

HTML & CSS:
The Complete Reference,

Fifth Edition

About the Author
Thomas A. Powell (tpowell@pint.com) is a long-time
industry veteran. After an early stint at CERFnet in the
early ‘90s, he founded Powell Internet Consulting (later
renamed PINT) in 1994, a Web design and consulting services
firm. Today, PINT (pint.com) provides Web development,
design, and consulting services to large and small corporations
all over the United States in a variety of industries.

Beyond his involvement at PINT, Thomas is heavily
involved in the academic community. He developed the
University of California, San Diego Extension Web Publishing
program in the late 1990s and continues to teach classes there
in Web development and design. He is also an instructor for
the UCSD Computer Science Department, where he teaches
classes in Web development and the theory of programming
languages.

Mr. Powell is well published, and his work has appeared
in numerous trade publications. He continues to publish
regularly in Network World. He also has published numerous
books on Web technology and design, including Ajax: The
Complete Reference, JavaScript: The Complete Reference, and
many others. His books have been translated into over
12 languages and are used around the world both in industry
and college settings.

About the Technical Editor
James H. (Jim) Pence is a full-time writer, editor, speaker,
singer, and performance chalk artist. Jim broke into book
publishing in 2001 with How to Do Everything with HTML,
a how-to book on Web authoring, written “by a nontechie for
nontechies,” and published by McGraw-Hill Professional. He
followed this book the same year with another book for
McGraw-Hill: Cascading Style Sheets: A Beginner’s Guide.
McGraw-Hill published a second edition of Jim’s HTML
book, re-titled How to Do Everything with HTML & XHTML,
in 2003.

Jim is also a published novelist. He is the author of Blind
Sight (Tyndale, 2003), a suspense/thriller novel set in the
mind-control cults, and The Angel (Kregel, 2006), set against
the backdrop of the euthanasia and physician-assisted suicide
movements. Jim moved into “true crime” writing with his
latest book, Terror by Night (Tyndale, 2009). Terror by Night is
the true story of the brutal 2008 murders of the Caffey family
in Emory, Texas. You can learn more about Jim’s books and
other creative projects at his Web site: www.jamespence.com.

HTML & CSS:
The Complete Reference,

Fifth Edition
Thomas A. Powell

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-174170-5

MHID: 0-07-174170-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-149629-2, MHID: 0-07-149629-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of
the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contents at a Glance

 Part I Core Markup

 1 Traditional HTML and XHTML . 3
 2 Introducing HTML5 . 55
 3 HTML and XHTML Element Reference . 133

 Part II Core Style

 4 Introduction to CSS . 429
 5 CSS Syntax and Property Reference . 521
 6 CSS3 Proprietary and Emerging Features Reference 613

 Part III Appendixes

 A Character Entities . 727
 B Fonts . 751
 C Colors . 765
 D URLs . 783
 E Reading a Document Type Definition . 801

 Index . 809

v

This page intentionally left blank

Contents
Acknowledgments . xxi
Introduction . xxiii

 Part I Core Markup

 1 Traditional HTML and XHTML . 3
First Look at HTML and XHTML . 3
Hello HTML and XHTML World . 6

Viewing Markup Locally . 8
Viewing Markup with a Web Server . 10

HTML and XHTML: Version History . 14
HTML and XHTML DTDs: The Specifications Up Close 16

Document Type Statements and Language Versions 18
(X)HTML Document Structure . 20

The Document Head . 23
The Document Body . 28

Browsers and (X)HTML . 31
Validation . 37
The Doctype Switch and Browser Rendering Modes 39

The Rules of (X)HTML . 41
HTML Is Not Case Sensitive, XHTML Is . 41
Attribute Values May Be Case Sensitive . 42
(X)HTML Is Sensitive to a Single Whitespace Character 42
(X)HTML Follows a Content Model . 43
Elements Should Have Close Tags Unless Empty 43
Unused Elements May Minimize . 43
Elements Should Nest . 43
Attributes Should Be Quoted . 44
Entities Should Be Used for Special Characters 44
Browsers Ignore Unknown Attributes and Elements 44

Major Themes of (X)HTML . 45
Logical and Physical Markup . 45
Standards vs. Practice . 46
Myths and Misconceptions About HTML and XHTML 47

The Future of Markup—Two Paths? . 49
XHTML: Web Page Markup XML Style . 49
HTML5: Back to the Future . 52

Summary . 53

 2 Introducing HTML5 . 55
Hello HTML5 . 55
Loose Syntax Returns . 58
XHTML5 . 60

vii

 viii HTML & CSS: The Complete Reference viii HTML & CSS: The Complete Reference

HTML5: Embracing the Reality of Web Markup . 62
Presentational Markup Removed and Redefined . 63

Out with the Old Elements . 64
In with the New Elements . 66
Sample of New Attributes for HTML5 . 66

HTML5 Document Structure Changes . 69
Adding Semantics . 75

Marking Text . 75
Indicating Dates and Time . 76
Inserting Figures . 76
Specifying Navigation . 77

HTML5’s Open Media Effort . 78
<video> . 78
<audio> . 80
Media Considerations . 82

Client-Side Graphics with <canvas> . 82
Drawing and Styling Lines and Shapes . 85
Drawing Arcs and Curves . 90
Scaling, Rotating, and Translating Drawings . 93
Using Bitmaps in Drawings . 97
Text Support for canvas . 98
<canvas> Conclusions . 101

HTML5 Form Changes . 101
New Form Field Types . 101
Validating Data Entry . 104
Autocomplete Lists . 105
Miscellaneous Usability Improvements . 105

Emerging Elements and Attributes to Support Web Applications 106
menu Element Repurposed . 106
command Element . 108
meter and progress Elements . 109
details Element . 109
output Element . 110
The Uncertain Future of Frames . 110
The draggable Attribute and the Drag and Drop API 112
contenteditable Attribute . 114
spellcheck Attribute . 115

Internationalization Improvements . 116
HTML5 Metadata Changes . 116

data-X Attributes . 116
Microdata . 117

HTML5: Beyond Markup . 120
defer Attribute . 121
HTML, JavaScript, and the DOM Renewed . 121
Standardizing and Extending Ad Hoc JavaScript Conventions 125

Major HTML5 Themes . 126
HTML5 Today or Tomorrow? . 126
HTML5 as a Catch-All . 130
HTML5: Web Politics as Usual . 131
HTML5: Imperfect Improvement . 131

Summary . 132

 3 HTML and XHTML Element Reference . 133
Flavors of HTML and XHTML . 133
Core Attributes Reference . 135

class . 136
id . 136
style . 137
title . 138

Language Attributes Reference . 138
dir . 138
lang . 139

Other Common Attributes Reference . 139
accesskey . 139
align . 140
contenteditable . 140
datafld . 141
dataformatas . 141
datasrc . 141
disabled . 141
height . 141
hidefocus . 141
hspace . 141
language . 141
tabindex . 142
unselectable . 142
vspace . 142
width . 142

Common HTML5 Attributes Reference . 142
accesskey . 142
contenteditable . 143
contextmenu . 143
data-X (Custom Data Attributes) . 143
draggable . 144
hidden . 144
itemid . 144
itemprop . 144
itemref . 145
itemscope . 145
itemtype . 146
spellcheck . 146
tabindex . 146

Event Attributes Reference . 146
HTML5 Events . 146
Internet Explorer’s Extended Event Attributes 147

HTML Element Reference . 154
<!-- ... --> (Comment) . 155
<!-- .[].. --> (Conditional Comment) . 155
<!DOCTYPE> (Document Type Definition) 157
<a> (Anchor) . 158
<abbr> (Abbreviation) . 164
<acronym> (Acronym) . 166

 C o n t e n t s ix

 x HTML & CSS: The Complete Reference x HTML & CSS: The Complete Reference

<address> (Address) . 168
<applet> (Java Applet) . 169
<area> (Image Map Area) . 171
<article> (Article) . 175
<aside> (Aside) . 176
<audio> (Audio) . 177
 (Bold) . 179
<base> (Base URL) . 181
<basefont> (Base Font) . 182
<bdo> (Bidirectional Override) . 183
<bgsound> (Background Sound) . 185
<big> (Big Font) . 186
<blink> (Blinking Text) . 187
<blockquote> (Block Quote) . 188
<body> (Document Body) . 190

 (Line Break) . 193
<button> (Form Button) . 195
<canvas> (Canvas for Drawing) . 198
<caption> (Table Caption) . 208
<center> (Center Alignment) . 210
<cite> (Citation) . 211
<code> (Code Listing) . 213
<col> (Table Column) . 214
<colgroup> (Table Column Group) . 216
<command> (Command) . 219
<comment> (Comment Information) . 220
<datalist> (List of Prefill Data) . 220
<dd> (Definition Description in a Definition List

or Content in Details or Figure) . 222
 (Deleted Text) . 224
<details> (Additional Details) . 227
<dfn> (Definition) . 228
<dir> (Directory List) . 230
<div> (Division) . 231
<dl> (Definition List) . 233
<dt> (Term in a Definition List or

Caption in Figure or Details) . 236
 (Emphasis) . 238
<embed> (Embedded Object) . 240
<fieldset> (Form Field Grouping) . 242
<figure> (Figure) . 244
 (Font Definition) . 246
<footer> (Footer) . 248
<form> (Form for User Input) . 249
<frame> (Window Region) . 252
<frameset> (Frameset Definition) . 255
<h1> through <h6> (Headings) . 258
<head> (Document Head) . 260
<header> (Header) . 261
<hgroup> (Header Group) . 263

<hr> (Horizontal Rule) . 265
<html> (HTML Document) . 267
<i> (Italic) . 269
<iframe> (Inline Frame) . 270
<ilayer> (Inflow Layer) . 274
 (Image) . 276
<input> (Input Form Control) . 279
<ins> (Inserted Text) . 287
<isindex> (Index Prompt) . 289
<kbd> (Keyboard Input) . 291
<keygen> (Key Pair Generation) . 292
<label> (Form Control Label) . 294
<layer> (Positioned Layer) . 296
<legend> (Descriptive Legend) . 298
 (List Item) . 300
<link> (Link to External Files or Set Relationships) 303
<listing> (Code Listing) . 311
<map> (Client-Side Image Map) . 312
<mark> (Marked Text) . 314
<marquee> (Marquee Display) . 316
<menu> (Menu List or Command Menu) . 318
<meta> (Meta-Information) . 320
<meter> (Scalar Gauge) . 323
<multicol> (Multiple Column Text) . 325
<nav> (Navigation) . 326
<nobr> (No Line Breaks) . 327
<noembed> (No Embedded Media Support) 328
<noframes> (No Frame Support Content) . 329
<noscript> (No Script Support Content) . 330
<object> (Embedded Object) . 331
 (Ordered List) . 335
<optgroup> (Option Grouping) . 338
<option> (Option in Selection List) . 339
<output> (Form Output) . 341
<p> (Paragraph) . 343
<param> (Object Parameter) . 345
<plaintext> (Plain Text) . 347
<pre> (Preformatted Text) . 348
<progress> (Progress Indicator) . 350
<q> (Quote) . 351
<rp> (Ruby Parentheses) . 353
<rt> (Ruby Text) . 355
<ruby> (Ruby Annotation) . 357
<s> (Strikethrough) . 359
<samp> (Sample Text) . 360
<script> (Scripting) . 362
<section> (Section) . 365
<select> (Selection List) . 366
<small> (Small Text) . 369
<source> (Source) . 371

 C o n t e n t s xi

 xii HTML & CSS: The Complete Reference xii HTML & CSS: The Complete Reference

<spacer> (Extra Space) . 373
 (Text Span) . 374
<strike> (Strikeout Text) . 376
 (Strong Emphasis) . 377
<style> (Style Information) . 379
<sub> (Subscript) . 381
<sup> (Superscript) . 383
<table> (Table) . 385
<tbody> (Table Body) . 389
<td> (Table Data) . 392
<textarea> (Multiline Text Input) . 396
<tfoot> (Table Footer) . 399
<th> (Table Header) . 402
<thead> (Table Header) . 405
<time> (Time) . 408
<title> (Document Title) . 410
<tr> (Table Row) . 411
<tt> (Teletype Text) . 414
<u> (Underline) . 415
 (Unordered List) . 417
<var> (Variable) . 419
<video> (Video) . 421
<wbr> (Word Break) . 423
<xml> (XML Data Island) . 424
<xmp> (Example) . 425

 Part II Core Style

 4 Introduction to CSS . 429
Presentational HTML . 429
The Slow Rise of CSS . 430
First Look at CSS . 432
Hello CSS World . 438
CSS Versions . 440

Proprietary CSS . 440
CSS Relationship with Markup . 442

The Specification of CSS . 443
CSS Error Handling . 445
Validating CSS . 447
Breaking the Rules Purposefully? . 450

Applying Style to a Document . 452
Linking to a Style Sheet . 452
Embedding Style Sheets . 456
Importing Style Sheets . 458
Inline Styles . 459

Media Types . 461
Printer-Specific CSS . 463

Alternative Styles . 464
User Styles . 466

Document Structure and CSS Inheritance . 468
!important Override . 470

Selectors . 470
Element Selectors . 471
id Selectors . 471
class Rules . 473
Contextual Selection . 476
Attribute Selectors . 479
Pseudo-Element Selectors . 484
Pseudo-Class Selectors . 487

CSS Properties Preview . 500
Measurements and Values . 502
CSS and (X)HTML Elements Fundamentals . 506

Physical Markup and Overriding Expected Results 506
Are <div> and the Most Popular Tags? 507
Changing Element Types with display . 508
Controlling White Space . 512

Major Themes of CSS . 513
Separation of Structure and Style . 514
CSS: More Appropriate and Powerful for Presentation 516
Cross-Browser CSS Madness . 517
Myths and Misconceptions Related to CSS . 517

Summary . 519

 5 CSS Syntax and Property Reference . 521
CSS Versions . 521
CSS Basics . 521
Style Inclusion Methods . 524

Linked Styles . 524
Embedded Styles . 526
Imported Styles—@import . 526
Inline Styles . 527

CSS Measurements . 527
CSS Strings and Keywords . 529

Counters . 530
CSS Color Values . 530
CSS Selectors . 533
Miscellaneous CSS Constructs . 539

/* comments */ . 539
@charset . 540
@font-face . 540
@media . 541
@page . 541
!important . 542

CSS1 and CSS 2.1 Properties . 542
background . 543
background-attachment . 543
background-color . 544
background-image . 544
background-position . 545

 C o n t e n t s xiii

 xiv HTML & CSS: The Complete Reference xiv HTML & CSS: The Complete Reference

background-repeat . 546
border . 547
border-bottom . 547
border-bottom-color . 548
border-bottom-style . 548
border-bottom-width . 548
border-collapse . 549
border-color . 549
border-left . 550
border-left-color . 551
border-left-style . 551
border-left-width . 552
border-right . 552
border-right-color . 552
border-right-style . 553
border-right-width . 553
border-spacing . 553
border-style . 554
border-top . 556
border-top-color . 556
border-top-style . 557
border-top-width . 557
border-width . 557
bottom . 559
caption-side . 559
clear . 560
clip . 560
color . 561
content . 562
counter-increment . 564
counter-reset . 564
cursor . 565
direction . 567
display . 568
empty-cells . 570
float . 571
font . 572
font-family . 572
font-size . 573
font-style . 574
font-variant . 575
font-weight . 575
height . 576
left . 577
letter-spacing . 578
line-height . 578
list-style . 579
list-style-image . 579
list-style-position . 579
list-style-type . 580

margin . 581
margin-bottom . 582
margin-left . 582
margin-right . 583
margin-top . 583
max-height . 584
max-width . 584
min-height . 585
min-width . 585
orphans . 586
outline . 586
outline-color . 588
outline-style . 589
outline-width . 590
overflow . 590
padding . 591
padding-bottom . 593
padding-left . 593
padding-right . 594
padding-top . 594
page-break-after . 595
page-break-before . 595
page-break-inside . 596
position . 596
quotes . 597
right . 598
table-layout . 598
text-align . 599
text-decoration . 599
text-indent . 600
text-transform . 600
top . 601
unicode-bidi . 602
vertical-align . 602
visibility . 603
white-space . 604
widows . 604
width . 605
word-spacing . 606
z-index . 607

CSS2 and CSS 2.1 Aural Style Properties . 607

 6 CSS3 Proprietary and Emerging Features Reference 613
The State of CSS3 . 613

CSS3 Selectors . 613
CSS3-Introduced Values and Units . 621
CSS3 Color Values . 622
Namespaces . 624
Media Queries . 625
Web Fonts . 626
Miscellaneous CSS3 Changes . 629

C o n t e n t s xv

 xvi HTML & CSS: The Complete Reference xvi HTML & CSS: The Complete Reference

Implemented CSS3 and Browser-Specific Features . 629
@keyframes . 630
accelerator . 631
animation . 632
animation-delay . 633
animation-direction . 634
animation-duration . 635
animation-iteration-count . 636
animation-name . 637
animation-timing-function . 638
backface-visibility . 640
background-clip . 641
background-origin . 642
background-position-x . 643
background-position-y . 644
background-size . 644
behavior . 645
binding . 649
border-bottom-left-radius . 650
border-bottom-right-radius . 651
border-image . 651
border-radius . 653
border-top-left-radius . 654
border-top-right-radius . 655
box-reflect . 655
box-shadow . 656
box-sizing . 658
column-break-after . 659
column-break-before . 659
column-count . 660
column-gap . 661
column-rule . 661
column-rule-color . 662
column-rule-style . 663
column-rule-width . 664
column-width . 665
columns . 665
filter . 666
gradient . 671
image-rendering . 673
ime-mode . 673
interpolation-mode . 674
layout-grid . 674
layout-grid-char . 675
layout-grid-line . 675
layout-grid-mode . 676
layout-grid-type . 676
line-break . 677
marquee-direction . 677

marquee-play-count . 678
marquee-speed . 679
marquee-style . 680
mask . 681
mask-attachment . 682
mask-box-image . 682
mask-clip . 683
mask-composite . 684
mask-image . 684
mask-origin . 685
mask-position . 685
mask-position-x . 686
mask-position-y . 687
mask-repeat . 687
mask-size . 688
opacity . 690
outline-offset . 690
outline-radius . 691
overflow-style . 691
overflow-x . 692
overflow-y . 693
perspective . 693
perspective-origin . 694
resize . 695
ruby-align . 696
ruby-overhang . 697
ruby-position . 698
scrollbar-3dlight-color . 698
scrollbar-arrow-color . 699
scrollbar-base-color . 699
scrollbar-darkshadow-color . 700
scrollbar-face-color . 701
scrollbar-highlight-color . 701
scrollbar-shadow-color . 702
scrollbar-track-color . 703
size . 703
text-align-last . 704
text-autospace . 704
text-fill-color . 705
text-justify . 705
text-kashida-space . 706
text-overflow . 707
text-rendering . 708
text-shadow . 708
text-stroke . 710
text-stroke-color . 710
text-stroke-width . 711
text-underline-position . 711
transform . 712

 C o n t e n t s xvii

 xviii HTML & CSS: The Complete Reference xviii HTML & CSS: The Complete Reference

transform-origin . 715
transform-style . 716
transition . 717
transition-delay . 717
transition-duration . 718
transition-property . 719
transition-timing-function . 719
user-select . 720
word-break . 721
word-wrap . 722
writing-mode . 722
zoom . 724

 Part III Appendixes

 A Character Entities . 727
Encoding Quirks and Considerations . 728

Traditional HTML Entities . 731
HTML 4.x and XHTML 1.x Character Entities . 740

Latin Extended-A . 741
Latin Extended-B . 741
Spacing Modifier Letters . 741
General Punctuation . 741
Greek . 743
Letter-like Symbols . 744
Arrows . 745
Mathematical Operators . 746
Technical Symbols . 747
Geometric Shapes . 748
Miscellaneous Symbols . 748

Embracing Unicode . 748

 B Fonts . 751
Specifying Fonts . 751

Fonts for Windows Platform and Browsers . 752
Fonts for Macintosh System and Browsers . 755
PC Mac Font Similarity . 757

Downloadable Fonts . 760
Microsoft’s Dynamic Fonts . 760
Standard Downloadable Fonts . 761
Cross-Browser Downloadable Fonts . 761

Font Replacement with Images . 763
sIFR and Other Text Replacement Techniques . 764

 C Colors . 765
(X)HTML Colors . 765

Nonstandard Color Names and Numerical Equivalents 765
(X)HTML Elements Supporting Color . 772

CSS Color Values . 773
CSS Color-Related Properties . 776

Browser-Safe Colors . 779

 D URLs . 783
Basic Concepts . 783

Server Address . 784
Directory . 786
Filename . 787
Fragment Identifier . 788
Protocol . 788
Other Features of URLs . 789

Data URIs . 791
Other Emerging URL Forms . 794
Relative URLs . 795

Using the <base> Tag . 795
URL Challenges . 796

Unclear Case Sensitivity . 797
Unclear Length Limits . 797
Persistence Concerns . 797
Long, Dirty URLs . 797
Short, Cryptic URLs . 797
Location, Not Meaning . 798

Beyond URLs . 798
New Addressing Schemes: URNs, URCs, and URIs 798

 E Reading a Document Type Definition . 801
Element Type Declarations . 801
Occurrence Indicators . 802
Logical Connectors . 803
SGML Content Exclusion and Inclusion . 804
Attribute Declarations . 804
SGML and XML Keywords . 805
Parameter Entities . 806
Comments . 806
The DTDs . 807

 Index . 809

 C o n t e n t s xix

This page intentionally left blank

Acknowledgments

The fifth edition of this book might as well be the first edition of a brand-new book.
The HTML5 specification marks a return to past ideas and an explosion of future
ideas. It took a great deal of work to put this new edition together. Given the amount

of effort required, I want to make sure that all those that helped are given their due. First, I
want to acknowledge the numerous fixes and improvements that came from the feedback
from both my students at UCSD and readers around the world. I write these books for you,
and I am glad you are putting this information to good use.

I would also like to show my appreciation to the many staff members at PINT who
helped on this book project in some direct or indirect way. I can’t specifically thank and
mention the dozens of employees we have at PINT and my other firm Port80 Software who
keep the lights on, but I’ll call a few out who warrant some extra kudos.

Christie Sorenson once again helped this time with heavy lifting particularly in the CSS
effort, and I can safely say that she has learned, relearned, and even forgotten more about
Web development than probably anyone I know, besides maybe myself. Looking forward to
more project fun in the future, Christie!

Plenty of other PINTsters helped. Rob McFarlane, Andrew Simpkins, and Bryan Sleiter
helped out with imagery. The project managers, particularly Mine Okano, Robin Nobel,
Matt Plotner, and Olivia Chen, gave me moral support and occasional pity as I toiled away
upstairs. Glenn Dawson addressed my many server changes and helped debug some
annoying aspects of HTML5. Dan Whitworth assisted on a few chapters here and there and
probably had nightmares about getting a call to really dive in.

Joe Lima listened to some of my verbal nonsense and helped guide me to some deeper
insights than I could have ever arrived at on my own.

Daisy Bhonsle kept up a very long-standing proofing relationship, and I am very glad
she always helps out. The student certainly has become the master.

The folks at McGraw-Hill Professional are always a pleasure to work with. Meghan
Riley helped guide me along, and Megg Morin didn’t lose faith, at least not completely.
Thanks for being my patron the last decade, Megg!

My technical editor, James Pence, probably wondered when this project was going to
finish, and somehow he finished a nontechnical book of his own during the project.

xxi

xxii HTML & CSS: The Complete Reference

Finally, to my friends and family who tried to give me space to write this thing, you
deserve the biggest thanks. My children, Graham, Olivia, and Desmond, had to put up
with a grouchy dad and far too many absent weekends, so we now return you to our
regularly scheduled weekends! Cecilia, you provided a lot of help as well that made
things a bit easier on all of us, so thank you for that. Finally, Sylvia, you always support
my online efforts, as hard as they may be. I know you, more than anyone, appreciate the
importance of this project, considering the role HTML has played in our lives.

Thomas A. Powell
tpowell@pint.com
October 2009

 I n t r o d u c t i o n xxiii

Introduction

The fifth edition of this book represents a significant change in structure and content to
address HTML5. The book is similar to the previous edition in maybe a third of the
content; otherwise, it is an all-new effort. Most obviously, as compared to the previous

editions, which focused mainly on XHTML and HTML 4, this edition focuses on HTML5,
which represents both a return to the markup past and the unveiling of an exciting future of
Web applications. However, we do retain some information from previous editions because
in order for this work to be truly complete, we must not focus only on the future but also
present all the elements supported in browsers today, including the archaic, proprietary, and
standard (X)HTML tags. These will still be encountered for years to come, and we want this
book to provide the reference you need in addressing their syntax.

CSS coverage has been expanded greatly to fully cover CSS 2.1 as well as every proprietary
and emerging CSS 3 property supported in one or more popular shipping browsers circa 2009.
No value judgment is made; if Internet Explorer has supported a proprietary CSS feature for
the last decade, it’s included. However, we do avoid presenting CSS features that are truly
speculative in great depth, but where appropriate, we summarize or present pointers to the
emerging syntax.

The ramification of the increased markup and CSS coverage is simply the book doesn’t
have space left to do everything it did before. Teaching nearly everything about HTML and
CSS in prose form and then presenting a complete syntax reference for the technologies
would have produced a book well over 2,000 pages. We were well on the way to that when
we adjusted our efforts to create what you have in your hands, a solid reference book that
may be used for years to come. This isn’t to say that learning material is not present at all.
There are very solid introductory chapters for the markup and CSS sections, which should
succinctly address details and standards issues. There just isn’t a step-by-step cookbook for
each element or property. Given the maturity of the Web industry, we aimed not for the
complete tutorial, but instead for the complete reference.

It should go without saying that more markup changes to HTML and CSS are inevitable.
HTML5, in particular, is a complete moving target, and rather than punting on it, we took
the best shot at its first release version as it settled in late 2009. Because of the inevitable
changes given HTML5’s rapid evolution, the support Web site, http://htmlref.com, should
be considered an important bookmark for readers looking for updates or the unavoidable
correction.

xxiiixxiii

This page intentionally left blank

I
Core Markup CHAPTER 1

Traditional HTML
and XHTML

CHAPTER 2
Introducing HTML5

CHAPTER 3
HTML and XHTML
Element Reference

PART

This page intentionally left blank

1
Traditional HTML and XHTML

Markup languages are ubiquitous in everyday computing. Although you may not
realize it, word processing documents are filled with markup directives indicating
the structure and often presentation of the document. In the case of traditional

word processing documents, these structural and presentational markup codes are more
often than not behind the scenes. However, in the case of Web documents, markup in the form
of traditional Hypertext Markup Language (HTML) and its Extensible Markup Language
(XML)-focused variant, XHTML, is a little more obvious. These not-so-behind-the-scenes
markup languages are used to inform Web browsers about page structure and, some might
argue, presentation as well.

First Look at HTML and XHTML
In the case of HTML, markup instructions found within a Web page relay the structure of
the document to the browser software. For example, if you want to emphasize a portion of
text, you enclose it within the tags and , as shown here:

This is important text!

33

CHAPTER

 4 P a r t I : C o r e M a r k u p 4 P a r t I : C o r e M a r k u p

When a Web browser reads a document that has HTML markup in it, it determines how
to render it onscreen by considering the HTML elements embedded within the document:

So, an HTML document is simply a text file that contains the information you want to
publish and the appropriate markup instructions indicating how the browser should
structure or present the document.

Markup elements are made up of a start tag, such as , and typically, though not
always, an end tag, which is indicated by a slash within the tag, such as . The tag
pair should fully enclose any content to be affected by the element, including text and other
HTML markup.

NOTE There is a distinction between an element (for example, strong) and the tags (
and) that are used by the element. However, you will likely often find the word
“tag” used in place of “element” in many if not most discussions about HTML markup. This
observation even includes historically relevant documents discussing HTML1 written by Tim
Berners-Lee, the founding father of the Web. Fortunately, despite any imprecision of word choice
that people may exhibit when discussing markup, meaning is usually well understood and this
should not be a tremendous concern.

Under traditional HTML (not XHTML), the close tag for some elements is optional
because their closure can be inferred. For example, a <p> tag cannot enclose another <p>
tag, and thus the closing </p> tag can be inferred when markup like this is encountered:

<p>This is a paragraph.
<p>This is also a paragraph.

Such shortened notations that depend on inference may be technically correct under the
specification, but stylistically they are not encouraged. It is always preferable to be precise,
so use markup like this instead:

<p>This is a paragraph.</p>
<p>This is also a paragraph.</p>

1 Historic intro to HTML that clearly uses the term tag instead of element www.w3.org/History/19921103-
hypertext/hypertext/WWW/MarkUp/Tags.html

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 5 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 5
PART I

There are markup elements, called empty elements, which do not enclose any content, thus
need no close tags at all, or in the case of XHTML use a self-close identification scheme. For
example, to insert a line break, use a single
 tag, which represents the empty br element,
because it doesn’t enclose any content and thus has no corresponding close tag:

However, in XML markup variants, particularly XHTML, an unclosed tag is not allowed, so
you need to close the tag

</br>

or, more commonly, use a self-identification of closure like so:

The start tag of an element might contain attributes that modify the meaning of the tag.
For example, in HTML, the simple inclusion of the noshade attribute in an <hr> tag, as
shown here:

<hr noshade>

indicates that there should be no shading applied to this horizontal rule. Under XHTML,
such style attributes are not allowed, because all attributes must have a value, so instead
you have to use syntax like this:

<hr noshade="noshade" />

As the preceding example shows, attributes may require values, which are specified with an
equal sign; these values should be enclosed within double or single quotes. For example,
using standard HTML syntax,

<img src="dog.gif" alt="Angus-Black Scottish Terrier" height="100"
width="100">

specifies four attributes for this tag that are used to provide more information about
the use of the included image. Under traditional HTML, in the case of simple alphanumeric
attribute values, the use of quotes is optional, as shown here:

<p class=fancy>

Regardless of the flexibility provided under standard HTML, you should always aim to
use quotes on all attributes. You will find that doing so makes markup more consistent,
makes upgrading to stricter markup versions far easier, and tends to help reduce errors
caused by inconsistency.

 6 P a r t I : C o r e M a r k u p 6 P a r t I : C o r e M a r k u p

A graphical overview of the HTML markup syntax shown so far is presented here:

Hello HTML and XHTML World
Given these basics of HTML syntax, it is best now to look at an example document to see its
application. Our first complete example written in strict HTML 4 is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML 4 World</title>
<!-- Simple hello world in HTML 4.01 strict example -->
</head>
<body>
<h1>Welcome to the World of HTML</h1>
<hr>
<p>HTML really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

ONLINE http://htmlref.com/ch1/html4helloworld.html

A simple modification of the initial <!DOCTYPE> line is really all that is necessary to
make this an HTML5 example, the comment and text is changed so you can keep the
examples straight:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML5 World</title>
<!-- Simple hello world in HTML5 example -->
</head>
<body>
<h1>Welcome to the Future World of HTML5</h1>
<hr>
<p>HTML5 really isn't so hard!</p>

<h1 class=“primary”>Example Heading</h1>

Tag
Name

Attribute
Name

Attribute
Affected ContentStart Tag

HTML Element

Attribute
Value

End
Tag

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 7 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 7
PART I

<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

ONLINE http://htmlref.com/ch1/html5helloworld.html

In the case of XHTML, which is a form of HTML that is based upon the syntax rules of
XML, we really don’t see many major changes yet in our example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Hello XHTML World</title>
<!-- Simple hello world in XHTML 1.0 strict example -->
</head>
<body>
<h1>Welcome to the World of XHTML</h1>
<hr />
<p>XHTML really isn't so hard either!</p>
<p>Soon you will ♥ using XHTML too.</p>
<p>There are some differences between XHTML
and HTML but with some precise markup you'll
see such differences are easily addressed.</p>
</body>
</html>

ONLINE http://htmlref.com/ch1/xhtmlhelloworld.html

The preceding examples use some of the most common elements used in (X)HTML
documents, including:

• The <!DOCTYPE> statement, which indicates the particular version of HTML
or XHTML being used in the document. The first example uses the strict 4.01
specification, the second uses a reduced form for HTML5 the meaning of which
will be explained a bit later on, and the final example uses the XHTML 1.0 strict
specification.

• The <html>, <head>, and <body> tag pairs are used to specify the general structure
of the document. The required inclusion of the xmlns attribute in the <html> tag is
a small difference required by XHTML.

• The <meta> tag used in the examples indicates the MIME type of the document and
the character set in use. Notice that in the XHTML example, the element has a trailing
slash to indicate that it is an empty element.

• The <title> and </title> tag pair specifies the title of the document, which
generally appears in the title bar of the Web browser.

• A comment is specified by <!-- -->, allowing page authors to provide notes for
future reference.

 8 P a r t I : C o r e M a r k u p 8 P a r t I : C o r e M a r k u p

• The <h1> and </h1> header tag pair indicates a headline specifying some important
information.

• The <hr> tag, which has a self-identifying end tag (<hr />) under XHTML, inserts
a horizontal rule, or bar, across the screen.

• The <p> and </p> paragraph tag pair indicates a paragraph of text.

• A special character is inserted using a named entity (♥), which in this case
inserts a heart dingbat character into the text.

• The and tag pair surrounds a small piece of text to emphasize which a
browser typically renders in italics.

There are numerous other markup elements that may be employed, all of which will be
explored throughout the book, but for now this sampling is enough to get our first example
rendered in a browser.

NOTE Examples in the book will generally be presented in HTML5. Syntax specific to particular
browsers, older HTML variants, or XHTML will always be noted when used.

Viewing Markup Locally
Using a simple text editor, type in either one of the previous examples and save it with a
filename such as helloworld.html or helloworld.htm; you can choose which file extension to
use, .htm or .html, but whichever you pick for development, aim to be consistent. This
book uses .html for all of the files.

After you save the example file on your local file system, open it in your Web browser
by opening the File menu and choosing Open, Open Page, or Open File, depending on your
browser:

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 9 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 9
PART I

Once your browser reads the file, it should render a page like the one shown here:

If for some reason you didn’t save your file with the appropriate extension, the browser
shouldn’t attempt to interpret the HTML markup. For example, notice here what happens
when you try to open the content with a .txt extension:

If you want to make a change to the document, you could update the markup, save the
file, go back to the browser, and click the Reload or Refresh button. Sometimes the browser
will still reload the page from its cache; if a page does not update correctly on reload, hold
down the SHIFT key while clicking the Reload button, and the browser should refresh the page.

As you write markup, keeping the browser and editor open simultaneously is a very
good idea to avoid constantly reopening one or the other. Many Web editors will assist you
in loading your Web pages into various browsers or even preview the visualization of the
markup directly. Figure 1-1 shows this process in Adobe’s popular Dreamweaver program
(www. dreamweaver.com).

 10 P a r t I : C o r e M a r k u p 10 P a r t I : C o r e M a r k u p

Once you get the hang of markup production, you’ll see that, at this raw level, it is
much like the edit, compile, and run cycle so familiar to programmers. However, this
manual process certainly isn’t the way that you want to develop Web pages, because it can
be tedious, error prone, and inefficient when thinking of page structure and visual design.
For our current illustrative purposes to learn the language however, it works fine.

Viewing Markup with a Web Server
Ideally, you should aim to test your Web pages as delivered off a Web server instead of just
reading them off a local file system. Not only is this more representative of how your users
will actually experience the page, but it prepares you for later construction of Web pages
that contain server-side programming technologies.

There are many options for employing a Web server. You may decide to run your own
local development Web server on your desktop system or use some hosted server instead.
In either case, you need to get the files somewhere under the Web server’s document root
folder so that they can be served out. Very often this directory has a common name like
inetpub, htdocs, site, or www, but it really could be just about anything, so make sure you
check the server you end up using.

FIGURE 1-1 Improved markup editing in Dreamweaver

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 11 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 11
PART I

To make your files available via the server, you might use a process of uploading a
file from your system to a remote server via an FTP (File Transfer Protocol) program, as
shown here:

Many Web editors also allow you to synchronize files between a local directory and
your remote server. For example, a snippet of the synchronization facility provided in
Dreamweaver is shown here:

 12 P a r t I : C o r e M a r k u p 12 P a r t I : C o r e M a r k u p

On the Web server, you most likely will use the .html or .htm file extension for your
files. When HTML files are placed in the appropriate directory, the user would issue a URL
in their browser like

http://yoursitename/sitepath/helloworld.html

and that will then return the file in question. However, note that when a marked-up
document is delivered over the network, it is not the file extension that indicates to the
browser that the content is HTML, but rather the Content-Type: header found in the
network stream:

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 13 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 13
PART I

The browser then takes the header and maps it to the action of parsing the document as
HTML. In some older browsers, the mapping between MIME type or file extension and
browser action is obvious:

This Preferences dialog box shows that the extension or header is what triggers the action
by the browser. The goal here is simply to illustrate that there is something different going
on between reading locally and remotely.

Before wrapping up this brief introductory example, it should be noted that in some
cases when you have configured the wrong file extension or MIME type, some browsers may
“sniff out” the content type and parse any HTML found within. For example, in Figure 1-2
you can see that many versions of Internet Explorer2 render a file with a .txt extension as
HTML while Firefox does not. We have to pay attention to details even in the simplest
examples if we want to avoid headaches from questionable browser practices and plain old
bugs. HTML5 will aim to remove such problems in the distant future, but for now let’s get
down to the most important details, starting first by enumerating all of the versions of
(X)HTML that we might need to know about.

2 Internet Explorer 8 introduces some changes to avoid sniffing; you can set X-Content-Type-Options:
nosniff as a response header to disable Internet Explorer’s permissive behavior, though this only works
in IE8 and beyond.

 14 P a r t I : C o r e M a r k u p 14 P a r t I : C o r e M a r k u p

HTML and XHTML: Version History
Since its initial introduction in late 1991, HTML (and later its XML-based cousin, XHTML)
has undergone many changes. Interestingly, the first versions of HTML used to build the
earliest Web pages lacked a rigorous definition. Fortunately, by 1993 the Internet Engineering
Task Force (IETF) began to standardize the language and later, in 1995, released the first real
HTML standard in the form of HTML 2.0. You will likely encounter more than just the latest
style of markup for many years to come, so Table 1-1 presents a brief summary of the version
history of HTML and XHTML.

FIGURE 1-2 Irregularities with browsers handling MIME types and file extensions

Internet Explorer reads the txt file, interprets the
code in the page, and renders as if it were an html file.

Firefox recognizes the file type and renders the
text rather than interpret the code as html.

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 15 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 15
PART I

HTML or XHTML Version Description

HTML 2.0 Classic HTML dialect supported by browsers such as Mosaic. This
form of HTML supports core HTML elements and features such as
tables and forms, but does not consider any of the browser innovations
of advanced features such as style sheets, scripting, or frames.

HTML 3.0 The proposed replacement for HTML 2.0 that was never widely
adopted, most likely due to the heavy use of browser-specific markup.

HTML 3.2 An HTML finalized by the W3C in early 1997 that standardized most of
the HTML features introduced in browsers such as Netscape 3. This
version of HTML supports many presentation-focused elements such
as font, as well as early support for some scripting features.

HTML 4.0 Transitional The 4.0 transitional form finalized by the W3C in December of 1997
preserves most of the presentational elements of HTML 3.2. It
provides a basis of transition to Cascading Style Sheets (CSS) as
well as a base set of elements and attributes for multiple-language
support, accessibility, and scripting.

HTML 4.0 Strict The strict version of HTML 4.0 removes most of the presentation
elements from the HTML specification, such as font, in favor of using
CSS for page formatting.

4.0 Frameset The frameset specification provides a rigorous syntax for framed
documents that was lacking in previous versions of HTML.

HTML 4.01 Transitional/
Strict/Frameset

A minor update to the 4.0 standard that corrects some of the errors in
the original specification.

HTML5 Addressing the lack of acceptance of the XML reformulation of HTML
by the mass of Web page authors, the emerging HTML5 standard
originally started by the WHATWG3 group and later rolled into a W3C
effort aimed to rekindle the acceptance of traditional HTML and
extend it to address Web application development, multimedia, and
the ambiguities found in browser parsers. Since 2005, features now
part of this HTML specification have begun to appear in Web browsers,
muddying the future of XHTML in Web browsers.

XHTML 1.0 Transitional A reformulation of HTML as an XML application. The transitional
form preserves many of the basic presentation features of HTML 4.0
transitional but applies the strict syntax rules of XML to HTML.

XHTML 1.0 Strict A reformulation of HTML 4.0 Strict using XML. This language is rule
enforcing and leaves all presentation duties to technologies like CSS.

XHTML 1.1 A restructuring of XHTML 1.0 that modularizes the language for easy
extension and reduction. It is not commonly used at the time of this
writing and offers minor gains over strict XHTML 1.0.

3 Web Hypertext Application Technology Working Group (www.whatwg.org).

TABLE 1-1 Description of Common HTML Versions

 16 P a r t I : C o r e M a r k u p 16 P a r t I : C o r e M a r k u p

Beyond the standard forms of markup described in Table 1-1, there are of course various
nonstandard forms in play. For example, the browser vendors introduced various extensions
to HTML and, interestingly, continue to do so. We also have to contend with the ad hoc use
of markup that doesn’t really conform fully to any particular standard other than to what
usually renders in common Web browsers. Such a “tag soup” is certainly not the best way
to approach building Web pages, regardless of whether browsers accept it. Standards for all
forms of markup exist and should be adhered to whenever possible.

HTML and XHTML DTDs: The Specifications Up Close
Contrary to the markup some Web developers seem to produce, both HTML and XHTML
have very well-defined syntax. All (X)HTML documents should follow a formal structure
defined by the World Wide Web Consortium (W3C; www.w3.org), which is the primary
organization that defines Web standards. Traditionally, the W3C defined HTML as an
application of the Standard Generalized Markup Language (SGML). SGML is a technology
used to define markup languages by specifying the allowed document structure in the form
of a document type definition (DTD). A DTD indicates the syntax that can be used for the
various elements of a language such as HTML.

A snippet of the HTML 4.01 DTD defining the P element, which indicates a paragraph,
is shown here:

<!--=================== Paragraphs =====================================-->
<!ELEMENT P - O (%inline;)* -- paragraph -->
<!ATTLIST P
 %attrs; -- %coreattrs, %i18n, %events --
 >

The first line is a comment indicating what is below it. The second line defines the P
element, indicating that it has a start tag (<P>), as shown by the dash, and an optional close
tag (</P>), as indicated by the O. The type of content that is allowed to be placed within a
P element is defined by the entity %inline, which acts here as a shorthand for various other
elements and content. This idea of only allowing some types of elements within other

HTML or XHTML Version Description

XHTML 2.0 A new implementation of XHTML that will not provide backward
compatibility with XHTML 1.0 and traditional HTML. XHTML 2 will
remove all presentational tags and will introduce a variety of new
tags and ideas to the language.

XHTML Basic 1.0 A variation of XHTML based upon the modularization of XHTML (1.1)
designed to work with less-power ful Web clients such as mobile
phones.

XHTML Basic 1.1 An improvement to the XHTML Basic specification that adds more
features, some fairly specific to the constrained interfaces found in
mobile devices.

TABLE 1-1 Description of Common HTML Versions (continued)

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 17 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 17
PART I

elements is called the content model. If you further explore the specification to see what that
%inline entity maps out to, you will see that it contains numerous other elements, such as
EM, STRONG, and so on, as well as regular typed text. The final line defines the attributes for
a <P> tag as indicated by the entity %attrs which then expands to a number of entities like
%core, %i18n, and %coreevents which finally expand into a variety of attributes like id,
class, style, title, lang, dir, onclick, ondblclick, and many more. The full syntax
of the P element can be found in the reference in Chapter 3; the aim here is for you to
understand the syntax of SGML in a basic sense to support your understanding of how Web
browsers treat markup.

As another example, look at the HTML 4.01 DTD’s definition of the HR element:

<!--=================== Horizontal Rule ================================-->
<!ELEMENT HR - O EMPTY -- horizontal rule -->
<!ATTLIST HR
 %attrs; -- %coreattrs, %i18n, %events --
 >

From this syntax fragment, note that the HR element has a start tag but does not require a
close tag. More interestingly, the element does not enclose any content, as indicated by the
EMPTY designation. It turns out to have the same set of attributes as the P element, as
defined by the %attrs entity.

As mentioned in the previous section on the history of HTML, in 1999 the W3C rewrote
HTML as an application of XML and called it XHTML. XML, in this situation, serves the
same purpose as SGML: a language in which to write the rules of a language. In fact, XML is
in some sense just a limited form of SGML. XML and SGML can be used to write arbitrary
markup languages, not just HTML and XHTML. These would be called applications or, maybe
more appropriately, application languages. Numerous markup languages have been defined
with SGML and XML, and you could even define your own if you like. The relationship
between the various markup technologies is shown here:

Languages
Defined by

Example
Application
Languages

SGML XML

… …
…

TEI

HTML

DocBook WML

XHTML

RSS
SOAP

The DTD defined in XML for the XHTML language is actually quite similar to the DTD
for traditional HTML. For example, consider the XHTML DTD entries for the two elements
previously presented:

<!--=================== Paragraphs =====================================-->
<!ELEMENT p %Inline;>
<!ATTLIST p
 %attrs;
 >

 18 P a r t I : C o r e M a r k u p 18 P a r t I : C o r e M a r k u p

<!--=================== Horizontal Rule ================================-->
<!ELEMENT hr EMPTY>
<!ATTLIST hr
 %attrs;
 >

As you can see, there is some case changing (lowercase elements), a lack of optional close
tags, and a general cleanup of syntax, but otherwise things are pretty much the same.

Properly constructed (X)HTML documents should reference a DTD of some sort and it
is important to know what this means as browsers and Web quality assurance tools actually
consult the doctype directives. Hopefully, this brief introduction has given you a sense of
the underlying specification of (X)HTML and its degree of detail. Appendix E presents
complete coverage of how to read the (X)HTML DTDs.

NOTE Interestingly, HTML5 does not use SGML or XML definitions, but instead relies on an
English prose specification combined with some formalism. Chapter 3 discusses this change and
some other aspects of the HTML5 language and specification that is different from the older
markup languages.

Document Type Statements and Language Versions
(X)HTML documents should begin with a <!DOCTYPE> declaration. This statement
identifies the type of markup that is supposedly used in a document. For example,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

indicates that we are using the transitional variation of HTML 4.01 that starts with a root
element html. In other words, an <html> tag will serve as the ultimate parent of all the
content and elements within this document.

A <!DOCTYPE> declaration might get a bit more specific and specify the URI (Uniform
Resource Identifier) of the DTD being used as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

In the case of an XHTML document, the situation really isn’t much different:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

However, do note that the root html element here is lowercase, which hints at the case
sensitivity found in XHTML.

There are numerous doctype declarations that are found in HTML and XHTML
documents, as shown in Table 1-2.

NOTE On occasion you might see other HTML document type indicators, notably one for the 3.0
standard that was never really adopted in the Web community.

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 19 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 19
PART I

While there are many different versions of (X)HTML, the good news is that the rough
document structure defined for each is pretty similar; of course, the bad news is that
little details will be different from version to version, so you need to be precise with your
syntax.

HTML or XHTML Version !DOCTYPE Declaration

HTML 2.0 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

HTML 3.2 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

HTML 4.0 Transitional <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

HTML 4.0 Frameset <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

HTML 4.0 Strict <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/html4/strict.dtd">

HTML 4.01 Transitional <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

HTML 4.01 Frameset <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

HTML 4.01 Strict <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

HTML5 <!DOCTYPE html>

XHTML 1.0 Transitional <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Strict <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Frameset <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

XHTML 2.0 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
"http://www.w3.org/MarkUp/DTD/xhtml2.dtd">

XHTML Basic 1.0 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

XHTML Basic 1.1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

TABLE 1-2 Common HTML Doctype Declarations

 20 P a r t I : C o r e M a r k u p 20 P a r t I : C o r e M a r k u p

(X)HTML Document Structure
The DTDs define the allowed syntax for documents written in that version of (X)HTML.
The core structure of these documents is fairly similar. Given the HTML 4.01 DTD, a basic
document template can be derived from the specification, as shown here:

In this graphical representation, the <!DOCTYPE> indicator, which, as previously
mentioned, shows the particular version of HTML being used, in this case 4.01 Transitional.
Within a root html element, the basic structure of a document reveals two elements: the head
and the body. The head element contains information and tags describing the document, such
as its title, while the body element houses the document itself, with associated markup
required to specify its structure. HTML5 follows the same core structure but introduces
differences, which is covered in depth in Chapter 2.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

</html>

<head>
 <meta http-equip="Content-Type"
 content="text/html; charset=utf-8">
 <title>Page Title</title>

</head>

<body>

</body>

Doctype statement indicates type of document

Head contains
info about page

Root HTML
element
encloses
entire doc

Body

Filename: template.html

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 21 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 21
PART I

The structure of an XHTML document is pretty much the same with the exception of a
different <!DOCTYPE> indicator and an xmlns (XML name space) attribute added to the
html tag so that it is possible to intermix XML more easily into the XHTML document:

Alternatively, in either HTML or XHTML (but not in HTML5), we can replace the
<body> tag with a <frameset> tag, which encloses potentially numerous <frame> tags
corresponding to individual portions of the browser window, termed frames. Each frame in
turn would reference another HTML/XHTML document containing either a standard
document, complete with <html>, <head>, and <body> tags, or perhaps yet another
framed document. The <frameset> tag also should include a noframes element that
provides a version of the page for browsers that do not support frames. Within this element,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
txhtml1-strict.dtd">

<html xmlns=“http://www.w3.org/1999/xhtml”>

</html>

<head>
 <meta http-equip="Content-Type"
 content="text/html; charset=utf-8" />
 <title>Page Title</title>

</head>

<body>

</body>

Doctype statement indicates type of document

Head contains
info about page

Root HTML
element
encloses
entire doc

Body

Filename: template.html

 22 P a r t I : C o r e M a r k u p 22 P a r t I : C o r e M a r k u p

a <body> tag should be found for browsers that do not support frames. A visual
representation of this idea is shown here:

HTML5 does not support standard frames, though it does preserve inline frames.
Chapter 2 addresses that HTML5–specific change; for now, we’ll concentrate on a typical
document structure and drill into each element until we reach the very characters displayed.

Roughly speaking, the structure of a non-framed (X)HTML document breaks out like so:

Some <!DOCTYPE> statement

HTML

HEAD BODY

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Frameset//EN" "http://www.w3.org/TR/html4
frameset.dtd">

<html>

</html>

<head>
 <meta http-equip="Content-Type"
 content="text/html; charset=utf-8">
 <title>Page Title</title>

</head>

<frameset>
<frame />
<frame />

</frameset>

<noframes>
<body>

</body>
</noframes>

Doctype statement indicates type of document

Head contains
info about page

Root HTML
element
encloses
entire doc

Body

Filename: template.html

Frameset

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 23 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 23
PART I

The following sections drill into each of the document structuring markup elements and
explore what’s contained inside.

The Document Head
The information in the head element of an (X)HTML document is very important because it
is used to describe or augment the content of the document. The element acts like the front
matter or cover page of a document. In many cases, the information contained within the
head element is information about the page that is useful for visual styling, defining
interactivity, setting the page title, and providing other useful information that describes or
controls the document.

The title Element
A single title element is required in the head element and is used to set the text that most
browsers display in their title bar. The value within a title is also used in a browser’s
history system, recorded when the page is bookmarked, and consulted by search engine
robots to help determine page meaning. In short, it is pretty important to have a
syntactically correct, descriptive, and appropriate page title. Thus, given

<title>Simple HTML Title Example</title>

you will see something like this:

When a title is not specified, most browsers display the URL path or filename instead:

Only one title element should appear in every document, and most user agents will
ignore subsequent tag instances. You should be quite careful about making sure a title
element is well formed because omitting the close tag can cause many browsers to not load
the document. A recent version of Opera reveals what is likely happening in this situation:

Here it appears that the markup and rest of the document are used as the contents of the
unclosed title element, and thus nothing is rendered in the browser. It should be noted that
this particular rendering may vary because some browsers fix an unclosed title.

 24 P a r t I : C o r e M a r k u p 24 P a r t I : C o r e M a r k u p

A document title may contain standard text, but markup isn’t interpreted in a <title>
tag, as shown here:

However, character entities such as © (or, alternatively, ©), which specifies a
copyright symbol, are allowed in a title:

<title>Simple HTML Title Example, © 2010 WebMonopoly, Inc.</title>

For an entity to be displayed properly, you need to make sure the appropriate character
set is defined and that the browser supports such characters; otherwise, you may see boxes
or other odd symbols in your title:

To set the appropriate character set, you should include a <meta> tag before the page
title even though traditionally title is considered the first element.

NOTE Beyond character set concerns, think twice before using a special character such as a colon
(:), slash (/), or backslash (\) in a document title. An operating system might have a problem
with such a title if the document is saved to the local system. For example, the colon isn’t allowed
within Macintosh filenames, and slashes generally aren’t allowed within filenames, because they
indicate directories. Most modern browsers remove such special characters and reduce them to
spaces during the Save process. To be on the safe side, use dashes to delimit items in a page title.

<meta>: Specifying Content Type, Character Set, and More
A <meta> tag has a number of uses. For example, it can be used to specify values that are
equivalent to HTTP response headers. For example, if you want to make sure that your
MIME type and character set for an English-based HTML document is set, you could use

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

Because meta is an empty element, you would use the trailing-slash syntax shown here:

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 25 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 25
PART I

Most people would agree that using the UTF-8 character set is probably a good idea for
Western-language page authors because it gives them access to international character
glyphs when needed without causing them any trouble:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >

Deciding which MIME type to use isn’t as straightforward. For standard HTML, the
MIME type is always text/html. However, when XHTML is in play, confusion and
browser problems ensue. Numerous pundits bemoan the fact that most XHTML is served as
text/html, particularly because it doesn’t give you the strict parsing that XML tends to
afford. In the use of XHTML, you may choose from text/html, text/xml, application/
xml, and application/xhtml+xml as potential MIME types. Given the potential for
compatibility and even rendering problems, for better or worse, the MIME type text/html
will be used for nearly all (X)HTML examples in this book so that browser rendering is
ensured. This hedge will be explored a bit more later in the chapter when addressing the
implications of XHTML. In summary at the point of writing this edition, it is recommend
specifying a Content-Type of text/html and the UTF-8 character set, and doing so as
your first element within the head, like so:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >
<title>Page title here</title>
</head>

NOTE The meta element also has many other uses beyond defining character set and MIME type.
It is also used to set arbitrary name-content pairs to provide meta-information about a document
for purposes like search engine optimization (for example, <meta name="keywords"
content="Keyword1,...Keyword N" >). Other uses of <meta> tags will be covered in
the reference section of Chapter 3.

Other Elements in the head
In addition to the title and meta elements, under the HTML 4.01 and XHTML 1.0 strict
DTDs, the elements allowed within the head element include base, link, object, script,
and style. Comments are also allowed. A brief discussion of the other head elements and
comments follows. Complete information is available in the element reference found in
Chapter 3.

<base> A <base> tag specifies an absolute URL address that is used to provide server
and directory information for partially specified URL addresses, called relative links, used
within the document:

<base href="http://htmlref.com/basexeample" >

Because of its global nature, a <base> tag is often found right after a <title> tag as it
may affect subsequent <script>, <link>, <style>, and <object> tag referenced URIs.

 26 P a r t I : C o r e M a r k u p 26 P a r t I : C o r e M a r k u p

<link> A <link> tag specifies a special relationship between the current document and
another document. Most commonly, it is used to specify a style sheet used by the document
(as discussed in Chapter 4):

<link rel="stylesheet" media="screen" href="global.css" type="text/css" >

However, the <link> tag has a number of other interesting possible uses, such as to set
up navigation relationships and to hint to browsers about pre-cacheable content. See the
element reference in Chapter 3 for more information on this.

<object> An <object> tag allows programs and other binary objects to be directly
embedded in a Web page. Here, for example, a nonvisible Flash object is being referenced
for some use:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 width="0" height="0" id="HiddenFlash" >
 <param name="movie" value="flashlib.swf" />
</object>

Using an <object> tag involves more than a bit of complexity, and there are numerous
choices of technology, including Java applets, plug-ins, and ActiveX controls.

<script> A <script> tag allows scripting language code to be either directly embedded
within,

<script type="text/javascript">
 alert("Hi from JavaScript!");
 /* more code below */
</script>

or, more appropriately, linked to from a Web page:

<script type="text/javascript" href="ajaxtcr.js"></script>

Nearly always, JavaScript is the language in use, though other languages such as VBScript
are possible.

<style> A <style> tag is used to enclose document-wide style specifications, typically
in Cascading Style Sheet (CSS) format, relating to fonts, colors, positioning, and other
aspects of content presentation:

<style type="text/css" media="screen">
 h1 {font-size: xx-large; color: red; font-style: italic;}
 /* all h1 elements render as big, red and italic */
</style>

The use of this tag will be discussed in Chapter 4.

Comments Finally, comments are often found in the head of a document. Following SGML
syntax, a comment starts with <!-- and ends with --> and may encompass many lines:

<!-- Hi I am a comment -->
<!-- Author: Thomas A. Powell

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 27 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 27
PART I

 Book: HTML: The Complete Reference
 Edition: 5
-->

Comments can contain just about anything except other comments and are particularly
sensitive to – symbols. Thus

<!------ THIS ISN'T A SYNTACTICALLY CORRECT COMMENT! ---->

NOTE Correct usage of comments goes well beyond syntax, because they may inherently expose
security concerns on public-facing sites. You’ll also find that comments are used not only for
development notes but also to mask some types of content from browsers.

The complete syntax of the markup allowed in the head element under strict (X)HTML
is shown here:

Following is an example XHTML document with a head element that contains common
usage of elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Sample Head Element</title>

<!-- Some example meta tags -->
<meta name="keywords" content="Fake, Head Example, HTML Ref" />
<meta name="description" content="A simple head example that shows a number
of the elements presented in action." />

<meta name="author" content="Thomas A. Powell" />

head

title

base

link

style

script

object

meta

<!-- -->

mandatory

single occurrence
and generally early

 28 P a r t I : C o r e M a r k u p 28 P a r t I : C o r e M a r k u p

<!-- Set a global URI stem for all references -->
<base href="http://htmlref.com/baseexample" />

<!-- Linked and document specific styles -->

<link rel="stylesheet" href="screen.css" media="screen" />
<link rel="stylesheet" href="printer.css" media="print" />
<style type="text/css">
<!--
 h1 {font-size: xx-large; color: red; font-style: italic;}
-->
</style>

<!-- Embedded and linked scripts -->
<script type="text/javascript">
<!--
 var globalDebug = true;
//-->
</script>
<script src="ajaxtcr.js" type="text/javascript"></script>
<script src="effects.js" type="text/javascript"></script>
</head>
<body>
<p>Some body content here.</p>
</body>
</html>

The various details of the tags within the document head are all presented in the
element reference in Chapter 3; the aim here was to show you the organization of the head
element and how it supports the body. Now let’s move on to see the content in the
document body itself.

The Document Body
After the head section, the body of a document is delimited by <body> and </body>. Under
the HTML 4.01 specification and many browsers, the body element is optional, but you
should always include it, particularly because it is required in stricter markup variants.
Only one body element can appear per document.

Within the body of a Web document is a variety of types of elements. For example, block-
level elements define structural content blocks such as paragraphs (p) or headings (h1-h6).
Block-level elements generally introduce line breaks visually. Special forms of blocks, such
as unordered lists (ul), can be used to create lists of information.

Within nonempty blocks, inline elements are found. There are numerous inline elements,
such as bold (b), italic (i), strong (strong), emphasis (em), and numerous others. These
types of elements do not introduce any returns.

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 29 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 29
PART I

Other miscellaneous types of elements, including those that reference other objects such
as images (img) or interactive elements (object), are also generally found within blocks,
though in some versions of HTML they can stand on their own.

Within block and inline elements, you will find textual content, unless the element is
empty. Typed text may include special characters that are difficult to insert from the
keyboard or require special encoding. To use such characters in an HTML document, they
must be “escaped” by using a special code. All character codes take the form &code;, where
code is a word or numeric code indicating the actual character that you want to put
onscreen. For example, when adding a less-than symbol (<) you could use < or <.
Character entities also are discussed in depth in Appendix A.

Finally, just as in the head, you may include comments in the body element.
A visual overview of all the items presented in the body is shown here:

Comment

Inline Elements

Character Entity

Block Elements

 30 P a r t I : C o r e M a r k u p 30 P a r t I : C o r e M a r k u p

The full syntax of the elements allowed in the body element is a bit more involved than
the full syntax of the head. This diagram shows what is directly included in the body:

body

p

h1, h2, h3, h4, h5, h6

div

ul, ol

dt, dd

pre

blockquote

address

fieldset

table

ins

<!-- -->

dl

hr

noscript

script

del

li

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 31 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 31
PART I

Going deeper into the full syntax in a single diagram is unreasonable to present. Just as
an example, take the p element and continue to expand, keeping in mind that these
elements will also loop back on each other and expand out as well:

While it might be difficult to meaningfully present the entire syntax of HTML
graphically in a diagram, the diagram presented here should drive home the point that
HTML is quite structured and the details of how elements may be used are quite clear. Now
that you have some insight into the syntax of markup, the next section discusses how
browsers deal with it.

Browsers and (X)HTML
When a browser reads a marked-up document, such as the “hello world” example
repeated here,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>
<!-- Simple hello world in HTML 4.01 strict example -->
</head>
<body>
<h1>Welcome to the World of HTML</h1>

p

type text

a

br

span

bdo

map

object

img

tt

i

b

big

small

em

strong

dfn

code

q

samp

kbd

var

cite

abbr

acronym

sub

sup

input*

select*

textarea*

label*

button*

<!-- -->

(*) when the element is ultimately a descendent of a form element

 32 P a r t I : C o r e M a r k u p 32 P a r t I : C o r e M a r k u p

<hr>
<p>HTML really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

it builds a parse tree to interpret the structure of the document, possibly like this:

DOCTYPE

HTML

HEAD

META

TITLE

BODY

H1

HR

P

“HTML”

EM

P

P

HTML ELEMENT

Text Node

<!-- comment -->

<!-- simple hello world in HTML 4.01 strict example -->

“Welcome to the world of HTML”

“Really”

“isn’t so hard!”

“soon you will ♥ using HTML.”

“You could put lots of text here if you want. We
could go on and on with fake text for you

to read, but let’s get back to the book.”

“Hello HTML World”

Legend

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 33 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 33
PART I

These parse trees, often called DOM (Document Object Model) trees, are the browsers’
interpretation of the markup provided and are integral to determining how to render the
page visually using both default (X)HTML style and any CSS attached. JavaScript will also
use this parse tree when scripts attempt to manipulate the document. The parse tree serves
as the skeleton of the page, so making sure that it is correct is quite important, but sadly
we’ll see very often it isn’t.

NOTE The syntax trees presented earlier look very similar to the parse trees, and they should,
because any particular parse tree should be derivable from the particular markup language’s
content model.

Browsers are actually quite permissive in what they will render. For example, consider
the following markup:

<TITLE>Hello HTML World</title>
<!-- Simple hello malformed world -- example -->
</head>
<body>
<h1>Welcome to the World of HTML</H1>
<hr />
<p>HTML really isn't so hard!
<P>Soon you will ♥ using HTML.
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, <foo>but</foo> let's get back to the book.
</html>

This example misses important tags, doesn’t specify encoding types, has a malformed
comment, uses inconsistent casing, doesn’t close tags, and even uses some unknown
element foo. However, this will render exactly the same visually as the correct markup
previously presented, as shown in Figure 1-3.

 34 P a r t I : C o r e M a r k u p 34 P a r t I : C o r e M a r k u p

FIGURE 1-3 Malformed markup works!?

Well-formed
Markup

Malformed
Markup

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 35 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 35
PART I

Now if you look at the parse tree formed by the browser, you will note that many of the
mistakes appear to be magically fixed by the browser:

Of course, the number of assumptions that a browser may make to fix arbitrary
syntactical mistakes is likely quite large and different browsers may assume different
“fixes.” For example, given this small fragment of markup

<p>Making malformed HTML really isn't so hard!</p>

leading browsers will form their parse trees a bit differently, as shown in Figure 1-4.

 36 P a r t I : C o r e M a r k u p 36 P a r t I : C o r e M a r k u p

FIGURE 1-4 Same markup, different parse, as shown in Firefox 3 (above) and Internet Explorer 8 (below)

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 37 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 37
PART I

Simply put, it is quite important to aim for correct markup as a solid foundation for a
Web page and to not assume the markup is correct just because it appears to render
correctly in your favorite browser.

Validation
As shown earlier, a DTD defines the actual elements, attributes, and element relationships
that are valid in documents. Now you can take a document written in (X)HTML and then
check whether it conforms to the rules specified by the DTD used. This process of checking
whether a document conforms to the rules of the DTD is called validation.

The <!DOCTYPE> declaration allows validation software to identify the HTML DTD
being followed in a document, and verify that the document is syntactically correct—in
other words, that all tags used are part of a particular specification and are being used
correctly. An easy way to validate a document is simply to use an online service such as the
W3C Markup Validation Service, at http://validator.w3.org. If the malformed example
from the previous section is passed to this service, it clearly shows that the page has errors:

 38 P a r t I : C o r e M a r k u p 38 P a r t I : C o r e M a r k u p

Pass the URL to the service yourself by using this link in the address bar:

http://validator.w3.org/check?uri=http%3A%2F%2Fhtmlref.com%2Fch1%2Fmalforme
dhelloworld.html

By reading the validator’s messages about the errors it detected, you can find and
correct the various mistakes. After all mistakes are corrected, the document should validate
cleanly:

Web developers should aim to start with a baseline of valid markup before trying to
address various browser quirks and bugs. Given that so many Web pages on the Web are
poorly coded, some developers opt to add a “quality” badge to a page to show or even
prove standards conformance:

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 39 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 39
PART I

Whether users care about such things is debatable, but the aim for correctness is
appropriate. Contrast this to the typical effort of testing a page by viewing it in various
browsers to see what happens. The thought is, if it looks right, then it is right. However, this
does not acknowledge that the set of supported or renderable pages a browser may handle
is a superset of those which are actually conforming to a particular specification:

It is an unfortunate reality that browsers support a multitude of incorrect things and
that developers often use a popular browser as an acceptance engine based upon some page
rendering for better or worse. Such an approach to markup testing might seem reasonable
in the short term, but it will ultimately lead to significant developer frustration, particularly
as other technologies are added, such as CSS and JavaScript, and newer browsers are
introduced. Unfortunately, given the browsers’ current method of allowing garbage yet
preferring standards, there is little reason for some developers to care until such a price is
realized.

The Doctype Switch and Browser Rendering Modes
Modern Web browsers generally have two rendering modes: quirks mode and standards
compliance mode. As their names suggest, quirks mode is more permissive and standards
compliance mode is stricter. The browser typically chooses in which mode to parse a
document by inspecting the <!DOCTYPE> statement, if there is one. This process typically is

Conforming
Markup

Supported Malformed Markup

Unsupported Markup

 40 P a r t I : C o r e M a r k u p 40 P a r t I : C o r e M a r k u p

dubbed the “doctype switch.” When a browser sees a known standards-focused doctype
indicator, it switches into a standards compliant parse:

Strict DTD Present

However, if the <!DOCTYPE> statement is missing, references a very old version like 3.2,
or is unknown, the browser will enter into quirks mode. Browsers may provide an indication
of the rendering mode via an entry in page info:

DTD Missing

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 41 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 41
PART I

In other cases, you may need to use a tool to determine the parse mode:

Web developers should aim for a solid markup foundation that is parsed in a
predictable manner. The number of rendering oddities that will still be encountered even
with such a solid footing is not inconsequential, so it’s best not to tempt fate and instead to
try to follow the “rules” of markup.

The Rules of (X)HTML
(X)HTML does have rules, of course, though in some versions the rules are somewhat loose.
Similarly, as previously discussed, these “rules” really don’t seem like rules because most
browsers pretty much let just about anything render. However, quite certainly, you should
follow these rules, because malformed documents may have significant downsides, often
exposed only after other technologies like CSS or JavaScript are intermixed with the
markup. The reality is that most (X)HTML, whether created by hand or a tool, generally lies
somewhere between strict conformance and no conformance to the specification. This
section gives you a brief tour of some of the more important aspects of (X)HTML syntax
that are necessary to understand to produce well-formed markup.

HTML Is Not Case Sensitive, XHTML Is
These markup examples are all equivalent under traditional HTML:

Go boldly
Go boldly
Go boldly
Go boldly

In the past, developers were highly opinionated about how to case elements. Some designers
pointed to the ease of typing lowercase tags as well as XHTML’s requirement for lowercase
elements as reasons to go all lowercase. HTML5 reverts back to case-insensitive markup and
thus we may see a return to uppercase tags by standards aware developers.

 42 P a r t I : C o r e M a r k u p 42 P a r t I : C o r e M a r k u p

Attribute Values May Be Case Sensitive
Consider and . Under traditional HTML,
these are equivalent because the tag and the src attribute are not case sensitive.
However, given XHTML, they should always be lowercase. However, just because attribute
names are not case sensitive under traditional HTML, this doesn’t mean every aspect of
attributes is case insensitive.

Regardless of the use of XHTML or HTML, the actual attribute values in some tags may
be case sensitive, particularly where URLs are concerned. So and
 do not necessarily reference the same image. When referenced
from a UNIX-based Web server, where filenames are case sensitive, test.gif and TEST.GIF
would be two different files, whereas on a Windows Web server, where filenames are not
case sensitive, they would reference the same file. This is a common problem and often
hinders the ability to easily transport a Web site from one server to another.

(X)HTML Is Sensitive to a Single Whitespace Character
Any white space between characters displays as a single space. This includes all tabs, line
breaks, and carriage returns. Consider this markup:

T e s t o f s p a c e s

T e s t o f s p a c e s

T
e s
t o f s p a c e s

As shown here, all the spaces, tabs, and returns are collapsed to a single element:

However, it is possible to force the whitespace issue. If more spaces are required, it is
possible to use the nonbreaking space entity, or . Some consider this the duct tape of
the Web—useful in a bind when a little bit of spacing is needed or an element has to be kept
from collapsing. Yet using markup such as

 Look, I'm spaced out!

would add space to the output, the question is, exactly how far? In print, using spaces to
format is dangerous given font size variability, so text rarely lines up. This is no different on
the Web.

Further note that in some situations, (X)HTML does treat whitespace characters differently.
In the case of the pre element, which defines a preformatted block of text, white space is
preserved rather than ignored because the content is considered preformatted. It is also
possible to use the CSS property white-space to change default whitespace handling.

Because browsers will ignore most white space, Web page authors often format their
documents for readability. However, the reality is that browsers really don’t care one way or
another, nor do end users. Because of this, some sites have adopted a markup optimization
idea, often called crunching or minification, to save bandwidth.

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 43 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 43
PART I

(X)HTML Follows a Content Model
All forms of markup support a content model that specifies that certain elements are
supposed to occur only within other elements. For example, markup like this

 <p>What a simple way to break the content model!</p>

which often is used for simple indentation, actually doesn’t follow the content model for the
strict (X)HTML specifications. The tag is only supposed to contain tags. The <p>
tag is not really appropriate in this context. Much of the time, Web page authors are able to
get away with this, but often they can’t. For example, in some browsers, the <input> tag
found outside a <form> tag is simply not displayed, yet in other browsers it is.

Elements Should Have Close Tags Unless Empty
Under traditional HTML, some elements have optional close tags. For example, both of the
paragraphs here are allowed, although the second one is better:

<p>This isn't closed
<p>This is</p>

However, given the content model, the close of the top paragraph can be inferred since its
content model doesn’t allow for another <p> tag to occur within it. HTML5 continues to
allow this, as discussed in Chapter 2.

A few elements, like the horizontal rule (hr) and line break (br), do not have close tags
because they do not enclose any content. These are considered empty elements and can be
used as is in traditional HTML. However, under XHTML you must always close tags, so
you would have to write
</br> or, more commonly, use a self-closing tag format with
a final “/” character, like so:
.

Unused Elements May Minimize
Sometimes tags may not appear to have any effect in a document. Consider, for example,
the <p> tag, which specifies a paragraph. As a block tag, it induces a return by default, but
when used repeatedly, like so,

<p></p><p></p><p></p>

does this produce numerous blank lines? No, since the browser minimizes the empty p
elements. Some HTML editors output nonsense markup such as

<p> </p><p> </p><p> </p>

to deal with this. If this looks like misused markup to you, you’re right!

Elements Should Nest
A simple rule states that tags should nest, not cross; thus

<i>is in error as tags cross</i>

 44 P a r t I : C o r e M a r k u p 44 P a r t I : C o r e M a r k u p

whereas

<i>is not since tags nest</i>

and thus is syntactically correct. All forms of markup, traditional HTML, XHTML, and
HTML5, follow this rule, and while crossing tags may seem harmless, it does introduce
some ambiguity in parse trees. To be a well-formed markup, proper nesting is mandatory.

Attributes Should Be Quoted
Under traditional HTML as well as under HTML5, simple attribute values do not need to be
quoted. If the attribute contains only alphanumeric content, dashes, and periods, then the
quotes can safely be removed; so,

would work fine in most browsers and would validate. However, the lack of quotes can
lead to trouble, especially when scripting is involved. Quotes should be used under
transitional markup forms and are required under strict forms like XHTML; so,

would be the correct form of the tag. Generally, it doesn’t matter whether you use single or
double quotes, unless other quotes are found within the quotes, which is common with
JavaScript or even with CSS when it is found in an attribute value. Stylistically, double
quotes tend to be favored, but either way you should be consistent.

Entities Should Be Used for Special Characters
Markup parsers are sensitive to special characters used for the markup itself, like < and >.
Instead of writing these potentially parse-dangerous characters in the document, they should
be escaped out using a character entity. For example, instead of <, use < or the numeric
equivalent <. Instead of >, use > or >. Given that the ampersand character has
special meaning in an entity, it would need to be escaped as well using & or &.

Beyond escaping characters, it is necessary to insert special characters for special quote
characters, legal symbols like copyright and trademark, currency, math, dingbats, and a
variety of other difficult-to-type symbols. Such characters are also inserted with entities. For
example, to insert the Yen symbol (¥), you would use ¥ or ¥. With Unicode in
play, there is a vast range of characters to choose from, but unfortunately there are
difficulties in terms of compatibility, all of which is discussed in Appendix A.

Browsers Ignore Unknown Attributes and Elements
For better or worse, keep in mind that browsers will ignore unknown elements and
attributes; so,

<bogus>this text will display on screen</bogus>

and markup such as

<p id="myPara" obviouslybadattribute="TRUE">will also render fine.</p>

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 45 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 45
PART I

Browsers make best guesses at structuring malformed content and tend to ignore code
that is obviously wrong. The permissive nature of browsers has resulted in a massive number
of malformed HTML documents on the Web. Oddly, from many people’s perspective, this
isn’t an issue, because the browsers do make sense out of the “tag soup” they find. However,
such a cavalier use of the language creates documents with shaky foundations at best. Once
other technologies such as CSS and JavaScript are thrown into the mix, brazen flaunting of the
rules can have repercussions and may result in broken pages. Furthermore, to automate the
exchange of information on the Web, collectively we need to enforce stricter structure of our
documents. The focus on standards-based Web development and future development of
XHTML and HTML5 brings some hope for stability and structure of Web documents.

Major Themes of (X)HTML
The major themes addressed in this section are deep issues that you will encounter over and
over again throughout the book.

Logical and Physical Markup
No introduction to (X)HTML would be complete without a discussion of the logical
versus physical markup battle. Physical markup refers to using a markup language such
as (X)HTML to make pages look a particular way; logical markup refers to using (X)HTML
to specify the structure or meaning of content while using another technology, such as CSS,
to designate the look of the page. We begin a deeper exploration of CSS in Chapter 4.

Physical markup is obvious; if you want to highlight something that is important to the
reader, you might embolden it by enclosing it within a tag:

This is important!

This simple approach fits with the WYSIWYG (what you see is what you get) world of programs
such as Microsoft Word.

Logical markup is a little less obvious; to indicate the importance of the phrase, it should
be enclosed in the logical strong element:

This is important.

Interestingly, the default rendering of this would be to embolden the text. Given the
difference, it seems the simpler, more obvious approach of using a tag is the way to go.
However, actually the semantic meaning of strong provides a bit more flexibility and is
preferred. Remember, the tag is used to say that something is important content,
not to indicate how it looks. If a CSS rule were defined to say that important items should
be big, red, and italic

<style="text/css">
 strong {font-size: xx-large; color: red; font-style: italic;}
</style>

confusion would not necessarily ensue, because we shouldn’t have a predisposed view of
what strong means visually. However, if we presented a CSS rule to make tags act
as such, it makes less sense because we assume that the meaning of the tag is simply to
embolden some text.

 46 P a r t I : C o r e M a r k u p 46 P a r t I : C o r e M a r k u p

HTML unfortunately mixes logical and physical markup thinking. Even worse, common
renderings are so familiar to developers that tags that are logical are assumed physical. What
does an <h1> tag do? Most Web developers would say it defines a big heading. However,
that is assuming a physical view; it is simply saying that the enclosed content is a level one
heading. How such a heading looks is completely arbitrary. While many of HTML’s logical
elements are relatively underutilized, others, such as headings and paragraphs (<p>), are
used regularly though they are generally thought of as physical tags by most HTML users.
Consider that people generally consider <h1> a large heading, <h2> a smaller heading, and
predict that <p> tags cause returns and you can see that, logical or not, the language is physical
to most of its users. However, does that have to be the case? No, these are logical elements and
the renderings, while common, are not required and CSS easily can change them.

The benefits of logical elements might not be obvious to those comfortable with physical
markup. To understand the benefits, it’s important to realize that on the Web, many browsers
render things differently. In addition, predicting what the viewing environment will be is
difficult. What browser does the user have? What is his or her monitor’s screen resolution?
Does the user even have a screen? Considering the extreme of the user having no screen at
all, how would a speaking browser render a tag? What about a tag? Text
tagged with might be read in a firm voice, but boldfaced text might not have an
easily translated meaning outside the visual realm.

Many realistic examples exist of the power of logical elements. Consider the
international aspects of the Web. In some countries, the date is written with the day first,
followed by the month and year. In the United States, the date generally is written with
the month first, and then the day and year. A <date> or a <time> tag, the latter of which
is actually now part of HTML5, could tag the information and enable the browser to
localize it for the appropriate viewing environment. In short, separation of the logical
structure from the physical presentation allows multiple physical displays to be applied
to the same content. This is a powerful idea which, unfortunately, even today is rarely
taken advantage of.

Whether you subscribe to the physical (specific) or logical (general) viewpoint,
traditional HTML is neither purely physical nor purely logical, at least not yet. In other
words, currently used HTML elements come in both flavors, physical and logical, though
users nearly always think of them as physical. This is likely not going to get settled soon;
the battle between logical and physical markup predates HTML by literally decades.
HTML5 will certainly surprise any readers who are already logical markup fans, because
it fully preserves traditional presentational tags like and <i>, given their common
use, though jumps through some interesting mental hoops to claim meaning is changed.
Further, the new specification promotes media- and visual-focused markup like
<canvas> and <video> and introduces tremendously powerful navigational and
sectioning logical-focused tags. If recent history is any guide, then HTML5 is likely going
to pick up many fans.

Standards vs. Practice
Just because a standard is defined doesn’t necessarily mean that it will be embraced. Many
Web developers simply do not know or care about standards. As long as their page looks
right in their favorite browser, they are happy and will continue to go on abusing HTML
tags like <table> and using various tricks and proprietary elements. CSS has really done

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 47 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 47
PART I

little to change this thinking, with the latest browser hacks and filters as popular as the pixel
tricks and table hacks of the generation before. Developers tend to favor that which is easy
and seems to work, so why bother to put more time in, particularly if browsers render the
almost right markup with little complaint and notice?

Obviously, this “good enough” approach simply isn’t good enough. Without standards,
the modern world wouldn’t work well. For example, imagine a world of construction in
which every nut and bolt might be a slightly different size. Standards provide needed
consistency. The Web needs standards, but standards have to acknowledge what people
actually do. Declaring that Web developers really need to validate, use logical markup, and
separate the look from the structure of the document is great but it doesn’t get them to do
so. Standards are especially pointless if they are never widely implemented.

Web technologies today are like English—widely understood but poorly spoken. However,
at the same time they are the Latin of the Web, providing a strong foundation for development
and intersecting with numerous technologies. Web standards and development practices
provide an interesting study of the difference between what theorists say and what people
want and do. HTML5 seems a step in the right direction. The specification acknowledges that,
for better or worse, traditional HTML practices are here for now, and thus attempts to make
them solid while continuing to move technology forward and encourage correct usage.

Myths and Misconceptions About HTML and XHTML
The amount of hearsay, myths, and complete misunderstandings about HTML and XHTML
is enormous. Much of this can be attributed to the fact that many people simply view the
page source of sites or read quick tutorials to learn HTML. This section covers a few of the
more common misconceptions about HTML and tries to expose the truth behind them.

Misconception: WYSIWYG Works on the Web
(X)HTML isn’t a specific, screen- or printer-precise formatting language like PostScript.
Many people struggle with HTML on a daily basis, trying to create perfect layouts using
(X)HTML elements inappropriately or using images to make up for HTML’s lack of screen
and font-handling features. Interestingly, even the concept of a visual WYSIWG editor
propagates this myth of HTML as a page layout language. Other technologies, such as CSS,
are far better than HTML for handling presentation issues and their use returns HTML to its
structural roots. However, the battle to make the end user see exactly what you see on your
screen is likely to be a futile one.

Misconception: HTML Is a Programming Language
Many people think that making HTML pages is similar to programming. However, HTML
is unlike programming in that it does not specify logic. It specifies the structure of a
document. The introduction of scripting languages such as JavaScript into Web documents
and the confusing terms Dynamic HTML (DHTML) and Ajax (Asynchronous JavaScript
and XML) tacked on may lead many to overestimate or underestimate the role of markup in
the mix. However, markup is an important foundation for scripting and should be treated
with the same syntactical precision that script is given.

Misconception: XHTML Is the Only Future
Approaching its tenth birthday, XHTML still has yet to make much inroads in the widespread
building of Web pages. Sorry to say, most documents are not authored in XHTML, and many

 48 P a r t I : C o r e M a r k u p 48 P a r t I : C o r e M a r k u p

of those that are, are done incorrectly. Poor developer education, the more stringent syntax
requirements, and ultimately the lack of obvious tangible benefit may have kept many from
adopting the XML variant of HTML.

Misconception: XHTML Is Dead
Although XHTML hasn’t taken Web development by storm, the potential rise of HTML5
does not spell the end of XHTML. In fact, you can write XML-style markup in HTML,
which most developers dub XHTML 5. For precision, XHTML is the way to go, particularly
when used in an environment that includes other forms of XML documents. XHTML’s
future is bright for those who build well-formed, valid markup documents.

Myth: Traditional HTML Is Going Away
HTML is the foundation of the Web; with literally billions of pages in existence, not every
document is going to be upgraded anytime soon. The “legacy” Web will continue for years,
and traditional nonstandardized HTML will always be lurking around underneath even the
most advanced Web page years from now. Beating the standards drum might speed things
up a bit, but the fact is, there’s a long way to go before we are rid of messed-up markup.
HTML5 clearly acknowledges this point by documenting how browsers should act in light
of malformed markup.

Having taught HTML for years and having seen how both HTML editors and people
build Web pages, I think it is very unlikely that strictly conforming markup will be the norm
anytime soon. Although (X)HTML has had rules for years, people have not really bothered to
follow them; from their perspective, there has been little penalty for failing to follow the
rules, and there is no obvious benefit to actually studying the language rigorously. Quite
often, people learn markup simply through imitation by viewing the source of existing
pages, which are not necessarily written correctly, and going from there. Like learning a
spoken language, (X)HTML’s loosely enforced rules have allowed many document authors
to get going quickly. Its biggest flaw is in some sense its biggest asset and has allowed
millions of people to get involved with Web page authoring. Rigor and structure is coming,
but it will take time, tools, and education.

Myth: Someday Standards Will Alleviate All Our Problems
Standards are important. Standards should help. Standards likely won’t fix everything.
From varying interpretations of standards, proprietary additions, and plain old bugs, there
is likely never going to be a day where Web development, even at the level of (X)HTML
markup, doesn’t have its quirks and oddities. The forces of the market so far have proven
this sentiment to be, at the very least, wishful thinking. Over a decade after first being
considered during the writing of this book’s first edition, the wait for some standards
nirvana continues.

Myth: Hand-Coding of HTML Will Continue Indefinitely
Although some people will continue to craft pages in a manner similar to mechanical
typesetting, as Web editors improve and produce standard markup perfectly, the need to
hand-tweak HTML documents will diminish. Hopefully, designers will realize that knowledge
of the “invisible pixel” trick or the CSS Box Model Hack is not a bankable resume item and
instead focus on development of their talents along with a firm standards-based understanding
of markup, CSS, and JavaScript.

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 49 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 49
PART I

Myth: (X)HTML Is the Most Important Technology Needed to Create Web Pages
Whereas (X)HTML is the basis for Web pages, you need to know a lot more than markup to
build useful Web pages (unless the page is very simple). However, don’t underestimate
markup, because it can become a bit of a challenge itself. Based on the simple examples
presented in this chapter, you might surmise that mastering Web page creation is merely a
matter of learning the multitude of markup tags, such as <h1>, <p>, , and so on, that
specify the structure of Web documents to browsers. While this certainly is an important
first step, it would be similar to believing you could master the art of writing by simply
understanding the various commands available in Microsoft Word. There is a tremendous
amount to know in the field of Web design and development, including information
architecture, visual design, client- and server-side programming, marketing and search
engines, Web servers and delivery, and much, much more.

The Future of Markup—Two Paths?
Having followed markup for well over a decade in writing editions of this book and
beyond, it is still quite difficult to predict what will happen with it in the future, other than
to say the move towards strict markup will likely be a bit slower than people think and
probably not ideal. The sloppy syntax from the late 1990s is still with us and is likely to be
so for some time. The desire to change this is strong, but so far the battle for strict markup is
far from won. We explore here two competing, or potentially complementary, paths for the
future of markup.

XHTML: Web Page Markup XML Style
A new version of HTML called XHTML became a W3C recommendation in January 2000.
XHTML, as discussed earlier in the chapter, is a reformulation of HTML using XML that
attempts to change the direction and use of HTML to the way it ought to be. So what does
that mean? In short, rules now matter. As you know, you can feed a browser just about
anything and it will render. XHTML would aim to end that. Now if you make a mistake, it
should matter.

Theoretically, a strictly XHTML-conforming browser shouldn’t render a page at all if it
doesn’t conform to the standard, though this is highly unlikely to happen because browsers
resort to a backward-compatibility quirks mode to display such documents. The question is,
could you enforce the strict sense of XML using XHTML? The short answer is, maybe not
ideally.

To demonstrate, let’s reformulate the xhtmlhelloworld.html example slightly by adding
an XML directive and forcing the MIME type to be XML. We’ll then try to change the file
extension to .xml to ensure that the server gets the browser to really treat the file as XML data.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xml; charset=utf-8" />
<title>Hello XHTML World</title>
<!-- Simple hello world in XHTML 1.0 strict example -->
</head>

 50 P a r t I : C o r e M a r k u p 50 P a r t I : C o r e M a r k u p

<body>
<h1>Welcome to the World of XHTML</h1>
<hr />
<p>XHTML really isn't so hard either!</p>
<p>Soon you will ♥ using XHTML too.</p>
<p>There are some differences between XHTML
and HTML but with some precise markup you'll
see such differences are easily addressed.</p>
</body>
</html>

ONLINE http://htmlref.com/ch1/xhtmlasxml.html
http://htmlref.com/ch1/xhtmlasxml.xml

Interestingly, most browsers, save Internet Explorer, will not have a problem with this.
Internet Explorer will treat the apparent XML acting as HTML as normal HTML markup,
but if we force the issue, it will parse it as XML and then render an XML tree rather than a
default rendering:

Correct Render Parse Tree

To get the benefit of using XML, we need to explore if syntax checking is really enforced.
Turns out that works if the browser believes markup to be XML, but not if the browser gets
the slightest idea that we mean for content to be HTML. See for yourself when you try the
examples that follow. You should note it properly fails when it assumes XML and not when
it suspects HTML.

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 51 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 51
PART I

ONLINE http://htmlref.com/ch1/xhtmlasxmlmalformed.html
http://htmlref.com/ch1/xhtmlasxmlmalformed.xml

NOTE The example presented is quite simple and meant to show the possibility of XHTML if it
were fully realized. Note that as soon as you start adding markup with internal CSS and
JavaScript, the amount of work to get rendering working in browsers increases substantially.

In summary, if a browser really believes it is getting XML, it will enforce parsing rules
and force well-formedness. Regardless of whether rules are enforced or not, without
Internet Explorer rendering markup visually, it would appear that we have to deliver
XHTML as standard HTML, as mentioned earlier in the chapter, which pretty much makes
the move to an XML world pointless.

NOTE As this edition of the book was wrapped up, the future of XHTML 2 became murky because
the W3C announced that it was letting the XHTML2 Working Group’s charter expire. This,
however, should not be taken to indicate that XML applied to HTML is dead; it does indeed live
on under HTML5.

 52 P a r t I : C o r e M a r k u p 52 P a r t I : C o r e M a r k u p

HTML5: Back to the Future
Starting in 2004, a group of well-known organizations and individuals got together to form a
standards body called the Web Hypertext Application Technology Working Group, or
WHATWG (www.whatwg.org), whose goal was to produce a new version of HTML. The exact
reasons and motivations for this effort seem to vary depending on who you talk to—slow
uptake of XHTML, frustration with the lack of movement by the Web standards body, need for
innovation, or any one of many other reasons—but, whatever the case, the aim was to create a
new, rich future for Web applications that include HTML as a foundation element. Aspects of
the emerging specification such as the canvas element have already shown up in browsers
like Safari and Firefox, so by 2008, the efforts of this group were rolled into the W3C and drafts
began to emerge. Whether this makes HTML5 become official or likely to be fully adopted is
obviously somewhat at the mercy of the browser vendors and the market, but clearly another
very likely path for the future of markup goes through HTML5. Already we see Google
adopting it in various places, so its future looks bright.

NOTE While HTML5 stabilized somewhat around October 2009, with a W3C final candidate
recommendation goal of 2012, you are duly warned that the status of HTML5 may change.
Because of the early nature of the specification, specific documentation of HTML5 focuses more on
what works now than on what may make it into the specification later.

HTML5 is meant to represent a new version of HTML along the HTML 4 path. The
emerging specification also suggests that it will be a replacement for XHTML, yet it ends up
supporting most of the syntax that end users actually use, particularly self-identifying
empty elements (for example,
). It also reverses some of the trends, such as case
sensitivity, that have entered into markup circles, so it would seem that the HTML styles of
the past will be fine in the future. In most ways, HTML5 doesn’t present much of a
difference, as you saw earlier in the chapter’s introductory example, shown again here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>
<!-- Simple hello world in HTML5 example -->
</head>
<body>
<h1>Welcome to the Future World of HTML5</h1>
<hr>
<p>HTML5 really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

ONLINE http://htmlref.com/ch1/helloworldhtml5.html

 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 53 C h a p t e r 1 : T r a d i t i o n a l H T M L a n d X H T M L 53
PART I

All that is different in this example is that the <!DOCTYPE> statement is much simpler. In
fact, the specific idea of using SGML and performing validation does not apply to HTML5.
However, the syntax checking benefits of validation lives on and is now being called
conformance checking and for all intents and purposes is the same. Interestingly, because
of the statement in its shortened form, browsers will correctly enter into a standards
compliance mode when they encounter an HTML5 document:

In the next chapter, we’ll see that HTML5 is quite a bit different than HTML 4 despite what
our “hello world” example suggests. There are many new tags and there is a tremendous
emphasis on interactivity and Web application development. However, probably the most
interesting aspect of HTML5 is the focus on defining what browsers—or, more widely, user
agents in general—are supposed to do when they encounter ill-formed markup. HTML5, by
defining known outcomes, makes it much more likely that today’s “tag soup” will be parsed
predictably by tomorrow’s browsers. Unfortunately, read another way, it provides yet more
reasons for those who create such a mess of markup not to change their bad habits.

Likely, the future of markup has more than one possible outcome. My opinion is that
those who produce professional-grade markup or who write tools to do so will continue to
embrace standards, XML or not, while those who dabble with code and have fun will
continue to work with little understanding of the rules they break and will have no worries
about doing so. The forgiveness that HTML allows is both the key to its popularity and,
ultimately, the curse of the unpredictability often associated with it.

Summary
HTML is the markup language for building Web pages and traditionally has combined
physical and logical structuring ideas. Elements—in the form of tags such as and
—are embedded within text documents to indicate to browsers how to render pages.
The rules for HTML are fairly simple and compliance can be checked with a process called
validation. Unfortunately, these rules have not been enforced by browsers in the past.
Because of this looseness, there has been a great deal of misunderstanding about the
purpose of HTML, and a good portion of the documents on the Web do not conform to any
particular official specification of HTML. Stricter forms of HTML, and especially the
introduction of XHTML, attempt to impose a more rigid syntax, encourage logical markup,
and leave presentational duties to other technologies such as Cascading Style Sheets. While
very widespread, use of strict markup has yet to occur on the Web. Web developers should
aim to meet standards to future-proof their documents and more easily address all the
various issues that will certainly arise in getting browsers to render them properly.

This page intentionally left blank

2
Introducing HTML5

The HTML5 specification not only embraces the past, by supporting traditional
HTML- and XHTML-style syntax, but also adds a wide range of new features.
Although HTML5 moves forward from HTML 4, it also is somewhat of a retreat and

an admission that trying to get every Web developer on the Internet to write their markup
properly is a futile effort, particularly because few Web developers are actually formally
trained in the technology. HTML5 tries to bring order to chaos by codifying common
practices, embracing what is already implemented in browsers, and documenting how
these user agents (browsers or other programs that consume Web pages) should deal with
our imperfect markup.

HTML5’s goals are grand. The specification is sprawling and often misunderstood.
Given the confusion, the goals of this chapter are not only to summarize what is new about
HTML5 and provide a roadmap to the element reference that follows, but to also expose
some of the myths and misconceptions about this exciting new approach to markup.

NOTE Perhaps just to be new, HTML5 omits the space found commonly between (X)HTML and its
version number, as in HTML 4 or XHTML 1. We follow this style generally in the book, but note
even the specification has not been stringent on this point.

Hello HTML5
The syntax of HTML5 should be mostly familiar. As shown in the previous chapter, a simple
HTML5 document looks like this:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML5 World</title>
</head>
<body>
<h1>Hello HTML5</h1>
<p>Welcome to the future of markup!</p>
</body>
</html>

55

CHAPTER

 56 P a r t I : C o r e M a r k u p 56 P a r t I : C o r e M a r k u p

ONLINE http://htmlref.com/ch2/helloworld.html

For all practical purposes, all that is different from standard HTML in this example is
the <!DOCTYPE> statement. Given such minimal changes, of course, basic HTML5 will
immediately render correctly in browsers, as demonstrated in Figure 2-1.

As indicated by its atypical <!DOCTYPE> statement, HTML5 is not defined as an SGML
or XML application. Because of the non-SGML/XML basis for HTML, there is no concept of
validation in HTML5; instead, an HTML5 document is checked for conformance to the
specification, which provides the same practical value as validation. So the lack of a formal
DTD is somewhat moot. As an example, consider the following flawed markup:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello Malformed HTML5 World</title>
</head>
<body>
<!-- note bad close tag below -->
<h1>Hello Malformed HTML5<h1>
<!-- unknown tag found here -->
<p>Welcome to the <danger>future</danger> of markup!</p>
<!-- missing </body> -->
</html>

FIGURE 2-1 HTML5 is alive.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 57 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 57
PART I

ONLINE http://htmlref.com/ch2/conformancecheck.html

When checked with an HTML5 conformance checker, such as the W3C Markup
Validation Service used in this chapter (available at http://validator.w3.org), you see the
expected result:

Later, with errors corrected, a clean check is possible:

 58 P a r t I : C o r e M a r k u p 58 P a r t I : C o r e M a r k u p

NOTE Given the currently fluid nature of HTML5, developers are warned that, at least for now,
HTML5 conformance may be a bit of a moving target.

If you are wondering what mode the browser enters into because of the divergent
<!DOCTYPE> used by HTML5, apparently it is the more standards-oriented mode:

Employing the more standards-oriented parsing mode might seem appropriate, but it is
somewhat odd given the point of the next section.

Loose Syntax Returns
An interesting aspect of HTML5 is the degree of syntax variability that it allows. Unlike its
stricter markup cousin, XHTML, the traditional looseness of HTML is allowed. To demonstrate,
in the following example, quotes are not always employed, major elements like html, head,
and body are simply not included, the inference of close of tags like </p> and is
allowed, case is used variably, and even XML-style self-identifying close syntax is used at will:

<!DOCTYPE html>
<!-- I have no html, head, or body as they are actually optional -->
<meta http-equiv=Content-Type content="text/html; charset=utf-8">
<title>HTML5 Tag Soup Test</title>
<h1 title="more sloppy markup ahead!">HTML5</H1>
<p id=p1>Back to the future of loose markup!?
<p>Yes it looks that way

 optional elements
 case is no problem
 <li id=noquotes>quotes optional in many cases
 inferred close tags

<p>Oh my

<p>Intermixing markup styles!
<!-- ok that's enough let's stop now -->

ONLINE http://htmlref.com/ch2/loosesyntax.html

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 59 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 59
PART I

This example, at least currently, conforms to the HTML5 specification:

Do not interpret the previous example to mean that HTML5 allows a markup free-for-all.
Understand that these “mistakes” are actually allowed under traditional HTML and thus
are allowed under HTML5. To ensure that you conform to the HTML5 specification, you
should be concerned primarily about the following:

• Make sure to nest elements, not cross them; so
<i>is in error as tags cross</i>

whereas
<i>is not since tags nest</i>.

• Quote attribute values when they are not ordinal values, particularly if they contain
special characters, particularly spaces; so
<p id=p1>Fine with no quotes</p>

because it is a simple attribute value, whereas
<p title=trouble here with no quotes>Not ok without quotes</p>

is clearly messed up.

• Understand and follow the content model. Just because one browser may let you
use a list item anywhere you like,
I should be in a list!

it isn’t correct. Elements must respect their content model, so the example should
read instead as
All is well I am in a list!

because it follows HTML5’s content model.

 60 P a r t I : C o r e M a r k u p 60 P a r t I : C o r e M a r k u p

• Do not use invented tags unless they are included via some other markup language:
<p>I <danger>shouldn't</danger> conform unless I am defined in
another specification and use a name space</p>

• Encode special characters, particularly those used in tags (< >), either as an entity
of a named form, such as <, or as a numeric value, such as <. Appendix A
covers this topic in some depth.

This brief list of what you should do might seem familiar; it is pretty much the list of
recommendations for correct markup from the previous chapter returned to the traditional
markup styles of HTML. What this means is that if you have been writing markup correctly
in the past, HTML5 isn’t going to present much of a change. In fact, in many cases, just by
changing a valid document’s doctype to the new simple HTML5 <!DOCTYPE html>, the
result should be an HTML5–conforming document.

XHTML5
For those with a heavy investment in a strict XHTML syntax worldview, HTML5 might
seem like a slap in the face. However, such a reaction is a bit premature; HTML5 neither
makes the clean markup you write non-conforming nor suggests that you shouldn’t author
markup this way. If you want to pursue an “XMLish” approach to your document, HTML5
allows it. Consider, for example, a strict XHTML example that is now HTML5:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Hello XHTML5 World</title>
<!-- Simple hello world in XHTML5 -->
</head>
<body>
<h1>Welcome to the World of XHTML5</h1>
<hr />
<p>XHTML5 really isn't so hard either!</p>
<p>HTML5 likes XML syntax too.</p>
<p>Make sure to serve it with the correct MIME type!</p>
<!-- IE users you will get a render error.
 Please read on to learn why. -->
</body>
</html>

ONLINE http://htmlref.com/ch2/xhtml5helloworld.xhtml

NOTE When using XML syntax with HTML5 according to HTML5 specification, this should be
termed XHTML5.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 61 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 61
PART I

Notice that the previous example uses an .xhtml file extension. XHTML5 usage clearly
indicates that an HTML5 document written to XML syntax must be served with the MIME
type application/xhtml+xml or application/xml. The previous example was served
with the former MIME type. You can find the same example served with latter XML MIME
type at http://htmlref.com/ch2/xhtml5helloworld.xml.

Unfortunately, although HTML5 supports XML, the real value of XHTML—the true
strictness of XML—has not been realized, at least so far, because of a lack of browser
support. As of this edition’s writing, Internet Explorer browsers (up to version 8) will not
render XHTML served with the appropriate application/xhtml+xml MIME type and
will take the raw XML form and render it as a parse tree. Other browsers, fortunately, don’t
do this (see Figure 2-2), which is little solace given Internet Explorer’s widespread usage.

You can write XMLish markup and serve it as text/html but it won’t provide the
benefit of strict syntax conformance. In short, HTML5 certainly allows you to try to
continue applying the intent of XHTML in the hopes that someday it becomes viable.

FIGURE 2-2 XHTML5 works, but Internet Explorer support lags.

 62 P a r t I : C o r e M a r k u p 62 P a r t I : C o r e M a r k u p

HTML5: Embracing the Reality of Web Markup
Given the looseness HTML5 supports and its de-emphasis of the XML approach to markup,
you might assume that HTML5 is a retreat from doing things in the right way and an
acceptance of “tag soup” as legitimate markup. The harsh reality is that, indeed, valid
markup is more the exception than the rule online. Numerous surveys have shown that in
the grand scheme of things, few Web sites validate. For example, in a study of the Alexa
Global Top 500 in January 2008, only 6.57 percent of the sites surveyed validated.1 When
sample sizes are increased and we begin to look at sites that are not as professional, things
actually get worse. Some validation results from Opera’s larger MAMA (Metadata Analysis
and Mining Application) study are shown here2:

Interestingly, Google has even larger studies, and while they don’t focus specifically on
validation, what they indicate on tag usage indicates clearly that no matter the sample size,
clean markup is more the exception than the rule.

Yet despite the markup madness, the Web continues to work. In fact, some might say the
permissive nature of browsers that parse junk HTML actually helps the Web grow because it
lowers the barrier to entry for new Web page authors. Certainly a shaky foundation to build
upon, but the stark reality is that we must deal with malformed markup. To this end, HTML5
makes one very major contribution: it defines what to do in the presence of markup syntax
problems.

The permissive nature of browsers is required for browsers to fix markup mistakes. HTML5
directly acknowledges this situation and aims to define how browsers should parse both well-
formed and malformed markup, as indicated by this brief excerpt from the specification:

This specification defines the parsing rules for HTML documents, whether they
are syntactically correct or not. Certain points in the parsing algorithm are said
to be parse errors. The error handling for parse errors is well-defined: user agents
must either act as described below when encountering such problems, or must
abort processing at the first error that they encounter for which they do not wish
to apply the rules described below.

While a complete discussion of the implementation of an HTML5–compliant browser
parser is of little interest to Web document authors, browser implementers now have a
common specification to consult to determine what to do when tags are not nested, simply
left open, or mangled in a variety of ways. This is the part of the HTML5 specification that

1 Brian Wilson, “MAMA W3C Validator Research,” subsection “Interesting Views of Validation Rates, part 2:
Alexa Global Top 500,” Dev.Opera, October 15, 2008, http://dev.opera.com/articles/view/mama-w3c-
validator-research-2/?page=2#alexalist.

2 Ibid., subsection “How Many Pages Validated?” http://dev.opera.com/articles/view/mama-w3c-
validator-research-2/#validated.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 63 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 63
PART I

will likely produce the most good, because obtaining consensus among browser vendors to
handle markup problems in a consistent manner is a more likely path to an improved Web
than defining some strict syntax and then attempting to educate document authors around
the world en masse to write good markup.

HTML5’s aim to bring order to the chaos of sloppy markup is but one of the grand
aims of the specification. It also aims to replace traditional HTML, XHTML, and DOM
specifications, and to do so in a backward-compatible fashion. In its attempt to do this, the
specification is sprawling, addressing not just what elements exist but how they are used
and scripted. HTML5 embraces the fact that the Web not only is composed of documents
but also supports applications, thus markup must acknowledge and facilitate the building
of such applications. More of the philosophy of HTML5 will be discussed later in the
chapter when addressing some strong opinions, myths, and misconceptions surrounding
the specification; for now, take a look at what markup features HTML5 actually changes.

