRL + G to open the Immediate Window. To rename your currently selected
sheet to "ExampleSheet", type the following in the Immediate Window and hit ENTER

ActiveSheet.Name = "ExampleSheet"
To print the currently selected sheet's name directly in the Immediate Window

? ActiveSheet.Name
ExampleSheet

This method can be very useful to test the functionality of built in or user defined functions before implementing
them in code. The example below demonstrates how the Immediate Window can be used to test the output of a
function or series of functions to confirm an expected.

"In this example, the Immediate Window was used to confirm that a series of Left and Right
'string methods would return the desired string

"expected output: "value"
print Left(Right("1111value1111",9),5) ' <---- written code here, ENTER pressed
value ' <---- output

The Immediate Window can also be used to set or reset Application, Workbook, or other needed properties. This
can be useful if you have Application.EnableEvents = False in a subroutine that unexpectedly throws an error,
causing it to close without resetting the value to True (which can cause frustrating and unexpected functionality. In
that case, the commands can be typed directly into the Immediate Window and run:

? Application.EnableEvents <---- Testing the current state of "EnableEvents”
False ' <---- QOutput

Application.EnableEvents = True ' <---- Resetting the property value to True
? Application.EnableEvents ' <---- Testing the current state of "EnableEvents”
True ' <---- Output

For more advanced debugging techniques, a colon : can be used as a line separator. This can be used for multi-line
expressions such as looping in the example below.

x = Split("a,b,c",","): For i = LBound(x,1) to UBound(x,1): Debug.Print x(i): Next i '<----Input
this and press enter

a '<----Output

b '<----Output

c '<----Output

GoalKicker.com - Excel® VBA Notes for Professionals 94

(c) ketabton.com: The Digital Library
Section 28.2: Use Timer to Find Bottlenecks in Performance

The first step in optimizing for speed is finding the slowest sections of code. The Timer VBA function returns the
number of seconds elapsed since midnight with a precision of 1/256th of a second (3.90625 milliseconds) on
Windows based PCs. The VBA functions Now and Time are only accurate to a second.

Dim start As Double " Timer returns Single, but converting to Double to avoid
start = Timer ' scientific notation like 3.90625E-03 in the Immediate window
' . part of the code

Debug.Print Timer - start; "seconds in part 1"

start = Timer
. another part of the code
Debug.Print Timer - start; "seconds in part 2"

Section 28.3: Debugger Locals Window

The Locals window provides easy access to the current value of variables and objects within the scope of the
function or subroutine you are running. It is an essential tool to debugging your code and stepping through
changes in order to find issues. It also allows you to explore properties you might not have known existed.

Take the following example,

Option Explicit

Sub LocalsWindowExample()
Dim findMeInLocals As Integer
Dim findMEInLocals2 As Range

findMeInLocals = 1

Set findMEInLocals2 = ActiveWorkbook.Sheets(1).Range("A1")
End Sub

In the VBA Editor, click View --> Locals Window

rﬁ Microsoft Visual Basic .f'ur Appi:catim

=™ a9
&% File Edit | View | Insert Fomn
E Code F7
Z3 Object Shift+F7
Definition Shift+F2 :

Last Position Ctrl+Shift+F2

CFL

5 Object Browser =,

1 Immediate Window Ctrl+G
|ﬂ Locals Window

Then by stepping through the code using F8 after clicking inside the subroutine, we have stopped before getting to
assigning findMeinLocals. Below you can see the value is 0 --- and this is what would be used if you never assigned
it a value. The range object is 'Nothing'.

GoalKicker.com - Excel® VBA Notes for Professionals 95

(c) ketabton.com: The Digital Library

Cption Explicit

Sub LocalsWindowExample ()
Dim findMelInLocals As Integer
Dim findMEInLocalsZ As Range

o findMeInLocals = 1
Set findMEInLocalsZ = ActiveWorkbook.Sheetz(l).Range ("Al™)

Locals X
I VBAProject.Sheet 1. LocalsWindowExample

| Value | Type -
Sheet1/Sheet1
findMelnLocals o Integer
findMEInLocals2 Mothing Range

If we stop right before the subroutine ends, we can see the final values of the variables.

Cption Explicit

Sub LocalsWindowExample ()
Dim findMeInLocals A= Integer
Dim findMEInLocals2 As Range

findMeInLocals = 1
Set findMEInLocals? = ActiveWorkbook.Sheets(l).Range ("&l1"™)
¢ [Era 5ur

We can see findMelnLocals with a value of 1 and type of Integer, and FindMelnLocals2 with a type of Range/Range.
If we click the + sign we can expand the object and see its properties, such as count or column.

Locals
I WBAProject.Sheet1.LocalsWindowExample

Expression | Value | Type
WMe Sheet1/Sheet1

findMelnLocals 1 Integer

— Addindent Falze Wariant/Boolean

— AllowEdit True Boolean

Application Application/&pplication

Areas Areas/Areas

Borders Borders/Borders

Cells Range/Range

— Column 1 Long

— ColumnWidth 8.43 Wariant/Double

— Comment Nothing Comment

— Count 1 Long

— CountLarge 1 Variant/=Unsupported variant type=

— Creator ¥ICreatorCode XICreator

— Current&rray <No cells were found.> Range

CurrentRegion Range/Range

— Dependents <No cells were found.> Range

— DirectDependents <No cells were found.> Range

— DirectPrecedents <No cells were found.> Range

DisplayFormat DisplayFormat/DisplayFormat

Section 28.4: Debug.Print

To print a listing of the Error Code descriptions to the Immediate Window, pass it to the Debug.Print function:

Private Sub ListErrCodes()
Debug.Print "List Error Code Descriptions”

For i = 0 To 65535
e = Error(i)
If e <> "Application-defined or object-defined error" Then Debug.Print i & ": " & e
Next i
End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 96

(c) ketabton.com: The Digital Library

You can show the Immediate Window by:

¢ Selecting View | Immediate Window from the menu bar
¢ Using the keyboard shortcut Ctrl-G

Section 28.5: Stop

The Stop command will pause the execution when called. From there, the process can be resumed or be executed
step by step.

Sub Test()
Dim TestVar as String
TestVar = "Hello World"
Stop
MsgBox TestVar

End Sub

'Sub will be executed to this point and then wait for the user

Section 28.6: Adding a Breakpoint to your code

You can easily add a breakpoint to your code by clicking on the grey column to the left of the line of your VBA code

where you want execution to stop. A red dot appears in the column and the breakpoint code is also highlighted in
red.

You can add multiple breakpoints throughout your code and resuming execution is achieved by pressing the "play"
icon in your menu bar. Not all code can be a breakpoint as variable definition lines, the first or last line of a
procedure and comment lines cannot be selected as a breakpoint.

(General) + | test

Sub test()

"This is VBA code in Office 2011 for the Mac
Dim x As Integer

Dim v As String

Dim r As Double

& MsgBox "Hello World!