Presentational Markup Removed and Redefined
HTML5 removes a number of elements and attributes. Many of the elements are removed
because they are more presentational than semantic. Table 2-1 presents the elements
currently scheduled for removal from HTML5.

NOTE Although these elements are removed from the specification and should be avoided in favor of
CSS, they likely will continue to be supported by browsers for some time to come. The specification
even acknowledges this fact.

Looking at Table 2-1, you might notice that some elements that apparently should be
eliminated somehow live on. For example, <small> continues to be allowed, but <big> is
obsolete. The idea here is to preserve elements but shift meaning. For example, <small> is
no longer intended to correspond to text that is just reduced in size, similar to <font
size="-1"> or , but instead is intended to
represent the use of small text, such as appears in fine print or legal information. If you
think this decision seems a bit preposterous, join the crowd. Some of the other changes to
element meaning seem even a bit more preposterous, such as the claim that a tag now
represents inline text that is stylistically offset from standard text, typically using a different

Removed HTML Element CSS Equivalent

<basefont> body {font-family: family; font-size: size;}

<big> font-size: larger

<center> text-align: center or margin: auto depending on context

 font-family, font-size, or font

<s>, <strike> text-decoration: strike

<tt> font-family: monospace

<u> text-decoration: underline

TABLE 2-1 HTML 4 Elements Removed from HTML5

 64 P a r t I : C o r e M a r k u p 64 P a r t I : C o r e M a r k u p

type treatment. So apparently tags are not necessarily bold, but rather convey some
sense that the text is “different” (which likely means bold). Unlikely to be thought of in such
a manner by mere markup mortals, we simply say tags live on, as do a number of other
presentational elements. Table 2-2 presents the meaning-changed elements that stay put in
HTML5 and their new meaning.

The meaning of some of these items might not be immediately clear, but don’t worry
about that now, because each will be demonstrated later in the chapter and a full reference
presented in Chapter 3.

Like the strict variants of (X)HTML, HTML5 also removes numerous presentation-
focused attributes. Table 2-3 summarizes these values and presents CSS alternatives.

Out with the Old Elements
A few elements are removed from the HTML5 specification simply because they are archaic,
misunderstood, have usability concerns, or have a function that is equivalent to the function
of other elements. Table 2-4 summarizes some of the elements that have been removed from
the HTML5 specification.

NOTE While frames are mostly removed from HTML5, inline frames live on. See the section “The
Uncertain Future of Frames,” later in the chapter, for more information.

Table 2-4 is not a complete list of non-conforming elements, just the ones that are supported
by recent HTML 4 and XHTML 1.x specifications. Discussing the fact that ancient tags like
<listing> and <plaintext> continue not to be supported or that all the presentational tags

HTML Element New Meaning in HTML5

 Represents an inline run of text that is different stylistically from normal
text, typically by being bold, but conveys no other meaning of importance.

<dd> Used with HTML5’s new details and figure elements to define the
contained text. Was also used with a dialog element which was later
removed from the HTML5 specification.

<dt> Used with HTML5’s new details and figure element to summarize the
details. Was also used with a dialog element which was later removed
from the HTML5 specification.

<hr> Represents a thematic break rather than a horizontal rule, though that is
the likely representation.

<i> Represents an inline run of text in an alternative voice or tone that is
supposed to be different from standard text but that is generally presented
in italic type.

<menu> Redefined to represent user interface menus, including context menus.

<small> Represents small print, as in comments or legal fine print.

 Represents importance rather than strong emphasis.

TABLE 2-2 HTML 4 Elements Redefined in HTML5

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 65 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 65
PART I

Attribute Removed Elements Effected CSS Equivalent

align caption, col, colgroup, div,
iframe, h1, h2, h3, h4, h5,
h6, hr, img, input, legend,
object, p, table, tbody, td,
tfoot, th, thead, tr

text-align or in some block element
cases float

alink body body a:active {color: color-
value;}

background body background-image or background

bgcolor body, table, td, th, tr background-color

border img, object, table border-width and/or border

cellpadding table padding

cellspacing table margin

char col, colgroup, table, tbody,
td, tfoot, th, thead, tr

N/A

charoff col, colgroup, table, tbody,
td, tfoot, th, thead, tr

N/A

clear br clear

compact dl, menu, ol, ul margin properties

frame table border properties

frameborder iframe border properties

height td, th height

hspace img, object margin properties

link body body a:link {color: color-
value;}

marginheight iframe margin properties

marginwidth iframe margin properties

noshade hr border-style or border

nowrap td, th overflow

rules table border properties

scrolling iframe overflow

size hr width

text body body {color: color-value;}

type li, ol, ul list-style-type and list-style

valign col, colgroup, tbody, td,
tfoot, th, thead

vertical-align

vlink body body a:visited {color: color-
value;}

width col, colgroup, hr, pre,
table, td, th

width

TABLE 2-3 HTML 4 Attributes Removed in HTML5

 66 P a r t I : C o r e M a r k u p 66 P a r t I : C o r e M a r k u p

like and proprietary tags like <spacer>, <marquee>, and <blink> should be off limits
is somewhat redundant and does not build on the specifications. However, the reference in
Chapter 3 covers compliance points completely, so when in doubt check the appropriate
element’s entry.

In with the New Elements
For most Web page authors, the inclusion of new elements is the most interesting aspect of
HTML5. Some of these elements are not yet supported, but already many browsers are
implementing a few of the more interesting ones, such as audio and video, and others can
easily be simulated even if they are not directly understood yet, as you will see later in the
chapter. Table 2-5 summarizes the elements added by HTML5 at the time of this edition’s
writing, and the sections that follow illustrate their use. Again, Chapter 3 provides
a complete element syntax discussion.

Sample of New Attributes for HTML5
One quite important aspect of HTML5 is the introduction of new attributes. There are quite
a few attributes that are global and thus found on all elements. Table 2-6 provides a brief
overview of these attributes. We’ll take a look at many of these in upcoming sections and
a complete reference for all is found in the next chapter.

The element reference in Chapter 3 provides the full syntax for the various HTML5
attributes that may have been added to specific elements. Some of them, such as reversed
for use on ordered lists (), are a long time in coming, while others simply add polish, or
address details that few page authors may notice.

Removed Element Reasoning Alternatives

acronym Misunderstood by many Web
developers.

Use the abbr element.

applet Obsolete syntax for Java applets. Use the object element.

dir Rarely used, and provides similar
functionality to unordered lists.

Use the ul element.

frame Usability concerns. Use fixed-position elements with
CSS and/or object elements with
sourced documents.

frameset Usability concerns. Use fixed-position elements with
CSS and/or object elements with
sourced documents.

isindex Archaic and can be simulated
with typical form elements.

Use the input element to create
text field and button and back up with
appropriate server-side script.

noframes Since frames are no longer
supported, this contingency
element is no longer required.

N/A

TABLE 2-4 Elements Removed by HTML5

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 67 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 67
PART I

New Element Description

article Encloses a subset of a document that forms an independent part of a document,
such as a blog post, article, or self-continued unit of information.

aside Encloses content that is tangentially related to the other content in an enclosing
element such as section.

audio Specifies sound to be used in a Web page.

canvas Defines a region to be used for bitmap drawing using JavaScript.

command Located within a menu element, defines a command that a user may invoke.

datalist Indicates the data items that may be used as quick choices in an input element of
type="list".

details Defines additional content that can be shown on demand.

figure Defines a group of content that should be used as a figure and may be labeled by a
legend element.

footer Represents the footer of a section or the document and likely contains
supplementary information about the related content.

header Represents the header of a section or the document and contains a label or other
heading information for the related content.

hgroup Groups heading elements (h1–h6) for sectioning or subheading purposes.

mark Indicates marked text and should be used in a similar fashion to show how a
highlighter is used on printed text.

meter Represents a scalar measurement in a known range similar to what may be
represented by a gauge.

nav Encloses a group of links to serve as document or site navigation.

output Defines a region that will be used to hold output from some calculation or form
activity.

progress Indicates the progress of a task toward completion, such as displayed in a progress
meter or loading bar.

rp Defines parentheses around ruby text defined by an rt element.

rt Defines text used as annotations or pronunciation guides. This element will be
enclosed within a ruby element.

ruby This is the primary element and may include rt and rp elements. A ruby element
serves as a reading or pronunciation guide. It is commonly used in Asian languages,
such as in Japanese to present information about Kanji characters.

section Defines a generic section of a document and may contain its own header and
footer.

source Represents media resources for use by audio and video elements.

time Encloses content that represents a date and/or time.

video Includes a video (and potentially associated controls) in a Web page.

TABLE 2-5 Elements Added by HTML5

 68 P a r t I : C o r e M a r k u p 68 P a r t I : C o r e M a r k u p

New Attribute Description

accesskey Defines the accelerator key to be used for keyboard access to an element.

contenteditable When set to true, the browser should allow the user to edit the content of
the element. Does not specify how the changed content is saved.

contextmenu Defines the DOM id of the menu element to serve as a context menu for
the element the attribute is defined on.

data-X Specifies user-defined metadata that may be put on tags without concern of
collision with current or future attributes. Use of this type of attribute avoids
the common method of creating custom attributes or overloading the class
attribute.

draggable When specified, should allow the element and its content to be dragged.

hidden Under HTML5, all elements may have hidden attribute which when placed
indicates the element is not relevant and should not be rendered. This
attribute is similar to the idea of using the CSS display property set to a
value of none.

itemid Sets a global identifier for a microdata item. This is an optional attribute, but
if it is used, it must be placed in an element that sets both the itemscope
and itemtype attributes. The value must be in the form of a URL.

itemprop Adds a name/value pair to an item of microdata. Any child of a tag with an
itemscope attribute can have an itemprop attribute set in order to add a
property to that item.

itemref Specifies a list of space-separated elements to traverse in order to find
additional name/value pairs for a microdata item. By default, an item
only searches the children of the element that contains the itemscope
attribute. However, sometimes it does not make sense to have a single
parent item if the data is intermingled. In this case, the itemref attribute
can be set to indicate additional elements to search. The attribute is
optional, but if it is used, it must be placed in an element that sets the
itemscope attribute.

itemscope Sets an element as an item of microdata (see “Microdata” later in the
chapter).

itemtype Defines a global type for a microdata item. This is an optional attribute,
but if it is used, it must be placed in an element that sets the itemscope
attribute. The value must be in the form of a URL.

spellcheck Enables the spell checking of an element. The need for this attribute globally
may not be clear until you consider that all elements may be editable at
page view time with the contenteditable attribute.

tabindex Defines the element-traversal order when the keyboard is used for navigation.

TABLE 2-6 Key Attributes Added by HTML5

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 69 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 69
PART I

HTML5 Document Structure Changes
As you have seen, the HTML5 document structure seems pretty much the same as in HTML
4 save a slightly different <!DOCTYPE> statement. However, if you look closer, there are a
few important differences in HTML5 that show the document structure has in fact been
expanded quite a bit.

HTML5 documents may contain a header element, which is used to set the header
section of a document and thus often contains the standard h1 to h6 heading elements:

<header>
<h1>Welcome to the Future World of HTML5.</h1>
<h2>Don't be scared it isn't that hard!</h2>
</header>

Similarly, a footer element is provided for document authors to define the footer
content of a document, which often contains navigation, legal, and contact information:

<footer>
 <p>Content of this example is not under copyright</p>
</footer>

The actual content to be placed in a <footer> tag is, of course, up to you and may be
enclosed in div, p, or other block elements, as illustrated by this simple example:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 header and footer example</title>
</head>
<body>
<header>
<h1>Welcome to the Future World of HTML5.</h1>
<h2>Don't be scared it isn't that hard!</h2>
</header>
<p>Some body content here.</p>
<p>Some more body content here.</p>

<footer>
 <p>Content of this example is not under copyright.</p>
</footer>
</body>
</html>

ONLINE http://htmlref.com/ch2/headerfooter.html

The HTML5 structural element with the most possible uses is the section element. A
particular <section> tag can be used to group arbitrary content together and may contain
further <section> tags to create the idea of subsections. Traditionally, we are familiar with
sections; just as this book is broken into chapters and various main and secondary sections,

 70 P a r t I : C o r e M a r k u p 70 P a r t I : C o r e M a r k u p

so too could a Web document be structured in this way. The example here illustrates the
basic use of HTML5 sections:

<section>
<h1>Chapter 2</h1>
 <p>New HTML5 elements.</p>
 <section>
 <h2>HTML5's section Element</h2>
 <p>These elements are useful to create outlines.</p>
 <section>
 <h3>Nest Away!</h3>
 <p>Nest your sections but as you nest you might want to indent.</p>
 </section>
 </section>
 <p>Ok that's enough of that.</p>
</section>

ONLINE http://htmlref.com/ch2/section.html

It may not be obvious but a section element may contain header and footer elements
of its own:

<section>
 <header>
 <h1>I am Section Heading</h1>
 </header>
 <h2>I am outside the section header I'm just a plain headline.</h2>
 <p>Some more section content might go here.</p>
 <footer>
 <p>Hi from the footer of this section.</p>
 </footer>
</section>

HTML5 uses headings and newly introduced elements like the section element for
outlining purposes. For example, the expanded example here shows a number of sections
with headers, footers, headlines, and content:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 expanded section example</title>
</head>
<body>
<header>
 <h1>Welcome to the Future World of HTML5</h1>
 <h2>Don't be scared it isn't that hard!</h2>
</header>

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 71 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 71
PART I

<!-- assume chapter 1 before -->
<section id="chapter2">
 <header>
 <h1>Chapter 2</h1>
 </header>

 <p>Intro to chapter 2 here...</p>
 <section id="newStrucreElements">
 <header>
 <h2>New Structural Elements</h2>
 </header>
 <h3>header Element</h3>
 <p>Discussion of header element.</p>

 <h3>footer Element</h3>
 <p>Discussion of footer element.</p>

 <h3>section Element</h3>
 <p>Discussion of section element</p>
 </section>

 <section id="newFormElements">
 <header>
 <h2>New Form Elements</h2>
 </header>
 <h3>input type=date</h3>
 <p>Discussion here...</p>
 <footer>
 <p>These ideas are from WebForms specification.</p>
 </footer>
 </section>
</section>

<section id="chapter3">
 <header>
 <h2>Chapter 3</h2>
 </header>
 <p>Massive element reference...</p>
</section>
<footer>
 <p>Content of this example is not under copyright</p>
</footer>

</body>
</html>

ONLINE http://htmlref.com/ch2/sectionoutline.html

 72 P a r t I : C o r e M a r k u p 72 P a r t I : C o r e M a r k u p

HTML5–compliant browsers should take this markup and define an outline based upon
the use of headers, like so:

In theory, user agents could take the outlining semantics and derive meaning or even
provide an alternative browser interface, although that is quite speculative at this point. It is
clear, however, that if you introduce such outlining ideas, issues may arise. For example, the
first header really was not two levels of sectioning but simply one with a subhead. To
address this outlining, you would take this markup

<header>
 <h1>Welcome to the Future World of HTML5</h1>
 <h2>Don't be scared it isn't that hard!</h2>
</header>

and then join the subhead to the headline with an hgroup element like so:

<header>
<hgroup>
 <h1>Welcome to the Future World of HTML5</h1>
 <h2>Don't be scared it isn't that hard!</h2>
</hgroup>
</header>

No hgroup
elements used

hgroup
elements used

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 73 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 73
PART I

A complete example to explore can be found online, though you may find that a browser
does not do anything of interest and that you need an outline simulator to see the difference
between using <hgroup> tags or not.

ONLINE http://htmlref.com/ch2/hgroup.html

Given these semantics, it is clear that HTML5 sectioning elements are not just a
formalization of <div> tags with appropriate class values. For example, you might
consider

<div class="header">
 <!-- header here -->
</div>
<div class="section">
 <div class="header">
 <h2>Section Heading</h2>
 </div>
 <p>Content of section.</p>
</div>
<div class="footer">
 <!-- footer here -->
</div>

to be roughly the same as the previously introduced elements. To some degree this is true,
but clearly the names of the class values aren’t defined by a standard nor is any outlining
algorithm defined.

Beyond sectioning, HTML5 introduces a number of other structural elements. For
example, the article element is used to define a discrete unit of content such as a blog
post, comment, article, and so on. For example, the following defines a few individual blog
posts in a document:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 article example</title>
</head>
<body>

<header>
 <hgroup>
 <h1>Welcome to the Future World of HTML5 Blog</h1>
 <h2>Don't be scared it isn't that hard!</h2>
 </hgroup>
</header>
<section id="articleList">
 <h2>Latest Posts</h2>

 <article id="article3">
 <h2>HTML5 Here Today!</h2>
 <p>Article content here...</p>
 </article>

 74 P a r t I : C o r e M a r k u p 74 P a r t I : C o r e M a r k u p

 <article id="article2">
 <h2>HTML5 Widely Misunderstood</h2>
 <p>Article content here...</p>
 </article>

<article id="article1">
 <h2>Discovering the article element</h2>
 <p>Article content here...</p>
 </article>
</section>

<footer>
 <p>This fake blog example is not real.</p>
</footer>

</body>
</html>

ONLINE http://htmlref.com/ch2/article.html

The idea of defining these discrete content units specially is that you might wish to
extract them automatically, so again, having defined elements as opposed to some ad hoc
use of class names on <div> tags is preferred.

NOTE Under early HTML5 drafts, the article element provided for cite and pubdate
attributes, which may make the usage of the content more meaningful by outside sites; however,
these were later dropped and use of <time> tags was encouraged.

HTML5 also introduces an aside element, which may be used within content to
represent material that is tangential or, as the element name suggests, an aside:

<p>Here we explore the various HTML5 elements. I would write
 some real content here but you are busy reading the book anyway.
</p>

 <aside>
 <h2>Pointless Aside</h2>
 <p>Oh by the way did you know that the author lives in San Diego?
 It is completely irrelevant to the discussion but he seems
 to like the weather there as opposed to rainy New Zealand.</p>
 </aside>

<p>So as we continue to discuss the various HTML5 elements we must
 remember to stay focused as there is much to learn.
</p>

ONLINE http://htmlref.com/ch2/aside.html

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 75 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 75
PART I

You may have noted that an <h2> tag was used in the aside. While not required, it is
useful as a reminder to readers that aside elements serve as outline sectioning elements, as
shown here:

NOTE If a heading is not provided in an aside, you may see an outline mechanism add “Untitled
Section” or potentially even make up one based upon the start of the element content.

Adding Semantics
Many of the elements that HTML5 adds that can be used right away are semantic in nature.
In this sense, HTML5 continues the appropriate goal of separating structure from style. In
this section, you will see a number of repurposed elements as well as some that are all new.
At first you won’t see much value in using them other than to add semantics, but toward
the end of the chapter we will explore how to make the elements understandable to most
modern browsers and how to apply some simple styling for end users.

Marking Text
The new HTML5 element mark was introduced for highlighting content similarly to how
a highlighter pen might be used on important text in a book. The following example wraps
a few important words:

<p>Here comes <mark>marked text</mark> was it obvious?</p>

Unfortunately, you won’t necessarily see anything with such an example:

You would need to apply a style. Here, inline styles are used just to show the idea:

<p>The new HTML5 specification is in the works. While <mark
style="background-color: red;">many features are not currently
implemented or even well defined</mark> yet, <mark
style="background-color: green;">progress is being made</mark>.
Stay tuned to see more new HTML elements added to your Web documents
in the years to come.</p>

ONLINE http://htmlref.com/ch2/mark.html

 76 P a r t I : C o r e M a r k u p 76 P a r t I : C o r e M a r k u p

After seeing such an example, you might wonder what the point is of this element,
because a tag or maybe even an tag could be used instead. Again, semantics is
the key to this element. It makes the meaning of HTML documents more obvious.

Indicating Dates and Time
Another semantic inline element, time, was introduced by HTML5 to indicate content that
is a date, time, or both. For example,

<p>Today it is <time>2009-07-08</time> which is an interesting date.</p>

as well as

<p>An interesting date/time for SciFi buffs is <time>1999-09-13T09:15:00
</time>!</p>

would both be valid. The element should contain a date/time value that is in the format
YYYY-MM-DDThh:mm:ssTZD, where the letters correspond to years, months, days, hours,
minutes, and seconds, T is the actual letter ‘T,’ and ZD represents a time zone designator of
either Z or a value like +hh:mm to indicate a time zone offset. However, it seems reasonable
that the time element would contain values that may not be in a common format but are
recognized by humans as dates. If you try something like

<p>Right now it is <time>6:15</time>.</p>

it may be meaningful to you but it does not conform to HTML5. To provide both human-
and machine-friendly date/time content, the element supports a datetime attribute, which
should be set to the previously mentioned date format of YYYY-MM-DDThh:mm:ssTZD. So,
the following example is meaningful because it provides both a readable form and a
machine-understood value:

<p>My first son was born on <time datetime="2006-01-13">Friday the 13th
</time> so it is my new lucky day.</p>

ONLINE http://htmlref.com/ch2/time.html

Similar to mark, the time element has no predefined rendering, though you could
certainly define a look using CSS.

Inserting Figures
It is often necessary to include images, graphs, compound objects that contain text and
images, and so on in our Web documents, all of which usually are called figures. Long ago,
HTML 3 tried to introduce the fig element to represent such constructs; HTML5
reintroduces the idea with the more appropriately named figure element. A simple
example illustrates this new element’s usage:

<figure id="fig1">
 <dd>
 <img src="figure.png" height="100" width="100"

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 77 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 77
PART I

 alt="A screen capture of the figure element in action">
 <p>This mighty <figure> tag has returned from HTML 3 to haunt your
 dreams.</p>
 </dd>
 <dt>Figure Ex-1</dt>
 </figure>

ONLINE http://htmlref.com/ch2/figure.html

Acting as a semantic element, figure simply groups items within an enclosed <dd>
tag, though it may associate them with a caption defined by a <dt> tag as shown in the
example. You may desire to style a <figure> tag by placing a stroke around its visual
rendering or display it in some other appropriate manner; of course, that is the duty of CSS.
You should also note that the use of id on a <figure> will likely be useful to target using
links, as figures may be positioned away from the content that references them.

NOTE In early drafts of the HTML5 specification, the <legend> was used instead of <dt> and no
special tag was required for content enclosure.

Specifying Navigation
One new HTML5 element that is long overdue is the nav element. The purpose of this
element is to encapsulate a group of links that serves as a collection of offsite links,
document navigation, or site navigation:

<nav>
 <h2>Offsite Links</h2>
 W3C

 Book site

 Author's Firm

</nav>

Conventionally, many Web developers have used and tags to encapsulate
navigation and then styled the elements appropriately as menu items. This seems to
introduce quite a bit of ambiguity in markup because it may be difficult to determine the
difference between a list that has links in it and a list that is simply navigation. The
semantics defined by HTML5 for a <nav> tag eliminate this confusion. Interestingly, there is
no requirement to avoid using and tags within navigation, so if you are a CSS
aficionado who is comfortable with that approach, it is fine to use markup like this:

<nav id="mainNav">

 About
 Services
 Contact
 Home

</nav>

ONLINE http://htmlref.com/ch2/nav.html

 78 P a r t I : C o r e M a r k u p 78 P a r t I : C o r e M a r k u p

HTML5’s Open Media Effort
An interesting aspect of HTML5 that is reminiscent of the previous efforts of Netscape and
Microsoft is the support for tag-based multimedia in HTML documents. Traditionally,
multimedia has been inserted with the embed and object elements, particularly when
inserting Adobe Flash, Apple QuickTime, Windows Media, and other formats. However,
there was a time when tags specifically to insert media were supported; interestingly, some
of those features, such as the dynsrc attribute for tags, lived on until just recently.
HTML5 brings this concept of tag-based multimedia back.

<video>
To insert video, use a <video> tag and set its src attribute to a local or remote URL containing
a playable movie. You should also display playblack controls by including the controls
attribute, as well as set the dimensions of the movie to its natural size. This simple demo shows
the use of the new element:

<video src="http://htmlref.com/ch2/html_5.mp4"
 width="640" height="360" controls>
HTML5 video element not supported
</video>

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 79 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 79
PART I

NOTE If you are using XHTML5, given that controls is an occurrence style attribute, use
controls="controls" to be conforming.

You should note the included content in the tag that nonsupporting browsers fall back
to. The following shows Internet Explorer displaying the alternative content:

However, even if a browser supports the video element, it might still have problems
displaying the video. For example, Firefox 3.5 won’t load this particular media format directly:

HTML5 open video has, as it currently stands, brought back the madness of media
codec support that Flash solved, albeit in a less than stellar way. To address the media
support problem, you need to add in alternative formats to use by including a number of
<source> tags:

<video width="640" height="360" controls poster="loading.png">

<source src="html_5.mp4" type="video/mp4">
<source src="html_5.ogv" type="video/ogg">

HTML5 video element not supported
</video>

 80 P a r t I : C o r e M a r k u p 80 P a r t I : C o r e M a r k u p

Also note in the preceding snippet the use of the poster attribute, which is set to display an
image in place of the linked object in case it takes a few moments to load. Other video element–
specific attributes like autobuffer can be used to advise the browser to download media
content in the background to improve playback, and autoplay, which when set, will start the
media as soon as it can. A complete example of the video element in action is shown here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 video example</title>
</head>
<body>

<h1>Simple Video Examples</h1>
<video src="http://htmlref.com/ch2/html_5.mp4"
 width="640" height="360" controls>

HTML5 video element not supported
</video>

<video width="640" height="360" controls poster="loading.png">
 <source src="http://htmlref.com/ch2/html_5.mp4" type="video/mp4">
 <source src="http://htmlref.com/ch2/html_5.ogv" type="video/ogg">
 HTML5 video element not supported
</video>

</body>
</html>

ONLINE http://htmlref.com/ch2/video.html

The reference section in Chapter 3 shows the complete list of attributes for the video
element supported as of late 2009. Be warned, though, that if the various media markup
efforts of the late 1990s repeat themselves, it is quite likely that there will be an explosion of
attributes, many of which may be specific to a particular browser or media format.

<audio>
HTML5’s audio element is quite similar to the video element. The element should support
common sound formats such as WAV files:

<audio src="http://htmlref.com/ch2/music.wav"></audio>

In this manner, the audio element looks pretty much the same as Internet Explorer’s
proprietary bgsound element. Having the fallback content rely on that proprietary tag
might not be a bad idea:

<audio>
 <bgsound src="http://htmlref.com/ch2/music.wav">
</audio>

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 81 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 81
PART I

If you want to allow the user to control sound play, unless you have utilized JavaScript
to control this, you may opt to show controls with the same named attribute. Depending on
the browser, these controls may look quite different, as shown next.

<audio src="http://htmlref.com/ch2/music.wav" controls></audio>

As with the video element, you also have autobuffer and autoplay attributes for the
audio element. Unfortunately, just like video, there are also audio format support issues,
so you may want to specify different formats using <source> tags:

<audio controls autobuffer autoplay>
 <source src="http://htmlref.com/ch2/music.ogg" type="audio/ogg">
 <source src="http://htmlref.com/ch2/music.wav" type="audio/wav">
</audio>

A complete example is shown here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 audio examples</title>
</head>
<body>
<h1>Simple Audio Examples</h1>

<h2>wav Format</h2>
<audio src="http://htmlref.com/ch2/music.wav" controls></audio>

<h2>ogg Format</h2>
<audio src="http://htmlref.com/ch2/music.ogg" controls></audio>

<h2>Multiple Formats and Fallback</h2>
<audio controls autobuffer autoplay>
 <source src="http://htmlref.com/ch2/music.ogg" type="audio/ogg">
 <source src="http://htmlref.com/ch2/music.wav" type="audio/wav">
 <!--[if IE]>
 <bgsound src="http://htmlref.com/ch2/music.wav">
 <![endif]-->
</audio>

</body>
</html>

ONLINE http://htmlref.com/ch2/audio.html

 82 P a r t I : C o r e M a r k u p 82 P a r t I : C o r e M a r k u p

Media Considerations
An interesting concern about “open” media formats is whether or not they really are open.
As the HTML5 specification emerges, fissures are already forming in terms of how these
elements are implemented, what codecs will be supported by what browser vendors, and
whether HTML5 will require a particular codec to be supported by all HTML5–compliant
browsers. Valid concerns about so-called “submarine” patents surfacing and torpedoing the
open media effort are real and hotly debated.

Unfortunately, given this media codec chaos, at the time of this edition’s writing, getting
an example to work in all browsers can be quite a chore and Flash and/or QuickTime support
must be added to address older browsers. Simply put, for all its possibilities, so far HTML5
media is a messy solution at best. The following adds in a fallback within the previous video
example for Flash:

<video width="640" height="360" controls poster="loading.png">
 <source src="http://htmlref.com/ch2/html_5.mp4" type="video/mp4">
 <source src="http://htmlref.com/ch2/html_5.ogv" type="video/ogg">

<object data="html_5.swf" type="application/x-shockwave-flash"
 width="640" height="360" id="player">
 <param name="movie" value="html_5.swf"/>
 Error: No video support at all
</object>
</video>

Given the example, I think it isn’t much of a stretch to imagine a <source> tag being set to
a Flash type eventually; making the direction this is going even more confusing.

So while the potential benefits of open media formats can be debated endlessly, there is
also the pragmatic concern of how long it will take before HTML5’s open media movement
becomes viable. Getting to the stable media playback world provided by Flash took many
years, and it seems unlikely that HTML5 solutions will move much faster.

NOTE The current state of the HTML5 specification before press suggests that no codec is official.
While the neutrality is welcome, the reality that implementations vary considerably still continues.

Client-Side Graphics with <canvas>
The canvas element is used to render simple graphics such as line art, graphs, and other custom
graphical elements on the client side. Initially introduced in the summer of 2004 by Apple in its
Safari browser, the canvas element is now supported in many browsers, including Firefox 1.5+,
Opera 9+, and Safari 2+, and as such is included in the HTML5 specification. While Internet
Explorer does not directly support the tag as of yet, there are JavaScript libraries3 that emulate
<canvas> syntax using Microsoft’s Vector Markup Language (VML).

From a markup point of view, there is little that you can do with a <canvas> tag. You
simply put the element in the page, name it with an id attribute, and define its dimensions
with height and width attributes:

3 Circa late 2009, the most popular IE <canvas> emulation library is explorercanvas, available at http://
code.google.com/p/explorercanvas/.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 83 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 83
PART I

<canvas id="canvas" width="300" height="300">
 Canvas Supporting Browser Required
</canvas>

Note the alternative content placed within the element for browsers that don’t support
the element.

After you place a <canvas> tag in a document, your next step is to use JavaScript to
access and draw on the element. For example, the following fetches the object by its id
value and creates a two-dimensional drawing context:

var canvas = document.getElementById("canvas");
var context = canvas.getContext("2d");

NOTE 3D drawing is coming to <canvas> but is not currently defined outside of extensions.

Once you have the drawing context, you might employ various methods to draw on it.
For example, the strokeRect(x,y,width,height) method takes x and y coordinates and
height and width, all specified as numbers representing pixels. For example,

context.strokeRect(10,10,150,50);

would draw a simple rectangle of 150 pixels by 50 pixels starting at the coordinate 10,10
from the origin of the placed <canvas> tag. If you wanted to set a particular color for the
stroke, you might set it with the strokeStyle() method, like so:

context.strokeStyle = "blue";
context.strokeRect(10,10,150,50);

Similarly, you can use the fillRect(x,y,width,height) method to make a rectangle,
but this time in a solid manner:

context.fillRect(150,30,75,75);

By default, the fill color will be black, but you can define a different fill color by using
the fillColor() method. As a demonstration this example sets a light red color:

context.fillStyle = "rgb(218,0,0)";

You can use standard CSS color functions, which may include opacity; for example, here
the opacity of the reddish fill is set to 40 percent:

context.fillStyle = "rgba(218,112,214,0.4)";

A full example using the first canvas element and associated JavaScript is presented here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 canvas example</title>
<script type="text/javascript">
window.onload = function() {
 var canvas = document.getElementById("canvas");

 84 P a r t I : C o r e M a r k u p 84 P a r t I : C o r e M a r k u p

 var context = canvas.getContext("2d");
 context.strokeStyle = "orange";
 context.strokeRect(10,10,150,50);
 context.fillStyle = "rgba(218,0,0,0.4)";
 context.fillRect(150,30,75,75);
}
</script>
</head>
<body>
<h1>Simple Canvas Examples</h1>

<canvas id="canvas" width="300" height="300">
 Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvas.html

In a supporting browser, the simple example draws some rectangles:

Unfortunately, Internet Explorer up to version 8 will not be able to render the example
without a compatibility library:

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 85 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 85
PART I

Reworking the example to add just such a library makes things work just fine:

ONLINE http://htmlref.com/ch2/canvasie.html

Drawing and Styling Lines and Shapes
HTML5 defines a complete API for drawing on a canvas element, which is composed of
many individual sub-APIs for common tasks. For example, to do some more complex
shapes, the path API must be used. The path API stores a collection of subpaths formed by
various shape functions and connects the subpaths via a fill() or stroke() call. To begin
a path, context.beginPath() is called to reset the path collection. Then, any variety of
shape calls can occur to add a subpath to the collection. Once all subpaths are properly
added, context.closePath() can optionally be called to close the loop. Then fill() or
stroke() will also display the path as a newly created shape. This simple example draws
a V shape using lineTo():

context.beginPath();
context.lineTo(20,100);
context.lineTo(120,300);
context.lineTo(220,100);
context.stroke();

Now, if you were to add context.closePath()before context.stroke(), the V
shape would turn into a triangle, because closePath() would connect the last point and
the first point.

Also, by calling fill() instead of stroke(), the triangle will be filled in with whatever
the fill color is, or black if none is specified. Of course, you can call both fill() and
stroke() on any drawn shape if you want to have a stroke around a filled region. Thus, to

 86 P a r t I : C o r e M a r k u p 86 P a r t I : C o r e M a r k u p

style the drawing, you can specify the fillStyle and strokeStyle and maybe even
define the width of the line using lineWidth, as shown in this example:

context.strokeStyle = "blue";
context.fillStyle = "red";

context.lineWidth = 10;
context.beginPath();
context.lineTo(200,10);
context.lineTo(200,50);
context.lineTo(380,10);
context.closePath();
context.stroke();
context.fill();

As you saw in a few previous examples, you can change color by setting the fillColor
property. In addition to the CSS color values, you can also set the fillColor to a gradient
object. A gradient object can be created by using createLinearGradient() or
createRadialGradient().

The following example creates a simple linear gradient that will be applied to a rectangle
using the createLinearGradient(x1,y1,x2,y2) method. The gradient is positioned at
10,150 and is set to go 200 pixels in both directions.

var lg = context.createLinearGradient(10,150,200,200);

Next, the gradient colors are added using the addColorStop() method. This specifies
a color and the offset position in the gradient where the color should occur. The offset must
be between 0 and 1.

lg.addColorStop(0,"#B03060");
lg.addColorStop(0.75,"#4169E1");
lg.addColorStop(1,"#FFE4E1");

Of course, you could use the rgba CSS function to create a gradient with transparency
as well. Finally, the fillColor is set to the gradient. Here is the complete code snippet,
followed by a visual example:

var lg = context.createLinearGradient(10,150,200,200);
lg.addColorStop(0,"#B03060");
lg.addColorStop(0.5,"#4169E1");
lg.addColorStop(1,"#FFE4E1");
context.fillStyle = lg;
context.beginPath();
context.rect(10,150,200,200);
context.fill();

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 87 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 87
PART I

Note that before you draw the shape, you reset the path to ensure that you do not apply
these changes to previously rendered parts of the drawing.

To create a radial gradient using createRadialGradient(x1,y1,r1,x2,y2,r2), you
must set the position and radius of two circles to serve as the gradient. You add color stops
in the same manner as the linear gradient, so the code looks quite similar otherwise:

var rg = context.createRadialGradient(350,300,80,360,250,80);
rg.addColorStop(0,"#A7D30C");
rg.addColorStop(0.9,"#019F62");
rg.addColorStop(1,"rgba(1,159,98,0) ");
context.fillStyle = rg;
context.beginPath();
context.fillRect(250,150,200,200);

The complete example, drawing a few different shapes with fills and styles, is presented
here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 canvas lines and shapes example</title>
<script type="text/javascript">
window.onload = function() {
 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");

 context.strokeStyle = "blue";
 context.fillStyle = "red";
 context.lineWidth = 10;

 context.beginPath();
 context.lineTo(200,10);

 88 P a r t I : C o r e M a r k u p 88 P a r t I : C o r e M a r k u p

 context.lineTo(200,50);
 context.lineTo(380,10);
 context.closePath();
 context.stroke();
 context.fill();

 var lg = context.createLinearGradient(10, 150, 200, 200);
 lg.addColorStop(0, "#B03060");
 lg.addColorStop(0.5, "#4169E1");
 lg.addColorStop(1, "#FFE4E1");

 context.fillStyle = lg;
 context.beginPath();
 context.rect (10, 150, 200, 200);
 context.fill();

 var rg = context.createRadialGradient(50,50,10,60,60,50);
 rg.addColorStop(0, "#A7D30C");
 rg.addColorStop(0.9, "#019F62");
 rg.addColorStop(1, "rgba(1,159,98,0)");

 context.fillStyle = rg;
 context.beginPath();
 context.fillRect(0,0,130,230);

 context.beginPath();
 context.lineTo(250,150);
 context.lineTo(330,240);
 context.lineTo(410,150);
 context.stroke();
}
</script>
</head>
<body>
<h1>Simple Shapes on canvas Example</h1>
<canvas id="canvas" width="500" height="500">
 Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvaslinesandshapes.html

Applying Some Perspective
As the context is specified as 2d, it is no surprise that everything you have seen so far has
been two-dimensional. It is possible to add some perspective by choosing proper points and
shades. The 3D cube shown in Figure 2-3 is created using nothing more than several
moveTo() and lineTo() calls. The lineTo() call is used to create three sides of the cube,
but the points set are not straight horizontal and vertical lines as we see when we make 2D
squares. Shading is applied to give the illusion of dimensionality because of the application
of a light source. While the code here is pretty simple, you can see that using canvas

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 89 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 89
PART I

properly is often a function more of what you may know about basic geometry and drawing
than anything else.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Canvas Cube Example</title>
<style type="text/css" media="screen">
 body {background-color: #E67B34;}
</style>
<script type="text/javascript">
window.onload = function(){
 var context = document.getElementById("canvas").getContext("2d");

 context.fillStyle = "#fff";
 context.strokeStyle = "black";
 context.beginPath();
 context.moveTo(188,38);
 context.lineTo(59,124);

FIGURE 2-3 Faking 3D with perspective

 90 P a r t I : C o r e M a r k u p 90 P a r t I : C o r e M a r k u p

 context.lineTo(212,197);
 context.lineTo(341,111);
 context.lineTo(188,38);
 context.closePath();
 context.fill();
 context.stroke();

 context.fillStyle = "#ccc";
 context.strokeStyle = "black";
 context.beginPath();
 context.moveTo(341,111);
 context.lineTo(212,197);
 context.lineTo(212,362);
 context.lineTo(341,276);
 context.lineTo(341,111);
 context.closePath();
 context.fill();
 context.stroke();

 context.fillStyle = "#999";
 context.strokeStyle = "black";
 context.beginPath();
 context.moveTo(59,289);
 context.lineTo(59,124);
 context.lineTo(212,197);
 context.lineTo(212,362);
 context.lineTo(59,289);
 context.closePath();
 context.fill();
 context.stroke();
}
</script>
</head>
<body>
<h1>Canvas Perspective</h1>
<canvas id="canvas" width="400" height="400">
 Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvascube.html

Drawing Arcs and Curves
Drawing on canvas isn’t limited to simple lines; it is also possible to create curved lines
using arc(), arcTo(), quadraticCurveTo(), and bezierCurveTo(). To illustrate these
methods, this section shows how to draw a simple face.

You can use the arc(x,y,radius,startAngle,endAngle,counterclockwise)
method to draw circles and parts of circles. Its location is defined by the point of its center

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 91 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 91
PART I

(x,y) as well as the circle’s radius. How much of the circle is drawn is defined by
startAngle and endAngle, in radians. The direction of the curve is set by a Boolean value,
which is the final parameter specified by counterclockwise. If it is set to true, the curve
will move counterclockwise; otherwise, it will move clockwise. If your math is a bit rusty, to
make a full circle, the start angle should be set to 0 and the end angle should be 2π. So to
start your face drawing, use arc() to draw the head as a circle:

context.arc(150,150,100,0,Math.PI*2,true);

Use the quadraticCurveTo(cpx,cpy,x,y) method to draw the nose and the mouth.
This function starts at the last point in the path and draws a line to (x,y). The control point
(cpx,cpy) is used to pull the line in that direction, resulting in a curved line. However, you
call moveTo() first to set the last point in the path. In the following snippet, a line was
drawn from (155,130) to (155,155). Because the x-coordinate of the control point (130,145)
is to the left, the line is pulled in that direction. Because the y-coordinate is in between the
y-coordinates, the pull is roughly in the middle.

context.moveTo(155,130);
context.quadraticCurveTo(130,145,155,155);
context.moveTo(100,175);
context.quadraticCurveTo(150,250,200,175);

You call bezierCurveTo(cp1x,cp1y,cp2x,cp2y,x,y) to draw the eyes. This function
is similar to quadraticCurveTo() except that it has two control points and has a line that is
pulled toward both of them. Again, moveTo() is used to set the start point of the line:

context.moveTo(80,110);
context.bezierCurveTo(95,85,115,85,130,110);
context.moveTo(170,110);
context.bezierCurveTo(185,85,205,85,220,110);

Lastly, use arcTo(x1,y1,x2,y2,radius) to draw a frame around the face. Unfortunately,
foreshadowing some issues with the canvas API, we note that arcTo() is not currently
supported properly in all browsers, so it may render oddly. When it does work, it creates
two lines and then draws an arc with the radius specified and containing a point tangent to
each of the lines. The first line is drawn from the last point in the subpath to (x1,y1) and
the second line is drawn from (x1,y1) to (x2,y2).

context.moveTo(50,20);
context.arcTo(280,20,280,280,30);
context.arcTo(280,280,20,280,30);
context.arcTo(20,280,20,20,30);
context.arcTo(20,20,280,20,30);

The complete example is shown next. Note that, given layering, you draw and fill the
frame and face and then draw the features last. Also note that you reset the paths with the
beginPath() method. Commonly, people forget to do this, which can produce some
interesting drawings. A rendering of the face example is shown in Figure 2-4.

 92 P a r t I : C o r e M a r k u p 92 P a r t I : C o r e M a r k u p

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Canvas Face Example</title>
<script type="text/javascript">
window.onload = function(){
 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");
 context.strokeStyle = "black";
 context.lineWidth = 5;

 /* create a frame for our drawing */
 context.beginPath();
 context.fillStyle = "blue";
 context.moveTo(50,20);
 context.arcTo(280,20,280,280,30);
 context.arcTo(280,280,20,280,30);
 context.arcTo(20,280,20,20,30);
 context.arcTo(20,20,280,20,30);
 context.stroke();
 context.fill();

FIGURE 2-4 Drawing a canvas smiley

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 93 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 93
PART I

 /* draw circle for head */
 context.beginPath();
 context.fillStyle = "yellow";
 context.arc(150,150,100,0,Math.PI*2,true);
 context.fill();

 /* draw the eyes, nose and mouth */
 context.beginPath();
 context.moveTo(80,110);
 context.bezierCurveTo(95,85,115,85,130,110);
 context.moveTo(170,110);
 context.bezierCurveTo(185,85,205,85,220,110);
 context.moveTo(155,130);
 context.quadraticCurveTo(130,145,155,155);
 context.moveTo(100,175);
 context.quadraticCurveTo(150,250,200,175);
 context.moveTo(50,20);
 context.stroke();
}
</script>
</head>
<body>
<h1>Smile you're on canvas</h1>
<canvas id="canvas" width="300" height="300">
 Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvasface.html

Scaling, Rotating, and Translating Drawings
You now have looked at the basic shapes and styling, but there is much more that you can
do to customize a drawing through transformations. The canvas API provides a number of
useful methods that accomplish the common tasks you will likely want to perform. First
let’s explore the scale(x,y) function, which can be used to scale objects. The x parameter
shows how much to scale in the horizontal direction and the y parameter indicates how
much to scale vertically.

/* scale tall and thin */
context.scale(.5,1.5);
writeBoxes(context);

/* move short and wide */
context.scale(1.75,.2);
writeBoxes(context);

 94 P a r t I : C o r e M a r k u p 94 P a r t I : C o r e M a r k u p

ONLINE http://htmlref.com/ch2/canvasscale.html

Next up is the rotate(angle) method, which can be used to rotate a drawing in a
clockwise direction by an angle defined in radians:

/* rotate to the right */
context.rotate(Math.PI/8);
writeBoxes(context);

/* rotate to the left */
context.rotate(-Math.PI/8);
writeBoxes(context);

ONLINE http://htmlref.com/ch2/canvasrotate.html

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 95 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 95
PART I

The translate(x,y) function is a handy function to use to change the origin from
(0,0) to another location in the drawing. The following example moves the origin to
(100,100). Then, when the start coordinates of the rectangle are specified at (0,0), it really
starts at (100,100).

context.translate(100,100);
context.fillRect(0,0,100,100);

A simple example of moving some boxes around is shown here:

ONLINE http://htmlref.com/ch2/canvastranslate.html

All the methods presented so far are conveniences to help us use an underlying
transform matrix associated with paths. All paths have an identity matrix as their default
transform. As an identity, this transform matrix does nothing, but it is certainly possible to
adjust this matrix in a few ways. First, it can be directly modified by calling setTransform
(m11,m12,m21,m22,dx,dy), which resets the matrix to the identity matrix and then
calls transform() with the given parameters. Or you can do this directly by using
transform(m11,m12,m21,m22,dx,dy), which multiplies whatever the current matrix is
with the matrix defined by

m11 m21 dx
m12 m22 dy
0 0 1

The problem with the method should be obvious: unless you understand more than a
bit about matrix math, this can be a bit daunting to use. On the bright side, with the
method, you can do just about anything you want. Here a simple example skews and
moves some simple rectangles. The result is shown in Figure 2-5.

 96 P a r t I : C o r e M a r k u p 96 P a r t I : C o r e M a r k u p

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>canvas transform() Example</title>
<style type="text/css">
 canvas {border: 1px solid black;}
</style>
<script type="text/javascript">
window.onload = function(){
 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");

 context.fillStyle = "rgba(255,0,0,.4)";
 context.rect(0,0,100,100);
 context.fill();

 context.setTransform(1,1,1,0,0,0);
 context.beginPath();
 context.fillStyle = "rgba(0,255,0,.4)";
 context.rect(75,75,100,100);
 context.fill();

 context.setTransform(0,.5,1,.8,0,0);
 context.beginPath();

FIGURE 2-5 Transforming a rectangle

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 97 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 97
PART I

 context.fillStyle = "rgba(0,0,255,.4)";
 context.rect(50,50,100,100);
 context.fill();
}
</script>
</head>
<body>
<h1>Simple Transforms</h1>
<canvas id="canvas" width="400" height="300">
 Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvastransform.html

Using Bitmaps in Drawings
A very interesting feature of canvas is the ability to insert images into the drawing There
are several ways to do this, but let’s start with the most basic, drawImage(img,x,y), which
takes an image object and the coordinates for where the image should be placed. The image
will be its natural size when called in this manner. You can use drawImage(img,x,y,w,h)
if you need to modify the image size and set the width and height.

The actual image passed in to the drawImage() method can come from a few places.
It can be

• An image already loaded on the page

• Dynamically created through the DOM

• Another canvas object

• An image created by setting its src to a data: URL

The important thing to remember is that the image must be loaded by the time canvas
is ready to access it. This may require use of the onload function for the image:

var img = new Image();
img.onload = function(){
 context.drawImage(img,0,0,400,400);
}
img.src = "dog.jpg";

The last way that drawImage(img,sx,sy,sw,sh,dx,dy,dw,dh) may be called allows
a part of the image to be cut out and drawn to the canvas. The (sx,sy) coordinates are the
location on the image, and sw and sh are the width and height, respectively. The rest of the
parameters prefixed with d are the same as in the previous form of the method.

var img = document.getElementById("image1");
/* slices a 100px square from image1 at location (200,75)
 Places on the canvas at (50,50) and stretches it to 300px square. */
context.drawImage(img,200,75,100,100,50,50,300,300);

 98 P a r t I : C o r e M a r k u p 98 P a r t I : C o r e M a r k u p

However you decide to place it, once an image is on the canvas, it is then possible to
draw on it. The following example loads an image and draws a region in preparation for
eventually adding a caption:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>canvas drawImage() Example</title>
<style type="text/css">
 canvas {border: 1px solid black;}
</style>
<script type="text/javascript">
window.onload = function(){
 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");
 var img = new Image();
 img.src = "dog.jpg";
 img.onload = function(){
 context.lineWidth = 5;
 context.drawImage(img,0,0,400,400);
 context.beginPath();
 context.lineWidth = 5;
 context.fillStyle = "orange";
 context.strokeStyle = "black";
 context.rect(50,340,300,50);
 context.fill();
 context.stroke();
 }
}
</script>
</head>
<body>
<canvas id="canvas" width="400" height="400">
 Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvasimage.html

Text Support for canvas
In browsers that supported early forms of the canvas element, text was not well supported
in a drawing, if at all. Per HTML5, text functions should now be supported by the canvas
API, and several browsers already do support it. You can write text by using fillText
(text,x,y [,maxWidth]) or strokeText(text,x,y [,maxWidth]). Both functions
take an optional last parameter, maxWidth, that will cut the text off if the width is longer
than specified. Often, both fillText() and strokeText() will be utilized to display an
outline around the text. Here we set a fill color of blue and then write the phrase “Canvas is
great!” with a black stroke around the letters.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 99 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 99
PART I

context.fillStyle = "rgb(0,0,255)";
context.strokeStyle = "rgb(0,0,0)";
context.fillText("Canvas is great!",10,40);
context.strokeText("Canvas is great!",10,40);

To get more-customized text, you can use the font property, which you set identically
to a CSS font property. You can use textAlign and textBaseline to set the horizontal
and vertical alignment of the text string. The textAlign property has the possible values of
start, end, left, right, and center. The textBaseline property can be set to top,
hanging, middle, alphabetic, ideographic, and bottom.

context.font = "bold 30px sans-serif";
context.textAlign = "center";
context.textBaseline = "middle";

You can add shadows to shapes simply by setting the shadow properties, shadowOffsetX,
shadowOffsetY, shadowBlur, and shadowColor. The offsets simply set how far the shadow
should be offset from the image. A positive number would make the shadow go to the right
and down. A negative number would make it go to the left and up. The shadowBlur property
indicates how blurred the shadow will be, and the shadowColor property indicates the color.
This code fragment demonstrates setting a shadow.

context.shadowOffsetX = 10;
context.shadowOffsetY = 5;
context.shadowColor = "rgba(255,48,48,0.5)";
context.shadowBlur = 5;
context.fillStyle = "red";
context.fillRect(100,100,100,100);

All the concepts from this and the last section can be put together as follows to caption
an image with some shadowed text, as shown in Figure 2-6.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>canvas Text Example</title>
<style type="text/css">
 canvas {border: 1px solid black;}
</style>
<script type="text/javascript">
window.onload = function(){
 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");
 var img = new Image();
 img.src = "dog.jpg";
 img.onload = function(){
 context.lineWidth = 5;
 context.drawImage(img,0,0,400,400);
 context.beginPath();
 context.lineWidth = 5;
 context.fillStyle = "orange";
 context.strokeStyle = "black";

 100 P a r t I : C o r e M a r k u p 100 P a r t I : C o r e M a r k u p

 context.rect(50,340,300,50);
 context.fill();
 context.stroke();

 context.lineWidth = 2;
 context.font = '40px sans-serif';
 context.strokeStyle = "black";
 context.fillStyle = "white";
 context.fillText("Canvas is great!",60,375);
 context.shadowOffsetX = 10;
 context.shadowOffsetY = 5;
 context.shadowColor = "rgba(0,48,48,0.5)";
 context.shadowBlur = 5;
 context.strokeText("Canvas is great!",60,375);
 }
}
</script>
</head>
<body>

<canvas id="canvas" width="400" height="400">
 Canvas Supporting Browser Required
</canvas>

</body>
</html>

FIGURE 2-6 Even dogs love <canvas>.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 101 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 101
PART I

ONLINE http://htmlref.com/ch2/canvastext.html

<canvas> Conclusions
We have just scratched the surface of the canvas API. A full listing of the API can be found
in the reference in Chapter 3. However, a reference is simply that; be warned that the use of
the canvas element can get quite involved, and you should not reasonably expect to use it
if you don’t have significant JavaScript knowledge. Even if you know JavaScript, there are
challenges ahead because implementations vary between browsers and, for now, Internet
Explorer requires a compatibility library even for basic support. Scripting canvas-based
drawings for interactivity is a bit clunky, and text support is far from stellar. Accessibility
concerns also abound. However, don’t let the challenges dissuade you; HTML5’s canvas
API is quite powerful and warrants your exploration. The purpose of this section was to
introduce you to the element and show you what is possible to accomplish with it. Consult
the Web for the latest changes in canvas support.

HTML5 Form Changes
Besides starting the HTML5 specification, the Web Hypertext Application Technology
Working Group (WHATWG) has been busy over the years considering the future of the
Web and went so far as to develop a specification called Web Forms that aimed to bring
HTML forms into the modern age. The specification added a number of form widgets,
validation facilities, and some accessibility improvements. Few browsers save Opera
implemented any of these features, and some in the industry complained about the
complexity of the specification. However, most of the Web Forms specification has been
incorporated into HTML5 and more and more of its features are now being implemented
in browsers. In this section we take a quick tour of these exciting features but place more of
a focus on what is already being implemented in current browsers.

New Form Field Types
Traditionally, the HTML input element is used to define most form fields. The particular
type of form field of interest is defined with the type attribute, which is set to text,
password, hidden, checkbox, radio, submit, reset, image, or button. HTML5 adds
quite a number of other values, which we will briefly explore here.

First, setting the type equal to color should create a color picker:

<p><label>color:<input type="color" name="favColor"></label></p>

As of the time of this edition’s writing, no implementation existed for this control, but it
might look something like this:

 102 P a r t I : C o r e M a r k u p 102 P a r t I : C o r e M a r k u p

A variety of date controls can now be directly created by setting the type attribute to
date, datetime, datetime-local, month, week, or time. Several of these controls are
demonstrated here:

<p><label>date:
 <input type="date" name="date">
</label></p>

<p><label>datetime:
 <input type="datetime" name="datetime">
</label></p>

<p><label>datetime-local:
 <input type="datetime-local" name="datetime2">
</label></p>

<p><label>time:
 <input type="time" name="time">
</label></p>

<p><label>month:
 <input type="month" name="month">
</label></p>

<p><label>week:
 <input type="week" name="week">
</label></p>

It should be possible to restrict the dates chosen, but currently any restrictions must be
controlled with script.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 103 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 103
PART I

Setting type to number gives you a numeric spin box in conforming browsers:

<p><label>number:<input type="number" name="number"></label></p>

When unconstrained, the spin box will be able to move up and down arbitrarily with no
limits. However, it is possible to define allowed values. For example, the max attribute can
be set to limit the maximum value, min to limit the smallest value, and even step to
indicate how values may be modified. For example,

<input type="number" name="number2" min="-5" max="25" step="5">

would create a numeric spin box that ranges from –5 to 25 in increments of 5.
A similar form of control can be created using a range control:

<input type="range" name="range" max="100" min="1" step="5">

This control presents itself as a slider, which so far has a varied appearance in browsers:

Like the number picker, the min, max, and step attributes all can be set to limit values:

<p><label>range (1-100 step 5):
<input type="range" name="range" max="100" min="1" step="5">
</label></p>

<p><label>range (-1000-1000 step 100):
<input type="range" name="range" max="1000" min="-1000" step="100">
</label></p>

It is also possible to further define semantic restrictions by setting an <input> tag’s
type attribute to tel, email, or url:

<p><label>Telephone Number: <input type="tel" name="telno"></label></p>
<p><label>Email: <input type="email" name="email"></label></p>
<p><label>URL: <input type="url" name="url"></label></p>

A browser may then specify some indications of the appropriate data type:

 104 P a r t I : C o r e M a r k u p 104 P a r t I : C o r e M a r k u p

It is also possible to set type to search, which may eventually have an associated pick
list. Currently, some browsers provide some controls for clearing a search field:

Validating Data Entry
We have already seen a number of HTML5 changes that allow us to restrict the type of data
entered into a form. It is also possible to force the user to enter data, without resorting to
JavaScript, in an HTML5–compliant browser by setting the required attribute for a form
control:

<input type="text" name="firstname" id="firstname" required>

A browser may then set an error style on the field and present a message if there is a
problem:

The pattern attribute also can be employed to force the entered data to conform to a
supplied regular expression:

<label for="phonenum" class="required">Phone Number:</label>
<input type="text" name="phonenum" id="phonenum" required
 pattern="^\(\d{3}\) \d{3}-\d{4}$">

If a title is specified when patterns are applied, the browser may display this advisory
information:

<label for="phonenum" class="required">Phone Number:</label>
<input type="text" name="phonenum" id="phonenum" required
 pattern="^\(\d{3}\) \d{3}-\d{4}$"
 title="Phone number of form (xxx) xxx-xxxx required">

However, in some cases, you can not only apply a pattern but also employ the
appropriate semantic type value like email, though it isn’t clear if these elements will apply
their own implied validation pattern matches simply by setting them as required:

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 105 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 105
PART I

<label for="email" class="required">E-mail:</label>
<input type="text" name="email" id="email" required
 pattern="^\w+([\.-]?\w+)*@\w+([\.-]?\w+)*\.(\w{2}|(com|net|org|edu|i
nt|mil|gov|arpa|biz|aero|name|coop|info|pro|museum))$" title="E-mail format
required">

The specification indicates that the presentation of fields in error can be controlled by
using the CSS pseudo-class :invalid in HTML5–compliant browsers.

A full example for you to test out basic HTML5 required and pattern usage in a
browser can be found at the book’s support Web site.

ONLINE http://htmlref.com/ch2/requiredpattern.html

NOTE Because validation is under browser control, HTML5 provides a formnovalidate
attribute that can be set on controls or the form to disable validation.

Autocomplete Lists
Under HTML5, the input element’s list attribute is used to set the DOM id of a
datalist element used to provide a predefined list of options suggested to the user for
entry:

<p><label>Favorite Dog: <input type="text" list="dogs"></label></p>
<datalist id="dogs">
 <option>Angus</option>
 <option>Tucker</option>
 <option>Cisco</option>
 <option>Sabrina</option>
</datalist>

This is similar to the autocomplete attribute discussed in the next section, but it allows
you to specify the default data rather than relying on what may have been entered in the
browser previously.

Miscellaneous Usability Improvements
Commonly, Web page authors use the value attribute to populate some text in a form field:

<input type="text" name="firstname" id="firstname" value="Thomas">

Quite often, people put placeholder or advisory text here, like so:

<input type="text" name="middlename" id="middlename"
 value="Enter your middle name here">

 106 P a r t I : C o r e M a r k u p 106 P a r t I : C o r e M a r k u p

However, using the value attribute in this manner is somewhat inappropriate, because the
purpose of the attribute is not to supply instructions for the field’s use but rather to supply
a potential value for the user to submit to the server. HTML5 introduces the placeholder
attribute to use instead for this duty:

<input type="text" name="firstname" id="firstname"
 placeholder="Enter your name here">

HTML5 also introduces the autofocus attribute, which when placed on a field should
cause a supporting browser to immediately focus this field once the page is loaded:

<label>Search:<input type="search" name="query"
 id="searchBox" autofocus></label>

Also under HTML5, it should be possible to advise the browser to display the
autocomplete suggestions provided for fields if similar field names have been used in the
past:

<input type="text" name="firstname" id="firstname"
 placeholder="Enter your name here" autocomplete>

Interestingly, this particular attribute has been supported in Internet Explorer browsers for
some time.

Other form improvements likely will be added to the HTML5 specification. The aim
here is to give you a sense of the changes the HTML5 specification intends to bring to
Web-based data collection.

Emerging Elements and Attributes to Support Web Applications
A key theme of the HTML5 specification is the emphasis on supporting Web applications.
A number of elements and attributes have been introduced in the specification to continue
the migration from Web pages to Web applications. However, most of these features are not
implemented in browsers, and some are controversial enough that their inclusion in later
versions of the specification is far from certain. Thus, you are warned that the elements
presented here should be considered only illustrative of the kinds of changes HTML5 tends
to encourage and that some of them may be changed or removed. As of yet, no native
implementation of these elements exists, so we simulated their possible renderings using
a JavaScript library. Given the speculative nature of these new elements, you should consult
the specification for the latest information on support.

menu Element Repurposed
One element that will be implemented in browsers but might not perform the actions defined
in HTML5 is the menu element. Traditionally, this element was supposed to be used to create
a simple menu for choices, but most browsers simply rendered it as an unordered list:

<menu type="list" id="oldStyle">
 Item 1
 Item 2

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 107 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 107
PART I

 Item 3
 Item 4
</menu>

Under HTML5 the menu element has been returned to its original purpose. A new
attribute, type, is introduced that takes a value of toolbar, context, or list (the default).
This example sets up a simple File menu for a Web application:

<menu type="toolbar" id="fileMenu" label="File">
 New
 Open
 Close
 <hr>
 Save
 Save as...
 <hr>
 Exit
</menu>

Using CSS and JavaScript, this menu might render like so:

Again, this is completely speculative and is just meant to illustrate a possibility.
With menu, it would also be possible to define a context menu, usually invoked by a

right-click:

<menu type="context" id="simpleMenu">
 Add
 Edit
 Delete
</menu>

This could render something like this:

 108 P a r t I : C o r e M a r k u p 108 P a r t I : C o r e M a r k u p

The global contextmenu attribute is used to define an element’s context menu, which is
generally the menu invoked upon a right-click. The attribute’s value should hold a string
that references the id of a <menu> tag found in the DOM. For example,

<div contextmenu="simpleMenu">Widget</div>

would reference the previously defined menu via a right-click. If there is no element found
or no value, then the element has no special context menu and the user agent should show
its default menu. Internet Explorer and many other browsers support an oncontextmenu
attribute that could be used to implement the idea of this emerging attribute.

Again, all of this is completely speculative and meant to illustrate the concept; so far, no
browser natively implements this functionality, though it wouldn’t be a stretch to have
JavaScript emulate this.

command Element
The menu element may contain not just links but also other interactive items, including the
newly introduced command element. This empty element takes a label and may have
an icon decoration as well. The command element has a type attribute, which may be set
to command, radio, or checkbox, though when radio is employed there needs to be
a radiogroup indication. A simple example here with the repurposed menu element should
illustrate the possible use of this element:

<menu type="command" label="Main Menu">
 <command type="command" label="Add" icon="add.png">
 <command type="command" label="Edit" icon="edit.png">
 <command type="command" label="Delete" icon="delete.png">
 <hr>
 <menu type="command" label="Skin" id="skinMenu">
 <command type="radio" radiogroup="skin" label="Classic">
 <command type="radio" radiogroup="skin" label="Modern" checked>
 <command type="radio" radiogroup="skin" label="Neo">
 </menu>
 <hr>
 <command type="checkbox" label="Secure Mode">
</menu>

Such a menu might look like the following:

But again, this is just illustrative and in this case, I am somewhat skeptical about the
command element because it seems to share many of the aspects of traditional form field
controls, so why more elements are needed is unclear.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 109 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 109
PART I

meter and progress Elements
Two fairly similar elements have been introduced in HTML5 to show current status. First,
the meter element defines a scalar measurement within a known range, similar to what
might be represented by a gauge. The following example is a reading of velocity for some
fantastically fast space vessel:

<p>Warp Drive Output: <meter min="0" max="10" low="3" optimum="7" high="9"
value="9.5" title="Captain she can't take much more of this!"></meter></p>

A potential rendering could look like

More likely, it will look like a simple meter, but this speculation does illustrate just how
variable presentation may be. Using script, it is probably possible to simulate this element
right now even though browsers don’t support it.

Slightly different from meter is the progress element, which defines completion
progress for some task. Commonly, this element might represent the percentage from
0 percent to 100 percent of a task, such as loading to be completed:

<p>Progress: <progress id="progressBar" max="100.00" value="33.1">
 33.1%</progress></p>

Of course, the range and values provided here are purely arbitrary and the rendering
shown is similarly just illustrative of the idea of the progress element.

details Element
The new details element is supposed to represent some form of extra details, such as
a tooltip or revealed region that may be shown to a user. The details element can contain
one dt element to specify the summary of the details as well as one dd element to supply
the actual details.The attribute open can be set to reveal the details or can be changed
dynamically, as shown in this example:

<details onclick="this.open='open'">
 <dt>Help?</dt>
 <dd>This could give you help with HTML5 but we need more
 implementations to prove how things will work.</dd>
</details>

 110 P a r t I : C o r e M a r k u p 110 P a r t I : C o r e M a r k u p

Here is an example of how the details element might appear:

output Element
The final stop on this speculative tour is the output element, which is used to define a
region that will be used as output from some calculation or form control. Here I imagine
using the calendar picker and having the eventual release date of HTML5 being revealed in
an output element:

<form action="#" method="get" id="testform">
<p><input type="date" id="year">
<p>HTML5 released in the year
<output for="year"> </output></p>
</form>

Script could certainly be used to perform this action:

In this case, it is doubtful we need to concern ourselves too much with the likely
representation of this yet-to-be supported element, because, as defined, output is just
a semantic element and could be simulated in traditional HTML using a <div>.

The Uncertain Future of Frames
The introduction of frames with Netscape 2 heralded some of the first markup changes to
support Web applications. Interestingly, the HTML5 specification drops <frameset>,
<frame>, and <noframes> because “their usage affected usability and accessibility for the
end user in a negative way4.” Despite dropping it from support, the specification does still
offer rendering rules for the frame and frameset elements. This is more evidence that the
HTML5 specification tries to account for anything a Web developer may design even if it is
not according to the specification.

Given the fairly widespread use of frames, some online pundits have suggested that this
frame elimination can be worked around by using an HTML 4 frameset to pull in HTML5
documents. In this spirit, we may validate all around but not really address the concerns of
the W3C and others. It would seem from these possible changes from HTML5 that the days
of frames are numbered, or are they?

HTML5 continues to support <iframe>; in fact, it not only supports it but extends the
tag. The inline frame has plenty of life left if the HTML5 vision comes true because it will be
used to include new content and functionality in pages from remote sources and may even
be used in intra-document communication. So, the future of frames as far as HTML5 is
concerned isn’t set.

4 Quoted from http://www.w3.org/TR/html5-diff circa 2009.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 111 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 111
PART I

HTML5 proposes two new attributes for the iframe element: seamless and sandbox.
The seamless attribute effectively renders the iframe as an inline include, which allows
the parent document’s CSS to affect the contents of the iframe:

<iframe src="content.html" name="thisframe" width="200"
 height="300" seamless">[alternate content]</iframe>

Here is the same example using XHTML style syntax:

<iframe src="content.htm" name="thisframe" width="200"
 height="300" seamless="seamless">[alternate content]</iframe>

The sandbox attribute “sandboxes” the iframe, essentially preventing it from pulling in
content from any source other than the iframe itself. Used without attributes, sandbox has
the following effects on the iframe:

• New windows cannot be created from within the iframe.

• Plug-ins are prohibited; embed, object, and applet will not function in
a sandboxed iframe.

• Nested inline frames are prohibited.

• A completely sandboxed iframe is considered, in essence, a new subdomain on the
client side. Access to JavaScript is not allowed; cookies can’t be read or written.

• A completely sandboxed inline frame cannot submit forms or run scripts.

These prohibitions can be “turned off” using a number of attributes:

• allow-same-origin allows the iframe to pull in content from elsewhere in the
same domain.

• allow-forms permits the submission of forms in the sandboxed iframe.

• allow-scripts allows the sandboxed iframe to run scripts from the same domain.

These attributes can be used separately, or together as space-separated values. The order of
the attributes does not affect any functionality.

<iframe src="content.htm" sandbox="allow-same-origin
 allow-forms allow-scripts">
<iframe src="content.htm" sandbox="allow-forms">

HTML5 drops presentational iframe attributes such as frameborder, scrolling,
marginwidth, and marginheight. The attributes name, height, width, and the all-
important src remain part of the specification. HTML5 also adds global attributes to all
HTML5 tags, including <iframe>. See Chapter 3 for an in-depth discussion of these
attributes.

Under HTML5, the <iframe> tag can also be written XHTML style, with a closing slash:

<iframe src="content.htm" height="200" width="200"
 sandbox="allow-same-origin" />

 112 P a r t I : C o r e M a r k u p 112 P a r t I : C o r e M a r k u p

Unfortunately, this syntax does not allow the inclusion of alternative content as shown here:

<iframe src="content.htm" height="200" width="200"
 sandbox="allow-same-origin">
Your browser does not support iframes or its new HTML5 attributes.
You should be able to get a browser that does this in a few years.
</iframe>

It is still preferable to use traditional HTML-style markup to insert an iframe into an
HTML5 document.

At the time of this writing, HTML5 changes to <iframe> are not supported by any
browsers; however, Internet Explorer’s security attribute is quite similar to the intent of
HTML5’s sandbox attribute.

The draggable Attribute and the Drag and Drop API
HTML5 introduces drag and drop natively to the browser. Drag and drop has long been
implemented with JavaScript code that was not designed specifically for that purpose. Now
the logic is made much easier and cleaner as the HTML5 specification includes an attribute
and events that are intended exclusively for drag and drop.

In order to drag an item, the element must have the draggable attribute set to true:

<div id="dragme" class="box" draggable="true">I am a draggable div</div>

Everything else must be configured through JavaScript. There are several new events for
drag and drop. These are attached to HTML elements just as any other event using
addEventListener() or attachEvent().

The following events are attached to the item that will be dragged:

• dragstart The drag has begun.

• drag The element is being moved.

• dragend The drag has completed.

The rest of the events are attached to the drop area:

• dragenter The element is dragged into the drop area.

• dragover The element is dragged into the drop area. The default behavior here is
to cancel the drop, so it is necessary to hook up this event and then return false or
call preventDefault() to cancel the default behavior.

• dragleave The element is dragged out of the drop area.

• drop The element is dropped in the drop area.

Here we use JavaScript to hook up some of these events on a draggable box and a drop area:

var drag = document.getElementById("dragbox");
drag.addEventListener("dragstart",dragstart,false);
drag.addEventListener("dragend",dragend,false);

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 113 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 113
PART I

var drop = document.getElementById("dropzone");
drop.addEventListener("dragenter",dragenter,false);
drop.addEventListener("dragleave",dragleave,false);
drop.addEventListener("dragover",dragover,false);
drop.addEventListener("drop",drops,false);

Each of these events contains a new event property called dataTransfer. This property is
used to customize the drag and drop and to pass data from the drag element to the drop
element. It supports the following properties itself:

• dropEffect Indicates the type of drag and drop expected for the drop zone. If it
does not match the effectAllowed set in the drag element, then the drop will be
canceled. The options are none, copy, link, and move; for example:
e.dataTransfer.dropEffect = "copy";

• effectAllowed Indicates the types of drag and drop that the dragging element
will allow. If it does not match the dropEffect in the drop zone, then the drop will
be canceled. The options are none, copy, copyLink, copyMove, link, linkMove,
move, all, and uninitialized; for example:
e.dataTransfer.effectAllowed = "move";

• types Presents a list of content types that the draggable data contains:
if (e.dataTransfer.types.contains("text/html")){
 //do something;
}

• clearData() Resets the data in the drag element.
e.dataTransfer.clearData();

• setData(format,data) Sets data to be sent to the drop zone. The format field
expects a string to indicate the format of the data being passed.
e.dataTransfer.setData("text/plain","Simple String");
e.dataTransfer.setData("text/html","HTML String");

• getData(format) Fetches the data set by the drag item. Only returns the data
that matches the format type.
e.dataTransfer.getData("text/html"); //returns HTML String</
strong>

• setDragImage(element,x,y) When an item is being dragged, it is possible for
the drag shadow to be set to any element. It can be an element on the page, an image,
a newly created element, or even a canvas drawing. The x,y coordinates indicate
where the mouse should attach to the shadow.

e.dataTransfer.setDragImage(document.getElementById("shadowimage",10,
10));

 With the methods and properties exposed in the dataTransfer property, the drag
and drop is quite powerful. One exceptional feature is the ability to drag anything
into a drop zone and retrieve the content via getData(). This includes URLs from
the address bar, HTML from other pages, and text from Notepad documents.

 114 P a r t I : C o r e M a r k u p 114 P a r t I : C o r e M a r k u p

A simple example using a few of the drag and drop API properties and methods can be
found online at the book support site.

ONLINE http://htmlref.com/ch2/draggable.html

contenteditable Attribute
First introduced by Internet Explorer, the proprietary contenteditable attribute is
supported by most browsers today. HTML5 standardizes the use of this attribute globally
on all elements. The basic sense of the attribute is that if you set it to true, the browser
should allow you to modify the text directly when you click the element:

<p contenteditable="true">This paragraph of text is editable. Click it
and you will see. Of course there is no sense of saving it with code to
transmit the information to the server. This paragraph of text is editable.
Click it and you will see. Of course there is no sense of saving it with
code to transmit the information to the server.</p>

The browser may or may not present a style change to show you are in “edit mode.”

Style change
upon edit

No style change
upon edit

versus

It is possible to use JavaScript to enable content editing by changing the corresponding
contentEditable property for the element. For example, the following changes this
property and updates the class name to reflect a style change when in edit mode.

<p ondblclick="this.contentEditable=true;this.className='inEdit';"
onblur="this.contentEditable=false;this.className='';">This paragraph
uses some simple script to be editable. Double-click the text to
begin editing.</p>

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 115 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 115
PART I

ONLINE http://htmlref.com/ch2/contenteditable.html

NOTE Without sending the modified content to the server, any text changed when in edit mode will
be lost when the page is exited.

spellcheck Attribute
HTML5 defines a spellcheck attribute globally for elements. Interestingly, some browsers
such as Firefox have supported spell checking of form fields and elements in content editing
mode using the contenteditable attribute for some time. HTML5 makes this attribute
standard.

Enabling the spell checking of element content is a matter of setting the spellcheck
attribute to true:

<p spellcheck="true">Spellcheck on: There is a tyyypooo here.
 Did the browser spot it?</p>

Testing in supporting browsers shows that indication on content editable regions appears
when there is a spelling error. However, there is unclarity in the specification whether the
user must be in edit mode before the indication should be displayed.

Commonly, this attribute is a bit more useful on form fields, given their interactive nature:

<label>Text field: (spellcheck on)
<input type="text" name="textfield" spellcheck="true" value="There is a
tyyypoo here. Did the browser spot it?"></label>

Given the application of single-line text fields, it is far more useful to set this attribute
on multiline text fields defined by a <textarea> tag, like so:

<label>Text area: (spellcheck on) <textarea name="comments"
spellcheck="true">There is a tyyypooo here. Did the browser spot it?
</textarea></label>

ONLINE http://htmlref.com/ch2/spellcheck.html

NOTE Some browsers may invoke spell checking on elements—particularly the textarea
element—regardless of the presence and value of a spellcheck attribute.

 116 P a r t I : C o r e M a r k u p 116 P a r t I : C o r e M a r k u p

Internationalization Improvements
While there are not many internationalization-supporting changes in the HTML5 specification,
it does make standard the ruby, rp, and rt elements, which were initially supported by the
Internet Explorer browsers to associate a reading text with a base text for certain East Asian
languages like Japanese. The base text that the annotation is associated with should be enclosed
in a <ruby> tag; the annotation, enclosed in a <rt> tag, will appear as smaller text above the
base text, and optionally an <rp> tag can be used to wrap content to delimit ruby text for
browsers that do not support this formatting:

<p>
<!-- The Kanji for Japanese language with the romanji above it or within
parens for non ruby aware browsers -->
<ruby>
 日本語 <rp>(</rp><rt>nihongo</rt><rp>)</rp>
</ruby>
</p>

HTML5 Metadata Changes
The next generation of Web sites will be loaded with metadata. Such “data about the data”
is needed to enable the semantic Web and to power emerging Web applications. HTML5
adds numerous attributes and defines metadata values that should assist the trend.

data-X Attributes
HTML5 defines a standard way to include developer-defined data attributes in tags, often
for the consumption by scripts. The general idea is to use the prefix data- and then pick
a variable name to include some non-visual data on a tag. For example, here an author
variable has been defined as custom data:

<p id="p1" data-author="Thomas A. Powell">This is a data-X example</p>

This value could then be read either by using the standard DOM getAttribute()
method,

<form>
<input type="button" value="Show Author" onclick="alert(document.
getElementById('p1').getAttribute('data-author')); ">
</form>

or by using new HTML5 DOM objects and properties for accessing such data:

<form>
<input type="button" value="Show Author" onclick="alert(document.
getElementById('p1').dataset.author);">
</form>

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 117 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 117
PART I

These attribute values should not be used by a user agent to style the page and are
solely for developer use. In many ways, the attribute is the direct consequence of people just
inventing attributes and forgoing validation,

<p id="p1" author="Thomas A. Powell">This is a fake attribute example</p>

or using class values in a similar manner:

<p id="p1" class="author-Thomas-A.-Powell">This is a class data example</p>

This inappropriate use of markup is common since it is often useful to bury configuration
data in an element. Now, with the data- style attributes, we have a standard way of doing this
that will validate and hopefully reduce the conclusions that often ensue when overloading the
class attribute.

Microdata
HTML5 adds the concept of microdata, which adds the ability to annotate content in such
a way that a custom program will be able to parse the HTML page and retrieve items
consisting of name/value pairs of desired data. To create an item, the attribute itemscope
is added to a parent tag:

<div itemscope>
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: July 22

Dog's Picture:
</div>

Simply creating an item doesn’t do much without any name/value pairs. The attribute
itemprop is used to create the name/value pairs on the desired data. The itemprop
attribute is set to the name of the pair, and the value depends on what type of element
itemprop is set on. If the element is an audio, embed, iframe, img, source, or video
element, then the value is set to the src of that tag. If the element is an a, area, or link tag,
then the value is set to the href of that tag. If the element is a time tag, then the value is set
to the datetime attribute of that tag. If the element is a meta tag, then the value is set to the
content attribute of that tag. Otherwise, the value is set to the text of the tag.

As an example,

<div itemscope>
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
 <meta itemprop="entryID" content="498274">
</div>

would set the following name/value pairs:

name: Angus
age: 7
birthday: 2002-07-22
picture:angus.jpg
entryID: 498274

 118 P a r t I : C o r e M a r k u p 118 P a r t I : C o r e M a r k u p

It is also possible to have an itemprop be another item by setting the itemscope
attribute in the same tag as the one in which the itemprop attribute is set. This creates a
hierarchy of data:

<div itemscope>
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2004-07-22">July 22</
time>

Dog's Picture:

 <meta itemprop="entryID" content="498274">
Current Points:

<div itemprop="points" itemscope>
Appearance: 10

Obedience: 8

Talent: 7.5

</div>
</div>

In this example, the following hierarchy is added:

points:
 appearance: 10
 obedience: 8
 talent: 7.5

It is also possible to have multiple items at the top level. We could simply create two
separate blocks of data:

<div itemscope>
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
 <meta itemprop="entryID" content="498274">
</div>

<div itemscope>
Dog's Name: Kaylee

Dog's Age: 13

Dog's Birthday: <time itemprop="birthday" datetime="1995-11-26">November
26</time>

Dog's Picture:
 <meta itemprop="entryID" content="472391">
</div>

However, it might be necessary to intermingle data. If so, the itemref attribute can be
set on the parent item to a list of space separated IDs to indicate additional elements that
should be traversed to find name/value pairs for this item.

<div id="angus" itemscope itemref="introangus pictureangus"></div>
<div id="kaylee" item scope itemref="introkaylee picturekaylee"></div>
<p>There are two dogs in the competition today.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 119 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 119
PART I

First we have Angus who
is 7 years old.

Next, we have Kaylee
who is 13 years old.

Photos:

Angus:

Kaylee:
</p>

In the previous examples, there is no way of saying what type of item each item block is,
which would prevent useful collection of the data. In order to specify a type, the itemtype
attribute is set in the parent element. This value must be in the form of a URL:

<div itemscope itemtype="http://htmlref.com/dogs">
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
 <meta itemprop="entryID" content="498274">
</div>

Here the itemprop attribute was still set to a string as we have seen in all previous
examples. However, it is also possible to set the value to be a URL value. In this case, the
value can be collected outside of the realm of the item. This might be useful in order to fetch
all email addresses or phone numbers despite what the itemtype is set to.

<div itemscope itemtype="http://htmlref.com/dogs">
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="http://htmlref.com/importantdates/birthday"
datetime="2002-07-22">July 22</time>

Dog's Picture: <img itemprop="http://htmlref.com/images/picture"
src="angus.jpg">
 <meta itemprop="http://htmlref.com/contest/entryID" content="498274">
</div>

In these examples, a name/value pair has been used to set the entryID. However, if the
item is associated with a globally known ID, this ID can be set using the itemid attribute
on the parent element. This value must also be in the form of a URL.

<div itemscope itemtype="http://htmlref.com/dogs" itemid="http://htmlref.
com/dogs/entries/498274">
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
</div>

So far, we have just been making up metadata, which is okay as long as you are the
primary target user of the data. However, for outside consumption, there are a number of
predefined types online that have defined vocabularies such as vCard, vEvent, BibTeX,

 120 P a r t I : C o r e M a r k u p 120 P a r t I : C o r e M a r k u p

and RDF. If one of these metadata types is used, it is necessary to abide by the defined set of
itemprop values that can be used. As an example, the following defines a vCard in HTML5
using microdata attributes:

<div itemscope itemtype="http://microformats.org/profile/hcard">
<h2 itemprop="fn">William Adama</h2>

 Rank: Admiral</
span>

 Nicknames:

 Bill

 Location:

 Earth

</div>

It is possible to have duplicate entries with the same itemprop name and different values:

<div itemscope itemtype="http://microformats.org/profile/hcard">
<h2 itemprop="fn">William Adama</h2>

Nicknames:

 Bill

 Old Man

 Husker

</div>

It is also possible to have an itemprop with multiple names:

<div itemscope itemtype="http://microformats.org/profile/hcard">
<h2 itemprop="fn">William Adama</h2>
 Rank: Admiral

</div>

The HTML5 specification defines extensions to the DOM to support microdata. This
topic is outside the scope of our discussion, but note that these extensions are not required
to use microdata today because standard DOM methods and traversal schemes should be
able to access any added data.

HTML5: Beyond Markup
One quite controversial aspect of the HTML5 specification is its “kitchen sink” approach to
solving all the woes and inconsistencies of Web development. HTML5 does not just define
markup and how it should be handled by browsers; instead, it addresses in a fair amount of
depth, the intersection of markup and other technologies like CSS and JavaScript, discussing
correct usage, addressing networking issues, exposing security concerns, proposing metadata
applications, and more. In this sense, HTML5 can be criticized for being a bit unfocused at
times and reminds the author of past grand solution efforts in computing, most of which

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 121 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 121
PART I

unfortunately failed. However, to be fair, past HTML specifications have not adequately
considered the context of markup usage. The reality is that Web development technologies
must live together, so it makes sense that HTML5 discusses the intersection between HTML
and other technologies. This section provides a brief overview of some of the interesting
aspects of HTML5 that are not limited to markup.

defer Attribute
HTML5 standardizes the defer attribute, long supported by Internet Explorer, to help
improve page rendering. In the presence of a defer attribute on a script element, or
defer="defer" in the case of markup using XML-like syntax, a supporting browser
should delay executing, and even loading (in the case of linked scripts) to a future time.
As a simple example, the following are two inline scripts, the first with a defer attribute
and the second without:

<script defer type="text/javascript" defer>
 alert("Deferred Script");
</script>
<script type="text/javascript">
 alert("Immediate Script ");
</script>

In supporting browsers, the first script would actually fire after the second. This
postponing of execution should also hold for external files and DOM inserted scripts as
well. Unfortunately, at the time of this edition’s writing, the actual execution pattern for
deferred scripts is variable in browsers:

defer supported
but varies

No defer
support

HTML, JavaScript, and the DOM Renewed
The W3C’s DOM specifications (www.w3.org/DOM) provide the interface between
(X)HTML and JavaScript. These APIs allow Web developers to programmatically change
the very markup and style of Web pages, creating what is often dubbed dynamic HTML
(DHTML). While JavaScript hooks to markup and style are widely used, many browser-
specific features have been introduced and many workarounds have been invented because
the specifications have stayed static for a number of years. HTML5 codifies many of these
practices.

 122 P a r t I : C o r e M a r k u p 122 P a r t I : C o r e M a r k u p

NOTE The term DHTML is more of a concept of using JavaScript a certain way with HTML and
CSS than a particular technology.

The DOM specifications have now been retired and the DOM bindings are specified
inside of the HTML5 specification itself. The HTML5 specification intermixes the definition
of an element’s markup with its script interface. All HTML elements have a basic interface
called HTMLElement, reproduced here:

interface HTMLElement : Element {
 // DOM tree accessors
 NodeList getElementsByClassName(in DOMString classNames);

 // dynamic markup insertion
 attribute DOMString innerHTML;
 attribute DOMString outerHTML;
 void insertAdjacentHTML(in DOMString position, in DOMString text);

 // metadata attributes
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
 readonly attribute DOMTokenList classList;
 readonly attribute DOMStringMap dataset;

 // microdata
 attribute boolean itemScope;
 attribute DOMString itemType;
 attribute DOMString itemId;
 attribute DOMString itemRef;
 [PutForwards=value] readonly attribute DOMSettableTokenList itemProp;
 readonly attribute HTMLPropertiesCollection properties;
 attribute any itemValue;

 // user interaction
 attribute boolean hidden;
 void click();
 void scrollIntoView();
 void scrollIntoView(in boolean top);
 attribute long tabIndex;
 void focus();
 void blur();
 attribute DOMString accessKey;
 readonly attribute DOMString accessKeyLabel;
 attribute boolean draggable;
 attribute DOMString contentEditable;
 readonly attribute boolean isContentEditable;
 attribute HTMLMenuElement contextMenu;
 attribute DOMString spellcheck;

 // command API

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 123 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 123
PART I

 readonly attribute DOMString commandType;
 readonly attribute DOMString label;
 readonly attribute DOMString icon;
 readonly attribute boolean disabled;
 readonly attribute boolean checked;

 // styling
 readonly attribute CSSStyleDeclaration style;

 // event handler DOM attributes
 attribute Function onabort;
 attribute Function onblur;
 attribute Function oncanplay;
 attribute Function oncanplaythrough;
 attribute Function onchange;
 attribute Function onclick;
 attribute Function oncontextmenu;
 attribute Function ondblclick;
 attribute Function ondrag;
 attribute Function ondragend;
 attribute Function ondragenter;
 attribute Function ondragleave;
 attribute Function ondragover;
 attribute Function ondragstart;
 attribute Function ondrop;
 attribute Function ondurationchange;
 attribute Function onemptied;
 attribute Function onended;
 attribute Function onerror;
 attribute Function onfocus;
 attribute Function onformchange;
 attribute Function onforminput;
 attribute Function oninput;
 attribute Function oninvalid;
 attribute Function onkeydown;
 attribute Function onkeypress;
 attribute Function onkeyup;
 attribute Function onload;
 attribute Function onloadeddata;
 attribute Function onloadedmetadata;
 attribute Function onloadstart;
 attribute Function onmousedown;
 attribute Function onmousemove;
 attribute Function onmouseout;
 attribute Function onmouseover;
 attribute Function onmouseup;
 attribute Function onmousewheel;
 attribute Function onpause;
 attribute Function onplay;
 attribute Function onplaying;
 attribute Function onprogress;
 attribute Function onratechange;
 attribute Function onreadystatechange;

 124 P a r t I : C o r e M a r k u p 124 P a r t I : C o r e M a r k u p

 attribute Function onscroll;
 attribute Function onseeked;
 attribute Function onseeking;
 attribute Function onselect;
 attribute Function onshow;
 attribute Function onstalled;
 attribute Function onsubmit;
 attribute Function onsuspend;
 attribute Function ontimeupdate;
 attribute Function onvolumechange;
 attribute Function onwaiting;
};

As you can see, this interface defines common attributes like id, title, lang, dir, and
so on. It also defines numerous event handlers like onclick, onscroll, onselect, and so
on that are associated with functions. Numerous methods are also defined.

Specific elements will inherit these scripting hooks and add to them. For example, note
the interface for the new HTML5 time element:

interface HTMLTimeElement : HTMLElement {
 attribute DOMString dateTime;
 attribute boolean pubDate;
 readonly attribute Date valueAsDate;
};

This takes all the features of HTMLElement and adds to them dateTime, pubDate, and
valueAsDate properties.

As you look closely at the HTML5 script bindings, you’ll notice that the difference
between an HTML5 element’s attributes and the corresponding script properties is minimal.
In general, if an element has an attribute, its property will be the same, with two exceptions:

• If the name of an HTML attribute is composed of multiple words, the first letter of
the all but the first word is uppercase when the name is used as a scriptable
property name. For example, the time element has a pubdate attribute; following
the previous rule, the corresponding DOM property is pubDate.

• If the name of the attribute is a reserved word in JavaScript, it will be redefined
somehow. The most common attribute this rule is applied to is the class attribute,
which is widely used. The word “class” can’t be used as a scriptable property name
because keyword class is reserved for future versions of JavaScript. Thus, to
change the class attribute via JavaScript, use className instead.

As long as you are aware of these two rules, the mappings between markup and script
are actually pretty straightforward.

We certainly don’t expect you to become familiar with the DOM here; a sister book,
JavaScript: The Complete Reference, of nearly the same page count covers JavaScript and its
usage with HTML and CSS. However, we do want to make it clear that the HTML5
specification combines the DOM and markup specifications together, so from here on out
the two ideas should stay more in harmony. This is generally a good thing, though it does
make the specification quite a bit larger.

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 125 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 125
PART I

Standardizing and Extending Ad Hoc JavaScript Conventions
One important aspect of the HTML5 specification is that a number of the messy aspects of
JavaScript and its usage within a Web browser finally have a specification. Various
JavaScript objects like Navigator, History, and more are not really part of any standard
other than an ad hoc one. In many cases, proprietary JavaScript objects, properties, and
methods are documented, but only by the originating vendors, and other implementations
that may or may not conform to this proprietary specification may exist.

Probably the most famous of the proprietary turned common features in JavaScript is
Microsoft’s innerHTML property, which allows for quick creation of new markup in
documents. This property is commonly used by Web developers who accept that it is
widely implemented and quite useful compared to standard DOM techniques. As a
demonstration, consider the code needed to insert the following markup:

<p>This is just a test.</p>

into a named div element:

<div id="div1"></div>

Using the DOM, the code might look like this:

var str1,str2,str3;
var el1,el2;
el1 = document.createElement('p');
str1 = document.createTextNode('This is ');
el1.appendChild(str1);
el2 = document.createElement('strong');
str2 = document.createTextNode('just');
el2.appendChild(str2);
el1.appendChild(el2);
str3 = document.createTextNode('a test.');
el.appendChild(str3);
document.getElementById('div1').appendChild(el1);

Using chaining, it is possible to jam statements together, but the task is much easier
using Microsoft’s innerHTML property. Simply make a string like so

var newElements = "<p>This is just a test.</p>";

and then set the contents of the div to this string:

document.getElementById('div1').innerHTML = newElements;

By setting the innerHTML property, in effect, the browser’s parser is invoked, and it creates
elements from the string provided.

Given the wordiness of DOM methods, many developers prefer Microsoft’s innerHTML
scheme and thus it has been widely copied and put into other browsers. However, HTML5
does not cover all of Microsoft’s other, related properties like innerText and outerText,
though outerHTML for now appears to be covered.

 126 P a r t I : C o r e M a r k u p 126 P a r t I : C o r e M a r k u p

It is interesting that many developers are quite okay with the use of innerHTML but are
quick to deride the use of JavaScript’s eval() statement. In many ways, these are the same
concepts: the former provides direct access to the markup parser and the latter provides
direct access to the JavaScript interpreter. Regardless of the consistency of Web developers’
thinking patterns, the codification of innerHTML is quite a welcome change.

The embrace of common practices by HTML5 isn’t limited to innerHTML; the specification
supports all sorts of features, such as designMode features that allow for browser-based
WYSIWYG editing, commonly used DOM workarounds like insertAdjacentHTML(),
emerging DOM methods like getElementsByClassName(), more-esoteric DOM
specifications like ranges and selections, and more.

The specification also provides APIs for what it introduces. We explored just such an
API earlier in the chapter when we experimented with canvas scripting. Similarly, elements
like audio and video expose a number of properties such as volume and methods such as
play().

There is much to be discovered when reading the HTML5 specification closely. Consider,
for example, how browsers handle runaway script code. There really is nothing online that
defines how or when this is done, but the HTML5 specification actually starts to address
such problems (section 6.5.3.4):

User agents may impose resource limitations on scripts, for example, CPU quotas,
memory limits, total execution time limits, or bandwidth limitations. When a
script exceeds a limit, the user agent may either throw a QUOTA_EXCEEDED_
ERR exception, abort the script without an exception, prompt the user, or throttle
script execution.

If you take the time to read the specification, you will find many passages such as this
that offer hope that someday troubling corner cases in Web development will be reduced or
even eliminated. However, you might also get a sense that the aims of the specification are
a bit too grand. You can find bits and pieces of half-baked ideas about undo-redo handling;
subtle hints about important architectural changes, such as the management of history for
supporting Ajax applications; discussion of offline features and storage schemes; and
documentation of a variety of communication schemes, from interframe message posting to
full-blown Web Socket communication. In some cases, these diversion APIs will spawn their
own documents, but in other cases they just clutter the specification. The critics really do
have a point here.

Major HTML5 Themes
As we wind down the chapter, we need to take a look at some of the major themes of HTML5.
These are deep issues that you will encounter over and over again in the Web development
community. These are presented mostly to spur your thinking rather than to offer a definitive
answer, because HTML5 is quite a moving target.

HTML5 Today or Tomorrow?
The simple question that you must have about HTML5 is, can I use it yet? The answer is
yes. You can embrace the future just by adopting the simple <!DOCTYPE html> statement.
Of course, that isn’t very interesting, so your question really is, can I use any of the new

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 127 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 127
PART I

features now? The answer is again yes, but this time with some caution. To demonstrate
why caution is required, the following is a simple example of the use of HTML sectioning
elements, introduced toward the start of the chapter, but now with some style applied to the
new HTML5 elements used:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 Today?</title>
<style type="text/css">
/* style up a few of the new elements */
 article, aside, figure, footer, header,
 hgroup, menu, nav, section { display: block;}

 body > header {background-color: #930; color: white;}
 body > footer {border-top: solid 5px black;}
 h2 {margin-top: 0; font-style: italic;}
 h3 {font-variant: small-caps;}
 p {margin-left: 1.5em;}

 section {border-top: dashed 2px black; padding-top: 1em;}

 section > section h3 {margin-left: 2em;}
 section > section p {margin-left: 3em;}

 body > footer > p {text-align: right;
 font-style: italic;
 font-size: smaller;}
</style>
</head>
<body>
<header>
<h1>Welcome to the Future World of HTML5</h1>
<h2>Don't be scared it isn't that hard!</h2>
</header>
<!-- assume chapter 1 before -->

<section id="chapter2">
 <header>
 <h1>Chapter 2</h1>
 </header>
 <p>Intro to chapter here...</p>
 <section id="newStrucreElements">
 <header>
 <h2>New Structural Elements</h2>
 </header>

 <h3>header Element</h3>
 <p>Discussion of header element.</p>
 <h3>footer Element</h3>
 <p>Discussion of footer element.</p>
 <h3>section Element</h3>

 128 P a r t I : C o r e M a r k u p 128 P a r t I : C o r e M a r k u p

 <p>Discussion of section element</p>
 </section>

 <section id="newFormElements">
 <header>
 <h2>New Form Elements</h2>
 </header>

 <h3>input type=date</h3>
 <p>Discussion here...</p>

 <footer>
 <p>These ideas are from WebForms specification.</p>
 </footer>
 </section>
</section>

<section id="chapter3">
 <header>
 <h2>Chapter 3</h2>
 </header>
 <p>Massive element reference...</p>
</section>

<footer>
 <p>Content of this example is not under copyright</p>
</footer>

</body>
</html>

ONLINE http://htmlref.com/ch2/html5today.html

Figure 2-7 shows the rendering of the example in two common browsers. Note that
Internet Explorer 8 and earlier has some trouble with the new elements.

To address Internet Explorer’s lack of support, we can introduce a small script that
creates the new HTML5 elements using the DOM createElement() method. Once IE
recognizes them as elements, it renders the markup and style fine, as shown in Figure 2-8.

<!--[if IE]>
<script type="text/javascript">
 var html5elements = "abbr,article,aside,audio,canvas,datalist,details,
figure,footer,header,hgroup,mark,menu,meter,nav,output,progress,section,
time,video".split(',');
 for (var i = 0; i < html5elements.length; i++)
 document.createElement(html5elements[i]);
</script>
<![endif]-->

ONLINE http://htmlref.com/ch2/html5todayie.html

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 129 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 129
PART I

NOTE Because the preceding “shim” script uses condition comments to make it work in Internet
Explorer, it will not validate well. There are ways around this if you want to use browser
detection. The point of the script is to illustrate the ability to make HTML5 work everywhere.
You can expect that the code will change over time or other hacks will be introduced.

When moving beyond simple HTML5 semantic elements to interactive features, the
situation is a bit dicier. Certainly JavaScript can be used to simulate many features, but until
such features are solidly supported, you should proceed with caution.

Opponents of HTML5 throw out an estimated final version date of 2012 or even 2022 as
a reason to avoid the technology for now. Yes, indeed, some timelines suggest that HTML5
won’t be completely final until maybe 2022. Of course, plenty aspects of HTML5 are

FIGURE 2-7 HTML5 works straightaway in many browsers, but not IE.

 130 P a r t I : C o r e M a r k u p 130 P a r t I : C o r e M a r k u p

implemented today, and it is more likely that preliminary versions of the specification will
be accepted at the time you read this. If you want to avoid using a specification until it is
100 percent complete, you should note that even HTML 4 has some open implementation
and testing concerns, so you might want to head back to earlier versions. Seriously, what
really should matter with a specification like HTML5 is whether you can use many of its
features. The answer to that question is clearly yes.

HTML5 as a Catch-All
HTML is part of a bigger world. A modern Web site or application really needs much more
than markup and must address style, script, media elements, network concerns, security
issues, user capabilities, and much more. Because of the environment in which it is found,

FIGURE 2-8 Much of HTML5 can work everywhere!

 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 131 C h a p t e r 2 : I n t r o d u c i n g H T M L 5 131
PART I

the HTML5 specification seems to touch all manner of topics. In this sense, its critics have a
point about its “everything and the kitchen sink” nature. However, it is impossible for
markup to live in a vacuum, so some overlap and environmental considerations are to be
expected.

Unfortunately, given that it looks like a catch-all specification, many people misunderstand
the technology and use the idea of HTML5 simply to refer to anything that is new in a Web
browser. HTML5 doesn’t talk about CSS properties. HTML5 doesn’t define Web fonts.
HTML5 doesn’t change HTTP. While the specification is huge, there is plenty outside of it,
so why is there such a misconception that it covers everything? Well, that’s the politics of
the Web at work.

HTML5: Web Politics as Usual
The Web is an interesting place technology-wise because the mob tends to rule. Very often,
well-defined specifications will be built only to be avoided or replaced by ad hoc specifications
that appear to spring out of nowhere. HTML5 tries to tame the mob and bring a bit of order
to the chaos, but that doesn’t come easily, particularly when politics and competition are
involved.

On the Web, there are those who promote openness, and those who promote new
proprietary features for their own browsers. Some will label such organizations good or
bad, and declare their technology the one true way over others. Such promotion of us
versus them can create loyal followers, but the author finds some of the discussion more
than a bit disingenuous.

Web technologies that were once maligned as proprietary Microsoft features, such as
innerHTML, contenteditable, Ajax XMLHttpRequest object, and more, have been quietly
absorbed into the open Web community. Other capabilities such as CSS transformations,
behaviors, Web fonts, and animations found in Internet Explorer—in many cases for the better
part of a decade—are also maligned as proprietary only to be reintroduced with slight syntax
differences by other browser vendors to hails of the progress of the open Web. “Today
proprietary, tomorrow standard” seems to be the rule of Web standards, and it would seem
that now HTML5 is doing its part to continue politics as usual.

Google has already begun a tremendous push to promote HTML5. The problem is the term
is basically being used as a comparison as to what a major competitor is not supporting, more
than a lucid discussion of the emerging technology. Unfortunately, from my observations,
when most people speak of HTML5, it is more as a code for open Web or even anti-Microsoft,
which reminds me of other misused terms of the last browser battles. Let’s hope that cool
heads prevail in the standards fights that will likely ensue.

HTML5: Imperfect Improvement
HTML5 is an imperfect improvement for an imperfect Web world. We simply can’t force the
masses to code their markup right. HTML5 doesn’t try to accomplish this fool’s errand but
instead finds a reasonable path of defining what to do with such malformed markup at the
browser level.

The HTML5 specification is too big. It’s a sprawling specification and covers many
things. However, it tries to document that which is ad hoc and make decisions about issues
left unsolved. Something is better than nothing.

 132 P a r t I : C o r e M a r k u p

The HTML5 specification is a work in progress. Writing a book about such a moving
target is more than a bit of a challenge. However, like the specification itself, something had
to be done. It will take too long to finish the specification, and in the meantime people want
to use some of the new elements that are already supported.

HTML5 will change the Web, but the old Web will likely live on. Thinking that HTML5
is going to take the world by storm, co-opting standard practices and usurping technologies
like Flash in short order, is fanciful. The old ways will continue to live on and it will be quite
some time before HTML5 ideas are even commonplace.

HTML5 won’t solve all the problems you encounter as a Web developer. In fact, a safe
prediction is that it will introduce even more trouble, particularly as we transition from the
old ways to the new. And although the standard is evolving quickly, there are bound to be
fights among browser vendors, multiple interpretations of the standards, and the typical
dance between innovation and specification conformance.

Summary
HTML5 is the future. Working with the messed-up markup that dominates the Web and
providing a definition of how user agents should parse the mess is a tremendous
improvement in Web development. Yet HTML5 doesn’t simply embrace the past; it extends
the language with many more elements and continues the move to more semantic markup.
While some markup purists may bemoan the resurgence of HTML traditions, the XML
future is not destroyed by HTML5. If you want to use lowercase, quote all attributes, and
self-close empty elements, go right ahead—that conforms to HTML5 as well. However,
HTML5 isn’t just about markup; it is also about metadata, media, Web applications, APIs,
and more. It’s a sprawling specification that will continue to evolve, but much of it is here
today, so get busy and embrace the future of markup now.

3
HTML and XHTML

Element Reference

This chapter provides a complete reference for the elements in the HTML 4.01 and
XHTML 1.0 specifications. All known HTML5 elements at the time of this edition’s
writing are covered as well, but given the fluid nature of the specification, some

elements may have been omitted or syntax may have changed by the time of publication.
You are encouraged to proceed with caution when considering the HTML5 information
because, again at the time of this writing, the specification is in flux and few of the elements
discussed work natively in browsers. Proprietary features discussed in this reference also
should be treated with some caution. All the browser-specific elements and attributes
supported by Internet Explorer, Firefox, Safari, Chrome, Netscape, and Opera are presented.
Some elements presented in the reference might be deprecated, but they are included
nevertheless either because browser vendors continue to support them or because they may
still be found in use.

Flavors of HTML and XHTML
There are many versions of HTML and XHTML in existence (see Table 3-1). In the early
days, the specification of HTML was somewhat fluid, and browser vendors of all sizes
added their own elements. First the Internet Engineering Task Force (IETF) and later the
World Wide Web Consortium (W3C) set standards for HTML and its cousin XHTML.

133

CHAPTER

 134 P a r t I : C o r e M a r k u p 134 P a r t I : C o r e M a r k u p

TABLE 3-1 (X)HTML Specifications Overview

Version Specification URL Description

HTML 2.0 www.w3.org/MarkUp/
html-spec/html-spec_toc.html

Classic HTML dialect supported by browsers
such as Mosaic. This form of HTML supports
core HTML elements and features such as
tables and forms, but does not consider any of
the browser innovations of advanced features
such as style sheets, scripting, or frames.

HTML 3.0 www.w3.org/MarkUp/html3/
Contents.html

The proposed replacement for HTML 2.0 that
was never widely adopted, most likely due to
the heavy use of browser-specific markup.

HTML 3.2 www.w3.org/TR/REC-html32 This version of HTML finalized by the W3C in
early 1997 standardized most of the HTML
features introduced in browsers such as
Netscape 3. This speficifcation supports many
presentation elements, such as font, as well
as early support for some scripting features.

HTML 4.0
Transitional

www.w3.org/TR/html4/ The 4.0 transitional form finalized by the
W3C in December of 1997 preserves most
of the presentational elements of HTML 3.2.
It provides a basis of transition to Cascading
Style Sheets (CSS) as well as a base set of
elements and attributes for multiple-language
support, accessibility, and scripting.

HTML 4.0 Strict www.w3.org/TR/html4/ The strict version of HTML 4.0 removes most
of the presentation elements from the HTML
specification, such as font, in favor of using
CSS for page formatting.

4.0 Frameset www.w3.org/TR/html4/ The frameset specification provides a rigorous
syntax for framed documents that was lacking
in previous versions of HTML.

HTML 4.01
Transitional/
Strict/Frameset

www.w3.org/TR/html401/ A minor update to the 4.0 standard that
corrects some of the errors in the original
specification.

HTML5 www.w3.org/TR/html5/ Addressing the lack of acceptance of the XML
reformulation of HTML by the mass of Web
page authors, the emerging HTML5 standard
originally started by the WHATWG group and
later rolled into a W3C effort aimed to rekindle
the acceptance of traditional HTML and extend
it to address Web application development,
multimedia, and the ambiguities found in
browser parsers. Since 2005, features now
part of this HTML specification have begun to
appear in Web browsers, muddying the future
of XHTML.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 135 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 135
PART I

Core Attributes Reference
The HTML and XHTML specifications provide four main attributes that are common to
nearly all elements and have much the same meaning for all elements. These attributes are
class, id, style, and title. Rather than replicating this information throughout the
chapter, it is summarized here.

Version Specification URL Description

XHTML 1.0
Transitional

www.w3.org/TR/xhtml1/ A reformulation of HTML as an XML
application. The transitional form preserves
many of the basic presentation features of
HTML 4.0 transitional but applies the strict
syntax rules of XML to HTML.

XHTML 1.0 Strict www.w3.org/TR/xhtml1/ A reformulation of HTML 4.0 Strict using XML.
This language is rule enforcing and leaves all
presentation duties to technologies like CSS.

XHTML 1.1 www.w3.org/TR/xhtml11/ A restructuring of XHTML 1.0 that modularizes
the language for easy extension and reduction.
It is not commonly used at the time of this
writing and offers minor gains over strict
XHTML 1.0.

XHTML 2.0 www.w3.org/TR/xhtml2/ A new implementation of XHTML that will not
provide backward compatibility with XHTML 1.0
and traditional HTML. XHTML 2 will remove all
presentational tags and will introduce a variety
of new tags and ideas to the language. Beyond
this brief description, which may certainly be
wrong by the time you read it, little can be said
about XHTML 2 with certainty other than, given
HTML5, its future is somewhat questionable.

XHTML Basic 1.0 www.w3.org/TR/2000/REC-
xhtml-basic-20001219/

A variation of XHTML based upon the
modularization of XHTML (1.1) designed to
work with less-powerful Web clients such as
mobile phones.

XHTML Basic 1.1 www.w3.org/TR/xhtml-basic/ An improvement to the XHTML Basic
specification that adds more features, some
fairly specific to the constrained interfaces
found in mobile devices.

TABLE 3-1 (X)HTML Specifications Overview (continued)

 136 P a r t I : C o r e M a r k u p 136 P a r t I : C o r e M a r k u p

class
This attribute indicates the class or classes that a particular element belongs to. A class name
might be used by a style sheet to associate style rules with multiple elements or for script
access using the getElementsByClassName() method. As an example, you could associate
a special class name called “fancy” with all elements that should be rendered with a
particular style named as such in a style sheet. Class values are not unique to a particular
element, so both <strong class="fancy"> and <p class="fancy"> could be used in
the same document. It also is possible to have multiple values for the class attribute
separated by white space; <strong class="fancy special expensive"> would define
three classes for the particular strong element.

id
This attribute specifies a unique alphanumeric identifier to be associated with an element.
Naming an element is important to being able to access it with a style sheet, a link, or a
scripting language. Names should be unique to a document and should be meaningful;
although id="x1" is perfectly valid, id="Paragraph1" might be better. Values for the id
attribute must begin with a letter (A–Z or a–z) and may be followed by any number of
letters, digits, hyphens, or periods. However, practically speaking, a period character
should not be used within an id value given the use of these values in scripting languages
and possible confusion with class names.

Once elements are named with id, they should be easy to manipulate with a scripting
language. Commonly they are referenced using the DOM method getElementById().

Like the class attribute, the id attribute is also used by style sheets for accessing a
particular element. For example, an element named Paragraph1 can be referenced by a
style rule in a document-wide style by using a fragment identifier:

#Paragraph1 {color: blue;}

Once an element is named using id, it also is a potential destination for an anchor. In
the past, an a element was used to set a destination; now, any element can be a destination,
for example:

Skip to content
<div id="mainContent">This is the content of the page.</div>

One potential problem with the id attribute is that, for some elements, particularly form
controls and images, the name attribute already serves its function. You should be careful
when using both name and id together, especially when using older element syntax with
newer styles. For example, from a linking point of view, the following markup might be
used to set a link destination:

At some other point in the document, an id with the same named value might exist, like so:

<p id="anchorPoint">I am the same destination?</p>

There is some uncertainty, then, about what this link would do:

Where do I go?

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 137 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 137
PART I

Would it go to the first link defined or would it go to the last? Would it favor the element
using the id over the name regardless of position in the document? It’s better not to leave
such issues to chance but rather to assume that name and id are in the same namespace, at
least when linking is concerned.

With form elements, the choice of using name and id can be more confusing. The name
attribute lives on and must be used to specify name/value pairs for form data:

<input type="text" name="username">

However, the id attribute also is applied to form controls for style purposes and overlap
for scripting duties, so it is not uncommon to see name and id used together with the same
value:

<input type="text" name="username" id="username">

Generally, this is an acceptable practice except when the purpose of name serves secondary
duty, such as in the case of radio buttons:

<label>Yes:
<input type="radio" name="yesno" id="yesno" value="yes">
</label>
<label>No:
<input type="radio" name="yesno" id="yesno" value="no">
</label>

In the preceding markup, the radio buttons must share the name value, but the id values
should be unique for CSS and JavaScript usage. A simple rewrite like this makes it work, but
shows that name and id are not quite synonymous:

<label>Yes:
<input type="radio" name="yesno" id="yesno-yeschoice" value="yes">
</label>
<label>No:
<input type="radio" name="yesno" id="yesno-nochoice " value="no">
</label>

Given such chance for confusion, you are encouraged to pick a naming strategy and use
it consistently.

style
This attribute specifies an inline style associated with an element, which determines the
rendering of the affected element. Because the style attribute allows style rules to be used
directly with the element, it gives up much of the benefit of style sheets that divide the
presentation of a markup document from its structure. An example of this attribute’s use is
shown here:

<strong style="font-family: Arial;
font-size: 18px;">Important text

 138 P a r t I : C o r e M a r k u p 138 P a r t I : C o r e M a r k u p

title
The title attribute is used to provide advisory text about an element or its contents. Given

<p title="Hey look I am a title tooltip!">
This is the first paragraph of text.
</p>

the title attribute sets some message on this first paragraph. Browsers generally display this
advisory text in the form of a tooltip, as shown here:

In some cases, such as when applied to the a element, the title attribute can provide
additional help in bookmarking. Like the title for the document itself, title attribute
values such as advisory information should be short, yet useful. For example, <p title="A
paragraph"> provides little information of value, whereas <p title="HTML: The
Complete Reference - Title Example"> provides much more detail. The attribute can
take an arbitrary amount of text, but the wrapping and presentation of larger titles will
likely vary.

NOTE As of the writing of this edition, no formatting can be applied within advisory text, though
the HTML5 specification does indicate that Unicode linefeeds (\u000A) should eventually be
supported.

When combined with scripting, this attribute can provide facilities for automatic index
generation.

Language Attributes Reference
The use of other languages in addition to English in a Web page might require that the text
direction be changed from left to right or right to left or might require other localization
modifications. Once supporting non-ASCII languages becomes easier, it might be more
common to see documents in mixed languages. Thus, there must be a way to indicate the
language in use and its formatting. The basic language attributes are summarized here to
avoid redundancy.

dir
The dir attribute sets the text direction as related to the lang attribute. The accepted values
under the HTML 4.01 specification are ltr (left to right) and rtl (right to left). It should be
possible to override whatever direction a user agent sets by using this attribute with the bdo
element:

<div>
Standard text running left to right in most cases.
<bdo dir="rtl">Napoleon never really said <q>Able was I ere
I saw Elba.</q></bdo> More standard text.
</div>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 139 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 139
PART I

lang
The lang attribute indicates the language being used for the enclosed content. The language
is identified using the ISO standard language abbreviations, such as fr for French, en for
English, and so on. RFC 1766 (www.ietf.org/rfc/rfc1766.txt) describes these codes and their
formats.

Other Common Attributes Reference
The are a number of common attributes found on elements. Microsoft in particular
introduced a number of new proprietary attributes starting with the Internet Explorer 4
browser. Recently, with the introduction of Internet Explorer 8, proprietary features have
become less common. Interestingly, many of these features are supported by other browsers,
given the desire of their developers to emulate IE, the currently most popular browser. The
attributes continue to be supported and, in some cases, such as contenteditable, have
approached de facto standard and in some cases attributes have become part of HTML5.
Given their ubiquity, these attributes are summarized here to avoid redundancy when
presenting the various elements.

accesskey
Microsoft applied this W3C attribute to a wider variety of elements than form elements. The
accesskey attribute specifies a keyboard navigation accelerator for the element. Pressing
ALT or a similar key (depending on the browser and operating system) in association with
the specified key selects the anchor element correlated with that key.

If access keys are employed, Web page authors are cautioned to be aware of predefined
key bindings in the browsing environment, a sampling of which is detailed in Table 3-2.

NOTE If you take into consideration some older and esoteric browsers, there are even more preset
keys to avoid.

TABLE 3-2 Browser
Reserved Accelerator
Keys

Key Binding

F File menu

E Edit menu

V View menu

G Widgets menu (Opera), older Mozilla Go menu

I History menu (Safari)

B Bookmarks menu (Mozilla, Safari)

A Favorites menu (Internet Explorer)

T Tools or Tasks menu

S History or Search menu depending on browser

W Window menu (Safari and older Mozilla)

A Favorites menu (Internet Explorer only)

H Help menu

 140 P a r t I : C o r e M a r k u p 140 P a r t I : C o r e M a r k u p

Also note that the UK government has recommended that, for accessibility, certain key
bindings should be predefined in UK Web sites. These suggested values are found in Table 3-3.

Page authors are also encouraged to consider styling or providing script-based schemes
to reveal accesskey bindings because they may not be obvious to users even when a
convention like the UK bindings is employed.

align
Many browsers define the align attribute on elements. Transitional versions of (X)HTML
do as well. This attribute generally takes a value of left, right, or center, which
determines how the element and its contents are positioned in a table or the window. The
value of left is usually the default. In some cases, a value of justify is also supported.
CSS properties like text-align and margin should be used instead of this attribute when
possible.

contenteditable
This proprietary Microsoft attribute, now part of the HTML5 specification, allows users to
directly edit content in a browser. Values are false, true, and inherit. A value of false
prevents content from being edited by users; true allows editing. The default value,
inherit, applies the value of the affected element’s parent element. In addition to Internet
Explorer, all recent major browsers, such as Firefox 3+, Safari 3+, and Opera 9.5+, also
support this attribute.

TABLE 3-3 UK Government Suggested accesskey Bindings

Access Key Suggested Destination

S Skip navigation

1 Home page

2 What’s new

3 Site map

4 Search

5 Frequently Asked Questions (FAQ)

6 Help

7 Complaints procedure

8 Terms and conditions

9 Feedback form

0 Access key details (information on these and other keys plus usage)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 141 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 141
PART I

datafld
This attribute specifies the column name from the data source object that supplies the
bound data. This attribute is specific to Microsoft’s data binding.

dataformatas
This Internet Explorer–specific attribute indicates whether the bound data is plain text or
HTML.

datasrc
This attribute indicates the name of the data source object that supplies the data that is
bound to this element. This attribute is specific to Microsoft’s data binding.

disabled
Again, Microsoft has applied an existing W3C attribute to a range of elements not associated
with it in the W3C specifications. Elements with the disabled attribute set may appear
faded and will not respond to user input. Values under the Microsoft implementation are
true and false. When the attribute is present, the default value is true, so IE 5.5 and
higher will read disabled as “on,” even without a value set for the attribute.

height
This attribute specifies the height, in pixels, needed by an embedded object, image, iframe,
applet, or any other embeddable item.

hidefocus
This proprietary attribute, introduced with Internet Explorer 5.5, hides focus on an
element’s content. Focus will generally be represented with a dotted outline, but elements
with this attribute set to true will not show such an indication.

hspace
This attribute specifies additional horizontal space, in pixels, to be reserved on either side of
an embedded item like an iframe, applet, image, and so on.

language
In the Microsoft implementation, this attribute specifies the scripting language to be used
with an associated script bound to the element, typically through an event handler attribute.
Possible values might include javascript, jscript, vbs, and vbscript. Other values
that include the version of the language used, such as JavaScript1.1, might also be
possible. The reason this feature is supported is that it is possible in Internet Explorer to
run multiple script languages at the same time, which requires that you indicate on
element-level event handlers which scripting language is in play, as demonstrated here:

<p onclick="alert('Hi from JavaScript');" language="JavaScript">
 Click me (JavaScript)</p>
<p onclick="MsgBox('Hi from VBScript')" language="VBScript">
 Click me (VBScript)</p>

 142 P a r t I : C o r e M a r k u p 142 P a r t I : C o r e M a r k u p

tabindex
This attribute uses a number to identify the object’s position in the tabbing order for
keyboard navigation using the TAB key. While tabindex is defined for some elements as
part of W3C standards, IE 5.5 added support for this attribute to a wider range of elements.
Under IE 5.5 or higher, this focus can be disabled with the hidefocus attribute.

unselectable
This proprietary Microsoft attribute can be used to prevent content displayed from being
selected. Testing suggests that this might not work consistently. Values are off (selection
permitted) and on (selection not allowed).

vspace
This attribute specifies additional vertical space, in pixels, to be reserved above and below
an embedded object, image, iframe, applet, or any other embeddable item.

width
This attribute specifies the width, in pixels, needed by an embedded object, image, iframe,
applet, or any other embeddable item.

Common HTML5 Attributes Reference
HTML5 introduces a number of common attributes to many elements. Some of these have
been discussed in the previous section, while others are all new. For the sake of avoiding
repetition in entries, each is discussed here and then shown only in the syntax list later. As
you were warned at the beginning of the chapter, this information is based upon the draft
HTML5 specification and is subject to change. Check the HTML5 specification at www
.w3.org/TR/html5 for updates and changes. Further note that while some of these attributes
are already implemented in Internet Explorer (such as contenteditable) or other modern
browsers, many are not yet implemented, so their usage may be somewhat speculative.

NOTE One interesting aspect of these attributes is that while they are defined in the HTML5
specification on all elements, their meaning is unclear or suspect in certain cases. For example,
spell checking images or using interface conventions like accelerators or context menus on
nonvisible elements, particularly those in the head (like meta), simply don’t make sense. What
the spec says and what will actually be implemented or used will likely vary.

accesskey
Under HTML5, the accesskey attribute specifies a keyboard navigation accelerator for the
element. The main differences between this and the commonly supported attribute are that
it can be applied, in theory, to any element in the specification and that it takes a space-
separated list of key choices. For example,

<form>
<input type="button" value="Show Author" accesskey="t a p">
</form>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 143 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 143
PART I

allows you to accelerate this button simply by pressing a special key like ALT in conjunction
with the character values present in the attribute. There is some discussion about the
attribute eventually supporting words rather than just individual keys.

contenteditable
Initially a proprietary Microsoft attribute, this HTML5 attribute when set allows users to
directly edit content rendered in the browser. Values are false, true, and inherit. A
value of false prevents content from being edited by users; true allows editing. The
default value, inherit, applies the value of the affected element’s parent element.

contextmenu
The contextmenu attribute is used to define an element’s context menu, which is generally
the menu invoked upon a mouse right-click. The attribute’s value should hold a string that
references the id value of a <menu> tag found in the DOM. If there is no element found or
no value, then the element has no special context menu and the user agent should show its
default menu. Internet Explorer and many other browsers support an oncontextmenu
attribute that could be used to implement the idea of this emerging attribute.

data-X (Custom Data Attributes)
HTML5 defines a standard way to include developer-defined data attributes in tags, often
for the consumption by script. The general idea is to use the prefix data- and then pick a
variable name to include some nonvisual data on a tag. For example, here an author
variable has been defined as custom data:

<p id="p1" data-author="Thomas A. Powell">This is a data-X example</p>

This value could then be read using the standard DOM getAttribute() method,

<form>
<input type="button" value="Show Author" onclick="alert(document.
getElementById('p1').getAttribute('data-author')); ">
</form>

or using new HTML5 DOM objects and properties for accessing such data:

<form>
<input type="button" value="Show Author" onclick="alert(document.
getElementById('p1').dataset.author);">
</form>

These attribute values should not be used by a user agent to style when rendering and
are solely for developer use. In many ways, the attribute is the direct consequence of people
just inventing attributes and forgoing validation,

<p id="p1" data-author="Thomas A. Powell">This is a fake attribute example</p>

 144 P a r t I : C o r e M a r k u p 144 P a r t I : C o r e M a r k u p

or using class values in a similar manner:

<p id="p1" class="author-Thomas-A.-Powell">This is a class data example</p>

NOTE Special characters, particularly colons, should not be used in the data- names here. You are
also encouraged to keep the names lowercase for consistency.

draggable
This attribute is used to set whether or not an element is draggable. If the attribute is set to
true, the element is draggable. A value of auto sets images and links with an href to be
draggable and all other items to not be draggable. A false value turns off dragging.

<p draggable="true">Drag me</p>

<p draggable="false">Sorry no drag</p>

Real integration with elements with draggable attributes requires JavaScript usage (see
Chapter 2 for an example).

hidden
This attribute is a Boolean, or presence-based, attribute that does not require a value. If
you’re using XHTML5, you should use the value of hidden, as attributes must have values
with XML syntax.

<p hidden>I'm hidden</p>
<p hidden="hidden">I'm hidden XML syntax style</p>

When this attribute is specified on an element, the element is not currently relevant and
thus the user agent should not render it. The exact meaning of the attribute is a bit unclear.
It would appear to be similar to the semantics of the CSS property display:none, but the
specification hints that elements that are hidden are active and thus it also is somewhat
different from this common construct. Once browsers implement this attribute, the meaning
may be clarified. This attribute was initially called irrelevant in earlier HTML5 drafts.

itemid
This attribute is used to set a global identifier for a microdata item. This is an optional
attribute, but if it is used, it must be placed in an element that sets both the itemscope and
itemtype attributes. The value must be in the form of a URL.

<div itemscope itemtype="http://ssa.gov/People"
 itemid="http://ssa.gov/SSN/123456789">
 Joe
 Smith
</div>

itemprop
This attribute is used to add a name/value pair to a microdata item. Any child of a tag with
an itemscope attribute can have an itemprop attribute set in order to add a property to

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 145 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 145
PART I

that item. The name of the property is the value set for the itemprop attribute. The value
depends on what type of element the attribute is added to. If the element is an audio,
embed, iframe, img, source, or video tag, then the value is set to the src of that tag.
If the element is an a, area, or link tag, then the value is set to the href of that tag. If
the element is a time tag, then the value is set to the datetime attribute of that tag. If the
element is a meta tag, then the value is set to the content attribute of that tag. Otherwise,
the value is set to the textContent of the tag. A brief example is shown here.

<div itemscope>
<time itemprop="gameday" datetime="2010-06-22">June 22</time>:
The Giants at
A's.

<meta itemprop="city" content="Oakland">
</div>

If the item is set to one of the predefined types, then there is a specific set of values that is
allowed for the itemprop.

itemref
This attribute is set to indicate what additional elements should be traversed to look for
name/value pairs for the item. By default, only the children are searched. However,
sometimes it does not make sense to have a single parent item if the data is intermingled.
In this case, itemref can be set to a space-separated list of additional elements to traverse:

<div itemscope itemref="parentname parentfood"></div>
<div itemscope itemref="childname childfood"></div>
 Thomas has a
daughter named Olivia
.
Thomas' favorite food is sushi
 and Olivia's is <span
itemprop="food">French Fries!

itemscope
This attribute is used to set an element as an item of microdata (see Chapter 2 for more
information on microdata). An element with an itemscope attribute creates a new item that
contains a group of name/value pairs defined by enclosed elements with itemprop
attributes. For example,

<div itemscope>
 Thomas
 Powell
</div>

sets name/value pairs of firstname: Thomas and lastname: Powell for the item
declared in the <div>.

 146 P a r t I : C o r e M a r k u p 146 P a r t I : C o r e M a r k u p

itemtype
This attribute is used in conjunction with the itemscope attribute in order to define a type
for the microdata item. This is an optional attribute, but if used, it must be placed in the
same element that sets the itemscope attribute. The value must be in the form of a URL:

<div itemscope itemtype="http://scores.sports.com/baseball"></div>

spellcheck
This attribute is set to either true or false and indicates whether the content enclosed by
the element should be spelling and grammar checked:

<p spellcheck="true">How do you spell potatoe? A man named Dan may never
know.</p>

If it has no value, the assumed value is true unless it inherits false from an enclosing
parent. The attribute is meaningful on elements that are interactive for text entry, such as
form fields, or elements that have contenteditable=true.

tabindex
This attribute, like the tabindex attribute initially defined by Internet Explorer, uses a
number to identify the object’s position in the tabbing order for keyboard navigation using
the TAB key. The attribute should be set to a numeric value. User agents will generally move
through fields with tabindex set in increasing numeric order, skipping any elements with 0
or a negative value. After moving over all tabindex values, any 0 valued fields will be
navigated in order, but negative values will continue to be skipped. Nonnumeric values will
generally result in the browser applying its normal focusing algorithm.

Event Attributes Reference
In preparation for a more dynamic Web, the W3C has defined a set of core events that
are associated with nearly every (X)HTML element via an event attribute of the style
oneventname (for example, onclick). Most of these events cover simple user interaction,
such as the click of a mouse button or the press of a keyboard key. A few elements, such as
form controls, have some special events associated with them. For example, form events
might indicate that the field has received focus from the user or that the form was
submitted. Intrinsic events, such as a document loading and unloading, are also defined. All
the W3C-defined event attributes are described in Table 3-4.

This event model is commonly extended and is not complete. It will certainly change as
HTML5 is implemented and the Document Object Model (DOM) is extended. More
information about the DOM can be found at www.w3.org/DOM. Browser vendors are
already busy paving the way with their own events.

HTML5 Events
The event model defined by HTML5 is still emerging, but the common event-handling
attributes are fairly clear and match most of the HTML 4 events, with some interesting new

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 147 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 147
PART I

additions. Some of the newer features are already implement in Internet Explorer or other
browsers but many are not. Table 3-5 summarizes all the events you may see on the various
previewed HTML5 elements in this chapter. As all things concerning HTML5, the
specification (www.w3.org/TR/html5) is the best place to go for the latest information.

Internet Explorer’s Extended Event Attributes
Most browsers support events other than those defined in the W3C specifications. Microsoft,
in particular, has introduced a variety of events to capture more-complex mouse actions such
as dragging, element events such as the bouncing of marquee text, data-binding events
signaling the loading of data into an object, and fine-grained event control to catch events

TABLE 3-4 W3C-Defined Core Events

Event Attribute Event Description

onblur Occurs when an element loses focus, meaning that the user has moved focus to
another element, typically either by clicking the mouse or tabbing.

onchange Signals that the form control has lost user focus and its value has been modified
during its last access.

onclick Indicates that the element has been clicked.

ondblclick Indicates that the element has been double-clicked.

onfocus Indicates that an element has received focus; namely, it has been selected for
manipulation or data entry.

onkeydown Indicates that a key is being pressed down with focus on the element.

onkeypress Describes the event of a key being pressed and released with focus on the
element.

onkeyup Indicates that a key is being released with focus on the element.

onload Indicates the event of a window or frame set finishing the loading of a document.

onmousedown Indicates the press of a mouse button with focus on the element.

onmousemove Indicates that the mouse has moved while over the element.

onmouseout Indicates that the mouse has moved away from an element.

onmouseover Indicates that the mouse has moved over an element.

onmouseup Indicates the release of a mouse button with focus on the element.

onreset Indicates that the form is being reset, possibly by the click of a reset button.

onselect Indicates the selection of text by the user, typically by highlighting the desired text.

onsubmit Indicates a form submission, generally by clicking a submit button.

onunload Indicates that the browser is leaving the current document and unloading it from
the window or frame.

 148 P a r t I : C o r e M a r k u p 148 P a r t I : C o r e M a r k u p

Event Attribute Event Description

onabort Invoked generally by the cancellation of an image load but may happen
on any communication that aborts (for example, Ajax calls). Abort events
do not have to target the element directly because any abort event that
bubbles through an element can be caught.

onafterprint Called after a print event. Found only on the body element.

onbeforeprint Called before a print event. Found only on the body element.

onbeforeunload Invoked just before a page or object is unloaded from the user agent.

onblur Occurs when an element loses focus, meaning that the user has moved
focus to another element, typically either by clicking the mouse or by tabbing.

oncanplay Fires when a media element can be played but not necessarily
continuously for its complete duration without potential buffering.

oncanplaythrough Fires when a media element can be played and should play its complete
duration uninterrupted.

onchange Signals that the form control has lost user focus and its value has been
modified during its last access.

onclick Indicates that the element has been clicked.

oncontextmenu Called when a context menu is invoked generally by right-click. Can be
fired by direct targeting of the element or the event bubbling up.

ondblclick Indicates that the element has been double-clicked.

ondrag Fires as a draggable element is being dragged around the screen.

ondragend Occurs at the very end of the drag-and-drop action (should be after ondrag).

ondragenter Fires when an item being dragged passes on the element with this event
handler—in other words, when the dragged item enters into a drop zone.

ondragleave Fires when an item being dragged leaves the element with this event
handler—in other words, when the dragged item leaves a potential drop zone.

ondragover Fires when an object that is being dragged is over some element with this
handler.

ondragstart Occurs on the very start of a drag-and-drop action.

ondrop Fires when an object being dragged is released on some drop zone.

ondurationchange Fires when the value indicating the duration of a media element changes.

onemptied Fires when a media element goes into an uninitialized or emptied state,
potentially due to some form of a resource reset.

onended Fires when a media element’s playback has ended because the end of the
data resource has been reached.

onerror Used to capture various events generally related to communication using
Ajax, though may apply to arbitrary URL loading using media elements like
images, audio, and video. This attribute is also used for catching script-
related errors.

TABLE 3-5 HTML5 Event Preview

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 149 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 149
PART I

Event Attribute Event Description

onfocus Indicates that an element has received focus; namely, it has been
selected for manipulation or data entry.

onformchange Fires when any element of the form changes.

onforminput Fires when input is made in a form element.

onhashchange Fires when the URL’s hash identifier value changes. Changing this value is
commonly performed in Ajax applications to indicate a state change and
support browser back-button activity.

oninput Fires when input is made to form elements.

oninvalid Fires when a form field is specified as invalid according to validation rules
set via HTML5 attributes such as pattern, min, and max.

onkeydown Indicates that a key is being pressed down with focus on the element.

onkeypress Describes the event of a key being pressed and released with focus on
the element.

onkeyup Indicates that a key is being released with focus on the element.

onload Indicates the event of a window or frame set finishing the loading of a
document.

onloadeddata Fires when the user agent can play back the media data at the current
play position for the first time.

onloadedmetadata Fires when the user agent has the media’s metadata describing the
media’s characteristics.

onloadstart Fires when the user agent begins to fetch media data, which may include
the initial metadata.

onmessage Fires when a message hits an element. HTML5 defines a message
passing system between client and server as well as between documents
that this handler can monitor.

onmousedown Indicates the press of a mouse button with focus on the element.

onmousemove Indicates that the mouse has moved while over the element.

onmouseout Indicates that the mouse has moved away from an element.

onmouseover Indicates that the mouse has moved over an element.

onmouseup Indicates the release of a mouse button with focus on the element.

onmousewheel Fires when the mouse wheel is used on the element or bubbles up from
some descendent element.

onoffline Fires when the user agent goes offline. Found only on the body element.

ononline Fires when the user agent goes back online. Found only on the body
element.

onpagehide Fires when a page is suspended though not necessarily fully unloaded.

TABLE 3-5 HTML5 Event Preview (continued)

 150 P a r t I : C o r e M a r k u p 150 P a r t I : C o r e M a r k u p

Event Attribute Event Description

onpageshow Fires when a suspended page is shown again.

onpause Fires when a media element pauses by user or script control.

onplay Fires when a media element starts to play, commonly after a pause has
ended.

onplaying Fires when a media element’s playback has just started.

onpopstate Fires when the session state changes for the window. This may be due to
history navigation or may be triggered programmatically.

onprogress Indiciates the user agent is fetching data. Generally applies to media
elements, but Ajax syntax has used a similar event.

onratechange Fires when the playback rate for media changes.

onreadystatechange Fires whenever the ready state for an object has changed. May move
through various states as network-fetched data is received.

onredo Triggered when an action redo is fired.

onreset Indicates that the form is being reset, possibly by the click of a reset
button.

onresize Fires when a resize event is triggered on the element or bubbles up from
some descendent element.

onscroll Fires when a scroll event is triggered on the element or bubbles up from
some descendent element.

onseeked Indicates the user agent has just finished the seeking event.

onseeking Indicates the user agent is attempting to seek a new media position, and
has had time to fire the event as the media point of interest has not been
reached.

onselect Indicates the selection of text by the user, typically by highlighting the
desired text.

onshow Fires when a context menu is shown. The event should remain until the
context menu is dismissed.

onstalled Fires when the user agent attempts to fetch media data but, unexpectedly,
nothing arrives.

onstorage Fires when data is committed to the local DOM storage system.

onsubmit Indicates a form submission, generally by clicking a submit button.

onsuspend Fires when a media stream is intentionally not being fetched but is not yet
fully loaded.

ontimeupdate Fires when the time position of the media updates either in the standard
course of playing or in a seek or jump.

TABLE 3-5 HTML5 Event Preview (continued)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 151 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 151
PART I

just before or after they happen. Table 3-6 briefly summarizes the basic meaning of the
various extended event attributes mostly found in Internet Explorer but commonly partially
implemented in other browsers.

CAUTION With events documentation, errors might exist. The event model changes rapidly, and
the browser vendors have not stopped innovating in this area. While the events were tested for
accuracy, but for the latest, up-to-date event model for Internet Explorer in particular, visit the
Microsoft Developer Network (MSDN), at http://msdn.microsoft.com.

Event Attribute Event Description

onundo Fires when an undo is triggered.

onunload Indicates that the browser is leaving the current document and unloading
it from the window or frame. There may be another possible use for this
event when elements bind to remote data sources and unload.

onvolumechange Fires when the volume attribute or mute attribute value of a media
element like audio or video changes generally via script or the user’s
interaction with any shown controls.

onwaiting Fires when media element play stops but new data is expected shortly.

TABLE 3-5 HTML5 Event Preview (continued)

Event Attribute Description

onabort Triggered by the user aborting the image load with a stop button or
similar effect.

onactivate Fires when the object is set as the active element.

onafterprint Fires after the user prints a document or previews a document for printing.

onafterupdate Fires after the transfer of data from the element to a data provider,
namely a data update.

onbeforeactivate Fires immediately before the object is set as the active element.

onbeforecopy Fires just before selected content is copied and placed in the user’s
system clipboard.

onbeforecut Fires just before selected content is cut from the document and added to
the system clipboard.

onbeforedeactivate Fires immediately before the active element is changed from one object
to another.

TABLE 3-6 Microsoft’s Extended Event Model (continued)

 152 P a r t I : C o r e M a r k u p 152 P a r t I : C o r e M a r k u p

Event Attribute Description

onbeforeeditfocus Fires before an object contained in an editable element is focused for editing.

onbeforepaste Fires before the selected content is pasted into a document.

onbeforeprint Fires before the user prints a document or previews a document for printing.

onbeforeunload Fires just prior to a document being unloaded from a window.

onbeforeupdate Triggered before the transfer of data from the element to the data
provider. Might be triggered explicitly, or by a loss of focus or a page
unload forcing a data update.

onbounce Triggered when the bouncing contents of a marquee touch one side or
another.

oncontextmenu Triggered when the user right-clicks (invokes the context menu) on an
element.

oncontrolselect Fires when the user makes a control selection of the object.

oncopy Fires when selected content is pasted into a document.

oncut Fires when selected content is cut from a document and added to the
system clipboard.

ondataavailable Fires when data arrives from data sources that transmit information
asynchronously.

ondatasetchanged Triggered when the initial data is made available from a data source or
when the data changes.

ondatasetcomplete Indicates that all the data is available from the data source.

ondeactivate Fires when the active element is changed to another object.

ondrag Fires continuously during a drag operation.

ondragend Fires when the user releases during a drag operation.

ondragenter Fires when the user drags an object onto a valid drop target.

ondragleave Fires when the user drags the object off a valid drop target.

ondragover Fires continuously when the object is over a valid drop target.

ondragstart Fires when the user begins to drag a highlighted selection.

ondrop Fires when the mouse is released during a drag-and-drop operation.

onerror Fires when the loading of an object causes an error. For scripting it can
be associated with JavaScript’s Window object to capture general script
errors.

onerrorupdate Fires if a data transfer has been canceled by the onbeforeupdate
event handler.

onfilterchange Fires when a page filter changes state or finishes.

TABLE 3-6 Microsoft’s Extended Event Model (continued)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 153 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 153
PART I

Event Attribute Description

onfinish Triggered when a looping marquee finishes.

onfocusin Fires just before an object receives focus.

onfocusout Fires when an object is losing focus.

onhashchange Fires when the current document’s URL changes its hash value. Commonly
used for addressing state changes in Ajax applications. Also will be defined
under HTML5.

onhelp Triggered when the user presses the F1 key or a similar help button in the
user agent.

onlayoutcomplete Fires when the print or print preview process finishes.

onlosecapture Fires when the object loses mouse capture.

onmouseenter Fires when the user moves the mouse pointer into the object.

onmouseleave Fires when the user moves the mouse pointer away from the object.

onmousewheel Fires when the mouse scroll wheel is used.

onmove Triggered when the user moves a window.

onmoveend Fires when an object stops moving.

onmovestart Fires when an object starts moving.

onpaste Fires when selected content is pasted into a document.

onprogress Fires to indicate that some data is available for consumption. Generally
used in Ajax requests to access responses in progress.

onpropertychange Fires when a property changes on an object.

onreadystatechange Fires whenever the ready state for an object has changed. May move
through various states as network-fetched data is received.

onresize Triggered whenever an object is resized.

onresizeend Fires when the user finishes changing the dimensions of an object.

onresizestart Fires when the user begins to change the dimensions of an object.

onrowenter Indicates that a bound data row has changed and new data values are
available.

onrowexit Fires just prior to a bound datasource control changing the current row.

onrowsdelete Fires when dataset rows are about to be deleted.

onrowsinserted Fires when dataset rows are inserted.

onscroll Fires when a scrolling element is repositioned.

onselectionchange Fires when the selection state of a document changes.

onselectstart Fires when the user begins to select information by highlighting.

TABLE 3-6 Microsoft’s Extended Event Model (continued)

 154 P a r t I : C o r e M a r k u p 154 P a r t I : C o r e M a r k u p

HTML Element Reference
The element entries that follow generally include the following information:

• Brief summary Brief summary of the element’s purpose

• Standard syntax HTML 4.01, HTML5, or XHTML 1.0 syntax for the element,
including attributes and event handlers defined by the W3C specification

• Attributes defined by browser Additional syntax defined by different browsers

• Standard events Descriptions of event handler attributes for the element

• Events defined by browser Additional event attributes introduced by other
browsers, primarily by Internet Explorer

• Examples Examples using the element

• Compatibility The element’s general compatibility with HTML and XHTML
specifications and browser versions

• Notes Additional information about the element

All attributes that are not defined in a particular listing are common attributes that can
be found in the previous sections.

NOTE Listings of attributes and events defined by browser versions assume that these attributes
and events generally remain associated with later versions of that browser. For example,
attributes defined by Internet Explorer 4 are valid for Internet Explorer 5 and higher, and
attributes defined for Netscape 4 remain valid for Netscape browsers as well as Firefox. Safari
information focuses on Safari 2 and 3. The Google Chrome browser is not always directly called
out in this book, but, given its reliance on the WebKit engine, you should assume Safari entries
will apply to this browser. Compatibility pre-Opera 4 is determined via research not testing; in
cases of uncertainity we assume support from Opera 4. Of course, reasonably this is more for
historical accuracy and will simply not affect modern Web developers.

Event Attribute Description

onstart Fires when a looped marquee begins or starts over.

onstop Fires when the user clicks the stop button in the browser.

onstorage Fires when local DOM storage is changed by setting or removing an item
(IE 8+ only).

onstoragecommit Fires when local DOM storage is committed to disk (IE 8+ only).

ontimeerror Fires whenever a time-specific error occurs, usually as a result of setting
a property to an invalid value.

ontimeout Fires when a network event exceeds a defined timeout value generally set
in JavaScript (IE 8+ only).

TABLE 3-6 Microsoft’s Extended Event Model (continued)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 155 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 155
PART I

TIP The support site www.htmlref.com has this reference online and may have updates or fixes to
this information.

<!-- ... --> (Comment)
This construct encloses text comments that will not be displayed by the browser. It may be
used for informational messages for developers as well as to mask content from user agents
that do not support a particular technology. No attributes or events are associated with this
construct.

Standard Syntax
<!-- ... -->

Examples
<!-- This is an informational comment that can occur
 anywhere in an HTML document. The next few examples
 show how style sheets and scripts are "commented out" to prevent
 older browsers from misinterpreting the content.
-->

<style type="text/css">
<!--
 h1 {color: red; font-size: 40px;}
-->
</style>

<script type="text/javascript">
<!--
document.write("hello world");
// -->
</script>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Comments often are used to exclude content from older browsers, particularly those

that do not understand client-side scripting or style sheets.

• Page developers should be careful when commenting markup to ensure that other
comments are not included or that two dashes (--) are not embedded in the content
commented.

<!-- .[].. --> (Conditional Comment)
This Internet Explorer–specific comment style can be used to mask or include content,
depending on the browser in play.

 156 P a r t I : C o r e M a r k u p 156 P a r t I : C o r e M a r k u p

Standard Syntax
Hide content if not supported:

<!--[if expression]> HTML <![endif]-->

Show content if not supported:

<![if expression]> HTML <![endif]>

The expression language supported by conditional comments is relatively simple, consisting
of browser type and version identifier, less-than and greater-than operators, and basic
Boolean operators. The syntax is briefly overviewed in Table 3-7.

Examples
<!--[if IE 5]>
<link rel="stylesheet" href="ie5.css" type="text/css" media="screen">
<![endif]-->

<!--[if lt IE 7]<p>You are using an old IE! Please upgrade.</p><![endif]-->

<!--[if gte IE 7]><p>Great, you are using IE 7 or greater.</p><![endif]-->

TABLE 3-7 Microsoft’s Conditional Comment Syntax

Item Description

IE The only currently available value to match is the string "IE", corresponding to Internet
Explorer.

number An integer or floating-point value corresponding to the version of the browser.

true The Boolean constant value of true.

false The Boolean constant value of false.

lt Less-than operator; returns true if the first argument is less than the second argument.

lte Less-than or equal operator; returns true if the first argument is less than or equal to the
second argument.

gt Greater-than operator; returns true if the first argument is greater than the second
argument.

gte Greater-than or equal operator; returns true if the first argument is greater than or equal
to the second argument.

() Subexpression operators; used to put in parentheses individual components of a more
complex expression that uses Boolean operators.

& The Boolean AND operator returns true if all subexpressions evaluate to true.

| The Boolean OR operator returns true if any of the subexpressions evaluates to true.

! Not operator reverses the Boolean meaning of any expression.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 157 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 157
PART I

Compatibility

No standards support Internet Explorer 5+

Note
• Conditional comments are often used to link special Internet Explorer–specific style

sheets or to include scripts solely for these browsers.

<!DOCTYPE> (Document Type Definition)
This SGML construct specifies the document type definition corresponding to the
document. There are no attributes or events associated with this element.

Standard Syntax
<!DOCTYPE "DTD IDENTIFIER">

Examples
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 TRANSITIONAL//EN">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 TRANSITIONAL//EN">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www
.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11.dtd">

<!DOCTYPE html>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• The <!DOCTYPE> statement should be used as the first line of all documents.

• Validation programs might use this construct when determining the correctness of
an HTML document.

• While HTML5 does not follow the SGML/XML concept of validation, the
<!DOCTYPE> is still used. HTML5 does however provide for syntax checking
currently dubbed conformance checking. Note though that conformance checking
does not rely on XML/SGML grammar.

• Modern browsers may determine what rendering mode to use depending on the
<!DOCTYPE> statement. This is dubbed the doctype switch. An incorrect <!DOCTYPE>
that does not correspond to appropriate markup usage may result in inaccurate
display.

 158 P a r t I : C o r e M a r k u p 158 P a r t I : C o r e M a r k u p

<a> (Anchor)
This element defines a hyperlink, the named target destination for a hyperlink, or both.

Standard Syntax
<a
 accesskey="key"
 charset="character code for language of linked
 resource"
 class="class name(s)"
 coords="comma-separated list of numbers"
 dir="ltr | rtl"
 href="URL"
 hreflang="language code"
 id="unique alphanumeric identifier"
 lang="language code"
 name="name of target location"
 rel="comma-separated list of relationship values"
 rev="comma-separated list of relationship values"
 shape="default | circle | poly | rect"
 style="style information"
 tabindex="number"
 target="frame or window name | _blank | _parent | _self | _top"
 title="advisory text"
 type="content type of linked data">

Attributes Introduced by HTML5
 contenteditable="true | false | inherit"
 contextmenu="id of menu "
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 hreflang="language code"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 media="media-type"
 ping="URL list"
 rel="comma-separated list of relationship values"
 spellcheck="true | false"
 tabindex="number"
 type="MIME type of linked data"

Attributes Defined by Internet Explorer
 contenteditable="false | true | inherit" (5.5)
 datafld="name of column supplying bound data" (4)
 datasrc="id of data source object supplying data" (4)
 disabled="false | true" (5.5)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 159 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 159
PART I

 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 methods="http-method" (4)
 unselectable="off | on" (5.5)
 urn="URN string" (4)

HTML 4 Event Attributes
onblur, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecopy, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onblur, onclick,
oncontextmenu, oncontrolselect, oncopy, oncut, ondblclick, ondeactivate,
ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress,
onkeyup, onlosecapture, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel, onmove,
onmoveend, onmovestart, onpaste, onpropertychange, onreadystatechange,
onresize, onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

charset This attribute defines the character encoding of the linked resource. The value is a
space- and/or comma-delimited list of character sets as defined in RFC 2045.

coords For use with object shapes, this attribute uses a comma-separated list of numbers to
define the coordinates of the object on the page.

href This is the single required attribute for anchors defining a hypertext source link. It
indicates the link target—either a URL or a URL fragment, which is a name preceded by a
hash mark (#) specifying an internal target location within the current document. URLs are
not restricted to Web-based (http) documents. URLs might use any protocol supported by
the browser. For example, file, ftp, and mailto work in most user agents.

hreflang This attribute is used to indicate the language of the linked resource and should
be set to whichever language is specified in the core lang attribute. Browsers will likely not
annotate links appropriately with language information, but style sheet rules using attribute
selectors could be used to do this.

 160 P a r t I : C o r e M a r k u p 160 P a r t I : C o r e M a r k u p

media The draft HTML5 specification suggests the value should be used to indicate
whether a destination is appropriate for screen, print, PDA, and so on. This is an advisory
property and does not restrict action.

methods The value of this attribute provides information about the functions that might be
performed on an object. The values generally are given by the HTTP protocol when it is
used; as for the title attribute, it might be useful to include advisory information in
advance in the link. For example, the browser might choose a different rendering of a link as
a function of the methods specified; something that is searchable might get a different icon,
or an outside link might render with an indication of leaving the current site. This attribute
is neither well understood nor supported, even by the defining browser, Internet Explorer.

name This attribute is required in an anchor defining a target location within a page. A value
for name is similar to a value for the id core attribute, and it should be an alphanumeric
identifier unique to the document. Under the HTML and XHTML specifications, id and name
both can be used with an <a> tag as long as they have identical values. HTML5 directly states
page authors should not use name even though it may be supported in browsers and id
values should be used instead.

ping This HTML5–specific attribute is used to specify the URL(s) that will be notified
when a link is activated. If more than a single URL is specified, the addresses should be
separated by spaces. Despite some early Firefox dablings with this attribute by late 2009, no
browser implements this feature, and privacy concerns about this attribute may keep it
from ever being widely adopted.

rel For anchors containing the href attribute, this attribute specifies the relationship of the
target object to the link object. The value is a comma-separated list of relationship values.
The values and their semantics will be registered by some authority that might have
meaning to the document author. The default relationship, if no other is given, is void. The
rel attribute should be used only when the href attribute is present. Table 3-8 lists possible
rel values defined in HTML5 for <a> tags.

rev This attribute specifies a reverse link, the inverse relationship of the rel attribute. It is
useful for indicating where an object came from, such as the author of a document.

shape This attribute is used to define a selectable region for hypertext source links
associated with a figure in order to create an image map. The values for the attribute are
circle, default, polygon, and rect. The format of the coords attribute depends on the
value of shape. For circle, the value is x,y,r, where x and y are the pixel coordinates for
the center of the circle and r is the radius value in pixels. For rect, the coords attribute
should be x,y,w,h. The x,y values define the upper-left corner of the rectangle, while w and h
define the width and height, respectively. A value of polygon for shape requires
x1,y1,x2,y2,… values for coords. Each of the x,y pairs defines a point in the polygon, with
successive points being joined by straight lines and the last point joined to the first. The value
of default for shape requires that the entire enclosed area, typically an image, be used.

NOTE It is advisable to use the usemap attribute for the img element and the associated map
element to define hotspots instead of the shape attribute.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 161 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 161
PART I

TABLE 3-8 Possible rel Values (continued)

Relationship
Value Explanation Example Notes

alternate The link references an
alternate version of the
document that the link
is in. For example, this
might be a translated
version of the document,
as suggested by the
lang attribute.

<a href="frenchintro.html"
 rel="alternate"
 lang="fr">
Version Francais

archives The link provides
a reference to
document(s) of
historical interest.

<a href="/history.php"
 rel="archives">
Document History

author The link provides a
reference to information
about the document’s
author.

<a href="/tap.html"
 rel="author">
Thomas Powell

bookmark The link references a
document that serves as
a bookmark; the title
attribute can be used to
name the bookmark.

<a href="index.html"
 rel="bookmark"
 title="permalink">
Section Permalink

external The link indicates the
referenced document
is not local to the
current document,
organizationally or
server-wise.

<a href="http://ajaxref
.com/"
 rel="external author">
Ajax Book (offsite)

Likely such links
need visual
indication as well
to indicate they
are off site.

first The link is a reference to
the first document in a
collection.

<a href="page1.html"
 rel="first">Start

help The link references a
help document for the
current document or
site.

<a href="help.html"
 rel="help">Help

index The link references a
page that provides an
index for the current
document.

<link href="docindex.html"
 rel="index" />

 162 P a r t I : C o r e M a r k u p 162 P a r t I : C o r e M a r k u p

Relationship
Value Explanation Example Notes

last The link is a reference to
the last document in a
collection.

<a href="page10.html"
 rel="last">Last

license The link is a reference
to the legal or copyright
information for the
current document’s
content. Similar to the
copyright value.

<a href="/legal.html"
 rel="license">
Legal Terms

next The link references the
next document to visit
in a linear collection
of documents. It can
be used, for example,
to “prefetch” the next
page, and is supported
in some browsers such
as MSN TV and Mozilla-
based browsers.

<a href="page2.html"
 rel="next">Next Page

nofollow This value provides an
indication that the link
should not be followed
by automatically
traversing user agents
such as search bots.

<a href="legal.html"
 rel="nofollow license">
Legal Info

noreferrer This value indicates the
browser should not send
the Referrer header
when following this link.

<a href="https://bank.com"
 rel="noreferrer">
Banking

Would require
browser support.

prev The link references the
previous document in
a linear collection of
documents.

<a href="page1.html"
 rel="previous">
Previous

search This value indicates that
the link references a
search facility used in
a site.

<a href="search/"
 rel="search">Search
Site

TABLE 3-8 Possible rel Values (continued)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 163 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 163
PART I

target This attribute specifies the target window for a hypertext source link that references
frames. The information linked to target will be displayed in the named window. Frames
and windows must be named to be targeted if they do not correspond to a special name
value, which include _blank, which indicates a new window; _parent, which indicates the
parent frame set containing the source link; _self, which indicates the frame containing the
source link; and _top, which indicates the full browser window.

type This attribute specifies the media type in the form of a MIME type for the link target.
Generally, this is provided strictly as advisory information; however, in the future a browser
might add a small icon for multimedia types. For example, a browser might add a small
speaker icon when type is set to audio/wav. For a complete list of recognized MIME types,
see www.w3.org/TR/html4/references.html#ref-MIMETYPES.

urn This supposedly Internet Explorer–supported attribute has some origins in HTML 3.2
and it relates a uniform resource name (URN) with the link. While it is based on standards
work going years back, the meaning of URNs is still not well defined nor has it been
demonstrated that this attribute does anything despite its occurrence in MSDN
documentation.

Relationship
Value Explanation Example Notes

sidebar This value specifies
a URL that should be
displayed in a browser
sidebar.

<a href="instructions
.html"
 rel="sidebar">
Load Instructions
(Sidebar)

Assumes that
browsers support
this interface
style.

tag This value specfies a
tag that applies to the
document.

<a href="html5.html"
 rel="tag">HTML5

Specification
unclear on usage.
Current read
suggests tag
word used within
“tagcloud.”

up This value provides
a link to a document
or section “up” from
the current document,
usually the parent or
index document for the
current URL.

<a href="/main/index.html"
 rel="up">Index Page

TABLE 3-8 Possible rel Values (continued)

 164 P a r t I : C o r e M a r k u p 164 P a r t I : C o r e M a r k u p

Examples
<!-- anchor linking to external file -->
External Link

<!-- anchor linking to file on local file system -->
local file link

<!-- anchor invoking anonymous FTP -->
Anonymous FTP
link

<!-- anchor invoking FTP with password -->

FTP with password

<!-- anchor invoking mail -->
Send mail

<!-- anchor used to define target destination within document -->
Jump target

<!-- anchor linking internally to previous target anchor -->
Local jump within document

<!-- anchor linking externally to previous target anchor -->

Remote jump to a position within a document

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• If you use the accesskey attribute with this element page, be wary of reserved

bindings. See the section “accesskey” under “Other Common Attributes Reference”
earlier in the chapter for a full discussion of this concern.

• The target attribute is not defined in browsers that do not support frames, such as
Netscape 1–generation browsers. Furthermore, target is not allowed under strict
variants of XHTML but instead is limited to frameset or transitional form. This
attribute, however, does regain its functionality under HTML5.

• See Appendix D for a complete discussion of the URL syntax, which is used as the
value of the src attribute.

<abbr> (Abbreviation)
This element allows authors to clearly indicate a sequence of characters that defines an
abbreviation for a word (such as Mr. instead of Mister, or Calif instead of California).

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 165 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 165
PART I

Standard Syntax
<abbr
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</abbr>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 166 P a r t I : C o r e M a r k u p 166 P a r t I : C o r e M a r k u p

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onhelp, onkeydown,
onkeypress, onkeyup, onlosecapture, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart

Examples
<p><abbr title="California">Calif</abbr></p>

<p>Isn't <abbr>WWW</abbr> an acronym? Oh what trouble!</p>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 7+,
Netscape 6+, Opera 6+, Safari 1+

Notes
• This tag is commonly confused with <acronym>. Debate about just what constitutes

an acronym as compared with an abbreviation is common among very detail-oriented
Web standards experts. While Web developers appear to use an <acronym> tag more
often than an <abbr> tag, the former is deprecated under HTML5! The confusion
continues.

• When the title attribute is set on this element, browsers may render a dotted
underline, which is useful to indicate the presence of a tooltip that might contain the
expansion for the abbreviation.

• According to the HTML5 specification, the title attribute should be set to the
expansion of the abbreviation.

• The disabled attribute is not currently documented for this element at MSDN,
though it continues to work in Internet Explorer browsers.

• The MSDN documentation for this element may have errors regarding the extent of
its event support, because many events that are not listed as supported actually
worked when tested.

• Because there is typically no markup-oriented presentation for this element, it is
primarily used in conjunction with style sheets and scripts.

<acronym> (Acronym)
This element allows authors to clearly indicate a sequence of characters that composes an
acronym (XML, WWW, and so on).

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 167 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 167
PART I

Standard Syntax
<acronym
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</acronym>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown, onkeypress,
onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmove, onmoveend, onmovestart,
onreadystatechange, onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p><acronym title="Extensible Markup Language">XML</acronym>

<acronym lang="fr" title="Société Nationale de Chemins de
Fer">SNCF</acronym></p>

Compatibility

HTML 4, 4.01
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 6+, Safari 1+

Notes
• This tag is often confused with <abbr> and is not included in HTML5 as of late 2009.

• As with an <abbr> tag, most browsers will render a dotted underline when the title
attribute is present.

• Errors may occur in the MSDN documentation for this element; for example,
disabled continues to be supported and many events not documented will work.

 168 P a r t I : C o r e M a r k u p 168 P a r t I : C o r e M a r k u p

<address> (Address)
This block element marks up text indicating authorship or ownership of information. It
generally occurs at the beginning or end of a Web document and usually is rendered in
italics in the absence of CSS.

Standard Syntax
<address
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</address>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="inherit | false | true" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 169 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 169
PART I

onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeypress, onkeyup, onlosecapture,
onmousedown, onmouseenter, onmouseleave, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onselectstart, ontimeerror

Example
<address>PINT, Inc.

2105 Garnet Ave.

San Diego, CA 92109

U.S.A.</address>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Under HTML 2.0 and 3.2, there are no attributes for <address>.

• An <address> tag may not contain another <address> tag.

<applet> (Java Applet)
This element identifies the inclusion of a Java applet. The strict HTML 4.01 definition does
not include this element; it has been deprecated in favor of <object>.

Standard Syntax (HTML 4.01 Transitional Only)
<applet
 align="bottom | left | middle | right | top"
 alt="alternative text"
 archive="comma-separated list of URLs pointing to archive files"
 class="class name(s)"
 code="URL of Java class file"
 codebase="URL for base referencing"
 height="pixels"
 hspace="pixels"
 id="unique alphanumeric identifier"
 name="unique name for scripting reference"
 object="serialized representation of applet state"

 170 P a r t I : C o r e M a r k u p 170 P a r t I : C o r e M a r k u p

 style="style information"
 title="advisory text"
 vspace="pixels"
 width="pixels">

</applet>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 datafld="name of column supplying bound data" (4)
 datasrc="id of data source object supplying data" (4)
 hidefocus="true | false" (5.5)
 lang="language used for the applet" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 src="URL" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

Attributes Defined by Netscape
 mayscript (4)

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, oncellchange, onclick,
oncontextmenu, oncontrolselect, oncut, ondataavailable, ondatasetchanged,
ondatasetcomplete, ondblclick, ondeactivate, onfocus, onfocusin,
onfocusout, onhelp, onkeydown, onkeypress, onkeyup, onload, onlosecapture,
onmouseenter, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onrowenter,
onrowexit, onrowsdelete, onrowsinserted, onscroll

Element-Specific Attributes

alt This attribute causes a descriptive text alternative to be displayed in browsers that do
not support Java. Web designers should also remember that content enclosed within an
<applet> tag may also be rendered as alternative text.

archive This attribute refers to the URL of an archived or compressed version of the applet
and its associated class files, which might help reduce download time.

code This attribute specifies the URL of the applet’s class file to be loaded and executed.
Applet filenames are identified by a .class filename extension. The URL specified by code
might be relative to the codebase attribute.

codebase This attribute gives the absolute or relative URL of the directory where applets’
.class files referenced by the code attribute are stored.

mayscript In the Netscape implementation, this attribute allows access to an applet by a
scripting language.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 171 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 171
PART I

name This attribute assigns a name to the applet so that it can be identified by other
resources, particularly scripts.

object This attribute specifies the URL of a serialized representation of an applet.

src As defined for Internet Explorer 4 and higher, this attribute specifies a URL for an
associated file for the applet. Its meaning and use are unclear and it is not part of the HTML
standard.

Example
<applet code="atarigame.class" align="left" archive="game.zip"
 height="250" width="350">
 <param name="difficulty" value="easy">
 Sorry, you need Java to play this game.
</applet>

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 4+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• The W3C specification does not encourage the use of <applet> and prefers the use

of the <object> tag. Under the strict definition of HTML 4.01, this element is
deprecated and it is cited as obsolete under HTML5, though currently it still appears
in many versions of the specification. Despite the strong desire of standard bodies to
remove this from common use, it is still often used.

• The HTML 4 specification does not show event-handling attributes for this element,
though you may find that they work. However, given that an applet may include an
interactive object, the sense of capturing events with it as compared to within the
applet can be a bit confusing.

<area> (Image Map Area)
This element defines a hotspot region on an image and associates it with a hypertext link.
This element is used only within a <map> tag.

Standard Syntax
<area
 accesskey="character"
 alt="alternative text"
 class="class name(s)"
 coords="comma-separated list of values"
 dir="ltr | rtl"
 href="URL"
 id="unique alphanumeric identifier"
 lang="language code"
 nohref="nohref"
 shape="circle | default | poly | rect"

 172 P a r t I : C o r e M a r k u p 172 P a r t I : C o r e M a r k u p

 style="style information"
 tabindex="number"
 target="frame or window name | _blank | _parent | _self |
 _top" (transitional or frameset only)
 title="advisory text">

Attributes Introduced by HTML5
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 hreflang="language code"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 media="media-type"
 ping="URL list"
 rel="comma-separated list of relationship values"
 spellcheck="true | false"
 tabindex="number"
 type="MIME type of linked data"

Attributes Defined by Internet Explorer
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 unselectable="off | on" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onclick, oncontextmenu, oncontrolselect,
oncopy, oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocusin, onfocusout,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 173 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 173
PART I

onhelp, onkeydown, onkeypress, onkeyup, onlosecapture, onmouseenter,
onmousedown, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

alt This attribute contains a text string alternative to display in browsers that cannot
display images.

coords This attribute contains a set of values specifying the coordinates of the hotspot
region. The number and meaning of the values depend upon the value specified for the
shape attribute. For a rect or rectangle shape, the coords value is two x,y pairs: left,
top, right, and bottom. For a circ or circle shape, the coords value is x,y,r, where x,y
is a pair specifying the center of the circle and r is a value for the radius. For a poly or
polygon shape, the coords value is a set of x,y pairs for each point in the polygon:
x1,y1,x2,y2,x3,y3, and so on.

href This attribute specifies the hyperlink target for the area. Its value is a valid URL.
Either this attribute or the nohref attribute must be present in the element.

hreflang This attribute, introduced by HTML5, is used to indicate the language of the
linked resource in an image map and should be set to whichever language is specified in
the core lang attribute. Browsers will likely not annotate links appropriately with language
information, but style sheet rules using attribute selectors could be used to do this. The
absence of this attribute in previous HTML versions is a clear oversight.

media This HTML5 attribute specifies the media format the link destination was defined
for. It is advisory information, and the value should be used to suggest if a destination is
appropriate for screen, print, PDA, and so on.

name This attribute is used to define a name for the clickable area so that it can be scripted
by older browsers.

nohref This attribute indicates that no hyperlink exists for the associated area. Either this
attribute or the href attribute must be present in the element. Under XHTML, this attribute
will have a value of "nohref"; under standard HTML, no value is required.

ping This HTML5–specific attribute is used to specify the URL(s) that will be notified
when a link is activated. If more than a single URL is specified, the addresses should be
separated by spaces. Circa early 2009, no browser implements this feature, and privacy
concerns about this attribute may keep it from ever being widely adopted.

rel HTML5 introduces this attribute to specify link relationships on image maps. The lack
of this attribute in previous specifications was clearly an oversight. For image map areas
containing the href attribute, this attribute specifies the relationship of the target object to the
link object. The value is a comma-separated list of relationship values. The values and their
semantics will be registered by some authority that might have meaning to the document
author. The default relationship, if no other is given, is void. The rel attribute should be used
only when the href attribute is present because it makes no sense with nohref.

 174 P a r t I : C o r e M a r k u p 174 P a r t I : C o r e M a r k u p

NOTE HTML5 defines a number of rel values for <area>. See the earlier “<a> (Anchor)” section
for a list of the values used with the rel attribute.

shape This attribute defines the shape of the associated hot spot. HTML 4 defines the
values rect, which defines a rectangular region; circle, which defines a circular region;
poly, which defines a polygon; and default, which indicates the entire region beyond any
defined shapes. Many browsers, notably Internet Explorer 4 and higher, support alternate
values for shapes, including circ, polygon, and rectangle.

target This attribute specifies the target window for hyperlink-referencing frames. The
value is a frame name or one of several special names. A value of _blank indicates a new
window. A value of _parent indicates the parent frame set containing the source link.
A value of _self indicates the frame containing the source link. A value of _top indicates
the full browser window.

type This attribute specifies the media type in the form of a MIME type for the link target.
Generally, this is provided strictly as advisory information; however, in the future a browser
might add a small icon for multimedia types. For example, a browser might add a small
speaker icon when type is set to audio/wav. For a complete list of recognized MIME types,
see www.w3.org/TR/html4/references.html#ref-MIMETYPES. The attribute is commonly
understood for the a element but was introduced by HTML5 to image maps.

Examples
<map id="primary" name="primary">
 <area shape="circle" coords="200,250,25" href="another.html">
 <area shape="default" nohref>
</map>

<!-- XHTML syntax -->
<map id="secondary" name="secondary">
 <area shape="rect" coords="10,10,100,100" href="another.html" />
 <area shape="default" nohref="nohref" />
</map>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• As an empty element under XHTML or when using XML-style syntax for HTML5,

a trailing slash is required for this element: <area />.

• HTML5 does not define rev attribute for <area> tags.

• Netscape 1–level browsers do not understand the target attribute as it relates to
frames.

• HTML 3.2 defines only alt, coords, href, nohref, and shape.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 175 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 175
PART I

<article> (Article)
This HTML5 block element defines a subset of a document’s content that forms an
independent part of the document, such as a blog post, article, or other self-contained
unit of information, that may be linked to or included in some other content body.

HTML5 Standard Syntax
<article
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</article>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<p>There are other things in this page.</p>

<article id="article1">
<header>
<h1>HTML5 is Coming Soon!</h1>
<p><time pubdate datetime="2009-10-31T12:30-11:00"></time></p>
</header>

 176 P a r t I : C o r e M a r k u p 176 P a r t I : C o r e M a r k u p

<p>The new HTML5 specification is in the works. While many features are
not currently implemented or even well defined yet, progress is being made.
Stay tuned to see more new HTML elements added to your Web documents in the
years to come.</p>
</article>

<p>There are other things in this page.</p>

Compatibility

HTML5 Not currently supported by any browser, but can be addressed with a custom element.

Notes
• Early versions of this tag supported pubdate and cite attributes but these were

removed later in favor of nested <time> tags.

• It is possible to nest <article> tags and the relationship should logically relate to
the parent <article> subject matter.

• This element is not directly implemented in any browser. However, given that most
browsers can handle custom elements, it is easy enough to simulate the idea of it
and even apply a CSS display property for it.

<aside> (Aside)
This HTML5 element defines a section of a document that encloses content that is
tangentially related to the other content the element may be associated with. A simple
example of this element in action might be to specify sidebar content.

HTML5 Standard Syntax
<aside
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</aside>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 177 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 177
PART I

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<p>This is the main point I am trying to make.</p>
<aside>This is an aside I don't really know how important it is to make,
but I love to make asides.</aside>
<p>Ok now back to the point I was making.</p>

Compatibility

HTML5 Not currently supported by any browser, but can be addressed with a custom element.

Notes
• This element is not yet directly implemented in any browser. However, given that

most browsers can handle custom elements, it is easy enough to simulate the idea of
it and even apply a CSS display property for it.

• This element will affect HTML5’s outlining algorithm; see Chapter 2 for an example
of this scheme.

<audio> (Audio)
This HTML5 element includes audio in a document.

HTML5 Standard Syntax
<audio
 accesskey="spaced list of accelerator key(s)"
 autobuffer="autobuffer"
 autoplay="autoplay"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 controls="controls"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"

 178 P a r t I : C o r e M a r k u p 178 P a r t I : C o r e M a r k u p

 itemtype="microdata type in URL format"
 lang="language code"
 loop="loop"
 spellcheck="true | false"
 src="URL of audio"
 style="style information"
 tabindex="number"
 title="advisory text">

</audio>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

autobuffer This Boolean attribute indicates whether or not the browser should begin
buffering audio right away. It is often set when it is believed that the audio will be played.
This is valuable when autoplay is not set, but the attribute has no meaning if autoplay is
set since the browser will play the audio as soon as it can.

autoplay This Boolean attribute indicates the browser should begin playing the audio as
soon after page load once it has loaded enough of the audio to avoid pausing.

controls This Boolean attribute is set to indicate whether or not the browser should present
the controls for audio, such as playback, pause, volume, and seek. If not present, no controls
will be shown and it will be up to the developer to script the control of the media playback.
When no controls are present, the audio element will not be visually presented.

loop This Boolean attribute, if present, indicates that the audio should loop.

src This attribute is set to the URL of the audio to show.

Examples
<audio src="music.ogg" autoplay>
 <p>No support for HTML5 <code>audio</code> element.</p>
</audio>

<audio src="music.ogg" loop controls>
 <p>No support for HTML5 <code>audio</code> element.</p>
</audio>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 179 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 179
PART I

<audio id="audio3">
 <source src="music.ogg" type="audio/ogg">
 <source src="music.mp3">
 <p>No support for HTML5 <code>audio</code> element.</p>
</audio>

<!-- Trick to make sound in IE browsers -->
<audio src="music.wav">
 <bgsound src="music.wav">
</audio>

Compatibility

HTML5 Firefox 3.5+, Safari 3.1+

Notes
• Alternate content should be placed inside of the audio element for browsers that do

not support it.

• Having the correct MIME types on hosted media files is key for playback. You
should also make sure the media types used work in the browsers targeted, because
currently this varies even when the audio element is supported.

• Flash will often be used to avoid cross-browser audio concerns. Until this element is
widely supported, developers are advised to continue to use Flash or to rely on
elements like bgsound.

 (Bold)
This inline element indicates that the enclosed text should be displayed in boldface.

Standard Syntax
<b
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"

 180 P a r t I : C o r e M a r k u p 180 P a r t I : C o r e M a r k u p

 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeypress, onkeyup, onlosecapture,
onmousedown, onmouseenter, onmouseleave, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onselectstart, ontimeerror

Example
<p>This text is bold for some reason.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 181 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 181
PART I

Notes
• HTML 2 and 3.2 do not define any attributes for this element.

• Modern markup specifications encourage developers to use a tag
instead of .

<base> (Base URL)
This empty element found within the head element specifies the base URL stem to be used
for all relative URLs contained within a document.

Standard Syntax
<base
 href="URL"
 target="frame or window name | _blank | _parent | _self |
 _top" (transitional only)>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 id="unique alphanumeric identifier" (4)

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

 182 P a r t I : C o r e M a r k u p 182 P a r t I : C o r e M a r k u p

Element-Specific Attributes

href This attribute specifies the base URL to be used throughout the document for relative
URL addresses.

target For documents containing frames, this attribute specifies the default target window
for every link that does not have an explicit target reference. Aside from named frames or
windows, several special values exist. A value of _blank indicates a new window. A value
of _parent indicates the parent frame set containing the source link. A value of _self
indicates the frame containing the source link. A value of _top indicates the full browser
window.

Examples
<!-- standard HTML syntax --->
<base href="http://www.htmlref.com/">

<-- XHTML syntax -->
<base href="http://www.htmlref.com/" />

<!-- with frames -->
<base target="_blank" href="http://www.htmlref.com/">

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• This element should only occur within the head element.

• HTML 2.0 and 3.2 define only the href attribute.

• Under XHTML variants and HTML5 using XML-syntax, this empty element requires
a trailing slash: <base />.

• HTML5’s current draft specification specifies all common attributes and events, but
frankly many of these make little sense for this element. HTML 4 did not define
them for good reason, so it is likely this may be modified back to a syntax closer to
that of the HTML 4 specification.

<basefont> (Base Font)
This element establishes a default font size for a document. Font size then can be varied
relative to the base font size by using the font element.

Standard Syntax (Transitional Only)
<basefont
 color="color name | #RRGGBB"
 face="font name(s)"
 id="unique alphanumeric identifier"
 size="1-7 | +/-int">

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 183 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 183
PART I

Attributes Defined by Internet Explorer
 id="unique alphanumeric identifier" (4)

Events Defined by Internet Explorer
onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

Element-Specific Attributes

color This attribute sets the text color using either a named color or a color specified in the
hexadecimal #RRGGBB format.

face This attribute contains a list of one or more font names. The document text in the
default style is rendered in the first font face that the client’s browser supports. If no font
listed is installed on the local system, the browser typically defaults to the proportional or
fixed-width font for that system.

size This attribute specifies the font size as either a numeric or relative value. Numeric
values range from 1 to 7, with 1 being the smallest and 3 the default. Relative values start
with + or –, followed by a digit, and modify the current size appropriately. Resulting values
above 7 become 7 and below 1 become 1.

Example
<!-- Standard HTML syntax -->
<basefont color="#ff0000" face="Helvetica" size="+2">

<!-- XHTML style syntax -->
<basefont color="#ff0000" face="Helvetica" size="+2" />

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• HTML 3.2 supports the basefont element but only with the size attribute.

• The (X)HTML strict and HTML5 specifications do not support this element.

• This element can be imitated with a CSS rule on the body element.

• Transitional XHTML 1.0 requires a trailing slash for this empty element:
<basefont />.

<bdo> (Bidirectional Override)
This element is used to override the current directionality of text.

 184 P a r t I : C o r e M a r k u p 184 P a r t I : C o r e M a r k u p

Standard Syntax
<bdo
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</bdo>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="inherit | false | true" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript | xml" (5.0)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 185 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 185
PART I

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecopy, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onbeforeupdate,
onblur, oncellchange, oncontextmenu, oncontrolselect, onclick, oncopy,
oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onerrorupdate, onfilterchange,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onscroll, onselectstart

Example
<!-- Switch text direction -->
<p>Some other text here <bdo dir="rtl">This text will go right to left in
a browser that supports this element</bdo> some more text here.</p>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 5+,
Netscape 6+, Opera 7+, Safari 2+

Note
• The HTML 4 specification did not specify events for this element; they were added

later, so this likely was simply an oversight.

<bgsound> (Background Sound)
This Internet Explorer element associates a background sound with a page.

Common Syntax (Defined by Internet Explorer)
<bgsound
 balance="number"
 id="unique alphanumeric identifier"
 loop="number"
 src="URL of sound file"
 volume="number">

Events Defined by Internet Explorer
onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

Element-Specific Attributes

balance This attribute defines a number between –10,000 and +10,000 that determines how
the volume will be divided between the speakers.

loop This attribute indicates the number of times a sound is to be played and has either a
positive numeric value or –1 to specify that it will continuously loop. The keyword
infinite is also supported in many Internet Explorer implementations.

 186 P a r t I : C o r e M a r k u p 186 P a r t I : C o r e M a r k u p

src This attribute specifies the URL of the sound file to be played, which must be one of
the following types: .wav, .au, or .mid.

volume This attribute defines a number between –10,000 and 0 that determines the
loudness of a page’s background sound. Oddly, 0 is full volume and –10,000 is none.

Examples
<!-- assume examples are in different pages -->
<bgsound src="sound1.mid">

<bgsound src="sound2.au" loop="infinite">

<bgsound src="sound3.wav" loop="3" volume="-2000">

Compatibility

No standards support Internet Explorer 2+, Opera 4+

Notes
• Similar functionality can be achieved in older versions of Netscape using the

<embed> tag to invoke an audio player as well as using HTML5’s <audio> tag in
supporting browsers.

• You could write bgsound with a self-closing tag <bgsound />. However, since this
element is not part of a standard, making it XHTML-like will not make it validate.

<big> (Big Font)
This inline element indicates that the enclosed text should be displayed in a larger font
relative to the current font.

Standard Syntax
<big
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</big>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 187 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 187
PART I

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example
<p>This text is regular size. <big>This text is larger.</big> Now back to
regular size.</p>

Compatibility

HTML 3, 3.2, 4, 4.01
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 2.1+, Safari 1+

Notes
• This element was originally introduced in HTML 3 and moved to HTML 3.2.

• The effect of this element is easily mimicked using the CSS rule font-size:
larger or under older browsers using .

• Although HTML5 marks this element as obsolete, interestingly, it currently doesn’t
mark the small element as such but rather recasts its meaning instead. With the
strict (X)HTML variants supporting this element, this element’s status may change.

<blink> (Blinking Text)
This Netscape-specific element causes the enclosed text to flash slowly.

Syntax (Defined by Netscape)
<blink
 class="class name(s)"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information">

</blink>

Example
<blink>Annoying, isn't it?</blink>

 188 P a r t I : C o r e M a r k u p 188 P a r t I : C o r e M a r k u p

Compatibility

No standards support Firefox 1+, Netscape 1+, Opera 7+

Notes
• The attributes class, id, and style were added during the Netscape 4 release;

lang was added from Netscape 6.

• Browsers will generally support the inclusion of the element and allow core
attributes for applying style and scripting this element regardless of the lack of
blinking text.

<blockquote> (Block Quote)
This block element indicates that the enclosed text is an extended quotation. Usually, this is
rendered visually by indentation.

Standard Syntax
<blockquote
 cite="URL of source information"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</blockquote>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 189 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 189
PART I

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

cite The value of this attribute should be a URL for the document in which the information
cited can be found.

Example
<blockquote cite="http://www.loc.gov/rr/program/bib/ourdocs/DeclarInd.html">
We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their Creator with certain unalienable rights,
that among these are life, liberty and the pursuit of happiness.
</blockquote>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• HTML 2.0 and 3.2 do not support any attributes for this element.

• Some archaic browsers like WebTV understand the <bq> shorthand notation.

 190 P a r t I : C o r e M a r k u p 190 P a r t I : C o r e M a r k u p

<body> (Document Body)
This sectional element encloses a document’s displayable content.

Standard Syntax
<body
 alink="color name | #RRGGBB" (transitional only)
 background="URL of background image" (transitional only)
 bgcolor="color name | #RRGGBB" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 link="color name | #RRGGBB" (transitional only)
 style="style information"
 text="color name | #RRGGBB" (transitional only)
 title="advisory text"
 vlink="color name | #RRGGBB"> (transitional only)

</body>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 bgproperties="fixed" (4)
 bottommargin="pixels" (4)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 leftmargin="pixels" (4)
 nowrap="false | true" (4)
 rightmargin="pixels" (4)
 scroll="no | yes" (4)
 tabindex="number" (5.5)
 topmargin="pixels" (4)
 unselectable="off | on" (5.5)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 191 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 191
PART I

Attributes Defined by Netscape
 marginheight="pixels" (4)
 marginwidth="pixels" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onload, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onunload

HTML5 Event Attributes
onabort, onafterprint, onbeforeprint, onbeforeunload, onblur, oncanplay,
oncanplaythrough, onchange, onclick, oncontextmenu, ondblclick, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
ondurationchange, onemptied, onended, onerror, onformchange, onforminput,
oninput, oninvalid, onhashchange, onkeydown, onkeypress, onkeyup, onload,
onloadeddata, onloadedmetadata, onloadstart, onmessage, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel, onoffline,
ononline, onpause, onplay, onplaying, onpopstate, onprogress, onratechange,
onreadystatechange, onredo, onresize, onscroll, onseeked, onseeking,
onselect, onshow, onstalled, onstorage, onsubmit, onsuspend, ontimeupdate,
onundo, onunload, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterprint, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onbeforeprint, onbeforeunload,
oncontextmenu, oncontrolselect, oncut, ondeactivate, ondrag, ondragend,
ondragenter, ondragleave, ondragover, ondragstart, ondrop, onfilterchange,
onfocusin, onfocusout, onlosecapture, onmouseenter, onmouseleave,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresizeend, onresizestart, onscroll, onselect,
onselectstart

Element-Specific Attributes

alink This attribute sets the color for active links within the document. Active links
represent the state of a link as it is being clicked. The value of the attribute can be either a
named color like red or a color specified in the hexadecimal #RRGGBB format like
#FF0000. The CSS pseudo-class a:active should be used instead.

background This attribute contains a URL for an image file, which will be tiled to provide
the document background. The CSS background-image property should be used instead.

bgcolor This attribute sets the background color for the document. Its value can be either a
named color like red or a color specified using the hexadecimal #RRGGBB format like
#FF0000. The CSS background-color property should be used instead.

bgproperties This attribute, first introduced in Internet Explorer 2, has one value, fixed,
which causes the background image to act as a fixed watermark and not to scroll. The CSS
property background-attachment provides similar functionality.

 192 P a r t I : C o r e M a r k u p 192 P a r t I : C o r e M a r k u p

bottommargin This attribute specifies the bottom margin for the entire body of the page and
overrides the default margin. When set to 0 or "", the bottom margin is the bottom edge of
the window or frame the content is displayed in. CSS margin properties should be used
instead.

leftmargin This Internet Explorer–specific attribute sets the left margin for the page, in
pixels, overriding the default margin. When set to 0 or "", the left margin is the left edge of
the window or the frame. CSS margin properties should be used instead.

link This attribute sets the color for hyperlinks within the document that have not yet been
visited. Its value can be either a browser-dependent named color or a color specified using
the hexadecimal #RRGGBB format. The CSS pseudo-class a:link should be used instead.

marginheight This Netscape-specific attribute sets the top margin for the document, in
pixels. If set to 0 or "", the top margin will be exactly on the top edge of the window or
frame. It is equivalent to combining the Internet Explorer attributes bottommargin and
topmargin. CSS margin properties should be used instead.

marginwidth This Netscape-specific attribute sets the left and right margins for the page, in
pixels, overriding the default margin. When set to 0 or "", the left margin is the left edge of
the window or the frame. It is equivalent to combining the Internet Explorer attributes
leftmargin and rightmargin. CSS margin properties should be used instead.

nowrap This Internet Explorer–specific attribute is used to control the wrapping of text
body width. If set to yes, text should not wrap. The default is no.

rightmargin This Internet Explorer–specific attribute sets the right margin for the page in
pixels, overriding the default margin. When set to 0 or "", the right margin is the right edge
of the window or the frame. CSS margin properties should be used instead.

scroll This Internet Explorer–specific attribute turns the scroll bars on or off. The default
value is yes.

text This attribute sets the text color for the document. Its value can be either a named
color like red or a color specified using the hexadecimal #RRGGBB format. The CSS
property color should be used on the body element instead of this attribute.

topmargin This Internet Explorer–specific attribute sets the top margin for the document, in
pixels. If set to 0 or "", the top margin will be exactly on the top edge of the window or
frame. CSS margin properties should be used instead.

vlink This attribute sets the color for hyperlinks within the document that have already
been visited. Its value can be either a browser-dependent named color or a color specified
using the hexadecimal #RRGGBB format. The CSS pseudo-class a:visited should be used
instead.

Examples
<body background="checkered.gif"
 bgcolor="white"
 alink="red"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 193 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 193
PART I

 link="blue"
 vlink="red"
 text="black"> ... </body>

<body onload="myLoadFunction()"> ... </body>

<body> ... </body>

Compatibility

HTML 2, 3.2, 4, 4.01, 5+
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• When defining text colors, it is important to be careful to specify both foreground

and background explicitly so that they are not masked out by browser defaults set
by the user.

• Under the strict HTML and XHTML definitions as well as HTML5, CSS should be
used in place of presentation attributes like alink, background, bgcolor, link,
text, and vlink.

• This element must be present in all documents except those declaring a frame set.

• Under XHTML, the closing </body> tag is mandatory.

• HTML5 returns to the old style of making the element optional.

• HTML5 currently defines all common attributes for this element, though the meaning
of some in the context of the entire document is a bit unclear.

 (Line Break)
This empty element forces a line break.

Standard Syntax
<br
 class="class name(s)"
 clear="all | left | none | right" (transitional only)
 id="unique alphanumeric identifier"
 style="style information"
 title="advisory text">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"

 194 P a r t I : C o r e M a r k u p 194 P a r t I : C o r e M a r k u p

 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onlayoutcomplete, onlosecapture, onreadystatechange

Element-Specific Attributes

clear This attribute forces the insertion of vertical space so that the tagged text can be
positioned with respect to images. A value of left clears text that flows around left-aligned
images to the next full left margin; a value of right clears text that flows around right-aligned
images to the next full right margin; and a value of all clears text until it can reach both full
margins. The default value according to the transitional HTML and XHTML specifications is
none, but its meaning generally is supported as just introducing a return and nothing more.
The CSS clear property is preferred over using this attribute.

Examples
<p>This text will be broken here
and continued on a new line.</p>

<p>XHTML
syntax!</p>

<address>
PINT Inc.

2105 Garnet Ave

San Diego, CA 92109

</address>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• This is an empty element. A closing tag is illegal under all HTML specifications. For

XHTML compatibility, a closing slash is required:
.

• Under the strict (X)HTML specifications and HTML5, the clear attribute is not valid.
The CSS property clear provides the same functionality as the clear attribute.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 195 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 195
PART I

• HTML5 currently defines common attributes for this element that are not defined in
HTML 4 and make little sense given that it is empty. Consult the latest specification
for clarity.

• Many developers opt to use margin-related CSS properties to perform the course
formatting duties that this element performed. It is arguable that degradation in the
absence of style sheets may actually favor the br element’s continued use.

<button> (Form Button)
This element defines a rich button that may contain arbitrary content to augment what the
standard <input type="button"> provides.

Standard Syntax
<button
 accesskey="key"
 class="class name(s)"
 dir="ltr | rtl"
 disabled="disabled"
 id="unique alphanumeric identifier"
 lang="language code"
 name="button name"
 style="style information"
 tabindex="number"
 title="advisory text"
 type="button | reset | submit"
 value="button value">

</button>

Attributes Introduced by HTML5
 autofocus="autofocus"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 enctype="mimetype" (for type submit)
 form="id of related form element"
 formaction="URL of form action"
 formenctype="MIME type of form encoding"
 formmethod="GET | POST | PUT | DELETE"
 formnovalidate="true | false"
 formtarget="name of target frame, region or window"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"
 type="add | remove | move-down | move-up"

 196 P a r t I : C o r e M a r k u p 196 P a r t I : C o r e M a r k u p

Attributes Defined by Internet Explorer
 contenteditable="false | true | inherit" (5.5)
 datafld="name of column supplying bound data" (4)
 dataformatas="html | text" (4)
 datasrc="id of data source object supplying data" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onbeforeupdate, oncontextmenu, onclick,
oncontrolselect, oncut, ondblclick, ondeactivate, ondragenter, ondragleave,
ondragover, ondrop, onerrorupdate, onfilterchange, onfocusin, onfocusout,
onhelp, onkeydown, onkeypress, onkeyup, onlosecapture, onmousedown,
onmouseenter, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselectstart

Element-Specific Attributes

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)
is made active. It takes an attribute value of autofocus when using the XML-style syntax
for XHTML5.

form This HTML5 attribute should be set to a string that corresponds to the id of the form
element that the button is associated with. This allows form elements in one form to trigger
actions in others.

formaction This HTML5 attribute specifies a URL to target when the button is clicked,
similar to the use of the action attribute on a form element.

formenctype Under HTML5 this attribute is set to the MIME type for how data should be
transmitted to the URL specified in the action attribute. Common values include

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 197 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 197
PART I

application/x-www-form-urlencoded (the default value when not specified),
multipart/formdata, and text/plain.

formmethod This HTML5 attribute indicates how form information should be transferred
to the server using a particular HTTP method. A get value in the attribute indicates that
form data should be appended to the URL specified by the action attribute creating a
query string. This approach is quite simple but imposes a size limitation that is difficult to
gauge (may be as low as 2 kilobytes or even ~300 characters in real situations). A value of
post for this attribute transfers the data of the form in the message body using the HTTP
POST method, which imposes no data size limitation. Browsers may allow for other HTTP
methods like delete or put, as suggested by the HTML5 specification, but so far such
usage is rare. The post value must be used when file attachments are used in a form.

formnovalidate This HTML5 Boolean attribute is used to indicate a form should not be
validated during submission. It is false by default but may be controlled either on the
button directly or on a containing or related form. Initially this was simply known as
novalidate.

formtarget This HTML5 attribute is set to the name of a window or frame that the button
action will target the result of action, similar to the target attribute on <a> and <form>
tags. Initially, this attribute was simply target in early drafts of HTML5.

name This attribute is used to define a name for the button so that it can be scripted by
older browsers or used to provide a name for submit buttons when a page has more than
one. The id attribute is preferred for scripting purposes.

type This attribute defines the action of the button. Possible values include button, reset,
and submit, which are used to indicate that the button is a plain button, form reset button,
or form submission button, respectively. The XHTML specification indicates submit is the
default, but browsers may not enforce this in practice.

value
This attribute defines the value that is sent to the server when the button is clicked. This
might be useful when using multiple submit buttons that perform different actions, to
indicate to the handling server-side program which button was clicked.

Examples
<button name="Submit"
 value="Submit"
 type="Submit">Submit Request</button>

<button type="button"
 onclick="doSomething();">Click This Button</button>

<button type="button">
</button>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 5+, Safari 1+

 198 P a r t I : C o r e M a r k u p 198 P a r t I : C o r e M a r k u p

Notes
• It is not appropriate to associate an image map with an tag that appears as

the content of a button element.

• HTML5 may eventually add new values to the type attribute. Already many new
type values have been proposed in different forums, such as add, remove, move-up,
and move-down. These may produce predefined button styles, including icons in
some user agents, but so far their inclusion is far from certain.

• The HTML 4.01 specification reserves the data-binding attributes datafld,
dataformatas, and datasrc for future use. Internet Explorer does support them.

• The default type of a <button> is submit under Internet Explorer 8’s standards
mode, and is button under IE 8’s compatibility mode.

• Under Internet Explorer 8, the value of a submitted button depends on the
compatibility mode of the browser. In IE 8 standards mode, the contents of the
attribute value is sent, as compared to IE 8 compatibility mode, where the
innerText value of the <button> tag used is sent.

<canvas> (Canvas for Drawing)
This element defines a region in the document to be used as a bitmap canvas where script
code can be used to render graphics interactively. It should be noted that the markup syntax
of this element is a relatively minor portion of what is required to effectively utilize the
drawing technology found within.

HTML5 Standard Syntax
<canvas
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 height="pixels"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text"
 width="pixels">

</canvas>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 199 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 199
PART I

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

API Reference
A brief overview of the canvas scripting API is provided in Tables 3-9 through 3-21. Selected
examples of use can be found in Chapter 2.

Example
<canvas id="canvas1" height="400" width="400">
 <p class="error">Canvas-Supporting Browser Required</p>
</canvas>
<script type="text/javascript">
 var canvas = document.getElementById("canvas1");
 var context = canvas.getContext("2d");
 /* draw simple figure of red and green squares */
 context.fillStyle = "rgb(255,0,0)";
 context.fillRect(0,0,100,100);
 context.fillStyle = "rgb(0,255,0)";
 context.fillRect(25,25,50,50);
</script>

TABLE 3-9 Primary canvas Methods and Properties

Name Description Example

getContext
(contextId)

Returns an object that exposes
the API necessary for accessing
the drawing functions. Currently,
the only contextId is '2d'.

var context = canvas
.getContext('2d');

toDataUrl([type]) Returns a data: URL of the
canvas image as a file of the
specified type or a PNG file by
default.

var dataurl = canvas
.toDataUrl();

height Height of the canvas element.
Default value is 150.

var canvas = document
.getElementById("canvas1");
canvas.height = 300;

width Width of the canvas element.
Default value is 300.

var canvas = document
.getElementById("canvas1");
canvas.width = 600;

 200 P a r t I : C o r e M a r k u p 200 P a r t I : C o r e M a r k u p

TABLE 3-10 CanvasGradient Methods

Name Description Example

addColorStop(offset,
color)

Adds a new stop to the gradient.
offset must be a number
between 0 and 1. color must
be a CSS color.

lg.addColorStop(0,
"#B03060");
lg.addColorStop(0.5,
"#4169E1");
lg.addColorStop(1,
"#FFE4E1");

TABLE 3-11 canvas State Preservation Methods

Name Description Example

restore() Retrieves the last state saved by the save()
function and resets settings to that state.

context.restore();

save() Adds the current state to the drawing state stack. context.save();

Name Description Example

rotate(angle) Adds a clockwise rotation specified
by angle transformation to the
transformation matrix.

context.rotate(Math
.PI/8);

scale(x, y) Adds the scaling transformation to the
transformation matrix. x and y define
how much to stretch on the x and y
axis respectively.

context.scale(2, 2);

setTransform (m11,
m12, m21, m22, dx,
dy)

Resets the transformation matrix
to the identity matrix and then calls
transform (m11, m12, m21,
m22, dx, dy).

context.setTransform
(1, 1, 1 ,0, 0, 0);

transform(m11, m12,
m21, m22, dx, dy)

Multiplies the current transformation
matrix by the matrix defined by:
m11 m21 dx
m12 m22 dy
0 0 1

var sin = Math
.sin(Math.PI/6);
var cos = Math
.cos(Math.PI/6);
context.transform(sin,
cos, -cos, sin, 0, 0);

translate(x, y) Adds the translation transformation to
the current transformation matrix. The
transformation moves the origin to the
location specified by (x, y).

context.translate
(100, 100);

TABLE 3-12 Primary canvas Transformation Methods

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 201 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 201
PART I

TABLE 3-13 canvas Compositing Properties

Name Description Example

globalAlpha The default alpha value for
all fills and strokes. Value
must be between 0 and 1.
The default is 1.0.

context.globalAlpha = .6;

globalCompositeOperation Sets how shapes and
images are written to the
canvas. See Table 3-14 for
the various options. A is the
object being written (source)
and B is the current canvas
drawing (destination). The
default is source-over.

context.
globalCompositeOperation
= "destination-over";

Compositing Operation Keyword Description

copy Displays only A.

destination-atop Displays B where A and B overlap. Displays A where they do not
overlap. Does not display B where they do not overlap.

destination-in Displays B only in the region that A and B overlap. No A is
displayed.

destination-out Displays B only in the region that A and B do not overlap. No A is
displayed.

destination-over Displays all of B and displays A where they do not overlap.

lighter In overlapping regions, displays the sum of A and B. In
nonoverlapping regions, A and B appear normally.

source-atop Displays A where A and B overlap. Displays B where they do not
overlap. Does not display A where they do not overlap.

source-in Displays A only in the region that A and B overlap. No B is
displayed.

source-out Displays A only in the region that A and B do not overlap. No B is
displayed.

source-over Displays all of A and displays B where they do not overlap.

xor In overlapping regions, nothing is displayed. In nonoverlapping
regions, A and B appear normally.

TABLE 3-14 canvas Compositing Options

 202 P a r t I : C o r e M a r k u p 202 P a r t I : C o r e M a r k u p

TABLE 3-15 canvas Color and Style Properties and Methods

Name Description Example

createLinearGradient
(x0, y0, x1, y1)

Creates a new
CanvasGradient object with
the start point (x0,y0) and the
end point (x1,y1).

var lg = context
.createLinearGradient
(0, 0, 300, 200);

createPattern
(image, repetition)

Creates a CanvasPattern that
can be used as a fillStyle
or strokeStyle. The pattern
starts with the specified image
and then repeats according
to repetition. Options are
repeat, repeat-x, repeat-y,
and no-repeat.

pattern = context
.createPattern(img,
"repeat");
context.fillStyle =
pattern;

createRadialGradient
(x0, y0, r0, x1,
y1, r1)

Creates a RadialGradient
with the start circle at origin
(x0,y0) with radius r0 and the
end circle at origin (x1,y1) with
radius r1.

var rg = context
.createRadialGradient
(105,105,40,112,120,70);

fillStyle The color or style applied on
an invocation of fill(). The
value can be a CSS color, a
CanvasGradient as created
by createRadialGradient()
and
createLinearGradient(), or
a CanvasPattern as created
by createPattern(). The
default fill style is black.

context.fillStyle =
"rgb(166,42,42)";

strokeStyle The color or style applied on the
invocation of stroke(). The
value can be a CSS color value,
a CanvasGradient as created
by createRadialGradient()
and
createLinearGradient(), or
a CanvasPattern as created
by createPattern(). The
default stroke style is black.

context.strokeStyle =
"rgba(218, 112, 214,
0.4)";

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 203 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 203
PART I

TABLE 3-16 canvas Line Properties

Name Description Example

lineCap Sets the type of endings that are put on lines. The
choices are butt, round, and square. A value
of butt indicates that there is a flat edge at the
end of the specified line. A value of round adds
a semicircle with a diameter the width of the line
to the end of the line. A value of square adds a
rectangle with a width half of the line’s width and
a length equal to the line’s width at the end of the
line. The default is butt.

context.lineCap =
"round";

lineJoin Sets the type of corners that occur when two
lines meet. The choices are miter, bevel, and
round. On all joins, a filled triangle connecting the
two lines is connected. A value of bevel uses only
this filled triangle. A value of miter indicates that
in addition to the triangle, a second filled triangle
is created. The second triangle consists of a line
that connects the two lines as well as the two lines
themselves extended until they meet. A value of
round indicates that corners should be rounded
when lines meet. The arc has a diameter equal to
the width of the line. The default is miter.

context.lineJoin =
"round";

lineWidth Sets the width of the lines. The default value is 1. context.lineWidth = 5;

miterLimit Sets the max length that a line will be extended if
lineJoin is set to miter. If the length necessary
to join the lines is greater than the miterLimit,
the join will not occur. The default is 10.

context.miterLimit = 1;

Name Description Example

shadowBlur Sets the size of the blurring effect.
The default value is 0.

context.shadowBlur = 4;

shadowColor Sets the color of the shadow. The
default is transparent black.

context.shadowColor =
"rgba(255, 48, 48, 0.5)";

shadowOffsetX Sets the distance that the shadow will
be offset in the horizontal direction.
The default value is 0.

context.shadowOffsetX = 5;

shadowOffsetY Sets the distance that the shadow
will be offset in the vertical direction.
The default value is 0.

context.shadowOffsetY = -10;

TABLE 3-17 canvas Shadow Properties

 204 P a r t I : C o r e M a r k u p 204 P a r t I : C o r e M a r k u p

TABLE 3-18 canvas Rectangle Methods

Name Description Example

clearRect
(x, y, w, h)

Clears the pixels of the specified rectangle
with starting point (x,y) and width w and
height h.

context.fillRect
(100, 100, 100, 100);
context.clearRect(125,
125, 50, 50);

fillRect
(x, y, w, h)

Fills the rectangle defined by the starting
point (x,y) and the width w and height h.
Uses the fillStyle to determine how the
fill should appear.

context.fillRect
(100, 100, 100, 100);

strokeRect
(x, y, w, h)

Draws the outline for the rectangle defined
by the starting point (x,y) and the
width w and height h. Uses lineWidth,
lineCap, lineJoin, miterLimit, and
strokeStyle to determine how the stroke
should appear.

context.strokeRect
(50, 100, 200, 100);

Name Description Example

arc (x, y, radius,
startAngle, endAngle,
anticlockwise)

Draws an arc between two
points that has an origin set
to (x,y) and a radius set as
defined by radius. The start
point is defined as the point
on the arc where the angle is
startAngle, and the end
point is the point on the arc
where the angle is endAngle.
The actual arc is drawn along
the circumference between the
two points either clockwise or
counterclockwise depending on
the setting.

context.arc(115,120,5,0,
Math.PI*2,true);

arcTo (x1, y1, x2,
y2, radius)

Draws an arc with the radius
radius and that goes
between two points that are
determined by getting tangent
points on two lines. The first
line is drawn from the last
point in the subpath to (x1,
y1). The second line is drawn
from (x1, y1) to (x2, y2).

context.moveTo(80, 50);
context.arcTo(250, 50,
250, 250, 30);

TABLE 3-19 canvas Path API Methods

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 205 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 205
PART I

Name Description Example

beginPath() Sets the subpath list to 0. Any
paths set and undrawn at this
point will not be displayed.

context.beginPath();

bezierCurveTo
(cp1x, cp1y, cp2x,
cp2y, x, y)

Connects the last point in
the subpath to (x,y) using
(cp1x, cp1y) and (cp2x,
cp2y) as control points for a
cubic Bézier curve.

context.moveTo(50,50);
context.bezierCurveTo(65,
25, 85, 25, 100, 50);

clip() Creates a new clipping region
by intersecting the current
clipping region with the area
defined in the current path.

context
.arc(150,150,100,0,Math
.PI*2,true);
context.clip();

closePath() Closes the last subpath and
creates a new subpath that
has the previous subpath’s
last point as its first point.

context.closePath();

fill() Fills any open subpaths and
then closes them. Uses the
fillStyle to determine how
the fill should appear.

context.lineTo(100,100);
context.lineTo(0,200);
context.lineTo(100,300);
context.fill();

lineTo(x, y) Draws a line from the last point
in the subpath to the point
defined by (x, y).

context.lineTo(100,100);

moveTo(x, y) Creates a new subpath with
the point (x, y) added to it.

context.moveTo(150,50);

quadraticCurveTo
(cpx, cpy, x, y)

Connects the last point in
the subpath to (x,y) using
(cpx, cpy) as the control
point for a quadratic Bézier
curve.

context.moveTo(50,150);
context
.quadraticCurveTo(125,
225, 200, 150);

rect (x, y, w, h) Creates a new subpath
containing the rectangle
defined by starting point (x,
y) with width w and height h.

context.rect (50, 50, 100,
100);

stroke() Draws the strokes of the
current path and display based
on the settings specified
by lineWidth, lineCap,
lineJoin, miterLimit, and
strokeStyle.

context.moveTo(50, 250);
context.lineTo(0, 200);
context.lineTo(50, 150);
context.lineTo(0,100);
context.lineTo(50, 50);
context.stroke();

TABLE 3-19 canvas Path API Methods (continued)

 206 P a r t I : C o r e M a r k u p 206 P a r t I : C o r e M a r k u p

TABLE 3-20 canvas Text API Methods and Properties

Name Description Example

fillText(text, x,
y [, maxWidth])

Writes text at location
(x,y) and fills it according
to the fillStyle. The
text is written according
to the values set for
font, textAlign, and
textBaseline.

context.font = "30px
sans-serif";
context.fillStyle = "rgba
(0, 255, 0, .5)";
context.fillText("Canvas is
great!", 10, 40);

font Sets the font for a text
string. Must be in the same
format as CSS fonts. The
default is 10px sans-
serif.

context.font = "bold 20px
Courier New";

measureText(text) Returns a TextMetrics
object for the given text.
Currently, the only property
for that object is width.

context.font = "bold 20px
Verdana";
tm = context.measureText
("I love Canvas");
var width = tm.width;

strokeText(text,
x, y
[, maxWidth])

Writes text at location
(x,y) according to the
strokeStyle. The
text is written according
to the values set for
font, textAlign, and
textBaseline.

context.font = '30px
sans-serif';
context.strokeStyle = "orange";
context.strokeText('Canvas is
great!', 10, 40);

textAlign Sets the alignment of
a text string. The x, y
points specified will line
up according to the option
chosen. The options are
start, end, left, right,
and center. The default
value is start.

context.textAlign = "end";

textBaseline Sets the text baseline for
a text string. The options
are top, hanging,
middle, alphabetic,
ideographic, and
bottom. The default value
is alphabetic.

context.textBaseline =
"ideographic";

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 207 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 207
PART I

Compatibility

HTML5 Firefox 1.5+,
Opera 9+, Safari 2+

Notes
• When this element was initially introduced in 2004 by Apple, it caused some degree

of controversy in the Web community because developers assumed that it would
open the floodgates to vendor-specific extensions.

• Under some Safari implementations, the close </canvas> tag is not required or
understood.

TABLE 3-21 canvas ImageData API Methods and Properties

Name Description Example

createImageData(w, h)
createImageData
(imagedata)

Instantiates a new blank
ImageData object with the
width w and height h or with
the same dimensions as
imagedata.

context.createImageData
(100,200);

drawImage(image, dx, dy)
drawImage(image, dx, dy,
dw, dh)
drawImage(image, sx, sy,
sw, sh, dx, dy, dw, dh)

Draws an image specified by
image onto the canvas. The
image is placed at (dx,dy).
If dw and dh are specified, the
image will have that width and
height, respectively. In the last
case, the section of the image
to be placed on the canvas
is specified by the rectangle
defined by sx, sy, sw, and sh.

context.drawImage
(img,200,75,100,100,50,
50,300,300);
context.drawImage
(img,0,0,400,400);

getImageData (sx, sy,
sw, sh)

Returns an ImageData object
that contains the pixel data
for the rectangle that starts at
(sx, sy) with a width sw and
height sh.

var img = context
.getImageData(0, 0,
100, 100);

putImageData(imagedata,
dx, dy[, dirtyX,
dirtyY, dirtyWidth,
dirtyHeight])

Writes the specified ImageData
to the canvas.

context.putImageData
(img, 75, 75);

data Represents the pixels in the
image.

alert(img.data.length);

height Height of the image in pixels. alert(img.height);

width Width of the image in pixels. alert(img.width);

 208 P a r t I : C o r e M a r k u p 208 P a r t I : C o r e M a r k u p

• User agents that do not understand <canvas> should render the contents of the
element instead.

• It is possible to simulate the <canvas> tag under Internet Explorer using one of
numerous libraries such as Google’s ExplorerCanvas (http://excanvas.sourceforge
.net/). Such libraries rely on the use of IE’s proprietary VML (Vector Markup
Language) technology and are likely going to operate slowly given the required
translation as compared to a native <canvas> implementation.

• Chapter 2 has a discussion of <canvas> and its use with JavaScript.

<caption> (Table Caption)
This element is used within the table element to define a caption.

Standard Syntax
<caption
 align="bottom | left | right | top" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</caption>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)
 valign="bottom | top" (4)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 209 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 209
PART I

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute specifies the alignment of the caption. HTML 4 defines bottom, left,
right, and top as legal values. Internet Explorer also supports center. Because this
attribute does not provide the possibility to combine vertical and horizontal alignments,
Microsoft has introduced the valign attribute for the caption element.

valign This Internet Explorer–specific attribute specifies whether the table caption appears
at the top or bottom. The default is top.

Example
<table border="1">
 <caption align="top">Our High-Priced Menu</caption>
 <tr>
 <td>Escargot</td>
 <td>Filet Mignon</td>
 <td>Big Mac</td>
 </tr>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 4+,
Netscape 3+, Opera 4+, Safari 1+

 210 P a r t I : C o r e M a r k u p 210 P a r t I : C o r e M a r k u p

Notes
• There should be only one caption per table.

• HTML 3.2 defines only the align attribute with values of bottom and top. No
other attributes are defined prior to HTML 4.

<center> (Center Alignment)
This element causes the enclosed content to be centered within the margins currently in
effect. Margins are either the default page margins or those imposed by overriding elements
such as tables. The element is considered deprecated or obsolete, and CSS properties such as
text-align and margin should be used instead.