End Sub

il

GoalKicker.com - Excel® VBA Notes for Professionals 97

(c) ketabton.com: The Digital Library

Chapter 29: VBA Best Practices
Section 29.1: ALWAYS Use "Option Explicit"

In the VBA Editor window, from the Tools menu select "Options":

E Microsoft Visual Basic for Applications - Book1
File Edit Debug

& b

View |nsert Format

Project - VBAProject

=R=1F]

Iunlsiﬂdd-lns Rubberduck Window
Y References...

Bun

n o

Macros...

| Opticns...

&2 Solver (SOLVER.XLAM)
=-%% VBAProject (Book1)

VBAProject Properties...

Digital Signature...

Then in the "Editor" tab, make sure that "Require Variable Declaration" is checked:

Options

Editor Editor Format General Docking

X

—Code Settings
V¥ auto Syntax Chedk

v Auto List Members
v Auto Quick Info
¥ Auto Data Tips

¥ Auto Indent

Tab wWidth: I 4

—Window Settings
[¥ Drag-and-Drop Text Editing

[¥ Default to Full Module View
¥ Procedure Separator

Annuler Aide

Selecting this option will automatically put Option Explicit at the top of every VBA module.

Small note: This is true for the modules, class modules, etc. that haven't been opened so far. So if you
already had a look at e.g. the code of Sheet1 before activating the option "Require Variable Declaration",

Option Explicit will not be added!

Option Explicit requires that every variable has to be defined before use, e.g. with a Dim statement. Without
Option Explicit enabled, any unrecognized word will be assumed by the VBA compiler to be a new variable of the
spot bugs related to typographical errors. With Option Explicit
enabled, any unrecognized words will cause a compile error to be thrown, indicating the offending line.

Variant type, causing extremely difficult-to-

Example:

GoalKicker.com - Excel® VBA Notes for Professionals

(c) ketabton.com: The Digital Library

If you run the following code :

Sub Test()

my_variable = 12

MsgBox "My Variable is :
End Sub

& myvariable

You will get the following message :

Microsoft Excel =

My Variable is:

OK

You have made an error by writing myvariable instead of my_variable, then the message box displays an empty
variable. If you use Option Explicit, this error is not possible because you will get a compile error message
indicating the problem.

Cption Explicit

Sub Test ()

my wvariable 12

MzgBox "My Variable i= : " & myvariable
End Sub

Microsoft Visual Basic for Applications X

Compile error

Yariable not defined

OK Aide

Now if you add the correct declaration :

Sub Test()

Dim my_variable As Integer

my_variable = 12

MsgBox "My Variable is : " & myvariable
End Sub

You will obtain an error message indicating precisely the error with myvariable :

GoalKicker.com - Excel® VBA Notes for Professionals 99

(c) ketabton.com: The Digital Library

Cption Explicit

Sub Test|()

Dim my wariable As Integer

my wvariable = 12

M=gBox "My Variable i= : " &
End Sub

Microsoft Visual Basic for Applications

Compile erron

Wariable not defined

oK Aide

Note on Option Explicit and Arrays (Declaring a Dynamic Array):

You can use the ReDim statement to declare an array implicitly within a procedure.

¢ Be careful not to misspell the name of the array when you use the ReDim statement

¢ Even if the Option Explicit statement is included in the module, a new array will be created

Dim arr() as Long

ReDim ar() 'creates new array "ar" - "ReDim ar()" acts like "Dim ar()"

Section 29.2: Work with Arrays, Not With Ranges

Office Blog - Excel VBA Performance Coding Best Practices

Often, best performance is achieved by avoiding the use of Range as much as possible. In this example we read in
an entire Range object into an array, square each number in the array, and then return the array back to the Range.
This accesses Range only twice, whereas a loop would access it 20 times for the read/writes.

Option Explicit
Sub WorkWithArrayExample()

Dim DataRange As Variant

Dim Irow As Long

Dim Icol As Integer

DataRange = ActiveSheet.Range("A1:A10").Value ' read all the values at once from the Excel grid, put
into an array

For Irow = LBound(DataRange,1) To UBound(DataRange, 1) ' Get the number of rows.
For Icol = LBound(DataRange,2) To UBound(DataRange, 2) ' Get the number of columns.
DataRange(Irow, Icol) = DataRange(Irow, Icol) * DataRange(Irow, Icol) ' cell.value”?2
Next Icol
Next Irow

GoalKicker.com - Excel® VBA Notes for Professionals 100

(c) ketabton.com: The Digital Library

ActiveSheet.Range("A1:A10").Value = DataRange ' writes all the results back to the range at once

End Sub

More tips and info with timed examples can be found in Charles Williams's Writing efficient VBA UDFs (Part 1) and
other articles in the series.

Section 29.3: Switch off properties during macro execution

It is best practice in any programming language to avoid premature optimization. However, if testing reveals that
your code is running too slowly, you may gain some speed by switching off some of the application’s properties
while it runs. Add this code to a standard module:

Public Sub SpeedUp(_
SpeedUpOn As Boolean, _
Optional x1lCalc as XlCalculation = xlCalculationAutomatic _

With Application
If SpeedUpOn Then
.ScreenUpdating = False
.Calculation = x1CalculationManual
.EnableEvents = False
.DisplayStatusBar = False 'in case you are not showing any messages
ActiveSheet.DisplayPageBreaks = False 'note this is a sheet-level setting
Else
.ScreenUpdating = True
.Calculation = x1Calc
.EnableEvents = True
.DisplayStatusBar = True
ActiveSheet.DisplayPageBreaks = True
End If
End With
End Sub

More info on Office Blog - Excel VBA Performance Coding Best Practices

And just call it at beginning and end of macros:

Public Sub SomeMacro
'store the initial "calculation" state
Dim x1Calc As XlCalculation
x1Calc = Application.Calculation

SpeedUp True
‘code here ...

'by giving the second argument the initial "calculation" state is restored
'otherwise it is set to 'xlCalculationAutomatic'’
SpeedUp False, x1lCalc

End Sub

While these can largely be considered "enhancements" for regular Public Sub procedures, disabling event
handling with Application.EnableEvents = False should be considered mandatory for Worksheet_Change and
Workbook_SheetChange private event macros that change values on one or more worksheets. Failure to disable
event triggers will cause the event macro to recursively run on top of itself when a value changes and can lead to a
"frozen" workbook. Remember to turn events back on before leaving the event macro, possibly through a "safe
exit" error handler.

GoalKicker.com - Excel® VBA Notes for Professionals 101

(c) ketabton.com: The Digital Library
Option Explicit

Private Sub Worksheet_Change(ByVal Target As Range)
If Not Intersect(Target, Range("A:A")) Is Nothing Then
On Error GoTo bm_Safe_Exit
Application.EnableEvents = False

'code that may change a value on the worksheet goes here

End If
bm_Safe_Exit:
Application.EnableEvents = True
End Sub

One caveat: While disabling these settings will improve run time, they may make debugging your application much
more difficult. If your code is not functioning correctly, comment out the SpeedUp True call until you figure out the
problem.