Standard Syntax (Transitional Only)
<center
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</center>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 211 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 211
PART I

Examples
<center>This is in the center of the page.</center>

<center>
 <p>Larry</p>
 <p>Curly</p>
 <p>Moe</p>
</center>

Compatibility

HTML 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• The center element defined by the W3C is a shorthand notation for <div

align="center">. The content model for this element is odd, as the <center> tag
is often found enclosing large sections of content or fragments. Typically, it has been
noted that page authors who tend to use the element don’t care about the content
model and use tags out of context freely.

• The strict versions of HTML and XHTML do not include the center element, but it
is easily imitated with the text-align CSS property.

• HTML5 defines the center element as obsolete.

• HTML 3.2 does not support any attributes for this element.

<cite> (Citation)
This element indicates a citation from a book or other published source and usually is
rendered in italics by a browser.

Standard Syntax
<cite
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</cite>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"

 212 P a r t I : C o r e M a r k u p 212 P a r t I : C o r e M a r k u p

 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Example
<p>This example is taken from <cite>HTML & CSS: The Complete
Reference</cite> a book by Thomas Powell.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 213 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 213
PART I

Note
• HTML 2 and 3.2 do not indicate any attributes for this element.

<code> (Code Listing)
This element indicates that the enclosed text is source code in a programming language.
Usually it is rendered in a monospaced font.

Standard Syntax
<code
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</code>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,

 214 P a r t I : C o r e M a r k u p 214 P a r t I : C o r e M a r k u p

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Example
<p>To increment a variable <var>count</var>, use
<code> count++ </code> or <code> count = count + 1 </code>.</p>

Compatibility

HTML 2, 3.2, 4, 4.01,5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• This element is best used for short code fragments because it does not preserve

white space.

• HTML 2.0 and 3.2 do not support any attributes for this element.

• Internet Explorer documentation does not list accesskey or tabindex for this
element. This is likely an oversight, as it is found on nearly all other elements in the
IE object model.

<col> (Table Column)
This element defines a column within a table and is used for grouping and alignment
purposes. It is always found within a colgroup element.

Standard Syntax
<col
 align="center | char | justify | left | right"
 char="character"
 charoff="number"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 span="number"
 style="style information"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 215 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 215
PART I

 title="advisory text"
 valign="baseline | bottom | middle | top"
 width="column width specification">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 bgcolor="color name | #RRGGBB" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Event Defined by Internet Explorer
onreadystatechange

Element-Specific Attributes

bgcolor This Internet Explorer–specific attribute sets the background color for the column.
Its value can be either a browser-dependent named color or a color specified using the
hexadecimal #RRGGBB format.

char This attribute is used to set the character on which the cells in a column should be
aligned. A typical value for this is a period (.) for aligning numbers or monetary values.

 216 P a r t I : C o r e M a r k u p 216 P a r t I : C o r e M a r k u p

charoff This attribute is used to indicate the number of characters by which the column
data should be offset from the alignment characters specified by the char value.

span When present, this attribute applies the attributes of the col element to additional
consecutive columns.

valign This attribute specifies the vertical alignment of the text within the cell. Possible
values for this attribute are baseline, bottom, middle, and top.

width This attribute specifies a default width for each column in the current column group.
In addition to the standard pixel and percentage values, this attribute might take the special
form 0*, which means that the width of each column in the group should be the minimum
width necessary to hold the column’s contents. Relative widths, such as 0.5*, also can be
used.

Example
<table border="1" width="400">
<colgroup>
 <col align="center" width="150" />
 <col align="right" />
</colgroup>
 <td>This column is aligned to the center.</td>
 <td>This one is aligned to the right.</td>
</td>
<tr><td>!</td><td>?</td></tr>

<tr><td>!</td><td>?</td></tr>
</table>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 7+, Safari 1+

Notes
• Under XHTML 1.0 and XHTML5, <col> requires a trailing slash: <col />.

• This element should appear within a colgroup element, and, like that element, it is
somewhat of a convenience feature used to set attributes with one or more table
columns. In practice, few developers seem to use it.

<colgroup> (Table Column Group)
This element creates an explicit group of table columns containing col elements to provide
for table column-level scripting or formatting.

Standard Syntax
<colgroup
 align="center | char | justify | left | right"
 char="character"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 217 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 217
PART I

 charoff="number"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 span="number"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top"
 width="column width specification">

 col elements only

</colgroup>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer

 bgcolor="color name | #RRGGBB" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Event Defined by Internet Explorer
onreadystatechange

 218 P a r t I : C o r e M a r k u p 218 P a r t I : C o r e M a r k u p

Element-Specific Attributes

align This attribute specifies horizontal alignment of the contents of the cells in the column
group. The values of center, left, and right have obvious meanings. A value of justify
for the attribute attempts to justify all the column’s contents. A value of char attempts to
align the contents based on the value of the char attribute in conjunction with charoff.

bgcolor This Internet Explorer–specific attribute sets the background color for the columns
in the column group. Its value can be either a browser-dependent named color or a color
specified using the hexadecimal #RRGGBB format.

char This attribute is used to set the character on which the cells in a column should be
aligned. A typical value for this attribute is a period (.) for aligning numbers or monetary
values.

charoff This attribute is used to indicate the number of characters by which the column
data should be offset from the alignment characters specified by the char value.

span When present, this attribute specifies the default number of columns in this group.
Browsers should ignore this attribute if the current column group contains one or more
<col> tags. The default value of this attribute is 1.

valign This attribute specifies the vertical alignment of the contents of the cells within the
column group.

width This attribute specifies a default width for each column and its cells in the current
column group. In addition to the standard pixel and percentage values, this attribute can
take the special form 0*, which means that the width of each column in the group should be
the minimum width necessary to hold the column’s contents.

Examples
<colgroup span="2" align="char" char=":" valign="center">
 <col /><col /><col />
</colgroup>

<colgroup style="background-color: green;">
 <col align="left" />
 <col align="center" />
</colgroup>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 7+, Safari 1+

Notes
• Each column group defined by a <colgroup> tag can contain zero or more <col>

tags.

• Under XHTML 1.0, the closing </colgroup> tag is mandatory.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 219 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 219
PART I

<command> (Command)
This HTML5 element represents a command a user can invoke and is found within a menu
element. Commands may be simple actions or toggles among various states or options.

HTML5 Standard Syntax
<command
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 default="default"
 dir="ltr | rtl"
 disabled="disabled"
 draggable="true | false | auto"
 hidden="hidden"
 icon="URL for image to use with command"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 label="descriptive string for command"
 lang="language code"
 radiogroup="radiogroup name"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text describing command"
 type="checkbox | command | radio">

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<menu>
 <command label="Add" type="Command" icon="plus.png">
 <command label="Edit" type="Command" default>
 <command label="Delete" type="Command" disabled>
 <hr>
 <command label="Sort Ascending" type="radio" radiogroup="sort">
 <command label="Sort Descending" type="radio" radiogroup="sort">
</menu>

 220 P a r t I : C o r e M a r k u p 220 P a r t I : C o r e M a r k u p

Compatibility

HTML5 Not currently supported by any browser, but addressed with
a custom element combined with JavaScript.

Note
• This element is currently in extremely raw form and without implementations its

usage should be considered speculative.

<comment> (Comment Information)
This nonstandard Internet Explorer element treats enclosed text as comments. This element
should not be used.

Syntax Defined by Internet Explorer
<comment
 data="URL" (6)
 id="unique alphanumeric identifier" (4)
 lang="language code" (4)
 title="advisory text"> (4)

</comment>

Event Defined by Internet Explorer
onlayoutcomplete

Element-Specific Attribute

data This attribute references a URL that contains the comment information.

Example
<comment>This is not the proper way to form
comments!!!</comment>

Compatibility

No standards support Internet Explorer 4, 5, 5.5, 6

Notes
• It is better to use standard <!--. . .--> comment rather than this tag.

• Because the comment element is not supported by all browsers, commented text
done in this fashion will appear in other browsers.

<datalist> (List of Prefill Data)
This HTML5 element contains option elements that populate an input element with
type="list". These listed items would be considered the quick choices for the field, not
a limitation of what can be entered, which would be the functionality of a select menu.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 221 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 221
PART I

HTML5 Standard Syntax
<datalist
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

 option elements only

</datalist>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Datalist Test</title>
</head>
<body>
<form action="#" method="get">
 <p><label>Drinks: <input list="soda"></label></p>
 <datalist id="soda">
 <option>Coke</option>
 <option>Pepsi</option>
 <option>Dr. Pepper</option>

 222 P a r t I : C o r e M a r k u p 222 P a r t I : C o r e M a r k u p

 <option>Mr. Pibb</option>
 <option>Mt. Dew</option>
 <option>7-Up</option>
 </datalist>
</form>
</body>
</html>

Compatibility

HTML5 Opera 9.5+

Note
• This element could be simulated with other browsers using script, custom elements,

and careful use of CSS.

<dd> (Definition Description in a Definition List
or Content in Details or Figure)
This element indicates the definition of a term within a list of defined terms (<dt>) enclosed
by a definition list (<dl>). Under HTML5, the element is also found with details and
figure elements enclosing the content of the element.

Standard Syntax
<dd
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</dd>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 223 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 223
PART I

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 nowrap="no | yes" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

nowrap This Internet Explorer–specific attribute is used to control the wrapping of text
within a <dd> tag. If set to yes, text should not wrap. The default is no. CSS rules should be
used instead of this attribute.

Examples
<dl>
 <dt>DOG</dt>
 <dd>A domesticated animal that craves attention all the time</dd>
 <dt>CAT</dt>
 <dd>An animal that would just as soon ignore you until it
 gets hungry</dd>
</dl>

 224 P a r t I : C o r e M a r k u p 224 P a r t I : C o r e M a r k u p

<!-- HTML5 Example -->

<details>
<dt>Important Note</dt>
<dd>This tag seems to be reused too much under HTML5!<dd>
</details>

<figure>
<dt>Moose Baby!</dt>
<dd>

<p>A photo of Desmond circa 2010.</p>
</dd>
</figure>

Compatibility

HTML 2, 3.2, 4, 4.01,5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Under HTML specifications, including HTML5, the closing tag for this element is

optional, though using it is encouraged when it will help make the list more
understandable.

• Under XHTML 1.0, the closing </dd> tag is mandatory.

• This element occurs within a list of defined terms enclosed by a <dl> tag. Typically
associated with it is the term it defines, indicated by the <dt> tag that precedes it,
though it doesn’t have to match because there are not correspondence requirements
for definition lists.

• Under HTML5, this element has an overloaded meaning and may also be used to
enclose the content within <details> and <figure> tags.

• In early versions of HTML5, this element occurred within a <dialog> tag for
indication of dialog.

• HTML 2 and 3.2 define no attributes for this element.

 (Deleted Text)
This element is used to indicate that text has been deleted from a document. A browser
might render deleted text as strikethrough text.

Standard Syntax
<del
 cite="URL"
 class="class name(s)"
 datetime="date"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 225 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 225
PART I

 lang="language code"
 style="style information"
 title="advisory text">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onbeforeeditfocus, onblur, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, onfocus, onkeydown, onkeypress, onkeyup,
onreadystatechange, onselectstart, ontimeerror

 226 P a r t I : C o r e M a r k u p 226 P a r t I : C o r e M a r k u p

NOTE MSDN documentation for this element appears incorrect for event handlers. Not all core
events are listed, but during testing they all worked. Other extended events like onbeforecopy,
oncopy, oncontextmenu, and more were also verified as functional under Internet Explorer 8.

Element-Specific Attributes

cite The value of this attribute is a URL that designates a source document or message that
might explain why the information was deleted.

datetime This attribute is used to indicate the date and time the deletion was made. The value
of the attribute is a date in a special format as defined by ISO 8601. The basic date format is

YYYY-MM-DDThh:mm:ssTZD

where the following is true:

YYYY=four-digit year such as 1999
MM=two-digit month (01=January, 02=February, and so on.)
DD=two-digit day of the month (01 through 31)
hh=two-digit hour (00 to 23) (24-hour clock, not AM or PM)
mm=two-digit minute (00 through 59)
ss=two-digit second (00 through 59)
TZD=time zone designator

The time zone designator is either Z, which indicates Universal Time Coordinate or
coordinated universal time format (UTC), or +hh:mm, which indicates that the time is a local
time that is hh hours and mm minutes ahead of UTC. Alternatively, the format for the time
zone designator could be –hh:mm, which indicates that the local time is behind UTC. Note
that the letter T actually appears in the string, all digits must be used, and 00 values for
minutes and seconds might be required. An example value for the datetime attribute
might be 1999-10-6T09:15:00-05:00, which corresponds to October 6, 1999, 9:15 A.M.,
U.S. Eastern Standard Time.

Example
<p><del cite="http://www.democompany.com/changes/oct.html"
 datetime="2008-10-06T09:15:00-05:00">
The penalty clause applies to client lateness as well.
 <ins>No more penalties</ins></p>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 7+, Safari 1+

Notes
• Browsers can render deleted () text in a different style to show the changes

that have been made to the document. Internet Explorer renders the deleted text as
strikethrough text. Eventually, a browser could have a way to show a revision
history on a document.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 227 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 227
PART I

• User agents that do not understand or <ins> will show the information
anyway, so there is no harm in adding information—only in deleting it. Because of
the fact that -enclosed text might show up, it might be wise to comment it out
within the element, as shown here:

<!-- This is old information. -->

<details> (Additional Details)
This HTML5 element represents additional information or interactive elements that can be
shown on demand.

HTML5 Standard Syntax
<details
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 open="true | false"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

dt or dd elements and other content or controls

</details>

Element-Specific Attribute

open This Boolean attribute indicates whether details should be shown to the user. If not
they are not shown, and would likely be exposed via a script event.

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,

 228 P a r t I : C o r e M a r k u p 228 P a r t I : C o r e M a r k u p

onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<details onclick="this.open='open';">
 <dt>Help?</dt>
 <dd>
 <p>This could give you help with HTML5 but we need more implementations to
prove how things will work.</p>
 </dd>
</details>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

Notes
• This element may contain one dt element describing the caption of the detailed

content, and one dd element, which contains the content to show.

• In early drafts of HTML5 specification, the legend element was used instead of the
dt and dd elements added later.

<dfn> (Definition)
This inline logical element encloses the defining instance of a term. It usually is rendered as
bold or bold italic text.

Standard Syntax
<dfn
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</dfn>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 229 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 229
PART I

 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onselectstart

Example
<p>The <dfn>dfn</dfn> element is an element which is used to set off the
defining instance of a term. Now that's a self-contained example!</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 6+, Opera 4+, Safari 1+

 230 P a r t I : C o r e M a r k u p 230 P a r t I : C o r e M a r k u p

Notes
• HTML 2 and 3.2 defined no attributes for this element.

• HTML5 suggests that the section or content grouping nearest an occurrence of a dfn
element must contain the actual definition.

<dir> (Directory List)
This element encloses a list of brief, unordered items, such as might occur in a menu or
directory. It is deprecated or obsolete under most specifications.

Standard Syntax (Transitional Only—Deprecated)
<dir
 class="class name(s)"
 compact="compact"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

 li elements only

</dir>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 231 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 231
PART I

Element-Specific Attribute

compact This attribute reduces the white space between list items.

Example
<dir>
 Header Files
 Code Files
 Comment Files
</dir>

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Because the <dir> tag is supposed to be used with short lists, the items in the list

should have a maximum width of 20 characters. This is rarely if ever respected.

• The HTML and XHTML strict specifications do not support this element, and the
HTML5 specification has marked it as obsolete and suggests using a tag
instead.

• Most browsers will not render a <dir> tag any differently from the tag.

• HTML 2 and 3.2 define only the compact attribute.

• Most browsers will not render the compact list style.

• For XHTML transitional compatibility, the compact attribute must have a value:
<dir compact="compact">.

<div> (Division)
This element indicates a generic block of content that should be treated as a logical unit for
scripting or styling purposes.

Standard Syntax
<div
 align="center | justify | left | right" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</div>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"

 232 P a r t I : C o r e M a r k u p 232 P a r t I : C o r e M a r k u p

 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 datafld="name of column supplying bound data" (4)
 dataformatas="html | text" (4)
 datasrc="id of data source object supplying data" (4)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 nowrap="no | yes" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 233 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 233
PART I

Element-Specific Attribute

nowrap This Internet Explorer–specific attribute is used to control the wrapping of text
within a <div> tag. If set to yes, text should not wrap. The default is no. CSS rules should
be used instead of this attribute.

Examples
<div align="justify">
<!-- IE syntax -->
 All text within this division will be justified
</div>

<div class="special" id="div1" style="background-color: yellow;">
 Divs are useful for setting arbitrary style
</div>

<div class="container">
 <div class="wrapper">
 <div class="content"><p>I have divitis</p></div>
 </div>
</div>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• A <div> tag is a generic block tag and is very useful for binding scripts or styles to

an arbitrary section of a document. It complements , which is used inline.

• Excessive use of <div> tags is almost as bad as excessive use of tables, particularly
when structuring page content.

• The HTML 4 specification specifies that the datafld, dataformatas, and datasrc
attributes are reserved for <div> and might be supported in the future. They were
removed from XHTML, but Internet Explorer supports them for data binding.

• Under the HTML 4.01 strict specification, the align attribute is not supported.

• HTML 3.2 supports only the align attribute.

<dl> (Definition List)
This element encloses a list of terms and definitions. A common use for this element is to
implement a glossary.

Standard Syntax
<dl
 class="class name(s)"
 compact="compact" (transitional only)

 234 P a r t I : C o r e M a r k u p 234 P a r t I : C o r e M a r k u p

 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

 dt and dd elements only

</dl>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 235 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 235
PART I

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

compact This attribute reduces the white space between list items.

Examples
<dl>
 <dt>Cat</dt>
 <dd>A domestic animal that likes fish.</dd>
 <dt>Skunk</dt>
 <dd>A wild animal that needs deodorant.</dd>
</dl>

<!-- Terms definitions don't have to pair match -->
<dl>
 <dt>Cat</dt>
 <dt>Fritz</dt>
 <dt>Sylvester</dt>
 <dd>A domestic animal that likes fish.</dd>
 <dt>Skunk</dt>
 <dt>Pepe Le Pew</dt>
 <dd>A wild animal that needs deodorant.</dd>
 <dt>Tasmanian Devil</dt>
</dl>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• The items in the list comprise two parts: the term, indicated by the dt element, and

its definition, indicated by the dd element. However, there is no requirement to
match these elements, alternate them, or anything else, at least syntax-wise.

• Some page designers might use a <dl> tag or tag to create text indention.
Although this is a common practice on the Web, it is not advisable because it
confuses the meaning of the element by making it a physical layout device rather
than a list. A CSS property like margin or position should be used instead.

 236 P a r t I : C o r e M a r k u p 236 P a r t I : C o r e M a r k u p

• HTML 2 and 3.2 support only the compact attribute for this element.

• For XHTML compatibility, the compact attribute must be expanded:
<dl compact="compact"> under the transitional form. It is deprecated under the
strict specification. In practice, regardless of whether it is indicated, the compact
attribute generally has no effect.

<dt> (Term in a Definition List or Caption in Figure or Details)
This element identifies a definition list term in a list of terms and definitions. Under
HTML5, the element is also used within <details> and <figure> tags to represent a
caption for content.

Standard Syntax
<dt
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</dt>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 nowrap="true | false" (5.5)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 237 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 237
PART I

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

nowrap This Internet Explorer–specific attribute is used to control the wrapping of text
within a <dt> tag. If set to yes, text should not wrap. The default is no. CSS properties
should be used instead of this attribute.

Examples
<!-- Typical definition list usage -->
<dl>
 <dt>Vole</dt>
 <dd>Small creature related to the weasel</dd>
 <dt>Weasel</dt>
 <dd>Small creature related to the vole</dd>
</dl>

<!-- HTML5 examples -->

<details>
<dt>Important Notes</dt>
<dd>This tag seems to be reused too much under HTML5!<dd>
</details>

<figure>
<dt>Moose Baby!</dt>
<dd>

<p>A photo of Desmond circa 2010.</p>
</dd>
</figure>

 238 P a r t I : C o r e M a r k u p 238 P a r t I : C o r e M a r k u p

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Traditionally, this element occurs within a list of defined terms enclosed by a <dl>

tag. It is generally used in conjunction with a <dd> tag, which indicates its
definition. However, <dt> tags do not require a one-to-one correspondence with
<dd> tags.

• HTML5 overloads the meaning of this element so that it also serves as the caption of
content enclosed within <details> and <figure> tags.

• Under early drafts of HTML5,this element is also found within <dialog> tags and
defines the speakers of particular statements. When used within such tags, it must
be paired with <dd> tags in a one-to-one fashion. That syntax was eventually
dropped.

• The close tag for the element is optional under older versions of HTML as well as
HTML5, but including it is suggested, especially when it will make things clearer,
particularly with multiple-line definitions.

• Under XHTML 1.0, the closing </dt> tag is mandatory.

• HTML 2 and 3.2 support no attributes for this element.

 (Emphasis)
This inline element indicates emphasized text, which many browsers will display as italic text.

Standard Syntax
<em
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 239 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 239
PART I

 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example
<p>This is the important point to consider, not this other less
exciting point.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

 240 P a r t I : C o r e M a r k u p 240 P a r t I : C o r e M a r k u p

Notes
• As a logical element, em is a prime candidate to bind style information to. For

example, to define emphasis to mean a larger font size in the Impact font instead of
italics, you might use a CSS rule like the following in a document-wide style sheet:
em {font-size: larger; font-family: Impact; font-style: normal;}

• HTML 2 and 3.2 support no attributes for this element.

<embed> (Embedded Object)
This widely supported nonstandard element specifies an object, typically a multimedia
element, to be embedded in an HTML document. The syntax can be somewhat variable
given the plug-in–specific attributes found, so the reference covers those commonly found.

Proprietary Syntax (Commonly Supported)
<embed
 accesskey="key"
 align="absbottom | absmiddle | baseline | bottom |
 left | middle | right | texttop | top" (4)
 alt="alternative text"
 border="pixels"
 class="class name(s)"
 code="filename"
 codebase="URL"
 height="pixels"
 hspace="pixels"
 id="unique alphanumeric identifier" (4)
 language="javascript | jscript | vbs | vbscript | xml" (5.5)
 name="string"
 palette="background | foreground" (4)
 pluginspage="URL"
 src="URL"
 style="style information"
 title="advisory text"
 type="mime type"
 units="em | pixels"
 unselectable="on | off"
 vspace="pixels"
 width="pixels">

</embed>

Attributes Introduced by HTML5
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 241 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 241
PART I

 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate, onbeforepaste,
onblur, oncontextmenu, oncontrolselect, oncut, ondeactivate, onfocus,
onfocusin, onfocusout, onhelp, onload, onlosecapture, onmouseenter,
onmouseleave, onmousewheel, onmove, onmoveend, onmovestart, onpaste,
onpropertychange, onreadystatechange, onresize, onresizeend, onresizestart,
onscroll

Element-Specific Attributes

align This attribute controls the alignment of adjacent text with respect to the embedded
object. The default value is left.

alt This attribute indicates the text to be displayed if the embedded object cannot be
executed.

border This attribute specifies the size, in pixels, of the border around the embedded
object.

code This attribute specifies the name of the file containing the compiled Java class if the
embed element is used to include a Java applet. This is a strange alternative form of Java
inclusion documented by Microsoft.

codebase This specifies the base URL for the plug-in or potential applet in the case of the
alternative form under Internet Explorer.

name This attribute specifies a name for the embedded object, so that it can be referenced
by client-side programs in an embedded scripting language.

palette This attribute is used only on Windows systems to select the color palette used for
the plug-in and might be set to background or foreground. The default is background.

pluginspage This attribute contains the URL of instructions for installing the plug-in
required to render the embedded object.

 242 P a r t I : C o r e M a r k u p 242 P a r t I : C o r e M a r k u p

src This attribute specifies the URL of source content for the embedded object.

type This attribute specifies the MIME type of the embedded object. It is used by the
browser to determine an appropriate plug-in for rendering the object. It can be used instead
of the src attribute for plug-ins that have no content or that fetch it dynamically.

units This Netscape 4+–specific attribute is used to set the units for measurement for the
embedded object in pixels or as a relative em value.

vspace This attribute specifies, in pixels, the size of the top and bottom margins between
the embedded object and surrounding text.

Example
<!-- embed with a close tag -->
<embed src="testmovie.mov" height="150" width="150">
<noembed>

</noembed>
</embed>

Compatibility

No standard initially, but widely supported
HTML5

Firefox 1+, Internet Explorer 4+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• Historically, it has been unclear whether or not the close tag for <embed> is required.

Many sites tended not to use it, and documentation is not consistent. A close </embed>
tag should be required and should surround any alternative content in a noembed
element.

• This element was supposed to be phased out in favor of the object element, but so
far its usage seems to have diminished only slightly.

• The embed element is not favored by the W3C and was dropped by (X)HTML
specifications previous to HTML5.

• Embedded objects are multimedia content files of arbitrary type that are rendered by
browser plug-ins. The type attribute uses a file’s MIME type to determine an
appropriate browser plug-in. Any attributes not defined are treated as object-specific
parameters and are passed through to the embedded object. Consult the plug-in or
object documentation to determine these.

<fieldset> (Form Field Grouping)
This element allows form designers to group thematically related controls together. The
element usually contains a legend element, which labels the grouped form controls.

Standard Syntax
<fieldset
 class="class name(s)"
 dir="ltr | rtl"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 243 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 243
PART I

 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</fieldset>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 disabled="disabled"
 draggable="true | false | auto"
 form="id of related form"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="char" (5.5)
 align="center | left | right" (4)
 contenteditable="false | true | inherit" (5.5)
 datafld="name of column supplying bound data" (4)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 244 P a r t I : C o r e M a r k u p 244 P a r t I : C o r e M a r k u p

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example
<fieldset>
<legend>Customer Identification</legend>

<label>Customer Name:
<input type="text" id="CustName" size="25">
</label>
</fieldset>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 4+, Safari 1+

Notes
• Grouping controls makes it easier for users to understand the purposes of the

controls while simultaneously facilitating tabbing navigation for visual user agents
and speech navigation for speech-oriented user agents. The proper use of this
element makes documents more accessible to users with disabilities.

• The full set of data-binding attributes likely needs to be bound to this element but is
missing from MSDN documentation.

• The caption for a <fieldset> tag can be defined by the legend element. There
should only be a single legend element within the element.

<figure> (Figure)
This HTML5 element represents a group of content enclosed in a dd element, often with a
caption defined by a dt element, that can be moved away from the main flow of the
document. The way in which this element is implemented is similar to how the figures in
this book are presented—not necessarily directly adjacent to the text discussing them.

HTML5 Standard Syntax
<figure
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 245 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 245
PART I

 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</figure>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Figure It Out</title>
</head>
<body>
 <header><h1>Welcome to the Example</h1></header>
 <p>Yes it is another boring example. In this case we would like you
 to review Figure Ex-1</p>
 <p>More and more text is found until eventually the figure is
 located.</p>
 <figure>
 <dd>
 <img src="screensnap.png"
 alt="A screen capture of the Figure Element in action">
 <p>The mighty fig tag has returned from HTML 3 as figure to haunt
 your dreams.</p>
 </dd>
 <dt>Figure Ex-1</dt>
 </figure>

<p>Maybe some more content here.</p>
</body>
</html>

 246 P a r t I : C o r e M a r k u p 246 P a r t I : C o r e M a r k u p

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

Notes
• While this element is not yet supported, it is easily simulated by using a custom tag

or using a <div> tag with a special class.

• Early drafts of HTML5 suggested using a <legend> tag for captioning; later, the
<dt> and <dd> tags were introduced for containing figure caption and figure
content, respectively.

 (Font Definition)
This element allows specification of the size, color, and font of the text it encloses.

Standard Syntax (Transitional Only)
<font
 class="class name(s)"
 color="color name | #RRGGBB"
 dir="ltr | rtl"
 face="font name"
 id="unique alphanumeric identifier"
 lang="language code"
 size="1 to 7 | +1 to +6 | -1 to -6"
 style="style information"
 title="advisory text">

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off"(5.5)

Attributes Defined by Netscape
 point-size="point size for font" (4)
 weight="100 | 200 | 300 | 400 | 500
 600 | 700 | 800 | 900" (4)

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown,
onkeypress, onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart,
ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 247 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 247
PART I

Element-Specific Attributes

color This attribute sets the text color using either a browser-dependent named color or a
color specified in the hexadecimal #RRGGBB format.

face This attribute contains a list of one or more font names separated by commas. The
user agent looks through the specified font names and renders the text in the first font that
is supported.

point-size This Netscape 4–specific attribute specifies the point size of text and is used with
downloadable fonts. It is listed for historical purposes only and is easily mimicked using the
font-size CSS property.

size This attribute specifies the font size as either a numeric or relative value. Numeric
values range from 1 to 7, with 1 being the smallest and 3 the default. The relative values, +
and -, increment or decrement the font size relative to the current size. The value for
increment or decrement should range only from +1 to +6 or -1 to -6.

weight Under Netscape 4, this attribute specifies the weight of the font, with a value of 100
being lightest and 900 being heaviest. This is listed primarily for historical purposes; such
visual changes are best implemented using the font-weight CSS property.

Example
<p>
 Relatively large red text in Helvetica or Times.
</p>

Compatibility

HTML 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• Use of this element is not encouraged, as it is not part of strict HTML and XHTML

specifications. HTML5 defines this element as obsolete. CSS properties like
font-face, color, and font-size provide a richer way of providing the same
functionality as this element.

• Interestingly, the transitional specification for some reason does not define core
events for this element. In practice, they are supported by major browsers.

• The default text size for a document can be set using the size attribute of the
basefont element.

• The HTML 3.2 specification supports only the color and size attributes for this
element.

• HTML5 appears to define all the common attributes for this element, but does not
define those which are important to perform its stated task.

 248 P a r t I : C o r e M a r k u p 248 P a r t I : C o r e M a r k u p

<footer> (Footer)
This HTML5 element represents the footer section of a document or a section element it is
contained within. Like a typical document footer in print, it should contain supplementary
information about the related content.

HTML5 Standard Syntax
<footer
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</footer>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Document Footer</title>
</head>
<body>
 <header><h1>Welcome to the Example</h1></header>
 <p>Yes it is another boring example.</p>
 <footer><p>© 2010 Boring Examples, Inc.</p></footer>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 249 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 249
PART I

</body>
</html>

<!-- Simple section footer -->
<section>
 <header>
 <h1>Section Heading</h1>
 </header>
 <p>Section Body</p>
 <p>More Body</p>
<footer>
 <p>Boring Example © 2010</p>
</footer>
</section>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

Notes
• While this element is not yet supported, it is easily simulated by using a custom tag

or using a <div> tag with a special class.

• A footer element should be included in the HTML5 outlining process.

<form> (Form for User Input)
The element defines a fill-in form that can contain labels and form controls, such as menus
and text entry boxes that might be filled in by a user.

Standard Syntax
<form
 accept-charset="list of supported character sets"
 action="URL"
 class="class name(s)"
 dir="ltr | rtl"
 enctype="application/x-www-form-urlencoded |
 multipart/form-data | text/plain |
 Media Type as per RFC 2045"
 id="unique alphanumeric identifier"
 lang="language code"
 method="get | post"
 name="form's name for scripting"
 style="style information"
 target="_blank | frame name | _parent | _self |
 _top" (transitional only)
 title="advisory text">

</form>

 250 P a r t I : C o r e M a r k u p 250 P a r t I : C o r e M a r k u p

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 autocomplete="on | off"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 novalidate="novalidate"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 autocomplete="yes | no" (5.0)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onreset, onsubmit

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onreset
onresizeend, onresizestart, onselectstart, onsubmit, ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 251 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 251
PART I

Element-Specific Attributes

accept-charset This attribute specifies the list of character encodings for input data that
must be accepted by the server processing the form. The value is a space- or comma-
delimited list of character sets as defined in RFC 2045. The default value for this attribute is
the reserved value unknown.

action This attribute contains the URL of the server program that will process the contents
of the form. Some browsers also might support a mailto URL, which can mail the results to
the specified address. Otherwise, the delivery of the data in the form is defined by the
method attribute.

autocomplete This Microsoft proprietary attribute, introduced in Internet Explorer 5.0 and
redefined under HTML5, will automatically finish filling in information that the user has
previously input into an input field. Auto-filled information will likely be stored locally on
the end-user’s system by some program, typically the browser itself.

enctype This attribute indicates how form data should be encoded before being sent to the
server. The default is application/x-www-form-urlencoded. This encoding replaces
blank characters in the data with a plus character (+) and all other nonprinting characters
with a percent sign (%) followed by the character’s ASCII HEX representation. The
multipart/form-data option does not perform character conversion and transfers the
information as a compound MIME document. This must be used when using <input
type="file">. It also might be possible to use another encoding, such as text/plain
with a mailed form, but in general you should be cautious about changing the enctype.

method This attribute indicates how form information should be transferred to the server
using a particular HTTP method. A get value in the attribute indicates that form data
should be appended to the URL specified by the action attribute, thus creating a query
string. This approach is quite simple but imposes a size limitation that is difficult to gauge
(may be as low as 2 kilobytes in real situations). A value of post for this attribute transfers
the data of the form in the message body using the HTTP POST method which imposes no
data size limitation. Browsers may allow for other HTTP methods like delete or put as
suggested by the HTML5 specification, but so far such usage is rare. The POST method must
be used when file attachments are used in a form.

name This attribute specifies a name for the form and was traditionally used by JavaScript
or other client-side programming technologies to reference forms and their contained
elements. Since HTML 4, the core id attribute can be used instead with DOM methods such
as document.getElementById().

novalidate This HTML5 Boolean attribute determines whether or not form validation
should be applied on the elements within. By default, validation is enforced unless
overridden by this attribute on the form level or a formnovalidate attribute is found on a
form element.

target In documents containing frames, this attribute specifies the target frame that will
display the results of a form submission. In addition to named frames, several special
values exist. The _blank value indicates a new window. The _parent value indicates

 252 P a r t I : C o r e M a r k u p 252 P a r t I : C o r e M a r k u p

the parent frame set containing the source link. The _self value indicates the frame
containing the source link. The _top value indicates the full browser window. HTML5 may
allow for targeting of nonframed regions of the page.

Example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Form Test</title>
</head>
<body>
<form action="dosomething.php"
 method="post" name="testform" onsubmit="return validate();">
<div>
 <label>Username:
 <input type="text" name="username">
 </label>

 <label>Comments:
 <textarea name="comments" cols="30" rows="8"></textarea>
 </label>

 <input type="submit" value="send">
 <input type="reset" value="clear">
</div>
</form>
</body>
</html>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Form content is defined using the <button>, <input>, <select>, and <textarea>

tags, as well as other HTML formatting and structuring elements. However, they
may not contain other form elements.

• Special grouping elements, such as fieldset, label, and legend, are provided to
structure form fields, but more often tags like <div> and <table> are used to
improve form layout.

• HTML 2 and 3.2 support only the action, enctype, and method attributes for the
form element.

<frame> (Window Region)
This element defines a nameable window region, known as a frame, that can independently
display its own content.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 253 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 253
PART I

Standard Syntax
<frame
 class="class name(s)"
 frameborder="0 | 1"
 id="unique alphanumeric identifier"
 longdesc="URL of description"
 marginheight="pixels"
 marginwidth="pixels"
 name="frame name"
 noresize="noresize"
 scrolling="auto | no | yes"
 src="URL" of frame contents"
 style="style information"
 title="advisory text">

Attributes Defined by Internet Explorer
 allowtransparency="no | yes" (5.5)
 application="no | yes" (5)
 bordercolor="color name | #RRGGBB" (4)
 datafld="name of column supplying bound data" (4)
 datasrc="id of data source object supplying data" (4)
 frameborder="no | yes | 0 | 1" (4)
 height="pixels" (4)
 hidefocus="true | false" (5.5)
 lang="language code" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 security="restricted" (6)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)
 width="pixels" (4)

Events Commonly Supported
onblur, onclick, ondblclick, onfocus, onload

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforedeactivate, onbeforeupdate, onblur,
onclick, oncontrolselect, ondblclick, ondeactivate, onerrorupdate,
onfocus, onload, onmove, onmoveend, onmovestart, onresize, onresizeend,
onresizestart, onselectstart

Element-Specific Attributes

allowtransparency This Internet Explorer–specific attribute determines whether the contents
of the <frame> is transparent or opaque. The default value is false, which means it is
opaque.

application This Internet Explorer–specific attribute is used to indicate whether the content
of a <frame> is to be considered an HTML application (HTA). HTAs are applications that
use HTML, JavaScript, and Internet Explorer, but are not limited to the typical type of

 254 P a r t I : C o r e M a r k u p 254 P a r t I : C o r e M a r k u p

security considerations of a Web page. Given its security implications, this attribute should
only be set if the developer is familiar with HTAs.

bordercolor This attribute sets the color of the frame’s border using either a named color or
a color specified in the hexadecimal #RRGGBB format.

frameborder This attribute determines whether the frame is surrounded by an outlined
three-dimensional border. The HTML specification prefers the use of 1 for the frame border
on, and 0 for off; most browsers also acknowledge the use of no and yes.

longdesc This attribute specifies the URL of a document that contains a long description of
the frame’s content. This attribute should be used in conjunction with the title element.

marginheight This attribute sets the height, in pixels, between the frame’s content and its
top and bottom borders.

marginwidth This attribute sets the width, in pixels, between the frame’s content and its left
and right borders.

name This attribute assigns a name to the frame so that it can be the target destination of
hyperlinks as well as a possible candidate for manipulation via a script.

noresize This attribute overrides the default ability to resize frames and gives the frame a
fixed size.

scrolling This attribute determines whether the frame has scroll bars. A yes value forces
scroll bars, a no value prohibits them, and an auto value lets the browser decide. When not
specified, the default value of auto is used. Authors are recommended to leave the value as
auto. If you turn off scrolling and the contents end up being too large for the frame (due to
rendering differences, window size, and so forth), the user will not be able to scroll to see
the rest of the contents. If you turn scrolling on and the contents all fit in the frame, the
scroll bars will needlessly consume screen space. With the auto value, scroll bars appear
only when needed.

security This attribute sets the value indicating whether the source file of a frame has
security restrictions applied. The only allowed value is restricted.

src This attribute contains the URL of the contents to be displayed in the frame. If it is
absent, nothing will be loaded in the frame.

Example
<frameset rows="20%,80%">
 <frame src="controls.html" name="controls" noresize scrolling="no">
 <frame src="content.html" name="body">
 <noframes>
 <p>Error: No frame support</p>
 </noframes>
</frameset>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 255 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 255
PART I

Compatibility

HTML 4, 4.01
XHTML 1.0 (frameset DTD only)

Firefox 1+, Internet Explorer 2+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• XHTML 1.0 requires a trailing slash for this element: <frame />.

• A frame must be declared as part of a frame set, as set by using the <frameset> tag,
which specifies the frame’s relationship to other frames on a page. A frame set
occurs in a special HTML document, in which the frameset element replaces the
body element. Another form of frames called independent frames, or floating frames,
also is supported. Floating frames can be directly embedded in a document without
belonging to a frame set. These are defined with the iframe element.

• Many browsers do not support frames and require the use of the <noframes> tag.

• Frames introduce potential navigation difficulties; their use should be limited to
instances in which they can be shown to help navigation rather than hinder it.

• HTML5 currently does not include support for frames beyond <iframe> tags, but
even if the specification continues to avoid them, developers undoubtedly will
continue to use them.

<frameset> (Frameset Definition)
This element is used to define the organization of a set of independent window regions,
known as frames, as defined by the frame element. This element replaces the body element
in framing documents.

Standard Syntax
<frameset
 class="class name(s)"
 cols="list of columns"
 id="unique alphanumeric identifier"
 rows="list of rows"
 style="style information"
 title="advisory text">

</frameset>

Attributes Defined by Internet Explorer
 border="pixels" (4)
 bordercolor="color name | #RRGGBB" (4)
 frameborder="no | yes | 0 | 1" (4)
 framespacing="pixels" (4)
 lang="language code" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 hidefocus="true | false" (5.5)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

 256 P a r t I : C o r e M a r k u p 256 P a r t I : C o r e M a r k u p

Standard Events
onload, onunload

Events Defined by Internet Explorer
onactivate, onafterprint, onbeforedeactivate, onbeforeprint, onbeforeunload,
onblur, oncontrolselect, ondeactivate, onfocus, onload, onmove, onmoveend,
onmovestart, onresizeend, onresizestart, onunload

Element-Specific Attributes

border This attribute sets the width, in pixels, of frame borders within the frame set.
Setting the value to 0 eliminates all frame borders. This attribute is not defined in the HTML
or XHTML specification but is widely supported.

bordercolor This attribute sets the color for frame borders within the frame set using either
a named color or a color specified in the hexadecimal #RRGGBB format.

cols This attribute contains a comma-delimited list that specifies the number and size of
columns contained within a set of frames. List items indicate columns from left to right.
Column size is specified in three formats, which might be mixed. A column can be assigned
a fixed width, in pixels. It also can be assigned a percentage of the available width, such as
50 percent. Finally, a column can be set to expand to fill the available space by setting the
value to *, which acts as a wildcard.

frameborder This attribute controls whether or not frame borders should be displayed.
Netscape supports no and yes values. Microsoft uses 1 and 0 as well as no and yes.

framespacing This attribute indicates the space between frames, in pixels.

rows This attribute contains a comma-delimited list that specifies the number and size of
rows contained within a set of frames. The number of entries in the list indicates the number
of rows. Row size is specified with the same formats used for columns.

Examples
<!-- This example defines a frame set of three columns. The middle column
is 50 pixels wide. The first and last columns fill the remaining space.
-->

<frameset cols="*,50,*">
 <frame src="column1.html">
 <frame src="column2.html">
 <frame src="column3.html">
</frameset>

<!-- This example defines a frame set of two columns, one of which is 20%
of the screen, and the other, 80%. -->

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 257 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 257
PART I

<frameset cols="20%, 80%">
 <frame src="controls.html" name="controls">
 <frame src="display.html" name="body">
 <noframes>
 <p>Error: No frame support</p>
 </noframes>
</frameset>

<!-- This example defines two rows, one of which is 10% of the screen,
and the other, whatever space is left. -->

<frameset rows="10%, *">
 <frame src="adbanner.html" name="ad_frame">
 <frame src="contents.html" name="content_frame">
</frameset>

Compatibility

HTML 4 and 4.01 (frameset DTD)
XHTML 1.0 (frameset DTD)

Firefox 1+, Internet Explorer 3+,
Netscape 2+,
Opera 4+, Safari 1+

Notes
• The content model says that the <frameset> tag contains one or more <frame>

tags, which are used to indicate the framed contents. A <frameset> tag also might
contain a <noframes> tag, whose contents will be displayed by browsers that do
not support frames.

• HTML5 currently does include support for frames beyond the inline frame defined
by an <iframe> tag.

• The <frameset> tag replaces the <body> tag in a framing document, as shown
here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Frame Demo</title>
</head>
<frameset cols="*,50,*">
 <frame src="column1.html" name="col1" />
 <frame src="column2.html" name="col2" />
 <frame src="column3.html" name="col3" />
<noframes>
 <body>
 <p>Please visit our no frames site.</p>
 </body>
</noframes>
</frameset>
</html>

 258 P a r t I : C o r e M a r k u p 258 P a r t I : C o r e M a r k u p

<h1> through <h6> (Headings)
These logical block tags implement six levels of document headings; <h1> is the most
prominent and <h6> is the least prominent.

Standard Syntax
<h1
 align="center | justify | left | right"
 (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</h1>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 data-X="user-defined data"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 259 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 259
PART I

onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<h1 align="justify">This is a Major Document Heading</h1>
<h2 align="center=">Second heading, aligned to the center</h2>
<h3 align="right">Third heading, aligned to the right</h3>
<h4>Fourth heading</h4>
<h5 style="font-size: 20px;">Fifth heading with style information</h5>
<h6>The least important heading</h6>

<!-- HTML5 example -->
<section>
 <header>
 <h1>Section Heading</h1>
 <h2>Section Sub-head</h2>
 </header>
 <p>Section body</p>
</section>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• In most implementations, heading numbers correspond inversely with the six font

sizes supported by the font element. For example, <h1> corresponds to <font
size="6">. The default font size is 3. However, this approach to layout is not
encouraged, and page designers should consider using styles to set even relative
sizes. Interestingly, the HTML5 specification also clearly indicates the font size of
various headings like h1 (2em), h2 (1.5em), and so on, which is really not any
different from the relative nature of older tags.

• HTML 3.2 supports only the align attribute. HTML 2 does not support any
attributes for headings.

 260 P a r t I : C o r e M a r k u p 260 P a r t I : C o r e M a r k u p

• The strict definitions of HTML 4 and XHTML do not include support for the align
attribute. Style sheet properties like text-align should be used instead.

• Under HTML5, these heading elements are used to form an outline of the document.

<head> (Document Head)
This element indicates the document head, which contains descriptive information about
the HTML document as well as other supplementary information, such as style rules or
scripts.

Standard Syntax
<head
 dir="ltr | rtl"
 lang="language code"
 profile="URL">

 title, base, script, style, meta, link and object elements

</head>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 id="unique alphanumeric identifier"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 id="unique alphanumeric identifier"
 class="class name(s)"

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 261 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 261
PART I

Events Defined by Internet Explorer
onlayoutcomplete, onreadystatechange

Element-Specific Attribute

profile This attribute specifies a URL for a meta-information dictionary. The specified
profile should indicate the format of allowed metadata and its meaning.

Examples
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Demo Company Home Page</title>
<base href="http://www.democompany.com">
<meta name="Keywords" content="DemoCompany, SuperWidget">
</head>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head profile="http://www.democompany.com/metadict.xml">

Compatibility

HTML 2, 3.2, 4, 4.01, 5+
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Under the XHTML 1.0 specification, the head element no longer can be implied, but

rather must be used in all documents and must have a close tag. Under standard,
older HTML specifications as well as HTML5, the element is actually optional.

• Often, a <meta> tag specifying the character set in play should be found as the first
child of the head element, particularly if the document’s title element contains
special characters.

• The meaning of the profile attribute is somewhat unclear, and no browsers appear
to support it in any meaningful way.

• HTML 2 and 3.2 support no attributes for this element.

<header> (Header)
This HTML5 element represents the header section of a document or a section element it is
contained within. Like a typical document header in print, it should contain title and
heading information about the related content.

 262 P a r t I : C o r e M a r k u p 262 P a r t I : C o r e M a r k u p

HTML5 Standard Syntax
<header
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</header>

HTML5 Event Attributes
onabort, onbeforeunload, onblur, onchange, onclick, oncontextmenu,
ondblclick, ondrag, ondragend, ondragenter, ondragleave, ondragover,
ondragstart, ondrop, onerror, onfocus, onhashchange, onkeydown, onkeypress,
onkeyup, onload, onmessage, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onresize, onscroll, onselect,
onstorage, onsubmit, onunload

Examples
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Document Header</title>
</head>
<body>
 <header>
 <h1>Welcome to the Example</h1>
 <h2>The more exciting subheading</h2>
</header>
 <p>Yes it is yet another boring example.</p>
 <footer><p>© 2010 Boring Examples, Inc.</p></footer>
</body>
</html>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 263 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 263
PART I

<!-- Simple section header -->
<section>
 <header>
 <p>It was a dark and story night...</p>
 <h1>The Spooky Heading</h1>
 </header>
 <p>A fantastic story that is spooky would be found here.
If I weren't so busy writing HTML5 examples.</p>
<footer>
 <p><cite>HTML: The Complete Reference</cite> © 2010</p>
</footer>
</section>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

Notes
• Under HTML5, this element may be used for automatic document outlining.

• While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

<hgroup> (Header Group)
This HTML5 element represents a grouping of heading elements (h1-h6). It may be used to
cluster headings and subheadings together.

HTML5 Standard Syntax
<hgroup
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</hgroup>

 264 P a r t I : C o r e M a r k u p 264 P a r t I : C o r e M a r k u p

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>hgroup Example</title>
</head>
<body>
<header>
 <hgroup>
 <h1>Welcome to the Example</h1>
 <h2>Clearly the best example you've seen</h2>
 </hgroup>

<nav>

 Link
 Link
 Link
 Link

</nav>
</header>

 <hgroup>
 <h1>Section head</h1>
 <h2>A subhead</h2>
 </hgroup>

 <p>Ok here we go some content here.</p>
 <p>More content goes here and here.</p>

 <footer><p>© 2010 Boring Examples, Inc.</p></footer>
</body>
</html>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 265 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 265
PART I

Notes
• The hgroup element is used to control the HTML5 sectioning algorithm. Its primary

purpose is to collapse elements that would normally add outline entries into a
single entry. For example, when multiple headings (h1–h6) are used, they will
individually add items to the outline. By containing headings together in the
hgroup element, they form only a single entry in an outline. As demonstrated in the
preceding example, the need for this element is mostly to support subheadings.

• This element was added much later than many other HTML5 elements, and there is
some controversy over what it should be called.

• While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

<hr> (Horizontal Rule)
This element is used to insert a horizontal rule to visually or thematically separate
document sections. Rules usually are rendered as a raised or etched line.

Standard Syntax
<hr
 align="center | left | right" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"id="unique alphanumeric identifier"
 noshade="noshade " (transitional only)
 size="pixels" (transitional only)
 style="style information"
 title="advisory information"
 width="percentage | pixels"> (transitional only)

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 color="color name | #RRGGBB" (4)
 language="javascript | jscript | vbs | vbscript" (4)

 266 P a r t I : C o r e M a r k u p 266 P a r t I : C o r e M a r k u p

 hidefocus="true | false" (5.5)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

color This attribute sets the rule color using either a named color or a color specified in the
hexadecimal #RRGGBB format. This attribute currently is supported only by Internet
Explorer.

noshade This attribute causes the rule to be rendered as a solid bar without shading.

size This attribute indicates the height, in pixels, of the rule.

width This attribute indicates how wide the rule should be, specified either in pixels or as a
percent of screen width, such as 80%.

Examples
<!-- transitional rules -->
<hr align="left" noshade="noshade" size="1" width="420">
<hr align="center" width="100%" size="3" color="#000000" />

<!-- simple XHTML style -->
<hr />

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 267 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 267
PART I

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• The HTML 4.01 strict and HTML5 specifications remove support for the align,

noshade, size, and width attributes for horizontal rules. These effects are possible
using style sheets.

• As an empty element under XHTML or when using XML-style syntax for HTML5, a
trailing slash is required for this element: <hr />.

<html> (HTML Document)
This element identifies an HTML or XHTML document.

Standard Syntax
<html
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 xmlns="http://www.w3.org/1999/xhtml | some other name space">

</html>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 manifest="URL"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text"

Attributes Defined by Internet Explorer
 class="class name(s)" (4)
 scroll="yes | no | auto" (6)
 version="version info" (6)

 268 P a r t I : C o r e M a r k u p 268 P a r t I : C o r e M a r k u p

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

Element-Specific Attributes

manifest This HTML5 attribute is set to the document’s application cache manifest, which
is used to describe the various components the page relies upon. It is generally used to
support offline access.

scroll This attribute is used to set whether or not scroll bars should show for the
document. The default value of auto puts in scroll bars as needed. This attribute, while
documented by Microsoft, does not appear to work properly and should be avoided.

xmlns This attribute declares a namespace for XML-based custom tags in the document.
For XHTML, this value is always http://www.w3.org/1999/xhtml, though it could be
some other value in the case of some custom language or mixture of languages.

version This Internet Explorer 6–specific attribute was used to indicate the version of
HTML being used. It is no longer used because it is redundant of what is provided by the
<!DOCTYPE> statement.

Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>Minimal Document</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
</head>
<body>
<p>Hello world!</p>
</body>
</html>

Compatibility

HTML 2, 3.2, 4, 4.01,5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 269 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 269
PART I

Notes
• The html element is the first element in a document. Except for comments, the only

tags it directly contains are <head> followed by either <body> or <frameset>.

• Because it is the outermost tag in a document, the html element is called the root
element.

• The <html> tag and its closing tag </html> are both mandatory under XHTML.
Under other specifications, including HTML5, the element is actually optional
because it is implied unless a comment is found as the first item within the
document.

<i> (Italic)
This element indicates that the enclosed text should be displayed in an italic typeface.

Standard Syntax
<i
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</i>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

 270 P a r t I : C o r e M a r k u p 270 P a r t I : C o r e M a r k u p

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some <i>italicized</i> text.

This is also <i style="color:red;" id="myItalic">italic</i></p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

<iframe> (Inline Frame)
This element indicates a floating frame, an independently controllable content region that
can be embedded in a page, making it useful for including remote assets and gadgets.

Standard Syntax (Transitional and Frameset Only)
<iframe
 align="bottom | left | middle | right | top"
 class="class name(s)"
 dir="ltr | rtl"
 frameborder="1 | 0"
 height="percentage | pixels"
 id="unique alphanumeric identifier"
 lang="language code"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 271 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 271
PART I

 longdesc="URL of description"
 marginheight="pixels"
 marginwidth="pixels"
 name="string"
 scrolling="auto | no | yes"
 src="URL of frame contents"
 style="style information"
 title="advisory text"
 width="percentage | pixels">

</iframe>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 sandbox="comma-separated list of allow-same-origin | allow-forms |
 allow-scripts"
 seamless="seamless"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 allowtransparency="false | true" (5.5)
 application="yes" (5)
 border="pixels" (4)
 bordercolor="color name | #RRGGBB" (4)
 datafld="name of column supplying bound data" (4)
 datasrc="id of data source object supplying data" (4)
 frameborder="no | yes | 0 | 1" (4)
 hidefocus="true | false" (5.5)
 hspace="pixels" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 security="restricted" (6)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)
 vspace="pixels" (4)

Standard Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

 272 P a r t I : C o r e M a r k u p 272 P a r t I : C o r e M a r k u p

Events Defined by HTML5
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforedeactivate, onbeforeupdate, onblur,
oncontrolselect, ondeactivate, onerrorupdate, onfocus, onload, onmove,
onmoveend, onmovestart, onreadystatechange, onresizeend, onresizestart,
ontimeerror

Element-Specific Attributes

allowtransparency This Internet Explorer–specific attribute determines whether the content
of an <iframe> is transparent or opaque. The default value is false, which means it is
opaque.

application This Microsoft-specific attribute is used to indicate whether the contents of an
<iframe> are to be considered an HTML application (HTA). HTAs are applications that use
HTML, JavaScript, and Internet Explorer but are not limited to the typical type of security
considerations of a Web page. Given its security implications, this attribute should only be
set if the developer is familiar with HTAs.

border This attribute specifies the thickness of the border, in pixels.

bordercolor This attribute specifies the color of the border.

frameborder This attribute determines whether the iframe is surrounded by a border. The
HTML 4 specification defines 0 to be off and 1 to be on. The default value is 1. Internet
Explorer also defines the values no and yes.

framespacing This attribute creates additional space between the frames.

longdesc This attribute specifies the URL of a document that contains a long description of
the frame’s contents.

marginheight This attribute sets the height, in pixels, between the floating frame’s content
and its top and bottom borders.

marginwidth This attribute sets the width, in pixels, between the floating frame’s content
and its left and right borders.

name This attribute assigns a name to the floating frame so that it can be the target
destination of hyperlinks.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 273 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 273
PART I

sandbox This HTML5 attribute constrains the abilities of any iframed content. It may
contain a space-separated list of exceptions on included iframe content. Currently supported
values include allow-same-origin, allow-scripts, and allow-forms. By default, the
included content will be highly restricted, but each allow value will extend the sandbox to
allow the included content to talk to its origin domain (allow-same-origin), invoke
scripting (allow-scripts), or post forms (allow-forms).

scrolling This attribute determines whether the frame has scroll bars. A yes value forces
scroll bars; a no value prohibits them. The default value is auto, in which case scroll bars
appear only as needed.

seamless This HTML5 Boolean attribute is set to make the iframe be rendered in such a
way that it appears to be part of the primary browsing context.

security This attribute sets the value indicating whether the source file of an iframe has
security restrictions applied. The only allowed value is restricted.

src This attribute contains the URL of the content to be displayed in the floating frame. If
absent, the frame is blank.

Examples
<iframe src="http://www.democompany.com" height="150" width="200"
 name="FloatingFrame1">
Sorry, your browser doesn't support inline frames.
</iframe>

<!-- HTML5 example highly restricted -->
<iframe src="http://www.fakewebgadets.com/gadget" height="200" width="200"
 id="chat" sandbox>
</iframe>

<!-- HTML5 example less restricted -->
<iframe src="http://www.fakewebgadets.com/gadget2" height="200" width="200"
 id="weather" sandbox="allow-same-origin allow-scripts" seamless>
</iframe>

Compatibility

HTML 4 (transitional), 5
XHTML 1.0 (transitional or frameset)

Firefox 1+, Internet Explorer 3+,
Netscape 6+, Opera 5+, Safari 1+

Notes
• Under the HTML 4 strict specification, the iframe element is not defined. However,

under XHTML transitional and XHTML frameset, iframe is allowed. XHTML 1.1
does not allow it either. Floating frames can be imitated using the div element and
CSS positioning facilities.

• Iframes are useful for not only including content from within a site or beyond, but
also as a communication mechanism similar to Ajax.

 274 P a r t I : C o r e M a r k u p 274 P a r t I : C o r e M a r k u p

• HTML5 includes the iframe but does not include standard frames.

• When a browser does not understand an <iframe> tag, it displays the text included
within it as an alternate rendering.

<ilayer> (Inflow Layer)
This Netscape 4–specific element allows the definition of overlapping content layers that
can be positioned, hidden or shown, rendered transparent or opaque, reordered front to
back, and nested. An inflow layer is a layer with a relative position that appears where it
would naturally occur in the document, in contrast to a general layer, which might be
positioned absolutely, regardless of its location in a document. The functionality of layers is
available using CSS positioning, and page developers are advised not to use this element. It
is presented solely for historical purposes in support of existing pages.

Syntax (Netscape 4 Only)
<ilayer
 above="layer"
 background="URL of image"
 below="layer"
 bgcolor="color name | #RRGGBB"
 class="class name(s)"
 clip="x1, y1, x2, y2"
 height="percentage | pixels"
 id="unique alphanumeric identifier"
 left="pixels"
 name="string"
 pagex="pixels"
 pagey="pixels"
 src="URL of layer contents"
 style="style information"
 top="pixels"
 visibility="hide | inherit | show"
 width="percentage | pixels"
 z-index="number">

</ilayer>

Element-Specific Attributes

above This attribute contains the name of the layer to be rendered above the current layer.

background This attribute contains the URL of a background image for the layer.

below This attribute contains the name of the layer to be rendered below the current layer.

bgcolor This attribute specifies a layer’s background color. Its value can be either a named
color or a color specified in the hexadecimal #RRGGBB format.

clip This attribute specifies the clipping region or viewable area of the layer. All layer
content outside that rectangle will be rendered as transparent. The clip rectangle is defined

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 275 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 275
PART I

by two x,y pairs: top x, left y and bottom x, and right y. Coordinates are relative to the
layer’s origin point, 0,0, in its top-left corner.

height This attribute specifies the height of a layer, in pixels or as a percentage value.

left This attribute specifies, in pixels, the horizontal offset of the layer. The offset is relative
to its parent layer, if it has one, or to the left page margin if it does not.

name This attribute assigns to the layer a name that can be referenced by programs in a
client-side scripting language. The id attribute also can be used.

pagex This attribute specifies the horizontal position of the layer relative to the browser
window.

pagey This attribute specifies the vertical position of the layer relative to the browser
window.

src This attribute is used to set the URL of a file that contains the content to be loaded into
the layer.

top This attribute specifies, in pixels, the top offset of the layer. The offset is relative to its
parent layer, if it has one, or the top page margin if it does not.

visibility This attribute specifies whether a layer is hidden, shown, or inherits its visibility
from the layer that includes it.

width This attribute specifies a layer’s width, in pixels.

z-index This attribute specifies a layer’s stacking order relative to other layers. Position is
specified with positive integers, with 1 indicating the bottommost layer.

Example
<p>Content comes before.</p>
<ilayer name="background" bgcolor="green">
 <p>Layered information goes here.</p>
</ilayer>
<p>Content comes after.</p>

Compatibility

No standards support Netscape 4, 4.5–4.8

Note
• Page developers are strongly encouraged not to use this element but instead use

<div> tags with CSS relative positioning. Netscape dropped this element for
browser versions 6.0 and higher. Its inclusion in this book is for support of existing
documents only.

 276 P a r t I : C o r e M a r k u p 276 P a r t I : C o r e M a r k u p

 (Image)
This element indicates a media object to be included in an (X)HTML document. Usually, the
object is a bitmap graphic image, but some implementations support movies, vector
formats, and animations.

Standard Syntax
<img
 align="bottom | left | middle | right | top" (transitional only)
 alt="alternative text"
 border="pixels" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 height="pixels"
 hspace="pixels" (transitional only)
 id="unique alphanumeric identifier"
 ismap="ismap"
 lang="language code"
 longdesc="URL of description file"
 name="unique alphanumeric identifier"
 src="URL of image"
 style="style information"
 title="advisory text"
 usemap="URL of map file"
 vspace="pixels" (transitional only)
 width="pixels">

Other Common Attributes
 align="absbottom | absmiddle | baseline | texttop"
 lowsrc="URL of low-resolution image"
 tabindex="number"

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 datafld="name of column supplying bound data" (4)
 datasrc="id of data source object supplying data" (4)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 277 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 277
PART I

 dynsrc="URL of movie" (4)
 galleryimg="yes | no | true | false" (6)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 loop="infinite | number" (4)
 start="fileopen | mouseover" (5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onabort, onactivate, onafterupdate, onbeforeactivate, onbeforecopy,
onbeforecut, onbeforedeactivate, onbeforeeditfocus, onbeforepaste,
onbeforeupdate, onblur, onclick, oncontextmenu, oncontrolselect, oncopy,
oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, onerrorupdate, onfilterchange, onfocus,
onfocusin, onfocusout, onhelp, onload, onlosecapture, onmousedown,
onmouseenter, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselectstart,
ontimeerror

Element-Specific Attributes

align This attribute controls the horizontal alignment of the image with respect to the page.
The default value is left. Many browsers, such as Netscape and Internet Explorer
implementations, support the absbottom, absmiddle, baseline, and texttop values. This
attribute is deprecated under strict variants of (X)HTML as well as HTML5.

alt This attribute contains a string to be displayed instead of the image for browsers that
cannot display images.

border This attribute indicates the width, in pixels, of the border surrounding the image.
HTML5 suggests the element should not be used other than to set a value of 0, as CSS
should be used instead.

 278 P a r t I : C o r e M a r k u p 278 P a r t I : C o r e M a r k u p

dynsrc In the Microsoft implementation, this attribute indicates the URL of a movie file and
is used instead of the src attribute. Common formats used here are .avi (Audio-Visual
Interleaved), .mov (QuickTime), and .mpg and .mpeg (Motion Picture Experts Group). Be
careful, because support of this attribute beyond Internet Explorer 6 is suspect and security
settings may restrict it.

galleryimg This Microsoft attribute is used to control whether the gallery image menu should
appear when the mouse pointer hovers over an image. The default value is true or yes. A value
of no or false suppresses the menu. A meta tag like <meta http-equiv="imagetoolbar"
content="no"> can be used to suppress the image toolbar document-wide. This attribute is
rendered obsolete in later versions of Internet Explorer (7+).

ismap This attribute indicates that the image is a server-side image map. User mouse
actions over the image are sent to the server for processing.

longdesc This attribute specifies the URL of a document that contains a long description of
the image. This attribute is used as a complement to the alt attribute.

loop In the Microsoft implementation, this attribute is used with the dynsrc attribute to
cause a movie to loop. Its value is either a numeric loop count or the keyword infinite.
Later versions of Internet Explorer suggest using –1 to indicate infinite. Since it is related to
dynsrc, the use of to play movies does not work past Internet Explorer 6 unless
security settings are modified.

lowsrc This nonstandard attribute, supported in most browsers, contains the URL of an
image to be initially loaded. Typically, the lowsrc image is a low-resolution or black-and-
white image that provides a quick preview of the image to follow. Once the primary image
is loaded, it replaces the lowsrc image.

name This common attribute is used to bind a name to the image. Older browsers
understand the name field, and, in conjunction with scripting languages, it is possible to
manipulate images by their defined names to create effects such as “rollover” buttons.
Under modern versions of HTML and XHTML, the id attribute should be used as an
element identifier for scripting and style application. The name attribute can still be used for
backward compatibility.

src This attribute indicates the URL of an image file to be displayed. Most browsers will
display .gif, .jpeg, and .png files directly. Older formats like .bmp, .xpm (X Bitmap), and
.xpm (X Pixelmap) are also commonly supported, though their use is never recommended.
Some modern browsers may support .svg (Scalable Vector Graphics) files as well with the
img element.

start In the Microsoft implementation, this attribute is used with the dynsrc attribute to
indicate when a movie should play. The default value, if no value is specified, is to play the
video as soon as it has finished loading. This can be explicitly set with a value of fileopen.
Alternatively, a value of mouseover can be set to play the move once the user has moved
their mouse over the video. This, like other dynsrc features, may not work past Internet
Explorer 6 browsers because of security changes.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 279 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 279
PART I

usemap This attribute makes the image support client-side image mapping. Its argument is
a URL specifying the map file, which associates image regions with hyperlinks. The URL is
generally a fragment identifier that references a location in the current document rather
than a remote resource.

Examples

<img src="olivia.jpg" lowsrc="loading.jpg" border="0" height="50%"
 width="50%" alt="Picture of Olivia" longdesc="olivia-bio.html">

<img src="homebutton.png" width="50" height="20"
 alt="Link to Home Page" />

<!-- xhtml style syntax -->
<img src="hugeimagemap.gif" usemap="#mainmap" border="0" height="200"
 width="200" alt="Image Map Here" />

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Typically, when you use the usemap attribute, the URL is a fragment, such as

#map1, rather than a full URL. Some browsers do not support external client-side
map files. HTML5 makes this statement more strongly than in other specifications.

• Under the strict HTML and XHTML definitions, the tag does not support
align, border, height, hspace, vspace, and width. The functionality of these
attributes should be possible using style sheet rules.

• Whereas the HTML 4 specification reserves data-binding attributes such as datafld
or datasrc for many elements, they are not specified for ; however, Internet
Explorer provides support for these attributes.

• As an empty element under XHTML or when using XML-style syntax for HTML5,
a trailing slash is required for this element: .

• Under future versions of XHTML such as 2, may be dropped in favor of
<object>.

• It should be noted that some core attributes for HTML5, most noticably
spellcheck, make little sense within the meaning of this element.

<input> (Input Form Control)
This element specifies an input control for a form. The type of input is set by the type
attribute and can be a variety of different types, including single-line text field, password
field, hidden, check box, radio button, or push button. HTML5 extends the possibilities of
this form greatly and adds a number of features for browser-based validation without using
JavaScript.

 280 P a r t I : C o r e M a r k u p 280 P a r t I : C o r e M a r k u p

Standard Syntax
<input
 accept="MIME types"
 accesskey="character"
 align="bottom | left | middle | right | top" (transitional only)
 alt="text"
 checked="checked"
 class="class name(s)"
 dir="ltr | rtl"
 disabled="disabled"
 id="unique alphanumeric identifier"
 lang="language code"
 maxlength="maximum field size"
 name="field name"
 readonly="readonly"
 size="field size"
 src="URL of image file"
 style="style information"
 tabindex="number"
 title="advisory text"
 type="button | checkbox | file | hidden | image |
 password | radio | reset | submit | text"
 usemap="URL of map file"
 value="field value">

Attributes Introduced by HTML5
 autocomplete="on | off"
 autofocus="autofocus"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 form="id of related form element"
 formaction="URL of form action"
 formenctype="MIME type of form encoding"
 formmethod="get | post | put | delete"
 formnovalidate="true | false"
 formtarget="name of target frame, region, or window"
 height="pixels"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 list="id of datalist element to get suggestions from"
 max="maximum value (number)"
 min="minimum value (number)"
 multiple="true | false"
 pattern="validation pattern as regular expression"
 placeholder="placeholder text"
 required="required"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 281 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 281
PART I

 spellcheck="true | false"
 step="float"
 type= older type values from above| color | date | datetime |
 datetime-local | email | list | number | month | range |
 tel | time | url | search | week
 width="pixels"

Attributes Defined by Internet Explorer
 autocomplete="off | on" (5) (password, text types only)
 dynsrc="URL of movie" (3) (image type only)
 language="javascript | jscript | vbs | vbscript" (4)
 disabled="false | true" (4) (all types except for hidden)
 hidefocus="true | false" (5.5)
 height="pixels" (3) (image type only)
 hspace="pixels or percentage" (3)
 loop="number" (4) (image type only)
 lowsrc="URL of low-resolution image" (4) (image type only)
 unselectable="off | on" (5.5)
 vspace="pixels or percentage" (3) (image type only)
 width="pixels" (3) (image type only)

Standard Event Attributes
onchange, onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate (checkbox, hidden, password, radio, text),
onbeforeactivate (all types except hidden), onbeforecut (all types except hidden),
onbeforedeactivate, onbeforeeditfocus, onbeforepaste (all types except hidden),
onbeforeupdate (checkbox, hidden, password, radio, text), onblur (all types
except hidden), oncontextmenu (all types except hidden), oncontrolselect, oncut
(all types except hidden), ondeactivate, ondrag (all types except hidden), ondragend
(all types except hidden), ondragenter (all types except hidden), ondragleave (all
types except hidden), ondragover (all types except hidden), ondragstart (all types
except hidden), ondrop (all types except hidden), onerrorupdate (checkbox,
hidden, password, radio, text), onfilterchange (all types except hidden),
onfocus, onfocusin (all types except hidden), onfocusout (all types except hidden),
onhelp (all types except hidden), onlosecapture, onmouseenter (all types except
hidden), onmouseleave (all types except hidden), onmousewheel (all types except
hidden), onmove, onmoveend, onmovestart, onpaste (all types except hidden),

 282 P a r t I : C o r e M a r k u p 282 P a r t I : C o r e M a r k u p

onpropertychange, onreadystatechange, onresize (button, file, image,
password, reset, submit, text), onresizeend, onresizestart, onselectstart
(all types except hidden), ontimeerror

Element-Specific Attributes

accept This attribute is used to list the MIME types accepted for file uploads when using a
file upload control (<input type="file">).

align With image form controls (type="image"), this attribute aligns the image with
respect to surrounding text. The HTML 4.01 transitional specification defines bottom, left,
middle, right, and top as allowable values. Netscape and Microsoft browsers might also
allow the use of attribute values such as absbottom or absmiddle. Like other presentation-
specific aspects of HTML, the align attribute is dropped under the strict HTML 4.01
specification.

alt This attribute is used to display an alternative description of image buttons for text-
only browsers. The meaning of alt for forms of <input> beyond type="input" is not
defined.

autocomplete This Microsoft-specific attribute is used to indicate whether or not the form
field should be automatically filled in. The default value is no. HTML5 also supports this
attribute.

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)
is made active. It only takes an attribute value of autofocus when using the XML-style
syntax for HTML5. It is not defined for <input type="hidden">.

checked The checked attribute should be used only for check box (type="checkbox")
and radio (type="radio") form controls. The presence of this attribute indicates that the
control should be displayed in its checked state.

disabled This attribute is used to turn off a form control. Elements will not be submitted,
nor will they receive any focus from the keyboard or mouse. Disabled form controls will not
be part of the tabbing order. The browser also might gray out the form that is disabled, to
indicate to the user that the form control is inactive. This attribute requires no value.

dynsrc In the Microsoft implementation, this attribute indicates the URL of a movie file and
is used instead of the src attribute for <input type="image">.

form This HTML5 attribute should be set to a string that corresponds to the id of the form
element that an interactive control such as a button is associated with. This allows form
elements in one form to trigger actions in others.

formaction This HTML5 attribute specifies a URL to target when the button is clicked,
similar to the use of the action attribute on a form element.

formenctype This attribute indicates how form data should be encoded before being sent to
the server. The default is application/x-www-form-urlencoded. This encoding replaces

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 283 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 283
PART I

blank characters in the data with a plus character (+) and all other nonprinting characters
with a percent sign (%) followed by the character’s ASCII HEX representation. The
multipart/form-data option does not perform character conversion and transfers the
information as a compound MIME document. This must be used when using <input-
type="file">. It also might be possible to use another encoding, such as text/plain
with a mailed form, but in general you should be cautious about changing the enctype.

formmethod This HTML5 attribute indicates how form information should be transferred
to the server using a particular HTTP method. A get value in the attribute indicates that
form data should be appended to the URL specified by the action attribute thus creating a
query string. This approach is quite simple but imposes a size limitation that is difficult to
gauge (may be as low as 2 kilobytes in real situations). A value of post for this attribute
transfers the data of the form in the message body using the HTTP POST method, which
imposes no data size limitation. Browsers may allow for other HTTP methods like delete
or put, as suggested by the HTML5 specification, but so far such usage is rare. The POST
method must be used when file attachments are used in a form.

formnovalidate This HTML5 Boolean attribute is used to indicate a form should not be
validated during submission. It is false by default but may be controlled either on the
button directly or on a containing or related form. Initially this was simply known as
novalidate.

formtarget This HTML5 attribute is set to the name of a window or frame that the button
will target the result of action; in other words, where the result should appear. This action is
similar to the target attribute on <a> and <form> tags. Initially, this attribute was simply
target in early drafts of HTML5.

height Defined under HTML5, though commonly supported in older browsers, this
attribute is used to size an input element particularly when images are used as in <input
type="image">. CSS properties are preferred.

hspace This Internet Explorer–specific attribute indicates the horizontal space, in pixels,
between the image and surrounding text when using <input type="image">.

list The HTML5 list attribute is used to set the id of a datalist element used to
provide a predefined list of options suggested to the user for entry.

loop In the Microsoft implementation, this attribute is used with <input type="image">
and the dynsrc attribute to cause a movie to loop. Its value is either a numeric loop count
or the keyword infinite. Later versions of Internet Explorer suggest using –1 to indicate
infinite.

lowsrc This Microsoft-supported attribute contains the URL of an image to be initially
loaded when using <input type="image">. Typically, the lowsrc image is a low-
resolution or black-and-white image that provides a quick preview of the image to follow.
Once the primary image is loaded, it replaces the lowsrc image.

max This HTML5 attribute should be set to a numeric value that is the high range allowed
in the form control. The min attribute sets the low range.

 284 P a r t I : C o r e M a r k u p 284 P a r t I : C o r e M a r k u p

maxlength This attribute indicates the maximum content length that can be entered in a
text form control (type="text"). The maximum number of characters allowed differs from
the visible dimension of the form control, which is set with the size attribute.

min This HTML5 attribute should be set to a numeric value that is the low range allowed
in the form control. The max attribute sets the high range.

multiple This HTML5 Boolean attribute, when set to true, indicates that multiple values
are allowed for the field.

name This attribute allows a form control to be assigned a name to set as the name/value
pair value sent to the server. Traditionally, this value was also used for reference by a
scripting language, but using the id value is more appropriate. However, given that
browsers sometimes favor the older syntax, both may often be used and set to the same
value, with some limitations, particularly with radio buttons.

pattern This HTML5 attribute specifies a regular expression against which the field should
be validated. The title attribute should be provided when this attribute is used, to give an
indication of what is an acceptable pattern and what isn’t.

placeholder This HTML5 attribute specifies a short bit of text that is used to help the user
figure out what type of information to fill in for a form control. Likely, the text will be
placed in the field and cleared upon focus.

readonly This attribute prevents the form control’s value from being changed. Form
controls with this attribute set might receive focus from the user but not permit the user to
modify the value. Because it receives focus, a readonly form control will be part of the
form’s tabbing order. The control’s value will be sent on form submission. This attribute can
be used only with <input> when type is set to text or password. The attribute also is
used with the textarea element.

required The presence of this HTML5 Boolean attribute indicates that the form field must
be set in order for form submission to proceed. User agents that understand this should set
the CSS pseudo-class :invalid when the field goes into error.

size This attribute indicates the visible dimension, in characters, of a text form control
(type="text"). This differs from the maximum length of content, which can be entered in a
form control set by the maxlength attribute.

src This attribute is used with image form controls (type="image") to specify the URL of
the image file to load.

step This HTML5 attribute defines the step in which values can take; for example, by twos
(2, 4, 6…) or tens (10, 20, 30…). It is generally used in range controls.

tabindex This attribute takes a numeric value that indicates the position of the form control
in the tabbing index for the form. Tabbing proceeds from the lowest positive tabindex
value to the highest. Negative values for tabindex will leave the form control out of the
tabbing order. When tabbing is not explicitly set, the browser tabs through items in the

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 285 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 285
PART I

order they are encountered. Disabled form fields will not be part of the tabbing index,
although read-only controls will be.

type This attribute specifies the type of the form control. A value of button indicates a
general-purpose button with no well-defined meaning. However, an action can be
associated with the button by using an event handler attribute, such as onclick. A value of
checkbox indicates a check box control. Check box form controls have a checked and
unchecked setting, but even if these controls are grouped together, they allow a user to
select multiple check boxes simultaneously. In contrast, a value of radio indicates a radio
button control. When grouped, radio buttons allow only one of the many choices to be
selected at a given time.

A form control type of hidden indicates a field that is not visible to the viewer but is
used to store information. A hidden form control often is used to preserve state information
between pages.

A value of file for the type attribute indicates a control that allows the viewer to
upload a file to a server. The filename can be entered in a displayed field, or a user agent
might provide a special browse button that allows the user to locate the file. A value of
image indicates a graphic image form control that a user can click on to invoke an
associated action. (Most browsers allow the use of img-associated attributes such as height,
width, hspace, vspace, and alt when the type value is set to image.) A value of
password for the type attribute indicates a password entry field. A password field will not
display text entered as it is typed; it might instead show a series of dots. Note that
password-entered data is not transferred to the server in any secure fashion. A value of
reset for the type attribute is used to insert a button that resets all controls within a form
to their default values. A value of submit inserts a special submission button that, when
clicked, sends the contents of the form to the location indicated by the action attribute of
the enclosing <form> tag. Lastly, a value of text (the default) for the type attribute
indicates a single-line text input field.

HTML5 expands greatly on this attribute’s possible values, specifying search, url,
email, tel, datetime, date, month, week, time, datetime-local, number, range, and
color as well. Likely there will be others. Many of these ideas derived from the Web
Forms 2.0 specification, which Opera implements partially. WebKit also implements a select
number of these form field types. Likely other browsers will quickly follow suit.

usemap This HTML 4.0 attribute is used to indicate the map file to be associated with an
image when the form control is set with type="image". The value of the attribute should
be a URL of a map file but generally will be in the form of a URL fragment referencing a
map file within the current file.

value This attribute has two different uses, depending on the value for the type attribute.
With data-entry controls (type="text" and type="password"), this attribute is used to
set the default value for the control. When used with check box or radio button form
controls, this attribute specifies the return value for the control. If it is not set for these fields,
a default value of on will be submitted when the control is activated.

vspace This Internet Explorer–specific attribute indicates the vertical space, in pixels,
between the image and surrounding text when using <input type="image">.

 286 P a r t I : C o r e M a r k u p 286 P a r t I : C o r e M a r k u p

width This attribute, initially supported by many browsers such as Internet Explorer for
image buttons and now defined under HTML5, is used to set the size of the form control, in
pixels. This should be controlled with CSS instead.

Examples
<form action="#" method="get">
<fieldset>
<legend>Basics</legend>
<p>Enter your name: <input type="text" maxlength="35" size="20">

Enter your password: <input type="password" maxlength="35" size="20">
</p>
</fieldset>
<p><label>Which is your favorite food?</label>
 <input type="radio" name="favorite" value="Mexican">Mexican
 <input type="radio" name="favorite" value="Russian">Russian
 <input type="radio" name="favorite" value="Japanese">Japanese
 <input type="radio" checked name="favorite" value="Other">Other
</p>
<p>
 <input type="submit" value="Submit">
 <input type="reset" value="Reset">
</p>
</form>

<!-- HTML5 snippets -->
<p><label> Three Letter Acronyms:
 <input pattern="[A-Z]{3}" name="threeletter"
 title="Enter an upper case three letter combination."/>
</label></p>
<p><label>Name: <input type="text" name="fullname" placeholder="Thomas A.
Powell"></label></p>

<p><input type="range" name="slider"></p>
<p><input type="date" oninput="year.value = valueAsDate.getYear();">
<p>HTML5 finalized in the year <output output="year"> </output></p>

<p><label> Favorite Dog: <input list="dogs"></label></p>
 <datalist id="dogs">
 <option>Angus</option>
 <option>Tucker</option>
 <option>Cisco</option>
 <option>Sabrina</option>
 </datalist>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 287 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 287
PART I

Notes
• The HTML 2.0 and 3.2 specifications support only the align, checked, maxlength,

name, size, src, type, and value attributes for the input element.

• The HTML 4.01 specification also reserves the use of the datafld, dataformatas,
and datasrc data-binding attributes. They were not included in the XHTML
specification but are supported by Internet Explorer.

• Use of autocomplete may have security implications. Use with caution.

• Under the strict HTML and XHTML specifications, the align attribute is not
allowed.

• As an empty element under XHTML or when using XML-style syntax for HTML5,
a trailing slash is required for this element: <input />.

• Safari running on the iPhone extends this element with autocorrect and
autocapitalize attributes. Given the difficulty of filling in forms on small-factor
devices, it is likely there may be other proprietary changes that are device specific.

<ins> (Inserted Text)
This element is used to indicate that text has been added to the document. Inserted text is
generally styled with an underline.

Standard Syntax
<ins
 cite="URL"
 class="class name(s)"
 datetime="date"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</ins>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

 288 P a r t I : C o r e M a r k u p 288 P a r t I : C o r e M a r k u p

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable=" false | true | inherit " (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number"(5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, oncontrolselect,
ondeactivate, onfocus, onmove, onmoveend, onmovestart, onreadystatechange,
onresizeend, onresizestart, ontimeerror

NOTE MSDN documentation for this element appears incorrect for event handlers. Not all core
events are listed, but during testing they all worked. Other extended events like onbeforecopy,
oncopy, oncontextmenu, and more were also verified as functional under Internet Explorer 8.

Element-Specific Attributes

cite The value of this attribute is a URL that designates a source document or message for
the information inserted. This attribute is intended to point to information explaining why
the text was changed.

datetime This attribute is used to indicate the date and time the insertion was made. The
value of the attribute is a date in a special format as defined by ISO 8601. The basic date
format is

 yyyy-mm-ddthh:mm:ssTZD

where the following is true:

yyyy=four-digit year such as 2010
mm=two-digit month (01=January, 02=February, and so on)
dd=two-digit day of the month (01 through 31)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 289 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 289
PART I

hh=two-digit hour (00 to 23) (24-hour clock not AM or PM)
mm=two-digit minute (00 to 59)
ss=two-digit second (00 to 59)
tzd=time zone designator

The time zone designator is either Z, which indicates Universal Time Coordinate or
coordinated universal time format (UTC), or +hh:mm, which indicates that the time is a local
time that is hh hours and mm minutes ahead of UTC. Alternatively, the format for the time
zone designator could be –hh:mm, which indicates that the local time is behind UTC. Note
that the letter T actually appears in the string, all digits must be used, and 00 values for
minutes and seconds might be required. An example value for the datetime attribute
might be 2009-10-6T09:15:00-05:00, which corresponds to October 6, 2010, 9:15 A.M.,
U.S. Eastern Standard Time.

Example
<p>We have the lowest prices in the galaxy! <ins cite="http://www
.democompany.com/changes/jan10.html"
 date="2010-05-01T09:15:00-05:00">
New rates are effective in 2010.
</ins></p>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 4+, Safari 1+

Note
• Browsers can render inserted (<ins>) or deleted () text in a different style to

show the changes that have been made to the document. Typically, newly inserted
entries are underlined and deletions appear with strikethrough. In theory, a browser
could have a way to show a revision history on a document, but generally this is left
up to scripting or the environment the page is built in.

<isindex> (Index Prompt)
This element indicates that a document has an associated searchable keyword index. When
a browser encounters this element, it inserts a query entry field at that point in the
document. The viewer can enter query terms to perform a search. This element is
deprecated under the strict HTML and XHTML specifications and should not be used.

Standard Syntax (Transitional Only)
<isindex
 class="class name(s)"
 dir="ltr | rtl"
 href="URL" (nonstandard but common)
 id="unique alphanumeric identifier"
 lang="language code"
 prompt="string"
 style="style information"
 title="advisory text" />

 290 P a r t I : C o r e M a r k u p 290 P a r t I : C o r e M a r k u p

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 action="URL to send query" (3)
 contenteditable=" false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on| off" (5.5)

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, oncontrolselect,
ondeactivate, onfocus, onmove, onmoveend, onmovestart, onreadystatechange,
onresize, onresizeend, onresizestart

Element-Specific Attributes

action This attribute specifies the URL of the query action to be executed when the viewer
presses the ENTER key. Although this attribute is not defined under any HTML specification,
it is common to many browsers, particularly Internet Explorer 3, which defined it.

prompt This attribute allows a custom query prompt to be defined. The default prompt is
“This is a searchable index. Enter search keywords.”

Examples
<isindex action="cgi-bin/search.pl" prompt="Enter search terms">

<!-- very old HTML style syntax below -->
<base href="cgi-bin/search">
<isindex prompt="Enter search terms">

<isindex href="cgi-bin/search" prompt="Keywords:">

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 4+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• Originally, the W3C intended this element to be used in a document’s header.

Browser vendors have relaxed this usage to allow the element in a document’s body.
Early implementations did not support the action attribute and used a <base> tag
or an href attribute to specify a search function’s URL.

• As an empty element, <isindex> requires no closing tag under HTML specifications.
However, under the XHTML specification, a trailing slash <isindex /> is required.

• The HTML 3.2 specification only allows the prompt attribute, whereas HTML 2
expected a text description to accompany the search field.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 291 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 291
PART I

• Netscape 1.1 originated the use of the prompt attribute.

• This element is not found at all in newer specifications like HTML5.

<kbd> (Keyboard Input)
This inline element logically indicates text as keyboard input. A browser generally renders
text enclosed by this element in a monospaced font.

Standard Syntax
<kbd
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</kbd>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable=" false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

 292 P a r t I : C o r e M a r k u p 292 P a r t I : C o r e M a r k u p

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example
<p>On a Linux or Unix based system you can list files by typing
 <kbd>ls</kbd> at a command prompt.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Note
• The HTML 2 and 3.2 specifications support no attributes for this element.

<keygen> (Key Pair Generation)
This element is used to control the generation of key pairs in secured communications. On
form submission, the browser will generate a key pair and store the private key in the
browser’s private key storage and send the public key to the server.

HTML5 Standard Syntax
<keygen
 accesskey="spaced list of accelerator key(s)"
 autofocus="true | false"
 challenge="value for generating challenge"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 disabled="disabled"
 draggable="true | false | auto"
 form="id of enclosing form"
 hidden="hidden"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 293 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 293
PART I

 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 keytype="enumerated value for type of key (generally rsa)"
 lang="language code"
 name="field name"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</keygen>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>keygen Example</title>
</head>
<body>
<form method="post" action="makecert.php">
 <keygen name="RSA public key" challenge="123456789" keytype="RSA">
 <input type="submit" name="createcert" value="Generate">
</form>
</body>
</html>

Compatibility

HTML5 Browsers such as Netscape, Firefox, Safari, and Opera may have
partial support for this element.

Notes
• As an empty element when using XML-style syntax for HTML5, a trailing slash is

required for this element: <keygen />.

 294 P a r t I : C o r e M a r k u p 294 P a r t I : C o r e M a r k u p

• This element was initially introduced by Netscape and, although it has been poorly
documented, has been formalized for HTML5. There is strong indication that some
browser vendors like Microsoft may not support this element or support it only as a
dummy element.

<label> (Form Control Label)
This element is used to relate descriptions to form controls.

Standard Syntax
<label
 accesskey="key"
 class="class name(s)"
 dir="ltr | rtl"
 for="id of form field"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</label>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 contenteditable="false | true | inherit" (5.5)
 datafld="column name" (4)
 dataformatas="html | text" (4)
 datasrc="data source id" (4)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onblur, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 295 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 295
PART I

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

for This attribute specifies the id for the form control element the label references. This is
optional when the label encloses the form control it is bound to. In many cases, particularly
when a table is used to structure the form, a <label> tag will not be able to enclose the
associated form control, so the for attribute should be used. This attribute allows more than
one label to be associated with the same control by creating multiple references.

Examples
<form action="search.php" method="get">
 <p>
 <label id="searclabel">Search:
 <input type="text" name="search" id="search">
 </label>
 </p>
</form>

<form action="tracker.php" method="POST">
 <table>
 <tr>
 <td><label for="username">Name</label></td>
 <td><input type="text" id="username"></td>
 </tr>
 </table>
</form>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 4+, Safari 1+

 296 P a r t I : C o r e M a r k u p 296 P a r t I : C o r e M a r k u p

Notes
• Each <label> must not contain more than one form field.

• The label element should not be nested.

<layer> (Positioned Layer)
This Netscape 4.x–specific element allows the definition of overlapping content layers that can
be exactly positioned, hidden or shown, rendered transparent or opaque, reordered front to
back, and nested. The functionality of layers is available using CSS positioning facilities, and
the layer element is listed here purely for historical reasons in case developers come across
pages using them.

Syntax (Defined by Netscape 4 Only)
<layer
 above="layer name"
 background="URL of background image"
 below="layer name"
 bgcolor="color value"
 class="class name(s)"
 clip="clip region coordinates in x1, y1, x2, y2 form"
 height="percentage | pixels"
 id="unique alphanumeric identifier"
 left="pixels"
 name="string"
 overflow="none | clip"
 pagex="horizontal pixel position of layer"
 pagey="vertical pixel position of layer"
 src="URL of layer's contents"
 style="style information"
 title="advisory text"
 top="pixels"
 visibility="hide | inherit | show"
 width="percentage | pixels"
 z-index="number">

</layer>

Element-Specific Attributes

above This attribute contains the name of the layer (as set with the name attribute) to be
rendered directly above the current layer.

background This attribute contains the URL of a background pattern for the layer. Like
backgrounds for the document as a whole, the image might tile.

below This attribute specifies the name of the layer to be rendered below the current layer.

bgcolor This attribute specifies a layer’s background color. The attribute’s value can be
either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format,
such as #FF0000.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 297 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 297
PART I

clip This attribute clips a layer’s content to a specified rectangle. All layer content outside
that rectangle will be rendered transparent. The clip rectangle is defined by two x,y pairs
that correspond to the top x, left y, and bottom x, right y coordinate of the rectangle. The
coordinates are relative to the layer’s origin point, 0,0, in its top-left corner, and might have
nothing to do with the pixel coordinates of the screen.

height This attribute is used to set the height of the layer, either in pixels or as a percentage
of the screen or region the layer is contained within.

left This attribute specifies, in pixels, the left offset of the layer. The offset is relative to its
parent layer, if it has one, or to the left browser margin if it does not.

name This attribute assigns to the layer a name that can be referenced by programs in a
client-side scripting language. The id attribute also can be used.

overflow This attribute specifies what should happen when the layer’s content exceeds its
rendering box and clipping area. A value of none does not clip the content, while clip clips
the content to its dimensions or defined clipping area.

pagex This attribute is used to set the horizontal pixel position of the layer relative to the
document window rather than any enclosing layer.

pagey This attribute is used to set the vertical pixel position of the layer relative to the
document window rather than any enclosing layer.

src This attribute specifies the URL that contains the content to be included in the layer.
Using this attribute with an empty element is a good way to preserve layouts under older
browsers.

top This attribute specifies, in pixels, the top offset of the layer. The offset is relative to its
parent layer, if it has one, or to the top browser margin if it is not enclosed in another layer.

visibility This attribute specifies whether a layer is hidden (hidden), shown (show), or
inherits (inherits) its visibility from the layer enclosing it.

width This attribute specifies a layer’s width, in pixels or as a percentage value of the
enclosing layer or browser width.

z-index This attribute specifies a layer’s stacking order relative to other layers. Position is
specified with positive integers, with 1 indicating the bottommost layer.

Examples
<!-- 90s appropriate example to illustrate this element -->
<layer name="scene" bgcolor="#00FFFF">
 <layer name="Shaq" left="100" top="100">

 </layer>
 <layer name="Rodman" left="200" top="100"
 visibility="hidden">

 </layer>
</layer>

 298 P a r t I : C o r e M a r k u p 298 P a r t I : C o r e M a r k u p

<!-- Linked layers -->
<layer src="contents.html" left="20" top="20"
 height="80%" width="80%">
</layer>

Compatibility

No standards support Netscape 4, 4.5–4.8

Notes
• The functionality of the layer element is easily replicated using a <div> tag and

the CSS property position:absolute. In older Netscape browsers, using this
more appropriate approach did populate the JavaScript document.layers
collection.

• Because this element is specific to Netscape 4, it should never be used and is
discussed only for readers supporting existing <layer>-filled pages they may come
across. The next edition of this book will remove this historical footnote.

• Applets, plug-ins, and other embedded media forms, generically called objects, can
be included in a layer; however, they will float to the top of all other layers, even if
their containing layer is obscured.

<legend> (Descriptive Legend)
This element is used to assign a caption to a set of form fields as defined by a fieldset
element.

Standard Syntax
<legend
 accesskey="character"
 align="bottom | left | right | top" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</legend>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 299 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 299
PART I

 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 align="center" (4)
 contenteditable=" false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

accesskey This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified key selects the form section or
the legend itself. Page designers are forewarned to avoid key sequences already bound to
browsers.

align This attribute indicates where the legend value should be positioned within the
border created by a <fieldset> tag. The default position for the legend is the upper-left
corner. It also is possible to position the legend to the right by setting the attribute to right.

 300 P a r t I : C o r e M a r k u p 300 P a r t I : C o r e M a r k u p

The specification defines bottom and top, as well. Microsoft also defines the use of the
value center.

Example
<form action="#" method="get">
 <fieldset>
 <legend align="top">User Information</legend>
 <div>
 <label>First Name:
 <input type="text" id="firstname" size="20">
 </label>

 <label>Last Name:
 <input type="text" id="lastname" size="20">
 </label>

 </div>
 </fieldset>
</form>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 4+, Safari 1+

Notes
• Traditionally, a <legend> tag should occur only within a <fieldset> tag. There

should be only one legend per fieldset element.

• Under early drafts of the HTML5 specification, this element is also found in the
figure and details elements. This was later replaced by the dt element.

• Some versions of Microsoft documentation show a valign attribute for <legend>
positioning. However, the valign attribute does not appear to work consistently
and has since been dropped from the official documentation.

 (List Item)
This element is used to indicate a list item as contained in an ordered list (), unordered
list (), or older list styles such as <dir> and <menu>.

Standard Syntax
<li
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text"
 type="circle | disc | square | a | A | i | I | 1" (transitional only)
 value="number"> (transitional only)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 301 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 301
PART I

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable=" false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

 302 P a r t I : C o r e M a r k u p 302 P a r t I : C o r e M a r k u p

Element-Specific Attributes

type This attribute indicates the bullet type used in unordered lists or the numbering type
used in ordered lists. For ordered lists, a value of a indicates lowercase letters, A indicates
uppercase letters, i indicates lowercase Roman numerals, I indicates uppercase Roman
numerals, and 1 indicates numbers. For unordered lists, values are used to specify bullet types.
Although the browser is free to set bullet styles, a value of disc generally specifies a filled
circle, a value of circle specifies an empty circle, and a value of square specifies a filled
square. This attribute should be avoided in favor of the CSS property list-style-type.

value This attribute indicates the current number of items in an ordered list as defined by
an tag. Regardless of the value of type being used to set Roman numerals or letters,
the only allowed value for this attribute is a number. List items that follow will continue
numbering from the value set. The value attribute has no meaning for unordered lists.
CSS 2 counters can provide much more flexibility than this attribute.

Examples

 <li type="circle">First list item is a circle
 <li type="square">Second list item is a square
 <li type="disc">Third list item is a disc

 <li type="i">Roman Numerals
 <li type="a" value="3">Second list item is letter C
 <li type="a">Continue list in lowercase letters

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Under the strict HTML and XHTML definitions, the li element loses the type and

value attributes, as these presentation styles can be emulated with CSS properties
like list-item-style and CSS counters.

• HTML5 reintroduces the value attribute to list items but CSS should be used
instead.

• Whereas bullet styles can be set explicitly, browsers tend to change styles for bullets
when lists are nested. However, ordered lists generally do not change style
automatically, nor do they support outline-style numbering (1.1, 1.1.1, and so on).
CSS rules, of course, can do this.

• The closing tag is optional under HTML specifications, including HTML5.
However, it is required under XHTML and should always be used.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 303 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 303
PART I

<link> (Link to External Files or Set Relationships)
This empty element found in the head element specifies relationships between the current
document and other documents. Possible uses for this element include defining a relational
framework for navigation and linking the document to a style sheet.

Standard Syntax
<link
 charset="charset list from RFC 2045"
 class="class name(s)"
 dir="ltr | rtl"
 href="URL"
 hreflang="language code"
 id="unique alphanumeric identifier"
 lang="language code"
 media="all | aural | braille | print | projection |
 screen | other"
 rel="relationship value"
 rev="relationship value"
 style="style information"
 target="frame name" (transitional only)
 title="advisory information or relationship specific duty"
 type="MIME type">

Other Common Attributes
 disabled="disabled" (from DOM Level 1)
 name="unique name" (IE 4+)

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 sizes="any or list of space-separated sizes of form ValxVal"
 spellcheck="true | false"
 tabindex="number"

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

 304 P a r t I : C o r e M a r k u p 304 P a r t I : C o r e M a r k u p

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onload, onreadystatechange

Element-Specific Attributes

charset This attribute specifies the character set used by the linked document. Allowed
values for this attribute are character set names, such as EUC-JP, as defined in RFC 2045.

disabled This DOM Level 1–defined attribute is used to disable a link relationship.
The presence of the attribute is all that is required to remove a linking relationship. In
conjunction with scripting, this attribute could be used to turn on and off various style
sheet relationships.

href This attribute specifies the URL of the linked resource. A URL might be absolute or
relative.

hreflang This attribute is used to indicate the language of the linked resource. See the
“Language Attributes Reference” section earlier in this chapter for information on allowed
values.

media This attribute specifies the destination medium for any linked style information, as
indicated when the rel attribute is set to stylesheet. The value of the attribute might be a
single media descriptor, such as screen, or a comma-separated list. Possible values for this
attribute include all, aural, braille, print, projection, and screen. Other values also
might be defined, depending on the browser.

rel This attribute names a relationship between the linked document and the current
document. Multiple values can be specified and should be separated by spaces. The value
of the rel attribute is simply a text value, which can be anything the author desires.
However, a browser can interpret standardized relationships in a particular way. For
example, a browser might provide special icons or navigation features when the meaning
of a link is understood. Currently, document relationship values are neither widely
understood nor supported by browsers, but the HTML 4.01 and HTML5 specifications list
some proposed relationship values, as shown in Table 3-22. Note that these values are not
case sensitive.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 305 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 305
PART I

TABLE 3-22 Possible rel Values (continued)

Relationship Value Explanation Example(s) Specification

alternate The link references an
alternate version of the
document that the link
is in. For example, this
might be a translated
version of the document,
as suggested by the lang
attribute.

<link href="frenchintro
.html" rel="alternate"
lang="fr">

<link href="secondstyle
.css" rel="alternate
stylesheet">

HTML 4, 5

appendix The link references a
document that serves
as an appendix for a
document or site.

<link href="intro
.html" rel="appendix">

HTML 4

archives A reference to document(s)
of historical interest.

<link href="/archives"
rel="archives">

HTML5

author A reference to information
about the document’s
author.

<link href="/tap.html"
rel="author">

HTML5

chapter The link references a
document that is a chapter
in a site or collection of
documents.

<link href="ch01.html"
rel="chapter">

HTML 4

contents The link references a
document that serves
as a table of contents,
most likely for the site,
although it might be for the
document.

<link href="toc.html"
rel="contents">

HTML 4

copyright The link references a page
that contains a copyright
statement for the current
document.

<link href="copyright
.html" rel="copyright">

HTML 4

first A reference to the first
document in a collection.

<link href="page1.html"
rel="first">

HTML5

glossary The link references a
document that provides a
glossary of terms for the
current document.

<link href="glossary.html"
rel="glossary">

HTML 4

 306 P a r t I : C o r e M a r k u p 306 P a r t I : C o r e M a r k u p

Relationship Value Explanation Example(s) Specification

help The link references a help
document for the current
document or site.

<link href="help.html"
rel="help">

HTML 4, 5

icon A reference to an icon
to represent the current
resource as potentially
for some bookmarking or
saving routine.

<link href="pint.png"
rel="icon">

HTML5

index The link references a page
that provides an index for
the current document.

<link href="docindex.html"
rel="index" />

HTML 4, 5

last A reference to the last
document in a collection.

<link href="page10.html"
rel="last">

HTML5

license A reference to the legal or
copyright information for
the current document’s
content. Similar to the
copyright value.

<link href="/legal.html"
rel="license">

HTML5

next The link references the next
document to visit in a linear
collection of documents. It
can be used, for example,
to “prefetch” the next
page, and is supported in
some browsers such as the
older MSN TV browser and
Mozilla-based browsers like
Firefox.

<link href="page2.html"
rel="next">

HTML 4, 5

pingback Provides the URL to “ping”
when the document is
loaded.

<link href="http://
htmlref.com/watcher.php"
rel="pingback">

HTML5
(would
require
browser
support)

prefetch Indication to the user
agent about object(s) to be
preloaded during user idle
time.

<link href="bigimage.png"
 rel="prefetch">

HTML5
(some
browsers
supported
previously)

TABLE 3-22 Possible rel Values (continued)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 307 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 307
PART I

Relationship Value Explanation Example(s) Specification

prev The link references the
previous document in
a linear collection of
documents.

<link href="page1.html"
 rel="previous">

HTML 4, 5

search Link to a search facility
used in a site.

<link href="search/ "
rel="search">

HTML5

section The link references a
document that is a section
in a site or collection of
documents.

<link href="sect07.html"
rel="section">

HTML 4

sidebar Specifies a URL that should
be displayed in a browser
sidebar.

<link href="instructions
.html" rel="sidebar">

HTML5

start The link references the
first document in a set of
documents.

<link href="begin.html"
rel="start">

HTML 4

stylesheet The link references an
external style sheet. This
is by far the most common
use of <link> and the
most widely supported in
browsers.

<link href="style.css"
rel="stylesheet">

HTML 4, 5

subsection The link references
a document that is a
subsection in a collection
of documents.

<link href="sect07a.html"
rel="subsection">

HTML 4

tag Gives a tag that applies to
the document.

<link href="extag.html"
rel="tag">

HTML5

up Provides a link to a
document or section “up”
from the current document,
usually the parent or
index document for the
current URL.

<link href="/main/index
.html" rel="up">

HTML5

TABLE 3-22 Possible rel Values (continued)

 308 P a r t I : C o r e M a r k u p 308 P a r t I : C o r e M a r k u p

Under a few browsers, such as Opera, these link relationship values are recognized and
placed in a special navigation menu. For example, given the example here

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Link Relationship Examples</title>
<link rel="home" href="http://htmlref.com" title="Homepage">
<link rel="toc" href="http://htmlref.com/chapters/toc.html"
 title="Table of contents">
<link rel="help" href="http://htmlref.com/help.html" title="Need help?">
<link rel="copyright" href="http://www.htmlref.com/copyright.html"
title="Copyright statement">
<link rel="author" href="http://htmlref.com/about/author.html"
 title="About the author">
</head>
<body>
<p>Testing link element rel values</p>
</body>
</html>

when viewed in a supporting browser like Opera, you might have special buttons to
navigate a site:

Unfortunately, the reality is that over time fewer browsers have supported these link
element features.

The most commonly used rel values from Table 3-22 are described here in more depth.
Certainly, the most common use of this attribute is to specify a link to an external style
sheet. The rel attribute is set to stylesheet, and the href attribute is set to the URL of an
external style sheet to format the page:

<link rel="stylesheet" type="application/pdf" href="/css/global.css">

The alternate stylesheet relationship, which would allow users to pick from a
variety of styles, also is defined. To set several alternative styles, the title attribute must be
set to group elements belonging to the same style. All members of the same style must have
exactly the same value for title. For example, the following fragment defines a standard

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 309 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 309
PART I

style called basestyle.css, and two alternative styles, titled 640x480 and 1024x768, have been
added; these refer to style sheets to improve layout at various screen resolutions:

<link rel="alternate stylesheet" title="640x480" href="small.css"
type="text/css">
<link rel="alternate stylesheet" title="1024x768" href="big.css"
type="text/css">
<link rel="stylesheet" href="basestyle.css" type="text/css">

A Web browser should provide a method for users to view and pick from the list of
alternative styles, where the title attribute can be used to name each choice.

A rel value is also commonly used to specify the location of a blog feed. Using
markup like

<link rel="alternate" type="application/rss+xml"
 title="PINT Blog RSS Feed" href="http://blog.pint.com/feed/">

in the head of a document will cause supporting browsers to put a special subscription icon
in the location bar:

Given that there may be multiple feed formats, there may be a number of link alternate
entries:

<link rel="alternate" type="application/rss+xml"
 title="The Blog" href="/rss/index.xml">
<link rel="alternate" type="application/atom+xml"
 title="Atom 0.3" href="/atom/index.xml">

So far this syntax is the common method, but things change rapidly in the “blogosphere,”
so checking with the documentation of blogging platforms is probably the best way to
ensure you have the very latest feed syntax for (X)HTML.

Another common use of this attribute is to set a browser location bar icon called a
favicon. These icons are set with the rel attribute using the value of icon or shortcut
icon:

<link rel="icon" href="/favicon.ico" type="image/x-icon">
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon">

Browsers commonly place these small images in the URL bar like so:

 310 P a r t I : C o r e M a r k u p 310 P a r t I : C o r e M a r k u p

Browsers may also use favicons in a bookmark menu. Currently, the favicon image
should be a 16×16 image, though larger image sizes may be supported in other situations.
For example, Apple devices support a relationship of apple-touch-icon to set a larger
57×57 PNG format icon

<link rel="apple-touch-icon" href="/apple-touch-icon.png">

to be used on its mobile devices. This is just an example to illustrate that many browser- or
environment-specific uses of <link> relationships likely exist.

Finally, in some browsers if the rel attribute is set with the value of next (or, in other
cases, prefetch) along with an href value of some data object, the browser will “prefetch”
the item in question during the idle time of the browser. If the content of the next page is
stored in the browser’s cache, the page loads much faster than if the page has to be
requested from the server.

Mozilla-based browsers support this syntax already with a relation type of either next
or prefetch. For example, you might use <link> like this:

<link rel="prefetch" href="/images/product.jpeg">

This would be the same as providing a prefetching hint using an HTTP Link: header:

Link: </images/product.jpeg>; rel=prefetch

It is possible to prefetch a variety of objects in a page during a browser’s idle time.
Consider the following example:

<link rel="prefetch" href="bigflash.swf">
<link rel="prefetch" href="ajaxlibrary.js">
<link rel="next" href="2.html">

While prefetching is only built into some browsers, it is possible using JavaScript to
preload objects as well. Regardless of the prefetch method, be careful not to disrupt the load
or use of a currently viewed page with preloading, and be mindful that you may be wasting
bandwidth on requests that are never used.

rev The value of the rev attribute shows the relationship of the current document to the
linked document, as defined by the href attribute. The attribute thus defines the reverse
relationship compared to the value of the rel attribute. Multiple values can be specified
and should be separated by spaces. Values for the rev attribute are similar to the possible
values for rel. They might include alternate, bookmark, chapter, contents,
copyright, glossary, help, index, next, prev, section, start, stylesheet, and
subsection. HTML5 does not define this attribute—likely with good cause, because its
usage is quite rare and its value nebulous.

sizes This HTML5 attribute is used when the rel attribute has a value of icon to define
the size of the related icon in a Height×Width format. The attribute takes a space-separated
list if multiple forms are possible or takes the keyword any if size doesn’t matter. See the
examples that follow for a demonstration.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 311 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 311
PART I

target The value of the target attribute defines the frame or window name that has the
defined linking relationship or that will show the rendering of any linked resource.

type This attribute is used to define the type of the content linked to. The value of the
attribute should be a MIME type, such as text/html, text/css, and so on. The common
use of this attribute is to define the type of style sheet linked, and the most common current
value is text/css, which indicates a CSS format.

Examples
<link href="products.html" rel="parent">

<link href="corpstyle.css" rel="stylesheet" type="text/css" media="all">

<!-- XHTML syntax -->
<link href="corpstyle.css" rel="stylesheet" type="text/css" media="all" />

<link href="nextpagetoload.html" rel="next>

<!-- HTML5 icon examples -->
<link rel=icon" href="icon.png" sizes="16x16">
<link rel=icon" href="icon2.png" sizes="16x16 32x32">
<link rel=icon" href="icon3.svg" sizes="any">

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 3+,
Netscape 4+, Opera 4+, Safari 1+

Notes
• As an empty element under XHTML, or when using XML-style syntax for HTML5,

a trailing slash is required for this element: <link />.

• A <link> tag can occur only in the head element; however, there can be multiple
occurrences of <link>.

• HTML 3.2 defines only the href, rel, rev, and title attributes for the link
element.

• HTML 2 defines the href, methods, rel, rev, title, and urn attributes for the
link element. The methods and urn attributes were later removed from the
specifications.

<listing> (Code Listing)
This deprecated element from HTML 2 is used to indicate a code listing; it is no longer part
of the HTML standard. Text tends to be rendered in a smaller size within this element. A
<pre> tag should be used instead of this element.

Standard Syntax (HTML 2 Only; Deprecated)
<listing>
</listing>

 312 P a r t I : C o r e M a r k u p 312 P a r t I : C o r e M a r k u p

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 class="class name(s)" (4)
 contenteditable=" false | true | inherit" (5.5)
 dir="ltr | rtl" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 id="unique alphanumeric string" (4)
 lang="language code" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 style="style information" (4)
 tabindex="number" (5.5)
 title="advisory text" (4)
 unselectable="on | off" (5.5)

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example
<listing>
This is a code listing. The preformatted text element <PRE>
should be used instead of this deprecated element.
</listing>

Compatibility

HTML 2 Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 6+, Safari 1+

Notes
• As a deprecated element, this element should not be used. This element is not

supported by HTML 4, XHTML 1.0, or 1.1. It is still documented and supported by
many browser vendors. The pre element should be used instead of <listing>.

• Many browsers also make text within <listing> tags one size smaller than normal
text, probably because the HTML 2 specification suggested that 132 characters fit on
a typical line rather than 80.

<map> (Client-Side Image Map)
This element is used to implement client-side image maps. The element is used to define
a map that associates locations on an image with a destination URL. Each hot spot or
hyperlink mapping is defined by an enclosed area element. A map is bound to a particular

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 313 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 313
PART I

image through the use of the usemap attribute in the img element, which is set to the name
of the map.

Syntax
<map
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 name="unique alphanumeric identifier"
 style="style information"
 title="advisory text">

</map>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 language="javascript | jscript | vbs | vbscript" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 314 P a r t I : C o r e M a r k u p 314 P a r t I : C o r e M a r k u p

Events Defined by Internet Explorer
onbeforeactivate, onbeforecut, onbeforepaste, onclick, oncut, ondblclick,
ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmouseenter, onmouseleave, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onpaste, onpropertychange,
onreadystatechange, onscroll, onselectstart

Element-Specific Attribute

name Like id, this attribute is used to define a name associated with the element. In the
case of the map element, the name attribute is the common way to define the name of the
image map to be referenced by the usemap attribute within an tag.

Example
<map name="mainmap" id="mainmap">
 <area shape="circle" coords="200,250,25"
 href="file1.html" />
 <area shape="rectangle" coords="50,50,100,100"
 href="file2.html#important" />
 <area shape="default" nohref="nohref" />
</map>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• HTML 3.2 supports only the name attribute for the map element.

• When the name attribute is used, it should be the same as the id attribute.

• Client-side image maps are not supported under HTML 2. They were first
suggested by Spyglass and later incorporated into Netscape and other browsers.

• Given the usability concerns with image maps, alternate access forms such as
related text links should be provided.

<mark> (Marked Text)
This HTML5 element defines a marked section of text. It should be used in a sense similar
to how a highlighter is used on text.

HTML5 Standard Syntax
<mark
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 315 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 315
PART I

 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</mark>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Examples
<p>The new HTML5 specification is in the works. While
<mark style="background-color: red;">many features are not currently
implemented or even well defined</mark> yet,
<mark style="background-color: green;">progress is being made</mark>.
Stay tuned to see more new HTML elements added to your Web documents in
the years to come.</p>

<p>This is <mark>marked text</mark> was it yellow?</p>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

Notes
• Hints in the HTML5 specification suggest text within this element will be black on

a yellow background unless other CSS rules override it.

• This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the
idea of it.

 316 P a r t I : C o r e M a r k u p 316 P a r t I : C o r e M a r k u p

<marquee> (Marquee Display)
This proprietary element originally introduced by Internet Explorer specifies a scrolling,
sliding, or bouncing text marquee.

Proprietary Syntax (Defined by Internet Explorer)
<marquee
 accesskey="key" (5.5)
 behavior="alternate | scroll | slide" (3)
 bgcolor="color name | #RRGGBB" (3)
 class="class name(s)" (4)
 contenteditable=" false | true | inherit" (5.5)
 datafld="column name" (4)
 dataformatas="html | text" (4)
 datasrc="data source id" (4)
 direction="down | left | right | up" (3)
 dir="ltr | rtl" (5.0)
 disabled="false | true" (5.5)
 height="pixels or percentage"
 hidefocus="true | false" (5.5)
 hspace="pixels" (3)
 id="unique alphanumeric identifier" (4)
 lang="language code" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 loop="infinite | number" (3)
 scrollamount="pixels" (3)
 scrolldelay="milliseconds" (3)
 style="style information" (4)
 tabindex="number" (5.5)
 title="advisory text" (4)
 truespeed="false | true" (4)
 unselectable="on | off" (5.5)
 vspace="pixels" (3)
 width="pixels or percentage"> (3)

</marquee>

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onbeforeupdate,
onblur, onbounce, onclick, oncontextmenu, oncontrolselect, oncut,
ondblclick, ondeactivate, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, onerrorupdate, onfilterchange, onfinish,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onscroll, onselectstart, onstart, ontimeerror

Element-Specific Attributes

behavior This attribute controls the movement of marquee text across the marquee. The
alternate option causes text to completely cross the marquee field in one direction and

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 317 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 317
PART I

then cross in the opposite direction. A value of scroll for the attribute causes text to wrap
around and start over again. This is the default value for a marquee. A value of slide for
this attribute causes text to cross the marquee field and stop when its leading character
reaches the opposite side.

bgcolor This attribute specifies the marquee’s background color. The value for the attribute
can either be a color name or a color value defined in the hexadecimal #RRGGBB format.

direction This attribute specifies the direction in which the marquee should scroll. The
default is left. Other possible values for direction include down, right, and up.

loop This attribute indicates the number of times the marquee content should loop. By
default, a marquee loops infinitely unless the behavior attribute is set to slide. It also is
possible to use a value of infinite or −1 to set the text to loop indefinitely.

scrollamount This attribute specifies the width, in pixels, between successive displays of
the scrolling text in the marquee.

scrolldelay This attribute specifies the delay, in milliseconds, between successive displays
of the text in the marquee.

truespeed When this attribute is present, it indicates that the scrolldelay value should
be honored for its exact value. If the attribute is not present, any value less than 60 is
rounded up to 60 milliseconds.

Examples
<marquee behavior="alternate">
SPECIAL VALUE !!! This week only !!!
</marquee>

<marquee id="marquee1" bgcolor="red" direction="right" height="30"
 width="80%" hspace="10" vspace="10">
The super scroller scrolls again!!
More fun than a barrel of <BLINK> elements.
</marquee>

Compatibility

No standards support Firefox 1+, Internet Explorer 3+, Netscape 6+, Opera 7+, Safari 1+

Notes
• This is primarily a Microsoft-specific element, although most browsers support it to

some degree. Do not expect all events and attributes beyond basic animation to be
supported consistently or even at all beyond Internet Explorer.

• There is a placeholder in the current HTML5 specification that discusses this
element will be found in browsers, so its future is still unclear.

 318 P a r t I : C o r e M a r k u p 318 P a r t I : C o r e M a r k u p

<menu> (Menu List or Command Menu)
This element is used to indicate a short list of items (li elements) that can occur in a menu
of choices. Traditionally, this looked like an unordered list under HTML 4 and prior
versions; HTML5 intends to reintroduce this element as a user interface menu filled with
command elements.

Syntax (Transitional Only, Returns in HTML5)
<menu
 class="class name(s)"
 compact="compact"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</menu>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 label="string for menu label"
 spellcheck="true | false"
 tabindex="number"
 type="context | toolbar"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable=" false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 319 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 319
PART I

onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

compact This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list, regardless of the presence of this
attribute. The compact attribute requires no value under traditional HTML but should be
set to a value of compact under XHTML transitional.

label This HTML5 attribute defines a string label for the menu. This will be particularly
useful in the case of a nested menu.

type This HTML5 attribute indicates whether the menu should be a standard menu that
a user can interact with (toolbar) or a contextual menu, usually activated by a right-click
(contextmenu).

HTML 4 Example
<h2>Taco List</h2>
 <menu>
 Fish
 Pork
 Beef
 Chicken
 </menu>

HTML5 Examples
<menu type="menubar">
 <command label="Add" type="Command" icon="plus.png">
 <command label="Edit" type="Command" default>
 <command label="Delete" type="Command" disabled>
</menu>

<menu type="context" label="Actions">
 <menu type="context" label="New">

 320 P a r t I : C o r e M a r k u p 320 P a r t I : C o r e M a r k u p

 <command label="Document" type="Command" default>
 <command label="Link" type="Command">
 <command label="Section" type="Command">
 </menu>
 <hr>
 <command label="Sort Ascending" type="radio" radiogroup="sort">
 <command label="Sort Descending" type="radio" radiogroup="sort">
</menu>

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional), 5 (new functionality)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Under the strict HTML and XHTML specifications, this element is not defined.

Because most browsers simply render this style of list as an unordered list, using the
 tag instead is preferable.

• HTML5 keeps the traditional sense of this element, but it also introduces a new
sense as an actual menu of commands. In this new use, the content model is much
different and the element may include list items, anchors, form fields, command
elements, and horizontal rules. At the time of this writing, no browsers support this
extended functionality.

• HTML5 may also allow menu elements to be referenced by id using the global
contextmenu attribute.

• The HTML 2.0 and 3.2 specifications support only the compact attribute, though
most browsers don’t do anything with this attribute anyway.

<meta> (Meta-Information)
This element specifies general information about a document that can be used in document
indexing. It also allows a document to define fields in the HTTP response header when it is
sent from the server.

Standard Syntax
<meta
 content="string"
 dir="ltr | rtl"
 http-equiv="http header string"
 id="unique alphanumeric string"
 lang="language code"
 name="name of meta-information"
 scheme="scheme type">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 charset="character set"
 contenteditable="true | false | inherit"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 321 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 321
PART I

 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Event Defined by Internet Explorer
onlayoutcomplete

Element-Specific Attributes

charset This HTML5 attribute is used to set the character encoding for the document like
“UTF-8”. This approach is an alternative to using the http-equiv method currently
employed.

content This attribute contains the actual meta-information. The form of the meta-information
varies greatly, depending on the value set for name.

http-equiv This attribute binds the meta-information in the content attribute to an
equivalent HTTP response header. If this attribute is present, the name attribute should not
be used.

name This attribute associates a name with the meta-information contained in the
content attribute. If the name attribute is present, the http-equiv attribute should not
be used.

scheme The scheme attribute is used to indicate the expected format of the value of the
content attribute. The particular scheme also can be used in conjunction with the metadata
profile, as indicated by the profile attribute for the head element. This attribute is not
currently defined for inclusion in HTML5.

 322 P a r t I : C o r e M a r k u p 322 P a r t I : C o r e M a r k u p

Examples
<!-- Use of the meta element to assist document indexing -->
<meta name="keywords" content="html, meta element, meta">
<meta name="description" content="This is a simple example of the meta
element with a fake description for the page.">

<!-- Use of the meta element to implement client-pull to automatically
 load a page using XHTML syntax -->
<meta http-equiv="refresh"
 content="3;URL='http://www.pint.com/'" />

<!-- Use of the meta element to add rating information -->
<meta http-equiv="PICS-Label" content="(PICS-1.1
 'http://www.rsac.org/ratingsv01.html'
 1 gen true comment 'RSACi North America
 Server' by 'webmaster@democompany.com'
 for 'http://www.democompany.com' on
 '1999.05.26T13:05-0500'
 r (n 0 s 0 v 0 l 1))">

<!-- user defined use of meta element -->
<meta name="SiteContentID" content="123asdasa1324a">

<!-- Traditional Charset and Content-Type setting -->
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<!-- HTML5 charset example -->
<meta charset="utf-8">

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• The meta element can occur only in the head element. It can be defined multiple

times.

• As an empty element under XHTML, or when using XML-style syntax for HTML5,
a trailing slash is required for this element: <meta />.

• A common use of the meta element is to set information for indexing tools, such as
search engines. Common values for the name attribute when performing this
function include author, description, and keywords; other attributes also might
be possible.

• The http-equiv attribute is often used to create a document that automatically
loads another document after a set time. This is called client-pull. An example of a
client-pull meta element is <meta http-equiv="refresh" content="10;URL='
nextpage.html'">. Note that the content attribute contains two values: the first
is the number of seconds to wait, and the second is the identifier URL and the URL
to load after the specified time.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 323 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 323
PART I

• The http-equiv attribute is also used for page ratings, cache control, setting
defaults such as language or scripting, and a variety of other tasks. In many cases, it
would be better to set these values via the actual HTTP headers rather than via a
<meta> tag.

• The <meta> tag can be used arbitrarily by site owners, search services, and browser
vendors. For example, when defining pages for Apple’s iPhone, the viewport and
format-detection values for a <meta> tag can be set to control presentation on
the device. Google uses a verify-v1 value for approving sites for some
Webmaster-related features. Many more examples can be found online; the point is
that the element is quite flexible and has numerous uses.

• The HTML 2.0 and 3.2 specifications define only the content, http-equiv, and
name attributes.

• The meanings of some HTML5 common attributes (particularly those that are
interface-oriented, such as accesskey, dragable, and spellcheck) are quite
unclear. The specification currently puts these attributes everywhere, unlike HTML 4,
which does remove core attributes when context is inappropriate. Do not be
surprised if they are removed from some HTML5 elements in future revisions to the
specification.

• The HTML5 specification states that the http-equiv attribute should not set
Content-Language values; the lang attribute should be used in the document
instead.

<meter> (Scalar Gauge)
This HTML5 element defines a scalar measurement within a known range, similar to what
might be represented by a gauge.

HTML5 Standard Syntax
<meter
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 high="float"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 low="float"
 max="float"
 min="float"

 324 P a r t I : C o r e M a r k u p 324 P a r t I : C o r e M a r k u p

 optimum="float"
 spellcheck="true | false"
 style="style information"
 title="advisory text"
 tabindex="number"
 value="float">

</meter>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

low This attribute holds a float value that indicates the low range of the measurement.

max This attribute holds a float value that indicates the maximum range of the
measurement.

min This attribute holds a float value that indicates the minimum range of the
measurement.

optimum This attribute holds a float value that indicates the optimum range of the
measurement.

value This attribute holds a float value that indicates the current value of the measurement.

Examples
<p>Energy level: <meter>50%</meter></p>

<p>Energy level: <meter>1/2</meter></p>

<p>Warp Drive Output:
<meter min="0" max="10" low="3" optimum="7" high="9" value="9.5"
 title="Captain she can't take much more of this!">
</meter>
</p>

Compatibility

HTML5 Not currently supported by any browsers, but could be simulated in modern browsers
with a custom element and JavaScript.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 325 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 325
PART I

Notes
• The assumption is that values are used in the correct sense; for example, a min value

cannot be greater than a max value, a low value can’t be greater than a high value,
an optimum value cannot be greater than a high value, and so on.

• This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it and even apply a CSS display property for it. Using scripting, you might
animate or present some visual representation of the data.

<multicol> (Multiple Column Text)
This Netscape-specific element renders the enclosed content in multiple columns. This
element should not be used; a table is a more standard way to render multiple columns of
text across browsers. CSS properties like column-width and column-count perform the
same function when supported.

Proprietary Syntax (Defined by Netscape)
<multicol
 class="class name(s)"
 cols="number of columns"
 gutter="pixels"
 id="unique alphanumeric identifier"
 style="style information"
 width="pixels">

</multicol>

Element-Specific Attributes

cols This attribute indicates the number of columns in which to display the text. The
browser attempts to fill the columns evenly.

gutter This attribute indicates the width, in pixels, between the columns. The default value
for this attribute is ten pixels.

width This attribute indicates the column width for all columns. The width of each column
is set in pixels and is equivalent for all columns in the group. If the attribute is not specified,
the width of columns will be determined by taking the available window size, subtracting
the number of pixels for the gutter between the columns (as specified by the gutter
attribute), and evenly dividing the result by the number of columns in the group (as set by
the cols attribute).

Example
<multicol cols="3" gutter="20">
 Put a long piece of text here....
</multicol>

 326 P a r t I : C o r e M a r k u p 326 P a r t I : C o r e M a r k u p

Compatibility

No standards support Netscape 3, 4, 4.5–4.8

Notes
• Page developers are strongly encouraged not to use this element. Netscape dropped

this element for its own browsers starting with version 6.0. The inclusion in this
book of this element is for support of existing documents only.

• The facilities of this element are better handled using the CSS multicolumn
properties discussed in Chapter 6.

<nav> (Navigation)
This HTML5 element represents a group of links to other locations either inside or outside
of a document.

HTML5 Standard Syntax
<nav
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

 text and elements particularly links

</nav>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 327 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 327
PART I

onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<nav>

 About
 Services
 Contact
 Home

</nav>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

Notes
• Links are not restricted to occur solely within <nav> tags. The intent of this element

is that it collects navigation together often as a unit; commonly this would be primary
or secondary site navigation or possibly page-related links.

• While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

<nobr> (No Line Breaks)
This proprietary element renders enclosed text without line breaks. Break points for where
text may wrap can be inserted using the wbr element or related workarounds.

Common Syntax
<nobr
 class="class name(s)"
 id="unique alphanumeric identifier"
 style="style information"
 title="advisory text">

</nobr>

Attributes Defined by Internet Explorer
 contenteditable=" false | true | inherit " (5.5)
 dir="ltr | rtl" (5.5)
 disabled="false | true" (5.5)
 unselectable="on | off" (5.5)

Events Defined by Internet Explorer
onbeforeactivate, onbeforecopy, onbeforecut, onbeforeedit, onbeforepaste,
oncopy, oncut, ondrag, ondragend, ondragenter, ondragleave, ondragover,
ondragstart, ondrop, onfocusin, onfocusout, onhelp, onlosecapture,
onmouseenter, onmouseleave, onmousewheel, onpaste, onpropertychange,
onreadystatechange, onscroll, onselectstart

 328 P a r t I : C o r e M a r k u p 328 P a r t I : C o r e M a r k u p

Examples
<nobr>This really long text ... will not be broken.</nobr>

<nobr>With this element it is often important to hint where a line may
be broken using <wbr>.<wbr> This element acts as a soft return.</
nobr>

Compatibility

No standards support Firefox 1+, Internet Explorer 4+, Netscape 1.1+, Opera 4+

Notes
• While many browsers support this attribute, it is not part of any W3C standard.

• See the “<wbr> (Word Break)” section later in the chapter for a discussion of how to
implement soft-break functionality without the proprietary wbr element.

<noembed> (No Embedded Media Support)
This Netscape-introduced element is used to indicate alternative content to be displayed on
browsers that cannot support an embedded media object. It should occur in conjunction
with the embed element.

Proprietary Syntax (Initially Defined by Netscape)
<noembed
 class="class name"
 id="unique id"
 style="CSS rules"
 title="advisory text">

 Alternative content for browsers that do not support embed

</noembed>

Element-Specific Attributes
Netscape does not specifically define attributes for this element; however, testing and
documentation suggests that class, id, style, and title might be supported for this
element in many browsers.

Example
<embed src="trailer.mov" height="300" width="300">
 <noembed>

 <p>This browser is not configured to display video</p>
 </noembed>
</embed>

Compatibility

No standards support Netscape 2, 3, 4–4.7

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 329 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 329
PART I

Note
• Even if other browsers do not support the tag and render the contents of a

<noembed> tag, it works in the manner it was designed, given how browsers handle
unknown elements.

<noframes> (No Frame Support Content)
This element is used to indicate alternative content to be displayed on browsers that do not
support frames.

Standard Syntax
<noframes
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

 Alternative content for browsers that do not support frames

</noframes>

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Event Defined by Internet Explorer
onreadystatechange

Example
<frameset rows="100,*">
 <frame name="nav" src="controls.html">
 <frame name="body" src="content.html">
 <noframes>
 <p>Sorry, this browser does not support frames.</p>
 </noframes>
</frameset>

Compatibility

HTML 4, 4.01 (transitional and frameset)
XHTML 1.0 (transitional and frameset)

Firefox 1+, Internet Explorer 2+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• This element should be used within the scope of the frameset element.

• This element has no inclusion under HTML5 because standard frames are not
included in that specification.

 330 P a r t I : C o r e M a r k u p 330 P a r t I : C o r e M a r k u p

• The benefit of events and sophisticated attributes, such as style, is unclear for
browsers that would use content within <noframes>, given that older browsers
that don’t support frames probably would not support these features.

<noscript> (No Script Support Content)
This element is used to enclose content that should be rendered on browsers that do not
support scripting or that have scripting turned off.

Syntax
<noscript
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

 Alternative content for non-script-supporting browsers

</noscript>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 331 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 331
PART I

Event Defined by Internet Explorer
onreadystatechange

Examples
<script type="type/javascript">
<!--
 window.location="http://www.pint.com";
//-->
</script>
<noscript>
 <p>JavaScript is not supported. Follow this
 link instead.</p>
</noscript>

<!-- HTML5 refresh trick -->
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Web Application</title>
<!-- require script on -->
<noscript>
<meta http-equiv="Refresh" content="0;URL=/errors/noscript.html">
</noscript>
<!-- more head content follows -->

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 3+,
Netscape 2+, Opera 4+, Safari 1+

Note
• Besides using the noscript element, it may be wise to employ a comment mask

around any script code that is embedded rather than linked. Oddly, under HTML 4
<noscript> is not allowed in the head even though <script> is. Under HTML5 it
is allowed, though with a limited set of content within it and is not defined when
XML syntax is used.

<object> (Embedded Object)
This element specifies an arbitrary object to be included in an HTML document. Initially,
this element was used to insert ActiveX controls, but according to the specification, an object
can be any media object, document, applet, interactive control, or even image.

Standard Syntax
<object
 align="bottom | left | middle | right | top" (transitional only)
 archive="URL"
 border="percentage | pixels" (transitional only)

 332 P a r t I : C o r e M a r k u p 332 P a r t I : C o r e M a r k u p

 class="class name(s)"
 classid="id"
 codebase="URL"
 codetype="MIME Type"
 data="URL of data"
 declare="declare"
 dir="ltr | rtl"
 height="percentage | pixels"
 hspace="percentage | pixels" (transitional only)
 id="unique alphanumeric identifier"
 lang="language code"
 name="unique alphanumeric name"
 standby="standby text string"
 style="style information"
 tabindex="number"
 title="advisory text"
 type="MIME Type"
 usemap="URL"
 vspace="percentage | pixels" (transitional only)
 width="percentage | pixels">

 param elements and alternative rendering

</object>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"

Attributes Defined by Internet Explorer
 accesskey="character" (4)
 align="absbottom | absmiddle | baseline | texttop" (4)
 code="URL" (4)
 datafld="column name" (4)
 datasrc="id for bound data" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 333 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 333
PART I

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, oncellchange,
onclick, oncontrolselect, ondataavailable, ondatasetchanged,
ondatasetcomplete, ondblclick, ondeactivate, ondrag, ondragend,
ondragenter, ondragleave, ondragover, ondragstart, ondrop, onerror,
onfocus, onkeydown, onkeypress, onkeyup, onlosecapture, onmove, onmoveend,
onmovestart, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onrowenter, onrowexit, onrowsdelete, onrowsinserted,
onscroll, onselectstart

Element-Specific Attributes

align This attribute aligns the object with respect to the surrounding text. The default is
left. The HTML specification defines bottom, middle, right, and top, as well. Browsers
might provide an even richer set of alignment values. The behavior of alignment for objects
is similar to images. Under the strict HTML and XHTML specifications, the object element
does not support this attribute.

archive This attribute contains a URL for the location of an archive file. An archive file
typically is used to contain multiple object files to improve the efficiency of access.

border This attribute specifies the width of the object’s borders, in pixels or as a percentage.

classid This attribute contains a URL for an object’s implementation. The URL syntax
depends upon the object’s type. With ActiveX controls, the value of this attribute does not
appear to be a URL but something of the form CLSID: object-id; for example, CLSID:
99B42120-6EC7-11CF-A6C7-00AA00A47DD2.

code Under the old Microsoft implementation, this attribute contains the URL referencing
a Java applet class file. The way to access a Java applet under the HTML/XHTML
specification is to use <object classid="java: classname.class">. The pseudo-URL
java: is used to indicate a Java applet. Microsoft Internet Explorer 4 and beyond support
this style, so code should not be used.

codebase This attribute contains a URL to use as a relative base to access the object
specified by the classid attribute.

codetype This attribute specifies an object’s MIME type. Do not confuse this attribute with
type, which specifies the MIME type of the data the object may use, as defined by the data
attribute.

 334 P a r t I : C o r e M a r k u p 334 P a r t I : C o r e M a r k u p

data This attribute contains a URL for data required by an object.

declare This attribute declares an object without instantiating it. This is useful when the
object will be a parameter to another object. In traditional HTML, this attribute takes no
value; under XHTML, set it equal to declare.

name Under the older forms of HTML, this attribute defines the name of the control so
that scripting can access it. The id attribute should be used if possible.

standby This attribute contains a text message to be displayed while the object is loading.

type This attribute specifies the MIME type for the object’s data. This is different from
codetype, which is the MIME type of the object and not of the data it uses.

usemap This attribute contains the URL of the image map to be used with the object.
Typically, the URL will be a fragment identifier referencing a map element somewhere else
within the file. The presence of this attribute indicates that the type of object being included
is an image.

vspace This attribute indicates the vertical space, in pixels or as a percentage, between the
object and surrounding text.

Examples
<!-- Using XHTML syntax with trailing slashes here -->
<object id="IeLabel1" width="325" height="65"
 classid="CLSID:99B42120-6EC7-11CF-A6C7-00AA00A47DD2">
 <param name="_ExtentX" value="6879" />
 <param name ="_ExtentY" value="1376" />
 <param name="Caption" value="Hello World" />
 <param name="Alignment" value="4" />
 <param name="Mode" value="1" />
 <param name="ForeColor" value="#FF0000" />
 <param name="FontName" value="Arial" />
 <param name="FontSize" value="36" />
 Hello World for non-ActiveX users!
</object>

<!-- Standard HTML style -->
<object classid="java:Blink.class"
 standby="Here it comes"
 height="100" width="300">
 <param name="lbl"
 value="Java is fun, exciting, and new.">
 <param name="speed" value="2">
This will display in non-Java-aware or -enabled
browsers.
</object>

<!-- pulls in remote content here -->
<object data="pullinthisfile.html">
 Data not included!
</object>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 335 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 335
PART I

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 3+,
Netscape 4+, Opera 4+, Safari 1+

Notes
• Under the strict HTML and XHTML specifications, the object element loses most

of its presentation attributes, including align, border, height, hspace, vspace,
and width. These attributes are replaced by style sheet rules.

• The HTML 4.01 specification reserves the datafld, dataformatas, and datasrc
attributes for future use. However, these attributes were dropped in XHTML,
though they are well supported by Internet Explorer 4 and beyond.

• Alternative content should be defined within an <object> tag after any enclosed
<param> tags.

• The object element is still mainly used to include multimedia binaries in pages.
Although the specification defines that it can load in HTML files, insert a variety of
other objects, and create image maps, not every browser supports this, and few
developers are aware of these features. In theory, this very versatile tag should take
over duties from the venerable tag in future specifications, though given the
media-specific element trends of HTML5, this seems unlikely to happen.

 (Ordered List)
This element is used to define an ordered or numbered list of items. The numbering style
comes in many forms, including letters, Roman numerals, and regular numerals. The
individual items within the list are specified by li elements included with the ol element.

Standard Syntax
<ol
 class="class name(s)"
 compact="compact" (transitional only)
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 start="number" (transitional versions and HTML5)
 style="style information"
 title="advisory text"
 type="a | A | i | I | 1"> (transitional only)>

 li elements only

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"

 336 P a r t I : C o r e M a r k u p 336 P a r t I : C o r e M a r k u p

 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 reversed="reversed"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

compact This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list, regardless of the presence of this
attribute. The compact attribute requires no value under traditional HTML but under
XHTML should be set to compact.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 337 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 337
PART I

reversed This HTML5 Boolean attribute specifies that the counting of the list should go in
reverse order. CSS counters provide much more functionality than this attribute, but it is
useful in the absence of this more complicated syntax.

start This attribute specifies the start value for numbering the individual list items.
Although the ordering type of list elements might be Roman numerals, such as XXXI, or
letters, the value of start is always represented as a number. To start numbering elements
from the letter C, use <ol type="A" start="3">.

type This attribute indicates the numbering type: a indicates lowercase letters, A indicates
uppercase letters, i indicates lowercase Roman numerals, I indicates uppercase Roman
numerals, and 1 indicates numbers. Type set in an ol element is used for the entire list
unless a type attribute is used within an enclosed li element.

Examples
<ol type="1">
 First step

 Watch nested lists
 Often closed wrong

 Second step
 Third step

<ol compact="compact" type="I" start="30">
 Clause 30
 Clause 31
 Clause 32

<!-- HTML5 changes -->
<ol start="3" reversed>
 ...
 ...
 ...
 Blastoff!

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Under the strict HTML and XHTML specifications, the ol element no longer

supports the compact, start, and type attributes. These aspects of lists can be
controlled with style sheet rules.

 338 P a r t I : C o r e M a r k u p 338 P a r t I : C o r e M a r k u p

• HTML5 returns the start attribute to ordered lists and adds the reversed
attribute.

• Under the XHTML 1.0 specification, the compact attribute must have a quoted
attribute value: <ol compact="compact">.

• The HTML 3.2 specification supports only the compact, start, and type attributes.

• The HTML 2.0 specification supports only the compact attribute.

<optgroup> (Option Grouping)
This element specifies a grouping of items in a selection list defined by option elements so
that the menu choices can be presented in a hierarchical menu or similar alternative fashion
to improve access through nonvisual browsers.

Standard Syntax
<optgroup
 class="class name(s)"
 dir="ltr | rtl"
 disabled="disabled"
 id="unique alphanumeric identifier"
 label="text description"
 lang="language code"
 style="style information"
 title="advisory text">

 option elements

</optgroup>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 339 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 339
PART I

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

disabled Occurrence of this attribute indicates that the enclosed set of options is disabled.

label This attribute contains a short label to use when the selection list is rendered as items
in a hierarchy.

Example
<label>
Where would you like to go for your vacation?
<select>
 <option id="choice1" value="Hong Kong">Hong Kong</option>
 <optgroup label="South Pacific">
 <option id="choice2" label="Australia" value="Australia">
 Australia</option>
 <option id="choice3" label="Fiji" value="Fiji">
 Wakaya (Fiji Islands)</option>
 <option id="choice4" value="New Zealand">
 New Zealand</option>
 </optgroup>
 <option id="choice5" value="home" selected>Your backyard</option>
</select>
</label>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 6+,
Netscape 6+, Opera 7+, Safari 1+

Notes
• This element should occur only within the context of a select element.

• The visual presentation of this element may vary slightly between browsers.

<option> (Option in Selection List)
This element specifies an item in a selection list defined by a select element.

Standard Syntax
<option
 class="class name(s)"
 dir="ltr | rtl"
 disabled="disabled"
 id="unique alphanumeric identifier"

 340 P a r t I : C o r e M a r k u p 340 P a r t I : C o r e M a r k u p

 label="text description"
 lang="language code"
 selected="selected"
 style="style information"
 title="advisory text"
 value="option value">

</option>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attribute Defined by Internet Explorer
 language="javascript | jscript | vbs | vbscript" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onlayoutcomplete, onlosecapture, onpropertychange, onreadystatechange,
onselectstart, ontimeerror

Element-Specific Attributes

disabled Presence of this attribute indicates that the particular item is not selectable.
Traditional HTML did not require a value for this attribute, but it should be set to disabled
under XHTML.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 341 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 341
PART I

label This attribute contains a short label that might be more appealing to use when the
selection list is rendered as a hierarchy due to the presence of an optgroup element.

selected This attribute indicates that the associated item is the default selection. If this
attribute is not included, the first item in the selection list is the default. If the select
element enclosing the option elements has the multiple attribute, the selected attribute
might occur in multiple entries. Otherwise, it should occur in only one entry. Under
XHTML, the value of the selected attribute must be set to selected.

value This attribute indicates the value to be included with the form result when the item
is selected.

Example
<p>Which is your favorite dog?:
<select>
 <option value="Scottie">Angus"</option>
 <option value="Mini Schnauzer" selected>Tucker</option>
 <option value="Australian Shepard">Sabrina</option>
 <option value="German Shepard">Lucky</option>
</select>
</p>

Compatibility

HTML 2, 3.2. 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Under HTML specifications, the closing tag for <option> is optional. However, for

XHTML compatibility, the closing tag </option> is required.

• This element should occur only within the context of a select element.

• The HTML 2.0 and 3.2 specifications define only the selected and value attributes
for this element.

<output> (Form Output)
This HTML5 block element defines a region that will be used to display output from some
calculation or form control.

HTML5 Standard Syntax
<output
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 for="list of spaced id values of related elements"

 342 P a r t I : C o r e M a r k u p 342 P a r t I : C o r e M a r k u p

 form="id of related form element"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 name="element name for submission purposes"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</output>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

for This attribute should be set to the id value(s) of the elements that target this element.

form This attribute should be set to the id value of the form element that the output
element is associated with; otherwise, the nearest parent form is used.

name This attribute should set the name to be used in a name/value pair if the element is
used in form submission.

Examples
<form action="#" method="get" id="testform">
<p><input type="date" id="year"
 oninput="year.value = valueAsDate.getYear()">
<p>HTML5 released in the year
<output for="year"> </output></p>
</form>

<output form="testform" for="year"> </output>

Compatibility

HTML5 Not currently supported by any browser, but addressed with a custom element.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 343 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 343
PART I

Note
• This element supports two useful event handlers that are globally defined by

HTML5, onformchange and onforminput, if the element will be used to monitor
forms it is associated with rather than forms targeting it.

<p> (Paragraph)
This block element is used to define a paragraph of text.

Standard Syntax
<p
 align="center | justify | left | right" (transitional only)
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</p>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

 344 P a r t I : C o r e M a r k u p 344 P a r t I : C o r e M a r k u p

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

align This attribute specifies the alignment of text within a paragraph. The default value is
left. The transitional specification of HTML 4.01 also defines center, justify, and
right. However, under the strict HTML and XHTML specifications, text alignment can be
handled through the CSS property text-align.

Examples
<p align="right">A right-aligned paragraph</p>

<p id="para1" class="defaultParagraph"
 title="Introduction Paragraph">
This is the introductory paragraph for a very long paper about nothing.
</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Because p is a block element, browsers typically insert a blank line, but this

rendering should not be assumed, given the rise of style sheets, which can use the
display property to override this action.

• Under the strict (X)HTML and HTML5 specifications, the align attribute is not
supported. Alignment of text can instead be accomplished using CSS properties like
text-align.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 345 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 345
PART I

• The closing tag for the <p> tag is optional under the HTML specification; however,
under the XHTML 1.0 specification, the closing tag </p> is required for XHTML
compatibility.

• As a logical element, empty paragraphs are ignored by browsers, so do not try to
use multiple <p> tags in a row, like <p><p><p><p>, to add blank lines to a Web
page.

• Often, nonbreaking space entities are used to hold open empty paragraphs, like so:
<p> </p>. The value of this markup is questionable.

• The HTML 3.2 specification supports only the align attribute with values of
center, left, and right.

• The HTML 2.0 specification supports no attributes for the p element.

<param> (Object Parameter)
This element specifies a parameter to be passed to an embedded object that is specified with
the object or applet element. This element should occur only within the scope of one of
these elements.

Standard Syntax
<param
 id="unique alphanumeric identifier"
 name="parameter name"
 type="mime Type"
 value="parameter value"
 valuetype="data | object | ref">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 datafld="column name" (4)
 dataformatas="html | text" (4)
 datasrc="data source id" (4)

 346 P a r t I : C o r e M a r k u p 346 P a r t I : C o r e M a r k u p

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

name This attribute contains the parameter’s name. The name of the parameter depends
on the particular object being inserted into the page, and it is assumed that the object knows
how to handle the passed data. Do not confuse the name attribute for this element with the
name attribute used for form elements. In the latter case, the name attribute does not have a
similar meaning to id, but rather specifies the name of the data to be passed to an enclosing
<object> tag.

type When the valuetype attribute is set to ref, the type attribute can be used to indicate
the type of information to be retrieved. Legal values for this attribute are in the form of
MIME types, such as text/html.

value This attribute contains the parameter’s value. The actual content of this attribute
depends on the object and the particular parameter being passed in, as determined by the
name attribute.

valuetype This attribute specifies the type of the value attribute being passed in. Possible
values for this attribute include data, object, and ref. A value of data specifies that the
information passed in through the value parameter should be treated just as data. A value
of ref indicates that the information being passed in is a URL that indicates where the data
to be used is located. The information is not retrieved, but the URL is passed to the object,
which then can retrieve the information if necessary. The last value, object, indicates that
the value being passed in is the name of an object as set by its id attribute. In practice, the
data attribute is used by default.

Examples
<applet code="plot.class">
 <param name="min" value="5">
 <param name="max" value="30">
 <param name="ticks" value=".5">
 <param name="line-style" value="dotted">
</applet>

<!-- XHTML style here -->
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="swflash.cab#version=2,0,0,0"
 height="100" width="100">

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 347 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 347
PART I

 <param id="param1" name="Movie" value="SplashLogo.swf" />
 <param id="param2" name="Play" value="True" />
</object>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 3+,
Netscape 4+, Opera 5+, Safari 1+

Notes
• The HTML 3.2 specification supports only the name and value attributes for this

element.

• As an empty element under XHTML or when using XML-style syntax for HTML5, a
trailing slash is required for this element: <param />.

<plaintext> (Plain Text)
This deprecated element from the HTML 2.0 specification renders the enclosed text as plain
text and forces the browser to ignore any enclosed HTML. Typically, information affected by
the <plaintext> tag is rendered in monospaced font. This element is no longer part of the
HTML standard and should never be used.

Syntax (HTML 2; Deprecated Under HTML 4)
<plaintext>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 class="class name(s)" (4)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 dir="ltr | rtl" (4)
 hidefocus="true | false" (5.5)
 id="unique alphanumeric identifier" (4)
 lang="language code" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 style="style information" (4)
 tabindex="number" (5.5)
 title="advisory text" (4)

Example
<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head><title>Plaintext Example</title></head>
<body>
 The rest of this file is in plain text.
 <plaintext>
 Even though this is supposed to be bold, the tags still show.
 There is no way to turn plain text off once it is on. </plaintext>
 does nothing to help. Even </body> and </html> will show up.

 348 P a r t I : C o r e M a r k u p 348 P a r t I : C o r e M a r k u p

Compatibility

HTML 2 Firefox 1+, Internet Explorer 2+, Netscape 1+, Opera 4+, Safari 1+

Notes
• No closing tag for this element is necessary because the browser will ignore all tags

after the starting tag.

• This element should not be used. Plain text information can be indicated by a file
type, and information can be inserted in a preformatted fashion using the pre
element.

• All modern browsers at the time of this edition continue to support this tag despite
documentation to the contrary.

<pre> (Preformatted Text)
This element is used to indicate that the enclosed text is preformatted, meaning that spaces,
returns, tabs, and other formatting characters are preserved. Browsers will, however,
acknowledge most HTML elements that are found within a <pre> tag. Preformatted text
generally will be rendered by the browsers in a monospaced font.

Standard Syntax
<pre
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric value"
 lang="language code"
 style="style information"
 title="advisory text"
 width="number" (transitional only)
 xml:space="preserve">

</pre>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 349 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 349
PART I

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 wrap="soft | hard | off" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

width This attribute should be set to the width of the preformatted region. The value of the
attribute should be the number of characters to display. In practice, this attribute is not
supported and is dropped under the strict HTML 4.01 specification.

wrap In some versions of Microsoft browsers, this attribute controls word wrap behavior
within a <pre> tag. The default value of off for the attribute forces the element not to wrap
text, so the viewer must manually enter line breaks. A value of hard or soft causes word
wrap and sets different types of line breaks in the wrapped text. Given the nature of the pre
element, the value of this attribute is limited.

xml:space This attribute is included from XHTML 1.0 and is used to set whether spaces need
to be preserved within the element or the default whitespace handling should be employed.

 350 P a r t I : C o r e M a r k u p 350 P a r t I : C o r e M a r k u p

It is curious that an element defined to override traditional whitespace rules would allow
such an attribute, and in practice this attribute is not used by developers.

Example
<pre>
 Within PREFORMATTED text A L L formatting IS PRESERVED
 NO m a t t e r how wild it is. Remember that some
 HTML markup is allowed within the <PRE> element.
</pre>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• The HTML 4.01 and XHTML 1.0 transitional specifications state that the applet,

basefont, big, font, img, object, small, sub, and sup elements should not be used
within a <pre> tag. The strict HTML and XHTML specifications state that only the
<big>, , <object>, <small>, <sub>, and <sup> tags should not be used within
the <pre> tag. The other excluded elements are missing, as they are deprecated from
the strict specification. Although these elements should not be used, it appears that the
more popular browsers will render them anyway.

• The strict HTML and XHTML specifications drop support for the width attribute,
which was not well supported anyway.

• The HTML 2.0 and 3.2 specifications support only the width attribute for the pre
element.

<progress> (Progress Indicator)
This HTML5 element defines completion progress for a task. It is often thought to represent
the percentage from 0 to 100% of some task, such as loading to be completed, though the
range and the unit value are arbitrary.

HTML5 Standard Syntax
<progress
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 351 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 351
PART I

 itemtype="microdata type in URL format"
 lang="language code"
 max="positive floating point number"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text"
 value="0 or floating point number">

</progress>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

max The value of this attribute is a positive floating-point number indicating the
maximum value for progress; often it will be 100.

value The value of this attribute is the amount of task complete. This may be a percentage,
but there is no requirement that it be such a measurement.

Example
<p>Progress: <progress id="prog1" max="100.00" value="33.1">33.1</
progress>%</p>
<!-- JavaScript would be used to change the value of this element
dynamically -->

Compatibility

HTML5 Not currently supported by any browsers, but could be simulated in modern browsers
via a custom element and JavaScript.

Notes
• There are no units implied for this element.

• This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it and even apply a CSS display property for it. But, without JavaScript changing
value and presentation dynamically, a custom element would have little value.

<q> (Quote)
This element indicates that the enclosed text is a short inline quotation.

 352 P a r t I : C o r e M a r k u p 352 P a r t I : C o r e M a r k u p

Standard Syntax
<q
 cite="URL of source"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</q>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 353 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 353
PART I

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

cite The value of this attribute is a URL that designates a source document or message for
the information quoted. This attribute is intended to point to information explaining the
context or the reference for the quote.

Example
<p>If you want to make a great Web site don't follow this
advice: <q style="color: red;" cite="http://democompany.com/ugly.html">
A few green balls and a rainbow bar will give you an exciting Web page
Christmas Tree!</q></p>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 4+, Safari 1+

Notes
• This element is intended for short quotations that don’t require paragraphs or larger

structures, as compared to text that would be contained within <blockquote>.

• Some browsers, like Internet Explorer 6, may not make any sort of style change for
quotations, but it is possible to apply a style rule to provide some indication of a
change in style.

• Most browsers, including IE 8+, Opera, Safari, and Mozilla-based browsers like
Firefox, will wrap inline quotations in quote marks. These can be controlled by style
rules. Mentions in the HTML5 specification suggest that user agents will not put in
quotation marks and this will be left solely to the developer. This seems a highly
dubious possibility.

<rp> (Ruby Parentheses)
This element is used to define parentheses around a ruby text entry defined by an rt
element. This element helps browsers that do not support ruby annotations to keep the
reading hint clear from the text it is associated with.

 354 P a r t I : C o r e M a r k u p 354 P a r t I : C o r e M a r k u p

HTML5 Standard Syntax
<rp
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 title="advisory text"
 tabindex="number">

</rp>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!-- The Kanji for Japanese language with the hiragana above it or
 within parens for non ruby aware browsers -->
<p>
<ruby>
 日本語 <rp>(</rp><rt>にほんご</rt><rp>)</rp>
</ruby>
</p>

Compatibility

HTML5 XHTML 1.1 Internet Explorer 5+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 355 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 355
PART I

Note
• Other browsers do not position the ruby text element (rt) but instead move the rt

content above the text it is associated with; thus, these browsers are not listed as
supporting rt. The purpose of the rp element is to show the grouping parentheses
in such nonsupporting browsers, so in some sense all browsers support this
element.

<rt> (Ruby Text)
This initially Microsoft-specific proprietary element, now part of HTML5 and XHTML 1.1,
is used within a <ruby> tag to create ruby text, or annotations or pronunciation guides for
words and phrases. The base text should be enclosed in a <ruby> tag; the annotation,
enclosed in an <rt> tag, will appear as smaller text above the base text. Ruby parentheses
should be set with <rp> tags to provide fallback for browsers without ruby support.

HTML5 Standard Syntax
<rt
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 title="advisory text"
 tabindex="number">

</rt>

Syntax (Defined by Microsoft)
<rt
 accesskey="key" (5)
 class="class name(s)" (5)

Ruby No Ruby

 356 P a r t I : C o r e M a r k u p 356 P a r t I : C o r e M a r k u p

 contenteditable="false | true | inherit" (5.5)
 dir="ltr | rtl" (5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 id="unique alphanumeric identifier" (5)
 lang="language code" (5)
 language="javascript | jscript | vbs | vbscript" (5)
 name="string" (5)
 style="style information" (5)
 tabindex="number" (5)
 title="advisory text" (5)
 unselectable="on | off"> (5)

 ruby text
</rt>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforepaste,
oncut, ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocusin, onfocusout, onhelp, onlosecapture, onmouseenter,
onmouseleave, onmousewheel, onpaste, onpropertychange, onreadystatechange,
onscroll, onselectstart

Example
<!-- The Kanji for Japanese language with the romanji above it or
 within parens for non ruby aware browsers -->
<ruby>
 日本語 <rp>(</rp><rt>nihongo</rt><rp>)</rp>
</ruby>
</p>

Note
• The rt element must be used within the ruby element.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 357 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 357
PART I

Compatibility

HTML5 XHTML 1.1 Internet Explorer 5+

<ruby> (Ruby Annotation)
This initially Microsoft-specific element, now part of HTML5, is used with the rt element to
create annotations or pronunciation guides for words and phrases. The base text should be
enclosed in a <ruby> tag; the annotation, enclosed in an <rt> tag, will appear as smaller
text above the base text. The rp element can be used to wrap content to delimit ruby text
for browsers that do not support this formatting.

HTML5 Standard Syntax
<ruby
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">
 ... base text ...
 <rt>ruby text</rt>
</ruby>

Syntax Defined by Microsoft
<ruby
 accesskey="key" (5)
 class="class name(s)" (5)
 contenteditable="false | true | inherit" (5.5)
 dir="ltr | rtl" (5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 id="unique alphanumeric identifier" (5)
 lang="language code" (5)
 language="javascript | jscript | vbs | vbscript" (5)
 name="string" (5)
 style="style information" (5)

 358 P a r t I : C o r e M a r k u p 358 P a r t I : C o r e M a r k u p

 tabindex="number" (5)
 title="advisory text"> (5)

 ... base text ...
 <rt>ruby text</rt>

</ruby>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforepaste,
oncut, ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocusin, onfocusout, onhelp, onlosecapture, onmouseenter,
onmouseleave, onmousewheel, onpaste, onpropertychange, onreadystatechange,
onscroll, onselectstart

Element-Specific Attribute

name This attribute sets a name for the ruby base text.

Examples
<p>
<ruby>This is the base text within the ruby element
<rt>This is the ruby text, which should appear in a smaller font
 above the base text in Internet Explorer 5.0 or higher.</rt>
</ruby>
</p>

<p>
<ruby>
 日本語 <rp>(</rp><rt>にほんご</rt><rp>)</rp>
</ruby>
</p>

<p>
<ruby>
 Japanese<rp>(</rp><rt>Don't speak it</rt><rp>)</rp>
</ruby>
</p>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 359 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 359
PART I

Compatibility

HTML5 XHTML 1.1 Internet Explorer 5+

Notes
• This element was introduced in Internet Explorer 5.0 and is now part of the HTML5

specification.

• The ruby element must be used in conjunction with the rt element; otherwise, it
will have no meaning.

<s> (Strikethrough)
This element renders the enclosed text with a line drawn through it and is a synonym for
the strike element.

Standard Syntax (Transitional Only)
<s
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</s>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

 360 P a r t I : C o r e M a r k u p 360 P a r t I : C o r e M a r k u p

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown,
onkeypress, onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart,
ontimeerror

Examples
<p>This line contains a <s>misstake</s>!</p>

<p>strike <s>1</s>...<strike>2</strike>...<s>3</s>...You're out!</
strong></p>

Compatibility

HTML 4, 4.01 transitional
XHTML 1.0 transitional

Firefox 1+, Internet Explorer 2+,
Netscape 3+, Opera 4+, Safari 1+

Notes
• This element should act the same as the strike element.

• This HTML 3 element eventually was adopted by Netscape and Microsoft and later
was incorporated into the HTML 4.01 transitional specification.

• This element has been deprecated by the W3C. The strict HTML 4.01 specification
does not include the s element or the strike element, and the HTML5 specification
indicates it is obsolete as well.

• It is possible to indicate strikethrough text using a style sheet with the
text-decoration property set to line-through.

<samp> (Sample Text)
This logical inline element is used to indicate sample text. Enclosed text generally is
rendered in a monospaced font.

Standard Syntax
<samp
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</samp>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 361 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 361
PART I

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 data-X="user-defined data"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown,
onkeypress, onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart,
ontimeerror

Example
<p>Use the following salutation in all e-mail messages to the boss:
<samp>Please excuse the interruption, oh exalted manager.</samp></p>

 362 P a r t I : C o r e M a r k u p 362 P a r t I : C o r e M a r k u p

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• As a logical element, samp is useful to bind style rules to.

• The HTML 2.0 and 3.2 specifications support no attributes for this element.

<script> (Scripting)
This element encloses statements in a scripting language for client-side processing. Scripting
statements can either be included inline or loaded from an external file and might be
commented out to avoid execution by browsers that are not scripting-aware.

Standard Syntax
<script
 charset="character set"
 defer="defer"
 id="unique alphanumeric identifier"
 language="scripting language name"
 src="URL of script code"
 type="mime type"
 xml:space="preserve">

</script>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 async="async"
 class="class name(s)"
 data-X="user-defined data"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text"

Attributes Defined by Internet Explorer
 event="event name" (3)
 for="element id" (3)
 lang="language to use"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 363 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 363
PART I

Events Defined by HTML5
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onload, onpropertychange, onreadystatechange

Element-Specific Attributes

async Presence of this HTML5 attribute indicates that the browser might perform the fetch
or execution of the script to be asynchronously from other activity in the page. The meaning
of this attribute versus the defer attribute with remote scripts in particular is quite unclear.

charset This attribute defines the character encoding of the script. The value is a space- and/
or comma-delimited list of character sets as defined in RFC 2045.

defer Presence of this attribute indicates that the browser might defer execution of the
script enclosed by the <script> tag. Support for this attribute is inconsistent, though it is
now part of the HTML5 specification.

event This Microsoft-specific attribute is used to define a particular event that the script
should react to. It must be used in conjunction with the for attribute. Event names are the
same as event handler attributes; for example, onclick, ondblclick, and so on.

for The for attribute is used in Microsoft browsers to define the name or id of the element
to which an event defined by the event attribute is related. For example, <script
event="onclick" for="button1" language="vbscript"> defines a VBScript that will
execute when a click event is issued for an element named button1.

language This common though nonstandard attribute specifies the scripting language being
used. The Netscape implementation supports JavaScript. The Microsoft implementation
supports JScript (a JavaScript clone) as well as VBScript, which can be indicated by either
vbs or vbscript. Other values that include the version of the language used, such as
JavaScript1.1 and JavaScript1.2, also might be possible and are useful to exclude
browsers from executing script code that is not supported. The HTML5 specification
indicates that while this attribute may be widely supported it should not be used by page
authors.

src This attribute specifies the URL of a file containing scripting code. Typically, files
containing JavaScript code will have a .js extension, and a server will attach the appropriate
MIME type; if not, the type attribute might be used to explicitly set the content type of the
external script file. The language attribute also might be helpful in determining this.

 364 P a r t I : C o r e M a r k u p 364 P a r t I : C o r e M a r k u p

type This attribute should be set to the MIME type corresponding to the scripting language
used. For JavaScript, for example, this would be text/javascript. In practice, the
language attribute is more commonly used, but the type attribute is standard. When not
specified, the default value is text/javascript. There is indication that it should actually
be application/javascript, but given that browser support for this value is not
consistent it is dangerous to use. Also, it is possible to indicate version information in the
type attribute for certain browsers; for example, to indicate JavaScript 1.8 you would use
<script type="application/javascript;version=1.8">.

xml:space This attribute is included from XHTML 1.0 and is used to set whether spaces
need to be preserved within the script element or the default whitespace handling should
be employed. In practice, this attribute is not often used by developers.

Examples
<script type="text/javascript">
 alert("Hello World !!!");
</script>

<!-- code in external file -->
<script language="JavaScript1.2" src="superlib.js"></script>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 3+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• It is common practice to comment out statements enclosed by a <script> tag.

Without commenting, script code can be displayed as page content by user agents
that do not support scripting. The particular comment style might be dependent on
the language being used. For example, in JavaScript, use

<script type="text/javascript">
<!--
JavaScript code here
 // -->
</script>

In VBScript, use

<script type="text/vbscript">
<!--
VBScript code here
-->

</script>

XML escapes using CDATA sections are also possible; however, in all cases it is better
to avoid intermixing script code in a markup document and instead to link to it.

• The HTML 3.2 specification defined a placeholder script element.

• The event and for attributes are defined under transitional versions of HTML 4.01
but only as reserved values. Later specifications appear to have dropped potential
support for them, though they continue to be supported by Internet Explorer.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 365 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 365
PART I

• Most browsers assume JavaScript when parsing a script element without a set type
or language attribute.

• Refer to the <noscript> tag reference in this reference to see how content might be
identified for browsers that are not scripting-aware.

• HTML5 currently specifies all common attributes for a <script> tag, such as
accesskey, spellcheck, and so on, but most of these make little if no sense in the
context of this element.

<section> (Section)
This HTML5 element defines a generic section of a document and it may contain a heading
and footer of its own.

HTML5 Standard Syntax
<section
 accesskey="spaced list of accelerator key(s)"
 cite="URL of original content source"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</section>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 366 P a r t I : C o r e M a r k u p 366 P a r t I : C o r e M a r k u p

Element-Specific Attribute

Examples
<section id="section1">
<p>First paragraph.</p>
<p>Second paragraph</p>
</section>

<!-- section example #2 -->
<section id="section2">
<header><h1>Section Heading</h1></header>
<p>First paragraph.</p>
<p>Second paragraph.</p>
<footer><p>© 2010 Fake Examples, Inc.</p></header>
</section>

<!-- nested section example #3 -->
<section>
 <h1>Section Heading</h1>
 <section>
 <h2>Next Section Heading</h2>
 </section>
</section>

Compatibility

HTML5 Not currently supported by any browser, but can be addressed with a custom element.

Notes
• The section element is included in HTML5’s document outlining process.

• This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it and even apply a CSS display property for it.

<select> (Selection List)
This element defines a selection list within a form. Depending on the form of the selection
list, the control allows the user to select one or more list options.

Standard Syntax
<select
 class="class name(s)"
 dir="ltr | rtl"
 disabled="disabled"
 id="unique alphanumeric identifier"
 lang="language code"
 multiple="multiple"
 name="unique alphanumeric name"
 size="number"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 367 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 367
PART I

 style="style information"
 tabindex="number"
 title="advisory text">

 option and optgroup elements only

</select>

Attributes Introduced by HTML5
 accesskey="character"
 autofocus="autofocus"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 form="id of related form"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"

Attributes Defined by Internet Explorer
 accesskey="character" (4)
 align="absbottom | absmiddle | baseline | bottom |
 left | middle | right | texttop | top" (4)
 datafld="column name" (4)
 datasrc="data source id" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onblur, onchange, onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 368 P a r t I : C o r e M a r k u p 368 P a r t I : C o r e M a r k u p

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onbeforeupdate, onblur, onchange,
onclick, oncontextmenu, oncontrolselect, oncut, ondblclick, ondeactivate,
ondragenter, ondragleave, ondragover, ondrop, onerrorupdate, onfocus,
onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup, onlosecapture,
onmousedown, onmouseenter, onmouseleave, onmouseover, onmouseout, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselectstart

Element-Specific Attributes

align This Microsoft-specific attribute controls the alignment of the image with respect to
the content on the page. The default value is left, but other values such as absbottom,
absmiddle, baseline, bottom, middle, right, texttop, and top also might be
supported. The meaning of these values should be similar to those used for inserted objects,
such as images.

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)
is made active. It only takes an attribute value of autofocus when using the XML-style
syntax for HTML5.

disabled This attribute is used to turn off a form control. Elements will not be submitted,
nor can they receive any focus from the keyboard or mouse. Disabled form controls will not
be part of the tabbing order. The browser also can gray out the form that is disabled, to
indicate to the user that the form control is inactive. This attribute requires no value under
traditional HTML, but under XHTML variants it should be set to disabled.

form This HTML5 attribute should be set to a string that corresponds to the id of the form
element that the button is associated with. This allows form elements in one form to trigger
actions in others.

multiple This attribute allows the selection of multiple items in the selection list. The
default is single-item selection. Under XHTML, this attribute must have its value set to
multiple.

name This attribute allows a form control to be assigned a name for defining the name/
value pair used in form submission. Traditionally, these values were used by scripting
languages as well, though the standards encourage the use of the id attribute. For
compatibility purposes, both might have to be used.

size This attribute sets the number of visible items in the selection list. When the multiple
attribute is not present, only one entry should show; however, when multiple is present,
this attribute is useful for setting the size of the scrolling list box.

tabindex This attribute takes a numeric value indicating the position of the form control
in the tabbing index for the form. Tabbing proceeds from the lowest positive tabindex
value to the highest. Negative values for tabindex will leave the form control out of the

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 369 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 369
PART I

tabbing order. When tabbing is not explicitly set, the browser might tab through items in
the order they are encountered. Form controls that are disabled due to the presence of the
disabled attribute will not be part of the tabbing index.

Examples
<form action="#" method="get">
<p><label>Choose your favorite colors:</label>
<select name="colors" multiple="multiple" size="2">
 <option>Red</option>
 <option>Blue</option>
 <option>Green</option>
 <option>Yellow</option>
</select>
</p>

<label>Taco Choices:</label>
<select name="tacomenu" id="tacomenu">
 <option value="SuperChicken">Chicken</option>
 <option value="Baja">Fish</option>
 <option value="TastyPig">Carnitas</option>
</select>
</p>
</form>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• The HTML 4.01 specification reserves the attributes datafld and datasrc for

future use, but these are removed under XHTML.

• Internet Explorer’s variant of the disabled attribute allows values of true and
false, as well as the standard disabled value.

• Under traditional HTML, the end tag </option> is often omitted.

• Be careful of the name and id attribute problem that may occur, particularly when
setting the multiple attribute. It may be better to have separate values.

• The HTML 2.0 and 3.2 specifications define only multiple, name, and size
attributes.

<small> (Small Text)
This inline element renders the enclosed text one font size smaller than a document’s base
font size, unless it is already set to the smallest size.

Standard Syntax
<small
 class="class name(s)"
 dir="ltr | rtl"

 370 P a r t I : C o r e M a r k u p 370 P a r t I : C o r e M a r k u p

 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</small>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 data-X="user-defined data"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off"

Standard Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 371 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 371
PART I

onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some <small>small text</small>.</p>

<p>This element can be applied <small><small><small>multiple
times</small></small></small>to make things even smaller.</p>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 2+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• This element is equivalent to using font-size: smaller.

• A <small> tag can be used multiple times to decrease the size of text to a greater
degree. Using more than six <small> tags together doesn’t make sense because
browsers currently only support relative font sizes from 1 to 7 or, in CSS, from
xx-small to xx-large.

• With style sheets, it would seem this element should be inappropriate, similar to
other obsolete or deprecated elements, including big, which is marked obsolete
under HTML5. However, currently it is included in the specification and is defined
to indicate side comments or small print text, as in legal information.

<source> (Source)
This empty HTML5 element is used to specify multiple media resources for media elements
like audio and video.

HTML5 Standard Syntax
<source
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 height="pixels"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"

 372 P a r t I : C o r e M a r k u p 372 P a r t I : C o r e M a r k u p

 itemtype="microdata type in URL format"
 lang="language code"
 media="media type"
 spellcheck="true | false"
 src="URL of media resource"
 style="style information"
 tabindex="number"
 title="advisory text"
 type="MIME type of linked media">

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

media This attribute defines the intended media type of the linked media source, to
provide a hint to a user agent as to whether the media referenced is appropriate or how it
might be used. It is similar to the idea of a media attribute in a style sheet specifying print,
screen, projection, or other common values.

src This attribute is set to the URL of the media source to link to.

type This attribute is set to the MIME type of the linked media file specified by the src
attribute. Often it also includes a codecs value to indicate how a media resource is
encoded. However, the use of codecs, as alluded to in Chapter 2, is a bit of a mess under
HTML5 so page authors are urged to test carefully.

Examples
<!-- Multiple sources to try -->
<audio>
<source src="angus.ogg">
<source src="angus.mp4" type="audio/mp4">
</audio>

<!-- XHTML style -->
<video>
<source src="angus.mp4" type="video/mp4; codecs='avc1.58A01E, mp4a.40.2'" />
</video>

Compatibility

HTML5 Firefox 3.5+, Safari 3.1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 373 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 373
PART I

Notes
• As an empty element, source should be written under XHTML5 with a self-

identifying close tag like so <source />.

• Browsers should use multiple source elements in a fall-through fashion finding the
first appropriate version for playback. Page authors should consider putting in an
appropriate number of media variations to account for browser differences.

<spacer> (Extra Space)
This older, Netscape-proprietary element specifies an invisible region, which is useful for
page layout.

Proprietary Syntax (Netscape 3 and 4 Only)
<spacer
 align="absmiddle | absbottom | baseline | bottom |
 left | middle | right | texttop | top"
 height="pixels"
 size="pixels"
 type="block | horizontal | vertical"
 width="pixels">

Element-Specific Attributes

align This attribute specifies the alignment of the spacer with respect to surrounding text.
It is used only with spacers with type="block". The default value for the align attribute
is bottom. The meanings of the align values are similar to those of the align values used
with the img element.

height This attribute specifies the height of the invisible region, in pixels. It is used only
with spacers with type="block".

size Used with type="block" and type="horizontal" spacers, this attribute sets the
spacer’s width, in pixels. Used with a type="vertical" spacer, this attribute is used to set
the spacer’s height.

type This attribute indicates the type of invisible region. A horizontal spacer adds
horizontal space between words and objects. A vertical spacer adds space between lines.
A block spacer defines a general-purpose positioning rectangle, like an invisible image that
text can flow around.

width This attribute is used only with the type="block" spacer and is used to set the
width of the region, in pixels.

Example
A line of text with two <spacer type="horizontal" size="20">words
separated by 20 pixels. Here is a line of text.

<spacer type="vertical" size="50">
Here is another line of text with a large space between the two

 374 P a r t I : C o r e M a r k u p 374 P a r t I : C o r e M a r k u p

lines.<spacer align="left" type="block" height="100" width="100"> This
is a bunch of text that flows around an invisible block region. You
could have easily performed this layout with a table.

Compatibility

No standards support Netscape 3, 4, 4.5–4.8

Note
• This element should not be used, because even newer versions of the Netscape

browser (6 and 7) have dropped support for this element. It is presented for
historical reasons and will be dropped from the reference in the next edition of this
book.

 (Text Span)
This inline element is used to group content so scripting or style rules can be applied to the
enclosed content. As it has no preset or rendering meaning, this is the most useful inline
element for associating style and script with content.

Syntax
<span
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 375 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 375
PART I

 datafld="column name" (4)
 dataformatas="html | text" (4)
 datasrc="data source id" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

Standard Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some very
strange text.</p>

<p><span id="toggletext"
 onclick="this.style.color='red';"
 ondblclick="this.style.color='black';">
Click and Double Click Me
</p>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 3+,
Netscape 4+, Opera 4+, Safari 1+

 376 P a r t I : C o r e M a r k u p 376 P a r t I : C o r e M a r k u p

Notes
• The HTML 4.01 specification reserved the datafld, dataformatas, and datasrc

attributes for future use. They were later dropped from XHTML. Internet Explorer 4
and later continue to support these attributes for data binding.

• As a generic element, span, like div, is useful for binding style to arbitrary
content. However, span is an inline element and does not cause a return by
default as div does.

<strike> (Strikeout Text)
This inline element is used to indicate strikethrough text, namely text with a line drawn
through it. The s element provides shorthand notation for this element. Both are deprecated
under strict markup variants and obsolete under HTML5.

Syntax (Transitional Only)
<strike
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</strike>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 377 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 377
PART I

Examples
<p>This line contains a spelling <strike>misstake</strike> mistake</p>.

<p>Price: $<strike style="color: red;">5.00</strike>3.00</p>

Compatibility

HTML 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 3+, Opera 4+, Safari 1+

Notes
• This tag should act the same as the <s> tag.

• This element has been deprecated by the W3C. The strict HTML and XHTML
specifications include neither the <strike> tag nor the <s> tag because it is possible
to indicate strikethrough text using the style sheet property text-decoration:
line-through. The HTML5 specification also indicates this element as obsolete.

 (Strong Emphasis)
This inline element indicates strongly emphasized text. It usually is rendered in a bold
typeface, but its rendering is not guaranteed because it is a logical element.

Syntax
<strong
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 tabindex="number"
 spellcheck="true | false"

 378 P a r t I : C o r e M a r k u p 378 P a r t I : C o r e M a r k u p

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>It is really important to pay attention.</p>

<p>This is an <strong style="font-size: 4em; color: red;">emergency!
</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• This element generally renders as bold text. As a logical element, however, strong

is useful to bind style rules to.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 379 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 379
PART I

• As compared to b, this element does have some logical meaning. For example, voice
browsers may speak -enclosed text in a different voice than is used for
text that is enclosed by , though practically such distinction may not hold given
the need of voice browsers to act reasonably with pages not coded for them.

<style> (Style Information)
This element is used to surround style sheet rules for a document. This element should be
found only in the head element, though it appears HTML5 may loosen this restriction. Style
rules directly found within a document’s body generally should be set with the core style
attribute for the particular element of interest.

Syntax
<style
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 media="all | print | screen | others"
 title="advisory text"
 type="MIME Type"
 xml:space="preserve">

 CSS rules

</style>

Common Attributes
 disabled="disabled" (DOM Level 1)

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 class="class name(s)"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 scoped="scoped"
 spellcheck="true | false"
 style="CSS rules"
 tabindex="number"

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

 380 P a r t I : C o r e M a r k u p 380 P a r t I : C o r e M a r k u p

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Introduced by Internet Explorer
onerror, onreadystatechange

Element-Specific Attributes

disabled This initially Microsoft-defined attribute is used to disable a style sheet. The
presence of the attribute is all that is required to disable the style sheet. In conjunction with
scripting, this attribute could be used to turn on and off various style sheets in a document.
While not documented in later versions of Internet Explorer, this attribute is very much
supported and used, since it is part of the DOM standard. Internet Explorer may also
support values of true and false.

media This attribute specifies the destination medium for the style information. The value
of the attribute can be a single media descriptor, such as screen, or a comma-separated list.
Possible values for this attribute include all, aural, braille, print, projection,
screen, and tv. Other values also might be defined, depending on the browser. Internet
Explorer supports all, print, and screen as values for this attribute.

scoped This HTML5 Boolean attribute is used to indicate if the style sheet should be scoped;
in other words, apply only the tree it is enclosed within. For example, here we see a <style>
tag found within a <noscript> tag.

<noscript>
 <style type="text/css" scoped>
 h1 {color: red;}
 </style>
 <h1>Error: scripting required</h1>
</noscript>

With the scoped attribute present, the styling rules should be restricted solely to the
elements within the <noscript> tag; thus, other h1 elements would not be colored red.
Given the lack of implementations and some specification unclarity, page authors should
approach this attribute cautiously.

type This attribute is used to define the type of style sheet. The value of the attribute
should be the MIME type of the style sheet language used. The most common current value
for this attribute is text/css, which indicates a CSS format.

xml:space This attribute is included from XHTML 1.0 and is used to specify whether
spaces need to be preserved within the script element or the default whitespace handling
should be employed.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 381 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 381
PART I

Example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Simple Style Element Example</title>
<style type="text/css">
 body {background: black; color: white;
 font: 12px Helvetica;}
 h1 {color: red; font: 14px Impact;}
</style>
</head>
<body>
<h1>A 14-pixel red Impact heading on a black
background</h1>
<p>Regular body text, which is 12 pixel white Helvetica.</p>
</body>
</html>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 3+,
Netscape 4+, Opera 4+, Safari 1+

Notes
• Style information also can be specified in external style sheets as defined by a

<link> tag.

• Style information can also be associated with a particular element using the style
attribute.

• Style rules are often comment masked within a <style> tag to avoid interpretation
by nonconforming browsers.

<style type="text/css">
<!--
 body {background-color: red;}
-->
</style>

• Internet Explorer’s conditional comments also are useful to address browser
concerns. See the section “<!-- .[].. --> (Conditional Comment)” toward the start of
the reference.

• The meaning of some HTML5 global attributes like accesskey, contextmenu,
spellcheck, and style in particular are quite unclear for this element and may be
erroneous.

<sub> (Subscript)
This element renders its content as subscripted text.

 382 P a r t I : C o r e M a r k u p 382 P a r t I : C o r e M a r k u p

Syntax
<sub
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</sub>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 383 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 383
PART I

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some _{subscripted} text.</p>

<p>The secret value of the formula is X_{<small>2</small>}.</p>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 3+,
Netscape 2+, Opera 4+, Safari 1+

Notes
• The HTML 3.2 specification supports no attribute for the sub element.

• The CSS property vertical-align can be used to simulate this element.

• Most browsers may slightly shift text lines below a <sub> tag.

<sup> (Superscript)
This element renders its content as superscripted text.

Syntax
<sup
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">

</sup>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"

 384 P a r t I : C o r e M a r k u p 384 P a r t I : C o r e M a r k u p

 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some ^{superscripted} text.</p>

<p><var>x</var>² = 4 when <var>x</var> = 2</p>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 2+, Opera 4+, Safari 1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 385 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 385
PART I

Notes
• The HTML 3.2 specification supports no attribute for the sup element.

• This element can be simulated using the CSS property vertical-align.

• Most browsers may slightly shift text lines above a <sup> tag.

<table> (Table)
This element is used to define a table. Tables should be used to organize data. However,
they are often used to provide structure for laying out pages in the absence of CSS.

Standard Syntax
<table
 align="center | left | right" (transitional only)
 bgcolor="color name | #RRGGBB" (transitional only)
 border="pixels"
 cellpadding="pixels"
 cellspacing="pixels"
 class="class name(s)"
 dir="ltr | rtl"
 frame="above | below | border | box | hsides |
 lhs | rhs | void | vsides"
 id="unique alphanumeric identifier"
 lang="language code"
 rules="all | cols | groups | none | rows"
 style="style information"
 summary="summary information"
 title="advisory text"
 width="percentage | pixels">

 caption, col, colgroup, thead, tbody, tfoot, and tr elements only

</table>

Nonstandard Attributes Commonly Supported
 background="URL of image" file
 bordercolor="color name | #RRGGBB"
 cols="number of columns"
 height="percentage | pixels"
 hspace="pixels"
 vspace="pixels"

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"

 386 P a r t I : C o r e M a r k u p 386 P a r t I : C o r e M a r k u p

 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 bordercolordark="color name | #RRGGBB" (4)
 bordercolorlight="color name | #RRGGBB" (4)
 datapagesize="number of records to display" (4)
 datasrc="data source id" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag, ondragend,
ondragenter, ondragleave, ondragover, ondragstart, ondrop, onfilterchange,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onscroll, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute specifies the alignment of the table with respect to surrounding text.
The HTML 4.01 specification defines center, left, and right. Some browsers also might
support alignment values, such as absmiddle, that are common to block objects.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 387 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 387
PART I

background This nonstandard attribute, which is supported by nearly every browser,
specifies the URL of a background image for the table. The image is tiled if it is smaller than
the table dimensions. Note that some early versions of Netscape display the background
image in each table cell rather than behind the complete table.

bgcolor This attribute specifies a background color for a table. Its value can be either a
named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000.

border This attribute specifies, in pixels, the width of a table’s borders. A value of 0 makes
a borderless table, which is useful for graphics layout.

bordercolor This attribute, supported by Internet Explorer and Netscape, is used to set the
border color for a table. The attribute should be used only with a positive value for the
border attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00. The color
applications may be slightly different in browsers, since Netscape colors only the outer
border of the table. CSS should be used for border styling instead of this attribute.

bordercolordark This Internet Explorer–specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for cell borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.
CSS should be used for border styling instead of this attribute.

bordercolorlight This Internet Explorer–specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for cell borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.
CSS should be used for border styling instead of this attribute.

cellpadding This attribute sets the width, in pixels, between the edge of a cell and its
content.

cellspacing This attribute sets the width, in pixels, between individual cells.

cols This attribute specifies the number of columns in the table and is used to help quickly
calculate the size of the table. This attribute was part of the preliminary specification of
HTML 4.0, but was later dropped. A few browsers, notably Netscape and Internet Explorer,
support it.

datapagesize The value of this Microsoft-specific attribute is the number of records that can
be displayed in the table when data binding is used.

frame This attribute specifies which edges of a table are to display a border frame. A value
of above indicates only the top edge; below indicates only the bottom edge; and border
and box indicate all edges, which is the default when the border attribute is a positive
integer. A value of hsides indicates only the top and bottom edges should be displayed;
lhs indicates the left edge should be displayed; rhs indicates the right edge should be

 388 P a r t I : C o r e M a r k u p 388 P a r t I : C o r e M a r k u p

displayed; vsides indicates the left and right edges both should be displayed; and void
indicates no border should be displayed.

height This attribute specifies the height of the table, in pixels or as a percentage of the
browser window. Be careful, because some browser versions may not support percentage
values for height or may have variations in this calculation when they do support it.

hspace This Netscape-specific attribute indicates the horizontal space, in pixels, between
the table and surrounding content, similar to the same attribute on .

rules This attribute controls the display of dividing rules within a table. A value of all
specifies dividing rules for rows and columns. A value of cols specifies dividing rules for
columns only. A value of groups specifies horizontal dividing rules between groups of table
cells defined by the thead, tbody, tfoot, or colgroup elements. A value of rows specifies
dividing rules for rows only. A value of none indicates no dividing rules and is the default.

summary This attribute is used to provide a text summary of the table’s purpose and
structure. This element is used for accessibility, and its presence is important for nonvisual
user agents.

vspace This Netscape attribute indicates the vertical space, in pixels, between the table and
surrounding content, similar to the same attribute on .

width This attribute specifies the width of the table, either in pixels or as a percentage of
the enclosing window.

Examples
<table bgcolor="white" border="2">
 <tr>
 <td>Cell 1</td>
 <td>Cell 2</td>
 <td>Cell 3</td>
 <td>Cell 4</td>
 </tr>

 <tr>
 <td>Cell 5</td>
 <td>Cell 6</td>
 </tr>
</table>

<table rules="all" bgcolor="yellow">
<caption>Widgets by Area</caption>
<thead align="center" bgcolor="green" valign="middle">
 <tr>
 <td>Region</td>
 <th>Regular Widget</th>
 <th>Super Widget</th>
 </tr>
</thead>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 389 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 389
PART I

<tfoot align="right" bgcolor="red" valign="bottom">
<tr>
 <td>This is part of the footer.</td>
 <td>This is also part of the footer.</td>
</tr>
</tfoot>

<tbody>

 <tr>
 <th>West Coast</th>
 <td>10</td>
 <td>12</td>
 </tr>

 <tr>
 <th>East Coast</th>
 <td>1</td>
 <td>20</td>
 </tr>
</tbody>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• In addition to displaying tabular data, tables have been used to support graphics

layout and design. CSS is currently the suggested method for layout, but current
inspection of sites suggests that in 2009 table-based layout is alive and well.

• The HTML 4 specification reserved the attributes datasrc, datafld,
dataformatas, and datapagesize for future versions. However, XHTML dropped
these attributes. They are supported in Internet Explorer 4 and later. Early drafts of
the HTML5 specification introduced a datagrid, which seem to revisit these ideas,
but it was later dropped with indications it may return in future versions of HTML.

• At the time of this writing, most browsers have problems with char and charoff
attributes in all table-related tags.

• The HTML 3.2 specification defines only the align, border, cellpadding,
cellspacing, and width attributes for the table element.

• The cols attribute might provide an undesirable result under some versions of
Netscape, which assumes the size of each column in the table is exactly the same.

<tbody> (Table Body)
This element is used to group the rows within the body of a table as defined by <tr> tags.

 390 P a r t I : C o r e M a r k u p 390 P a r t I : C o r e M a r k u p

Standard Syntax
<tbody align="center | char | justify | left | right"
 char="character"
 charoff="offset"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top">

 tr elements only

</tbody>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 bgcolor="color name | #RRGGBB" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 391 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 391
PART I

onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within a <tbody> tag.
Common values are center, justify, left, and right. The specification also defines a
value of char. When align is set to char, the attribute char must be present and set to the
character to which cells should be aligned. A common use of this approach would be to set
cells to align on a decimal point. Unfortunately, browsers do not support the char value for
align well.

bgcolor This attribute specifies a background color for the cells within a <tbody> tag. Its
value can be either a named color, such as red, or a color specified in the hexadecimal
#RRGGBB format, such as #FF0000.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset as a positive or negative integer to align characters
as related to the char value. A value of 2 would align characters in a cell two characters to
the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells within a
<tbody> tag. The HTML specification defines baseline, bottom, middle, and top.
Internet Explorer also supports center, which should act like middle.

Example
<table rule="all">
<thead>
<tr>
 <td>Region</td>
 <th>Regular Widget</th>
 <th>Super Widget</th>
 </tr>
</thead>
<tbody>
 <tr>
 <th>West Coast</th>

 392 P a r t I : C o r e M a r k u p 392 P a r t I : C o r e M a r k u p

 <td>10</td>
 <td>12</td>
 </tr>
 <tr>
 <th>East Coast</th>
 <td>1</td>
 <td>20</td>
 </tr>
</tbody>
</table>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 5+, Safari 1+

Notes
• This element is found only in a <table> tag and contains one or more table rows, as

indicated by <tr> tags.

• For XHTML compatibility, the closing </tbody> tag must be used with this
element; however, it is optional under traditional HTML as well as HTML5.

<td> (Table Data)
This element specifies a data cell in a table. The element should occur within a table row as
defined by the tr element.

Standard Syntax
<td
 abbr="abbreviation"
 align="center | justify | left | right"
 axis="group name"
 bgcolor="color name | #RRGGBB" (transitional only)
 char="character"
 charoff="offset"
 class="class name"
 colspan="number of columns to span"
 dir="ltr | rtl"
 headers="space-separated list of associated header
 cells' id values"
 height="pixels or percentage" (transitional only)
 id="unique alphanumeric identifier"
 lang="language code"
 nowrap="nowrap" (transitional only)
 rowspan="number or rows to span"
 scope="col | colgroup | row | rowgroup"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top"
 width="pixels or percentage"> (transitional only)

</td>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 393 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 393
PART I

Nonstandard Attributes Commonly Supported
 background="URL of image file"
 bordercolor="color name | #RRGGBB"

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 background="URL of image file" (4)
 bordercolor="color name | #RRGGBB" (4)
 bordercolordark="color name | #RRGGBB" (4)
 bordercolorlight="color name | #RRGGBB" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,

 394 P a r t I : C o r e M a r k u p 394 P a r t I : C o r e M a r k u p

onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

abbr The value of this attribute is an abbreviated name for a header cell. This might be
useful when attempting to display large tables on small screens. User agents rarely
implement this feature.

align This attribute is used to align the contents of the cells. Supported values are center,
justify, left, and right.

axis This attribute is used to provide a name for a group of related headers.

background This nonstandard attribute, which is supported by major browsers, specifies
the URL of a background image for the table cell. The image is tiled if it is smaller than the
cell’s dimensions.

bgcolor This attribute specifies a background color for a table cell. Its value can be either a
named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000. Note that some older versions of Netscape Navigator may not render an empty
cell with a colored background unless some content serving as placeholder, such as a
nonbreaking space or transparent pixel-gif, is inserted in the cell.

bordercolor This attribute, supported by Internet Explorer and Netscape, is used to set the
border color for a table cell. The attribute should be used only with a positive value for the
border attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00.

bordercolordark This Internet Explorer–specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.

bordercolorlight This Internet Explorer–specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, specified as a positive or negative integer, to align
characters as related to the char value. A value of 2, for example, would align characters in
a cell two characters to the right of the character defined by the char attribute.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 395 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 395
PART I

colspan This attribute takes a numeric value that indicates how many columns wide a cell
should be. This is useful for creating tables with cells of different widths.

headers This attribute takes a space-separated list of id values that correspond to the
header cells related to this cell.

height This attribute indicates the height of the cell, in pixels or as a percentage. Some
browsers may have rendering problems with percentage values.

nowrap This attribute keeps the content within a table cell from automatically wrapping.
The nowrap attribute takes no value under HTML but should be set to the value nowrap
under XHTML.

rowspan This attribute takes a numeric value that indicates how many rows high a table
cell should span. This attribute is useful in defining tables with cells of different heights.

scope This attribute specifies the table cells for which the current cell provides header
information. A value of col indicates that the cell is a header for the rest of the column
below it. A value of colgroup indicates that the cell is a header for its current column
group. A value of row indicates that the cell contains header information for the rest of the
row it is in. A value of rowgroup indicates that the cell is a header for its row group. This
attribute might be used in place of the header attribute and is useful for rendering
assistance by nonvisual browsers. This attribute was added very late to the HTML 4
specification, and support for this attribute is still minimal.

valign This attribute is used to set the vertical alignment for the table cell. The specification
defines baseline, bottom, middle, and top. Internet Explorer also supports center,
which should be the same as middle.

width This attribute specifies the width of a cell, in pixels or as a percentage value.

Examples
<table>
<tr>
<td align="left" valign="top" width="100">
 Put me in the top left corner.
</td>
<td align="right" bgcolor="red" valign="bottom" width="100">
Put me in the bottom right corner.
</td>
</tr>
</table>

<table border="1" width="80%">
 <tr>
 <td colspan="3">
 A pretty wide cell
 </td>
 <tr>
 <td>Item 2</td>

 396 P a r t I : C o r e M a r k u p 396 P a r t I : C o r e M a r k u p

 <td>Item 3</td>
 <td>Item 4</td>
 </tr>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• Under the XHTML 1.0 specification, the closing </td> tag ceases to be optional.

• The HTML 3.2 specification defines only align, colspan, height, nowrap,
rowspan, valign, and width attributes.

• This element should always be within the tr element.

<textarea> (Multiline Text Input)
This element specifies a multiline text input field contained within a form.

Standard Syntax
<textarea
 accesskey="character"
 class="class name"
 cols="number"
 dir="ltr | rtl"
 disabled="disabled"
 id="unique alphanumeric identifier"
 lang="language code"
 name="unique alphanumeric identifier"
 readonly="readonly"
 rows="number"
 style="style information"
 tabindex="number"
 title="advisory text">

</textarea>

Attributes Introduced by HTML5
 autofocus="autofocus"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 form="related form id"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 397 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 397
PART I

 maxlength="positive number"
 pattern="validation pattern"
 placeholder="placeholder text"
 required="required"
 spellcheck="true | false"
 tabindex="number"
 wrap="hard | soft"

Attributes Defined by Internet Explorer
 contenteditable="false | true | inherit" (5.5)
 datafld="column name" (4)
 datasrc="data source id" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 wrap="off | physical | virtual" (4)

Attribute Defined by Netscape 4
 wrap="hard | off | soft"

HTML 4 Event Attributes
onblur, onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup,
onselect

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onafterupdate, onbeforeactivate, onbeforecopy, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onclick, onchange,
oncontextmenu, oncontrolselect, oncopy, oncut, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onerrorupdate, onfilterchange, onfocus, onfocusin, onfocusout, onhelp,
onkeydown, onkeypress, onkeyup, onlosecapture, onmousedown, onmouseleave,
onmouseenter, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselect,
onselectstart, ontimeerror

Element-Specific Attributes

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)

 398 P a r t I : C o r e M a r k u p 398 P a r t I : C o r e M a r k u p

is made active. It only takes an attribute value of autofocus when using the XML-style
syntax for HTML5.

cols This attribute sets the width, in characters, of the text area. The typical default value
for the size of a <textarea> tag when this attribute is not set is 20 characters.

disabled This attribute is used to turn off a form control. Elements will not be submitted,
nor can they receive any focus from the keyboard or mouse. Disabled form controls will not
be part of the tabbing order. The browser also can gray out the form that is disabled, to
indicate to the user that the form control is inactive. This attribute requires no value.

form This HTML5 attribute should be set to a string that corresponds to the id of the form
element that an interactive control such as a button is associated with. This allows form
elements in one form to trigger actions in others.

name This attribute allows a form control to be assigned a name for submitting to the
server the appropriate name/value pair. Previously it was also used so that the field could
be referenced by a scripting language. However, it is more appropriate to use the id
attribute. For compatibility purposes, both attributes might be used and set to the same
value.

pattern This HTML5 attribute specifies a regular expression against which the field should
be validated. The title attribute should be provided when this attribute is used, to give an
indication of what is an acceptable pattern and what isn’t.

placeholder This HTML5 attribute specifies a short bit of text that is used to help the user
figure out what type of information to fill in for a form control. Likely, the text will be
placed in the field and cleared upon focus.

readonly This attribute prevents the form control’s value from being changed. Form
controls with this attribute set might receive focus from the user but should not permit the
user to modify the value. Because it receives focus, a readonly form control will be part of
the form’s tabbing order. Finally, the control’s value will be sent on form submission. Under
XHTML, the value of the readonly attribute should be set to readonly.

required The presence of this HTML5 Boolean attribute indicates that the user is required
to provide a value for the <textarea> tag for the form to be submitted. User agents that
understand this should set the CSS pseudo-class :invalid when the field goes into error.

rows This attribute sets the number of rows in the text area. The value of the attribute
should be a positive integer.

wrap In some versions of Netscape (later Firefox) and Microsoft browsers, this attribute
controls word-wrap behavior. A value of off for the attribute forces the <textarea> tag
not to wrap text, so the viewer must manually enter line breaks. A value of hard causes
word wrap and includes line breaks in text submitted to the server. A value of soft causes
word wrap but removes line breaks from text submitted to the server. Internet Explorer
supports a value of physical, which is equivalent to Netscape’s hard value, and a value of
virtual, which is equivalent to Netscape’s soft value. If the wrap attribute is not

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 399 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 399
PART I

included, text will still wrap under Internet Explorer, but older versions of Netscape,
notably Netscape 4, will scroll horizontally in the text box. Given this problem, even though
it is nonstandard, it may be a good idea to include the wrap attribute. HTML5 reintroduces
this attribute with the values of hard and soft. Use of this attribute assumes that the cols
attribute has been set properly.

Examples
<textarea id="CommentBox" cols="40" rows="8">
Default text in field
</textarea>

<textarea name="comment" id="comment" rows="10" cols="40" wrap="hard"
 align="center">
</textarea>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• Any text between the <textarea> and </textarea> tags is rendered as the default

entry for the form control. Content within a textarea element is not interpreted, so
white space is preserved and tags themselves are ignored.

• The textarea element traditionally lacks a maxlength attribute, which causes a
more obvious security risk. The HTML5 specification does introduce a maxlength
value to restrict the number of characters that may be entered. However, it should
be noted that all client-side form validations should be assumed as user
conveniences only and not security, as they may be easily removed by malicious
users.

• A <textarea> tag cannot be a descendent of an a (anchor) or button element.

• The HTML 4.01 specification reserves the datafld and datasrc attributes for
future use with the textarea element.

• The HTML 2.0 and 3.2 specifications define only the cols, name, and rows
attributes for this element.

<tfoot> (Table Footer)
This element is used to group the rows within the footer of a table so that common
alignment and style defaults can easily be set for numerous cells. This element might be
particularly useful when setting a common footer for tables that are dynamically generated.

Standard Syntax
<tfoot
 align="center | char | justify | left | right"
 char="character"
 charoff="offset"

 400 P a r t I : C o r e M a r k u p 400 P a r t I : C o r e M a r k u p

 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top">

 tr elements only

</tfoot>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)
 valign="center" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 401 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 401
PART I

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within a <tfoot> tag.
Common values are center, justify, left, and right. The HTML and XHTML
specifications also define a value of char. When align is set to char, the attribute char
must be present and set to the character to which cells should be aligned. A common use of
this approach would be to set cells to align on a decimal point.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, as a positive or negative integer, for aligning
characters as related to the char value. A value of 2, for example, would align characters in
a cell two characters to the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells within a
<tfoot> tag. The specification defines baseline, bottom, middle, and top. Internet
Explorer also supports center, which should be the same as middle.

Example
<table border="1" width="80%">
<tfoot align="center" class="tablefooter"
 valign="bottom">
 <td>This is part of the footer.</td>
 <td>This is also part of the footer.</td>
</tfoot>
<tbody class="tablebody">
 <tr>
 <td>The contents of the table!</td>
 </tr>
</tbody>
</table>

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 5+, Safari 1+

 402 P a r t I : C o r e M a r k u p 402 P a r t I : C o r e M a r k u p

Notes
• This element is contained only by the table element and contains table rows as

delimited by tr elements.

• While it would seem that this element should come after a <tbody> tag, it actually
should come before it, within a <table> tag.

• Under the XHTML 1.0 specification, the closing </tfoot> tag ceases to be optional.

<th> (Table Header)
This element specifies a header cell in a table. The element should occur within a table row
as defined by a tr element. The main visual difference between this element and td is that
browsers might render table headers slightly differently, usually bolding and centering
contents. However, the element is logical in nature and should be used to structure tables.

Standard Syntax
<th
 abbr="abbreviation"
 align="center | justify | left | right"
 axis="group name"
 bgcolor="color name | #RRGGBB" (transitional only)
 char="character"
 charoff="offset"
 class="class name"
 colspan="number"
 dir="ltr | rtl"
 headers="space-separated list of associated header
 cells' id values"
 height="pixels" (transitional only)
 id="unique alphanumeric identifier"
 lang="language code"
 nowrap="nowrap" (transitional only)
 rowspan="number"
 scope="col | colgroup | row | rowgroup"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top"
 width="pixels"> (transitional only)

</th>

Nonstandard Attributes Commonly Supported
 background="URL of image file"
 bordercolor="color name | #RRGGBB"

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 403 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 403
PART I

 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 bordercolordark="color name | #RRGGBB" (4)
 bordercolorlight="color name | #RRGGBB" (4)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 valign="center" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

abbr The value of this attribute is an abbreviated name for a header cell. This might be
useful when attempting to display large tables on small screens. User agents rarely support
this attribute.

 404 P a r t I : C o r e M a r k u p 404 P a r t I : C o r e M a r k u p

align This attribute is used to align the contents of the cells within a <th> tag. Common
values are center, justify, left, and right.

axis This attribute is used to provide a name for a group of related headers.

background This nonstandard attribute, which is supported by most browsers, specifies the
URL of a background image for the table cell. The image is tiled if it is smaller than the cell’s
dimensions.

bgcolor This attribute specifies a background color for a table cell. Its value can be either a
named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000.

bordercolor This attribute, supported by Internet Explorer and Netscape, is used to set the
border color for a table cell. The attribute should be used only with a positive value for the
border attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00.

bordercolordark This Internet Explorer–specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.

bordercolorlight This Internet Explorer–specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, specified as a positive or negative integer, for
aligning characters as related to the char value. A value of 2, for example, would align
characters in a cell two characters to the right of the character defined by the char attribute.

colspan This attribute takes a numeric value that indicates how many columns wide a cell
should be. This is useful for creating tables with cells of different widths.

headers This attribute takes a space-separated list of id values that correspond to the
header cells related to this cell.

height This attribute indicates the height of the cell, in pixels or as a percentage. Some
browsers may have rendering problems with percentage values.

nowrap This attribute keeps the content within a table cell from automatically wrapping.
The nowrap attribute takes no value under HTML but should be set to the value nowrap
under XHTML.

rowspan This attribute takes a numeric value that indicates how many rows high a table
cell should span. This attribute is useful in defining tables with cells of different heights.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 405 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 405
PART I

scope This attribute specifies the table cells for which the current cell provides header
information. A value of col indicates that the cell is a header for the rest of the column
below it. A value of colgroup indicates that the cell is a header for its current column
group. A value of row indicates that the cell contains header information for the rest of the
row it is in. A value of rowgroup indicates that the cell is a header for its row group. This
attribute can be used in place of the header attribute and is useful for rendering assistance
by nonvisual browsers. This attribute was added very late to the HTML 4.0 specification,
and support for this attribute is still minimal in browsers.

valign This attribute is used to set the vertical alignment for the table cell. The specification
defines baseline, bottom, middle, and top. Internet Explorer also supports center,
which should be the same as middle.

width This attribute specifies the width of a cell, in pixels or as a percentage value.

Example
<table border="1">
 <tr>
 <th>Names</th>
 <th>Apples</th>
 <th>Oranges</th>
 </tr>
 <tr>
 <td>Rusty</td>
 <td>10</td>
 <td>5</td>
 </tr>
 <tr>
 <td>Ruby Sue</td>
 <td>20</td>
 <td>3</td>
 </tr>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• The HTML 3.2 specification defines only align, colspan, height, nowrap,

rowspan, valign, and width attributes.

• This element should always be within the tr element.

• Under the XHTML 1.0 specification, the closing </th> tag ceases to be optional.

<thead> (Table Header)
This element is used to group the rows within the header of a table so that common alignment
and style defaults can easily be set for numerous cells. This element might be particularly
useful when setting a common head for tables that are dynamically generated.

 406 P a r t I : C o r e M a r k u p 406 P a r t I : C o r e M a r k u p

Standard Syntax
<thead
 align="center | char | justify | left | right"
 char="character"
 charoff="offset"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top">

 tr elements only

</thead>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="off | on" (5.5)
 valign="center" (4)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 407 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 407
PART I

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within a <thead> tag. Common
values are center, justify, left, and right. The specification also defines a value of
char. When align is set to char, the attribute char must be present and set to the character
to which cells should be aligned. A common use of this approach would be to set cells to
align on a decimal point.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, specified as a positive or negative integer, for
aligning characters as related to the char value. A value of 2, for example, would align
characters in a cell two characters to the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells with a <thead>
tag. The specification defines baseline, bottom, middle, and top. Internet Explorer also
supports center, which should be the same as middle.

Example
<table border="1" width="80%">
<thead align="center" class="footer"
 valign="bottom">
 <td>This is the Important Table Headline</td>
</thead>

<tbody class="tablebody">
 <tr>
 <td>The contents of the table!</td>
 </tr>
</tbody>
</table>

 408 P a r t I : C o r e M a r k u p 408 P a r t I : C o r e M a r k u p

Compatibility

HTML 4, 4.01, 5
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 4+,
Netscape 6+, Opera 5+, Safari 1+

Notes
• This element is contained only by a <table> tag and contains table rows as

delimited by <tr> tags.

• Under the XHTML 1.0 specification, the closing </thead> tag ceases to be optional.

<time> (Time)
This inline HTML5 element encloses content that represents a date and/or time.

HTML5 Standard Syntax
<time
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 datetime="date-or-time"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 pubdate="pubdate"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text">

</time>

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 409 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 409
PART I

Element-Specific Attributes

datetime This attribute is used to indicate the date and time of the enclosed content. The
value of the attribute is a date in a special format as defined by ISO 8601. The basic date
format is

YYYY-MM-DDThh:mm:ssTZD

where the following is true:

YYYY=four-digit year such as 1999
MM=two-digit month (01=January, 02=February, and so on.)
DD=two-digit day of the month (01 through 31)
hh=two-digit hour (00 to 23) (24-hour clock, not AM or PM)
mm=two-digit minute (00 through 59)
ss=two-digit second (00 through 59)
TZD=time zone designator

The time zone designator is either Z, which indicates Universal Time Coordinate or
coordinated universal time format (UTC), or +hh:mm, which indicates that the time is a local
time that is hh hours and mm minutes ahead of UTC. Alternatively, the format for the time
zone designator could be -hh:mm, which indicates that the local time is behind UTC. Note
that the letter T actually appears in the string, all digits must be used, and 00 values for
minutes and seconds might be required. An example value for the datetime attribute
might be 1999-10-6T09:15:00-05:00, which corresponds to October 6, 1999, 9:15 A.M.,
U.S. Eastern Standard Time.

pubdate This Boolean attribute, when specified, indicates that the date and time given
by this element should be applied as the publication date of an enclosing article element.
If there is no enclosing article element, the publication date would apply to the entire
document. Under XHTML5, the value of the attribute should be pubdate for XML syntax
conformance.

Examples
<p>My son was born on <time datetime="2006-01-13">Friday the 13th</time> so
it is my new lucky day.</p>

<p>Today it is <time>2010-07-08</time> which is an interesting date.</p>

<p>When did the Moon runaway? <time>1999-09-13T09:15:00-05:00</time></p>

<!-- example shows the pubdate application to the enclosing article -->
<article id="article1" >
<header>
<h1>HTML5 is Coming Soon!</h1>
<p><time pubdate datetime="2009-10-31T12:30-11:00"></time></p>
</header>
<p>The new HTML5 specification is in the works. While many features are
not currently implemented or even well defined yet, progress is being made.
Stay tuned to see more new HTML elements added to your Web documents in the
years to come.</p>
</article>

 410 P a r t I : C o r e M a r k u p 410 P a r t I : C o r e M a r k u p

Compatibility

HTML5 Not currently supported by any browser, but addressed via a custom element.

Notes
• This element should contain content that is in the correct format unless the

datetime attribute is used. Of course, browsers aren’t going to enforce this, but it is
important if you want correct HTML5 conformance.

• This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it directly or use a tag with a custom class.

<title> (Document Title)
This element encloses the title of an HTML document. It must occur within a document’s
head element and must be present in all valid documents. There should be only a single
occurrence of this element. Meaningful titles are very important because they are used for
bookmarking a page, are occasionally used by browsers to label locally saved pages, and
are often used by search engines attempting to index the document.

Standard Syntax
<title
 dir="ltr | rtl"
 lang="language code">
</title>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 hidden="hidden"
 id="unique alphanumeric identifier"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 lang="language code"
 spellcheck="true | false"
 style="style information"
 tabindex="number"
 title="advisory text"

Events Defined by HTML5
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 411 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 411
PART I

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onlayoutcomplete, onreadystatechange

Example
<head><title>Big Company: Products: Super Widget</title></head>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Notes
• Often, the title is set as the first element found in the head, though it should come

after a character set indication if that is not taken care of by appropriate HTTP
headers.

• Meaningful names should provide information about the document. A poor title
would be something like “My Home Page,” whereas a better title would be “Joe
Smith Home.”

• Browsers can be extremely sensitive to the <title> tag. If the title element is
malformed or not closed, the page might not even render in the browser.