This is particularly important if you are writing to cells in a worksheet and then reading back in calculated results
from worksheet functions since the x1CalculationManual prevents the workbook from calculating. To get around
this without disabling SpeedUp, you may want to include Application.Calculate to run a calculation at specific
points.

NOTE: Since these are properties of the Application itself, you need to ensure that they are enabled again before
your macro exits. This makes it particularly important to use error handlers and to avoid multiple exit points (i.e.
End or Unload Me).

With error handling:

Public Sub SomeMacro()
'store the initial "calculation" state
Dim x1Calc As XlCalculation
x1Calc = Application.Calculation

On Error GoTo Handler
SpeedUp True

'code here ...
i=17/29

CleanExit:
SpeedUp False, x1Calc
Exit Sub

Handler:
"handle error
Resume CleanExit

End Sub

Section 29.4: Use VB constants when available

If MsgBox("Click OK") = vbOK Then
can be used in place of
If MsgBox("Click OK") = 1 Then

in order to improve readability.

GoalKicker.com - Excel® VBA Notes for Professionals 102

(c) ketabton.com: The Digital Library

Use Object Browser to find available VB constants. View — Object Browser or from VB Editor.

@ Microsoft Visual Basic for Applications - Bookl - [Obje

’Ei' Eile Edrt ‘I.I"tm | Insert Format Debug Ru
E @ - =] Code FFo|
‘W2 p W @= Obect Shift+F7 |
iy E Definition Shift+F2
Project - VBAProje Last Position Ctrl+5Shift+F2 |}
ElE= | | %% Object Browser 2 |
| t
g solver [SQ 1 Immediate Window Ctrl+G |
EI -8 VBAProjec = | neale Window i
Enter class to search
| <Al Libraries> ~|]| Bz 2]
[l -] A<
View members available
|<All Libraries> ~| || B]
Imsgb-ox J ﬁl
— Search Results
Library | Class | Member
i VBA #% Interaction =B MsgBox
i vBA win SystemColorConstants Z vbMsgBox
i vBaA &F VbMsgBoxStyle = vbMsgBoxHelpButton
EMF VBA =F VbMsgBoxResult
il VBA =F VbMsgBoxStyle = vbMsgBoxRight
. VBA =2F VboMsgBoxStyle = vbMsgBoxRtIReading
il WRA =& VhlM=snRnwStla F vhMsnRnySetForearonnd
Classes Members of VbMsgBoxResult
=2 VbDateTimeFormat = |E vbabort = |
=F VbDayOiWeek E vbCancel
=F VbFileAttribute E vblgnore
=F VbFirstWeekOfYear E vbNo -
=2 VbIMEStatus El vb Ok
=8 WbMsgBoxResult & vbRetry
=F VbMsgBoxStyle E vbYes ___|
2F VbQueryClose

Section 29.5: Avoid using SELECT or ACTIVATE

It is very rare that you'll ever want to use SELECT or Activate in your code, but some Excel methods do require a
worksheet or workbook to be activated before they'll work as expected.

If you're just starting to learn VBA, you'll often be suggested to record your actions using the macro recorder, then
go look at the code. For example, | recorded actions taken to enter a value in cell D3 on Sheet2, and the macro code
looks like this:

Option Explicit
Sub Macrol()

GoalKicker.com - Excel® VBA Notes for Professionals 103

(c) ketabton.com: The Digital Library

1

Macrol Macro

Sheets("Sheet2") .Select
Range("D3").Select

ActiveCell.FormulaR1C1 = "3.1415" "(see **note below)
Range("D4").Select
End Sub

Remember though, the macro recorder creates a line of code for EACH of your (user) actions. This includes clicking
on the worksheet tab to select Sheet2 (Sheets("Sheet2").Select), clicking on cell D3 before entering the value
(Range("D3") .Select), and using the Enter key (which is effectively "selecting" the cell below the currently selected
cell: Range("D4") .Select).

There are multiple issues with using .Select here:

The worksheet is not always specified. This happens if you don't switch worksheets while recording, and
means that the code will yield different results for different active worksheets.

.Select() is slow. Even if Application.ScreenUpdating is set to False, this is an unneccessary operation to
be processed.

.Select() is unruly. If Application.ScreenUpdating is left to True, Excel will actually select the cells, the
worksheet, the form... whatever it is you're working with. This is stressful to the eyes and really unpleasant to
watch.

.Select() will trigger listeners. This is a bit advanced already, but unless worked around, functions like
Worksheet_SelectionChange () will be triggered.

When you're coding in VBA, all of the "typing" actions (i.e. SELECT statements) are no longer necessary. Your code
may be reduced to a single statement to put the value in the cell:

'--- GOOD
ActiveWorkbook.Sheets("Sheet2").Range("D3").Value = 3.1415

'--- BETTER
Dim myWB As Workbook
Dim myWS As Worksheet

Dim myCell As Range

Set myWB = ThisWorkbook "*%* see NOTE2
Set myWS = myWB.Sheets("Sheet2")
Set myCell = myWS.Range("D3")

myCell.Value = 3.1415

(The BETTER example above shows using intermediate variables to separate different parts of the cell reference.
The GOOD example will always work just fine, but can be very cumbersome in much longer code modules and
more difficult to debug if one of the references is mistyped.)

**NOTE: the macro recorder makes many assumptions about the type of data you're entering, in this case entering
a string value as a formula to create the value. Your code doesn't have to do this and can simply assign a numerical
value directly to the cell as shown above.

**NOTE2: the recommended practice is to set your local workbook variable to ThisWorkbook instead of
ActiveWorkbook (unless you explicitly need it). The reason is your macro will generally need/use resources in
whatever workbook the VBA code originates and will NOT look outside of that workbook -- again, unless you

GoalKicker.com - Excel® VBA Notes for Professionals 104

(c) ketabton.com: The Digital Library

explicitly direct your code to work with another workbook. When you have multiple workbooks open in Excel, the
ActiveWorkbook is the one with the focus which may be different from the workbook being viewed in your VBA Editor.
So you think you're executing in a one workbook when you're really referencing another. ThisWorkbook refers to
the workbook containing the code being executed.

Section 29.6: Always define and set references to all
Workbooks and Sheets

When working with multiple open Workbooks, each of which may have multiple Sheets, it's safest to define and set
reference to all Workbooks and Sheets.

Don't rely on ActiveWorkbook or ActiveSheet as they might be changed by the user.

The following code example demonstrates how to copy a range from “Raw_Data” sheet in the “Data.x/sx” workbook
to “Refined_Data” sheet in the “Results.x/sx” workbook.

The procedure also demonstrates how to copy and paste without using the SELECT method.
Option Explicit

Sub CopyRanges_BetweenShts()

Dim wbSrc As Workbook
Dim wbDest As Workbook
Dim shtCopy As Worksheet
Dim shtPaste As Worksheet

1

set reference to all workbooks by name, don't rely on ActiveWorkbook
Set wbSrc = Workbooks("Data.xlsx")
Set wbDest = Workbooks("Results.xlsx")

1

set reference to all sheets by name, don't rely on ActiveSheet

Set shtCopy = wbSrc.Sheet1l '// "Raw_Data" sheet

Set shtPaste = wbDest.Sheet2 '// "Refined_Data") sheet

' copy range from "Data" workbook to "Results" workbook without using Select
shtCopy.Range("A1:C10") .Copy _

Destination:=shtPaste.Range("A1")

End Sub

Section 29.7: Use descriptive variable naming

Descriptive names and structure in your code help make comments unnecessary

Dim ductWidth As Double
Dim ductHeight As Double
Dim ductArea As Double

ductArea = ductWidth * ductHeight

is better than

Dim a, w, h

a=w+*h

GoalKicker.com - Excel® VBA Notes for Professionals 105

(c) ketabton.com: The Digital Library

This is especially helpful when you are copying data from one place to another, whether it's a cell, range, worksheet,
or workbook. Help yourself by using names such as these:

Dim myWB As Workbook
Dim srcWS As Worksheet
Dim destWS As Worksheet
Dim srcData As Range
Dim destData As Range

Set myWB = ActiveWorkbook

Set srcWS = myWB.Sheets("Sheet1")

Set destWS = myWB.Sheets("Sheet2")

Set srcData = srcWS.Range("A1:A10")
Set destData = destWS.Range("B11:B20")
destData = srcData

If you declare multiple variables in one line make sure to specify a type for every variable like:

Dim ductWidth As Double, ductHeight As Double, ductArea As Double

The following will only declare the last variable and the first ones will remain Variant:

Dim ductWidth, ductHeight, ductArea As Double

Section 29.8: Document Your Work

It's good practice to document your work for later use, especially if you are coding for a dynamic workload. Good
comments should explain why the code is doing something, not what the code is doing.

Function Bonus(EmployeeTitle as String) as Double
If EmployeeTitle = "Sales" Then
Bonus = 0 'Sales representatives receive commission instead of a bonus
Else
Bonus = .10
End If
End Function

If your code is so obscure that it requires comments to explain what it is doing, consider rewriting it to be more
clear instead of explaining it through comments. For example, instead of:

Sub CopySalesNumbers
Dim IncludeWeekends as Boolean

'Boolean values can be evaluated as an integer, -1 for True, 0 for False.
'This is used here to adjust the range from 5 to 7 rows if including weekends.
Range("A1:A" & 5 - (IncludeWeekends * 2)).Copy
Range("B1").PasteSpecial

End Sub

Clarify the code to be easier to follow, such as:

Sub CopySalesNumbers
Dim IncludeWeekends as Boolean
Dim DaysinWeek as Integer

If IncludeWeekends Then
DaysinWeek = 7

GoalKicker.com - Excel® VBA Notes for Professionals 106

(c) ketabton.com: The Digital Library

Else
DaysinWeek = 5
End If
Range("A1:A" & DaysinWeek).Copy
Range("B1").PasteSpecial
End Sub

Section 29.9: Error Handling

Good error handling prevents end users from seeing VBA runtime errors and helps the developer easily diagnose
and correct errors.

There are three main methods of Error Handling in VBA, two of which should be avoided for distributed programs
unless specifically required in the code.

On Error GoTo © 'Avoid using
or
On Error Resume Next 'Avoid using

Prefer using:

On Error GoTo <line> 'Prefer using

On Error GoTo 0

If no error handling is set in your code, On Error GoTo @ is the default error handler. In this mode, any runtime
errors will launch the typical VBA error message, allowing you to either end the code or enter debug mode,
identifying the source. While writing code, this method is the simplest and most useful, but it should always be
avoided for code that is distributed to end users, as this method is very unsightly and difficult for end users to
understand.

On Error Resume Next

On Error Resume Next will cause VBA to ignore any errors that are thrown at runtime for all lines following the
error call until the error handler has been changed. In very specific instances, this line can be useful, but it should
be avoided outside of these cases. For example, when launching a separate program from an Excel Macro, the On
Error Resume Next call can be useful if you are unsure whether or not the program is already open:

'"In this example, we open an instance of Powerpoint using the On Error Resume Next call
Dim PPApp As PowerPoint.Application

Dim PPPres As PowerPoint.Presentation

Dim PPSlide As PowerPoint.Slide

'Open PPT if not running, otherwise select active instance
On Error Resume Next
Set PPApp = GetObject(, "PowerPoint.Application")
On Error GoTo ErrHandler
If PPApp Is Nothing Then
'Open PowerPoint
Set PPApp = CreateObject("PowerPoint.Application")
PPApp.Visible = True
End If

GoalKicker.com - Excel® VBA Notes for Professionals 107

(c) ketabton.com: The Digital Library

Had we not used the On Error Resume Next call and the Powerpoint application was not already open, the
GetObject method would throw an error. Thus, On Error Resume Next was necessary to avoid creating two
instances of the application.

Note: It is also a best practice to immediately reset the error handler as soon as you no longer need the On Error

Resume Next call

On Error GoTo <line>

This method of error handling is recommended for all code that is distributed to other users. This allows the
programmer to control exactly how VBA handles an error by sending the code to the specified line. The tag can be
filled with any string (including numeric strings), and will send the code to the corresponding string that is followed
by a colon. Multiple error handling blocks can be used by making different calls of On Error GoTo <line>.The
subroutine below demonstrates the syntax of an On Error GoTo <line> call.

Note: It is essential that the Exit Sub line is placed above the first error handler and before every subsequent error
handler to prevent the code from naturally progressing into the block without an error being called. Thus, it is best
practice for function and readability to place error handlers at the end of a code block.

Sub YourMethodName ()
On Error GoTo errorHandler
' Insert code here
On Error GoTo secondErrorHandler

Exit Sub 'The exit sub line is essential, as the code will otherwise
‘continue running into the error handling block, likely causing an error

errorHandler:
MsgBox "Error " & Err.Number & ": " & Err.Description & " in " & _
VBE .ActiveCodePane.CodeModule, vbOKOnly, "Error"
Exit Sub
secondErrorHandler:

If Err.Number = 424 Then 'Object not found error (purely for illustration)
Application.ScreenUpdating = True
Application.EnableEvents = True
Exit Sub

Else
MsgBox "Error " & Err.Number & ": " & Err.Desctription
Application.ScreenUpdating = True
Application.EnableEvents = True
Exit Sub

End If

Exit Sub

End Sub

If you exit your method with your error handling code, ensure that you clean up:

¢ Undo anything that is partially completed

¢ Close files

* Reset screen updating

¢ Reset calculation mode

¢ Reset events

* Reset mouse pointer

¢ Call unload method on instances of objects, that persist after the End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 108

(c) ketabton.com: The Digital Library

e Reset status bar

Section 29.10: Never Assume The Worksheet

Even when all your work is directed at a single worksheet, it's still a very good practice to explicitly specify the
worksheet in your code. This habit makes it much easier to expand your code later, or to lift parts (or all) of a Sub or
Function to be re-used someplace else. Many developers establish a habit of (re)using the same local variable
name for a worksheet in their code, making re-use of that code even more straightforward.