• The HTML 2.0 and 3.2 specifications define no attributes for the title element.

• Under most browsers, core HTML 4 attribute values like id and class will work
for DOM access and make some sense for manipulation via JavaScript, but other
attributes for events or style-related features do not.

• The title element may contain character entities to set accents or introduce other
special characters, though you should use caution to make sure the appropriate
character set has been defined. Markup may not be included in the title element.

• Currently, the HTML5 specification defines all the common attributes for the title
element, like accesskey, class, contextmenu, and so on. Their context, however,
seems inappropriate given how browsers work. For example, while it is possible to
imagine a tabbing order or context menu for a browser title, so far such things are
unclear and suggest an over generalization of the HTML5 specification when it
comes to global attributes.

<tr> (Table Row)
This block element specifies a row in a table. The individual cells of the row are defined by
the th and td elements.

 412 P a r t I : C o r e M a r k u p 412 P a r t I : C o r e M a r k u p

Syntax
<tr
 align="center | justify | left | right | char"
 bgcolor="color name | #RRGGBB" (transitional only)
 char="character"
 charoff="offset"
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text"
 valign="baseline | bottom | middle | top">

 td or th elements only

</tr>

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 bordercolor="color name | #RRGGBB" (4)
 bordercolordark="color name | #RRGGBB" (4)
 bordercolorlight="color name | #RRGGBB" (4)
 hidefocus="true | false" (5.5)
 language="javascript | javascript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 valign="center" (4)

Standard Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 413 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 413
PART I

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforepaste, onblur, onclick, oncontextmenu, oncontrolselect, oncopy,
oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfilterchange, onfocus,
onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmousemove, onmouseenter, onmouseleave,
onmouseout, onmouseover, onmouseup onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within the element. Common
values are center, justify, left, and right. If a value is set to char, alignment is set to
align off the character defined by the char attribute, with offset applied by charoffset.

bgcolor This attribute specifies a background color for all the cells in a row. Its value can be
either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format,
such as #FF0000.

bordercolor This attribute, supported by a number of browsers, including Internet Explorer,
is used to set the border color for table cells in the row. The attribute should be used only
with a positive value for the border attribute. The value of the attribute can be either a
named color, such as green, or a color specified in the hexadecimal #RRGGBB format, such
as #00FF00. CSS should be used instead.

bordercolordark This Internet Explorer–specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for the cell’s borders. It must be used with
the border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.
CSS should be used instead.

bordercolorlight This Internet Explorer–specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.
CSS should be used instead.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

 414 P a r t I : C o r e M a r k u p 414 P a r t I : C o r e M a r k u p

charoff This attribute contains an offset, specified as a positive or negative integer, for
aligning characters as related to the char value. A value of 2, for example, would align
characters in a cell two characters to the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells with a <tr> tag.
The specification defines baseline, bottom, middle, and top. Internet Explorer also
allows center, which should be the same as middle.

Example
<table width="300" border="1">
 <tr align="center" valign="middle">
 <td>3</td>
 <td>5.6</td>
 <td>7.9</td>
 </tr>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes
• This tag is contained only in the <table>, <thead>, <tbody>, and <tfoot> tags. It

contains the <th> and <td> tags.

• The HTML 3.2 specification defines only the align and valign attributes for this
element.

• Internet Explorer 6 introduced ch and choff attributes per a draft standard at the
time, but they do not do anything and later are set as char and charoff.

• CSS visual changes to tables are suggested, but many sites claim that under strict
variants the various attributes like bgcolor no longer work. Testing in modern
browsers (IE 8, Firefox 3) at the time this edition was written does not support these
claims.

• Under the XHTML 1.0 specification, the closing </tr> tag is required, but under
older HTML and HTML5, the closing tag is optional.

• There are extended DOM methods for table-related tags like <tr>, including
insertRow() and deleteRow().

<tt> (Teletype Text)
This inline element is used to indicate that text should be rendered in a monospaced font
similar to teletype text. The element is being marked as obsolete or deprecated and should
be avoided in favor of CSS.

Standard Syntax
<tt
 class="class name(s)"
 dir="ltr | rtl"

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 415 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 415
PART I

 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text">

</tt>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit"
 disabled="false | true" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some <tt>monospaced text</tt></p>.

<p>Source code in this tag: <tt>main() { printf("hello world"); }</tt></p>

Compatibility

HTML 2, 3.2, 4, 4.01
XHTML 1.0, 1.1

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 2.1+, Safari 1+

Note
• This element has been deprecated by the W3C under XHTML 1.1 and marked as

obsolete HTML5. However, like other HTML5 obsolete items this element continues to
work in browsers. The look of the tag can be replicated with the font or font-family
CSS property set to a value of monospace or a common fixed-width font name.

<u> (Underline)
This element indicates that the enclosed text should be displayed underlined. It is deprecated or
obsolete in most specifications in favor of the CSS property text-decoration: underline.

 416 P a r t I : C o r e M a r k u p 416 P a r t I : C o r e M a r k u p

Standard Syntax (Transitional Only)
<u
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric string"
 lang="language code"
 style="style information"
 title="advisory text">
</u>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples
<p>Here is some <u>underlined text</u>.</p>

<p>Be careful with <u>underlined</u> text; it looks like
a link.</p>

<p>If you must underline use
CSS please.</p>

Compatibility

HTML 3.2, 4, 4.01 (transitional)
XHTML 1.0 (transitional)

Firefox 1+, Internet Explorer 2+,
Netscape 3+, Opera 4+, Safari 1+

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 417 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 417
PART I

Notes
• This element has been deprecated by the W3C. Under the strict (X)HTML

specifications, the element is not supported, and under HTML5 it is marked
obsolete. The look provided by this element is supported by the CSS property
text-decoration:underline.

• Underlining text can be problematic because it looks similar to a link, especially in
a black-and-white environment.

 (Unordered List)
This element is used to indicate an unordered list, namely a collection of items that does not
have a numerical ordering. The individual items in the list are defined by the li element,
which is the only allowed element within a tag.

Standard Syntax
<ul
 class="class name(s)"
 compact="compact" (transitional only)
 dir="ltr | rtl"
 id="unique alphanumeric identifier"
 lang="language code"
 style="style information"
 title="advisory text"
 type="circle | disc | square"> (transitional only)

 List items specified by tags

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

 418 P a r t I : C o r e M a r k u p 418 P a r t I : C o r e M a r k u p

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

compact This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list, regardless of the presence of this
attribute. The compact attribute requires no value unless it is used with XML-style syntax,
where it takes the value of compact.

type The type attribute is used to set the bullet style for the list. The values defined under
HTML 3.2 and the transitional version of HTML and XHTML are circle, disc, and
square. A user agent might decide to use a different bullet depending on the nesting level
of the list, unless the type attribute is used. The type attribute is dropped under the strict
versions of HTML 4 and XHTML because style sheets can provide richer bullet control
using the list-style-type and list-style-image properties.

Examples
<ul compact="compact" title="Sushi Short List" type="circle">
 Maguro
 Ebi
 Hamachi

<!-- Correct list nesting -->

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 419 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 419
PART I

<ul compact title="Sushi Short List" type="circle">
 Item 1

 Item A
 Item B

 Item 2

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• HTML 2.0 supports only the compact attribute.

• The HTML 3.2 specification supports compact and type.

• Under the strict (X)HTML specifications as well as HTML5, the ul element does not
support the compact attribute or the type attribute. Both of these attributes can be
easily replaced with CSS properties.

• Due to XHTML’s deprecation of attribute minimization, the compact attribute must
have a quoted attribute when used in the transitional variant:
<ul compact="compact">

• Many Web page designers and page development tools use the tag to indent
text. The only element that should occur within a ul element is li, so such markup
does not conform to standards. However, this common practice is likely to continue.

• Since the content model of ul says list items should be the only item within
tags, nested lists should occur within tags rather than outside them as they are
commonly found.

<var> (Variable)
This logical inline element is used to indicate a variable (an identifier that occurs in a
programming language or a mathematical expression), with any enclosed text generally
rendered in italics.

Standard Syntax
<var
 class="class name(s)"
 dir="ltr | rtl"
 id="unique alphanumeric value"
 lang="language code"
 style="style information"
 title="advisory text">

</var>

 420 P a r t I : C o r e M a r k u p 420 P a r t I : C o r e M a r k u p

Attributes Introduced by HTML5
 accesskey="spaced list of accelerator key(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 data-X="user-defined data"
 draggable="true | false | auto"
 hidden="hidden"
 itemid="microdata id in URL format"
 itemprop="microdata value"
 itemref="space-separated list of IDs that may contain microdata"
 itemscope="itemscope"
 itemtype="microdata type in URL format"
 spellcheck="true | false"
 tabindex="number"

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 contenteditable="false | true | inherit" (5.5)
 hidefocus="true | false" (5.5)
 language="javascript | jscript | vbs | vbscript" (4)
 tabindex="number" (5.5)
 unselectable="on | off" (5.5)

HTML 4 Event Attributes
onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes
onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 421 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 421
PART I

Example
<p>In Math the variable <var>x</var> holds the answer to many
of life's most important questions. It contains the time it takes
two speeding trains to meet when they have left two different
stations travelling at different speeds, the number of lemons you
have left over after trading with people, and all sorts of other
interesting values.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes
• As a logical element, var is a perfect candidate for style sheet binding.

• The HTML 2.0 and 3.2 specifications support no attributes for this element.

<video> (Video)
This HTML5 element embeds a video into a document.

HTML5 Standard Syntax
<video
 accesskey="spaced list of accelerator key(s)"
 autobuffer="true | false"
 autoplay="autoplay"
 class="class name(s)"
 contenteditable="true | false | inherit"
 contextmenu="id of menu"
 controls="controls"
 data-X="user-defined data"
 dir="ltr | rtl"
 draggable="true | false | auto"
 height="pixels"
 hidden="hidden"
 id="unique alphanumeric identifier"
 lang="language code"
 loop="loop"
 poster="URL of preview/standby image"
 spellcheck="true | false"
 src="URL of video"
 style="style information"
 tabindex="number"
 title="advisory text"
 width="pixels">

</video>

HTML5 Event Attributes
onabort, onbeforeunload, onblur, onchange, onclick, oncontextmenu,
ondblclick, ondrag, ondragend, ondragenter, ondragleave, ondragover,

 422 P a r t I : C o r e M a r k u p 422 P a r t I : C o r e M a r k u p

ondragstart, ondrop, onerror, onfocus, onhashchange, onkeydown, onkeypress,
onkeyup, onload, onmessage, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onresize, onscroll, onselect,
onstorage, onsubmit, onunload

Element-Specific Attributes

autobuffer This Boolean attribute indicates the browser should begin buffering a video
right away. This attribute should be used if it is assumed the user will play the video. This
attribute is meaningful only if autoplay is not set, as in that case the browser will play
video as soon as it can, allowing no time for further buffering.

autoplay This Boolean attribute indicates the browser should begin playing a video after
page load once enough content has been received and it is reasonable to play without
interruptions.

controls This Boolean attribute is set to indicate whether or not the browser should present
controls for video, such as playback, pause, volume, and seek. If not present, no controls
will be shown and it will be up to the developer to script the control of the video element.

loop This Boolean attribute, if present, indicates that the video should loop.

poster This attribute is set to the URL of an image that the browser will use in place of the
video before it is loaded and playing.

src This attribute is set to the URL of the video to show.

Examples
<video src="movies/movie1.ogg" autoplay>
 <p>No support for HTML5 <code>video</code> element.</p>
</video>

<video src="movies/movie1.ogg" poster="coming.png" loop
 playcount="3" start="45">
 <p>No support for HTML5 <code>video</code> element.</p>
</video>

<video>
 <source src="movie2.ogg" type="video/ogg">
 <source src="movie2.mov">
 <p>No support for HTML5 <code>video</code> element.</p>
</video>

Compatibility

HTML5 Firefox 3.5+, Opera 10+, Safari 3.1+

Notes
• Alternate content should be placed inside of the video element for browsers that do

not support it.

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 423 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 423
PART I

• Browsers are quite variable in what codecs they support. For example, Firefox 3.5
supports Theora for video in Ogg containers, while Safari browsers favor
QuickTime movies.

• Flash video will often be used to avoid cross-browser rendering concerns. Until this
element is widely supported, developers are advised to continue using Flash video.

<wbr> (Word Break)
This nonstandard element is used to indicate a place where a line break can occur if
necessary. This element is used in conjunction with the nobr element, which is used to keep
text from wrapping. When used this way, wbr can be thought of as a soft line break in
comparison to a
 tag. This element is common to many earlier browsers, though it is
not part of any HTML standard.

Proprietary Syntax
<wbr
 id="unique alphanumeric value">

Examples
<nobr>A line break can occur here<wbr>but not elsewhere, even if
the line is really long.</nobr>

<nobr>For comparison a line break cannot occur here even if the
line is really long like this one is.</nobr>

Compatibility

No standards support Internet Explorer 2–7, Netscape 1.1, 2, 3, 4, 4.5–4.8

Notes
• Early versions of standards-based browsers, such as Mozilla and Opera, do not

support this tag but, oddly, seem to support <nobr>. However, later versions,
including IE 8, correctly ignore this feature.

• To simulate this element’s functionality for setting a soft break in modern browsers
that apply white-space: nowrap to an element, use the tag as a custom tag and
set its style like so: <wbr style="display:inline-block;>. Other schemes
using the ­ and ​ entities may provide useful functionality as well in
some cases.

• Documentation for older versions of Internet Explorer defined class, language,
style, and title for this tag. However, they have little meaning, given this tag’s
purpose, and have since been eliminated from the documentation, though they may
effectively be recognized in some manner by the browser parser.

• Though this is an empty element and should be written as <wbr /> under XHTML,
it does not need to be. It is not standard and will not validate anyway.

 424 P a r t I : C o r e M a r k u p 424 P a r t I : C o r e M a r k u p

<xml> (XML Data Island)
This proprietary element introduced by Microsoft can be used to insert fragments of XML
(Extensible Markup Language) data into HTML documents. This idea is generally called
data islands and natively will work only under Internet Explorer 5.0 or later. However, it
can be simulated using JavaScript and careful style sheet applications in other browsers.
Under Internet Explorer, an <xml> tag can be used to reference outside data sources using
the src attribute, or to surround XML data in the (X)HTML document itself.

Internet Explorer Syntax
<xml
 id="unique alphanumeric value"
 src="URL of XML data file">

 ...embedded XML markup...
</xml>

Events Defined by Internet Explorer
ondataavailable, ondatasetchanged, ondatasetcomplete, onreadystatechange,
onrowenter, onrowexit, onrowsdelete, onrowsinserted

Element-Specific Attribute

src This attribute references an external XML data file.

Examples
<!-- This code embeds XML data directly into a document.
 All code between the <xml> tags is not HTML, but a
 hypothetical example of XML. -->

<xml id="tasty">
 <combomeal>
 <burger>
 <name>Tasty Burger</name>
 <bun bread="white">
 <meat />
 <cheese />
 <meat />
 </bun>
 </burger>
 <fries size="large" />
 <drink size="large" flavor="Cola" />
 </combomeal>
</xml>

<!-- This code fragment uses the src attribute to reference an
 external file containing XML data. -->

<xml src="combomeal.xml"></xml>

 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 425 C h a p t e r 3 : H T M L a n d X H T M L E l e m e n t R e f e r e n c e 425
PART I

Compatibility

No standards support Internet Explorer 5+

Note
• Native browser support for the <xml> tag is limited to Internet Explorer 5 or later,

though given native support for XML in modern browsers, it is possible to simulate
the idea by defining a custom tag and hiding it using CSS display or visibility
properties. See https://developer.mozilla.org/en/Using_XML_Data_Islands_in_
Mozilla for an example.

<xmp> (Example)
This deprecated but still widely supported element indicates that the enclosed text is an
example. Example text generally is rendered in a monospaced font, and the spaces, tabs,
and returns are preserved, as with the pre element.

Syntax (Defined by HTML 2; Deprecated Under HTML 4)
<xmp>
</xmp>

Attributes Defined by Internet Explorer
 accesskey="key" (5.5)
 class="class name(s)" (4)
 contenteditable="false | true | inherit" (5.5)
 dir="ltr | rtl"
 hidefocus="true | false" (5.5)
 id="unique alphanumeric value" (4)
 lang="language code" (4)
 language="javascript | jscript | vbs | vbscript" (4)
 style="style information" (4)
 tabindex="number" (5.5)
 title="advisory text" (4)
 unselectable="on | off" (5.5)

Events Defined by Internet Explorer
onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example
<xmp>This is a large block of text used as an example.

 426 P a r t I : C o r e M a r k u p

Note that returns

 as well as S P A C E S are preserved.</xmp>

Compatibility

HTML 2 Firefox 1+, Internet Explorer 2+, Netscape 1+, Opera 2.1+, Safari 1+

Notes
• This element was first deprecated under HTML 3.2, yet all major browsers continue

to support it, and it is well documented and even extended for Internet Explorer.
The <pre> tag or style sheets should be used instead of this tag.

• Note that the MSDN documentation does not show oncopy and onbeforecopy
events for this element but testing shows they do work up until IE 8.

CHAPTER 4
Introduction to CSS

CHAPTER 5
CSS Syntax and
Property Reference

CHAPTER 6
CSS3 Proprietary and
Emerging Features Reference

II
Core Style

PART

This page intentionally left blank

4
Introduction to CSS

In the past, much of the visual formatting of Web pages was supplied by markup
elements, squarely mixing the concepts of logical and physical markup into the mess
that is classic HTML. Strict variants of (X)HTML deprecated the elements and attributes

that focused on presentation, providing a clear distinction between the structure provided
by markup and the look dictated by a style sheet written in Cascading Style Sheets (CSS)
syntax. The distinct division of duties between markup and style can provide numerous
production, maintenance, and even performance benefits, making it a far superior
presentation solution to markup alone.

Presentational HTML
Traditionally, for right or wrong, markup has been used for formatting. For example, many
HTML elements support the align attribute, which provides simple support for text
alignment. Combine these aspects of markup with the assumption of visual rendering, such
as the belief that h1 elements always should make text big, and it would actually seem clear
to some that HTML is meant for formatting, as demonstrated here:

<h1 align="center">Big Centered Text!</h1>

Now an argument can be made about the semantic value of the h1 specifying a
headline, but for those solely coming at HTML from a point of view of knowing what a tag
does, the idea that an <h1> tag makes something big wins out. Yet, beyond such
misunderstandings based upon observation rather than the intent of the specification, there
are elements that are strictly presentational, like font, which is part of HTML 3.2, 4.01
transitional, and XHTML 1.0 transitional specifications:

I am big and red!

Further, when looking at browser-specific elements, plenty of presentational markup
can be found. For example, the following markup

<blink>Proprietary HTML Tag Sale: 50% Off for Firefox Users!</blink>

429429

CHAPTER

 430 P a r t I I : C o r e S t y l e 430 P a r t I I : C o r e S t y l e

creates blinking text in Firefox, while this markup

<marquee>Sale! Sale! Sale! All Presentation Tags Must Go!!!</marquee>

animates text in nearly any browser. History has already been written. Like it or not,
markup has been used to visually present Web pages for well over a decade.

The problem with using HTML for formatting is that it just isn’t really very good at it,
nor was it generally designed for it. For example, just to make some centered red text with a
yellow background, you’d likely resort to using markup like so:

<table align="center" width="100%">
<tr>
 <td bgcolor="yellow" align="center">
 <font size="7"
 color="red"
 face="Arial, Helvetica, sans-serif">
 Big Red HTML Text

 </td>
</tr>
</table>

When using HTML for Web page presentation, we see a tremendous amount of markup
being used to style the page, often filled with complex stacked or even nested tables. Layout
workarounds using invisible pixel images, proprietary elements and attributes, text in images,
and other arcane ideas were, and often still are, required to deliver quality, high-fidelity
design in HTML. Fortunately, for now and the future, there is a better way—style sheets.

The Slow Rise of CSS
Cascading Style Sheets (www.w3.org/Style/CSS/) offers what Web designers have been
clamoring for over the years: more control over layout. Interestingly, the excitement about
CSS has been quite slow to build. CSS1 marked its first appearance as a standard in late
1996 and CSS2 quickly followed in 1998. Early browsers such as Internet Explorer 3 and
Netscape 4 supported some of the technology, but CSS has had trouble gaining widespread
acceptance. Browser support has been quite inconsistent, and significant bugs, particularly
in older of versions of Internet Explorer, have made the use of CSS a lesson in frustration.
For visual proof of this, consider the CSS2 conformance tests called Acid2 (www.acidtests
.org/), which exercises many important features of CSS1 and CSS2. Figure 4-1 shows
Internet Explorer 6 and Firefox 2 both failing this test. However, with the release of Internet
Explorer 8 and Firefox 3 and past conformance of other browsers like Opera and Safari, all
the major browsers now pass the Acid2 test (see Figure 4-2). Considering that the
introduction of that test was in 2005 and for many years previous CSS support was spotty,
finally we see that CSS is changing for the better!

NOTE As this edition goes to print, many browsers pass Acid3 as well. The point here is to show
that in the past few years CSS has become viable and appropriate, and that it took a while to get
there, rather than to declare any browser a winner or loser in a standards race.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 431
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 431

Newer versions of browsers are far better than their predecessors, and now have good
support for CSS1 and CSS 2.1 as well as many features from CSS3. Yet even as CSS support
has become more commonplace, significant issues remain. Browser bugs still exist, portions
of the CSS specification remain unsupported, developer education and uptake is lagging,
and proprietary extensions to style sheets are rapidly being introduced by browser vendors.
It seems the more things change the more they stay the same regardless of the technology in
use. HTML wonks who have spent time addressing quirks and workarounds will find plenty
of new ones to address in the world of CSS. We’ll return to this sad fact at the end of the
chapter when we discuss the pragmatic use of CSS, but now let’s take our first look at CSS.

FIGURE 4-1 Older browsers failing Acid2

 432 P a r t I I : C o r e S t y l e 432 P a r t I I : C o r e S t y l e

First Look at CSS
CSS rules are defined as a property name followed by a colon and then a property value.
Individual rules are terminated by semicolons, with the final rule having an optional
semicolon:

property-name1 : value1; ... property-nameN : valueN;

FIGURE 4-2 Modern browsers passing Acid2

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 433
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 433

CSS rules can be placed directly within most (X)HTML tags by setting the core attribute
style to the rule. For example, to set the color and alignment of an h1 heading, we might use

<h1 style="color: red; text-align: center;">Big Red CSS Text!</h1>

Such direct use of CSS is called inline style and is the least favorable form of CSS because of
its tight coupling to the actual (X)HTML tags.

Instead of placing rules directly within markup elements, we might more appropriately
create a rule that binds to a particular element or set of elements, which will lend itself for
future reuse. CSS rules not found within a particular tag consist of a selector followed by its
associated style declarations within curly braces. Similar to being used inline, a style rule is
composed of property names and property values separated by colons, with each style
declaration (property/value pair) in turn being separated by a semicolon. In general, the
syntax is

selector {property1 : value1; ... propertyN : valueN;}

An example rule conforming to correct CSS syntax broken out into its individual
components is shown here:

NOTE The final declaration in a style rule block does not require the semicolon. However, for good
measure and easy insertion of future properties, page authors should always use semicolons after
all style properties.

CSS property names are separated by dashes when they are multiple words—for
example, font-face, font-size, line-height, and so on. Allowed values come in many
forms; from simple keywords like xx-small, strings like "Arial", plain numbers like 0,
numbers with units like 100px or 2cm, and special delimited values such as URLs, url(../
styles/fancy.css).

Given this brief CSS syntax overview, to create a style dictating that all h1 elements are
red and centered, use the following rule:

h1 {color: red; text-align: center;}

As rules are added, you may take advantage of the fact that CSS is not terribly
whitespace sensitive, so

h1 {font-size:xx-large;color:red;font-family:Arial;}

h1 {font-size: xx-large; color: red;}

Property Name

Declaration

Declaration BlockSelector

Declaration Rule

Value Declaration Separation

 434 P a r t I I : C o r e S t y l e 434 P a r t I I : C o r e S t y l e

will render the same as

h1 {font-size: xx-large;
 color:red;
 font-family:Arial;}

Given the nature of white space in CSS, you may find formatting leads to better
readability for future development. Also like traditional coding, we should add comments
using the common programming language syntax /* */ like so:

/* first CSS rule below */
h1 {font-size: 28px; color: red; font-family: Arial;}

Of course, when publishing CSS and HTML on public-facing Web sites, removing
comments and reducing white space to improve delivery and slightly obfuscate execution
may be appropriate.

Lastly, case should be well considered. In CSS, property names and many values are
case insensitive, so

h1 {FONT-SIZE:28px;color:RED;FONT-WEIGHT:bold;}

and

h1 {font-size:28px;color:red;font-weight:bold;}

are the same. However, in some important cases, such as with URL values, font names, and
certain selectors such as id and class values, case will be enforced. For example,

#foo {background-image url(tile.gif); font-family: Arial;}

and

#FOO {background-image url(TILE.GIF); font-family: ARIaL;}

will not necessarily be the same, with the URL sometimes working depending on the Web
server involved, the fonts potentially not matching, and the differing id selectors possibly
not working unless an extremely permissive browser is in play. Given the potential for
confusion, it is much safer to assume that CSS is case sensitive.

When not placed directly inline, style rules would be placed either within a <style> tag
found in the document head

<style type="text/css">
 /* a sample style sheet */
 h1 {color: red; text-align: center;}
 p {line-height: 150%;}
</style>

or will be externalized and referenced via a <link> tag found in the head of the document,
like so:

<link href="mystyle.css" rel="stylesheet" type="text/css">

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 435
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 435

Given that link would be an empty element if we were using XHTML as our base
document, the <link> tag requires the trailing slash:

<link href="mystyle.css" rel="stylesheet" type="text/css" />

The external style sheet would solely contain CSS rules, and no HTML markup would be
found. A small example here illustrates this:

/* mystyle.css - a sample style sheet */
h1 {color: red; text-align: center;}
p {line-height: 150%;}

To build a style sheet, we need to define the rules that select elements and apply various
style properties to them. Besides element selectors, previously introduced, the two most
common forms of CSS rules are id selectors, which are used to specify a rule to bind to a
particular unique element, and class selectors, which are used to specify a group of
elements.

Elements are named in (X)HTML using the id attribute, which is found on nearly any
element. As an example, here we identify a particular <h1> tag as the primary headline of
the document:

<h1 id="primaryHeadline">CSS Works Fine!</h1>

Now that the tag is named, we can bind a style rule just for it by using a #id-value
selector like so:

#primaryHeadline {color: black; font-size: xx-large; font-weight: bold;}

The values for id must be unique, so in order to affect a select group of tags, we relate
them by setting their class attribute to the same value:

<p class="fancy">I’m fancy!</p>
<p>Poor me I am a plain paragraph.</p>
<p>I am not completely fancy, but part of me
is!</p>

Notice that we utilized a tag around a portion of content we desired to style.
We’ll see generic elements like span and div commonly employed with CSS. Now to bind a
rule to the elements in the class fancy, we use a selector of the form .class-name like so:

.fancy {background-color: orange; color: black; font-style: italic;}

There is nothing that keeps an element from being identified with both an id and a
class attribute. Further, it is not required that a tag be found in only one class, as shown
here:

<p id="p1" class="fancy modernLook2">This unique paragraph called p1
 will sport a fancy and modern look.</p>

 436 P a r t I I : C o r e S t y l e 436 P a r t I I : C o r e S t y l e

Given that many rules may be applied at once, the final style applied to a particular
element may not be immediately obvious. In fact, in quite a number of cases, the properties
affecting an element’s look may be inherited from an enclosing parent element. As a very
simple example, consider the following rules:

<style type="text/css">
body {background-color: white; color: black;}
p {font-family: Arial, Helvetica, Sans-Serif;
 line-height: 150%;}
.intro {font-style: italic;}
#firstPara {background-color: yellow;}
</style>

When the preceding is applied to a paragraph like

<p id="firstPara" class="intro">Paragraph text goes here.</p>

it produces a paragraph with a yellow background and black, Arial, italicized text that is
spaced with a 150 percent line height. What has happened is that the various rules are
applied by selectors, and some property values are inherited from their enclosing parent
elements. Using a small parse tree, Figure 4-3 shows just how the rules cascade downward
to the enclosed elements, which explains the motivation behind the name Cascading Style
Sheets.

In some cases, rules are even overridden by later-defined or more-precise rules that may
even be within inline styles.

Clearly, determining what rules apply to a particular tag can be a bit tricky, but as a rule of
thumb, the more specific the rule, the more recently defined the rule, and the closer to the tag
the rule is, the more powerful it is. For example, an inline style property would beat a value in
a document-wide style rule, while a document-wide style rule would beat a previously
defined linked style rule. Further, rules using an id would beat rules using a class, which
would beat rules based upon elements. Of course, all this can be overridden using an
!important indicator at the end of a particular declaration, so here

<style type="text/css">
 #hulk {color: green !important; font-size: xx-large !important;}
</style>

the element with an id value of 'hulk' should be big and green. Though that too can be
overridden with subsequent rules setting these properties with !important. Given the
potential confusion of what rules are being applied at what times, CSS developers should
utilize a tool that can show the rendered style of an element upon inspection, as shown in
Figure 4-4.

There is plenty more to come with understanding the cascade, inheritance, and all the
various selectors. For now, with our brief introduction out of the way, it is time to see our
first style sheet in action.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 437
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 437

FIGURE 4-3 CSS property value cascade illustrated

Element rule

Class rule

 438 P a r t I I : C o r e S t y l e 438 P a r t I I : C o r e S t y l e

Hello CSS World
For the purpose of this demo, we’ll use a document-wide style, as defined with the
<style> tag found in the <head> element of an HTML document:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello CSS World</title>
<style type="text/css">
 /* sample style sheet */
 body {background-color: black; color: white;}
 h1 {color: red; font-size: xx-large; text-align: center;}
 #heart {color: red; font-size: xx-large;}
 .fancy {background-color: orange; color: black; font-weight: bold;}
</style>
</head>
<body>
<h1>Welcome to the World of CSS</h1>

FIGURE 4-4 CSS property inspection with Firebug

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 439
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 439

<hr>
<p>CSS <em class="fancy">really isn't so hard either!</p>
<p>Soon you will also ♥ using CSS.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

ONLINE http://htmlref.com/ch4/hellocssworld.html

The preceding example uses some of the common CSS properties used in (X)HTML
documents and there are some slight changes to the document structure because of it, including:

• Setting colors with background-color and color

• Sizing text with font-size

• Setting boldness with font-weight

• Setting basic text alignment with text-align

• Using id and class attributes to specify elements to bind style rules to

• Using logical markup like as opposed to more physical markup like <i>

• Relying on generic tag containers like to style arbitrary portions of text

There are numerous other CSS properties we might employ besides the few we see here,
and we will explore those throughout the book, but for now this sampling is enough to get
our first example up and running. In Figure 4-5, we see the CSS version of the page as
compared to the HTML-only version.

FIGURE 4-5 Example Hello CSS World rendering

Plain HTML

HTML styled
by CSS

 440 P a r t I I : C o r e S t y l e 440 P a r t I I : C o r e S t y l e

While two technologies are required to make the example, note that CSS when well
executed is both distinct from an HTML document and dependent on it. CSS is not a
replacement for markup; it in fact relies on it. As an example, if an HTML document is
malformed—the tags are not closed properly or other mistakes were made—the CSS may
not attach properly and the look would be distorted. However, mistakes can also be made
in the CSS rules, which tend to be a bit more strictly interpreted by browsers and thus may
similarly result in a visual rendering problem. Clearly, a symbiotic relationship exists
between CSS and HTML, but that relationship has changed over time, so that evolution is
described next.

CSS Versions
Cascading Style Sheets is a fairly old technology as far as the Web is concerned. The first
ideas about CSS were presented as early as 1994, and by December of 1996 the CSS1
specification (www.w3.org/TR/REC-CSS1/) was ratified. This early version of CSS was
partially supported in browsers like Internet Explorer 3 and Netscape 4 to varying degrees.
While the features of CSS1 were far superior to what presentation HTML had with its
 tags and workarounds, uptake was slow.

CSS1 provided many features to change borders, margins, backgrounds, colors, and a
variety of text characteristics, but the much demanded ability to directly position objects was
absent. An interim specification on positioning HTML elements commonly called CSS-P for
short (www.w3.org/TR/WD-positioning-19970819) was implemented in Netscape 4 and
Internet Explorer 4 and later rolled into CSS2 (www.w3.org/TR/1998/REC-CSS2-19980512/),
which was released in May 1998. While CSS2 introduced many valuable features, including
positioning, media types for style sheets, aural style sheets, and much more, not everything has
been implemented even in the most modern browsers. A revision of this specification, CSS 2.1
(www.w3.org/TR/CSS21/), released in 2007, removed a number of unimplemented features
and normalized the specification to a more realistic vision of what browsers actually do.

While the future is clearly CSS3 (www.w3.org/Style/CSS/current-work#CSS3) with its
multitude of modules for addressing color, device constraints, foreign language rendering,
improved printing, and more, it is far from clear when that future will arrive. At the time of this
edition’s writing, select features of various CSS3 modules have been implemented in some
browsers, but, save for a few high-value features like the opacity property, full cross-
browser support is still spotty. Table 4-1 summarizes the version history of CSS.

Proprietary CSS
For some Web developers, CSS is associated with standards and specification, but the reality
is that, like markup, it too has proprietary features. All browser vendors have introduced
some feature or another to improve what their browser could do. Many of these features are
previews of what is likely to be implemented in the eventual CSS3 specification, but for
now they are proprietary.

Unlike (X)HTML, CSS makes it easy for browser vendors to extend the specification, as
newly introduced keywords and property names that start with a hyphen “-” or underscore
“_” are considered vendor-specific extensions. The syntax is -vendoridentifier-newproperty or
_vendoridentifier-newproperty, though in practice the hyphenated names appear to be the
only extensions in use. As an example, -moz is used to prefix Mozilla features like -moz-
border-radius. A list of prefixes that are commonly seen is shown in Table 4-2.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 441
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 441

CSS Version Description

CSS1 Classic CSS implementation that introduced text, list, box, margin, border, color,
and background properties. Initially defined in 1996, most every feature of CSS1
is supported in Web browsers, but small quirks do exist around some lesser-used
features like white-space, letter-spacing, display, and others. Some
problems with CSS1 support are more significant in older, pre–Internet Explorer 7
browsers.

CSS2 Specification that is primarily known for positioning and media, particularly print
style sheet features. Many aspects of CSS2, such as aural style sheets, were never
widely implemented and were removed in a later iteration of the CSS specification.

CSS 2.1 A revision of the CSS2 specification that makes some corrections and is normalized
to more clearly represent what most browser vendors have implemented. Note that
many CSS2 features removed from this specification are found in CSS3 modules.
This is currently the recommended CSS specification for study and use.

CSS3 Modularized specification of CSS. Various modules extend and improve aspects
of previous CSS versions; for example, the CSS3 Color module addresses color
correction, transparency, and more, while the CSS3 Fonts module addresses
features to add effects to fonts, adjust their display, and even download custom
fonts. Some modules are all new, like the Transitions and Animations modules,
and others are quite old looking with activity levels suggesting they are abandoned
or near abandon. Whatever the situation, when it comes to CSS3, readers are
encouraged to check the CSS3 Web site and test support carefully.

TABLE 4-1 Description of Common CSS Versions

TABLE 4-2 CSS Extension Prefixes

Prefix Organization Example Notes

-ms- Microsoft -ms-interpolation-mode Some older proprietary CSS
features found in Internet
Explorer are not prefixed in
any way.

-moz- Mozilla Foundation -moz-border-radius This applies to all Gecko
rendering engine–based
browsers such as Firefox.

-o- Opera -o-text-overflow Opera also supports the
-xv- prefix for experimental
voice support for aural style
sheet properties like -xv-
voice-family.

-webkit WebKit -webkit-box-shadow This applies to all WebKit
engine–based browsers such
as Apple’s Safari and Google
Chrome.

 442 P a r t I I : C o r e S t y l e 442 P a r t I I : C o r e S t y l e

There are other propriety CSS prefixes that may be encountered, which may or may not
follow the appropriate prefixing scheme. For example, wireless phones that support WAP
(Wireless Application Protocol) may use -wap- prefix based properties such as –wap-
accesskey. Some implementations of Microsoft Office may use CSS rules like mso-, such
as mso-header-data. Do note that this syntax lacks the appropriate extension character
indicator. In general, it would seem that extensions should be avoided if possible unless
their presentation degrades gracefully, particularly since their compatibility and future
support by browsers or standards bodies is far from clear. Interestingly, many extension
properties appear to be CSS3 properties with stems just waiting for the specifications to
catch up. Chapter 6 will show this to be the case in numerous instances.

CSS Relationship with Markup
As CSS relies on markup and in some cases overlaps with older features provided by markup
elements, it is important to understand the relationship between the two technologies. In
general, transitional versions of (X)HTML markup include some presentational elements that
may be utilized by Web developers in place of CSS, while strict variants of (X)HTML may
eliminate such elements solely in favor of CSS properties. As an example, to center a heading
tag, the align attribute might be used like so:

<h1 align="center">Headline Centered</h1>

In the case of strict markup, however, the align attribute is deprecated and thus CSS
should be employed. This could be accomplished either using an inline style like so

<h1 style="text-align: center;">Headline Centered</h1>

or, more appropriately, with some CSS rule applied via class, id, or element selector. Here
we use a class rule

h1.centered {text-align: center;}

which would apply to tags with class values containing “centered” like the following:

<h1 class="centered">Centered Headline</h1>
<h1 class="fancy centered">Another Centered Headline</h1>

In some cases, we find that various HTML elements simply are no longer necessary in
the presence of CSS. For example, instead of tags like <u>, <sub>, <sup>, , and
others, CSS rules are used often with generic elements like div or span. Table 4-3 details
most of the (X)HTML markup elements or attributes deprecated in strict variants and
presents their CSS alternatives.

There are other cases, like <sub>, <sup>, <big>, <small>, and many more, where we
could avoid using markup and apply style. The various markup specifications have not
deprecated every presentational-like element, and even if CSS alleviates the need for some
presentational elements, their usage stubbornly lives on. For that simple fact, these elements
and their equivalents are presented in this book. In fact, the continued inclusion of presentation
ideas in the emerging HTML5 specification tends to suggest that despite a desire to move to
a purely semantic markup world, while certainly worthwhile, this is unlikely to come to pass
on the Web at large, at least not rapidly.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 443
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 443

(X)HTML Tags or Attributes CSS Property Equivalent(s) Notes

<center> text-align,
margin

Values for margin such as
auto generally are used when
centering blocks with text-
align for content.

 font-family,
font-size, color

align attributes text-align,
float

In the case of some elements
such as , the CSS float
property is more appropriate than
text-align.

Color attributes for <body> color,
background-color

To set some of the body
attributes like link, vlink,
alink, pseudo-classes :link,
:visited, :active should be
used for <a> tags.

Background image attributes
for <body>, <table>, and
<td>

background-image

The type and start attributes
on lists and list items

list-style-type,
CSS counters

Single CSS properties can’t
directly substitute some features.

The clear attribute for
 clear

<s>, <strike> text-decoration:
line-through

<u> text-decoration:
underline;

<blink> text-decoration:
blink

Not supported in all browsers.

TABLE 4-3 Common (X)HTML Structures Moved to CSS

The Specification of CSS
CSS 2.1 has a grammar (www.w3.org/TR/CSS21/grammar.html) but unlike traditional
(X)HTML it is not defined with a document type definition. Instead the CSS specification is
a combination of prose and a grammar that could be used to build a simple parser. For
example, when looking at the grammar for a set of style rules, we see

ruleset
 : selector [COMMA S* selector]*
 LBRACE S* declaration [';' S* declaration]* '}' S*

 444 P a r t I I : C o r e S t y l e 444 P a r t I I : C o r e S t y l e

Roughly, this says that a ruleset contains a selector of some sort, a curly left brace (LBRACE),
a declaration or a set of declarations followed by a semicolon, and then a closing right brace.
This basically defines the rule syntax we have seen earlier, repeated again here:

selector {property1 : value1; ... propertyN : valueN;}

Now if you continue to read the specification, you can see that selectors are then defined by

selector
 : simple_selector [combinator simple_selector]*
 ;

which in turn references a simple_selector, which would include some of the types of
selectors like element names, class, and id values we have seen earlier. The production
rule of CSS grammar here shows just that:

simple_selector
 : element_name [HASH | class | attrib | pseudo]*
 | [HASH | class | attrib | pseudo]+
 ;

Yet as you expand the grammar, you should see what appears to be ambiguity. For
example, when you expand to an element_name, it will indicate that a wildcard value of
“*” can be used to match an element and then simply a value of IDENT, shown here:

element_name
 : IDENT | '*'
 ;

IDENT will resolve to another part of the specification that defines a valid token that is a
fairly large range of strings. Simply put, the element_name selector can be just about
anything, which makes perfect sense because CSS can be used for not just HTML but also
for arbitrary XML languages, which could have a variety of possible tags. Given the wide
possibility of usage for CSS, this ambiguity is somewhat to be expected, but even the
various property names and values are not directly spelled out in the grammar and are left
to the prose of the specification. In fact, the forward-looking nature of the CSS specification
gives some latitude here in terms of such values instead of specifying the rules for what a
browser should do when faced with properties or values it doesn’t understand, as discussed
in the next section.

The various aspects of the CSS grammar that are a bit ambiguous are so not because of
some oversight but due to the intersection between CSS and other technologies. For example,
consider the situation of case sensitivity, as previously discussed in the chapter. CSS property
names and many values will be case insensitive, so font-size and FONT-SIZE are both
okay as are declarations like font-size: RED and font-size: red. Even selectors may
not be case sensitive; for example,

H1 {color: red;}

should be the same as

h1 {color: red;}

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 445
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 445

because HTML elements can vary in case. However, in the case of XML elements like

MYTAG {color: red;}

and

mytag {color: red;}

these wouldn’t necessarily be the same. Similarly, given the intersection of JavaScript, which
is case sensitive, id and class names should be considered to be case sensitive. Depending
on the server being used, portions of URL values, including the path and filename, may also
be case sensitive. So, the rules of CSS can cause much confusion because they are highly
influenced by its context of use. There are clear cases, however, that syntax is incorrect or at
least not understood by the parsing user-agent; fortunately, the CSS specification spells out
what ought to be done in such situations, though this assumes browser vendors follow the
specification!

CSS Error Handling
As discussed in the previous chapter, the use of syntactically correct markup is certainly not
encouraged by permissive browser parsers that correct mistakes or guess intent when faced
with malformed markup. The situation for CSS is a bit better, and the CSS 2.1 specification does
describe what browsers should do in the case of various errors (www.w3.org/TR/CSS21/
syndata.html#parsing-errors), but then again, making the assumption that browsers are not
permissive and correctly implement all aspects of Web specifications is dangerous.

Unknown Properties
If an unknown property is encountered, a CSS-conforming user agent should ignore the
declaration. Given

h1 {color: red; trouble: right-here;}

the property trouble would simply be ignored and the rule would simply set the color. It
does not matter what the position of the bogus property declaration is, the result should be
the same as long as the declaration is otherwise well formed.

h1 {trouble: right-here; color: red;}

The case is obviously different if the various separators are missing.

Malformed Rules
In the case where semicolons (;), colons (:), quotes ('or"), or curly braces ({ }) are misused,
a browser should try to handle any unexpected characters and read the properties until
a matching value can be found. As an example, consider the simple case of forgetting a
semicolon:

h1 {color: red text-decoration: underline; font-style: italic;}

In this case, we should see the browser continue to parse the value of color as “red text-
decoration: underline” before it sees a closing semicolon. The font-style property that

 446 P a r t I I : C o r e S t y l e 446 P a r t I I : C o r e S t y l e

follows would then be used. Because the color property has an illegal value, it should be
ignored.

Other cases are a bit more obvious. For example, here we see the colon missing in a style
rule declaration:

h1 {color red; text-decoration: underline; font-style: italic;}

In this case, the color property is simply ignored and the text is underlined and italic.
The situation for quotes and braces is the same, with compliant browsers working to

find a matching closing character for any open construct, potentially destroying anything in
between. Consider this set of rules, where quite a large amount of style may be lost:

h1 {color: green; font-family: "Super Font;}
h2 {color: orange;}
h3 {color: blue; font-family: "Duper Font";}

Be careful, though, because in this case you might assume that the rule closes off with a
quote, but that may introduce more open construct errors later on in the style sheet.

Unclosed Structures and End of File
A CSS browser should close all braces and quotes when it reaches the end of a style sheet.
While quite permissive, this would suggest that

<style type="text/css">
 h1 {color: green
</style>

should render properly, as the open rule would be closed automatically by the end of the
style sheet. Open quotes would also be closed in a similar manner when the end of the style
sheet is reached. Testing reveals this action is actually the case in browsers, but creating a
syntactically correct style sheet is obviously far superior than understanding the expected
failures of a conformant browser.

Illegal or Unknown Property Values
CSS-conforming browsers must ignore a declaration with an illegal value. For example,

h1 {font-size: microscopic; color: red;}

would simply not set the font-size value but h1 elements would be red. Usage of illegal
characters can turn what would appear to be a correct value into an incorrect one. For
example,

h1 {color: "green";}

is incorrect not because green is an illegal color, but because it is not the same as the
keyword green when it is quoted.

Do not assume that a CSS-compliant browser will fix such small oversights. For
example, a browser given

h1 {color: green forest;}

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 447
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 447

should not use green but instead ignore the whole rule. Of course, what browser vendors
actually do in the face of malformed Web documents varies.

Incorrect @ Keywords and Media Values
When an @ media value or media type for a <style> tag is used, incorrect values should be
ignored. For example, if you specify <style type="text/css" media="tri-corder">,
the browser is supposed to ignore the entire <style> block unless it understands such an
odd type. Media types will be discussed in depth later, but for now understand that when
faced with syntax problems, a CSS-compliant browser should simply ignore anything
related to misunderstood values.

Ignoring Network Failures
When style sheets are linked rather than placed within the page, the browser must apply all
types it is able to fetch and simply ignore those it can’t. So if you had

<link rel="stylesheet" href="global.css" type="text/css">
<link rel="stylesheet" href="pagelevel.css" type="text/css">

and the first was fetched by the browser, but the second failed, it would simply apply the
rules it had. Obviously, such transitory errors are hard to account for, but other
considerations presented in this section should have been caught in the validation of
markup and style, discussed next.

Validating CSS
Like (X)HTML, it is quite possible to check your style usage against the specification.
This is also called “validation,” though the term “conformance checking” may be more
appropriate, but the intent is still clear. The W3C provides a validation service for CSS at
http://jigsaw.w3.org/css-validator/. As an example, validating the page found at www
.htmlref.com/ch4/hellomalformedcssworld.html shows that it contains a number of simple
errors, as shown here:

The previous section identifies what a conformant browser should do with such errors
and, interestingly, the result is that the malformed page should appear the same as the
“well-formed page.” Like HTML, we often won’t pay a price for our mistakes until later.
The good news is that we can easily uncover these types of errors, as shown in Figure 4-6.
Notice that the service shows what is considered the resulting style sheet in light of the
encountered errors.

Bad property name and value

Bad property value Missing } to
close rule

 448 P a r t I I : C o r e S t y l e 448 P a r t I I : C o r e S t y l e

A challenge with CSS validation is that what is valid CSS in the simple sense of rule
definition may not be valid when combined with markup or JavaScript. For example, is the
following rule in error?

<style type="text/css">
 #unique {color: red; font-size: xx-large;}
</style>

FIGURE 4-6 Validating CSS

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 449
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 449

At first blush there is nothing wrong, but it turns out the id value is used twice, as
demonstrated here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Validation Challenges</title>
<style type="text/css">
 #unique {color: red; font-size: xx-large;}
</style>
</head>
<body>
<p id="unique">I am the paragraph with id unique.</p>
<p>I am not the unique paragraph.</p>
<p id="unique">Yet another unique paragraph?</p>
</body>
</html>

If this document is CSS validated, everything is apparently okay:

However, with HTML validation we see that is actually not the case:

 450 P a r t I I : C o r e S t y l e 450 P a r t I I : C o r e S t y l e

Again, visually we may get the desired effect of two large red paragraphs, but it isn’t
executed correctly and we will potentially pay a price later with JavaScript, which typically
does not allow the same latitude that presentational technologies do. Consider simply that
each layer of technology we add on with small mistakes makes the overall execution
shakier and shakier. Given this foundational approach, we should first validate markup and
then, once it is solid, validate the CSS that is layered on top.

Breaking the Rules Purposefully?
One aspect of CSS syntax that is a bit interesting is the purposeful introduction of errors into
a style sheet to effect a change. Such tricky applications of CSS are often called hacks or
filters and are simply misuses of the technology to address browser rendering concerns. To
explain clearly, let’s illustrate the idea of these techniques using probably the most famous
hack—the “box model hack.”1

What the box model hack addresses is the nasty fact that CSS implementations in older
browsers, particularly the Internet Explorer 5.X generation, is woefully broken. In the case
of such browsers, the measurements of the various large block elements that compose the
boxes of the page are fundamentally off. For example, given a rule like

#boxexample {border: 20px solid;
 padding: 30px;
 width: 300px;}

some browsers would correctly interpret the total width of the box defined as including the
border and padding values added to the width of the defined box, as follows:

300 px

400 px

30
px

30
px

20
px

20
px

1 The Box Model Hack was initially introduced by a well-known CSS expert, Tantek Çelik (http://tantek
.com/CSS/Examples/boxmodelhack.html), who certainly is quite aware of what to do and not to do with
CSS. The choice of this hack is only illustrative of the break the rules purposefully approach.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 451
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 451

However, a browser that misinterprets the CSS box model, such as Internet Explorer 5,
would include the border and padding in the measurement, so it would subtract these
values to produce the rendered region:

With such a vast difference in measurement, layout variations are quite noticeable:

If you have a very old browser, try it yourself at http://htmlref.com/ch4/boxmodelhack.html.

200 px

300 px

30
px

30
px

20
px

20
px

IE 5.5 needs fix IE 6+ no fix needed

 452 P a r t I I : C o r e S t y l e 452 P a r t I I : C o r e S t y l e

To get around this difference, ingenious Web developers developed a technique to force
the browser parser in some cases to explode predictably. For example, given

#boxexample {border: 20px solid;
 padding: 30px;
 width: 300px;}

we first modify it, as shown next, to set the box width to its correct measurement of 400px
for browsers that misinterpret the calculation. Next, we add rules that these older browsers
will have problems with, thus killing the rest of the line. Finally, we add a rule for those
browsers that don’t have issues to reset the width property back to the correctly interpreted
value of 300px.

#boxexample {width: 400px;
 voice-family: "\"}\"";
 voice-family: inherit;
 width: 300px;}

What this hack does is to act as a simple if statement, choosing one width value in one
case and a different one in another. If the solution seems messy and inappropriate to you,
know you aren’t alone. However, recognize that when faced with browser adversity, Web
developers, who are a wily group, will solve almost any problem using only the tools they
know, whether the method is appropriate or not.

You’ll certainly see more hacks and inelegant solutions as you explore the use of CSS.
The point here is not only to show that understanding the rules of CSS and browser activity
can be used purposefully, but also to illustrate the Web development truism that, while
we always aim for standards compliance, the need for hacking and addressing browser
incompatibility, just like in the old days of presentational markup, stubbornly lives on.
Regardless of this necessity, let’s move on to explore all the details of how style is applied
to markup.

Applying Style to a Document
Style information can be included in an (X)HTML document using one of three methods:

 1. Use an external style sheet, either by importing it or by linking to it.

 2. Directly embed a document-wide style in the head element of the document.

 3. Set an inline style rule using the style attribute directly on an element.

Each of these style sheet approaches has its own pros and cons, as listed in Table 4-4.

Linking to a Style Sheet
An external style sheet is simply a plain text file containing CSS style rules. The common
file extension .css indicates that the document provides style sheet information. As an

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 453
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 453

example, the following CSS rules can be found in a file called sitestyle.css, which defines a
style sheet used site-wide:

/* sitestyle.css */

body {font-size: medium;
 font-family: Serif;
 background-color: black;
 color: white;}

#page {background-color: white;
 color: black;
 padding: 1em;}

TABLE 4-4 Comparison of Style Sheet Approaches

External Style Sheets Document-Wide Style Inline Style

Pros

 • Can set and update
styles for many
documents at once.

 • Style information is
cached by the browser,
so there’s no need to
repeat.

 • Can easily control
style document by
document.

 • No additional network
requests to retrieve
style information.

 • Can easily control
style to a single
character instance.

 • Overrides any
external or document
styles in the absence
of !important
directive.

Cons

 • Requires extra download
round-trip for the style
sheet, which might
delay page rendering,
particularly when
multiple files are
in use.

 • In some cases when
@import is used, the
browser may cause a
rendering “flash” under
slow loading conditions.

 • Need to reapply style
information for other
documents, bulking
up the document
and making it more
difficult to apply
updates.

 • Need to reapply
style information
throughout the
document and
outside documents.

 • Bound too closely to
markup, making it
even more difficult
to update than other
approaches.

Example

<link
rel="stylesheet"
href="main.css"
type="text/css"
media="screen">

NOTE A trailing slash is
needed for XHTML.

<style type="text/
css" media="all">
 h1 {color: red;}
</style>

<h1 style="color:
red;">
I am red!
</h1>

 454 P a r t I I : C o r e S t y l e 454 P a r t I I : C o r e S t y l e

h1 {font-size: xx-large;
 font-family: Sans-Serif;
 color: black;
 text-align: center;
 border-bottom: solid 4px orange;}

p {text-indent: 1em;
 text-align: justify;
 line-height: 150%;}

a:link {color: blue; text-decoration: none;}
a:visited {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:active {color: red; text-decoration: none;}

Don’t worry, we haven’t covered all these properties yet, but we will certainly do so as the
book progresses. Fortunately, most of the selectors are simple element and id selectors that
have already been introduced, save the pseudo-classes, a:link, a:visited, a:hover, and
a:active, which are selectors that are associated with the various states of a link.

An (X)HTML file could use the style sheet by referencing it by using a <link> tag
within the head element of the document. To indicate the relationship between the
documents, set the rel attribute to a value of "stylesheet." The href attribute is used
to specify the URL of the style sheet to fetch. The URL may be relative or even remote,
pointing to a style sheet on some other server, though you should be cautious about
linking to remote files, given download delays and the possibility that the file could be
changed without your knowledge. The type attribute is set to indicate the type of style
sheet technology in use, as defined by the MIME type text/css. The media attribute can
be used to set how the style sheet should be applied. When omitted, the default is "all".
Later in the chapter, we will discuss how it is possible to define different styles for screen,
print, and other potential output environments. The general syntax for associating a style
using a <link> tag is shown here:

<link rel="stylesheet"
 href="stylesheet URL"
 type="MIME type of stylesheet"
 media="media-type">

This syntax is illustrated here with a few examples:

<link rel="stylesheet" href="global.css" type="text/css">
<link rel="stylesheet" href="../styles/mainscreen.css"
 type="text/css" media="screen">
<link rel="stylesheet" href="http://htmlref.com/ch4/print.css"
 type="text/css" media="print">

TIP Like other dependent files, it is advisable to put all your style sheets in a special styles directory,
usually named “styles” or “css,” available at a site root.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 455
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 455

Of course, unless the style is bound into a document related to the defined rules, nothing
will be seen, so a full example is presented here, with a rendering shown in Figure 4-7:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Linked Styles</title>
<link rel="stylesheet" href="sitestyle.css" type="text/css" >
</head>
<body>
<div id="page">
<h1>HTML with Linked Style</h1>
<p>Cascading Style Sheets 2.1 as defined by the
W3C provides
powerful page layout facilities. The technology
depends on correct markup so make sure
you get that right too!</p>
</div>
</body>
</html>

ONLINE http://htmlref.com/ch4/linkedstyle.html

CSS is, at least theoretically, not the only style technology we could use, though as it
stands, by default, most browsers assume that CSS is being used. We set type to be specific
but that may get a bit redundant. The HTML specification suggests you can set a default

FIGURE 4-7 Linked style example rendering

 456 P a r t I I : C o r e S t y l e 456 P a r t I I : C o r e S t y l e

style sheet language in the head element of the document by using the <meta> tag, as
shown here,

<meta http-equiv="Content-Style-Type" content="text/css">

or by outputting this value in the HTTP headers delivered to a site. Interestingly, many sites
set the <meta> tag and use the type attribute, which is particularly appropriate as of this
edition’s publication as the specification dictates that the type attribute must be set and
thus the W3C validator will complain if the attribute is not set regardless of the appearance
of the <meta> tag. Check the current situation by validating the file http://htmlref.com/
ch4/metacsscheck.html using the W3 validator service. Depending on the result, you may
notice that specifications or the tools that check them aren’t always perfect.

Embedding Style Sheets
The second way to include a style sheet is to embed it. When you embed a style sheet, you
generally write the style rules directly within the document with a <style> tag found
within the head of the document. The basic syntax of the <style> tag is as follows:

<style type="text/css" media="all | print | screen" >

 * style rules here *

</style>

Here, the type attribute is again used to indicate the MIME type of the enclosed style
sheet. However, this is quite often omitted because browsers generally infer CSS. The media
attribute indicates the media for which the style sheet applies. By default, the style sheet is
applied to all media, so most developers omit this attribute as well. However, as mentioned
before, it is possible to define style sheets that are applied only to a particular output
medium. The most common values are "print" and "screen, " which indicates that rules
are applied to the page only when it is printed or correspondingly shown onscreen. Other
values are possible for the media attribute but generally not supported. Within the style
block, style sheet rules are included. It is important to note that once within the <style>
tag, the rules of (X)HTML do not necessarily apply. The <style> tag defines an island of
CSS within an ocean of markup. The two technologies are intertwined, but have their
own distinct characteristics.

One concern when including style sheets within a markup document is that not all user
agents, particularly older ones or certain indexing systems like simplistic bots, may
understand style sheets. Given the possibility that the content of a style sheet is treated as
regular text, it is desirable to mask the rules. To avoid such a problem, comment out the
style information by using an (X)HTML comment, such as <!-- -->:

<style type="text/css" media="all">
<!--
h1 { color: red; font-size: 48px; }
-->
</style>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 457
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 457

While this technique is common practice and used for script masking as well, there
are some subtle issues, particularly when including non-comment-friendly content like
multiple dashes or trying to address XML strictness. For now, here’s a complete example of
a document-wide embedded style sheet including a script mask:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Embedded Styles</title>
<style type="text/css" media="all">
<!--
body {font-size: medium;
 font-family: Serif;
 background-color: black;
 color: white;}

#page {background-color: white;
 color: black;
 padding: 1em;}

h1 {font-size: xx-large;
 font-family: Sans-Serif;
 color: black;
 text-align: center;
 border-bottom: solid 4px orange;}

p {text-indent: 1em;
 text-align: justify;
 line-height: 150%;}

a:link {color: blue; text-decoration: none;}
a:visited {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:active {color: red; text-decoration: none;}

-->
</style>
</head>
<body>
<div id="page">
<h1>HTML with Embedded Style</h1>
<p>Cascading Style Sheets 2.1 as defined by the
W3C provides
powerful page layout facilities. The technology
depends on correct markup so make sure
you get that right too!</p>
</div>
</body>
</html>

ONLINE http://htmlref.com/ch4/embeddedstyle.html

 458 P a r t I I : C o r e S t y l e 458 P a r t I I : C o r e S t y l e

You can have multiple occurrences of the style element within the head of the
document, and you can even import some styles with these elements, as discussed next.

Importing Style Sheets
Another way to use document-wide style rules rather than type the properties directly within
a <style> tag is to import them. The idea is somewhat similar to linking. An external style
sheet is still referenced, but in this case, the reference is similar to a macro or inline expansion.
The syntax for importing a style sheet is @import, followed by the keyword url and the
actual URL of the style sheet to include, and terminated with a semicolon:

@import url(corerules.css);

Though not advisable stylistically or for ensured browser compatibility, the specification
also allows us to set a string after @import of the URL, like so:

@import "corerules.css";

The @import directive must be included within a <style> tag and it must precede all
other types of rules in a style sheet. In practice, we might see an intermixture of imported
and embedded styles within a single <style> tag, as shown in this example:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Imported Styles</title>
<style type="text/css" media="all">
<!--
@import url(corerules.css);
@import url(linkrules.css);

h1 {font-size: xx-large;
 font-family: Sans-Serif;
 color: black;
 text-align: center;
 border-bottom: solid 4px orange;}

p {text-indent: 1em;
 text-align: justify;
 line-height: 150%;}
-->
</style>
</head>
<body>
<div id="page">
<h1>HTML with Imported Style</h1>
<p>Cascading Style Sheets 2.1 as defined by the
W3C provides
powerful page layout facilities. The technology

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 459
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 459

depends on correct markup so make sure
you get that right too!</p>
</div>
</body>
</html>

ONLINE http://htmlref.com/ch4/importedstyle.html

In the preceding example, we could include rules for body and div in the file corestyles.
css, whereas the rules affecting the links are included via the document linkstyles.css. We
might imagine that these rules are used in other style sheets, and thus breaking them out for
reuse via embedding or linking makes sense. Rules for h1 and p elements are placed within
the style block because they may be specific to this particular page.

CSS Hacks with @import
Although imported style sheets might seem to provide a great advantage for organizing
style information, they provide much the same value as a <link> element. However, CSS
developers did discover that the limited support of @import in some browsers could
be used to their advantage. For example, some very old, partially CSS-aware browsers,
particularly Netscape 4.x, did not support the @import directive properly. Because of this,
you would see page authors write rules such as this:

<style type="text/css" media="all">
<!--
/* rules hidden from non-import supporting browsers */
@import url(hackingrules.css);

/* other rules here */
-->
</style>

Similar to the box-model hack discussed earlier in the chapter, this kind of rudimentary
selection statement approach, developed by understanding the likely behavior of a browser,
is really somewhat of a hack. Even worse, we see that the effect of using @import is an
annoying flashing of unstyled content in some older Internet Explorer versions. Because of
the potential problems with @import, Web page designers should consider well why they
need an outside inclusion scheme besides linked styles, until such quirks are ancient history.

Inline Styles
Instead of using a style sheet for a whole page, you can add style information directly within
a single element. Suppose you want to set one particular <h1> tag to render in extra-large,
green, Arial font. You could quickly apply the style to only the tag in question using its
style attribute, which is a core attribute common to nearly any HTML element. As an
example, the following markup shows an inline style applied to a heading:

<h1 style="font-size: xx-large; font-family: Arial; color: green;">Inline
Style!</h1>

This sort of style information doesn’t need to be hidden from a browser that isn’t style
sheet−aware, because browsers ignore any attributes that they don’t understand.

 460 P a r t I I : C o r e S t y l e 460 P a r t I I : C o r e S t y l e

Although using inline styles seems to be an easy route to using CSS, it does have a
number of drawbacks. The largest problem is that inline rules are bound very closely to a tag.
If you want to affect more than one <h1> tag, you have to copy and paste the style attribute
into every other heading of interest. The separation of markup from CSS presentation is not
optimal with an inline style. However, for quick and dirty application of CSS rules, this might
be appropriate, particularly for testing things out.

The second and lesser-known concern with inline CSS rules is that you simply cannot
perform every task with them. For example, if you want to change the look of various link
states, this is easily accomplished in a document-wide or linked style sheet with pseudo-class
rules like

a:link {color: blue; text-decoration: none;}
a:visited {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:active {color: red; text-decoration: none;}

However, if you attempt to put such rules in an <a> tag, how are other states indicated? The
simple example here would appear to set the color to blue for any state:

Inline Link Styles?

Similarly, in order to change the first letter of a paragraph to large, red text, you might
use a pseudo-element rule like

p:first-letter {color: red; font-size: xx-large;}

However, when you attempt to do this inline, you are forced to introduce an element to
hold the first letter:

<p>This is a test.</p>

While these examples indicate why these selectors were given the names pseudo-class
and pseudo-element, they don’t really show us how to use such inline styles.

It turns out that a working draft specification for addressing this issue was explored in
20022. The idea was to include style blocks without a selector for the default style and for
the various other selectors for the element, state rules directly within the style attribute.
For example, to set the link states, we would use:

<a href="http://www.w3.org/"
 style="{text-decoration: none;}
 :link {color: blue;}
 :visited {color: red;}
 :hover {color: red; text-decoration: underline;}
 :active {color: red;}">Inline Link Styles?

To set the first letter on paragraphs, we would use:

<p style="{text-indent: 1em;
 text-align: justify;
 line-height: 150%;}

2 www.w3.org/TR/css-style-attr

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 461
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 461

 :first-letter {color: red; font-size: xx-large;}">
This is a test.</p>

The emerging specification even suggested the importation of style sheets directly inline:

<div id="navbar"
 style="@import url(navigationstyles.css);">just an example</div>

While all these ideas are quite interesting, more than seven years after the working draft
was authored, not a single browser supports this syntax at the time this edition is being
completed. So, besides being too closely bound to tags, understand that unless this situation
has changed by the time you read this edition, only using inline styles is going to limit your
application of some of the more useful CSS selectors.

NOTE In numerous places in this book, inline styles will be used to demonstrate the application of
look. While it is clear this choice does not demonstrate the ideal approach to bind style to markup,
the decoupled nature of other approaches simply does not lend itself to explanations in prose.
Frequent reminders will be given to encourage you to more loosely couple style and markup once
you understand the property or tag in question.

Media Types
A significant goal of CSS2 was to add support for other output media forms beyond the
computer screen. The CSS 2.1 specification defines numerous media types, listed in Table 4-5.
Today, primarily the values all, screen, and print are used, so until browser vendors or
developers of other user agents begin to support additional media types, these definitions
have no meaning outside of the specification.

TABLE 4-5 Media Types Defined Under CSS2.1

Media Type Definition

all For use with all devices.

aural For use with speech synthesizers.

braille For use with tactile Braille devices.

embossed For use with Braille printers.

handheld For use with handheld devices.

print For use with printed material and documents viewed onscreen in print preview mode.

projection For use with projected media (direct computer-to-projector presentations), or printing
transparencies for projection.

screen For use with color computer screens.

speech For use with speech-synthesized voice. CSS2 used the value aural instead.

tty For use with low-resolution teletypes, terminals, or other devices with limited
display capabilities.

tv For use with television-type devices.

 462 P a r t I I : C o r e S t y l e 462 P a r t I I : C o r e S t y l e

TIP If you are curious to experiment with other media type values beyond screen and print, the
Opera browser (www.opera.com) supports a number of types beyond what more popular browsers
support.

CSS provides two main ways to define media types for style sheets. The first method
simply uses the media attribute for the <link> tag to define the media type. This attribute
enables the page designer to define one style for computer screens, one for print, and
perhaps one for handheld devices or other supported media types. For example, here we
associate three different style sheets that vary by media:

<link rel="stylesheet" href="screen.css" media="screen"
 type="text/css">
<link rel="stylesheet" href="smallscreen.css" media="handheld"
 type="text/css">
<link rel="stylesheet" href="print.css" media="print"
 type="text/css">

Multiple values also can be set for the attribute. These should be separated by commas,
to show that the style can apply to many media forms; for example:

<link rel="stylesheet" href="screen.css" media="screen, projection, tv"
 type="text/css">

The default value for media is all and is applied if the attribute is not used.
When using an embedded style sheet, the media attribute is used in a similar way:

<style type="text/css" media="screen, projection, tv">
/* screen rules */
</style>

<style type="text/css" media="print">
/* print rules */
</style>

When styles are imported, the @import rule can also be used with a media type by
adding the appropriate media type after defining the URL, as shown in this code
fragment:

@import url("screen.css") screen;
@import url("print.css") print;

A @media rule is used to define style rules for multiple media types in a single
embedded style sheet:

<style type="text/css">

@media screen { /* screen rules */ }
@media print { /* print rules */ }
@media screen, print { /* screen and print rules */ }

</style>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 463
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 463

The syntax may look a little odd because you have to wrap style blocks with more curly
braces, like so:

<style type="text/css">
@media screen {body
 {font-family: sans-serif;
 font-size: 14px;}
 }

@media print {body
 {font-family: serif;
 font-size: 10px;}
 }
</style>

Similar to limitations of inline styles for supporting pseudo-classes and pseudo-elements,
it is not possible at the time of this edition’s writing to build equivalent media-specific syntax
into a value present in an element’s core style attribute. However, given the previous
discussion of possible changes to inline styles, it seems likely that syntax like

<p style="@media print {line-height: 100%; font-size: 10px;}
 @media screen {line-height: 150%;}">
This is a test.</p>

might someday be supported in a browser. However, this is purely speculation on the
author’s part, and the example and discussion here should be yet more indication that
inline styles have their limitations.

NOTE One exciting emerging use of media attributes and @media directives is the use of queries
to apply different looks depending on device characteristics. See the Chapter 6 section “Media
Queries” for more information.

Printer-Specific CSS
Currently, the main use of media-specific style sheets is to specify one style sheet for
printing and one for viewing onscreen, as demonstrated here:

 464 P a r t I I : C o r e S t y l e 464 P a r t I I : C o r e S t y l e

All modern browsers support printer styles, which would seem to suggest that the
practice of inserting a special “print format” button is obsolete. However, the sense of
“what you see is what you get” is important to users, so it is a good idea usability-wise to
allow the user to easily preview the printed page.

A printer style sheet may be used to format content quite differently. Commonly, certain
browser-specific features like navigation elements may be removed, usually accomplished
using the display property. URLs may be written out next to embedded links. For printer
styles, font sizes and layout may be changed to more appropriately fit paper consumption
which may include resorting to completely different measurement units than what is used
onscreen.

Alternative Styles
The opportunity to have different looks for different situations is an aspect often mentioned
about CSS but rarely seen. The easiest way to illustrate this is through alternative style
sheets. In a number of browsers, it is possible to then change the look of a page by selecting
an alternative style. To insert different styles, use a <link> tag and set the rel attribute
equal to “alternate stylesheet.” You will also need to set the title attribute for the tag so
that the browser can present a choice for the user. Three examples are shown here:

<link rel="stylesheet" href="standard.css" title="standard">

<link rel="alternate stylesheet" href="orange.css" title="Happy Halloween">

<link rel="alternate stylesheet" href="greenandred.css" title="Merry
Christmas">

A browser that supports the selection of alternative style sheets would then present the
possibility of choosing a different look to the user, as shown under the menu selection here:

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 465
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 465

The looks created with alternative style sheets might be radically different, as shown in
Figure 4-8.

ONLINE http://htmlref.com/ch4/alternatestyles.html

Probably the most significant challenge with alternative style sheets is simply making
users aware that such choices exist. In practice, sites that allow for such customization
usually employ some JavaScript-based style picker system to make it clear customizations
can be employed:

FIGURE 4-8 Drastic look changes per style sheet

 466 P a r t I I : C o r e S t y l e 466 P a r t I I : C o r e S t y l e

User Styles
Users may opt to use their own style sheets when viewing a Web page. Most often, this is
done to create a look that is easier for the user to read. Under Internet Explorer, users set
their own style using the Accessibility features under Internet Options:

In some cases, setting user styles might require a browser add-on or editing of some
preference file. However, in the case of very accessibility-oriented browsers like Opera,
rapidly switching between user styles is easily performed.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 467
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 467

User styles can be applied to arbitrary sites to improve or modify the viewing experience.
User style sheets directly expose the tension between what the site designer wants to deliver
and what the end user actually ends up viewing.

Many Web designers, however, are not comfortable with this shared control and may
attempt to use fixed sizes and fixed positions, resort to !important, or even implement
other technological overrides using Flash or images. Forcing appearance is not in the best
interest of usability. For example, if you can force a particular layout or font size, what
happens to the user with poor eyesight who really needs to adjust things in order to read the
content? The Web is not print, and forcing inflexible designs on end users will not always be
met with success.

 468 P a r t I I : C o r e S t y l e 468 P a r t I I : C o r e S t y l e

Document Structure and CSS Inheritance
As discussed in Chapter 1, (X)HTML documents have an implicit structure. The structure of
the document is generally presented as a tree, as you have seen in a number of the examples
in this chapter. For example, the document shown here would have a tree structure like the
one shown in Figure 4-9:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Test File</title>
</head>
<body>
<h1>Test</h1>
<p>This is a Test!</p>
</body>
</html>

In the example parse tree, note how the tag is a child of the <p> tag, which is
in the <body>, which is in the <html> tag. What happens if you set a style rule to p
elements, as follows?

p {color: red;}

FIGURE 4-9 Simple document parse tree

doctype

html

head

meta

title

h1

p

strong

body

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 469
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 469

Would the contents of the tag enclosed in the <p> tag also be red? The answer is
yes, because the color is inherited from the parent element:

Whereas most elements can inherit the style features of their parents, some style properties
do not inherit. For example, consider setting the border property of the paragraph like so:

p {border: solid;}

If the enclosed tag from the previous example inherited the border, you would
expect to see something like this:

However, this does not happen; the border is limited just to the paragraph itself because the
border value is not inherited. The reference in Chapter 5 will point out important non-
inheriting properties.

Assuming that a property does inherit, it is still possible to override the inheritance of
a property. For example, consider the following two rules:

p {color: red; font-size: xx-large;}
strong {color: yellow;}

In this case, the color of the text within the tag would be yellow and have an xx-
large size. Both of the properties were inherited, but the color property was overridden
by the color rule for the tag, which is more specific:

h1

p

strong

body

p {color:red;}

Red

Red

This is a test

p

strong

body

p {color:red; font-size: xx-large}
strong {color: yellow;}

Red, xx-large

Yellow, xx-large
Override Inherit

 470 P a r t I I : C o r e S t y l e 470 P a r t I I : C o r e S t y l e

The combination of multiple rules, with elements inheriting some properties and
overriding others, is the idea of the cascade that CSS is named for. The general idea of the
cascade, in effect, is that it provides a system to sort out which rules apply to a document
that has many style sheets. For example, a rule for a specific <p> tag marked with an id
attribute is more powerful than a class rule applied to <p>, which in turn is more powerful
than a rule for the p element itself. Inline styles set with a style attribute are more important
than a document-wide style or linked style. An easy way to think about which rule wins is to
follow these helpful rules of thumb:

• The more specific the rule the more powerful.

• The closer the rule is to the tag the more powerful.

So with these rules, we see that id rules are more specific than class rules and thus
will override them. Inline styles are closer to tags than document-wide or external style
rules and thus take precedence, and so on.

TIP There is an actual process to determine the specificity of a particular rule versus another by
assigning numeric values to each rule, but if a designer requires such a careful analysis of the
style rules to determine an end result, the style sheet is simply too complex.

!important Override
If a particular rule should never be overridden by another rule, the !important indication
should be used. For a rule never to be ignored, insert the indication !important just before
the semicolon of the rule. For example, to always set all paragraphs to red text, you might
use the following:

p {color: red !important; font-size: 12px;}

Later on, you might have a paragraph with an inline style such as this:

<p style="color: green; font-size: 24px;">This is a test</p>

In this paragraph, the text would still be red due to the inclusion of the !important
indicator, although it would be larger because that rule was overridden as expected. When
using the !important indicator, always make sure to put it at the end of a rule; otherwise,
it will be ignored. Using the !important override is not encouraged but it is an easy way to
force a style and can be useful if finding the originating source of a value is difficult.

Now that we have discussed the general sense of rules being applied to a document
tree, let’s discuss the selectors that bind particular CSS rules to sections of a document.

Selectors
To understand CSS rules, you must first master selectors. We have briefly introduced basic
selectors such as element values and will review those first, but don’t move on too quickly,
because there are many more selectors to discuss.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 471
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 471

Element Selectors
As shown in the previous sections, the simplest rules can be applied to all occurrences of a
particular tag, such as <p>. These selectors are called element selectors and are simply used
as follows:

element-name { /* properties */ }

As an example, to set the line spacing for all paragraphs, use a rule such as the following:

p {line-height: 150%;}

To set a value for all elements, the wildcard selector * (asterisk) can be used. For example,
to remove the margins on all elements, use

* {margin: 0;}

To set a value for more than one but fewer than all elements, we can group elements by
separating them with a comma. For example, if you want the tags <h1>, <h2>, and <h3> to
have the same basic background and color, you could apply the following rule:

h1, h2, h3 {background-color: yellow; color: black;}

If it turns out that each particular heading should have a different custom size, you can
then add that characteristic by adding other rules:

h1 {font-size: 200%;}
h2 {font-size: 150%;}
h3 {font-size: 125%;}

The result, as we’ll see later, is to combine all the rules to form the final rendered style.
Although associating all elements with a certain look is useful, very often designers want

to create very specific rules that are applied only to certain elements in a document or that
can be combined to form more complex rules.

id Selectors
By applying an id rule, a style can be applied to just a single tag. For example, if we name a
tag with a unique id attribute as follows

<tag id="id-value">Affected Text</tag>

we can then reference it with a CSS selector #id-value. For example,

<h1 id="FirstHeading">This is the First Heading!</h1>

can be styled with

#FirstHeading {background-color: green;}

and this would apply a green background to the element that has its id attribute set to
FirstHeading.

 472 P a r t I I : C o r e S t y l e 472 P a r t I I : C o r e S t y l e

The following markup shows how a green background is applied to the <p> tag with
the id value of "p2", whereas no style is applied to the other paragraphs:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Id Selector Example</title>
<style type="text/css" media="all">
 #p2 {background-color: green;}
</style>
</head>
<body>
<p>This is the first paragraph.</p>
<p id="p2">This is the second paragraph.</p>
<p>This is the third paragraph.</p>
</body>
</html>

ONLINE http://htmlref.com/ch4/idselector.html

As a core (or global) attribute, the id attribute is common to nearly all (X)HTML
elements. However, given widespread use of id attributes, page authors need to be very
careful to ensure that elements are named uniquely. Developers must not name two
elements the same name using the id attribute. If two of the paragraphs have id="p2",
what will happen? In the case of most browsers, both paragraphs will show up green.
However, this is such sloppy style that it generally will result in significant errors once
scripting is added to the document. Furthermore, the document will not validate with such
mistakes. If multiple elements should be affected in a similar way, use a class rule instead.

Element-Specific id Rules
One nonintuitive variation of an id selector is an element-specific selector like

p#p2 {background-color: green;}

This would select only paragraph elements with their id attribute set to "p2." Compare this
to a rule like

#p2 {background-color: green;}

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 473
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 473

which would match any element with an id of "p2." Immediately, you should think that
this implies that more than one element can share id values—why else would we need to
be more specific than a simple id rule? Well, within a single document, that is correct, and it
is not appropriate to have markup like

<p id="p2">I am a correctly identified paragraph</p>
<div id="p2">Wait you already used that id value!</div>
<p>Not again!!!! You already used the value p2!</p>

and then use style rules like

p#p2 {color: red;}
div#p2 {background-color: blue; color: white;}
span#p2 {color: blue;}

However, such rules would make sense if this were a linked style sheet used site-wide
and we had different elements in different documents all named "p2." The author considers
such usage bad style as it assumes that page content is always found within the same
document and will never move, which is not always the case. A site-wide unique id
approach would solve such future problems and would alleviate the need for this type of
selector.

class Rules
The class attribute is used to define the name(s) of the class(es) to which a particular tag
belongs. Unlike id values, class values don’t have to be unique because many elements
can be members of the same class. In fact, elements don’t even have to be of the same type
to be in a common class. Writing rules for classes is easy: simply specify the class name of
your own choosing, such as “nature,” with a period before it as the selector:

.nature {color: green;}

The use of class is illustrated here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Class Selector Example</title>
<style type="text/css" media="all">
 .veryimportant {background-color: yellow;}
</style>
</head>
<body>
<h1 class="veryimportant">Example</h1>
<p class="veryimportant">This is the first paragraph.</p>
<p>This is the second paragraph.</p>
<p class="veryimportant">This is the third paragraph.</p>
</body>
</html>

 474 P a r t I I : C o r e S t y l e 474 P a r t I I : C o r e S t y l e

ONLINE http://htmlref.com/ch4/classselector.html

The previous example has three elements, each of which has its class attribute set to
“veryimportant.” According to the style sheet information, all members of the “veryimportant”
class have a yellow background color:

Other variations on class rules are possible. For example, setting all h1 elements of the
class “veryimportant” to have a background color of orange could be written like this:

h1.veryimportant {background-color: orange;}

In some ways, you can think of a class rule with a wildcard selector like

*.veryimportant {background-color: orange;}

as being the same as the commonly used class selector

.veryimportant {background-color: orange;}

While this is syntactically correct, it doesn’t add much understanding. More interesting and
quite underused is the possibility in selectors to combine classes together directly. For
example, consider the following rule:

h1.veryimportant.stuff {background-color: green;}

This would match only <h1> tags with class attribute values including “veryimportant”
and “stuff.” Given these rules, the following tags with class attributes would be affected in
the various ways indicated:

<h1 class="veryimportant">Has an orange background</h1>
<h1 class="veryimportant dummy">Has an orange background</h1>

<h1 class="veryimportant stuff">Has a green background</h1>
<h1 class="veryimportant dummy stuff">Has a green background</h1>
<h1 class="dummy">Default background unless class rule for dummy set</h1>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 475
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 475

Notice that the rule for green background matches any <h1> tag that includes the class
values “veryimportant” and “stuff” but not necessarily uniquely or in order. If you are
looking to write a rule that matches any single occurrence of a particular group of class
values, then the comma operator is in order. For example, separating the following three
class names by commas

.larry, .curly, .moe {color: red;}

would mean that any element with a single occurrence or more of these class values would
be set as red.

The following is a complete example showing multiple class rules working together:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Multiple Class Selector Example</title>
<style type="text/css" media="all">
 .heading {font-family: Impact, Sans-Serif;}
 .veryimportant {background-color: yellow;}
 .stuff {color: red;}
 .veryimportant.stuff {font-style: italic;}
 .veryimportant.example.stuff {text-decoration: underline;}
</style>
</head>
<body>

<h1 class="veryimportant heading stuff">Heading (yellow background, red
text, italic, and Impact)</h1>
<p class="veryimportant">This is the first paragraph. (yellow background,
black text)</p>
<p class="stuff">This is the second paragraph. (red text, default
background)</p>
<p class="veryimportant stuff">This is the third paragraph.
(yellow background, red text, italic)</p>
<p class="stuff veryimportant example dummy">This is the fourth paragraph.
(yellow background, red text, italic, underlined)</p>

</body>
</html>

ONLINE http://htmlref.com/ch4/multiclassselector.html

 476 P a r t I I : C o r e S t y l e 476 P a r t I I : C o r e S t y l e

As these examples have shown, classes can be used to significantly reduce the number
of style rules necessary in a document.

Contextual Selection
Although the class and id attributes provide a great deal of flexibility for creating style
rules, many other types of rules of equal value exist. For example, it might be useful to specify
that all tags that occur within a <p> tag get treated in a certain way, as compared to
the same elements occurring elsewhere within the document. To create such a rule, you must
use contextual selection. Contextual selectors are created by showing the order in which the
tags must be nested for the rule to be applied. The nesting order is indicated by a space
between each selector. For example, given the rule

p strong {background-color: yellow;}

all occurrences of the strong element within a p element have a yellow background. Other
occurrences of strong without a p ancestor element might not necessarily have the yellow
background.

TIP Be careful about the use of the space and comma in CSS selectors; it is easy to turn grouping
into contextual selection or vice versa with a simple typo.

Contextual selection does not require a direct parent-child relationship with elements.
For example, with the rule in the preceding example, you would find that given

<p>This is not directlywithin
the paragraph.</p>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 477
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 477

the nested tag will still have a yellow background even though it is not directly
within the <p> tag. What you are seeing here is that the rule really says that all
tags that are “descendents” of a <p> tag are given a yellow background:

Descendent selection is not limited to a single level, nor does it require just generic
element selection; for example, here we say that links inside of unordered lists found inside
of the div element with the id of “nav” should have no underlines:

div#nav ul a {text-decoration: none;}

It is also possible that using a wildcard selector may be useful with contextual selection.
The rule

body * a {text-decoration: none;}

would select only <a> tags that are descendents of some tag found under the body element.
While using multiple elements together can be quite powerful, more specific selections
require other CSS selector syntax.

p strong {background-color: yellow;}

Not Yellow
Not Descendent of P

Yellow
Direct Descendent

Yellow
Indirect descendent

div

strong

body

p

strong

body

p

span

body

strong

 478 P a r t I I : C o r e S t y l e 478 P a r t I I : C o r e S t y l e

Direct Descendent Selector
CSS2 introduced the child selector specified by the greater than symbol (>) to form a rule
to match only elements that are directly enclosed within another element. Consider the
following rule:

body > p {background-color: yellow;}

Here we find that only paragraphs that are the direct children of the body element have a
yellow background:

<body>
<p>I have a yellow background</p>
<div><p>I do not have a yellow background.</p></div>
</body>

Adjacent Sibling Selectors
A similar rule called the adjacent-sibling selector is specified using the plus sign (+) and is
used to select elements that would be siblings of each other. For example, consider the
following rule:

h1 + p {color: red;}

This states that all paragraph elements that are directly after an <h1> are red, as indicated
by this markup:

<h1>I am a heading</h1>
<p>I am an adjacent paragraph so I am red!</p>
<p>I am not adjacent so I am not red.</p>

h1

p

p

body

h1 + p {color: red;}

Red - Adjacent to h1

Not Red - Not Adjacent to h1

p

div

p

body

p strong {background-color: yellow;}

Yellow - Direct Descendent

Not Yellow - Not Direct Descendent

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 479
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 479

General Sibling Selectors
A CSS3 selector (~) can be used to select elements that happen to have a particular element
preceding them as a sibling directly. For example,

h1 ~ p {color: red;}

would mean that <p> tags that eventually follow at the same tag nesting level as <h1> tags
would be red:

<p>I am not red.</p>
<h1>Heading 1</h1>
<p>This is red.</p>
<h2>Heading 2</h2>
<p>I am red too.</p>
<div><p>Not me as I am not a sibling given that I am one level down.</p></div>

NOTE Advanced contextual selectors like direct child selectors are not supported under some
relatively recent Internet Explorer versions, notably IE 6 and earlier.

A summary of all the core element selectors discussed so far can be found in Table 4-6.

Attribute Selectors
Attribute selectors, first introduced in CSS2, allow rules to match elements with particular
attributes or attribute values. For example, a rule such as

a[href] {background-color: yellow;}

would match all <a> tags that simply have the href attribute, whereas a rule such as

a[href="http://www.htmlref.com"] {font-weight: bold;}

would match only those <a> tags that have an href value set to the book’s support site URL.

p

h1

body

h1 ~ p {color: red;}

Red

Not Red

p

h2

Redp

div

p Not Red

 480 P a r t I I : C o r e S t y l e 480 P a r t I I : C o r e S t y l e

TABLE 4-6 Core CSS Selectors

Selector Description Example Defined In

E Selects all elements of
the name E specified
in the rule

h1 {color: red;}
/* makes all h1 tags red */

CSS1

* Selects all elements * {color: blue;}
/* makes all elements blue */

CSS2

E, F, G Applies the same rules
to a group of tags E, F,
and G

h1,h2,h3 {background-color: orange;}
/* sets the background color of all
h1, h2, and h3 elements to orange */

CSS1

#id Selects any tag with an
id attribute set

#test {color: green;}
/* makes a tag with id='test' green */

CSS1

E#id Selects the specified
element E with the
given id attribute set

h3#contact{color: red;}
/* sets the color to red on the h3
tag with the id equal to contact */

CSS1

.class Selects all tags with
the specified class
value

.note {color: yellow;}
/* makes all tags with class='note'
yellow */

CSS1

E.class Selects the specified
elements of type E
with a particular class
value

h1.note {text-decoration: underline;}
/* underlines all h1 tags with
class='note' */

CSS1

E F Selects descendent
tags where F is an
eventual descendent
of element E

p strong {color: purple;}
/* sets all strong tags that are
descendents of p tags purple */

CSS1

E > F Selects direct
descendents

body > p {background-color: yellow;}
/* makes all p tags that have the
body tag as their immediate parent
have the background color yellow */

CSS2

E + F Selects adjacent
siblings

h1 + p {color: red;}
/* makes all p tags that are
immediately preceded by an h1 tag
red */

CSS2

E ~ F Selects siblings p ~ strong {font-style: italic;}
/* sets the font style to italic on
all strong tags that have a p tag
as a preceding sibling */

CSS3

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 481
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 481

It is possible to match multiple attribute values or even pieces of the attribute values.
For example, to match a value in a space-separated list, you might use a rule like this:

p[title~="Larry"] {font-style: italic;}

This rule would match

<p title="Larry Curly and Moe">This is italic.</p>
<p title="Larry">This is italic.</p>
<p title="Larry-The-Stooge">This is not italic.</p>

To match an attribute value separated by dashes, which is common in language values
(for example, en-uk, en-us, and so on), use a rule like this:

p[lang|="en"] {color: red;} /* English text in red */

This rule would then affect English paragraphs but not paragraphs that have no language
specified or a different value than an English variation:

<p lang="en">This is English and red.</p>
<p lang="en-uk">This is British English and red.</p>
<p>Not red no lang specified.</p>
<p lang="fr">C'est Francais. (Not red)</p>

Later we will see an alternate form of language selection using a CSS3 pseudo-class
called :lang(). We’ll save that for later when we discuss other pseudo-classes, but while
we’re on the topic of CSS3, let’s see what attribute selection possibilities this emerging
specification introduces.

CSS3 Attribute Selectors
CSS3 introduces a number of new attribute selectors. For example, you can now match
attributes that start with a particular value using [attr^=value]. Here we match
paragraphs that have title attributes that start with “Start match”

p [title^="Start match"] {background-color: red;}

and apply them to the following markup:

<p title="Start match">This should be red.</p>
<p title="No Start Match">This should not be red.</p>

Using [attr$=value], we can match the end of an attribute value. For example, here
we match paragraphs with title attributes that end with “match end”

p.group4[title$="match end"] {background-color: red;}

which is demonstrated with this markup:

<p class="group4" title="This should match end">This should be red.</p>

<p class="group4" title="This won't match end!">This shouldn't be red.</p>

 482 P a r t I I : C o r e S t y l e 482 P a r t I I : C o r e S t y l e

Finally, we can look over an attribute value and find matches within it using
[attr*=value]. Here we match paragraph elements with the word “found” present in the
title attribute:

p [title*="found"] {background-color: red;}

This will match

<p title="The match is found in here">This should be red.</p>

but not match this paragraph

<p title="No match can be seen here">This shouldn't be red.</p>

as it is missing the word we match on. However, note that this isn’t really a word match but
more a substring match as it will match the following markup:

<p class="group4" title="*foundinside*">This should be red.</p>

However, as a pattern match, it is susceptible to casing, so this markup

<p class="group4" title="*Foundinside*">This shouldn't be red.</p>

wouldn’t match. If you are familiar with regular expressions and start to imagine a complex
CSS selector system with case-sensitivity wildcards and more. If you have bad dreams
about regular expressions, you might guess where this trend may end up someday.

Multiple Attribute Selectors
As you learn about more selectors, always remember that you can combine previous ideas
together. For example,

p.group1[title] {background-color: red;}

would match any <p> tag with the class “group1” and with the title attribute set.
Contextual selection also could be applied, where

#nav a[href="http://"] {font-weight: bold;}

would match any <a> tags which are descendents of some element with an id value of
“nav” that have href values that start with “http://” and make them bold.

We can also match multiple attribute characteristics at once. Consider the following:

p[title="Test Selector"][lang|="en"] {border: 2px solid black; }

This rule would match a <p> tag with a title set to “Test Selector” and a lang value in the
English family. To experiment with attribute selectors, see the example online at http://
htmlref.com/ch4/attributeselectors.html. Table 4-7 presents all the attribute selectors
together.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 483
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 483

Selector Description Example Defined In

E[attr] Selects all elements of
E that have the given
attribute attr

a[href] {background-color:
yellow;}

/* sets the background color
to yellow for all a tags
that have an href attribute
*/

CSS2

E[attr=value] Selects all elements of
E that have set the given
attribute attr equal to
the given value

a[href="http://www.htmlref
.com"] {font-weight: bold;}

/* sets the font-weight to
bold on all a tags that have
their href attribute set to
http://www.htmlref.com */

CSS2

E[attr|=value] Selects all elements of
E that have an attribute
that contains a value
that starts with a
value that is a list of
hyphen-separated values

p[lang|="en"] { color: red;}

/* English text in red */

CSS2

E[attr~=value] Selects all elements
of E that have a space-
separated list of values
for attr where one of
those values is equal to
the given value

p[title~="Test"]
{font-style: italic;}

/* sets the font style to
italic on all p tags that
have one word in their title
equal to Test */

CSS2

E[attr^=value] Selects all elements of
E that have the attribute
attr that begins with the
given value

p[title^="HTML"]{color:
green;}

/* sets the color to green
if the title starts with
HTML */

CSS3

E[attr$=value] Selects all elements of
E that have the attribute
attr that ends with the
given value

p[title$="!"]{color: red;}

/* sets the color to red
if the title ends with an
exclamation mark */

CSS3

E[attr*=value] Selects all elements of
E that have the attribute
attr that contains the
given value

p[title*="CSS"]{font-style:
italic;}

/* sets the font style to
italic in any p tag that has
CSS in its title */

CSS3

TABLE 4-7 CSS Attribute Selectors

 484 P a r t I I : C o r e S t y l e 484 P a r t I I : C o r e S t y l e

Pseudo-Element Selectors
You may encounter situations in which you want to select a particular portion of an HTML
document but there is not a defined element associated with it. CSS provides the ability to
style portions of a document tree without a unique element associated with the content.
Because in some ways this creates an element to effect this change, such selectors are
dubbed pseudo-element selectors.

:first-letter and :first-line Pseudo-Elements
To style the first line of a paragraph or a first character of a paragraph, it would be easy
enough to specify a CSS selector. However, we might not actually have a full element that
the rule is bound to, so a pseudo-element is thus implied. As an example, say you want to
make the first character of a paragraph called “intro” large, you can use a pseudo-element
rule :first-letter to bind style.

p:first-letter {font-size: xx-large; background-color: red;}

would make every first letter of a paragraph large and red. We can also make the initial line
of paragraphs a different style using the :first-line pseudo-element:

p:first-line {font-size: xx-large; text-decoration: underline;}

These pseudo-classes aren’t limited solely to <p> tags but they are generally limited to block
elements. A simple example of applying these pseudo-elements is shown here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>First Letter and First Line Pseudo-Elements</title>
<style type="text/css" media="all">
 p#intro:first-letter {font-size: 5em; font-weight: bold;
 float: left; margin-right: .1em;
 color: #999;}
 p#intro:first-line {font-size: 1.5em; font-weight: bold;}
</style>
</head>
<body>
<p id="intro">It was the best of times, it was the worst of times, it was
the age of wisdom, it was the age of foolishness, it was the epoch of
belief, it was the epoch of incredulity, it was the season of Light, it was
the season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we were all
going direct to heaven, we were all going direct the other way - in short,
the period was so far like the present period, that some of its noisiest
authorities insisted on its being received, for good or for evil, in the
superlative degree of comparison only.</p>
</body>
</html>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 485
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 485

This would style the first line of some classic prose with an initial drop cap and varied first
line, as shown in the following illustration.

ONLINE http://htmlref.com/ch4/firstletterandline.html

NOTE Under CSS3, the syntax of pseudo-elements has been changed to have two colons, so
:first-line becomes ::first-line. This change makes the difference between a
pseudo-element and a pseudo-class explicit, but since this syntax is not as widely supported
yet, the examples will focus on the traditional CSS2 syntax, which will likely continue to be
supported for quite some time.

:before and :after Pseudo-Elements
A very useful pair of pseudo-elements are the :before and :after selectors, which under
CSS3 are written as ::before and ::after. These selectors are used to add generated
content before or after an element and nearly always are combined with the CSS2 property
content, which is used to insert dynamically generated content. As an example, we might
use these selectors to insert special start- and end-of-section indicator images. Consider the
following:

div.section:before {content: url(sectionstart.gif);}
div.section:after {content: url(sectionend.gif);}

The content property can be used to specify objects like images, as indicated by the
preceding example, but it also can specify regular text content; for example,

p.warn:before {content: "Warning!";}

will print the word “Warning!” before every paragraph in class “warn.” The following
example uses :before and :after pseudo-elements, a rendering of which appears in
Figure 4-10:

<!DOCTYPE html>
<html>
<head>

 486 P a r t I I : C o r e S t y l e 486 P a r t I I : C o r e S t y l e

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>:before and :after Pseudo-elements</title>
<style type="text/css">

 .external:after {content: url('offsite.gif'); margin-left: .2em;}
 .warning:before {content: "Warning!";
 background-color: yellow;
 border-style: dashed; border-width: 1px;
 margin-right: 1em;}
 .warning:after {content: "**";
 background-color: yellow;
 border-style: dashed; border-width: 1px;
 margin-left: 1em;}

</style>
</head>
<body>
<p>
 Local link

 external link
</p>

<p class="warning">This is dangerous example text.
Be careful, you may suffer boredom typing in a bunch of fake
text just to make this example work. Don’t worry, almost done.
Finally!</p>
</body>
</html>

ONLINE http://htmlref.com/ch4/beforeandafter.html

FIGURE 4-10 Rendering of :before and :after selectors example

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 487
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 487

::selection Pseudo-Element
CSS3 introduces a pseudo-element ::selection that is used to style parts of an element
that is currently selected or, as more commonly thought of, highlighted. The following
simple example demonstrates this pseudo-element:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>::selection Pseudo-elements</title>
<style type="text/css">
 #select1::selection {background-color: red;}
 #select1::-moz-selection {background-color: red;}
 #select2::selection {color: green;}
 #select2::-moz-selection {color: green;}
</style>
</head>
<body>
<p>Select this text. Now select <span
id="select2">this text.</p>
</body>
</html>

ONLINE http://htmlref.com/ch4/selection.html

NOTE Because of browser support with more emerging features, you may see CSS stem syntax; in
this case, –moz-selection is employed to improve the likelihood of rendering.

Table 4-8 summarizes all the pseudo-elements available in CSS1 through CSS3.

Pseudo-Class Selectors
Like pseudo-elements, pseudo-classes allow CSS selectors to specify styles for multiple
sections of a document tree that may not have style groups clearly associated with them.
Traditionally, pseudo-classes were dominantly used with link states and simple interface
states, but under CSS2 and CSS3, the number of pseudo-classes has exploded to include a
wide variety of document position and tree logic selectors. No doubt by the time you read
this there will be even more!

 488 P a r t I I : C o r e S t y l e 488 P a r t I I : C o r e S t y l e

Selector Description Example Defined In

:first-line Selects the first line of
an element

p:first-line {color: red;}

/* makes the first lines of
paragraph red */

CSS1

::first-line Same as :first-line;
changed under CSS3 to
make pseudo-elements
obvious

p::first-line {color: red;}

/* makes the first lines of
paragraph red */

CSS3

:first-letter Selects the first letter of
an element

p:first-letter {font-size:
larger;}

/* makes the first letter of
a paragraph larger */

CSS1

::first-letter Same as :first-
letter; changed under
CSS3 to make pseudo-
elements obvious

p::first-letter {font-size:
larger;}

/* makes the first letter of
a paragraph larger */

CSS3

:before Sets a style to be used
immediately before the
element

div:before {content:
url(sectionstart.gif);}

/* inserts the sectionstart
.gif image before all div
tags */

CSS2

::before Same as :before;
changed under CSS3 to
make pseudo-elements
obvious

div::before {content:
url(sectionstart.gif);}

/* inserts the sectionstart
.gif image before all div
tags */

CSS3

:after Sets a style to be used
immediately following the
element

div:after {content:
url(sectionend.gif);}

/* inserts the sectionend
.gif image immediately
following all div tags */

CSS2

::after Same as :after;
changed under CSS3 to
make pseudo-elements
obvious

div::after {content:
url(sectionend.gif);}

/* inserts the sectionend
.gif image immediately
following all div tags */

CSS3

::selection Selects the part of the
element that is currently
selected; supported
in Firefox as ::-moz-
selection as well

#test::selection {color:
red;}

/* makes the text red when
selected */

CSS3

TABLE 4-8 CSS Pseudo-Element Selectors

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 489
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 489

Link-Related Pseudo-Classes
Even if you have just a passing familiarity with using a Web site, you’ll note that there are
three primary states to typical text links—unvisited, visited, and active (mid-press)—in
which the link text color is blue, purple, and red, respectively. In CSS, the presentation of link
states is controlled through the pseudo-class selectors a:link, a:visited, and a:active.
CSS2 also adds a:hover for the mouse hovering over a link, though this pseudo-class in
theory isn’t limited to links. Similarly, the pseudo-class :focus would be selected when the
link gains focus—generally through keyboard navigation. An example demonstrating how
these link-related pseudo-class selectors are used is shown here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Link Pseudo-Class Example</title>
<style type="text/css" media="all">

a:link {color: blue; text-decoration: none;}
a:active {color: red; background-color: #FFC;}
a:visited {color: purple; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:focus {border-style: dashed; border-width: 1px;
 background-color: #FFA500;}

</style>
</head>
<body>
HTML: The Complete Reference
</body>
</html>

ONLINE http://htmlref.com/ch4/linkstates.html

Although the CSS rules associated with the states of a link can be used to change the link’s
appearance in dramatic ways, designers are encouraged to limit changes to improve usability.
Also note that size changes and other significant differences in link presentation can result in
undesirable screen refreshes as the document reloads. For example, with a rule such as

a:hover {font-size: larger;}

you may notice text lines shifting up and down as you roll over links.
A newer link-related pseudo-class is :target, which is used to style an element when it

is a link target and the current URL of the document has that fragment identifier in its URL.
For example, given the rule

#top:target {background-color: green;}

a tag like

I am the top of the document.

 490 P a r t I I : C o r e S t y l e 490 P a r t I I : C o r e S t y l e

would get a green background color only when the current URL includes the fragment
identifier #top.

Try the example online if you are still unsure of how the element works.

ONLINE http://htmlref.com/ch4/target.html

Activity Related Pseudo-Classes—:hover and :focus
There are other pseudo-classes related to user activity, most notably :hover and :focus.
The :focus pseudo-class is used to apply a rule to an element only when that element has
focus. Typically, form fields can accept keyboard input and thus can gain focus. So to set
any text input field to have a yellow background color when it gains focus, you would use a
rule such as the following:

input[type=text]:focus {background-color: yellow;}

The :hover pseudo-class, as discussed in the previous section, is used primarily to change
the appearance of links when the user’s pointer is hovering over them:

a {text-decoration: none;}
a:hover {text-decoration: underline;}

However, it is possible to apply this pseudo-class to just about any element, so a rule such as

p:hover {background-color: yellow;}

is perfectly valid, although it produces a potentially annoying effect and not everybody’s
browser has support for this selector on all elements.

The following is a simple example demonstrating these pseudo-class selectors:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hover and Focus Pseudo-Class Example</title>
<style type="text/css" media="screen">
 .annoy:hover {border-style: dashed; background-color: yellow;}
 input[type=text]:hover {background-color: yellow; }
 input[type=text]:focus {background-color: #FFA500;}
</style>
</head>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 491
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 491

<body>
<p class="annoy">Roll over me.</p>
<p>Now roll over that bit of text.</p>

<form action="#">
 <div><input type="text" size="40" value="Hover and then click into this
field"></div>
</form>
</body>
</html>

ONLINE http://htmlref.com/ch4/hoverfocus.html

Interface State Pseudo-Classes
User interface elements such as forms have various states depending on user activity. CSS3
introduces pseudo-classes to style form elements depending on state. For example,
:enabled and :disabled are used to specify the style for elements that have been enabled
or disabled, respectively, generally by whether the (X)HTML attribute disabled has been
set. For example, the rule

input[type=text]:enabled {background-color: yellow;}

would apply a yellow background to the text field here

<input type="text" size="40" value="This field is enabled">

while this rule

input[type=text]:disabled {background-color: red;}

would apply to a red background to a disabled field like

<input type="text" disabled size="40" value="This field is disabled">

It should be noted that very often the disabling or enabling of fields will not be directly
present in markup, but may be set by JavaScript.

The style of check boxes and radio buttons can be controlled using the :checked
pseudo-property. For example,

input[type=checkbox]:checked {border: 2px solid red;}

would put a special border on the check box once it was set.
Other user-interface selectors are also defined under an emerging CSS3 UI specification,3

like :default, :valid, :invalid, :in-range, :out-of-range, :required, :optional,
:read-only, and :read-write. The meaning of some of these should be clear; for example,

input[type=text]:readonly {border: 2px dashed red;}

3 www.w3.org/TR/css3-ui/#pseudo-classes

 492 P a r t I I : C o r e S t y l e 492 P a r t I I : C o r e S t y l e

would set any text field that has a readonly attribute set to have a dashed red border. If we
wanted to select fields that were both readable and writable, we would use a rule like

input[type=text]:read-write {border: 2px dashed red;}

which would pick all text fields that are not read-only.
If we have a set of various input elements where one is the default, we could use the

:default pseudo-class rule to style it. For example,

input[type=submit]:default {background-color: red;}

would set the default submit button in a form to have a red background.
Looking further, the meaning of the emerging pseudo-classes becomes less clear. While

it seems obvious reading the specification that :valid and :invalid could be used to style
interface elements which are not in a valid state, a pseudo-class of :required would pick
fields which are required state and so on. However, even if the selectors are clear, the big
question is how do you actually indicate such states for markup elements? The specification
defines that this is related to WebForms, which is not a well-implemented technology.
However, many of the useful ideas of that specification have made their way into HTML5,
so it is quite possible these selectors will someday be implemented. Certainly support for
these selectors should not be assumed, so please test the example online.

ONLINE http://htmlref.com/ch4/elementstate.html

Document Tree Pseudo-Classes
CSS2 supports a pseudo-class :first-child that is used to find only the first child of a
parent element. For example,

ul li:first-child {font-weight: bold;}

would make the first tag found within an unordered list tag () bold. Do note that
without using descendent selectors, you are specifying a universal selector. For example, a
rule like

p:first-child {color: red;}

really is

* p:first-child {color: red;}

because it says that any time a <p> tag is a first child of some element including the body
element it would be red. Try for yourself, using this simple example:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>First Child Pseudo-Class</title>
<style type="text/css" media="screen">
 p:first-child { color: red;}
</style>
</head>

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 493
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 493

<body>
<p>I should be red because I am the first child in the body.</p>
<p>I should not be red because I am the second child in the body.</p>
<div>
 <p>I should be red because I am the first child of div.</p>
 <p>Second child of div, thus not red.</p>
</div>
</body>
</html>

ONLINE http://htmlref.com/ch4/firstchild.html

CSS3 introduces a multitude of document tree–related pseudo-classes. To complement
:first-child(), we now have :last-child(), so

ul li:last-child {background-color: black; color: white;}

would make the last list item in an unordered list have white text on a black background.
You are not limited to looking just at the first or last child of an element. You can also

look at the :nth-child(). For example,

ul li:nth-child(5) {font-size: xx-large;}

would make the fifth list item very large if the list had a fifth item. Of course, such syntax
means that :nth-child(1) is the same as :first-child, which is of course much more
readable.

The :nth-child() selector is quite powerful because you can use simple keywords like
odd and even to alternate every other child. For example,

ul li:nth-child(odd) {color: red;}
ul li:nth-child(even) {color: blue;}

would make all odd children in a list red and all even ones blue.
Now suppose you want to make every third element in this unordered list italic; you

could use a rule like

ul li:nth-child(3n) {font-style: italic;}

We can also perform these actions from the end of a tree to look for the last child of a
particular element. For example,

ul li:nth-last-child(2) {text-decoration: underline;}

would make the second-to-last item in the list underlined. Given this syntax, :nth-last-
child(1) is the same as :last-child, which is obviously preferable. We can use all the
same keywords and counting values in the :nth-last-child() pseudo-class as we did in
:nth-child().

We can also look for elements of particular types within a subtree. For example,

p span:first-of-type {color: red;}
p span:last-of-type {color: green;}

 494 P a r t I I : C o r e S t y l e 494 P a r t I I : C o r e S t y l e

would set the first tag found in the paragraph to red and the last tag found
to green. Of course, those might be one and the same, which would then make the item
green since that was the final rule defined and applied.

It is also possible to find particular items of a type. For example, this makes the third
 tag encountered in a paragraph larger,

p span:nth-of-type(3) {font-size: larger;}

while this makes the second-to-last tag underlined:

p span:nth-last-of-type(2) {text-decoration: underline;}

The value of these rules as opposed to children is clear when there are other elements
found in a subtree or when you start combining rules. For example,

p#intro .fancy:nth-of-type(4n) {color: red;}

would make every fourth element in class “fancy” found within the paragraph called
“intro” red. As you see, we can get quite specific with CSS3 tree pseudo-class selectors.

If we are looking for uniqueness, we have two pseudo-classes of interest, :only-child
and :only-of-type. For example, this rule would make a span green when it is the only
child found in a paragraph:

p span:only-child {color: green;}

so

<p>I am the only child so I am green.</p>
<p>I have two children so no green here.</p>

If we care to look for subtrees that contain elements, only a certain type use
:only-of-type. For example,

p em:only-of-type {background-color: red;}

would set the tag to have a red background if it was the only one found in a
paragraph, as demonstrated by this markup:

<p>I have a single em so I am red.</p>
<p>I have two em tags so neither is red.</p>

If all these different tree selectors are making your head hurt, we will finish off with
some easy ones. First is the :root pseudo-class, which in the case of (X)HTML is always
going to be the html element, so

:root {color: red;}

makes all tags red. The value of this selector is clearly for XML where the definition of the
root element in a language is variable as opposed to (X)HTML where it is always <html>.
Second is the :empty selector, which can be used to select elements that are empty (in other
words, have no children). So this rule would find all the <p> tags that are empty and show
them with a solid red border:

p:empty {border: 2px solid red;}

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 495
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 495

An example showing all the tree selectors in action is shown below, with a rendering
provided in Figure 4-11.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Tree Pseudo-class Selectors</title>
<style type="text/css" media="screen">
 :root {font-family: Verdana, Geneva, sans-serif;} /* same as setting
HTML element */

 ul li:nth-child(odd) {color: red;} /* odd items red */
 ul li:nth-child(even) {color: blue;} /* even items blue */
 ul li:nth-child(5) {font-size: xx-large;} /* 5th item bigger */
 ul li:nth-child(3n) {font-style: italic;} /* every third item italic */
 ul li:nth-last-child(2) {text-decoration: underline;} /* second
from the last child underlined */
 ul li:last-child {background-color: black; color: white;} /* same
as :nth-last-child(1) */

 p#test1 span:first-of-type {color: green;}
 p#test1 span:last-of-type {color: red;}
 p#test1 span:nth-of-type(3) {font-size: larger;}
 p#test1 span:nth-last-of-type(2) {text-decoration: underline;}

 p.test2 span:only-child {color: green;}

 p.test3 em:only-of-type {background-color: red;}

 p:empty {border: 2px solid red;}

</style>
</head>
<body>

 Odd (Red)
 Even (Blue)
 Odd and by three so italic
 Even
 Odd and bigger because it is 5th child
 Even and by three so italic
 Odd
 Even
 Odd and 2nd to the last item should be underlined, also by three
 so italic
 Last item is white on black

<p id="test1">This is not a span. I am the first span so I
am green. I am the second span so nothing. I am the
third span so I am big. Fourth span also nothing.
Fifth span and second to last so underlined. I am the last
span so I am red. This is not a span.</p>

 496 P a r t I I : C o r e S t y l e 496 P a r t I I : C o r e S t y l e

<p class="test2">I am only child so I am green.</p>
<p class="test2">I have two children so no green
here.</p>

<p class="test3">I have a single em so I am red.</p>
<p class="test3">I have two em tags so neither is red.</p>

<p>Empty element below.</p>
<p></p>
<p>Empty element above.</p>

</body>
</html>

ONLINE http://htmlref.com/ch4/treeselectors.html

FIGURE 4-11 CSS2 and CSS3 tree selectors example

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 497
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 497

Language Pseudo-Class :lang
Attribute selectors are often used to address values set for the common lang attribute
because designers very often need to set rules to quickly pick out one language or another
in a document. The :lang() pseudo-class performs the same thing as the |= selector.
Instead of writing

p[lang|="en"] { color: red; } /* English text in red */

we can write using a pseudo-class selector:

p:lang(en) { color: red; } /* English text in red */

This would style English paragraphs but not paragraphs that have no language specified or
a different value than an English variation:

<p lang="en">This is English and red.</p>
<p lang="en-uk">This is British English and red.</p>
<p>Not red no lang specified.</p>
<p lang="fr">C'est Francais. (Not red)</p>

Specification-wise, the pseudo-class approach is preferred, but for best support, you
might find that the older syntax is more widely implemented.

Negation Pseudo-Class :not
One of the most interesting pseudo-classes introduced by CSS3 is :not(), which is used to
reverse logic. For example,

p:not(.plain) {color: red;}

says that all paragraph tags not in class “plain” should be colored red. The :not() selector
takes simple parameters such as element type selectors, the wildcard selector, attribute
selectors, id selectors, class selectors, and most pseudo-classes besides itself. As a more
complex example, a rule like

#nav > a:not(:hover) {color: green;}

would select all links with an element called “nav” that are not being hovered over and set
them to be green. You can test these simple examples to see if your browser conforms to this
newer selector with the example at http://htmlref.com/ch4/not.html.

TIP Negative logic can be quite confusing. Beware of adding more complexity than you need to
using the :not() pseudo-class.

Now we are finished with selectors, but more selectors are expected any day now as
CSS3 continues to grow. We summarize the last group of selectors in Table 4-9. All of the
selectors are grouped together in one large table in Chapter 5 for reference purposes.

 498 P a r t I I : C o r e S t y l e 498 P a r t I I : C o r e S t y l e

Selector Description Example Defined In

a:link Specifies the unvisited
link

a:link {font-weight: bold;}

/* makes unvisited links bold
*/

CSS1

a:active Specifies the link as it
is being pressed

a:active {color: red;}

/* makes links red as they are
pressed */

CSS1

a:visited Specifies the link after
being pressed

a:visited {text-decoration:
line-through;}

/* puts a line through visited
links */

CSS1

:hover Selects the element
when the user is
hovering over it

p:hover {background-color:
yellow;}

/* sets the background color
to yellow on the p element
that the user is currently
hovering over */

CSS2

:target Selects the element
that is the target of a
referring URI

:target{color:red;}

/* if the element is the
target of the referring URI,
the color is set to red */

CSS3

:focus Selects the element
only when the element
holds the focus

input:focus {background-color:
yellow;}

/* sets the background color
to yellow on the input element
that has focus */

CSS2

:enabled Selects the elements
that are currently
enabled

input:enabled
{background-color: white;}

/* sets the background color
to white on enabled input
elements */

CSS3

:disabled Selects the elements
that are currently
disabled

input:disabled
{background-color: gray;}

/* sets the background color
to gray on disabled input
elements */

CSS3

:checked Selects the elements
that are checked

:checked{color: blue;}

/* sets the color to blue if
an element is checked */

CSS3

TABLE 4-9 CSS Pseudo-Class Selectors

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 499
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 499

Selector Description Example Defined In

:default Selects the elements
that are the default
among a set of similar
elements

:default {background-color:
red;}

/* sets the background color
of a default button like a
submit to red */

CSS3

:first-child Selects the element
only if the element is
the first child of its
parent

p:first-child { color: red;}

/* sets the font color to red
for all of the p tags that
are the first child of their
parent */

CSS2

:last-child Selects the element
that is the last child
of its parent

p:last-child {font-size:
small;}

/* sets the font size to small
on the p tags that are the
last child of their parent */

CSS3

:first-of-type Selects the element
that is the first child
of its parent that is
of its type

strong:first-of-type
{font-size: bigger;}

/* sets the font size bigger
on the first strong tag of its
parent */

CSS3

:last-of-type Selects the element
that is the last child
of its parent that is of
its type

strong:last-of-type
{font-size: smaller;}

/* sets the font size smaller
on the last strong tag of its
parent */

CSS3

:only-child Selects an element if
it’s the only child of its
parent

h1:only-child {color: blue;}

/* sets the h1 color to blue
if the h1 is the only child of
its parent */

CSS3

:only-of-type Selects an element if
it’s the only child of its
parent with its type

p:only-of-type {font-weight:
bold;}

/*sets the p element to be
bold if it is the only p tag
child of its parent */

CSS3

:nth-child(n) Selects the element
that is the nth child of
its parent

div:nth-child(2)
{background-color: red;}

/* sets the background color
to red if the div is its
parent’s second child */

CSS3

TABLE 4-9 CSS Pseudo-Class Selectors (continued)

 500 P a r t I I : C o r e S t y l e 500 P a r t I I : C o r e S t y l e

Selector Description Example Defined In

:nth-last-
child(n)

Selects the element
that is the nth-from-last
child of its parent

p:nth-last-child(3) {color:
yellow;}

/* sets the color to yellow if
the p element is its parent’s
3rd to last child */

CSS3

:nth-of-type(n) Selects the element
that is the nth child of
its parent that is its
type

strong:nth-of-type(5)
{text-decoration: underline;}

/* underlines the fifth strong
tag under a parent */

CSS3

:nth-last-of-
type(n)

Selects the element
that is the nth-from-last
child of its parent that
is its type

p:nth-last-of-type(2) {color:
purple;}

/* sets the color to purple on
the second to last p element
of its parent */

CSS3

:root Selects the element
that is the root of the
document

:root {background-color:
blue;}

/* sets the background color
to blue for the root element
*/

CSS3

:empty Selects an element that
has no children

div:empty {display: none;}

/* hides the div if it has no
children */

CSS3

:not(s) Selects elements
that do not match the
selector s

*:not(h1) {color: black;}

/* sets the color to black on
every element that is not an
h1 tag */

CSS3

:lang(value) Selects all elements
that have the lang
attribute set to the
given value

*:lang(fr) {color: blue;}

/* sets the font color to blue
for every element that has the
attribute lang set to 'fr' */

CSS2

TABLE 4-9 CSS Pseudo-Class Selectors (continued)

CSS Properties Preview
Now that you’ve seen how elements are selected by rules in style sheets, you probably are
wondering what are the various properties that can be set. There are lots of things to choose
from; in fact, there are dozens of CSS1 and CSS2 properties. Roughly, we can break properties
into several groups, including font, background, positioning, borders, and more. Table 4-10
details the groups with a sampling of the various properties under each. We will cover each
of these properties in Chapter 5.

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 501
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 501

CSS3, which isn’t completed, defines even more properties. Of course, the browser
vendors are busy inventing new ones all the time as well, which adds to the challenge of
documenting which emerging properties works. That task is taken up in Chapter 6.

Property Type Property List

Font font, font-family, font-style, font-variant, font-weight,
font-size, color

Background background, background-color, background-image, background-
repeat, background-attachment, background-position

Text word-spacing, letter-spacing, white-space, word-wrap, text-
decoration, vertical-align, text-transform, text-indent,
line-height

Positioning margin, margin-top, margin-right, margin-bottom, margin-left,
padding, padding-top, padding-right, padding-bottom, padding-
left, left, right, top, bottom, width, min-width, max-width,
height, position, float, clear, overflow, clip, z-index

Borders border, border-top, border-right, border-bottom, border-
left, border-color, border-top-color, border-right-color,
border-bottom-color, border-left-color, border-style,
border-top-style, border-right-style, border-bottom-style,
border-left-style, border-width, border-top-width, border-
right-width, border-bottom-width, border-left-width

Lists list-style, list-style-type, list-style-image, list-style-
position

Tables border-collapse, border-spacing, caption-side, empty-cells,
table-layout

Layout and
Display

display, visibility, position, float, clear

Outlines outline, outline-color, outline-style, outline-width

Generated
Content

content, counter-reset, counter-increment, include-source,
quotes

International unicode-bidi, direction

Printing page-break-before, page-break-after, page-break-inside,
page, size, marks, windows, orphans

Aural volume, stress, richness, azimuth, elevation, voice-family,
speak, punctuation, speak-numeral, pitch, pitch-range,
speech-rate, play-during, pause, pause-before, pause-after,
cue, cue-before, cue-after

TABLE 4-10 Overview of CSS1 and CSS2 Properties

 502 P a r t I I : C o r e S t y l e 502 P a r t I I : C o r e S t y l e

Given the multitude of CSS properties, there is also a multitude of values to which they
can be set. We next introduce measurements and will see their use throughout the examples
in this and the following chapters.

Measurements and Values
CSS properties support a wide variety of values, from keywords like xx-large, underline,
and solid, to a variety of absolute measurements like inches (in) and centimeters (cm), to
often poorly understood relative measurements like em units, ex values, and percentages. We
present an overview of the types of measurements and values found in CSS in Table 4-11.

Unit Description Examples

Absolute
Lengths

Lengths are used for horizontal or vertical
measurements. Absolute length units
supported in CSS 2.1 include inches (in),
centimeters (cm), millimeters (mm), points
(pt), and picas (pc). A single point is equal
to 1/72nd of an inch and thus does not
equate to a pixel unless there are 72 pixels
per inch on screen. A pica is equal to
12 points (in other words, 1/6th of an inch).
Absolute measures should be used when
the physical characteristics of the display
medium are well understood, such as in
printing.

p {margin: 0.5in;}

#src {line-height: 5cm;}

h3 {letter-spacing: 2mm;}

.small {font-size: 9pt;}

h1 {font-size: 8pc;}

Color
Keyword

There are 17 defined colors under CSS 2.1.
Each is listed here with its six-digit hex form
equivalence:

maroon (#800000) red (#ff0000)
orange (#ffA500) yellow (#ffff00)
olive (#808000)
purple (#800080)
fuchsia (#ff00ff) white (#ffffff)
lime (#00ff00) green (#008000)
navy (#000080)
blue (#0000ff)
aqua (#00ffff) teal (#008080)
black (#000000) silver (#c0c0c0)
gray (#808080)

Other color keywords may be commonly
used but are ad hoc in their definition. See
Appendix C for more information.

p.intro {
 background-color: orange;
 color: black;}

TABLE 4-11 CSS Units and Lengths

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 503
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 503

Unit Description Examples

3-Hex Color This is an RGB hexadecimal format of
#rgb where r corresponds to a hex value
(0–F) for red, g for green, and b for blue.
For example, #f00 would specify pure red,
while #fff would specify white. Given its
data limits, the format is less expressive
than 6-Hex.

body {
background-color: #000;
color: #fff;}

6-Hex Color This is an RGB hexadecimal format of
#rrggbb where rr corresponds to a hex value
(00–FF) for red, g in the same range for
green, and b for blue. For example, #ff0000
would specify pure red, while #ffffff would
specify white. More expressive than the
3-digit hex form, this can represent values
like #ffA500 (orange).

body {
background-color: #ffA500;
color: #f3ffff;}

HSL Color CSS3 introduces Hue Saturation
Lightness (HSL), where color values are
specified as hsl(hue,saturation,
lightness). Hue is set as the degree
on the color wheel, where 0 or 360 if you
wrap around is red, 120 is green, and 240
is blue, with the various other colors found
between. Saturation is a percentage value,
with 100% being the fully saturated color.
Lightness is a percentage, with 0% being
dark and 100% light with the average 50%
being the norm.

#red {
color: hsl(0,100%, 50%);}

#green {
color: hsl(120,100%,50%);}

#blue {
color: hsl(240,100%,50%);}

HSLa Color This is the CSS3 HSL value with a fourth
value to set the alpha channel value for the
color to define the opacity of the element.
An HSLa is specified via a function style
hsla(hue,saturation,lightness,
alpha), where hue, saturation, and
lightness are the same as standard hsl()
values, and the alpha channel value for
defining opacity is a number between 0
(fully transparent) and 1 (fully opaque).

#bluetrans {color:
hsla(240,100%,50%,0.5);}

RGB Color A decimal or percentage RGB color can be
specified via a function style rgb(r,g,b)
value, where r, g, and b are specified
as a decimal value from 0 to 255 or a
percentage from 0 to 100%. Values outside
this range will be rounded up or down to fit
the closest value.

strong {
color: rgb(255,0,0);}

.super {
color: rgb(99%,1%,0%;}

TABLE 4-11 CSS Units and Lengths (continued)

 504 P a r t I I : C o r e S t y l e 504 P a r t I I : C o r e S t y l e

Unit Description Examples

RGBa Color This is like RBG color but adds an alpha
channel value to specify the opacity of the
color. An RGBa is specified via a function
style rgba(r,g,b,a) value, where colors
r, g, and b are specified as a decimal
value from 0 to 255 or a percentage from
0 to 100%, and the alpha channel value
for defining opacity is a number between
0 (fully transparent) and 1 (fully opaque).
Values outside this range will be rounded
up or down to fit the closest value.

#redtrans {
color:rgba(255,0,0,0.4);}

Keywords There are numerous keyword values found
in CSS for specifying sizes (xx-large),
border styles (dashed), text-formatting
(underlined), element meaning (block),
layout (absolute), and more. If a value
is not found within quotes or followed
by a measurement, it is likely a keyword
or counter. If it isn’t or is simply not an
understood value, it will be ignored by CSS-
conforming user agents.

.big {
font-size: xx-large;}

#box {
border: 1px solid black;}

#boom {
border: 3px crazy black;}
/* value of crazy
is ignored */

Counters ol.cT {
counter-reset:counter1;
list-style-type: none;}

ol.cT li:before {
counter-increment:
counter1;
content:
counter(counter1) " - " ;}

Numbers There are occasions where CSS supports
simple positive or negative integer values
like 2 and –3 as well as real numbers like
3.5. Note that in the case of 0 values, it
is not required to put a measurement unit
like px and thus a plain zero value will be
commonly seen.

p {line-height: 2;}
/* same as 200% */

* {margin: 0;}

Percentages Percentages are denoted by a number
followed by the % symbol and are always
relative to another value such as a length.
Quite often they are used to specify some
value relative to an inherited value from a
parent element.

body {font-size: 10px;}

body > p.big
{font-size: 200%;}
/* 20 px */

body > p.small
{font-size: 50%;}
/* 5px */

TABLE 4-11 CSS Units and Lengths

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 505
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 505

NOTE There are other values found in CSS3 such as viewport sizes (vh, vw, vm), root relative
sizing (rem), and grid measurements (gd). Aural CSS such as angles [degrees (deg), grads
(grad), and radians (rad)], times [milliseconds (ms) and seconds (s)], frequencies [Hertz (Hz)
and kilo Hertz (kHz)] are also defined. These are discussed more in the reference that follows in
the next two chapters.

However, without the context of the properties in which they are used, some of the
values may not make much sense; thus, when using them in examples and presenting
various properties in the following chapters, we will strive to use them in context.

Unit Description Examples

Relative
Lengths

Although relative lengths are often
misunderstood, they are quite useful as
they can be used to scale layouts to handle
very different viewing situations. An em
unit is related to the font-size of a
particular font being measured. Very often,
this unit is used relative to the font-size
of its inheriting parent. An ex value is
called the x-height and is used to measure
the height of font as defined by the size
of its lowercase x character. A ch value
introduced by CSS3 is another font-related
length, which is equivalent to the width
of the character 0 (zero) in the current
font and has started to be supported in
some browsers. Surprising to some Web
developers, a pixel (px) is also a relative
unit, as there may be different pixel
densities on different screens.

p.lead {text-indent:
0.5em;}
.bigger {font-size: 3ex;}

#moreThanZero
{font-size: 10ch;}

#box {height: 100px;
 width: 100px;}

Strings Strings are defined with either single
quotes (‘example’) or double quotes
(“example”). Quotes may be found within
the opposite quote (“I say this is an
‘example’!”). Newlines may be specified
with a “\00000a” value. In situations
where a newline is typed, a \ character can
be used as line continuation.

p {
font-family: "Fancy Font";}

a[title="Next\
 Line here"] {color: red;}

URL Uniform Resource Identifiers generally
limited to the commonly known Uniform
Resource Location (URL) are designated
using the function style url(address),
where address is an absolute or relative URL.

body {
background: url(stars
.png);}

TABLE 4-11 CSS Units and Lengths (continued)

 506 P a r t I I : C o r e S t y l e 506 P a r t I I : C o r e S t y l e

CSS and (X)HTML Elements Fundamentals
CSS relies on markup. As mentioned a number of times already, incorrect markup is likely
going to result in incorrect style. However, the symbiotic relationship between (X)HTML
and CSS isn’t one way. It is quite possible to misuse markup due to the implications of CSS.
In this section, we explore just how dependent the two technologies are on each other,
discuss how CSS can fundamentally alter the perceived nature of markup, and encourage
Web developers to use these newfound powers for good not ill.

Physical Markup and Overriding Expected Results
One potential problem with style sheets and HTML is that the default rendering of an element
might get in the way. For example, consider the situation in which you apply a style rule to
a tag like so:

<strong style="color: red;">I am strong!

While this will put the text contents in red as expected, it will also probably be bold
because that is the typical rendering of this (X)HTML element. Designers have to consider
these default renderings as rules are added; a careless document author can create a potentially
confusing use of markup using style sheets. Here we change two tags to act the opposite of
how you might expect them to act:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Improper Overrides</title>
<style type="text/css" media="all">
 b {font-style: italic; font-weight: normal;}
 i {font-style: normal; font-weight: bold;}
</style>
</head>
<body>
<p>I am a bold tag and I am an <i>italic tag</i>.</p>
</body>
</html>

ONLINE http://htmlref.com/ch4/improperoverride.html

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 507
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 507

Given the physical nature of some (X)HTML tags, it should be obvious now why some
have been deprecated and logical elements have become more useful with the rise of style
sheets. When using an tag, it means simply that something is emphasized, not that it
is generally italic:

<style type="text/css" media="all">
 em {font-style: normal; font-weight: bold;}
</style>
</head>
<body>
<p>I am emphasized does it matter how? </p>

In theory, setting logical tags to render any way the developer wants will not cause as
much confusion for later viewers of the markup. Of course, this assumes that readers don’t
apply predefined physical thinking to logical markup, so

<style type="text/css" media="all">
 h1 {font-size: xx-small;}
 h6 {font-size: xx-large;}
</style>

shouldn’t be bad. Unfortunately, it is probably more common that the perceived meaning of
each tag implies a look which these rules seem to violate. So while it is clear that logical
elements rather than physical elements would provide more flexibility with CSS, this
choice assumes that logical element renderings are not defined or assumed too commonly
by developers. It turns out that, given such needs, the next two elements presented are
quite useful.

Are <div> and the Most Popular Tags?
When using style sheets and trying to avoid the default rendering of HTML elements,
document authors will find the use of the div and span elements indispensable. The div
element and span element are block and inline elements, respectively, that have no
particular rendering. You might call them generic tags. Because these tags don’t have any
predefined meaning or rendering, they are very useful for arbitrary style duties. For
example, using a <div> tag, you can apply a style to a certain section or division of a
document very easily:

<div style="background-color: yellow; font-weight: bold; color: black;">

<p>Style sheets separate the structure of a document from its
presentation. Dividing layout and presentation has many
theoretical benefits and can provide for flexible documents
that display equally well on large graphically rich systems
and palmtop computers.</p>

<p>This is another paragraph describing the wonderful benefits of
style sheets</p>

</div>

 508 P a r t I I : C o r e S t y l e 508 P a r t I I : C o r e S t y l e

However, as a block element, div should induce a return, so if you want to provide
style information solely for a few words, or even a few letters, the best approach is to use
the span element, which as an inline element does not induce a return. For example, notice
how a tag is used to call attention to a particular section of text:

<p>Calling out <span style="background-color: yellow; font-weight: bold;
color: black;">special sections of text isn't hard with a
span and CSS.</p>

The advantage of these generic elements is clear, but they are easily abused. For
example, instead of using elements in a meaningful way, we see excessive <div> and
 tags being employed. For example, here we use a heading with a class

<style type="text/css" media="all">
 h1.heading {font-size: xx-large; color: red; font-style: italic;}
</style>
</head>
<body>
<h1 class="heading">I am a heading?</h1>

but a designer might resort to using a <div> tag instead,

<style type="text/css" media="all">
 .heading {font-size: xx-large; color: red; font-style: italic;}
</style>
</head>
<body>
<div class="heading">I am a heading?</div>

which removes any meaning that may have been gained from the <h1> tag. Regardless of
the specific likelihood of the example, what we see is that developers often employ way too
many <div> and tags and then apply class values to associate meaning and style
with them. We note that this is reaching epidemic proportions with some CSS designers,
leading some to dub this a Web “malady” called “div-itis” or “class-itis.” The basic problem
is that developers forgo older HTML-focused methods like tables and trumpet tableless and
CSS-focused design, only to introduce tremendous problems of their own. A technology
will encourage good practices, but it is easy to miss the intent and go off the deep end.
A well-done CSS document looks like a simple (X)HTML markup document and has a
diversity of tags in it. While <div> and tags with class and id values will be
common, if they are the majority of the document, you’re likely doing things wrong.

Changing Element Types with display
The CSS specification contains several classification properties that determine the display
classification of a markup element. Is it a block-level element causing a return and acting like
a box, or a smaller inline element generally found within blocks? The CSS1 model recognized
three types of displayed elements: block elements, inline elements, and lists. As you’ll see,
the CSS2 and CSS3 specifications add quite a few more.

The CSS display property allows an element’s display type to be changed. First, the value
of none causes an element to not display or use canvas space. This differs from the property

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 509
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 509

setting visibility, to be discussed later, which also prevents an element from displaying, but
does typically reserve canvas space. To turn off a paragraph, try a rule such as the following,

p.remove {display: none;}

which might be applied to the following markup:

<p>First paragraph (next is display:none).</p>
<p class="remove">Removed second paragraph.</p>
<p>Third paragraph (previous is display:none).</p>

This will completely remove the second paragraph from the document tree, as shown here,
where we apply a border to see the paragraphs:

Now visibility is different. If we added a rule like this

p.invisible {visibility: hidden;}

and applied it to a similar set of paragraphs

<p>Fourth paragraph (next is visibility:hidden).</p>
<p class="invisible">Invisible fifth paragraph.</p>
<p>Sixth paragraph (previous is visibility:hidden).</p>

we see a different result, as the object is still taking up canvas space and is simply invisible:

The point we are making with display is that you have quite a bit of power to affect
how elements are treated in the document tree. Aside from simply turning off elements, you
can make elements fundamentally act differently. For example, we can turn a block element
(such as a paragraph) into an inline element, thus keeping it from adding a new line. For
example, the following would change the form of all paragraphs in the document,
overriding the known action:

p.setasinline {display: inline;}

When applied to

<p class="setasinline">Inline paragraph.</p>
<p class="setasinline">Inline paragraph.</p>
<p class="setasinline">Inline paragraph.</p>

 510 P a r t I I : C o r e S t y l e 510 P a r t I I : C o r e S t y l e

it renders quite differently than without the display modified:

Also, we can do the reverse and make elements that are not normally block act as such:

p.setasblock em {display: block;}

When this is applied to

<p class="setasblock">This paragraph has some emphasis tags
 that act as blocks.</p>
<p>This paragraph has some emphasis tags that act normal-
ly.</p>

it produces:

You also can coerce an element to act somewhat like a list by casting it with the display
property, as shown here:

p.setaslist em {display:list-item; list-style-position: inside;}

When applied to

<p class="setaslist">List made from em tags: Item Item
Item </p>

it renders like so:

We might also make a list not act as such by using a rule like

ul li {display: inline;}

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 511
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 511

and then applying it to markup like this:

<p>List below not displaying as such</p>

 Item
 Item
 Item

A complete example showing all these display examples is provided here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Display Property</title>
<style type="text/css" media="all">
 p {border: 2px solid red;}
 p.remove {display: none;}
 p.invisible {visibility: hidden;}
 p.setasinline {display:inline;}
 p.setasblock em {display: block;}
 p.setaslist em {display:list-item; list-style-position: inside;}
 ul li {display: inline;}
</style>
</head>
<body>
<p>First paragraph (next is display:none).</p>
<p class="remove">Removed second paragraph.</p>
<p>Third paragraph (previous is display:none).</p>

<p>Fourth paragraph (next is visibility:hidden).</p>
<p class="invisible">Invisible fifth paragraph.</p>
<p>Sixth paragraph (previous is visibility:hidden).</p>

<p class="setasinline">Inline paragraph.</p>
<p class="setasinline">Inline paragraph.</p>
<p class="setasinline">Inline paragraph.</p>

<p class="setasblock">This paragraph has some emphasis
tags that act as blocks.</p>
<p>This paragraph has some emphasis tags that act
normally.</p>

<p class="setaslist">List made from em tags: Item Item
Item </p>

 512 P a r t I I : C o r e S t y l e 512 P a r t I I : C o r e S t y l e

<p>List below not displaying as such</p>

 Item
 Item
 Item

</body>
</html>

ONLINE http://htmlref.com/ch4/display.html

The display property shows us just how far CSS can go in affecting markup. This
powerful property can produce quite elegant results, such as navigation menus, as we shall
see in numerous examples in the book. It is also mandatory when attempting to style XML
elements with no predefined rendering. However, this power can come with a price of
confusion when misapplied.

Controlling White Space
The white-space property controls how spaces, tabs, and newline characters are handled in
an element. The default value, “normal,” collapses whitespace characters into a single space
and automatically wraps lines, just as it normally would in an (X)HTML document. When a
value of “pre” is used for the property, whitespace formatting is preserved, similar to how the
<pre> tag works in (X)HTML. The “nowrap” value prevents lines from wrapping if they
exceed the element’s content width. This simple example demonstrates how the white-space
property works, the rendering of which is shown in Figure 4-12.

FIGURE 4-12 Whitespace handling controlled by CSS

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 513
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 513

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>White-space Property</title>
<style type="text/css" media="all">
 p.pre {white-space: pre;}
 p.nowrap {white-space: nowrap;}
</style>
</head>
<body>
<p>This is a standard paragraph
 notice
 that white
 space
 is not preserved.</p>
<p class="pre">This paragraph
 had
 it's white-space
 rules adjusted to
 act
 like a
 pre element.</p>
<p class="nowrap">This very long paragraph really ought to wrap but
it doesn't because the nowrap value has been set for the white-space
property.</p>
</body>
</html>

ONLINE http://htmlref.com/ch4/whitespace.html

As we have seen throughout this section, CSS affords us great power to change the
default characteristics of markup languages like (X)HTML. We presented these properties in
a more expanded form because of their potential for abuse, but by no means should this
advice be construed to suggest that you should avoid such properties, as they are essential
tools in your CSS toolbox. We’ll cover the wide range of other properties available to us in
the following two chapters.

Major Themes of CSS
Before finishing the chapter, we need to take a look at some of the major themes surrounding
the theory and practice of using CSS. Like the concerns of markup, these are deep issues you
will likely encounter over and over again as you design or develop Web sites or applications.
While the questions posed by these themes are fairly easy to describe, they are very difficult
to answer.

 514 P a r t I I : C o r e S t y l e 514 P a r t I I : C o r e S t y l e

Separation of Structure and Style
The look of a page should be separate from the markup. You have heard this refrain over
and over in the book, but let’s address it once again. Recall the simple idea that markup files
may have linked style sheets. If we have separated structure and style well, we can change
the linked style and therefore change the look of all the pages that are linked to the style
sheet:

HTML

CSS CSS

file.html

original-style.css new-style.css

XYZCORP XYZCORP

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 515
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 515

The idea also suggests pulling in different style sheets for different media and device
types:

Our main point here is to remind you that the CSS relies on the markup to do its job. It
is not possible to decouple the look from the structure of the document. However, we can
loosely couple it. Do not take this to mean that we suggest markup has some fundamental
presentation advantage over style; it doesn’t.

HTML

CSS CSS

HTML

print.html

screen.css phone.css

XYZCORP

XYZCORP

XYZCORP

file.html

 516 P a r t I I : C o r e S t y l e 516 P a r t I I : C o r e S t y l e

CSS: More Appropriate and Powerful for Presentation
Style sheets are clearly the way to go for presentation. You can do so much more with CSS
than you could ever do with (X)HTML, such as making text very large, setting backgrounds,
carefully controlling the layout of text, pixel-perfect setting the flow of the page elements,
and more.

You might be able to make the preceding presentation using HTML with images to get the
shadows and rounded corners, but it certainly won’t reflow and it will not have simple
markup that looks like this:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Power!</title>
<link rel="stylesheet" href="power.css" media="screen">
</head>
<body>
<div class="boxed rounded">
<h1>CSS is Powerful!</h1>
<div class="three-columns">

 <p>It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was
the epoch of incredulity, it was the season of Light, it was the season of
Darkness, it was the spring of hope, it was the winter of despair, we had

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 517
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 517

everything before us, we had nothing before us, we were all going direct to
Heaven, we were all going direct the other way--in short, the period was so
far like the present period, that some of its noisiest authorities insisted
on its being received, for good or for evil, in the superlative degree of
comparison only.</p>
 </div>
</div>
</body>
</html>

CSS is simply a much more powerful presentation technology than markup.

ONLINE http://htmlref.com/ch4/csspower.html

Cross-Browser CSS Madness
While CSS is certainly more powerful than markup for presentation, it does have its
problems. The browser vendors have made Web designer’s lives miserable for years with
inconsistent, incomplete, and often downright buggy or even broken implementations of
the CSS specification. Things are changing but the required workarounds for now live on.

Earlier in the chapter, we saw purposeful browser errors being used to load other styles.
We might also use other techniques to load different styles to address different browsers. For
example, we could employ Internet Explorer’s proprietary conditional comment technology
to load another style sheet for a specific browser,

<link rel="stylesheet" href="standard.css" media="screen">
<!-- pull nasty IE 6 hacking style sheet -->
<!--[if IE 6]>
 <link rel="stylesheet" href="ie6.css" media="screen">
<![endif]-->

or maybe pull in a style sheet for all Internet Explorer versions previous to the nearly
standards-compliant Internet Explorer 8:

<link rel="stylesheet" href="standard.css" media="screen">
<!-- pull older IE style sheet -->
<!--[if lt IE 8]>

<link rel="stylesheet" href="oldie.css" media="screen">
<![endif]-->

Conditional comments are unique to Internet Explorer, which really isn’t a problem since
it is usually the browser we desire to “fix” CSS wise. However, if conditional comments
aren’t to your liking, you could also employ simple JavaScript to read the type of browser in
play and include a style sheet as well. We’ll discuss these techniques and others throughout
the book. Our only point here is to stress that the headaches with making CSS work similarly
across browsers are significant and ongoing.

Myths and Misconceptions Related to CSS
Just like markup, CSS is ripe with myths and misconceptions. There is no doubt in the
author’s mind that CSS is the way to go. However, there is plenty of doubt about some of the
statements some CSS zealots make in regard to the technology. A few of the more common

 518 P a r t I I : C o r e S t y l e 518 P a r t I I : C o r e S t y l e

claims made are presented here with a bit of discussion about why readers should avoid a
snap judgment about the power of CSS. However, like many things in the world, there is
more than one interpretation, so if this section provokes you to think about both sides, the
point has been successfully made regardless of what your ultimate point of view is.

Myth: Standards Remove Variability
A number of Web professionals pine for some future day when all browsers support W3C
Web standards equally. While it may sound cynical, their wait is likely a long one at the
very best. Even in the case of a widely agreed upon specification, there is always room for
interpretation by implementers. A particular property may have some degree of unclarity in
the extent of its possible usage. Even if it were not the case, once properties are used
together, some unaddressed issues may emerge. It is also quite possible that even with a
good specification, a particular standard feature is not implemented correctly by a browser.
Browser bugs will still exist even in a strict-standards world. It is even more likely that
innovation will continue to occur given market pressures to gain user and developer loyalty,
and variability will continue regardless of specification quality.

Myth: CSS Layouts Are Easier Than Markup Layouts
When CSS examples are simple, accomplishing basic layout tasks looks far easier than in
HTML. However, in practice, some layouts are quite hard to execute, particularly in light of
browser problems. This is not to say you won’t be able to execute a desired design—you
will, and likely more. However, the little tricks and workarounds will lead some designers
to conclude that CSS doesn’t seem worth it. The author doesn’t agree and instead thinks
that this is more likely the case of dealing with the devil you know versus the devil you
don’t. However, it is also likely that there is little truth to the idea that CSS is fundamentally
easier than markup-based layout. Likely, they are equally challenging in different ways and
in different circumstances.

Misconception: Some Browser Vendors Aim for Standards, Some Don’t
Regardless of your particular browser allegiance, the stark reality is that proprietary
features and variability is the name of the game for all browser vendors. All vendors want
to innovate, and even those who vocally promote the cause of standards have numerous
features that other browser vendors may lack. This is not some malicious intent by any
vendor to co-opt the Web standards process, but simply the market reality of trying to
attract Web developers to their platform or retain those already using it. Consider a world
with perfect standardization of implementation; what would that leave browser vendors to
innovate with? If your answer is end-user features, consider that very often such end-user
features have to be specified in markup, style, or script. With well over a decade already of
waiting for the dust to settle in markup and style specifications, the trends simply just don’t
support the belief.

Myth: Using CSS Always Results in Download-Friendly Web Pages
While it is certainly true that table-laden Web pages can get quite bulky and CSS rules can
describe such layouts more succinctly, this simply isn’t always the case, particularly given
the way that CSS is often employed by Web professionals. Quite often, <table>, <tr>, and
<td> tags are simply replaced with nested <div> tags, so the tableless design becomes
a <div>-laden design. Add to this excessive use of long class names and id names,

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 519
PART II

 C h a p t e r 4 : I n t r o d u c t i o n t o C S S 519

particularly without shorthand CSS properties, and CSS designs may actually be much
larger than similar HTML-focused designs. When these styles are used inline or in a
<style> block, the speed gain of CSS over HTML is pretty much eliminated. In the case of
an external style sheet, assuming caching is properly used, download gains may come on
subsequent page views as they do not need to refetch the style information which cached in
the external style sheet. Of course assuming that caching is correctly implemented is not a
given and a blanket assertion that CSS results in more download-friendly pages is false and
does not acknowledge the complexity of page-delivery optimization. Of course, in fairness
it should be noted that even if CSS was always larger, which is not the case, the technology
provides a richer and more appropriate feature set than presentational markup.

Misconception: Redesigns Are Fundamentally Easier with CSS
A common thought promoted in the Web development community is that redesigning a
Web site is just a matter of changing styles. However, nothing could be farther from the
truth in the author’s experience. Significant redesign often means changing navigation,
changing content, and even changing the focus of a site. A style sheet is not going to apply
necessarily to pages that are fundamentally different in structure and content. This
observation doesn’t suggest style sheets aren’t useful but it should serve to correctly lower
expectations in regard to the simplicity of changing a look during a site redesign. If,
however, the point is simply a new skin for an existing site, CSS clearly can deliver the
promise of a quick new look.

Misconception: CSS Should Support Also Interactivity
Already we see that features implemented in JavaScript like rollovers and menus are being
implemented in CSS using simple pseudo-property selectors like :hover. Some browsers
like Internet Explorer have also implemented proprietary features to associate look to
interactivity, called behaviors. The trend toward blurring the line between presentation and
interaction is clear in HTML5 as well. The challenge we have here is that there is no
difference between making a mess by intermixing content, structure, and look and making a
mess by intermixing style and interaction. A decoupled or, more appropriately, loosely
coupled relationship is the way to go for the same update and separation of concerns goal
discussed so many times before. Unfortunately, like many technologies, we often have to
relearn hard lessons in the light of new environments.

Summary
CSS provides better control over the look and feel of Web pages. Style sheets aren’t just useful
for making attractive pages. By dividing structure and style, they can make documents simpler
to create and easier to manipulate. CSS provides many valuable layout properties that provide
a richer palette for design than presentation markup ever could. CSS should not be considered
a replacement for markup, however, as it relies greatly on correct (X)HTML markup as
well as proper naming of tags. While developers have found the promise of CSS alluring, the
execution of correct style sheets in browsers can be quite challenging. Cross-browser rendering
headaches reemerge with a vengeance under CSS, and we find that the incorrect solutions of
hacking around for filtering and selection shows the necessity of client-side scripting.

This page intentionally left blank

5
CSS Syntax and

Property Reference

This chapter provides a complete reference for the properties in the CSS1 and CSS 2.1
specification. Aspects of the CSS2 specification that were not implemented widely,
like the aural properties, are only briefly summarized given their lack of use. The

bulk of the material on CSS3 and emerging and proprietary CSS features can be found in
Chapter 6. However, where appropriate, CSS3 changes that are modifications of traditional
CSS are presented together with the older syntax.

CSS Versions
Cascading Style Sheets is a fairly old technology as far as the Web is concerned. The first
ideas about CSS were presented as early as 1994, and three major versions of the technology
have been developed since then. Table 5-1 summarizes the version history of CSS.

CSS Basics
CSS rules are defined as a property name followed by a colon and then a property value.
Individual rules are terminated by semicolons, with the final rule having an optional
semicolon. The following is the basic syntax:

property-name1 : value1; ... property-nameN : valueN;

521

CHAPTER

 522 P a r t I I : C o r e S t y l e 522 P a r t I I : C o r e S t y l e

TABLE 5-1 Description of Common CSS Versions

CSS Version Specification URL Description

CSS1 www.w3.org/TR/REC-CSS1// Classic CSS implementation that
introduced text, list, box, margin, border,
color, and background properties. Initially
defined in 1996, most every feature of
CSS1 is supported in Web browsers,
but small quirks do exist around some
lesser-used features like white-space,
letter-spacing, display, and others. Some
problems with CSS1 support are more
significant in older, pre–Internet Explorer 7
browsers.

CSS2 www.w3.org/TR/1998/REC-CSS2-19980512/ Specification that is primarily known for
positioning and media, particularly print
style sheet features. Many aspects of
CSS2, such as aural style sheets, were
never widely implemented and were
removed in the later revision of this level
of CSS.

CSS 2.1 www.w3.org/TR/CSS21/ A revision of the CSS2 specification
that makes some corrections and is
normalized to more clearly represent what
most browser vendors have implemented.
Note that many CSS2 features removed
from this specification are found in
CSS3 modules. This is currently the
recommended CSS specification for
study and use.

CSS3 www.w3.org/Style/CSS/current-work#CSS3 Modularized specification of CSS. Various
modules extend and improve aspects
of previous CSS versions; for example,
the CSS3 Color module addresses color
correction, transparency, and more, while
the CSS3 Fonts module addresses features
to add effects to fonts, adjust their display,
and even download custom fonts. Some
modules are all new, like the Transitions
and Animations modules. In either the
improved or new feature situation, based
upon implementation and specification
maturation rates, readers are encouraged
to check the CSS3 Web site and test well,
because few features are likely to be cross
browser.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 523
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 523

Individually, we visually pick out the components of a CSS rule:

NOTE The final declaration in a style rule block does not require the semicolon. However, for good
measure and easy insertion of future properties, page authors should always use semicolons after
all style properties.

CSS property names are separated by dashes when they are multiple words—for example,
font-face, font-size, line-height, and so on. Allowed values come in many forms; from
simple keywords like xx-small, strings like “Arial”, plain numbers like 0, numbers with units
like 100px or 2cm, and special delimited values such as URLs—url(../styles/fancy.css).
All allowed values will be covered in upcoming sections in this chapter.

Property names and many values are not case sensitive but some values may be, as may
selectors, depending on the language CSS is applied to. Web developers should assume that
all components of CSS rules are case sensitive, just to be safe.

CSS rules are applied to markup, and the various style values applied to a particular
element may be inherited from its parent or even a more distant enclosing element. For
example, a rule like:

p {color: red;}

applies the color red to paragraph elements. When applied to

<body>
<h1>Test</h1>
<p>This is a Test!</p>

not only is the paragraph element set as red but so too is the tag enclosed in
the <p> tag because the color property value is inherited from the parent element, as
shown here:

Whereas most elements can inherit the style features of their parents, some style properties,
such as borders, do not.

h1 {font-size: xx-large; color: red;}

Property Name

Declaration

Declaration BlockSelector

Declaration Rule

Value Declaration Separation

h1

p

strong

body

p {color:red;}

Red

Red

 524 P a r t I I : C o r e S t y l e 524 P a r t I I : C o r e S t y l e

Assuming that a property does inherit, it is still possible to override the inheritance of
a property. For example, given the following two rules:

p {color: red; font-size: xx-large;}
strong {color: yellow;}

the color of the text within the tag would be yellow and have an xx-large size.
Both of the properties were inherited, but the color property was overridden by the color
rule for the tag, which is more specific:

In any case, it is possible to override the rendering of style by setting the !important
directive at the end of the rule declaration, as follows.

div {font-size: 14pt; line-height: 150%; font-family: Arial ! important;}

A style specified as !important should override any other applied style and thus
should be used sparingly.

While the !important indicator makes things clear, the potentially confusing
combination of applying multiple rules, with elements inheriting some properties and
overriding others, is the idea of the cascade that CSS is named for. The general idea of the
cascade, in effect, is that it provides a system to sort out which rules apply to a document
that has many style sheets. An easy way to think about which rule wins is to follow these
helpful rules of thumb:

• The more specific the rule, the more powerful.

• The closer to the tag the rule, the more powerful.

The specific nature of the rule generally is determined by the selector used, and the
inclusion of the style rule defines the closeness to the markup; both are discussed next.

Style Inclusion Methods
This section reviews the basic methods to associate CSS-based style information with
(X)HTML documents.

Linked Styles
Styles can be contained in an external style sheet linked to a document or a set of
documents, as shown in the following example. Linked information should be placed inside
the <head> tag.

<link rel="stylesheet" type="text/css" href="/styles/newstyle.css">

p

strong

body

p {color:red; font-size: xx-large}
strong {color: yellow;}

Red, xx-large

Yellow, xx-large
Override Inherit

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 525
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 525

Given that the link element is an empty element when using XML-style syntax,
a self-identifying close using a trailing slash (/) must be included in the tag:

 <!-- XHTML style -->
<link rel="stylesheet" type="text/css" href="/styles/newstyle.css" />

The rel attribute is generally set to the value stylesheet but may also have a value of
alternate stylesheet with an associated title value to provide different looks for the
same page:

<link rel="stylesheet" type="text/css" href="standard.css" title="standard">

<link rel="alternate stylesheet" type="text/css" href="red.css" title="Red
Sheet">

<link rel="alternate stylesheet" type="text/css" href="green.css"
title="Green Sheet">

The media attribute may also be used to define the media to which a style sheet is
applied. The keyword values screen and print are commonly. The default value of all is
applied when media is not specified.

<link rel="stylesheet" type="text/css" href="screenstyle.css" media="screen">
<link rel="stylesheet" type="text/css" href="printstyle.css" media="print">

CSS2 and 2.1 do define a rich set of media values, as shown in Table 5-2, but in practice
few are supported.

TABLE 5-2 Media Types Defined by CSS 2.1

Media Type Definition

all For use with all devices

aural For use with speech synthesizers. Support for this is spotty and most features
have been moved to later version of CSS.

braille For use with tactile Braille devices

embossed For use with Braille printers

handheld For use with handheld devices

print For use with printed material and documents viewed onscreen in print preview mode

projection For use with projected media (direct computer-to-projector presentations), or printing
transparencies for projection

screen For use with color computer screens

speech For use with speech synthesizers; replaces the CSS2 value aural

tty For use with low-resolution teletypes, terminals, or other devices with limited
display capabilities

tv For use with television-type devices

 526 P a r t I I : C o r e S t y l e 526 P a r t I I : C o r e S t y l e

Linked styles are the preferred method of specifying CSS rules because they cleanly
separate the style from the markup. However, do note that using linked styles does come
with the small penalty of an extra HTTP request.

Embedded Styles
Document-wide styles can be embedded in a document’s head element using the <style>
tag. Note that styles should be commented out to avoid interpretation by non-style-aware
browsers.

<style type="text/css">
<!--
p {font-size: 1.5em; font-family: Georgia, "Times New Roman", Times, serif;
 color: blue; background-color: yellow;}
em {font-size: 2em; color: green;}
-->
</style>

However, be aware that comment masking is frowned upon in XHTML, and instead
you should use linked styles or use a CDATA section like so:

<style type="text/css">
<![CDATA[
p {font-size: 1.5em; font-family: Georgia, "Times New Roman", Times, serif;
 color: blue; background-color: yellow;}
em {font-size: 2em; color: green;}
]]>
</style>

Given the support of this structure, particularly with the confusion of XHTML serving and
handling, it is best to avoid this commenting scheme or, better yet, simply stick to linked styles.

It is possible to set a media attribute on a <style> tag to define different types of rules
per output medium:

<style type="text/css" media="print">
/* Print rules here */
</style>
<style type="text/css" media ="screen">
/* Screen rules here */
</style>

Imported Styles—@import
Within embedded <style> blocks, properties can be imported from an external file and
expanded in place, similar to a macro. Importing can be used to include multiple style
sheets. An imported style is defined within a <style> tag using @import followed
optionally by a type value and a URL for the style sheet:

<style type="text/css">
 @import url(newstyle.css);
 @import print url(printstyle.css);
</style>

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 527
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 527

The @import directive allows style sheets to be grouped and joined together, though
some might wonder what the value of this function is given what linked styles provide.

NOTE Some CSS developers use the @import directive to perform a weak form of browser
selection, because many older CSS implementations do not support the directive. The basic idea
of the trick is to put sophisticated style rules in an @import style sheet and leave basic styles in
the style block. This trick should be avoided, particularly given that some browsers, notably
versions of Internet Explorer, will cause a disturbing flash effect when loading imported styles.

Inline Styles
You can apply styles directly to elements in a document using the core attribute style, as
shown next. As the closest style-inclusion method to a tag, inline styles take precedence
over document-wide or linked styles.

<h1 style="font-size: 48px; font-family:Arial, Helvetica, sans-serif;
 color: green;">CSS Test</h1>

Given the tight intermixture of style into markup, this scheme should be used sparingly.
Note that some features of CSS, particularly pseudo-class–related values such as link states,
may not be settable using this method. Further note that there is no way to set media-
specific style rules inline on individual elements.

CSS Measurements
CSS supports a number of measurements. In most cases, they involve a number, and CSS
supports both positive and negative integer values, like 3 and –14, as well as real numbers
like 3.75. Very often the numbers are found with units; for example,

p {margin: 5px;} /* all margins set to 5 pixels */

But in a few cases they may not have units, as the measurement may be contextual from
the meaning of the property:

p {line-height: 2;} /* double spaced */

When a measurement is zero, there is no need for a unit,

* {margin: 0;}

but it won’t hurt to include one:

* {margin: 0px;}

Commonly, absolute length units like inches (in), centimeters (cm), millimeters (mm),
points (pt), and picas (pc) are used. These absolute measures should be used when the
physical characteristics of the display medium are well understood, such as in printing. We
also might use relative measures that can scale, such as em units, ex values, percentage, or
pixels. Table 5-3 summarizes these units of measure.

 528 P a r t I I : C o r e S t y l e 528 P a r t I I : C o r e S t y l e

NOTE There are many other values found in CSS3, such as viewport sizes (vh, vw, vm), root
relative sizing (rem), angles [degrees (deg), grads (grad), and radians (rad)], times
[milliseconds (ms) and seconds (s)], frequencies [Hertz (Hz) and kilo Hertz (kHz)], and so on.
See Chapter 6 for information on these and other values.

TABLE 5-3 CSS1 and CSS2 Length Measurement Units

Measurement Description Example

% Defines a measurement as a
percentage. Percentages are denoted
by a number followed by the % symbol
and are always relative to another value
such as length. Quite often they are
used to specify some value relative
to an inherited value from a parent
element.

p {font-size: 14px;
line-height: 150%;}

cm Defines a measurement in centimeters. div {margin-bottom: 1cm;}

em Defines a measurement relative to the
height of a font in em spaces. Because
an em unit is equivalent to the size of a
given font, if you assign a font to 12pt,
each em unit would be 12pt, thus 2em
would be 24pt.

p {letter-spacing: 5em;}

ex Defines a measurement relative
to a font’s x-height. The x-height is
determined by the height of the font’s
lowercase letter x.

p {font-size: 14pt;
line-height: 2ex;}

in Defines a measurement in inches. p {word-spacing: .25in;}

mm Defines a measurement in millimeters. p {word-spacing: 12mm;}

pc Defines a measurement in picas. A pica
is equivalent to 12 points; thus, there
are 6 picas per inch.

p {font-size: 10pc;}

pt Defines a measurement in points. A
point is defined as 1/72nd of an inch. A
point does not equate to a pixel unless
there are 72 pixels per inch onscreen.

body {font-size: 14pt;}

px Defines a measurement in screen
pixels. Surprising to some Web
developers, pixel measurements are
relative, as there may be different pixel
densities on different screens.

p {padding: 15px;}

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 529
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 529

CSS Strings and Keywords
In CSS, strings are defined with either single quotes ('example') or double quotes
("example"). Quotes may be found within the opposite quote ("I say this is an
'example'!"). Commonly, strings are found when specifying a font name, like so:

p {font-family: "Fancy Font";}

We also find that strings may be used with selectors:

a[title="Match me match me"] {color: red;}

There is an occasional need for special characters in strings; in particular, newlines may
be specified with a "\00000a" value. In situations where a newline is typed, a \ character
can be used as line continuation:

a[title="Next\
 Line here"] {color: red;}

More common than quoted strings are the numerous keyword values found in CSS. The
number of keywords is vast and is used for specifying sizes,

.big {font-size: xx-large;}

.small {font-size: small;}

.downsize {font-size: smaller;}

border styles,

.double {border: 5px solid black;}

.dashed {border-style: dashed;}

text formatting and style,

.style1 {text-decoration: underline;}

.style2 {font-variant: small-caps;}

.style3 {font-weight: bold;}

element meaning,

#nav {display: block;}
#gone {display: none;}
#test {display: inline;}

layout,

#region1 {position: absolute; top: 10px; left: 10px;}
#region2 {position: relative; top: -60px; left: 100px;}
#region3 {position: fixed; top: 0px; left: 0px;}

and more.

 530 P a r t I I : C o r e S t y l e 530 P a r t I I : C o r e S t y l e

In some situations, the keyword may be part of a functional style notation. For example,
in CSS the specification of a URL as a value is marked by url(address), where address is
the actual value of the resource to be linked to:

body {background: url(stars.png);}
#div1 {background: url(http://democompany.com/images/tile.gif);}

Newer color formats like rgb(), rgba(), hsl(), and hsla() are set with similar
notation, and other functional notation style values may emerge over time such as calc()
(see Chapter 6 for a brief discussion). For example, there is discussion of CSS potentially
including variables which allows values to be set in one place and used in various rules. For
example,

@variables {
 primaryBackground: #F8D;
 primaryColor: #000;
 defaultMargin: 2em;
}
p {color: var(primaryColor); background-color: var(primaryBackground);
margin: var(defaultMargin);}

So far such ideas are still uncommon, so if a value is not found within quotes or followed by
a measurement, it is likely a keyword or counter. If it isn’t or is simply not an understood
value, it will be ignored by CSS-conforming user agents anyway.

Counters
Counters demonstrate the possibility of variable-like values in CSS. They are defined as
alphanumeric names that correspond to some current counter value in a document. In some
cases, the counter() functional notation is used and in some cases it is not, as shown by
these rules:

ol.cT {
counter-reset: counter1;
list-style-type: none;}

ol.cT li:before {
counter-increment: counter1;
content:
counter(counter1) " - " ;}

Interestingly, the ambiguity of allowing the counter1 value to appear in a keyword-like
fashion is somewhat troubling. It is likely that the counter() style syntax will eventually
be applied everywhere.

CSS Color Values
Style sheets support a variety of color measurement values, as shown in Table 5-4. Appendix C
provides a greater discussion of possible color values and names.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 531
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 531

TABLE 5-4 CSS Color Values (continued)

Color Format Description Example

Specification-
defined named
colors

There are 17 defined colors under CSS 2.1.
Each is listed here with its six-digit hex form
equivalence:

maroon (#800000) red (#ff0000)
orange (#ffA500) yellow (#ffff00)
olive (#808000) purple (#800080)
fuchsia (#ff00ff) white (#ffffff)
lime (#00ff00) green (#008000)
navy (#000080) blue (#0000ff)
aqua (#00ffff) teal (#008080)
black (#000000) silver (#c0c0c0)
gray (#808080)

Other color keywords may be commonly
used but are ad hoc in their definition.
See Appendix C for more information.

body {font-family:
Arial; font-size: 12pt;
color: red;}

Commonly defined
named colors

Most browsers support a number of
common colors based upon the X11
windowing system palette, such as
mintcream. Appendix C provides a
complete list of these extended colors
and a discussion of the potential pitfalls
of using them.

#gap {color: khaki;}

System Color
Names

CSS2 introduced named color keywords
which allows Web page colors to be
matched to an operating system’s color
use. A complete list of the allowed values
and their meaning is found in Appendix C.
While these names are commonly
supported, there is some concern that
they will not be supported in CSS3.

.formLabels {color:
CaptionText;}

input[type="button"]
{background-color:
ButtonFace;}

6-Hex Color CSS’s six-digit hexadecimal format is
the same as color defined in (X)HTML.
The format specifies color as #rrggbb,
where rr is the amount of red, gg the
amount of green, and bb the amount of
blue, all specified in a hexadecimal value
ranging from 00 to FF.

div {font-family:
Courier; font-size:
10pt; color: #00CCFF;}

3-Hex Color This is an RGB hexadecimal format of
#rgb, where r corresponds to a hex
value (0–F) for red, g for green, and b for
blue. For example, #f00 would specify
pure red, while #fff would specify white.
Given its data limits, the format is less
expressive than 6-Hex Color.

span {font-family:
Helvetica; font-size:
14pt; color: #0CF;}

 532 P a r t I I : C o r e S t y l e 532 P a r t I I : C o r e S t y l e

Color Format Description Example

HSL Color CSS3 introduces Hue Saturation
Lightness (HSL), where color values are
specified as hsl(hue,saturation,
lightness). Hue is set as the degree
on the color wheel, where 0 or 360 if
you wrap around is red, 120 is green,
and 240 is blue, with the various other
colors found between. Saturation is
a percentage value, with 100% being
the fully saturated color. Lightness is a
percentage value, with 0% being dark and
100% light with the average 50% being
the norm.

#red {
color: hsl(0,100%,
50%);}

#green {
color:
hsl(120,100%,50%);}

#blue {
color:
hsl(240,100%,50%);}

HSLa Color This is the CSS3 HSL value with a fourth
value to set the alpha channel value
for the color to define the opacity of
the element. An HSLa is specified via a
function style hsla(hue,saturation,
lightness, alpha), where hue,
saturation, and lightness are the same
as standard hsl() values, and the alpha
channel value for defining opacity is a
number between 0 (fully transparent) and
1 (fully opaque).

#bluetrans {color: hsla(
240,100%,50%,0.5);}

RGB Color CSS colors can also be defined using
the keyword rgb, followed by three
numbers between 0 and 255, contained in
parentheses and separated by commas,
with no spaces between them. RGB
color values can also be defined using
percentages. The format is the same,
except that the numbers are replaced by
percentage values between 0% and 100%.

#p1 {color:
rgb(204,0,51);}
p {color:
rgb(0%,10%,50%);}

RGBa Color This is like RBG color but adds an alpha
channel value to specify the opacity of
the color. An RGBa is specified via a
function-style rgba(r,g,b,a) value,
where colors r, g, and b are specified
as a decimal value from 0 to 255 or a
percentage from 0% to 100%, and the
alpha channel value for defining opacity
is a number between 0 (fully transparent)
and 1 (fully opaque). Values outside this
range will be rounded up or down to fit the
closest value.

#redtrans {
color:
rgba(255,0,0,0.4);}

TABLE 5-4 CSS Color Values (continued)

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 533
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 533

CSS Selectors
CSS supports a rich set of selectors for specifying to which particular element(s) a CSS rule
applies. CSS1 initially supported basic selectors to indicate a particular tag, group of tags, or
position in the document tree. CSS2 expanded this to address selecting on attributes and
more positions in the tree. We show here pieces of CSS3, which has gone somewhat
overboard by making selector syntax at times potentially quite confusing, particularly when
chained excessively. Given that many browsers support this emerging selector syntax, it is
important to show it together with the other selectors as a complete reference. Table 5-5
summarizes the selector syntax from CSS1, CSS2, and the commonly supported parts of the
CSS3 specifications. A summary and expansion of CSS3 selectors to include those that are
less supported is provided in Chapter 6.

TABLE 5-5 CSS Selectors (continued)

Selector Description Example Defined In

E Selects all elements of
the name E specified in
the rule

h1 {color: red;}

/* makes all h1 tags red */

CSS1

* Selects all elements * {color: blue;}

/* makes all elements blue */

CSS2

E, F, G Applies the same
rules to a group of
tags E, F, and G

h1,h2,h3 {background-color:
orange;}

/* sets the background color of
all h1, h2, and h3 elements to
orange */

CSS1

#id Selects any tag with an
id attribute set

#test {color: green;}

/* makes a tag with id='test'
green */

CSS1

E#id Selects the specified
element E with the
given id attribute set

h3#contact {color: red;}

/* sets the color to red on the h3
tag with the id equal to contact */

CSS1

.class Selects all tags with
the specified class
value

.note {color: yellow;}

/* makes all tags with
class='note' yellow */

CSS1

E.class Selects the specified
elements of type E with
a particular class value

h1.note {text-decoration:
underline;}

/* underlines all h1 tags with
class='note' */

CSS1

E F Selects descendent
tags where F is a
descendent some time
from element E

p strong {color: purple;}

/* sets all strong tags that are
descendents of p tags purple */

CSS1

 534 P a r t I I : C o r e S t y l e 534 P a r t I I : C o r e S t y l e

Selector Description Example Defined In

E > F Selects direct
descendents

body > p {background-color:
yellow;}

/* makes all p tags that have the
body tag as their immediate parent
have the background color yellow */

CSS2

E + F Selects adjacent
siblings

h1 + p {color: red;}

/* makes all p tags that are
immediately preceded by an h1 tag
red */

CSS2

E ~ F Selects preceding
siblings

p ~ strong {font-style: italic;}

/* sets the font style to italic
on all strong tags that have a p
tag as a preceding sibling */

CSS3

E[attr] Selects all elements of
E that have the given
attribute attr

a[href] {background-color: yellow;}

/* sets the background color to
yellow for all a tags that have an
href attribute*/

CSS2

E[attr=value] Selects all elements
of E that have set the
given attribute attr
equal to the given
value

a[href="http://www.htmlref.com"]
{font-weight: bold;}

/* sets the font-weight to bold
on all a tags that have their href
attribute set to http://www
.htmlref.com */

CSS2

E[attr|=value] Selects all elements of
E that have an attribute
attr that contains a
value that starts with
the value given in a list
of hyphen-separated
values

p[lang|="en"] { color: red; }

/* English text in red */

CSS2

E[attr~=value] Selects all elements
of E that have a space-
separated list of values
for attr where one of
those values is equal
to the given value

p[title~="Test"] { font-style:
italic; }

/* sets the font style to italic
on all p tags that have one word
in their title equal to Test */

CSS2

E[attr^=value] Selects all elements
of E that have the
attribute attr that
begins with the given
value

p[title^="HTML"] {color: green;}

/* sets the color to green if the
title starts with HTML */

CSS3

TABLE 5-5 CSS Selectors

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 535
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 535

Selector Description Example Defined In

E[attr$=value] Selects all elements
of E that have the
attribute attr that ends
with the given value

p[title$="!"] {color: red;}

/* sets the color to red if the
title ends with an exclamation
mark */

CSS3

E[attr*=value] Selects all elements
of E that have the
attribute attr that
contains the given
value

p[title*="CSS"] {font-style:
italic;}

/* sets the font style to italic
in any p tag that has CSS in its
title */

CSS3

a:link Specifies the unvisited
link

a:link {font-weight: bold;}

/* makes unvisited links bold */

CSS1

a:active Specifies the link as it
is being pressed

a:active {color: red;}

/* makes links red as they are
pressed */

CSS1

a:visited Specifies the link after
being pressed

a:visited {text-decoration: line-
through;}

/* puts a line through visited
links */

CSS1

:after Sets a style to be used
immediately following
the element

div:after {content:
url(sectionend.gif);}

/* inserts the sectionend.gif
image immediately following all
div tags */

CSS2

::after Same as :after;
changed under CSS3
to make pseudo-
elements obvious

div::after {content:
url(sectionend.gif);}

/* inserts the sectionend.gif
image immediately following all
div tags */

CSS3

:before Sets a style to be used
immediately before the
element

div:before {content:
url(sectionstart.gif);}

/* inserts the sectionstart.gif
image before all div tags */

CSS2

::before Same as :before;
changed under CSS3
to make pseudo-
elements obvious

div::before {content:
url(sectionstart.gif);}

/* inserts the sectionstart.gif
image before all div tags */

CSS3

:checked Selects the elements
that are checked

:checked {color: blue;}

/* sets the color to blue if an
element is checked */

CSS3

TABLE 5-5 CSS Selectors (continued)

 536 P a r t I I : C o r e S t y l e 536 P a r t I I : C o r e S t y l e

Selector Description Example Defined In

:default Selects the elements
that are the default
among a set of similar
elements

:default {background-color: red;}

/* sets the background color of a
default button like a submit to
red */

CSS3

:disabled Selects the elements
that are currently
disabled

input:disabled {background-color:
gray;}

/* sets the background color to
gray on disabled input elements */

CSS3

:empty Selects an element
that has no children

div:empty {display: none;}

/* hides the div if it has no
children */

CSS3

:enabled Selects the elements
that are currently
enabled

input:enabled {background-color:
white;}

/* sets the background color to
white on enabled input elements */

CSS3

:first-child Selects the element
only if the element is
the first child of its
parent

p:first-child { color: red;}

/* sets the font color to red for
all of the p tags that are the
first child of their parent */

CSS2

:first-letter Selects the first letter
of an element

p:first-letter {font-size: larger;}

/* makes the first letter of a
paragraph larger */

CSS1

::first-letter Same as :first-
letter; changed
under CSS3 to make
pseudo-elements
obvious

p::first-letter {font-size:
larger;}

/* makes the first letter of a
paragraph larger */

CSS3

:first-line Selects the first line of
an element

p:first-line {color: red;}

/* makes the first lines
of paragraph red */

CSS1

::first-line Same as :first-
line; changed under
CSS3 to make pseudo-
elements obvious

p::first-line {color: red;}

/* makes the first lines
of paragraph red */

CSS3

:first-of-type Selects the element
that is the first child
of its parent that is of
its type

strong:first-of-type {font-size:
bigger;}

/* sets the font size bigger on the
first strong tag of its parent */

CSS3

TABLE 5-5 CSS Selectors

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 537
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 537

Selector Description Example Defined In

:focus Selects the element
only when the element
holds the focus

input:focus {background-color:
yellow;}

/* sets the background color to
yellow on the input element that
has focus */

CSS2

:hover Selects the element
when the user is
hovering over it

p:hover {background-color: yellow;}

/* sets the background color to
yellow on the p element that the
user is currently hovering over */

CSS2

:lang(value) Selects all elements
that have the lang
attribute set to the
given value

*:lang(fr) {color: blue;}

/* sets the font color to blue
for every element that has the
attribute lang set to 'fr' */

CSS2

:last-child Selects the element
that is the last child of
its parent

p:last-child {font-size: small;}

/* sets the font size to small on
the p tags that are the last child
of their parent */

CSS3

:last-of-type Selects the element
that is the last child
of its parent that is of
its type

strong:last-of-type {font-size:
smaller;}

/* sets the font size smaller
on the last strong tag of its
parent */

CSS3

:not(s) Selects elements
that do not match the
selector s

*:not(h1) {color: black;}

/* sets the color to black on every
element that is not an h1 tag */

CSS3

:nth-child(n) Selects the element
that is the nth child of
its parent

div:nth-child(2) {background-
color: red;}

/* sets the background color to
red if the div is its parent's
second child */

CSS3

:nth-last-
child(n)

Selects the element
that is the nth from
last child of its parent

p:nth-last-child(3) {color:
yellow;}

/* sets the color to yellow if the
p element is its parent's third to
last child */

CSS3

:nth-last-of-
type(n)

Selects the element
that is the nth-from-last
child of its parent that
is its type

p:nth-last-of-type(2) {color:
purple;}

/* sets the color to purple on the
second to last p element of its
parent */

CSS3

TABLE 5-5 CSS Selectors (continued)

 538 P a r t I I : C o r e S t y l e 538 P a r t I I : C o r e S t y l e

NOTE Most of the CSS3 selectors are not supported in Internet Explorer browsers, including
version 8.0, though they are widely supported by other browser vendors.

Page Media Selectors
CSS2 and beyond provide special support for multiple media types. Print styles in
particular introduce interesting selectors that are specific for page media. Table 5-6
summarizes the selectors used for such media-dependent styles.

NOTE CSS properties like orphans, page-break-after, page-break-before,
page-break-inside, and widows are often used in conjunction with these selectors.
See the corresponding section in this chapter for the particular property for more information.

Selector Description Example Defined In

:nth-of-type(n) Selects the element
that is the nth child of
its parent that is its
type

strong:nth-of-type(5) {text-
decoration: underline;}

/* underlines the fifth strong tag
under a parent */

CSS3

:only-child Selects an element if
it’s the only child of its
parent

h1:only-child {color: blue;}

/* sets the h1 color to blue if
the h1 is the only child of its
parent */

CSS3

:only-of-type Selects an element if
it’s the only child of its
parent with its type

p:only-of-type {font-weight: bold;}

/*sets the p element to be bold if
it is the only p tag child of its
parent */

CSS3

:root Selects the element
that is the root of the
document

:root {background-color: blue;}

/* sets the background color to
blue for the root element */

CSS3

::selection Selects the part of
the element that is
currently selected;
supported in Firefox as
::-moz-selection
as well

#test::selection {color: red;}

/* makes the text red when
selected */

CSS3

:target Selects the element
that is the target of a
referring URI

:target{color:red;}

/* if the element is the target of
the referring URI, the color is
set to red */

CSS3

TABLE 5-5 CSS Selectors (continued)

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 539
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 539

Miscellaneous CSS Constructs
This section discusses some miscellaneous constructs associated with style sheets.

/* comments */
Comments can be placed within style sheets. Style sheets use the comment syntax used in C
programming (/*comment*/):

<style type="text/css">
p {font-face: Courier; font-size: 14px; font-weight: bold;
 background-color: yellow;}
/* This style sheet was created at Demo Company, Inc. for the express purpose
of being an example in HTML & CSS: The Complete Reference, 5th Edition */
/* Oh by the way people can see your comments so think twice about what you
put in them */
</style>

HTML comment syntax (<!-- comment -->) does not apply in CSS. However, as
discussed previously in the “Style Inclusion Methods” section, HTML comments are often
used to mask style blocks:

 <style type="text/css">
<!--
p {font-size: 1.5em; font-family: Georgia, "Times New Roman", Times, serif;

TABLE 5-6 CSS2 Page and Media Selector Summary

Selector or
Construct Description Example Defined In

@media Groups style rules for multiple
media types in a single style
sheet

@media screen {body
 {font-family: sans-serif;
 font-size: 18 pt;}
}

CSS2

@page Used to define rules for page
sizing and orientation rules for
printing

@page {size: 8.5in 11in;} CSS2

:first Sets page layout rules for the
first page in a document when
printing

@page :first {margin-top:
1.5in;}

CSS2

:left Sets page layout rules for a
left-hand page when printing

@page :left {margin-left:
4cm; margin-right: 2cm;}

CSS2

:right Sets page layout rules for a
right-hand page when printing

@page :right {margin-left:
6cm; margin-right: 3cm;}

CSS2

 540 P a r t I I : C o r e S t y l e 540 P a r t I I : C o r e S t y l e

 color: blue; background-color: yellow;}
em {font-size: 2em; color: green;}
-->
</style>

Internet Explorer’s conditional comments are also found in CSS for masking linked style
sheets for one browser or another. See entry on comments in the reference found in Chapter 3
for more details.

@charset
A single @charset rule can be used in an external sheet to define character set encoding of
the style rules and values.

Example
@charset "ISO-8859-1"
/* external style sheet rules follow below */

Note
• This rule should never be used in an embedded style sheet, as there are many other

ways to indicate character sets with a <meta> tag or an HTTP header.

@font-face
This “at” rule is used to associate a font name to be used in a style sheet with some
downloadable font. A font-family property is used within the rule to name the font
and a src property is associated with an external font name:

@font-face {font-family: fontname;
 src: url(fontfile);}

Later, the font can be used as a name within properties like font-family and font,
though you should specify other font names as a fallback in case downloadable font
technology is not supported or the font fails to load for some reason.

Examples
@font-face {font-family: "Mufferaw";
 src: url(MUFFERAW.ttf);}

body {font-family: "Mufferaw", serif; font-size: 5em;}

It is also possible to set selection of a particular downloadable font when a particular font
characteristic like bold or italic is set, by adding the corresponding rule to the @font-face rule:

@font-face {font-family: "Mufferaw";
 src: url(MUFFERAW.ttf);}

@font-face {font-family: "Mufferaw";
 src: url(MUFFERAWBOLD.ttf);
 font-weight: bold;}

p {font-family: "Mufferaw", serif; font-size: 5em;}
em {font-weight: bold;} /* would specify the Mufferaw bold font */

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 541
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 541

Note
• The particular font technologies for downloadable fonts vary significantly between

browsers. Internet Explorer has supported EOT files since IE 4. Netscape supported
TrueDoc downloadable fonts but these were phased out. Firefox 3.5, Safari 3, and
Opera 10 have reintroduced downloadable fonts using TrueType files. See Appendix B
for examples of mixing the various technologies.

@media
An @media rule can be used to define style rules for multiple media types in a single
embedded style sheet.

Examples
<style type="text/css">
@media screen { /* screen rules */ }
@media print { /* print rules */ }
@media screen, print { /* screen and print rules */ }
</style>

The syntax may look a little odd because you have to wrap style blocks with more curly
braces, like so:

<style type="text/css">
@media screen {body
 {font-family: sans-serif;
 font-size: 14px;}
 }

@media print {body
 {font-family: serif;
 font-size: 10px;}
 }
</style>

A variation of this syntax with device constraints, dubbed a “Media Query,” is supported in
many browsers and is discussed in Chapter 6.

@page
An @page rule is used to define a page block for printed styles. Generally, within this
construct we see various CSS properties like size, page, and margin to control the
dimensions of the page.

Examples
/* sets tables to be on landscape pages */
@page {size: 8.5in 11in; margin: .5in;}
@page {marks: crop;}

/* we can name particular page's rules as well with an identifier */
@page report {size: landscape;}

 542 P a r t I I : C o r e S t y l e 542 P a r t I I : C o r e S t y l e

/* pseudo-classes can be used to select alternating pages as well
 as the first page */
@page :left {margin: .5in;}
@page :right {margin: 1.5in;}
@page :first {margin: 5in;}

Note
• This construct is not well supported, even in modern browsers.

!important
This construct specifies that a style takes precedence over any different, conflicting styles.
This construct should be used sparingly.

Examples
body {font-family: Times;}

div {font-size: 14pt; line-height: 150%; font-family: Arial ! important;}

#div1 {font-family: Sans-Serif;}
/* all divs, no matter how used, will be in Arial, see !important */

CSS1 and CSS 2.1 Properties
This section presents the CSS1 and 2.1 properties in alphabetical order. CSS2 properties that
were dropped from the CSS 2.1 specification are presented in Chapter 6, which covers
emerging and proprietary CSS properties.

Note that the properties tend to come in groups and that most groups have shorthand
notation. For example, the background property is shorthand for background-color,
background-image, background-position, and background-attachment. Individual
properties of a set may contain extra details, which are noted in the corresponding section
for that property and are not necessarily repeated in the section for the shorthand entry of
the set.

The property entries that follow generally include the following information:

• Brief summary Brief summary of the property’s purpose.

• Syntax Syntax for the element, including allowed values defined by the W3C
specification.

• Example(s) One or more examples demonstrating use of the property.

• Compatibility The property’s general compatibility with CSS specifications and
browser versions.

• Note(s) Additional information about the property or its usage. This may include
some CSS3 details for properties that are only slightly modified in the emerging
specification. The bulk of the CSS3 information is presented in Chapter 6.

All the values allowed with a property are defined in the earlier section “CSS
Measurements.” Similarly, the examples assume that you understand selectors, which
are summarized in the earlier section “CSS Selectors.”

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 543
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 543

TIP The support site http://htmlref.com has this reference online and may have updates or fixes to
this information.

background
This property sets in a shorthand form any or all background properties.

Syntax
background: background-color background-image background-repeat
 background-attachment background-position;

Property order should not matter, and any properties not specified use their default values.

Examples
body {background: white url(picture.gif) repeat-y center;}
.red {background: #ff0000;}
#div1 {background: white url(logo.gif) no-repeat fixed 10px 10px;}

Compatability

CSS 1, 2, 3 IE 4+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Notes
• As with all shorthand forms, document authors should experiment with individual

background-related property values before adopting a short form.

• Under the emerging CSS3 specification, it is possible to specify multiple files for a
background and separate each with a comma. For example,

body {background: white url(donkey.gif) top left no-repeat,
 url(elephant.gif) bottom right no-repeat;}

would put a background image in the top-left and bottom-right areas of the body,
respectively. Support is limited, though Safari 1.3+ browsers support most CSS3
background features.

background-attachment
This property sets the background image to scroll or not to scroll with its associated element’s
content. The default value is scroll, which sets the background to scroll with the associated
content, typically text. The alternate value, fixed, is intended to make the background static
while associated content such as text scrolls over the background. A value of inherit applies
the value of this property from a containing parent element.

Syntax
background-attachment: scroll | fixed | inherit

Examples
body {background-image: url(tile.gif); background-attachment: scroll;}
#logo {background-image: url(logo.gif); background-attachment: fixed;}

 544 P a r t I I : C o r e S t y l e 544 P a r t I I : C o r e S t y l e

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• This property is often used to create a watermark effect similar to the proprietary

attribute of the <body> tag, bgproperties, introduced by Microsoft.

background-color
This property sets an element’s background color. A wide variety of color values, as detailed
earlier in Table 5-4, can be used, while the default value, transparent, allows any
underlying content to show through.

Syntax
background-color: color | transparent | inherit

Examples
.red {background-color: #FF0000;}
.red2 {background-color: #F00;}
.red3 {background-color: red;}
.red4 {background-color: rgb(255, 0, 0);}
.red5 {background-color: hsl(0, 100%, 50%);}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4 (buggy; may not fit
entire region), 6+, Firefox 1+

Opera 4+, Safari 1+

Notes
• This property is often used in conjunction with the color property. If both

properties are not set, it is possible to have rendering problems in the unlikely event
that the browser default colors hide content because colors are too similar. The W3C
CSS validator will warn of the possibility of this rare but troubling issue.

• Used with block elements, this property colors content and padding but not
margins.

background-image
This property associates a background image with an element. Underlying content may
show through transparent regions in the source image. The background image requires a
URL (complete or relative) to link it to the source image specified with the url() syntax.
The default value is none and sets the background so that it doesn’t display an image.

Syntax
background-image: url(image-file) | none | inherit

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 545
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 545

Examples
body {background-image: url(plaidpattern.gif);}
p {background-image: none;}
#robot {background-image: url(http://www.democompany.com/images/robot.gif);}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4 (buggy; may not fit
entire region), 6+, Firefox 1+

Opera 4+, Safari 1+

Notes
• Under the emerging CSS3 specification, it is possible to specify background images

and separate each with a comma. For example,

body {background-image: url(donkey.gif), url(elephant.gif);}

However, without positioning of the backgrounds or transparency, you may
obscure images. Support is limited, though Safari 1.3+ browsers support most CSS3
background-image features.

background-position
This property determines how a background image is positioned within the canvas space
used by its associated element. The position of the background image’s upper-left corner
can be specified as an absolute distance, typically in pixels, from the surrounding element’s
origin. It can also be specified as a relative unit, nearly always a percentage, along the
horizontal and vertical dimensions. Finally, the position can be specified as named values
that describe the horizontal and vertical dimensions. The named values for the horizontal
axis are center, left, and right; those for the vertical axis are top, center, and bottom.
The default value for an unspecified dimension when only a single value is given is
assumed to be center.

Syntax
background-position: horizontal vertical

where horizontal is

 percentage | length | left | center | right

and vertical is

 percentage | length | top | center | bottom

Examples
body {background-image: url(plaidpattern.gif);
 background-position: 50px 100px;}
#div1 {background-image: url(bricks.png); background-position: 10% 45%;}
body {background-image: url(logo.gif); background-position: top center;}

 546 P a r t I I : C o r e S t y l e 546 P a r t I I : C o r e S t y l e

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Notes
• According to the CSS 2.1 specification, the tiling and positioning of background

images on inline elements is undefined. In practice, browsers tend to support it.

• When keywords are solely used, the ordering of values is not important.

• Under CSS3 you may specify multiple background-position values and separate
them with commas. Each value will then be applied to the corresponding background
in the list of backgrounds. For example, background-position: 50px 100px,
200px 200px; would position the first background at 50px, 100px and the second
background at 200px, 200px. Support is limited, though Safari 1.3+ browsers support
most CSS3 background-position features.

background-repeat
This property determines how background images specified by the property background
or background-image tile when they are smaller than the canvas space used by their
associated elements. Possible values are repeat (repeats in both direction), repeat-x
(repeats only horizontally), repeat-y (repeats vertically), and no-repeat. The default
value is repeat.

Syntax
background-repeat: repeat | repeat-x | repeat-y | no-repeat | inherit

Examples
body {background-image: url(yellowpattern.gif) background-repeat: repeat;}
#div1 {background-image: url(tile.gif); background-repeat: repeat-x;}
p {background-image: url(tile2.jpg); background-repeat: repeat-y;}
.mark {background-image: url(logo.png); background-repeat: no-repeat;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4 (buggy; may not fit
entire region), 6+, Firefox 1+

Opera 4+, Safari 1+

Notes
• According to the CSS 2.1 specification, the tiling and positioning of background

images on inline elements is undefined. In practice, browsers tend to support it.

• Under CSS3 you may specify multiple background-repeat values and separate
them with commas. Each value will then be applied to the corresponding background
in the list of backgrounds. For example, background-repeat: no-repeat,
repeat-x; would apply no-repeat to the first background and repeat-x to the
second. Support is limited, though Safari 1.3+ browsers support most CSS3
background-related features.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 547
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 547

border
This property defines in a shorthand form the width, style, and color for all four sides of an
element’s border.

Syntax
border: border-width border-style border-color

where border-width sets all borders in numeric measurements or with a named value of
thin, medium, or thick. The second value, border-style, is used to set the style of the
border and is set to a value of dashed, dotted, double, groove, hidden, inset, none,
outset, ridge, or solid. Finally, border-color is used to set the color of the border
using a CSS color value.

Examples
div {border: 2px double red;}
.dashed {border: .5em dashed #f00;}

Compatibility

CSS 1, 2, 3 IE 4, 5 (buggy), 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• To set the individual sides of an element’s border, use the various rules that pertain

to individual borders, like border-bottom, border-bottom-color, border-
bottom-style, border-bottom-width.

border-bottom
This property defines in a shorthand form the width, style, and color for the bottom border
of an element.

Syntax
border-bottom: border-width border-style border-color;

Example
#redbottom {border-bottom: thin solid red;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Given that CSS1 did not support border-bottom-color and border-bottom-

style, this property is useful for setting the characteristics of the bottom of boxes
for older browsers.

 548 P a r t I I : C o r e S t y l e 548 P a r t I I : C o r e S t y l e

border-bottom-color
This property defines the color of an element’s bottom border.

Syntax
border-bottom-color: color | transparent | inherit

where color is a valid CSS color value.

Example
p {border-style: solid; border-width: thin; border-bottom-color: orange;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

border-bottom-style
This property defines the style for the bottom border of an element.

Syntax
border-bottom-style: dashed | dotted | double | groove | hidden |
 inset | inherit | none | outset | ridge | solid

Example
#box {border-width: 10px; border-style: solid; border-bottom-style: double;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

border-bottom-width
This property sets the width of an element’s bottom border.

Syntax
border-bottom-width: non-negative length | medium | thick | thin | inherit

Examples
.low {border-bottom-width: thick;}
p {border-bottom-width: 15px;}

Compatibility

CSS 1, 2, 3 IE 4, 5 (buggy), 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 549
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 549

border-collapse
This property defines whether table cell borders are connected or separate.

Syntax
border-collapse: collapse | separate | inherit

The default value is separate, with each cell having a border with possible spacing. With
a value of collapse, the borders appear to collapse on each other so that there’s no more
spacing between the borders. The rendering here should illustrate the idea of the property
clearly:

Example
<table border="1" style="border-collapse: collapse;">
<tr>
 <td>Cell 1</td><td>Cell 2</td><td>Cell 3</td>
</tr>
<tr>
 <td>Cell 4</td><td></td><td>Cell 5</td>
</tr>
</table>

Compatibility

CSS 2, 3 IE 5–7 (partial), 8+ Netscape 6+, Firefox 1+ Opera 5+, Safari 1+

border-color
This property defines the color of an element’s border.

Syntax
border-color: color [color color color]

where color is a valid CSS color, transparent, or inherit.

 550 P a r t I I : C o r e S t y l e 550 P a r t I I : C o r e S t y l e

The border-color property can be used to specify the color of all four borders
individually in the standard top, right, bottom, left style:

A single value copies the color to all border sides. With two values, the first sets the
border color of the top and bottom, and the second sets the border color of the right and left.
With three values, the first sets the border color of the top, the second sets the color of the
right and left, and the third sets the color of the bottom. With four values, each color is set
individually in the order top, right, bottom, and left.

Examples
p {border-style: solid; border-width: thin; border-color: blue;}
#d1 {border-style: double; border-color: #0000EE;}
#rainbow {border-color: red green blue orange;}

Compatibility
CSS 1, 2, 3 IE 4, 5 (buggy) 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• All borders are set at once, but individual color values can be set with the shorthand

border-top, border-right, border-bottom, and border-left as well as with
the specific properties border-top-color, border-right-color, and so on.

border-left
This property defines in a shorthand form the width, style, and color for the left border of
an element.

Syntax
border-left: border-width border-style border-color;

Content

bo
rd

er
-r

ig
ht

-c
ol

or

bo
rd

er
-l

ef
t-

co
lo

r

border-bottom-color

border-top-color

margin

padding

1

3

24

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 551
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 551

where border-width sets the width of the border as a positive numeric measurement or
using a named value of thin, medium, or thick. The second value, border-style, is used
to set the style of the left border and is set to a value of dashed, dotted, double, groove,
hidden, inset, none, outset, ridge, or solid. Finally, border-color is used to set the
color of the left border using a CSS color value.

Example
#leftout {border-left: thin dashed red;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Given that CSS1 did not support border-left-color and border-left-style,

this property is useful for setting the characteristics of the left border of boxes for
older browsers.

border-left-color
This CSS2+ property defines the color of an element’s left border.

Syntax
border-left-color: color | transparent | inherit

where color is a valid CSS color value.

Example
p {border-style: solid; border-width: thin; border-left-color: #f00;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

border-left-style
This property defines the style for the left border of an element.

Syntax
border-left-style: dashed | dotted | double | groove | hidden |
 inset | inherit | none | outset | ridge | solid

Example
#box {border-width: 10px; border-style: solid; border-left-style: dotted;}

 552 P a r t I I : C o r e S t y l e 552 P a r t I I : C o r e S t y l e

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

border-left-width
This property sets the width of an element’s left border.

Syntax
border-left-width: non-negative length | medium | thick | thin | inherit

Examples
.fat {border-left-width: thick;}
p.left {border-left-width: 15px;}

Compatibility

CSS 1, 2, 3 IE 4, 5 (buggy), 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

border-right
This property defines in a shorthand form the width, style, and color for the right border of
an element.

Syntax
border-right: border-width border-style border-color;

where border-width sets the width of the right border as a positive numeric measurement
or using a named value of thin, medium, or thick. The second value, border-style, is
used to set the style of the right border and is set to a value of dashed, dotted, double,
groove, hidden, inset, none, outset, ridge, or solid. Finally, border-color is used
to set the color of the right border using a CSS color value.

Example
#greenzone {border-right: thick dashed green;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Given that CSS1 did not support border-right-color and border-right-style,

this property is useful for setting the characteristics of the right border of boxes for
older browsers.

border-right-color
This CSS2+ property defines the color of an element’s right border.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 553
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 553

Syntax
border-right-color: color | transparent | inherit

where color is a valid CSS color value.

Example
p {border-style: solid; border-width: thin; border-right-color: #0f0;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

border-right-style
This property defines the style for the right border of an element.

Syntax
border-right-style: dashed | dotted | double | groove | hidden | inset |
 inherit | none | outset | ridge | solid

Example
#box {border-width: 10px; border-style: solid; border-right-style: ridge;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

border-right-width
This property sets the width of an element’s right border.

Syntax
border-right-width: non-negative length | medium | thick | thin | inherit

Examples
div {border-right-width: medium;}
.superfat {border-right-width: 40px;}

Compatibility
CSS 1, 2, 3 IE 4, 5 (buggy), 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

border-spacing
This property defines the space between cells in a table.

Syntax
border-spacing: non-negative length(s) | inherit

 554 P a r t I I : C o r e S t y l e 554 P a r t I I : C o r e S t y l e

Its value can be an arbitrary length, but not negative. If one length is specified, it gives both
the horizontal and vertical spacing. If two lengths are specified, the first gives the horizontal
spacing and the second the vertical spacing between cells.

Examples
#table1 {border-spacing: 10px;}
#table2 {border-spacing: 10px 5px;}

Compatibility

CSS 2, 3 IE 8+ Netscape 6+, Firefox 1+ Opera 5+, Safari 1+

Note
• This property is similar to the cellspacing attribute of the table element in

(X)HTML.

border-style
This property defines the visual style of up to four different sides of a border.

Syntax
border-style: style [style style style]

Each individual style value can be set to a value of none, dotted, dashed, solid, double,
groove, hidden, ridge, inset, or outset. Visual examples of these styles are shown here:

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 555
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 555

The shorthand style allows individual borders to be set in the standard top, right, bottom,
left style:

A single value copies the style to all border sides. With two values, the first sets the border
style of the top and bottom, and the second sets the border style of the right and left. With
three values, the first sets the style of the top border, the second sets the style of the right and
left borders, and the third sets the style of the bottom border. With four values, the style of
each border is set individually in the order top, right, bottom, and left. In general, missing
values are inferred from the value defined for the opposite side.

Examples
p {border-style: solid;}
.twosides {border-style: dashed solid;}
.allsides {border-style: solid dashed groove inset;}

Compatibility

CSS 1, 2, 3 IE 4, 5 (no dotted/dashed), 5.5+ Netscape 4+ (buggy),
6+, Firefox 1+

Opera 5+, Safari 1+

Note
• All borders are set at once, but individual style values can be set with the shorthand

border-top, border-right, border-bottom, and border-left, as well as with
the specific properties border-top-style, border-right-style, and so on.

Content

bo
rd

er
-r

ig
ht

-s
ty

le

bo
rd

er
-l

ef
t-

st
yl

e

border-bottom-style

border-top-style

margin

padding

1

3

24

 556 P a r t I I : C o r e S t y l e 556 P a r t I I : C o r e S t y l e

border-top
This property defines in a shorthand form the width, style, and color for the top border of
an element.

Syntax
border-top: border-width border-style border-color;

where border-width sets the width of the top border as a positive numeric measurement
or using a named value of thin, medium, or thick. The second value, border-style, is
used to set the style of the top border and is set to a value of dashed, dotted, double,
groove, hidden, inset, none, outset, ridge, or solid. Finally, border-color is used
to set the color of the top border using a CSS color value.

Example
#boxtop {border-top: thin solid blue;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Given that CSS1 did not support border-top-color and border-top-style, this

property is useful for setting the characteristics of the right border of boxes for older
browsers.

border-top-color
This CSS2+ property defines the color of an element’s top border.

Syntax
border-top-color: color | transparent | inherit

where color is a valid CSS color value.

Example
p {border-style: solid; border-width: thin; border-top-color: #f00;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 557
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 557

border-top-style
This property defines the style for the top border of an element.

Syntax
border-top-style: dashed | dotted | double | groove | hidden | inset |
 inherit | none | outset | ridge | solid

Example
#box {border-width: 10px; border-style: solid; border-top-style: dashed;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

border-top-width
This property sets the width of an element’s top border.

Syntax
border-top-width: non-negative length | medium | thick | thin | inherit

Examples
p {border-top-width: thin;}
#thicktop {border-top-width: 25px;}

Compatibility

CSS 1, 2, 3 IE 4, 5 (buggy), 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

border-width
This property sets the width of an element’s complete border.

Syntax
border-width: width [width width width]

where width is

 non-negative length | medium | thick | thin | inherit

 558 P a r t I I : C o r e S t y l e 558 P a r t I I : C o r e S t y l e

The border-width property can also be used to specify all four borders individually in the
standard top, right, bottom, left style:

A single value copies the width to all border sides. With two values, the first sets the
border width of the top and bottom borders, and the second sets the width of the right and
left borders. With three values, the first sets the width of the top border, the second sets the
width of the right and left borders, and the third sets the width of the bottom border. With
four values, each border is set individually in the order top, right, bottom, and left.

Examples
div {border-width: medium;}
/* all sides set medium */

#d1 {border-width: 10px 5px;}
/* 10px top-bottom, 5px right and left */

#fun {border-width: 10px 1px 4px 50px;}
/* sides set individually */

Compatibility

CSS 1, 2, 3 IE 4, 5 (buggy), 5.5+ Netscape 4 (buggy), 6+, Firefox 1+ Opera 5+, Safari 1+

Note
• All borders are set at once, but individual width values can be set with the

shorthand border-top, border-right, border-bottom, and border-left, as
well as with the specific properties border-top-width, border-right-width,
and so on.

Content

bo
rd

er
-r

ig
ht

-w
id

th

bo
rd

er
-l

ef
t-

w
id

th

border-bottom-width

border-top-width

margin

padding

1

3

24

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 559
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 559

bottom
This property defines the y (vertical) coordinate for a positioned element, relative to the
bottom of the enclosing object or browser window.

Syntax
bottom: length | percentage | auto | inherit

where length can be specified in the standard units of length, such as inches (in) and so on,
but is nearly always set in pixels (px), and percentage corresponds to a percentage of the
containing object’s dimensions. The default value, auto, places the object where it normally
would be in the document order. For relative position, this will likely be treated as 0. For
absolute and fixed positioning, it will calculate a value based upon other set properties,
particularly top.

Examples
#div1 {position: absolute; left: 100px; bottom: 150px;}
#div2 {position: absolute; left: 50%; bottom: 30%;}
#div3 {position: absolute; left: 10px; bottom: auto; top: 500px;}
/* bottom will evaluate to a position calculated off the top position */
#footer {position: fixed; left: 0; bottom: 0;}

Compatibility

CSS 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 6+, Safari 1+

Note
• Browsers tend to assume pixel measurements if a length unit is not set.

caption-side
This property defines the position of a caption element within a <table> tag.

Syntax
caption-side: top | bottom | inherit

Examples
caption {caption-side: bottom;}
.right {caption-side: right;}

Compatibility

CSS 2, 3 IE 8+ Netscape 6+, Firefox 1+ Opera 6+, Safari 1+

Notes
• Many browsers support values of left and right as well, which were defined by

CSS2 and dropped in CSS 2.1.

• A value of top typically is the default in a browser which corresponds to the
common position of the caption element with a <table> tag.

 560 P a r t I I : C o r e S t y l e 560 P a r t I I : C o r e S t y l e

clear
This property specifies the placement of an element in relation to floating objects.

Syntax
clear: both | left | none | right | inherit

The property acts much like the clear attribute for the
 tag and continues to push
elements until the left, right, or both columns are clear. The default value is none.

Examples
br.clearright {clear: right;}
#clearboth {clear: both;}

Compatibility

CSS 1, 2, 3 IE 4 (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 5+, Safari 1+

clip
This property sets the coordinates of the clipping shape that exposes or hides the content of
absolutely positioned elements.

Syntax
clip: rect(coordinates) | auto | inherit

where the allowed clipping shape is a rectangle defined rect(top right bottom left)
in which the values specify offsets from the respective sides of the containing box.

Example
<style type="text/css" media="screen">
#div1 {position: absolute; width:200px; height:200px; clip: rect(10px 90px
90px 10px); border: 1px solid; background-color: orange;}

#div2 {position: absolute; left: 220px; width:200px; height:200px;
 border: 1px solid; background-color: orange;}
</style>
</head>
<body>

<div id="div1">Clipped</div>
<div id="div2">Not Clipped</div>

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 561
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 561

Compatibility

CSS 2, 3 IE 4 (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 5+, Safari 1+

Note
• In future CSS specifications, other clipping shapes may be supported.

color
This property sets the foreground color of an element’s text content.

Syntax
color: color | inherit

where color is a valid CSS color value.

Examples
.sunflower {color: yellow;}
#sunburn {color: #FF0000;}
p {color: #FF0;}
#sunburn2 {color: rgb(255,0,0);}
body {color: rgb(100%,100%,100%);}

 562 P a r t I I : C o r e S t y l e 562 P a r t I I : C o r e S t y l e

Compatibility

CSS 1, 2, 3 IE 3+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• This property is often used in conjunction with the background-color property. If

both properties are not set, it is possible to have rendering problems when default
color values hide content. The W3C CSS validator will warn of this dangerous
though unlikely issue.

• A concern with this property is not whether it is supported, but what CSS color
values are supported. Developers should assume that hsl() and other emerging
CSS3 values are more dangerous to use than standard keywords or hex values.

content
This property generates content in a document and is used with the :before and :after
pseudo-elements.

Syntax
content: normal | none | string | url() | counter | attr(X) | open-quote |
 close-quote | no-open-quote | no-close-quote | inherit

The most commonly used string value simply inserts the defined quote-delimited string
either before or after the selected element depending on the rule in use:

div.section:before {content: "Section Name: ";}

The url value is used to insert an external resource, typically an image:

div.section:before {content: url(warning.png);}

It is possible to combine values,

div.section:before {content: "Danger danger! " url(warning.png) " Generated
Content Ahead ";}

and the generated content can be styled by further applied properties:

div.section:before {content: "Danger danger! ";
 font-size: xx-large; background-color: black;
 color: yellow;}

Counter values can be specified and used to automatically add a sequential indicator. It
is generally defined in the form of counter(name), where name is the name of the counter,
or counter(name, style), where style indicates the list-style-type to use:

ol.countTest li:before {content: counter(counter1) " - " ;}

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 563
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 563

Multiple counters can be employed to allow for nesting of counter values if the
counters() function is employed. This is commonly used with outline style lists:

/* counter nesting example with counters() function showing a
 value.value style outline */
 ol.nest {counter-reset: counter1; list-style-type: none;}
 ol.nest ol {list-style-type: none; counter-reset: counter1;}
 ol.nest li:before {counter-increment: counter1;
 content: counters(counter1,".") " : "; }

The values open-quote and close-quote insert quotation symbols specified by the
quotes property, or if undefined, default to the user agent’s default quote style:

q {quotes: '<< ' ' >>' "(" ")";}
/* Insert quotes before and after q element content */
q:before {content: open-quote;}
q:after {content: close-quote;}

The no-open-quote and no-close-quote values do not insert quotation symbols but
do increment or decrement the nesting level for quotes.

Finally, the attr(X) syntax returns a string value for the attribute X for the element the
rule is associated with. For example,

#p1:before {content: attr(title);}

when applied to

<p id="p1" title="Text from the title here! ">I am the paragraph</p>

would insert the title attribute’s content “Text from the title here!” before the paragraph.
Though if the related element does not have an attribute named X, an empty string is used.

Examples
div.section:before {content: "Section "; font-size: xx-large;}
#div1:before {content: url(sectionstart.gif);}
#div1:after {content: url(sectionend.gif);}
blockquote:before {content: open-quote;}
blockquote:after {content: close-quote;}
p:before {content: counter(par-num, upper-roman) ". " }
p:before {content: attr(title); }

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 9+, Safari 3+

Note
• When using attribute matches (attr(X)) for content, note that browsers may read

attributes of any name regardless of validity, but do not assume that this is the
action, because it depends greatly on the markup technology employed and how
it is supported in a browser.

 564 P a r t I I : C o r e S t y l e 564 P a r t I I : C o r e S t y l e

counter-increment
This property controls CSS counter values.

Syntax
counter-increment: counter-name1 [integer] ... counter-nameN [integer] |
none | inherit

The syntax shows the property accepts one or more counter names (counter-nameX), each
one optionally followed by an integer. The integer indicates by how much the counter is
incremented or decremented for every occurrence of the element. The default increment is 1.
Zero and negative integers are allowed.