As an example, the following code is ambiguous -- but works! -- as long the developer doesn't activate or change to
a different worksheet:

Option Explicit
Sub ShowTheTime()

'--- displays the current time and date in cell AT on the worksheet

Cells(1, 1).Value = Now() ' don't refer to Cells without a sheet reference!
End Sub

If Sheet1 is active, then cell A1 on Sheet1 will be filled with the current date and time. But if the user changes
worksheets for any reason, then the code will update whatever the worksheet is currently active. The destination
worksheet is ambiguous.

The best practice is to always identify which worksheet to which your code refers:

Option Explicit
Sub ShowTheTime()
'--- displays the current time and date in cell A1 on the worksheet
Dim myWB As Workbook
Set myWB = ThisWorkbook
Dim timestampSH As Worksheet
Set timestampSH = myWB.Sheets("Sheet1")
timestampSH.Cells(1, 1).Value = Now()
End Sub

The code above is clear in identifying both the workbook and the worksheet. While it may seem like overkill,
creating a good habit concerning target references will save you from future problems.

Section 29.11: Avoid re-purposing the names of Properties or
Methods as your variables

It is generally not considered 'best practice' to re-purpose the reserved names of Properties or Methods as the
name(s) of your own procedures and variables.

Bad Form - While the following is (strictly speaking) legal, working code the re-purposing of the Find method as well
as the Row, Column and Address properties can cause problems/conflicts with name ambiguity and is just plain
confusing in general.

Option Explicit
Sub find()
Dim row As Long, column As Long
Dim find As String, address As Range

find = "something”

With ThisWorkbook.Worksheets("Sheet1").Cells

GoalKicker.com - Excel® VBA Notes for Professionals 109

(c) ketabton.com: The Digital Library

Set address = .SpecialCells(x1CellTypelLastCell)
row = .find(what:=find, after:=address).row '< note .row not capitalized
column = .find(what:=find, after:=address).column '< note .column not capitalized

Debug.Print "The first 'something' is in " & .Cells(row, column).address(0, 0)
End With
End Sub

Good Form - With all of the reserved words renamed into close but unique approximations of the originals, any
potential naming conflicts have been avoided.

Option Explicit

Sub myFind()
Dim rw As Long, col As Long
Dim wht As String, lastCell As Range

wht = "something"

With ThisWorkbook.Worksheets("Sheet1").Cells
Set lastCell = .SpecialCells(x1CellTypelLastCell)
rw = .Find(What:=wht, After:=lastCell).Row "< note .Find and .Row
col = .Find(What:=wht, After:=lastCell).Column '« _Find and .Column

Debug.Print "The first 'something' is in " & .Cells(rw, col).Address(9, ©0)
End With
End Sub

While there may come a time when you want to intentionally rewrite a standard method or property to your own
specifications, those situations are few and far between. For the most part, stay away from reusing reserved names
for your own constructs.

Section 29.12: Avoid using ActiveCell or ActiveSheet in Excel

Using ActiveCell or ActiveSheet can be source of mistakes if (for any reason) the code is executed in the wrong
place.

ActiveCell.Value = "Hello"

'will place "Hello" in the cell that is currently selected
Cells(1, 1).Value = "Hello"

'will always place "Hello" in A1 of the currently selected sheet

ActiveSheet.Cells(1, 1).Value = "Hello"

'will place "Hello" in A1 of the currently selected sheet
Sheets("MySheetName").Cells(1, 1).Value = "Hello"

'will always place "Hello" in A1 of the sheet named "MySheetName"

¢ The use of Activex can create problems in long running macros if your user gets bored and clicks on another
worksheet or opens another workbook.

e |t can create problems if your code opens or creates another workbook.

e |t can create problems if your code uses Sheets("MyOtherSheet") .Select and you've forgotten which sheet
you were on before you start reading from or writing to it.

GoalKicker.com - Excel® VBA Notes for Professionals 10

(c) ketabton.com: The Digital Library

Section 29.13: WorksheetFunction object executes faster than
a UDF equivalent

VBA is compiled in run-time, which has a huge negative impact on it's performance, everything built-in will be faster,
try to use them.

As an example I'm comparing SUM and COUNTIF functions, but you can use if for anything you can solve with
WorkSheetFunctions.

A first attempt for those would be to loop through the range and process it cell by cell (using a range):

Sub UseRange()
Dim rng as Range
Dim Total As Double
Dim CountlLessThan®1 As Long

Total = @

CountLessThan@1 = ©

For Each rng in Sheets(1).Range("A1:A100")
Total = Total + rng.Value2
If rng.Value < 0.1 Then

CountLessThan@1 = CountlLessThan@1 + 1

End If

Next rng

Debug.Print Total & ", " & CountLessThan@1

End Sub

One improvement can be to store the range values in an array and process that:

Sub UseArray()
Dim DataToSummarize As Variant
Dim i As Long
Dim Total As Double
Dim CountlLessThan@1 As Long

DataToSummarize = Sheets(1).Range("A1:A100").Value2 'faster than .Value
Total = @
CountLessThan@1 = @

For i = 1 To 100
Total = Total + DataToSummarize(i, 1)
If DataToSummarize(i, 1) < 0.1 Then

CountLessThan®1 = CountLessThan@1 + 1

End If

Next i

Debug.Print Total & ", " & CountLessThan@1

End Sub

But instead of writing any loop you can use Application.Worksheetfunction which is very handy for executing
simple formulas:

Sub UseWorksheetFunction()
Dim Total As Double
Dim CountlLessThan®1 As Long

With Application.WorksheetFunction

Total = .Sum(Sheets(1).Range("A1:A100"))

CountLessThan@1 = .CountIf(Sheets(1).Range("A1:A100"), "<0.1")
End With

GoalKicker.com - Excel® VBA Notes for Professionals m

(c) ketabton.com: The Digital Library

End

Debug.Print Total & ", " & CountLessThan@1
Sub

Or, for more complex calculations you can even use Application.Evaluate:

Sub

End

UseEvaluate()
Dim Total As Double
Dim CountlLessThan®1 As Long

With Application
Total = .Evaluate("SUM(" & Sheet1.Range("A1:A100").Address(_
external:=True) & ")")
CountLessThan@1 = .Evaluate("COUNTIF('Sheet1'!A1:A100,""<0.1"")")
End With

Debug.Print Total & ", " & CountLessThan@1
Sub

And finally, running above Subs 25,000 times each, here is the average (5 tests) time in milliseconds (of course it'll
be different on each pc, but compared to each other they'll behave similarly):

APwnN e

UseWorksheetFunction: 2156 ms
UseArray: 2219 ms (+ 3 %)
UseEvaluate: 4693 ms (+ 118 %)
UseRange: 6530 ms (+ 203 %)

GoalKicker.com - Excel® VBA Notes for Professionals 12

(c) ketabton.com: The Digital Library

Chapter 30: Excel VBA Tips and Tricks
Section 30.1: Using xIVeryHidden Sheets

Worksheets in excel have three options for the Visible property. These options are represented by constants in
the x1SheetVisibility enumeration and are as follows:

1. x1Visible or x1SheetVisible value: -1 (the default for new sheets)
2. x1Hidden or x1SheetHidden value: @
3. x1VeryHidden x1SheetVeryHidden value: 2

Visible sheets represent the default visibility for sheets. They are visible in the sheet tab bar and can be freely
selected and viewed. Hidden sheets are hidden from the sheet tab bar and are thus not selectable. However,
hidden sheets can be unhidden from the excel window by right clicking on the sheet tabs and selecting "Unhide"

Very Hidden sheets, on the other hand, are only accessible through the Visual Basic Editor. This makes them an
incredibly useful tool for storing data across instances of excel as well as storing data that should be hidden from
end users. The sheets can be accessed by named reference within VBA code, allowing easy use of the stored data.

To manually change a worksheet's .Visible property to xISheetVeryHidden, open the VBE's Properties window
(_F4), select the worksheet you want to change and use the drop-down in the thirteenth row to make your
selection.

Properties - Sheet3 x|
|5heet3 Worksheet j

Alphabetic | Categorized

(Mame) Sheet3

DisplayPageBreaks False

DisplayRightToleft False

EnableAutoFilter False

EnableCalculation True

EnableFormatConditionsCaloul: True

EnableOutlining False

EnablePivotTable False

EnableSelection 0 - xiNoRestrictions

Mame mercredi

Scrolldrea

StandardWWidth 3.43

|2

-1 - wlSheetVisible
0 - ¥lSheetHidden

2 - wlSheetVeryHidden

To change a worksheet's .Visible property to xISheetVeryHidden' in code, similarly access the .Visible property and
assign a new value.

with Sheet3
.Visible = x1SheetVeryHidden
end with

' Both xIVeryHidden and xISheetVeryHidden return a numerical value of 2 (they are interchangeable).

GoalKicker.com - Excel® VBA Notes for Professionals 13

(c) ketabton.com: The Digital Library

Section 30.2: Using Strings with Delimiters in Place of Dynamic
Arrays

Using Dynamic Arrays in VBA can be quite clunky and time intensive over very large data sets. When storing simple
data types in a dynamic array (Strings, Numbers, Booleans etc.), one can avoid the ReDim Preserve statements
required of dynamic arrays in VBA by using the Split() function with some clever string procedures. For example,
we will look at a loop that adds a series of values from a range to a string based on some conditions, then uses that
string to populate the values of a ListBox.

Private Sub UserForm_Initialize()
Dim Count As Long, DataString As String, Delimiter As String
For Count = 1 To ActiveSheet.UsedRows.Count

If ActiveSheet.Range("A" & Count).Value <> "Your Condition" Then
RowString = RowString & Delimiter & ActiveSheet.Range("A" & Count).Value

Delimiter = "><" 'By setting the delimiter here in the loop, you prevent an extra occurance
of the delimiter within the string
End If
Next Count

ListBox1.List = Split(DataString, Delimiter)

End Sub

The Delimiter string itself can be set to any value, but it is prudent to choose a value which will not naturally occur
within the set. Say, for example, you were processing a column of dates. In that case, using ., -, or / would be
unwise as delimiters, as the dates could be formatted to use any one of these, generating more data points than
you anticipated.

Note: There are limitations to using this method (namely the maximum length of strings), so it should be used with
caution in cases of very large datasets. This is not necessarily the fastest or most effective method for creating
dynamic arrays in VBA, but it is a viable alternative.

Section 30.3: Worksheet .Name, .Index or .CodeName

We know that 'best practise' dictates that a range object should have its parent worksheet explicitly referenced. A
worksheet can be referred to by its .Name property, numerical .Index property or its .CodeName property but a
user can reorder the worksheet queue by simply dragging a name tab or rename the worksheet with a double-click
on the same tab and some typing in an unprotected workbook.

Consider a standard three worksheet. You have renamed the three worksheets Monday, Tuesday and Wednesday
in that order and coded VBA sub procedures that reference these. Now consider that one user comes along and
decides that Monday belongs at the end of the worksheet queue then another comes along and decides that the
worksheet names look better in French. You now have a workbook with a worksheet name tab queue that looks
something like the following.

|4 4> v| mardi . mercredi | lundi %3

| Ready | 7 |

If you had used either of the following worksheet reference methods, your code would now be broken.

'reference worksheet by .Name
with worksheets("Monday")

GoalKicker.com - Excel® VBA Notes for Professionals 14

(c) ketabton.com: The Digital Library

'operation code here; for example:
.Range(.Cells(2, "A"), .Cells(.Rows.Count, "A").End(x1lUp))
end with

[l
-

'reference worksheet by ordinal .Index
with worksheets(1)

'operation code here; for example:

.Range(.Cells(2, "A"), .Cells(.Rows.Count, "A").End(x1lUp))
end with

]
-

Both the original order and the original worksheet name have been compromised. However, if you had used the
worksheet's .CodeName property, your sub procedure would still be operational

with Sheet1

'operation code here; for example:

.Range(.Cells(2, "A"), .Cells(.Rows.Count, "A").End(x1lUp)) = 1
end with

The following image shows the VBA Project window ([Ctrl]+R) which lists the worksheets by .CodeName then by
.Name (in brackets). The order they are displayed does not change; the ordinal .Index is taken by the order they are
displayed in the name tab queue in the worksheet window.

Project - VBAProject x|
== 4 5

=83 VBAProject (lundixish)
[E]-E5 Microsoft Excel Objects
] sheet1 (undi)
Sheet2 (mardi)
B Sheet3 (mercredi)
48] ThisWorkbook

While it is uncommon to rename a .CodeName, it is not impossible. Simply open the VBE's Properties window ([F4]).

GoalKicker.com - Excel® VBA Notes for Professionals 15

(c) ketabton.com: The Digital Library

Properties - Sheetl
|Sheet1 Workshest

L] ¢

Alphabetic | Categorized]

(Mame) Sheetl
DisplayPageBreaks False
DisplayRightToleft False

EnableAutoFilter False
EnableCalculation True
EnableFormatConditionst True
EnableCutlining False
EnablePivotTable False
EnableSelection 0 - xlNoRestrictions
Name MW

Scrollarea

StandardWidth 3.43

Visible -1 - ulSheetVisible

The worksheet .CodeName is in the first row. The worksheet's .Name is in the tenth. Both are editable.

Section 30.4: Double Click Event for Excel Shapes

By default, Shapes in Excel do not have a specific way to handle single vs. double clicks, containing only the
"OnAction" property to allow you to handle clicks. However, there may be instances where your code requires you
to act differently (or exclusively) on a double click. The following subroutine can be added into your VBA project
and, when set as the OnAction routine for your shape, allow you to act on double clicks.

Public Const DOUBLECLICK_WAIT as Double = 8.25 'Modify to adjust click delay
Public LastClickObj As String, LastClickTime As Date

Sub ShapeDoubleClick()

If LastClickObj = "" Then
LastClickObj = Application.Caller
LastClickTime = CDbl(Timer)
Else
If CDb1l(Timer) - LastClickTime > DOUBLECLICK_WAIT Then
LastClickObj = Application.Caller
LastClickTime = CDbl(Timer)
Else
If LastClickObj = Application.Caller Then
"Your desired Double Click code here
LastClickObj = ""
Else
LastClickObj = Application.Caller
LastClickTime = CDbl(Timer)
End If
End If
End If

End Sub

This routine will cause the shape to functionally ignore the first click, only running your desired code on the second
click within the specified time span.

GoalKicker.com - Excel® VBA Notes for Professionals 16

(c) ketabton.com: The Digital Library
Section 30.5: Open File Dialog - Multiple Files

This subroutine is a quick example on how to allow a user to select multiple files and then do something with those
file paths, such as get the file names and send it to the console via debug.print.

Option Explicit

Sub OpenMultipleFiles()
Dim fd As FileDialog
Dim fileChosen As Integer
Dim i As Integer
Dim basename As String
Dim fso As Variant
Set fso = CreateObject("Scripting.FileSystemObject")
Set fd = Application.FileDialog(msoFileDialogFilePicker)
basename = fso.getBaseName(ActiveWorkbook .Name)
fd.InitialFileName = ActiveWorkbook.Path ' Set Default Location to the Active Workbook Path
fd.InitialView = msoFileDialogViewlList
fd.AllowMultiSelect = True

fileChosen = fd.Show
If fileChosen = -1 Then
'open each of the files chosen
For i = 1 To fd.SelectedItems.Count
Debug.Print (fd.SelectedItems(i))
Dim fileName As String
' do something with the files.
fileName = fso.getFileName(fd.SelectedItems(i))
Debug.Print (fileName)
Next i
End If

End Sub

GoalKicker.com - Excel® VBA Notes for Professionals 17

(c) ketabton.com: The Digital Library

Chapter 31: Common Mistakes

Section 31.1: Qualifying References

When referring to a worksheet, a range or individual cells, it is important to fully qualify the reference.
For example:

ThisWorkbook .Worksheets("Sheet1").Range(Cells(1, 2), Cells(2, 3)).Copy

Is not fully qualified: The Cells references do not have a workbook and worksheet associated with them. Without
an explicit reference, Cells refers to the ActiveSheet by default. So this code will fail (produce incorrect results) if a
worksheet other than Sheet1 is the current ActiveSheet.

The easiest way to correct this is to use a With statement as follows:

With ThisWorkbook.Worksheets("Sheet1")
.Range(.Cells(1, 2), .Cells(2, 3)).Copy
End With

Alternatively, you can use a Worksheet variable. (This will most likely be preferred method if your code needs to
reference multiple Worksheets, like copying data from one sheet to another.)

Dim ws1 As Worksheet
Set ws1 = ThisWorkbook.Worksheets("Sheet1")
ws1.Range(ws1.Cells(1, 2), ws1.Cells(2, 3)).Copy

Another frequent problem is referencing the Worksheets collection without qualifying the Workbook. For example:
Worksheets("Sheet1").Copy

The worksheet Sheet1 is not fully qualified, and lacks a workbook. This could fail if multiple workbooks are
referenced in the code. Instead, use one of the following:

ThisWorkbook .Worksheets("Sheet1") '<--ThisWorkbook refers to the workbook containing
"the running VBA code
Workbooks("Book1") .Worksheets("Sheet1") '<--Where Bookl is the workbook containing Sheet1

However, avoid using the following:

ActiveWorkbook.Worksheets("Sheet1") '<--Valid, but if another workbook is activated
"the reference will be changed

Similarly for range objects, if not explicitly qualified, the range will refer to the currently active sheet:
Range("al")
Is the same as:

ActiveSheet.Range("al")

GoalKicker.com - Excel® VBA Notes for Professionals 18

(c) ketabton.com: The Digital Library

Section 31.2: Deleting rows or columns in a loop

If you want to delete rows (or columns) in a loop, you should always loop starting from the end of range and move
back in every step. In case of using the code:

Dim i As Long
With Workbooks("Book1").Worksheets("Sheet1")
For i = 1 To 4
If IsEmpty(.Cells(i, 1)) Then .Rows(i).Delete
Next i
End With

You will miss some rows. For example, if the code deletes row 3, then row 4 becomes row 3. However, variable i
will change to 4. So, in this case the code will miss one row and check another, which wasn't in range previously.

The right code would be

Dim i As Long
With Workbooks("Book1").Worksheets("Sheet1")
For i = 4 To 1 Step -1
If IsEmpty(.Cells(i, 1)) Then .Rows(i).Delete
Next i
End With

Section 31.3: ActiveWorkbook vs. Thisworkbook

ActiveWorkbook and ThisWorkbook sometimes get used interchangeably by new users of VBA without fully
understanding which each object relates to, this can cause undesired behaviour at run-time. Both of these objects
belong to the Application Object

The ActiveWorkbook object refers to the workbook that is currently in the top-most view of the Excel application
object at the time of execution. (e.g. The workbook that you can see and interact with at the point when this object is
referenced)

Sub ActiveWorkbookExample()
'"// Let's assume that 'Other Workbook.xIlsx' has "Bar" written in AT.

ActiveWorkbook.ActiveSheet.Range("A1").Value = "Foo"
Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints "Foo"

Workbooks.Open("C:\Users\BloggsJ\Other Workbook.xlsx")
Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints "Bar"

Workbooks.Add 1
Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints nothing

End Sub

The ThisWorkbook object refers to the workbook in which the code belongs to at the time it is being executed.

Sub ThisWorkbookExample()
'// Let's assume to begin that this code is in the same workbook that is currently active

ActiveWorkbook.Sheet1.Range("A1").Value = "Foo"
Workbooks.Add 1

GoalKicker.com - Excel® VBA Notes for Professionals 19

(c) ketabton.com: The Digital Library

ActiveWorkbook.ActiveSheet.Range("A1").Value = "Bar"

Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints "Bar"
Debug.Print ThisWorkbook.Sheet1.Range("A1").Value '// Prints "Foo"

End Sub

Section 31.4: Single Document Interface Versus Multiple
Document Interfaces

Be aware that Microsoft Excel 2013 (and higher) uses Single Document Interface (SDI) and that Excel 2010
(And below) uses Multiple Document Interfaces (MDI).

This implies that for Excel 2013 (SDI), each workbook in a single instance of Excel contains its own ribbon Ul:

< - Book? - Exeel .3 = AFR
HO |INSE PAG FORE DAT BEVI VE DBV ADD Tes . u HO |INSE PAG FOR DAT B85V VIE DBV ADD Tes - =
=4 %, A 9 B Condational Formatting - Til ® —= X A %, P Conditional Formatting -] "
Paste - - Ford Alignment Nusmber ?mealmhb:*- Cells Edifing Pagie - Font Alignement Mumbes :"':‘TMMMHT“'!P Cells Edéting
: » . . . o Cedl Sryles - . . - ~ . . A Coll Styles = . .
Chipboard e o | Cliphomd @ Sl A
" 5 villal = & v
-1 B c o E G H - A E = u} E i G M -
1 1]
F 2
3 -
'l F]
5 5
] &
7 T
B &
])
1 L]
i1 11
2 12
13 13
14 14
15 15
16 16
i7 i7
15 18
19 19
20 20
21 21
At TH.=n -
Sheatl @ i ' Shegtl & il 3

+ 100 REaD? 1

Conversely for Excel 2010, each workbook in a single instance of Excel utilized a common ribbon Ul (MDI):

GoalKicker.com - Excel® VBA Notes for Professionals 120

(c) ketabton.com: The Digital Library

..x_! el ¥ Bleorosclt Excel == =5
“ Hooe | B Pegrlayout Formoln Dets Review View Dewloper Rdddns. Team 7
=] - LT} = T .
s Lt S W R ar whap Test Grevtrsd G P'_ = &> e 5 .'-’"r }}
Iy i e ™ ouete + | 3 7
Fate B I . e A E W O EMergeicenmer % - % v 0 2 Condtional Feemsd el | . fert & Pand &
: " 3 v = 4 = I8 Hveo d o Formatting = & Tsnde » Shyée = | (S Format = JF= gagere Spieey -

Liagrimass

R R S TR SR SN

b | g e T] e L s e
pd A - R e~ PRl el gt
AR RS e e (e e e e e e
=k P I~ Er e =R R TS TR =

5 - |25
MU0 Dheett Dot oheets B de PR M M Sheetl - Sheetd Swetd T3
Ready | 7] o[O3 58 w00 (- +

This raise some important issues if you want to migrate a VBA code (2010 <->2013) that interact with the Ribbon.

A procedure has to be created to update ribbon Ul controls in the same state across all workbooks for
Excel 2013 and Higher.

Note that :

1. All Excel application-level window methods, events, and properties remain unaffected.
(Application.ActiveWindow, Application.Windows ...)

2. In Excel 2013 and higher (SDI) all of the workbook-level window methods, events, and properties now
operate on the top level window. It is possible to retrieve the handle of this top level window with

Application.Hwnd

To get more details, see the source of this example: MSDN.

This also causes some trouble with modeless userforms. See Here for a solution.

GoalKicker.com - Excel® VBA Notes for Professionals 121

(c) ketabton.com: The Digital Library

Credits

Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,
more changes can be sent to web@petercv.com for new content to be published or updated

Adam Chapter 4

Alexis Olson Chapter 29

Alon Adler Chapter 2

Andy Terra Chapters 5 and 30
Branislav Kollar Chapters 1, 4 and 29
Byron Wall Chapter 21

Captain Grumpy
Chel

Chapters 18 and 20
Chapters 27 and 29

Cody G. Chapters 1, 28, 29 and 30
Comintern Chapter 29

curious Chapter 14

Doug Coats Chapters 1,4 and 12
EEM Chapter 1

Egan Wolf Chapter 31

Etheur Chapter 28

Excel Developers Chapter 11

FreeMan Chapter 29

genespos Chapter 29

Gordon Bell Chapters 1 and 31
Gregory Chapter 28

Hubisan Chapters 2, 14 and 29
Jeeped Chapters 8, 18, 29 and 30
jlookup Chapter 18

|oel Spolsky Chapters 1,4 and 20
Julian Kuchlbauer Chapter 28

Kaz Chapter 1

Kyle Chapters 28 and 29

Maté Juhasz Chapter 29

Macro Man Chapters 1, 29, 30 and 31
Malick Chapters 1, 8, 18, 29 and 31
Masoud Chapter 26

Miguel_Ryu Chapter 2

Mike Chapter 24

Migi180 Chapter 14

Munkeeface Chapter 29

paul bica Chapters 14, 26 and 29
PeterT Chapters 10, 17 and 29

Portland Runner
POOH

Chapters 5 and 29
Chapter 29

quadrature Chapters 7 and 15

R3uK Chapters 6 and 14

RGA Chapters 1, 14, 23, 28, 29 and 30
Robby Chapter 24

Ron McMahon Chapter 28

Sgdva Chapter 19

Shahin Chapter 2

Shai Rado Chapters 1,12, 14 and 29

GoalKicker.com - Excel® VBA Notes for Professionals

122

(c) ketabton.com: The Digital Library

Slai Chapters 8 and 14
Stefan Pinnow Chapter 29

SteveES Chapter 3

Steven Schroeder Chapters 28 and 29
SWa Chapter 31

T.M. Chapters 7, 22 and 26
TheGuyThatDoesn'tKknowMuch Chapter 27
ThunderFrame Chapter 29

Toast Chapters 1, 28 and 31
user3561813 Chapter 8

Vegard Chapters 4 and 8
Verzweifler Chapter 29

Vityata Chapter 13

Zsmaster Chapters 9, 16 and 25

GoalKicker.com - Excel® VBA Notes for Professionals

123

(c) ketabton.com: The Digital Library

You may also like

.NET
Framework

Notes for Professionals

100+ pages

GodlKIdcer.l:Duf;]:‘ TR

Free Progrommiéng: 8 lgrsr

Framework

Notes for Professionals

80+ pages

Free Frogramming)

GoalKicker.com iy

Notes for Professionals

400+ pages

GoalKicker.com "o
Free Progromming Books

CH

Notes for Professionals

700+ page

GDﬁlKld(Er.I:Dgl‘ e non e g

Free Progromming B

Microsoft
SQL Server

Notes for Professionals

200+ pages

rits and Tricks

GoalKicker.com

Free Progromming Book

VBA

Notes for Professionals

_|100+ pages

s and Iricks

GoalKicker.com
Erae Programmin

HTMLS

Notes for Professionals

al b

100+ pages

PowerShell

Notes for Professionals

100+ pages

1ts and ricks

GoalKicker.com

Free Progromméng Books

Visual Basic
Nc-tes. foNr PE;I;onals

100+ pages

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