Examples

div.section:before {content: "Section: " counter(section) ". ";
 counter-increment: section;}
/* Add 1 to section */

h1.chapter:before {content: counter(chapterno, upper-latin) ". ";
 counter-increment: chapterno;}

.topten:before {content: counter(countdown) ". ";
 counter-increment: countdown -1; }

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 7+, Safari 3+

counter-reset
This property contains a list of one or more counter names to be cleared or set to a particular
value.

Syntax
counter-reset: counter-name1 [integer] ... counter-nameN [integer] | none |
inherit

The syntax shows the property accepts one or more names of counters, each one optionally
followed by an integer. The integer indicates what the counter value should be set to; when
a value is not specified, the counter is set to 0.

Examples
div.chapter {counter-reset: section;}
/* Set section to 0 */

ol {counter-reset: sectioncount listcount x y;}
/* Sets four counters to 0 */

#foo {counter-reset: globalCount 5;}
/* set to 5 for some reason */

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 565
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 565

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 7+, Safari 3+

cursor
This property determines how the cursor displays when passed over the affected element.

Syntax
cursor: url(address of cursor file) | auto | crosshair | default | pointer |
 move | e-resize | ne-resize | nw-resize | n-resize | se-resize |
 sw-resize | s-resize | w-resize | text | wait | help | progress |
 inherit

The default value, auto, leaves the cursor display to be determined by the user agent, so the
cursor will display according to either the browser defaults or the user system settings. The
common renderings of the values listed in CSS 2.1 are shown in Table 5-7.

The value url() can be used to reference a cursor source; multiple cursor sources
should be listed. As with fonts, the user agent should attempt to render the first cursor
listed, try the second one if necessary, and ultimately default to the generic cursor value
listed last, which should be listed though it is likely to default to auto appropriately in
conformant browsers:

<p style="cursor: url(greenarrow.cur), url(greenarrow.png), auto">Custom</p>

Note that the file type of the cursor linked to will depend on what the browser may support,
and some browsers, such as Internet Explorer, may allow for animated cursors.

CSS3 adds a number of new cursor values, including the ability to turn the cursor off
completely. While it is unclear the extent of new cursors that CSS3 will introduce, given its
raw state, many have been implemented already in modern browsers. Table 5-8 overviews
these and provides renderings where possible.

For more information on emerging CSS3 cursors, see www.w3.org/TR/css3-ui/#cursor.

Examples
.help {cursor: help;}
p.clickable {cursor: hand;} /* non-standard */
a:longload {cursor: wait;}
p {cursor: url("mything.cur"), url("second.cur"), text; }

Compatibility

CSS 2, 3 IE 5+, (IE 6+ for custom) Firefox 1+ (1.5 for custom) Opera 7+, Safari 1+

Note
• While custom cursors may not be supported in all browsers, particularly when they

are animated, various JavaScript tricks are often employed to imitate this property.

 566 P a r t I I : C o r e S t y l e 566 P a r t I I : C o r e S t y l e

TABLE 5-7 CSS 2.1 cursor Property Values

CSS cursor
Property Values Description

Typical
Rendering

auto The browser determines the cursor to display based on the
current context.

N/A

crosshair A simple crosshair, generally resembles a plus symbol.

default The browser’s default cursor, generally an arrow.

hand A hand pointer (nonstandard but commonly supported).

help Indicates that Help is available; the cursor is generally rendered
as an arrow and a question mark.

move Indicates something is to be moved; usually rendered as four
arrows together.

e-resize A resizing indicator as a double arrow pointing east-west (left-right).

ne-resize A resizing indicator as a double arrow pointing northeast-southwest.

nw-resize A resizing indicator as a double arrow pointing northwest-southeast.

n-resize A resizing indicator as a double arrow pointing north-south.

pointer Typically renders similar to the browser’s default pointing cursor,
which is generally a hand.

s-resize A resizing indicator as a double arrow pointing north-south.

se-resize A resizing indicator as a double arrow pointing southeast-northwest.

sw-resize A resizing indicator as a double arrow pointing southwest-northeast.

text Indicates text that may be selected or entered; generally rendered
as an I-bar.

w-resize A resizing indicator as a double arrow pointing west-east.

wait Indicates that the page is busy; generally rendered as an
hourglass.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 567
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 567

direction
This property is used to control the text direction, much like the dir attribute for
(X)HTML tags.

Syntax
direction: ltr | rtl | inherit

The allowed values rtl (right to left) and ltr (left to right) are often implied by the language
in use, though the default is specified to be ltr.

TABLE 5-8 CSS3 cursor Property Values

CSS cursor
Property Values Description Typical Rendering

alias Indicates the element may be a link or reference to
another element or location.

all-resize Shows that the object can be resized in all directions. None currently

cell Presents an icon to indicate a cell is active, similar to
what is performed in a spreadsheet application.

col-resize Displays a resize indicator for a column.

context-menu Indicates a context menu is available. None currently

copy Indicates the copy action is allowed or triggered by the
element.

move Displays standard four-arrow move cursor.

no-drop Indicates that the current location is not a drop target
for a drag action.

none Does not show a cursor. N/A

not-allowed Indicates that the current function is not allowed, often
associated with not allowing dropping in a drag-and-drop
action.

 or

row-resize Displays a resize indicator for a table row.

vertical-text Displays an I-beam used for vertical text insertion.

 568 P a r t I I : C o r e S t y l e 568 P a r t I I : C o r e S t y l e

Examples
<div style="direction: rtl">right to left</div>
<div style="direction: ltr">left to right</div>
<div>Warning test ahead...<span style="unicode-bidi: embed; direction: rtl;
background-color: yellow;">here doing I am What!
This is just a test</div>

Compatibility

CSS 2, 3 IE 5+ Netscape 6+, Firefox 1+ Opera 9+, Safari 1+

Note
• While the direction property can easily affect block elements, for it to affect

inline-level elements, the unicode-bidi property value must be embed or
override.

display
This property specifies an element’s display type and can override an element’s defined
presentation.

Syntax
display: inline | block | list-item | run-in | inline-block | table |
 inline-table | table-row-group | table-header-group |
 table-footer-group | table-row | table-column-group | table-column |
 table-cell | table-caption | none | inherit

The value inline causes an element to act it were an inline element with no returns added,
as shown here:

A value of block causes the element to generate a block box:

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 569
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 569

A list-item value creates a block for the list box and an inline box for items:

The value of run-in is somewhat context based and will make the item inline or block
depending on the context. Basically, if a block box that is not floated or positioned follows
the run-in box it becomes the first inline box of the block, otherwise, it becomes a block:

Browsers typically don’t implement this value, and there is some question of its value.
CSS 2 supports numerous table-related values, such as defining an element to act as a

table:

or to act as a cell:

 570 P a r t I I : C o r e S t y l e 570 P a r t I I : C o r e S t y l e

Based upon the values listed, it is also possible to define the element to act as a group of
cells or other aspects of a table, though the practical application and support for such values
is fuzzy at best.

Probably the most important value for the display property is none, which completely
removes an element from the document tree and, unlike the hidden value of the
visibility property, does not preserve an element’s canvas space, as demonstrated here:

Examples
#p1 {display: inline;} /* run this element as an inline */
b {display: block;}
.navigation {display: none;}
/* consider turning off items in a print style */

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 5+, Safari 1+

Notes
• The property itself is commonly supported but the values are not.

• CSS1 only defines inline, block, list-item, and none. Designers are encouraged
to utilize these common values first.

• Be careful about changing the a priori display aspects of defined elements. Making
all tags act as blocks like <p> tags or making <p> tags render inline decreases
the understandability of markup.

empty-cells
This property is used to control whether or not borders show on empty table cells.

Syntax
empty-cells: hide | show | inherit

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 571
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 571

This illustration shows the subtle difference between hide and show:

Examples

<table border="1" style="empty-cells:show; width: 80px;">
<caption>Show Cells</caption>
 <tr>
 <td colspan="2">Cell 1</td>
 </tr>
 <tr>
 <td>Cell 2</td>
 <td></td>
 </tr>
</table>

<table border="1" style="empty-cells:hide; width: 80px;">

<caption>Hide Cells</caption>
 <tr>
 <td colspan="2">Cell 1</td>
 </tr>
 <tr>
 <td>Cell 2</td>
 <td></td>
 </tr>
</table>

Compatibility

CSS 2, 3 IE 7 (partial), IE 8+ Netscape 6+, Firefox 1+ Opera 5+, Safari 1+

Note
• The default value for this property is show.

float
This property influences the horizontal alignment of an element, making it “float” toward
the left or right margin of its containing element.

Syntax
float: left | right | none | inherit;

Examples
#myimage {float: left;}
#pullquote {border-style: double; border-width: 5px;
 background-color: yellow; float: right;}

 572 P a r t I I : C o r e S t y l e 572 P a r t I I : C o r e S t y l e

Compatibility

CSS 1, 2, 3 IE 4–5 (buggy), IE 5.5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 6+, Safari 1+

Notes
• The default value for this property is none.

• Floated regions act much like tags that have been aligned left or right with
respect to text.

font
This property provides a shorthand way to specify all font properties with one rule.

Syntax
font: font-style font-variant font-weight font-size/line-height font-family;

It is not necessary to include all properties, and the lists of variant fonts should be separated
by commas, with those font names consisting of more than one word placed in quotes. The
allowed values are found in each individual property entry.

Examples
p {font: normal small-caps bold 12pt/18pt "Times New Roman", Courier, serif;}
.super {font: italic 18pt sans-serif;}

Compatibility

CSS 1, 2, 3 IE 3 (incomplete), IE 4+ Netscape 4+, Firefox 1+ Opera 6+, Safari 1+

Note
• This emerging CSS3 specification specifies more font-related properties, such as

font-effect, but interestingly none is replicated in the short form as of yet.

• As with all shorthand forms, document authors should experiment with individual
background-related property values before adopting a short form.

font-family
This property sets the font face to be used for text.

Syntax
font-family: font 1 [, font 2, ... font N]

Fonts may be named specifically or a generic font family name may be used. When multiple
font names are specified and separated by commas, they are read in descending order
looking for the first match. Generally, a generic font name will be listed at the end of a font
list. There are five generic font names currently available: serif, sans-serif, cursive,

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 573
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 573

fantasy, and monospace. Their renderings under modern browsers are shown here but
beware that they may not render the same in all browsers:

Examples
.modern {font-family:'Trebuchet MS', Arial, Helvetica, sans-serif;}
p {font-family: Serif;}
body {font-family: "Times New Roman, Courier";}
#special {font-family: fantasy;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• This property is equivalent to the face attribute of a tag.

• Under many browsers, downloadable fonts are supported. See the entry for
@font-face earlier in the reference.

• Fonts are listed in comma-separated form, generally ending with a known available
built-in CSS font.

font-size
This property sets the font size of text.

Syntax
font-size: length | percentage | larger | smaller | xx-small | x-small |
 small | medium | large | x-large | xx-larger | inherit

 574 P a r t I I : C o r e S t y l e 574 P a r t I I : C o r e S t y l e

Lengths are set often in points (pt), pixels (px), picas (pc), inches (in), millimeters (mm), or
centimeters (cm). Standard relative sizing units in em (em) and x-height (ex) may also
be used, as well as percentage values like 90%. Percentage values set the font size to a
percentage of the current inherited font-size. The property also supports size keywords
(xx-small, x-small, small, medium, large, x-large, xx-large). The size keywords are
roughly equivalent to the 1–7 size values for a tag and also should be equivalent to
particular stock HTML heading sizes. Table 5-9 summarizes the typical relationship between
CSS and HTML, though implementations may vary.

The relative size keywords larger and smaller should adjust a current size up or
down one value.

Examples
body {font-size: 18pt;}
#heading1 {font-size: 36px;}
p {font-size: 2em;}
h6 {font-size: xx-small;}
.special {font-size: 75%;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

font-style
This property sets the style of a font.

Syntax
font-style: italic | normal | oblique | inherit

The normal value would be used to override any inherited font-variant value.

Examples
.backToNormal {font-style: normal;}
#special {font-style: oblique;}
p.emphasis {font-style: italic;}

TABLE 5-9 CSS-HTML Size Relationships

CSS
Keyword

xx-small x-small small medium large x-large xx-large

HTML
 Size

1 2 3 4 5 6 7

HTML
Heading Size

<h6> <h5> <h4> <h3> <h2> <h1>

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 575
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 575

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Note
• Visually oblique and italic settings may look the same but oblique is often simply a

slanted version of a font, whereas an italicized variant may be a custom font made
to purposefully and carefully italicize each letter form.

font-variant
This property sets a variation of the specified or default font family.

Syntax
font-variant: normal | small-caps | inherit

The small-caps value sets text in smaller-size all capitals. The normal value would be
used to override any inherited font-variant value.

Examples
.legalese {font-variant: small-caps;}
.notlegal {font-variant: normal;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Note
• The small-caps style is often used in license and legal agreements—put in all capitals

to suggest importance but made small to discourage reading and to fit more content.

font-weight
This property sets the weight, or relative boldness, of text.

Syntax
font-weight: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 |
 600 | 700 | 800 | 900 | inherit

Values can be set with named values (normal or bold) or with numbered values (100–900).
In practice, under most browsers the values 100–500 display as normal text; 600–900 display
as bold. Relative values of lighter or bolder will increase or decrease the font-weight
value relative to its surrounding weight.

Examples
.bold {font-weight: bold;}
#light {font-weight: 300;}
.superbold {font-weight: 900;}
strong {font-weight: normal; color: red;}
/* note override of default tag presentation*/

 576 P a r t I I : C o r e S t y l e 576 P a r t I I : C o r e S t y l e

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• Support for varying degrees of light or bold beyond simple bold or not bold is

generally not implemented by browsers though theoretically printing may support
such distinctions.

• Theoretically, application of bold to a font may allow a mapping from one font like
Helvetica to a related font like Helvetica Bold or Helvetica Black. In practice, such
mappings don’t happen.

height
This property sets the height of an element’s content region.

Syntax
height: length | percentage | auto | inherit

Standard positive length units can be used, and pixels (px) is often the assumed measurement
in browsers. Percentage values, based on the height of the containing element, can also be
used. The default value of auto automatically calculates the width of an element, based on
the height of the containing element and the size of the content.

Examples
p {height: 400px; width: 200px; padding: 10px; border: solid 5px;}
#div1 {height: 50%; width: 50%;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• The actual size of an object on a browser canvas is not solely defined by the height

property, as values for borders and padding affect the space taken. For example,
given the CSS here

#div1 {height: 200px; padding: 30px; border: solid 20px;}

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 577
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 577

the height of the content itself may be 200px but the overall canvas space consumed
is 300px to account for the borders and padding:

left
This property defines the x (horizontal) coordinate for a positioned element, relative to the
left side of the containing element or browser window.

Syntax
left: length | percentage | auto | inherit

where length can be specified in the standard units of length, such as inches (in) and so on,
but is nearly always set in pixels (px), and percentage corresponds to a percentage of the
containing object’s dimensions. The default value, auto, lets this property function as placing
the object where it normally would fall in the document flow. For relative position, this will
likely be treated as 0. For absolute and fixed positioning, it will calculate a value based upon
other set properties, particularly right.

Examples
#div1 {position: absolute; left: 100px; top: 150px;}
#div2 {position: absolute; left: 50%; top: 30%;}
#div3 {position: absolute; left: auto; right: 500px; bottom: 5px; top: auto;}
/* left will evaluate to a position calculated off the right position */
#navBar {position: fixed; left: 0; top: 0;}

Compatibility

CSS 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 6+, Safari 1+

200 px

300 px

30
px

30
px

20
px

20
px

 578 P a r t I I : C o r e S t y l e 578 P a r t I I : C o r e S t y l e

Note
• Browsers tend to assume pixel measurements if a length unit is not set.

letter-spacing
This property sets the amount of spacing between letters.

Syntax
letter-spacing: length | normal | inherit

Length values can be set in various units (negative values are permitted) or to the default
value normal.

Examples
.tight {font-family: Arial; font-size: 14pt; letter-spacing: 2pt;}
p {letter-spacing: 1em;}
p.norm {letter-spacing: normal;}
.superTight {letter-spacing: -5px;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• This property does not enable full kerning of text as it will not be possible to adjust

the space between two adjacent kerning pairs of letters without crossing tags. In
short because of the way markup and style intersect, it simply is not possible to
perfectly adjust spacing differently on either side of a letter. However, given the
fluid nature of screen displays, what is provided for is likely more than adequate.

line-height
This property sets the height (leading) between lines of text in a block-level element such as
a paragraph.

Syntax
line-height: number | length | percentage | normal | inherit

Values can be specified as a number of lines, a number of units (pixels, points, inches,
centimeters, and so on), or a percentage of the font size. Negative values are not allowed.
The default value of normal is typically equivalent to 1.0 to 1.2 depending on the
implementation.

Examples
.double {line-height: 2;}
.double2 {line-height: 200%;}
p {font-size: 14px; line-height: 16px;}
p.norm {line-height: normal;}
body {line-height: 4ex;}
div {line-height: 125%;}

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 579
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 579

Compatibility

CSS 1, 2, 3 IE 3+ Netscape 4+ (bugs), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Alternatively, line-height can be set through the shorthand font property.

list-style
This shorthand property sets list-style-type, list-style-position, and list-
style-image.

Syntax
line-style: list-style-type | list-style-position | list-style-image

Each of the individual properties is detailed in the following entries. While the defined order
is suggested in practice, the properties can appear in any order.

Examples
ul {list-style: inside url("bullet.gif");}
#square {list-style: outside square;}
ol {list-style: lower-roman inside;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

list-style-image
This property assigns a graphic image to a list item.

Syntax
list-style-image: url(url of image) | none

Examples
ul {list-style-image: url(ball.gif);}
ul.remote {list-style-image: url(http://htmlref.com/book.png);}

Compatibility

CSS 1, 2, 3 IE 3+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

list-style-position
This property specifies whether the labels for an element’s list items are positioned inside or
outside the “box” defined by the listed item.

Syntax
list-style-position: inside | outside | inherit

 580 P a r t I I : C o r e S t y l e 580 P a r t I I : C o r e S t y l e

The difference between the default value outside and setting the property to inside is
illustrated clearly here:

Examples
ol {list-style-type: upper-roman; list-style-position: outside;
 background: yellow;}

ul {list-style-type: square; list-style-position: inside;
 background: yellow;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 4+, Safari 1+

list-style-type
This property defines labels for a list of items.

Syntax
list-style-type: disc | circle | square | decimal | decimal-leading-zero |
 lower-roman | upper-roman | lower-greek | lower-latin |
 upper-latin | armenian | georgian | lower-alpha |
 upper-alpha | none | inherit

The value none prevents a list label from displaying. CSS1 defines disc, circle, and
square, which are typically used on unordered lists (). The values decimal, lower-
roman, upper-roman, lower-alpha, and upper-alpha are typically used on ordered lists
(). These property types correspond to the (X)HTML type attributes for lists. CSS2
adds more values, primarily for ordered lists in foreign languages.

Examples
ol {list-style-type: upper-roman;}
ol.none {list-style-type: none;}
.ichi-ni {list-style-type: hiragana;}

Compatibility

CSS 1, 2, 3 IE 4+ (partial), IE 8+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 581
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 581

Notes
• The general characteristics of this property are supported by the type attribute for

the , , and (X)HTML tags.

• CSS2 also included values, such as hebrew, cjk-ideographic, hiragana,
katakana, hiragana-iroha, and katakana-iroha. These values were later
removed from the CSS 2.1 specification.

• CSS3 includes many more list-style-type values, such as arabic, binary,
lower hexadecimal, mongolian, thai, ethiopic, hangul, norwegian, and
somali.

• Some CSS2 and most CSS3 values for this property are not supported in browsers.

margin
This property sets a consistent margin on all four sides of the affected element.

Syntax
margin: margin1 ... margin4 | inherit

where each margin value is either a length, percentage, auto, or inherit value. As a
shorthand form, it is possible to set the four margin values (margin-top, margin-right,
margin-bottom, and margin-left) independently with this property:

A single value will be copied to all four margins. With two values, the first value will
specify the top and bottom margins, and the second value will specify the right and left
margins. If three values are specified, the first defines the top margin, the second defines the
left and right margins, and the third defines the bottom margin. Note that the unspecified
margin is inferred from the value defined for its opposite side. Lastly, all four values can
also be set in order of top, right, bottom, left.

Content

m
ar

gi
n-

ri
gh

t

m
ar

gi
n-

le
ft

margin-bottom

Border

margin-top

Padding

1

3

24

 582 P a r t I I : C o r e S t y l e 582 P a r t I I : C o r e S t y l e

Examples
p {margin: 15pt;} /* all sides 15pt */

#div1 {margin: 20px 10px;} /* 20px top-bottom, 10px left-right */

#div2 {margin: 10px 10px 5px 10px;}
/* 10px top, 10px right 5px bottom, 10px left */

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default margins on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all margins
with a wildcard rule like * {margin: 0;} and build up individual values.

margin-bottom
This property sets an element’s bottom margin.

Syntax
margin-bottom: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px),
and may take a negative value. A percentage value is determined as a percentage of the
height of the containing block. The default value for the property is 0.

Examples
p {margin-bottom: 10pt;}
.tight {margin-bottom: 0;}
#spec {margin-bottom: 10%;}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default margins on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all margins
with a wildcard rule like * {margin: 0;} and build up individual values.

margin-left
This property sets an element’s left margin.

Syntax
margin-left: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px),
and may take a negative value. A percentage value is determined as a percentage of the
width of the containing block. The default value for the property is 0.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 583
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 583

Examples
p {margin-left: 3em;}
.tight {margin-left: 0;}
#spec {margin-left: 15px;}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default margins on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all margins
with a wildcard rule like * {margin: 0;} and build up individual values.

margin-right
This property sets an element’s right margin.

Syntax
margin-right: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px),
and may take a negative value. A percentage value is determined as a percentage of the width
of the containing block. The default value for the property is 0.

Examples
p {margin-right: 1em;}
.tight {margin-right: 0;}
#spec {margin-right: 25px;}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default margins on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all margins
with a wildcard rule like * {margin: 0;} and build up individual values.

margin-top
This property sets an element’s top margin.

Syntax
margin-top: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px),
and may take a negative value. A percentage value is determined as a percentage of the
height of the containing block. The default value for the property is 0.

 584 P a r t I I : C o r e S t y l e 584 P a r t I I : C o r e S t y l e

Example
p {margin-height: 3em;}
.tight {margin-height: 0;}
#spec {margin-height: 15px;}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default margins on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all margins
with a wildcard rule like * {margin: 0;} and build up individual values.

max-height
This property defines the maximum height a region may expand to if it is relatively sized.

Syntax
max-height: length | percentage | inherit

where the value of length is generally a measurement using a fixed value (for example, 100px).
Percentages also may be used for relative layouts. A value of inherit indicates that the
value should be derived from an enclosing parent’s value.

Examples
#div1 {width: 50%; max-width: 800px; min-width: 400px;
 height: 50%; max-height: 1000px;}

#div2 {height: 100%; max-height: 1200px;}

Compatibility

CSS 2, 3 IE 7+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

max-width
This property defines the maximum width a region may expand to if it is relatively sized.

Syntax
max-width: length | percentage | inherit

where the value of length is generally a measurement using a fixed value (for example,
100px). Percentages also may be used for relative layouts. A value of inherit indicates
that the value should be derived from an enclosing parent’s value.

Examples
#div1 {width: 50%; max-width: 800px; min-width: 400px;}
#div2 {width: 80%; max-width: 500px;}

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 585
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 585

Compatibility

CSS 2, 3 IE 7+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

Note
• While in many cases max-width has not been deemed as important as min-width,

it is quite useful to constrain large regions of text from having overly long lines,
which can result in readability problems.

min-height
This property defines the minimum height a region may reduce to if it is relatively sized
and the browser window is adjusted.

Syntax
min-height: length | percentage | inherit

where the value of length is generally a measurement using a fixed value (for example,
100px). Percentages also may be used for relative layouts. A value of inherit indicates
that the value should be derived from an enclosing parent’s value.

Examples
#div1 {height: 50%; max-height: 400px; min-height: 200px;}
#div2 {height: 80%; min-height: 200px;}

Compatibility

CSS 2, 3 IE 7+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

Note
• In Internet Explorer 6 and other nonconforming older browsers, JavaScript and

various CSS tricks were often employed to emulate this property.

min-width
This property defines the minimum width a region may reduce to if it is relatively sized and
the browser window is adjusted.

Syntax
min-width: length | percentage | inherit

where the value of length is generally a measurement using a fixed value (for example,
100px). Percentages also may be used for relative layouts. A value of inherit indicates
that the value should be derived from an enclosing parent’s value.

Examples
#div1 {width: 50%; max-width: 800px; min-width: 400px;}
#div2 {width: 80%; min-width: 200px;}

 586 P a r t I I : C o r e S t y l e 586 P a r t I I : C o r e S t y l e

Compatibility

CSS 2, 3 IE 7+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

Note
• In Internet Explorer 6 and other nonconforming older browsers, JavaScript or

various CSS tricks were often employed to emulate this property.

orphans
This property defines the minimum number of lines of a paragraph that must be left at the
bottom of a page.

Syntax
orphans: integer | inherit

Examples
#hateorphans {orphans: 5;}
.orphaned {orphans: 1;}

Compatibility

CSS 2, 3 IE 8+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

Notes

• This property is really only meaningful in a paged environment such as print
output.

• The default value should be 2 if unspecified.

• Negative values may not be used.

outline
This property is a shorthand form that sets all outline properties at once.

Syntax
outline: outline-color outline-style outline-width;

The allowed values are similar to border. The meaning of each is detailed in each individual
property that follows. While outlines are similar to borders, their individual sides cannot be
set. No matter how outline properties are set they apply to the whole outline and not
individual sides.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 587
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 587

While outlines may resemble borders, they take up no additional space and may overlay
other content outside of a block if need be, as shown here:

Because outlines are drawn over an item, rather than around it, they cause no reflow
when applied dynamically:

Also note that outlines can appear as nonrectangular depending on how they are drawn
around items:

Hover Outline Hover Border

 588 P a r t I I : C o r e S t y l e 588 P a r t I I : C o r e S t y l e

Examples
p:hover {outline: dashed 1px;}
.test {outline: green solid 10px;}

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 7+, Safari 1.2+

Notes
• Older Firefox- and Mozilla-based browsers like Netscape 6+ could set this value

using a proprietary property –moz-outline.

• The outline is the same on all sides. Unlike borders, there is no sense of outline-
top or outline-left. This apparent omission should make perfect sense when
considering nonrectangular outlines.

• There is unclarity in the specification and implementation on what to do with
overlapping outlines, outlines around empty items, and outlines that may surround
partially obscured elements. Be aware in such cases of unclarity that visual
differences may occur. For example, notice here that one browser created two
separated outline boxes, given it surrounds empty elements, whereas in the
previous illustration the empty elements were outlined:

outline-color
This property sets the color of an element’s outline.

Syntax
outline-color: color | invert | inherit

where color is a supported CSS color value, as discussed earlier in the chapter. The keyword
invert is also supported and should perform a color inversion on the pixels on the
screen. In other words, any background would be inverted for the outline:

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 589
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 589

In the case where there are two colors, this can change the outline in various locations.
The following example changes the outline in one case to black given a white background
and changes it to blue given an orange background:

Examples
p:hover {outline-style: dashed; outline-color: green; outline-width: 1px;}
.test {outline-width: 10px; outline-style: solid; outline-color: #f00;}
.xray {outline-color: invert;}

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 7+, Safari 1.2+

Notes
• Many browsers do not support the invert value the same and may invert based

upon one color in the case of multiple colors found in different areas of an element’s
background.

• Older Firefox- and Mozilla-based browsers like Netscape 6+ could set this value
using a proprietary property –moz-outline-color.

outline-style
This property defines a style for an element’s outline.

Syntax
outline-style: dashed | dotted | double | groove | inset | none | outset |
 ridge | solid | inherit

The values supported should be the same as what is defined for border-style except the
value hidden which is not defined for this property.

Examples
p:hover {outline-style: dashed;}
.test {outline-width: 10px; outline-style: solid; outline-color: black;}

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 7+, Safari 1.2+

Notes
• Older Firefox- and Mozilla-based browsers like Netscape 6+ could set this value

using a proprietary property –moz-outline-style.

 590 P a r t I I : C o r e S t y l e 590 P a r t I I : C o r e S t y l e

• See the entry for the border-style property for a visual example of each outline
style.

• Outlines may not present themselves as boxes, as borders tend to do, because they
may wrap irregularly shaped elements; see the entry for outline for a visual
example of this.

outline-width
This property defines a width for an element’s outline.

Syntax
outline-width: length | medium | thick | thin | inherit

Like border-width, this property’s values can be keywords (thin, medium, or thick) and
numerical lengths such as pixels (px), inches (in), and so on.

Examples
p {outline-style: dashed; outline-width: thick;}
.test {outline-width: 10px; outline-style: solid; outline-color: black;}

Compatibility

CSS 2, 3 IE 8+ Firefox 1.5+ Opera 7+, Safari 1.2+

Notes
• Older Firefox- and Mozilla-based browsers like Netscape 6+ could set this value

using a proprietary property –moz-outline-width.

• As described in the entry for outline, when setting outline-width the outline
should not take up canvas space and may overlap other elements.

overflow
This property determines an element’s behavior when its content doesn’t fit into the space
defined by the element’s other properties.

Syntax
overflow: auto | hidden | scroll | visible | inherit

By default, content will be visible, but a value of hidden will clip content that extends past
the defined region size. A value of scroll adds scroll bars appropriately so that content

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 591
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 591

can be viewed. A value of auto allows the user agent to decide how to handle content
that overflows. The following illustration should make the meaning of the values clear:

Examples
#div1 {position: absolute; left: 20px; top: 20px;
 width: 100px; height: 100px; overflow: scroll;}

#div2 {height: 100px; width: 100px; overflow: hidden;}

Compatibility

CSS 2, 3 IE 4–5.5 (buggy), 6+ Netscape 4–4.8 (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

padding
The padding property sets the space between an element’s border and its content.

Syntax
padding: padding1 [... padding4] | inherit

Visible

Scroll Auto

Hidden

 592 P a r t I I : C o r e S t y l e 592 P a r t I I : C o r e S t y l e

where each padding value is either a length, percentage, auto, or inherit value. As a
shorthand form, it is possible to set the four padding values (padding-top, padding-right,
padding-bottom, and padding-left) independently with this property:

The padding shorthand property is similar to margin. A single value creates equal
padding on all sides. Up to four values can be used, in the following clockwise order:
padding-top, padding-right, padding-bottom, and padding-left. Any missing value
defaults to the value defined for the side opposite to it. However, unlike the margin
property, the padding property cannot take negative values.

Examples
#div1 {border-style: solid; padding: 10px 20px 10px 5px;}
/* all sides different */

#div2 {border-style: dashed; padding: 50px;}
/* padding of 50px on all sides */

#div3 {padding: 10px 20px;}
/* top and bottom 10px and left and right 20px padding */

#div4 {padding: 5px 10px 15px;}
/* top 5px, right and left 10px and bottom 15px */

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Content

pa
d

d
in

g-
ri

gh
t

pa
d

d
in

g-
le

ft

padding-bottom

border

margin

padding-top1

3

24

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 593
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 593

Note
• Elements may have default padding on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all padding
values globally with a wildcard rule like * {padding: 0;} and build up
individual values.

padding-bottom
This property sets the distance between an element’s bottom border and the bottom of its
contained content.

Syntax
padding-bottom: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels. A
percentage value is determined as a percentage of the height of the containing block. The
default value for the property is 0.

Examples
p {padding-bottom: 10pt;}
.tight {padding-bottom: 0;}
#ex2 {padding-bottom: 10%;}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default paddings on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all padding
values globally with a wildcard rule like * {padding: 0;} and build up
individual values.

padding-left
This property sets the distance between an element’s left border and the left edge of its
content.

Syntax
padding-left: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px). A
percentage value is determined as a percentage of the width of the containing block. The
default value for the property is 0.

Example
p {padding-left: 20px;}
.tight {padding-left: 0;}
#ex8 {padding-left: 40%;}

 594 P a r t I I : C o r e S t y l e 594 P a r t I I : C o r e S t y l e

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default paddings on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all padding
values globally with a wildcard rule like * {padding: 0;} and build up individual
values.

padding-right
This property sets the distance between an element’s right border and the rightmost edge of
its content.

Syntax
padding-right: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px). A
percentage value is determined as a percentage of the width of the containing block. The
default value for the property is 0.

Example
p {padding-left: 10px; padding-right: 50px;}
.flush {padding-right: 0;}
#demo {padding-right: 50%;}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default paddings on them, and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all padding
values globally with a wildcard rule like * {padding: 0;} and build up
individual values.

padding-top
This property sets the distance between an element’s top border and the top of its content.

Syntax
padding-top: length | percentage | auto | inherit

where the length is measured in any fixed measurement, such as inches (in) or pixels (px).
A percentage value is determined as a percentage of the height of the containing block. The
default value for the property is 0.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 595
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 595

Example
p {padding-top: 10px; padding-bottom: 100px;}
.flush {padding-top: 0;}
#demo2 {padding-top: 50%; padding-left: 10%}

Compatibility

CSS 1, 2, 3 IE 4+ (buggy), 5+ Netscape 4+ (buggy), 6+, Firefox 1+ Opera 4+, Safari 1+

Note
• Elements may have default paddings on them and these values may vary by user

agent. Because of this inconsistency, many developers prefer to clear all padding
values globally with a wildcard rule like * {padding: 0;} and build up
individual values.

page-break-after
This property is used to control page breaks when printing a document after the bound
element box ends.

Syntax
page-break-after: always | auto | avoid | left | right | inherit

A value of always forces a page break after the associated element. A value of avoid
attempts to avoid a page break after the element. A value of left forces one or two page
breaks after the element so that the next page is considered a left page. A value of right
forces one or two page breaks after the element so the next page is considered a right page.
The default value of auto neither forces nor forbids a page break, allowing the user agent to
decide how to break the content during print.

Examples
#breakitdown {page-break-after: always;}
.getitright {page-break-after: right;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

page-break-before
This property is used to control page breaks when printing a document before the bound
element box starts.

Syntax
page-break-before: always | auto | avoid | left | right | inherit

A value of always forces a page break before the associated element is encountered. A value
of avoid attempts to avoid a page break after the element. A value of left forces one or
two page breaks after the element so that the next page is considered a left page. A value of

 596 P a r t I I : C o r e S t y l e 596 P a r t I I : C o r e S t y l e

right forces one or two page breaks after the element so the next page is considered a right
page. The default value of auto neither forces nor forbids a page break, allowing the user
agent to decide how to break the content during print.

Examples
#breakitdownagain {page-break-before: always;}
.lefty {page-break-before: left;}

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

page-break-inside
This property is used to force or prohibit a printing page break within an element.

Syntax
page-break-inside: always | auto | avoid | left | right | inherit

A value of always forces a page break at any place within the element bound. A value of
avoid attempts to avoid a page break after the element. A value of left forces one or two
page breaks after the element so that the next page is considered a left page. A value of
right forces one or two page breaks after the element so the next page is considered a right
page. The default value of auto neither forces nor forbids a page break, allowing the user
agent to decide how to break the content during print.

Examples
#breakitdownyetagain {page-break-inside: always;}
.nobreaks {page-break-inside: avoid;}

Compatibility

CSS 2, 3 IE 8+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

position
This property defines how an element is positioned relative to other elements.

Syntax
position: absolute | fixed | relative | static | inherit

When positioned absolute, the left, right, top, and bottom properties can be used to
define the element’s precise location, using the affected element’s upper-left corner (0,0) as
reference. Because elements can contain other elements, a position of 0,0 is not necessarily
the upper-left corner of the browser. When a relative position is used, offsets will be
related to the object’s natural position in the document flow. An element with absolute
position may be set to defined coordinates but will scroll with a window. However, an
object with a fixed position value will stay in position onscreen as things scroll.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 597
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 597

The default value, static, places elements according to the natural order in which they
occur in a document, and related top, right, left, and bottom properties do not relate.

Examples
#region1 {position: relative; left: 190px; top: 30px;}
#region2 {position: absolute; left: 120px; top: 50px;}
#left {position: absolute; bottom: 10; right: 500px;}
#norm {position: static;}
#navbar {position:fixed; left: 0; top: 0;}

Compatibility

CSS 2, 3 IE 4–6 (partial), IE 7+ Netscape 4–4.8 (partial),
Netscape 6+, Firefox 1+

Opera 5+, Safari 1+

Notes
• Fixed regions can be useful for pegging navigation elements onscreen to avoid

needless scrolling.

• The fixed position value was not supported in Internet Explorer 6 without
JavaScript or odd CSS hacking. This significant problem was addressed in IE 7+.

quotes
This property defines the style of quotation marks to be used with embedded quotations.

Syntax
quotes: quote-pair1 ... quote-pairN | none | inherit

where each quote-pair is a set of two strings, the first for the open quote value and the
second for the close quote value. Having more than one quote-pair allows developers to
specify different quote symbols for each level of nesting. A value of none produces no
quotation marks.

Examples
blockquote {quotes : '<' '>';}

q {quotes: none;}

p.example q {quotes: '[' ']' '<' '>';}
/* the final rule would address
nested q tags like below */

<p class='example'>Hey <q>You can <q>quote</q> me</q> on this.</p>

Compatibility

CSS 2, 3 IE 8+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

Note
• Be careful with the implicit application or not of quotes for q elements.

 598 P a r t I I : C o r e S t y l e 598 P a r t I I : C o r e S t y l e

right
This property defines the x (horizontal) coordinate for a positioned element, relative to the
right side of either the containing element or browser window if directly within the <body>.

Syntax
right: length | percentage | auto | inherit

where length can be specified in the standard units of length, such as inches (in) and so on,
but is nearly always set in pixels (px), and percentage corresponds to a percentage of the
containing object’s dimensions. The default value auto lets this property function as
placing the object where it normally would fall in the document flow. For relative position,
this will likely be treated as 0. For absolute and fixed positioning, it will calculate a value
based upon other set properties, particularly left.

Examples

#div1 {position: absolute; right: 100px; top: 150px;}

#div2 {position: absolute; right: 50%; bottom: 30%;}

#div3 {position: absolute; left: 10px; right: auto;}
/* right will evaluate to a position calculated off the left position */

#sideBar {position: fixed; right: 0; top: 0; width: 200px; height: 100%;}

Compatibility

CSS 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 6+, Safari 1+

Note
• Browsers tend to assume pixel measurements if a length unit is not set.

table-layout
This property controls the algorithm used to lay out the table cells, rows, and columns.

Syntax
table-layout: auto | fixed | inherit

A value of fixed uses the fixed table layout algorithm, which relays not the content of the
cells but simply the width of the tables, columns, borders, and defined cell spacing. This
should result in faster page rendering. The default value of auto uses the standard automatic
table layout algorithm, which may require multiple passes or take perceptible time to calculate,
particularly when the table is complex or heavily nested.

Examples
table.fast {table-layout: fixed;}
table.slow {table-layout: auto;}

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 599
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 599

Compatibility

CSS 2, 3 IE 5+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

text-align
This property sets the horizontal alignment of elements.

Syntax
text-align: center | justify | left | right | inherit

where the keyword values align the text of an element appropriately left, right or center.
A value of justify will justify text on left or right side depending on document reading
direction. A value of inherit will derive this property value from an enclosing parent.

Examples
.goleft {text-align: left;}
p.just {text-align: justify;}
h1.centered {text-align: center;}

Compatibility

CSS 1, 2, 3 IE 3, 4 (no justify), 5+ Netscape 4 (quirky), 6+, Firefox 1+ Opera 4+, Safari 1+

Notes
• The default value for the property will depend on language reading direction, so

left when it is left to right and right when it is right to left.

• This property is similar to the align attribute available with (X)HTML block-level
tags such as <p>.

• Justification may produce poor results, showing whitespace “rivers” in large text
bodies because of screen resizing.

text-decoration
This property defines or even removes various inline text effects.

Syntax
text-decoration: blink | inherit | line-through | none | overline | underline

where line-through presents affected text as struck-thru, overline as text with a line
over it, underline as underlined text, and blink (when supported by a browser) blinks
the text. A value of inherit will derive this property value from an enclosing element,
while a value of none will override it.

Example
a {text-decoration: none;}
a:visited {text-decoration: line-through;}
a:hover {text-decoration: underline;}

 600 P a r t I I : C o r e S t y l e 600 P a r t I I : C o r e S t y l e

.onsale {text-decoration: blink;}

.underlined {text-decoration: underline;}

.struck {text-decoration: line-through;}

Compatibility

CSS 1, 2 IE 4+ Netscape 4+ (incomplete),
Netscape 6+ (complete), Firefox 1+

Opera 4+, Safari 1+

Notes
• Many user agents choose not to support the blink value for this property. Action is

to present the text normally. At the time of this writing, IE browsers (8 or less) and
Safari browsers (3 or less) do not support the blink value.

• The text-decoration property is often used with the a element and its associated
pseudo-classes (a:active, a:hover, a:link, and a:visited) to turn off link
underlining or set different looks for hover or visited states. Page authors concerned
about accessibility should be careful to provide alternate indicators such as position
or style if underlines are removed.

text-indent
This property specifies the indent in the first line of a block-level element.

Syntax
text-indent: length | percentage | inherit

where length is a standard length unit (10px), a percentage is a percentage value relative to
the enclosing element, and inherit derives the value of the property from some parent
element.

Examples
p {text-indent: .5em;}
.bigDent {text-indent: 50px;}
.negDent {text-indent: -20px;}
#section1 {text-indent: 15%;}

Compatibility

CSS 1, 2, 3 IE 3+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• This property applies to block elements, table cells, and inline block types.

• The default value is 0, which indicates no indentation.

text-transform
This property transforms the case of the affected text.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 601
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 601

Syntax
text-transform: capitalize | lowercase | none | uppercase

A value of capitalize will uppercase the initial letter of every space separated word in
the element applied to, while lowercase and uppercase will force all affected letters
correspondingly. A value of none will override any text-transform values that may be
inherited, leaving the text as written in the markup.

Examples
h1 {text-transform: capitalize;}
h1.nocap {text-transform: none;}
.allsmall {text-transform: lowercase;}
#bigletters {text-transform: uppercase; font-size: larger;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4 (incomplete for Mac), 4.5+, Firefox 1+ Opera 6+, Safari 1+

Note
• The value of none is used to override any inherited text-transform values.

top
This property defines the y (vertical) coordinate for a positioned element, relative to the top
of the enclosing object or browser window.

Syntax
top: length | percentage | auto | inherit

where length can be specified in the standard units of length, such as inches (in) and so on,
but is nearly always set in pixels (px), and percentage corresponds to a percentage of the
containing object’s dimensions. The default value auto lets this property function as
placing the object where it normally would fall in the document flow. For relative position,
this will likely be treated as 0. For absolute and fixed positioning, it will calculate a value
based upon other set properties, particularly bottom.

Examples
#div1 {position: absolute; left: 100px; top: 150px;}
#div2 {position: absolute; left: 50%; top: 30%;}
#div3 {position: absolute; left: 10px; bottom: 5px; top: auto;}
/* top will evaluate to a position calculated off the bottom position */
#navBar {position: fixed; left: 0; top: 0;}

Compatibility

CSS 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 6+, Safari 1+

 602 P a r t I I : C o r e S t y l e 602 P a r t I I : C o r e S t y l e

Note
• Browsers tend to assume pixel measurements if a length unit is not set.

unicode-bidi
This property allows the text direction to be overridden to support multiple languages and
text flow directions in the same document.

Syntax
unicode-bidi: bidi-override | embed | normal| inherit

The value normal uses the standard direction and rendering. A value of embed allows a
new level of embedding to change direction, while bidi-override allows the direction
property to override any predefined direction.

Example
<div>I was normal and suddenly <span style="unicode-bidi: embed;
direction: rtl; background-color: yellow;">here doing I am What!
 This is the end of the test.</div>

Compatibility

CSS 2, 3 IE 4+ Netscape 6+, Firefox 1+ Opera 6+, Safari 1+

Note
• Unicode may limit 61 levels of embedding, so do not nest embed elements deeply.

vertical-align
This property sets the vertical positioning of text and images with respect to the baseline
setting.

Syntax
vertical-align: baseline | bottom | middle | sub | super | text-bottom |
 text-top | top | percentage | length | inherit

A value of top aligns the top of text or images with the top of the tallest element, relative to
the baseline. A value of text-top aligns the top of text or images with the top of the font in
the containing element, while text-bottom aligns things with the bottom of the font. A
value of middle aligns the middle of text or images to the middle of the x-height of the
containing element. A value of bottom aligns the bottom of text or images with the bottom of
the lowest element, relative to the baseline. The sub and super values provide subscript and
superscript style. Positive and negative percentages and length values can be used, with
positive values raising the text and negative values lowering the text relative to the baseline.
The default value is baseline, which is also equivalent to 0 or 0%.

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 603
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 603

Examples
p {vertical-align: top;}
.dive {vertical-align: sub;}
.climb {vertical-align: super;}
#bump {vertical-align: 10%;}
#lower {vertical-align: -1em;}

Compatibility

CSS 1, 2, 3 IE 4, 5 (problems), 5.5+ Netscape 4 (poor support),
Netscape 6+, Firefox 1+

Opera 4+, Safari 1+

Note
• Even when properly supported in browsers, vertical alignment changes will

potentially bump lines above or below the baseline, causing potentially undesirable
formatting changes.

visibility
This property determines whether or not an element is visible.

Syntax
visibility: collapse | hidden | inherit | visible

Examples
p {visibility: inherit;}
.invisible {visibility: hidden;}
.visible {visibility: visible;}

Compatibility

CSS 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• The default value of inherit specifies that the visibility state is inherited from the

containing parent.

• This property is not the same as display: none as it simply makes the item invisible;
it does not completely remove it from the display canvas. The following example
demonstrates this:

 604 P a r t I I : C o r e S t y l e 604 P a r t I I : C o r e S t y l e

However, this distinction may not matter when an appropriate z-index value has made
the hidden object.

• This property is commonly used with JavaScript to show/hide an element or
perform certain dynamic effects.

• The CSS2 specification introduced the collapse value for this property for use
with table rows and columns to collapse cells. When the value is used on other
elements it should act like the value of hidden.

white-space
This property controls how spaces, tabs, and newline characters are handled in an element.

Syntax
white-space: normal | pre | nowrap | pre-wrap | pre-line | inherit

The normal value collapses multiple whitespace characters into single spaces and
automatically wraps lines, as in normal HTML/XHTML. The pre value makes the element
act much like a <pre> tag and preserves all white space. The value of nowrap prevents lines
from wrapping if they exceed the element’s content width. The value of pre-line collapses
white space, save newlines, which are preserved. The value of pre-wrap breaks newlines
that would cause text to break out of an element’s box; otherwise, it acts like a pre value.

Examples
p {white-space: pre;}
pre {white-space: normal;} /* change pre a bad idea */
.sourcecode {white-space: nowrap;}
.lovereturns {white-space: pre-line;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+ (partial), Firefox 1+ Opera 4+, Safari 1+

Note
• The values of pre-wrap and pre-line are not supported in older browsers.

widows
This property defines the minimum number of lines in a paragraph to be left at the top of
a page.

Syntax
widows: integer | inherit

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 605
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 605

Examples
#hatewidows {widows: 5;}
.widowmaker {widows: 1;}

Compatibility

CSS 2, 3 IE 8+ Netscape 6+, Firefox 1+ Opera 7+, Safari 1+

Notes
• This property is really only meaningful in a paged environment, such as print

output.

• The default value should be 2 if unspecified.

• Negative values may not be used.

width
This property sets the width of an element’s content region (excluding padding, border,
and margin).

Syntax
width: length | percentage | auto | inherit

Standard positive length units can be used, and pixels (px) is often the assumed measurement
in browsers. Percentage values, based on the width of the containing element, can also be
used. The default value of auto automatically calculates the width of an element, based on
the width of the containing element and the size of the content.

Examples
p {width: 400px; padding: 10px; border: solid 5px;}
#div1 {width: 80%; padding: 10px; border: solid 5px;}

Compatibility

CSS 1, 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• The actual size of an object on a browser canvas is not solely defined by the width

property, as values for borders and padding affect the space taken. For example,
given the CSS rule here

#div1 {width: 200px; padding: 30px; border: solid 20px;}

 606 P a r t I I : C o r e S t y l e 606 P a r t I I : C o r e S t y l e

the width of the bound content itself may be 200px but the overall canvas space
consumed is 300px to account for the borders and padding:

word-spacing
This property sets the spacing between words.

Syntax
word-spacing: length | normal | inherit

Length values can be set in any allowed measurement like inches (in), centimeters (cm),
millimeters (mm), points (pt), picas (pc), em spaces (em), or pixels (px). Negative values are
possible with this property, and may be used for interesting typographical effects. The default
value of normal sets word spacing to the standard browser setting.

Examples
p {font-family: Arial; font-size: 16pt; word-spacing: 3pt;}
p.normal {font-family: Helvetica; font-size: 12pt; word-spacing: normal;}
.carson {word-spacing: -5px;}

Compatibility

CSS 1, 2, 3 IE 4–7 (partial or buggy), IE 8+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

200 px

300 px

30
px

30
px

20
px

20
px

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 607
PART II

 C h a p t e r 5 : C S S S y n t a x a n d P r o p e r t y R e f e r e n c e 607

z-index
This property defines a layering or stacking context for positioned elements.

Syntax
z-index: integer | auto | inherit

By default, overlapping positioned elements stack in the order in which they are defined in
a markup document. This property can override default layering by assigning numeric
layering values to an element, with higher numbers layering above lower numbers. Negative
numbers are allowed. The auto value tries to determine the z-placement of an element
automatically by its markup position in the document.

Examples
#div1 {position: absolute; top: 20px; left: 20px; height: 50px; width: 50px;
 background-color: blue; z-index: 2;}

#stayDown {z-index: -10;}

Compatibility

CSS 2, 3 IE 4+ Netscape 4+, Firefox 1+ Opera 4+, Safari 1+

Notes
• When nesting objects are nested position-wise, note that each individual positioned

box maintains its own stacking context, with 0 being the default z-index level.

• It is a wise idea not to use contiguous z-index values, so that it is easy to insert
between objects.

CSS2 and CSS 2.1 Aural Style Properties
CSS2 specified a number of properties for use with speech-based browsers. CSS 2.1
retained these but, so far, no major browsers currently support these properties natively.
Furthermore, the specification actually indicates that user agents “...are not required to
implement the properties of this chapter in order to conform to CSS 2.1.” Because of
this and the lack of the support, this section provides only basic information on these
properties, but note that in the case of speech-enabled browsers, the properties provide
improvements to specify the rate of speech, time to pause before and after words, how
background sounds should be controlled, and much more. Table 5-10 lists the CSS2 aural
style properties and provides the most basic details.

608

P
art II:

C
o

re S
tyle

608

P
art II:

C
o

re S
tyle

Aural Property Allowed Values Description Example(s)

azimuth angle | left-side |
far-left | left |
center-left | center |
center-right |
right | far-right |
right-side | behind |
leftwards | rightwards |
inherit

Defines the position where
sound appears to emanate from
using a horizontal orientation.
An angle value is specified
using the unit deg (degrees)
in a 360-degree circle, with
keywords mapping to particular
angle values.

p.stageleft {azimuth: far-left;}

p.stage2 {azimuth: 320deg;}

cue cue-before cue-after |
inherit

A shorthand notation that
allows both the cue-before
and cue-after values to be
set at once. Generally, auditory
cues are used to alert listeners
to important content or other
context change.

#page {cue: url(enter.wav)
url(exit.wav);}

cue-after url(soundfile) | none |
inherit

Plays an auditory cue, specified
by the URL, after reading the
bound element.

#theEnd {cue-after: url
(exit.wav);}

cue-before url(soundfile) | none |
inherit

Plays an auditory cue, specified
by the URL, before reading the
bound element.

#page1 {cue-before: url
(enter.wav);}

elevation angle | below | level |
above | higher |
lower | inherit

Like azimuth, used in defining
the position of the sound, but
this time vertical orientation.
Elevation angles range from
-90deg to +90deg, with 0 being
straight ahead on the horizon.

#voiceFromAbove
{elevation: above;}

#above {elevation: 90deg;}

TABLE 5-10 CSS-HTML Size Relationships

C

hapter 5:
C

SS Syntax and P
roperty R

eference
609

PART II

C

hapter 5:
C

SS Syntax and P
roperty R

eference
609

Aural Property Allowed Values Description Example(s)

pause [time | percentage]
[time | percentage] |
inherit

A shorthand notation to define
how long a pause should
happen before and after some
element has been read. Time
is presented in seconds (s) or
milliseconds (ms). A percentage
value operates off the speech
rate.

#gulp {pause: 2s 2s;}

pause-after time | percentage |
inherit

Defines how long a pause
should happen after reading
some element. Time is
presented in seconds (s) or
milliseconds (ms). A percentage
value operates off the speech
rate.

blockquote {pause-after: 2s;}

pause-
before

time | percentage |
inherit

Defines how long a pause
should happen before reading
some element. Time is
presented in seconds (s) or
milliseconds (ms). A percentage
value operates off the speech
rate.

#jump {pause-before: 2s;}

pitch frequency | x-low |
low | medium | high |
x-high | inherit

Defines the average pitch of
the speaking voice. Frequency
values can use keywords or a
Hz (hertz) value.

#baritone {pitch: low;}

#barrywhite {pitch: 70Hz;}

pitch-range number | inherit Specifies the variation in the
average pitch. Defaults to 50,
with 0 being flat monotone and
toward 100 very animated voice.

.wacky {pitch-range: 80;}

TABLE 5-10 CSS-HTML Size Relationships (continued)

610

P
art II:

C
o

re S
tyle

610

P
art II:

C
o

re S
tyle

Aural Property Allowed Values Description Example(s)

play-during url(soundfile) [mix |
repeat] | auto | none |
inherit

Defines a sound that should be
played in the background while
an element is being spoken.
A value of none suppresses
any playing sound that may
have been inherited. A value
of mix can be set to indicate
the playing sound may mix with
inherited sounds; otherwise,
the playing sound replaces any
currently playing sounds. When
a value of repeat is present,
the sound will repeat if the time
of reading is longer than the
background sound.

play-during: url(holdmusic.wav)
mix repeat;}

richness number | inherit Specifies the richness or power
of a speaking voice in a range
from 0 to 100. The higher the
value, the more powerful the
voice.

.boom {richness: 80;}

speak normal | none | spell-
out | inherit

Defines if text should be
spoken or not. A value of none
suppresses aural playback. A
value of normal is standard
reading, and spell-out has
individual letters spoken one at
a time, which is generally only
appropriate when spelling out
acronyms or abbreviations.

.dictate {speak: spell-out;}

.silent {speak: none;}

speak-
header

once | always |
inherit

Specifies if, when reading
tables, cell headers should be
spoken every time or only once
when the table is started.

table th {speak-header: once;}

TABLE 5-10 CSS-HTML Size Relationships

C

hapter 5:
C

SS Syntax and P
roperty R

eference
611

PART II

C

hapter 5:
C

SS Syntax and P
roperty R

eference
611

Aural Property Allowed Values Description Example(s)

speak-
numeral

digits | continuous |
inherit

Defines if numbers should
be spelled out as digits or
pronounced as a number. For
example, 68 would be “six,
eight” as digits and “sixty-
eight” as continuous.

.phonenumber {speak-numeral:
digits;}

speak-
punctuation

code | none | inherit Specifies if encountered
punctuation should be read
as such (e.g., “semicolon”) or
spoken naturally as appropriate
pauses.

.robot {speak-punctuation:
code;}

speech-rate number | x-slow | slow |
medium | fast | x-fast |
faster | slower |
inherit

Defines the speaking rate. The
number is in words per minute,
and the keywords correspond
to various numeric rates.

.auction {speech-rate: x-fast;}

stress number | inherit Defines the height of local
peaks of intonation of a voice.
The number should range
between 0 and 100, with
larger numbers having more
intonation.

#tap {stress: 90;}

voice-
family

List of specific or
generic voice name |
inherit

Similar to font-family,
specifies a comma-separated
list of voices to try to use when
reading.

.guy {voice-family: Thomas,
Graham, Desmond, male;}

volume number (1-100) |
percentage | silent |
x-soft | soft | medium |
loud | x-loud |
inherit

Sets the volume of the spoken
voice. The default value is 50,
with values toward 0 softer and
toward 100 louder. Keywords
map to specified values, and a
percentage value would relate
to any inherited value.

.loud {volume: 90;}

TABLE 5-10 CSS-HTML Size Relationships (continued)

 612 P a r t I I : C o r e S t y l e

TIP More details on these properties can be found at www.w3.org/TR/CSS21/aural.html.

TIP While aural properties may seem to have little use in visual presentation, some CSS authors like
to use aural style sheet rules to confuse certain browser versions to overload properties, such as
what the Box Model hack does. This technique is not suggested and scripting logic should be
used instead.

CSS3 has also taken up the cause of aural style sheets with its Speech module
(www.w3.org/TR/css3-speech/). It introduces new values to improve pronunciation, like
phonemes, but also seems to simply rename features; for example, stress becomes
voice-stress, pitch becomes voice-pitch, and volume becomes voice-volume. The
only browsers that have any sense of support for this are experimental versions of Opera
on Windows, and here you may require a -xv- prefix; for example, –xv-voice-stress
instead of voice-stress.

The renaming effort regardless of prefix seems only helpful in the few places where
aural terms might be ambiguous when mixed with other presentation. However, given how
little speech-browsing technology exists, and noting that which does exist often ignores
aural-focused CSS properties, looking even further ahead to CSS3 might seem to be a bit of
a waste of time.

6
CSS3 Proprietary and

Emerging Features Reference

This chapter aims to provide a complete reference for the emerging CSS3 and
proprietary CSS properties supported in modern browsers. However, given the
constant flux in CSS property support and the continued introduction of new

features, readers are duly warned to use this material as a jumping off point to explore the
latest styling features.

The State of CSS3
CSS3 is a sprawling specification that attempts to modularize CSS and both extend and improve
on previous CSS versions. Grandiose is the plan, but the reality at the time of this edition’s
writing is that CSS3 is filled with half-started and apparently abandoned specifications, with no
updates for years or even nearly a decade, intermixed with lively and active modules.

Web professionals looking to make a determination of what to pay attention to in the
future of CSS3 are likely put off by the list of various components found at www.w3.org/
Style/CSS/current-work#CSS3. For all the downsides of having one large specification like
HTML5, at least there is an entry point that is obvious. To provide an overview, Table 6-1
summarizes the CSS3 modules with specifications (as of this edition’s publication) and
provides a brief description of each.

A snapshot specification circa 2007 (www.w3.org/TR/css-beijing) suggested that some
of these modules are more important than others and that browsers should support all of
CSS 2.1, including errata CSS3 selectors, CSS3 colors, and CSS namespaces. We look at these
and a few of the larger syntax changes next before detailing the various new properties that
have been implemented by browsers.

CSS3 Selectors
CSS3 has gone somewhat overboard with its introduction of new selectors, making selector
syntax at times potentially quite confusing, particularly when chained excessively. Table 6-2
summarizes the selector syntax from the CSS3 Selector Specification that is different from
CSS1 and 2.1 selector syntax. The standard CSS1 and 2 selectors are not repeated here
because the focus is solely on what is different in CSS3.

613

CHAPTER

 614 P a r t I I : C o r e S t y l e 614 P a r t I I : C o r e S t y l e

Module Focus Description URL

2D Transforms Provides for manipulation of content in two
dimensions, such as rotating, scaling, and
skewing objects.

www.w3.org/TR/css3-2d-transforms

3D Transforms Extends 2D Transforms to manipulate
elements in a three-dimensional space.

www.w3.org/TR/css3-3d-
transforms

Animations Introduces the ability to modify CSS
property values over time, such as position
or color, to create animated layouts.

www.w3.org/TR/css3-animations

Backgrounds and
Borders

Introduces multiple backgrounds and
a variety of background properties for
positioning and sizing. Some interesting
new border properties allow for styling
borders with images, shadows, and more.

www.w3.org/TR/css3-background

Behavioral
Extensions

Defines components that can be attached
to elements on a page to enhance their
functionality.

www.w3.org/TR/becss

Box Model Defines standard boxes, including float,
margins, overflow, and padding.

www.w3.org/TR/css3-box

Color Defines the color units supported in CSS as
well as a few color properties like color
and opacity. It mostly documents CSS2
but includes some new ideas like the
currentColor keyword.

www.w3.org/TR/css3-color

Fonts Defines the standard font properties but
introduces new font decoration features like
font-effect, font-smooth, and font-
emphasize, which are not supported by
any browsers as of yet.

www.w3.org/TR/css3-fonts

Generated
Content for
Paged Media

Defines the management of generated
content for print output, including crop mark
indication, header/footer handling, and
much more.

www.w3.org/TR/css3-gcpm

Generated and
Replaced Content

Defines the management of generated
content, including inserted content,
counters, footnotes, and so on.

www.w3.org/TR/css3-content

Grid Positioning Defines the use of grid-based layouts
with standard CSS sizing and positioning
properties.

www.w3.org/TR/css3-grid

Hyperlink
Presentation

Defines the presentation and effects for
hyperlinks.

www.w3.org/TR/css3-hyperlinks

TABLE 6-1 Description of Various CSS3 Modules

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 615
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 615

Module Focus Description URL

Line Layout Defines line-formatting properties such as
vertical line alignment, line height, and first
line and first letter visual effects.

www.w3.org/TR/css3-linebox

Lists Defines the handling of lists, including
marker styles and some aspects of
counters.

www.w3.org/TR/css3-lists

Marquee Defines properties to create animated
content, employing a “marquee” effect
similar to the nonstandard HTML tag of the
same name (<marquee>). See the entries
for marquee-direction, marquee-
play-count, marquee-speed, and
marquee-style later in the chapter.

www.w3.org/TR/css3-marquee

Media Queries Defines CSS syntax for applying different
style rules based upon media or device
characteristics, such as width or color
support, avoiding the use of JavaScript
to reapply style. See the section “Media
Queries” later in the chapter for syntax and
examples.

www.w3.org/TR/css3-mediaqueries

Multi-column
Layout

Defines how to flow text into many columns. www.w3.org/TR/css3-multicol

Namespaces Defines syntax to allow the disambiguation
of elements from different markup
languages found within the same document
for styling purposes.

www.w3.org/TR/css3-namespace

Paged Media Defines how pagination is performed,
particularly with print output.

www.w3.org/TR/css3-page

Presentation
Levels

Defines the concept of applying
presentation levels to style elements in
different manners depending upon the
situation.

www.w3.org/TR/css3-preslev

Ruby Defines the CSS-handling aspects of
Ruby texts, which are used to provide
pronunciation or alternate readings in East
Asian languages.

www.w3.org/TR/css3-ruby

Selectors Defines the various selectors for standard
CSS1 and CSS2 and introduces numerous
complex tree- and attribute-specific syntax.

www.w3.org/TR/css3-selectors

TABLE 6-1 Description of Various CSS3 Modules (continued)

 616 P a r t I I : C o r e S t y l e 616 P a r t I I : C o r e S t y l e

Module Focus Description URL

Speech Continues prior support of aural style
sheets and introduces new values to
improve pronunciation like phonemes, but
also seems to simply rename features.
For example, stress becomes voice-
stress, pitch becomes voice-pitch,
and volume becomes voice-volume.

www.w3.org/TR/css3-speech

Template Layout Defines a layout grid for positioning
and alignment of Web applications or
documents. Provides for a template-like
system that has some characteristics
similar to classic markup tables.

www.w3.org/TR/css3-layout

Text Defines text manipulation, including
alignment, line breaking, justification,
text decoration, text transformation, and
whitespace handling.

www.w3.org/TR/css3-text

Transitions Defines how property changes can be
applied to CSS rules over a specified
duration of time. Useful for animating
simple visual changes.

www.w3.org/TR/css3-transitions

User Interface Defines properties and selectors useful for
styling user interfaces, such as cursor and
navigation handling, as well as the current
state of elements, such as valid versus
invalid, active versus disabled, and so on.

www.w3.org/TR/css3-ui

Web Fonts Codifies and improves upon downloadable
fonts, which have long been supported
in Internet Explorer. See the section
“Web Fonts” and Appendix B for more
information.

www.w3.org/TR/css3-webfonts

Values and Units Expands the absolute and relative units of
measure, including significant changes to
support animation and aural changes with
time (s and ms) and angle (deg and rad)
values.

www.w3.org/TR/css3-values

TABLE 6-1 Description of Various CSS3 Modules (continued)

NOTE Version 8 Internet Explorer browsers still do not fully support most CSS3 properties,
including ::before, ::after, ::first-letter, ::first-line, :root, :last-
child, :only-child, :nth-child(), :nth-last-child(), :first-of-type,
:last-of-type, :only-of-type, :nth-of-type(), :nth-last-of-type(), :empty,
:not(), and :target.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 617
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 617

Selector Description Example

E ~ F Selects siblings. p ~ strong {font-style: italic;}

/* sets the font style to italic on
all strong tags that have a p tag as
a preceding sibling */

E[attr^=value] Selects all elements of E
that have the attribute attr
that begins with the given
value.

p[title^="HTML"] {color: green;}

/* sets the color to green if the
title starts with HTML */

E[attr$=value] Selects all elements of E
that have the attribute attr
that end with the given
value.

p[title$="!"] {color: red;}

/* sets the color to red if the title
ends with an exclamation mark */

E[attr*=value] Selects all elements of E
that have the attribute attr
that contains the given
value.

p[title*="CSS"] {font-style: italic;}

/* sets the font style to italic in
any p tag that has CSS in its title
*/

::after Same as :after;
changed under CSS3 to
make pseudo-elements
obvious.

div::after {content: url(sectionend
.gif);}

/* inserts the sectionend.gif image
immediately following all div tags */

::before Same as :before;
changed under CSS3 to
make pseudo-elements
obvious.

div::before {content:
url(sectionstart.gif);}

/* inserts the sectionstart.gif image
before all div tags */

:checked Selects the elements that
are checked.

:checked {color: blue;}

/* sets the color to blue if an
element is checked */

:default Selects the elements that
are the default among a
set of similar elements.

:default {background-color: red;}

/* sets the background color of a
default button like a submit to red
*/

:disabled Selects the elements that
are currently disabled.

input:disabled {background-color:
gray;}

/* sets the background color to gray
on disabled input elements */

:empty Selects an element that
has no children.

div:empty {display: none;}

/* hides the div if it has no
children */

TABLE 6-2 CSS3 Selectors (continued)

 618 P a r t I I : C o r e S t y l e 618 P a r t I I : C o r e S t y l e

Selector Description Example

:enabled Selects the elements that
are currently enabled.

input:enabled {background-color:
white;}

/* sets the background color to white
on enabled input elements */

::first-letter Same as :first-
letter; changed under
CSS3 to make pseudo-
elements obvious.

p::first-letter {font-size: larger;}

/* makes the first letter of a
paragraph larger */

::first-line Same as :first-line;
changed under CSS3 to
make pseudo-elements
obvious.

p::first-line {color: red;}

/* makes the first line of paragraph
red */

:first-of-type Selects the element that is
the first child of its parent
that is of its type.

strong:first-of-type {font-size:
bigger;}

/* sets the font size bigger on the
first strong tag of its parent */

:last-child Selects the element that is
the last child of its parent.

p:last-child {font-size: small;}

/* sets the font size to small on the
p tags that are the last child of
their parent */

:last-of-type Selects the element that is
the last child of its parent
that is of its type.

strong:last-of-type {font-size:
smaller;}

/* sets the font size smaller on the
last strong tag of its parent */

:not(s) Selects elements that do
not match the selector s.

*:not(h1) {color: black;}

/* sets the color to black on every
element that is not an h1 tag */

:nth-child(n) Selects the element that is
the nth child of its parent.

div:nth-child(2) {background-color:
red;}

/* sets the background color to red if
the div is its parent’s second child */

:nth-last-
child(n)

Selects the element that
is the nth-from-last child of
its parent.

p:nth-last-child(3) {color: yellow;}

/* sets the color to yellow if the p
element is its parent’s third to last
child */

:nth-last-of-
type(n)

Selects the element that
is the nth-from-last child of
its parent that is its type.

p:nth-last-of-type(2) {color: purple;}

/* sets the color to purple on the
second to last p element of its
parent */

TABLE 6-2 CSS3 Selectors (continued)

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 619
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 619

Selector Description Example

:nth-of-
type(n)

Selects the element that is
the nth child of its parent
that is its type.

strong:nth-of-type(5) {text-
decoration: underline;}

/* underlines the fifth strong tag
under a parent */

:only-child Selects an element if it’s
the only child of its parent.

h1:only-child {color: blue;}

/* sets the h1 color to blue if the
h1 is the only child of its parent */

:only-of-type Selects an element if it’s
the only child of its parent
with its type.

p:only-of-type {font-weight: bold;}

/* sets the p element to be bold if
it is the only p tag child of its
parent */

:root Selects the element that is
the root of the document.

:root {background-color: blue;}

/* sets the background color to blue
for the root element */

::selection Selects the part of the
element that is currently
selected. Supported
in Firefox as ::-moz-
selection as well.
Use to set color and
background-color (or
background) only with
this selector.

#test::selection {color: red;
background-color: yellow;}

/* makes the text red with a yellow
background when selected */

:target Selects the element that
is the target of a referring
URI.

:target{color:red;}

/* if the element is the target of
the referring URI, the color is set
to red */

TABLE 6-2 CSS3 Selectors (continued)

Emerging CSS3 Selectors
CSS3 also defines a number of form element–focused selectors outside of the core selector
specification. At the time of this edition’s writing, some of these features have been partially
implemented in Firefox 3.x and Opera 10 browsers, and it’s likely others will follow soon.
The specification for these features is far from set as they rely on HTML5 form element
syntax, which is still in flux, so the primary selectors summarized in Table 6-3 should serve
as only an introduction to the syntax. Check the book’s support site or the particular
standard in question for the latest information.

It is interesting to see that many JavaScript libraries were the first places to implement
CSS3 selector syntax to make it easy to filter a document’s DOM tree for interesting nodes.
It’s been the author’s experience that, so far, most Web developers learn some of the
advanced selectors through JavaScript rather than in CSS, but hopefully over time that will
change as these selectors become supported by all browsers.

 620 P a r t I I : C o r e S t y l e 620 P a r t I I : C o r e S t y l e

Selector Description Example

:default Selects the interactive element out
of a group that is the default choice.
Generally used with input elements.

input[type="submit"]:default
{color: red;}

/* makes the default submit
button red */

:in-range Used to select interactive elements
whose values are found within a
range specified by the HTML5 min
and max attributes.

:in-range {color: green;}

/* if in defined range, say 1 –
100, set with min and max, makes
the element green */

:invalid Applies styles to elements that are
invalid per HTML5 validations set
by the pattern or implied by the
type attributes for the form control.

:invalid {color: red;}

/* all fields currently in error
are set red */

:optional Applies styles to elements that
are optional (not required to be
addressed before submission) as
defined by all elements without the
HTML5 required attribute set.

:optional {color: gray;}

:out-of-range Used to select interactive elements
whose values are outside the range
specified by the HTML5 min and
max attributes.

:out-of-range {color: red;}

/* if beyond defined range, say
1 – 10,0 set with min and max,
makes the element red */

:read-only Used to select elements that are
read-only. When applied to form
elements, this would select fields
with the readonly attribute set.

input:read-only {color: gray;}

/* put all read only fields in
gray */

:read-write Used to select elements that
are possible to read and write.
While this would apply to all
form elements, considered
with the emerging use of
contenteditable this suggests
this selector may have value beyond
form fields.

p:read-write {outline: green
solid 10px;}

/* Provides hints on what
paragraphs are editable */

:required Applies styles to elements that are
required (must be addressed before
submission) as defined by the
HTML5 required attribute.

:required:after {content: " (*
) "; color: red;}

/* marks the required fields
with common red color and symbol
indicator */

:valid Applies styles to elements that are
valid per HTML5 validations set
either with the pattern or type
attributes.

:valid {color: green;}

/* all fields not in error are
set green */

TABLE 6-3 Emerging CSS3 Selectors Summary

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 621
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 621

CSS3-Introduced Values and Units
CSS3 introduces a number of new measurement values. Some of these were supported for
aural style sheets but others are all new. Table 6-4 details most of the new measurements
and values currently being proposed in the CSS3 specification plus a few others from
related specifications.

Measurement Description Example

ch A font-related length that is
equivalent to the width of
the character 0 (zero) in the
current font.

#swiss {font-size: 4ch;}

deg Degrees transform: scale(1.0) rotate(0deg);

dpcm Dots per centimeter @media print and (resolution:
100dpcm) { /* some rules */ }

dpi Dots per inch (used in media
queries).

@media print and (resolution: 300dpi)
{ /* some rules */ }

gr The distance between grid
lines.

#img1 {width: 2gr;}

grad Grads #at90deg {elevation: 100grad;}

Hz Hertz #barrywhite {pitch: 70Hz;}

kHz Kilohertz #treble {pitch :6kHz;}

ms Milliseconds #a1 {transition-property: color;
 transition-duration: 500ms;}

rad Radians #voiceAbove {elevation: 50rad;}

rem The font size of the
document’s root element.

#innerP {font-size: 1.5rem;}

s Seconds #a2 {transition-property: color;
 transition-duration: 1s;}

vh A value relative to the
viewport’s height. The full
viewport height is 100vh.

.halfHeight {width: 50vh;}

vm Either the viewport’s height or
its width, whichever is smaller.
The minimum value is equal to
100vm.

#halfBox {height: 50vm; width: 50vh;}

vw A value relative to the viewport’s
width. The viewport’s full width
is 100vw units.

.halfWide {width: 50vw;}

TABLE 6-4 Emerging CSS3 Units

 622 P a r t I I : C o r e S t y l e 622 P a r t I I : C o r e S t y l e

NOTE A few CSS3 units that have been discussed online, such as grid units (gr or gd), fractions
(fr), and turns, are not presented in Table 6-4 either because there is a lack of documentation or
because there is a clear indication of instability of these values.

CSS3 also introduces a calc() function that can be used wherever length values are
allowed. The function is used to calculate a value using some basic mathematics. For example,

p {margin: calc(1rem-2px) calc(1.5rem-5px);}

would set the margins of the paragraph based upon the root element’s font minus some
small pixel value. Browser support for this measurement is nonexistent, and it is interesting
to see that it is similar to Microsoft’s CSS expressions, which have been maligned and later
disabled in the IE browser in some versions and settings due to performance considerations.

CSS3 Color Values
The CSS3 Color module defines the color units supported in CSS and documents a few
color properties, most notably color and opacity. The specification also introduces a few
new color units and keywords, as summarized in Table 6-5.

CSS3 Color
Feature Description Example(s) Support

currentColor
keyword

Can be used as a macro for
whatever the current color
is. This is useful if you want
to dynamically change one
color and have other related
colors change.

#currTest {color: red;
 border: 1px solid black;
border-color: currentColor;}
/* if supported, border red
not black */

Firefox 2+,
Chrome 1+,
Safari 3+,
Opera 9.5+

HSL Color CSS3 introduces Hue
Saturation Lightness (HSL),
where color values are
specified as hsl(hue,
saturation,lightness).
Hue is set as the degree on
the color wheel, where 0 or
360 if you wrap around is
red, 120 is green, and 240
is blue, with the various
other colors found between.
Saturation is a percentage
value, with 100% being
the fully saturated color.
Lightness is a percentage,
with 0% being dark and 100%
light with the average 50%
being the norm.

#red {
color: hsl(0,100%,50%);}

#green {
color: hsl(120,100%,50%);}

#blue {
color: hsl(240,100%,50%);}

Firefox 2+,
Safari 3+,
Chrome 1+,
Opera 9.5+

TABLE 6-5 New CSS3 Color Units

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 623
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 623

TABLE 6-5 New CSS3 Color Units (continued)

CSS3 Color
Feature Description Example(s) Support

HSLa Color CSS3 HSL value with a
fourth value to set the
alpha channel value for the
color to define the opacity
of the element. An HSLa is
specified via a function style
hsla(hue,saturation,
lightness, alpha),
where hue, saturation, and
lightness are the same as
standard hsl() values, and
the alpha channel value for
defining opacity is a number
between 0 (fully transparent)
and 1 (fully opaque).

#bluetrans {
color:
hsla(240,100%,50%,0.5);}

Firefox 3+,
Safari 3+,
Chrome 1+,
Opera 10+

RGBa Color Like RGB color but adds
an alpha channel value
to specify the opacity
of the color. An RGBa is
specified via a function style
rgba(r,g,b,a) value,
where colors r, g, and b
are specified as a decimal
value from 0 to 255 or a
percentage from 0 to 100%,
and the alpha channel
value for defining opacity is
a number between 0 (fully
transparent) and 1 (fully
opaque). Values outside this
range will be rounded up or
down to fit the closest value.

#redtrans {
color: rgba(255,0,0,0.4);}

Firefox 3+,
Safari 3+,
Chrome 1+,
Opera 10+

transparent
keyword

CSS3 defines the color
property to accept the
keyword transparent,
which is just a shorthand for
a value of rgba(0,0,0,0).

<p style="color:
transparent;">When working
seems invisible</p>

Firefox 3.5+,
Opera 10+,
Chrome 1+

 624 P a r t I I : C o r e S t y l e 624 P a r t I I : C o r e S t y l e

Obviously, if there is a concern about using CSS3 color values, a hex value should be
used instead. A simple trick can be employed, however, in the situation where simply the
opacity is not supported but the standard color value is; just use the cascade aspect of CSS
to start with a known supported value and then follow it with the newer color format for
supporting browsers:

#greentest {color:rgb(0,255,0);
 color:rgba(0,255,0,0.4);}

As the current specification is written, little is introduced by this CSS3 module. Most
modern browsers, save Internet Explorer 8, support these features.

NOTE The specification also clearly codifies in one place many of the various color values from
various specifications. See Appendix C for an overview of color values.

Namespaces
In XHTML and XML, it is possible to intermix markup languages in a single document.
When using mixed vocabularies, it is possible to have tags that have similar names but are
from different vocabularies. Commonly, an example is given of having the traditional
HTML tag <table> being confused with some <table> tag in a fictitious Furniture
Markup Language. Adding the concept of a namespace to indicate what vocabulary a tag
comes from eliminates confusion, but this would have to be extended to CSS. For example,
using our <table> tag example, what would the following rule do?

table {border: 1px solid red;}

Would it apply the rule to both types of tags or just one. What about if we wanted to
introduce a different look for each? Enter the CSS3 @namespace directive. As an example,
here we introduce a CSS rule for a standard <p> tag and one for a <p> tag in our custom
namespace:

<style type="text/css">
 p {color: red;}
</style>
<style type="text/css">
 @namespace "htmlref";
 p {background-color: green; color: white;}
</style>

Then, depending on syntax, we might have

<p>This is a standard p tag and <p xmlns="htmlref">a named spaced
 p tag</p> and back to normal.</p>

When we can invoke an XML parser, the browser should apply different styles to the
differently namespaced tags:

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 625
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 625

Interestingly, the support for this construct is most problematic due to browser handling of
XML/XHTML documents, MIME types, and the varying syntaxes for mixing tag
vocabularies.

NOTE This demo uses an xmlns attribute, which is discussed in the HTML5 specification
somewhat controversially as some nonworking “talisman” attribute. Interestingly, the test suite
at the W3C provides the inspiration for the brief demo, and the demo based upon the illustration
does work in many currently shipping browsers.

Media Queries
A media query takes the CSS media attribute and extends it with conditions. For example,
commonly Web developers are familiar with a style rule for print and one for screen. Media
queries add to this a query upon the media, such as what is the available width or color, to
then determine whether to apply rules or not. Such a query system allows Web developers
to easily apply different styles to different conditions, such as one style for a wide screen
and one for a narrow one, without resorting to JavaScript. As an example, here we employ a
style sheet wide.css if the screen resolution is at least 1024px, a different one for a midrange
window size, and one for a small window size:

<link rel="stylesheet" media="screen and (min-width: 1024px)" href="wide.
css">
<link rel="stylesheet" media="screen and (min-width: 641px) and (max-width:
1023px)" href="medium.css">
<link rel="stylesheet" media="screen and (max-width: 640px)" href="narrow.
css">

Interestingly, most modern browsers, with the exception of Internet Explorer as of
version 8, support this, as shown in Figure 6-1.

ONLINE http://htmlref.com/ch6/mediaquery.html

Media queries can be used inline, as well, with the @media syntax, and may also apply
to different mediums; for example, here we might apply different CSS rules depending on
the print style:

@media print and (orientation:portrait) { /* portrait layout rules */ }
@media print and (orientation:landscape) { /* landscape rules */ }

Table 6-6 details all of the media queries defined by the specification, though
implementations currently focus mostly on width-related features.

What you decide to do with a media query is up to your imagination. An interesting
possibility is side-by-side display environments for wide monitors and stacked layouts for
narrow ones.

 626 P a r t I I : C o r e S t y l e 626 P a r t I I : C o r e S t y l e

Web Fonts
An exciting change that some incorrectly think was introduced by CSS3 is the inclusion of
Web fonts. In reality, downloadable fonts using CSS and even HTML have been available in
browsers since the 4.x generation, though with the demise of Netscape, only Internet
Explorer continued to support them until their later reintroduction in more modern
browsers. Regardless of their origin, the syntax is fairly consistent. An “at” (@) rule is used
to associate a font name to be used in a style sheet with some downloadable font. A font-
family property is used within the rule to name the font, and an src is associated with an
external font name:

@font-face {font-family: fontname; src: url(fontfile);}

Later, the font can be used as a name within properties like font-family and font.
Make sure to specify other font names as a fallback in case downloadable font technology is
not supported or the font fails to load for some reason. As an example:

@font-face {font-family: "handwriting"; src: url(handwriting.ttf);}
body {font-family: "handwriting", cursive; font-size: 5em;}

FIGURE 6-1 Media queries in action

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 627
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 627

Media Query Description
Support
max/min Allowed Values Example(s)

aspect-ratio The ratio of the width
to the height of the
media.

Yes Integer/
Integer

@media screen
and (aspect-
ratio: 640/480)
{ ... }

color Describes the number
of bits of color the
device supports,
or 0 if no color is
supported. A presence
value can be used to
simply see if color is
supported.

Yes Integer @media all and
(color) { ... }

@media all and
(min-color: 16)
{ ... }

color-index Describes number of
entries in the color
lookup table of the
output device or 0 if
color is not supported.

Yes Integer @media screen
and (color-
index: 256)
{ ... }

device-
aspect-ratio

The ratio of the device
width to the device
height of the media.

Yes Integer/
Integer

@media screen
and (device-
aspect-ratio:
1024/768)
{ ... }

device-
height

Describes the height
of the screen or full
height of the output
page.

Yes Typical CSS length units
like px, em, in, and
so on

@media screen
and (device-
height: 768px)
{ ... }

device-width Describes the width
of the screen or the
full width of the output
page.

Yes Typical CSS length units
like px, em, in, and
so on

@media screen
and (device-
width: 1000px)
{ ... }

grid Determines if output
is grid, like a simple
terminal or phone,
or bitmap, like a
standard monitor or
printer.

No 1 or 0 (no value
required presence
style value)

@media screen
and (grid) {...}

height Describes the current
supported width of
the device’s viewport
or paged media box
in the case of print
output.

Yes Typical CSS length units
like px, em, in, and
so on

@media screen
and (height:
922px) { ... }
@media screen
and (max-height:
800px) and (min-
height: 400px)
{ ... }

TABLE 6-6 CSS Media Query Values (continued)

 628 P a r t I I : C o r e S t y l e 628 P a r t I I : C o r e S t y l e

Media Query Description
Support
max/min Allowed Values Example(s)

monochrome Determines if output is
monochrome and how
many bits are used for
gray display. A value of
0 indicates the output
is not monochrome.
A presence value or 1
is used to indicate the
device is displaying in
monochrome.

Yes 0 or positive integer @media screen
and (monochrome)
{ ... }
@media screen
and (min-
monochrome: 4)
{ ... }

orientation Output style portrait
if height is greater
than or equal to width,
landscape if the
opposite.

No portrait |
landscape

@media print and
(orientation:
landscape)
{ ... }

resolution Describes the
resolution of the
output device.

Yes Lengths in dpi (dots
per inch) or dpcm (dots
per centimeter)

@media print and
(resolution:
300dpi) { ... }

scan Describes the
scanning method of
a TV.

No progressive |
interlaced

@media tv
and (scan:
progressive)
{ ... }

width Describes the current
supported width of
the device’s viewport
or paged media box
in the case of print
output.

Yes Typical CSS length units
like px, em, in, and
so on

@media screen
and (width:
1000px) { ... }

@media screen
and (min-width:
300px) and (max-
width: 480px)
{ ... }

TABLE 6-6 CSS Media Query Values (continued)

It is also possible to set selection of a particular downloadable font when a particular font
characteristic like bold or italic is set by adding the corresponding rule to the @font-face rule:

@font-face {font-family: "Mufferaw"; src: url(MUFFERAW.ttf);}

@font-face {font-family: "Mufferaw"; src: url(MUFFERAWBOLD.ttf);
 font-weight: bold;}

p {font-family: "Mufferaw", serif; font-size: 5em;}
em {font-weight: bold;} /* would specify the mufferawbold font */

There are even more characteristics that can be set, including what character sets are
supported, but so far quirks abound even in basic syntax. Readers are particularly warned

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 629
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 629

that technologies for downloadable fonts vary significantly between browsers. Appendix B
discusses some approaches to using custom fonts online.

Miscellaneous CSS3 Changes
One of the things about CSS3 that may surprise developers is that it makes subtle changes
in a number of places rather than introducing all new properties. We see many new list-type
values like arabic, binary, lower hexadecimal, mongolian, thai, ethiopic, hangul,
norwegian, somali, and many more. Many more cursor values are introduced for more
application-style Web development like alias, context-menu, and not-allowed. A full
list can be found in the cursor property entry in the previous chapter.

Where possible, we alluded to these more subtle changes in the previous chapter’s
reference when they were supported by browsers. Though, without looking at all entries
globally, you might not see how some CSS3 changes have wide effect. For example, CSS3-
compliant browsers should support multiple backgrounds. Here, we specify different files
for the background, each separated with a comma:

body {background: white url(donkey.gif) top left no-repeat,
 url(elephant.gif) bottom right no-repeat;}

This would also work on the background-image property, of course, given
background is just a shorthand for all background characteristics. So we see that once you
can specify multiple background images, this ripples through numerous properties like
background-position. For example, when using background-position on different
backgrounds, we apply the position to each background in order, so

background-position: 50px 100px, 200px 200px;

would position the first background at 50px, 100px and the second background at 200px,
200px. Similarly, other background properties like background-repeat would change in
a similar manner, so

background-repeat: no-repeat, repeat-x;

would apply no-repeat to the first background and repeat-x to the second.
The CSS3 background changes are supported at the time of this edition’s writing at least

in WebKit-based browsers. We focus in this chapter mostly on those areas of CSS3 where we
have a close-to-final specification (for example, Selectors) or have some implementation to
reference. While we have some good sense about what CSS3 features are likely to be
supported by browsers, it makes little sense to speculate too much until it is something
implemented and actually used by a Web developer or designer.

Implemented CSS3 and Browser-Specific Features
The CSS3 specification is far from complete, numerous aspects of the various proposed
modules that make up the specification have not been worked on for years, and there are
clearly many holes. However, browser vendors have implemented a number of properties
already. Further, many browser vendors have introduced proprietary extensions to CSS,
some of which have then been added to the CSS specification and some of which haven’t.

 630 P a r t I I : C o r e S t y l e 630 P a r t I I : C o r e S t y l e

This section details the properties that are supported in some major browsers shipping
circa late 2009. Each entry will present the following items:

• Brief summary

• Syntax summary

• Example(s) of use

• Compatibility information

• Notes and special considerations

The aim here is for completeness, but given the moving nature of emerging and
proprietary CSS features, readers are warned that this content may change or never be
widely adopted. Awareness of intent and presentation of basic syntax is the primary goal
here, as testing likely will be required to safely use these properties.

NOTE To provide for the best long-term accuracy, where possible and when clear, CSS3 syntax is
presented first. If a browser supports a property extension to emulate the CSS3 syntax, that will
be presented in the notes and examples. Not every possible browser extension is presented,
particularly those properties only implemented in a minor-market-share browser that have not
been defined at least partially in any known CSS3 module.

@keyframes
This CSS “at” rule is used to define the properties that will be animated in an animation rule.

Syntax
@keyframes: keyframe-name
{percentage | from | to {cssrules}}*

where each block starts with the percentage into the animation at which the rules apply,
from is a keyword for 0%, and to is a keyword for 100%.

Example
@-webkit-keyframes move {
from {
 left: 0;
 top: 0;
 opacity: 1;
}
50% {
 left: 500px;
 top: 0;
 opacity: 1;
}
to {
 left: 500px;
 top: 500px;
 opacity: 1;
}}

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 631
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 631

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes

• WebKit supports this property as @-webkit-keyframes.

accelerator
This property specifies whether an element is an accelerator indicator or not.

Syntax
accelerator: true | false

When the standard underline style is applied and accelerator is set to true, the style
should be toggled when the ALT key is depressed, revealing the various access keys in play.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>accelerator Test</title>
<style type="text/css" media="screen">
.accelerator {-ms-accelerator: true;
 accelerator: true;
 text-decoration: underline;}
</style>
</head>
<body>
<form action="login.php" method="post">
<div>
 <label>Username:
 <input type="text" name="username" id="username" accesskey="s">
 </label>
</div>
<div>
 <label>Password:
 <input type="password" name="userpass" id="userpass" accesskey="p">
 </label>
</div>
<div>
 <input type="submit" value="login">
</div>
</form>
</body>
</html>

ONLINE http://htmlref.com/ch6/accelerator.html

 632 P a r t I I : C o r e S t y l e 632 P a r t I I : C o r e S t y l e

Compatibility

No specification IE 5.5+

Notes
• Under Internet Explorer 8 this property should be represented as –ms-

accelerator.

• At the time of this writing, this was not working in IE 8 unless in compatibility
mode, despite documentation statements to the contrary.

animation
This shorthand property is used to set all of the animation properties at once.

Syntax
animation: animation-name animation-duration animation-timing-function
 animation-delay animation-iteration-count animation-direction

where each value is defined by its named property. Like other shorthand properties, values
may be omitted. There may be other shorthand animation rules that follow the first,
separated by commas.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Animations</title>
<style type="text/css">
@-webkit-keyframes move {
 from {left: 0; top: 0;}
 50% {left: 500px; top: 0;}
 to {left: 500px; top: 500px;}
}

#anim1 {-webkit-animation:move 5s ease-out 0 infinite alternate;
 position:absolute;
 height: 100px; width: 100px;
 background-color: purple;}
</style>
</head>
<body>
<div id="anim1">Watch me move!</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/animation.html

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 633
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 633

Compatibility

CSS3 Proposed Chrome 3, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

animation-delay
This property is used to define a delay before an animation starts.

Syntax
animation-delay: time1 [,..timeN]

where time is a standard CSS time value like 2s or 4700ms. The default value is 0, meaning
the animation starts immediately.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Animations - animation-delay</title>
<style type="text/css">
@-webkit-keyframes move {
from {width: 100px; height: 300px;
 left: 0; top: 0;}
50% {width: 100px; height: 300px;
 left: 300px; top: 0;}
to {width: 100px; height: 300px;
 left: 300px; top: 300px;}
}
@-webkit-keyframes resize {
from {width: 100px; height: 300px;
 left: 300px; top: 300px;}
50% {width: 100px; height: 100px;
 left: 300px; top: 300px;}
to {width: 300px; height: 100px;
 left: 300px; top: 300px;}
}
#anim1 {-webkit-animation-name:move, resize;
 -webkit-animation-duration: 4s, 4s;
 -webkit-animation-delay: 0s, 4s;
 position:absolute;
 background-color: purple;}
</style>
</head>

 634 P a r t I I : C o r e S t y l e 634 P a r t I I : C o r e S t y l e

<body>
<div id="anim1">Watch me move and change size!</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/animationdelay.html

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation-delay.

• Be careful staggering animations, as properties will revert to their nonanimation
values once the animation completes.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

animation-direction
This property is used to indicate if an animation plays in reverse or repeats itself every
other iteration.

Syntax
animation-direction: normal | alternate [,normal | alternate]*

The default value is normal.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Animations - animation-direction</title>
<style type="text/css">
@-webkit-keyframes resize {
from {width: 100px; height: 300px;
 left: 0; top: 0;}
50% {width: 100px; height: 100px;
 left: 300px; top: 0;}
to {width: 300px;height: 100px;
 left: 300px; top: 300px;}
}
#anim1 {-webkit-animation-name:resize;
 -webkit-animation-duration: 4s;
 -webkit-animation-iteration-count: 5;
 -webkit-animation-direction: alternate;
 position:absolute;
 background-color: purple;}

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 635
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 635

</style>
</head>
<body>
<div id="anim1">Watch me move and change size!</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/animationdirection.html

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation-direction.

• If the animation-direction is alternate, the timing function will also alternate
if appropriate.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

animation-duration
This property is used to define the time it takes one iteration of an animation to play.

Syntax
animation-duration: time [,time]*

where time is a valid time value like 5s or 3500ms. The initial value of time is 0, meaning no
animation plays.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Animations - animation-duration</title>
<style type="text/css">
@-webkit-keyframes move {
 from {left: 0;top: 0;}
 50% {left: 300px;top: 0;}
 to {left: 300px;top: 300px;}
}
@-webkit-keyframes resize {
 from {width: 100px;height: 300px;}
 50% {width: 100px;height: 100px;}
 to {width: 300px;height: 100px;}
}
#anim1 {-webkit-animation-name:move, resize;
 -webkit-animation-duration: 4s, 10s;
 position:absolute;
 background-color: purple;}

 636 P a r t I I : C o r e S t y l e 636 P a r t I I : C o r e S t y l e

</style>
</head>
<body>
<div id="anim1">Watch me move and change size!</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/animationduration.html

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation-duration.

• Be careful with staggering durations, as the shorter animation will revert to its
nonanimation values once the animation completes.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

animation-iteration-count
This property is used to define the number of times an animation should play.

Syntax
animation-iteration-count: number | infinite [, number | infinite]*

where number is a positive integer and the keyword infinite indicates a continuous
animation.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Animations - animation-iteration-count</title>
<style type="text/css">

@-webkit-keyframes resize {

from {height: 300px; width: 100px;
 left: 0; top: 0;}
50% {height: 100px; width: 100px;
 left: 300px; top: 0;}
to {height: 100px; width: 300px;
 left: 300px; top: 300px;}
}

@-webkit-keyframes move {
from {left: 150px; top: 150px;}

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 637
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 637

50% {left: 300px; top: 0;}
to {left: 400px; top: 200px;}
}

#anim1 {-webkit-animation-name:resize;
 -webkit-animation-duration: 4s;
 -webkit-animation-iteration-count: infinite;
 position:absolute;
 background-color: purple;}
#anim2 {-webkit-animation-name:move;
 -webkit-animation-duration: 4s;
 -webkit-animation-iteration-count: 2;
 position:absolute; top: 150px; left: 150px;
 background-color: orange;}
</style>
</head>
<body>
<div id="anim1">Watch me move and change size forever!</div>
<div id="anim2">Watch me move two times</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/animationiterationcount.html

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation-iteration-count.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

animation-name
This property is used to define the animations that should be run. The @keyframe directive
specified defines the properties to animate. The keyword none can be used to override
a cascade.

Syntax
animation-name: @keyframe-name | none [,@keyframe-name | none]*

where @keyframe-name is the name of the animation defined by an @keyframe directive.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 638 P a r t I I : C o r e S t y l e 638 P a r t I I : C o r e S t y l e

<title>CSS Animations - animation-name</title>
<style type="text/css">
@-webkit-keyframes move {
 from {top: 0; left:0; opacity: 1;}
 50% {top: 0; left:500px; opacity: .5;}
 to {top: 500px; left: 500px; opacity: .1;}
}

@-webkit-keyframes resize {
 from {height: 300px; width: 100px;}
 50% {height: 100px; width: 100px;}
 to {height: 100px; width: 300px;}
}

@-webkit-keyframes fade {
 from {opacity: 1;}
 50% {opacity: .5;}
 to {opacity: .1;}
}

#anim1 {-webkit-animation-name: move, resize, fade;
 -webkit-animation-duration: 10s;
 position:absolute;
 background-color: purple;}
</style>
</head>
<body>
<div id="anim1">Watch me move and vanish!</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/animationname.html

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation-name.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

animation-timing-function
This property is used to describe how the animation will play.

Syntax
animation-timing-function: timingfunction [,timingfunction2,...timingfunctionN]

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 639
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 639

where timingfunction is one of the following values:

cubic-bezier(number,number,number,number) | ease | ease-in | ease-in-out
 | ease-out | linear

The default value is ease.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Animations - animation-timing-function</title>
<style type="text/css">
@-webkit-keyframes move {
 from {left: 0; top: 0;}
 50% {left: 300px;top: 0;}
 to {left: 600px; top: 0;}
}

#anim1 {-webkit-animation-name: move;
 -webkit-animation-duration: 4s;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-timing-function: linear;
 position:absolute;
 background-color: purple; }

#controls {position: absolute; top: 100px; left: 10px;}
</style>
</head>
<body>
<div id="anim1">Watch me move!</div>

<form id="controls"
onchange="document.getElementById('anim1').style.webkitAnimationTimingFunct
ion=this.options[this.selectedIndex].value;">
 <select>
 <option value="cubic-bezier(110,120,210,280)">cubic-bezier</option>
 <option value="ease">ease</option>
 <option value="ease-in">ease-in</option>
 <option value="ease-in-out">ease-in-out</option>
 <option value="ease-out">ease-out</option>
 <option value="linear" selected>linear</option>
 </select>
</form>
</body>
</html>

ONLINE http://htmlref.com/ch6/animationtimingfunction.html

 640 P a r t I I : C o r e S t y l e 640 P a r t I I : C o r e S t y l e

Compatibility

CSS3 Proposed Chrome 3+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-animation-timing-function.

• If applicable, the timing function will reverse if animation-direction is set to
alternate.

• Firefox 3.7 pre-releases show support for CSS transitions which are very related to
CSS animation. It is quite likely that a form of this property using the –moz prefix
may be supported in a Firefox browser by the time you read this.

backface-visibility
This property is used to indicate whether the backside of an element is visible if the element
is rotated to display the back.

Syntax
backface-visibility: hidden | visible

The default value is visible. When it is set to hidden, the element is not visible if it is not
facing the screen. When it is set to visible, it is always visible, which may mean you see
the reverse of an image.

Example
<img src="logo.gif" border="1" style="-webkit-transform: rotateY(125deg);
-webkit-backface-visibility: visible;">

Compatibility

CSS3 Chrome 3+, Safari 4+

Note
• WebKit supports this property as –webkit-backface-visibility, though at the

time of this edition’s writing it is only available in the iPhone and the development
builds of Safari 4+.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 641
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 641

background-clip
This property specifies whether or not an element’s background extends all the way to the
element’s border.

Syntax
background-clip: border | padding [, border | padding,..]

where the default is border, causing the background to stop at the edge of the border of an
element or where padding stops the background at the start of a border. The effect of this
property is noticeable when borders with transparent regions are used:

Examples
<div style="height: 100px; width: 200px;
 background-color: red;
 padding: 20px;
 border: 5px dashed black;">
 Clipped to border (default)
</div>

<div style="height: 100px; width: 200px;
 background-color: red;
 padding: 20px;
 border: 5px dashed black;
 -webkit-background-clip: padding;
 -moz-background-clip: padding;
 background-clip: padding;">
 Clipped to padding
</div>

ONLINE http://htmlref.com/ch6/backgroundclip.html

Compatibility

CSS3 Chrome 3+, Firefox 3.5+, Safari 3+

Notes
• Mozilla-based browsers like Firefox support this property as –moz-background-

clip and WebKit-based browsers like Safari and Chrome support it as –webkit-
background-clip.

 642 P a r t I I : C o r e S t y l e 642 P a r t I I : C o r e S t y l e

• WebKit-based browsers also specify a value of content for its –webkit-
background-clip property, which clips backgrounds to the content region
of a box.

• WebKit-based browsers have experimented with a value of text for their –webkit-
background-clip property to create a clip outline for text to create an interesting
punch-out effect.

background-origin
This property specifies how the position of a background should be calculated by setting
the origin relative to different locations within an element’s box.

Syntax
background-origin: border | padding | content [, border | padding |
 content,...]

where the default is padding, causing the position of the background to be relative to the
outside of the padding or, more obviously, the start of the border. It also can be set relative
to the outside of the border or the start of the content. The effect of this property is quite
noticeable when looking at a positioned background where borders with transparent
regions are used:

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 643
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 643

Examples
<div style="-webkit-background-origin: border;
 -moz-background-origin: border;
 background-origin: border;">
 background-origin: border
</div>
<div style="-webkit-background-origin: padding;
 -moz-background-origin: padding;
 background-origin: padding;">
 background-origin: padding
</div>
<div style="-webkit-background-origin: content;
 -moz-background-origin: content;
 background-origin: content;">
 background-origin: content
</div>

ONLINE http://htmlref.com/ch6/backgroundorigin.html

Compatibility

CSS3 Chrome 3+, Firefox 3.5+, Safari 3+

Notes
• Mozilla-based browsers such as Firefox support this property as –moz-

background-origin and WebKit-based browsers such as Chrome and Safari
support it as –webkit-background-origin.

• The CSS3 specification currently lists border-box and padding-box. This syntax
was changed in other areas of the specification, and browser vendors currently
don’t support such values. The supported values are presented instead.

background-position-x
This property defines the x-coordinate of the background-position property.

Syntax
background-position-x: length | percentage | left | center | right

Example
<div style="background-image: url(background.gif);
 background-repeat: no-repeat;
 background-position-x: 100px; background-position-y: 25px;">
 background-position-x
</div>

Compatibility

No spec Chrome 2+, IE 4+, Safari 1.3+

 644 P a r t I I : C o r e S t y l e 644 P a r t I I : C o r e S t y l e

Note
• Under IE 8 this property is known as –ms-background-position-x to correctly

note it as an extension.

background-position-y
This property defines the y-coordinate of the background-position property.

Syntax
background-position-y: length | percentage | top | center | bottom

Example
<div style="background-image: url(background.gif);
 background-repeat: no-repeat;
 background-position-x: 100px;background-position-y: 25px;">
 background-position-y
</div>

Compatibility

No spec Chrome 2+, IE 4+, Safari 1.3+

Note
• Under IE 8 this property is known as –ms-background-position-y to correctly

note it as an extension.

background-size
This property allows the background image used to be scaled.

Syntax
background-size: length | percentage [length | percentage]

where length or percentage values may have a single or double value.

Examples
<div style="-webkit-background-size: 50px 50px;
 -moz-background-size: 50px 50px;
 -o-background-size: 50px 50px;
 background-size: 50px 50px;">
 Smaller in pixels
</div>
<div style="-webkit-background-size: 75px 130px;
 -moz-background-size: 75px 130px;
 -o-background-size: 75px 130px;
 background-size: 75px 130px;">
 Scale differently
</div>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 645
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 645

<div style="-webkit-background-size: 200% 200%;
 -moz-background-size: 200% 200%;
 -o-background-size: 200% 200%;
 background-size: 200% 200%;">
 Bigger by percentage
</div>

ONLINE http://htmlref.com/ch6/backgroundsize.html

Compatibility

CSS3 Chrome 3+, Firefox 3.6+, Opera 9.5+, Safari 3+

Note
• Mozilla-based browsers such as Firefox support this property as –moz-background-

size, WebKit-based browsers like Chrome or Safari support it as –webkit-
background-size, and Opera browsers support it as –o-background-size.

behavior
This Microsoft-proposed CSS property is used to define the URL for a script providing
DHTML behavior. It is similar in purpose and function to the CSS3 binding property.

Syntax
behavior: url(default behavior name or URL of behavior)

Microsoft has implemented a number of default behaviors. These are accessible by
specifying the url as #default#behaviorname, such as behavior:url(#default#
clientCaps);. Once these behaviors are associated with an element, additional properties
will be available to that element based on the default behavior used. Table 6-7 shows a
summary of the common default behaviors supported by Internet Explorer browsers.

 646 P a r t I I : C o r e S t y l e 646 P a r t I I : C o r e S t y l e

Name Description Properties and Methods

anchorClick Enables an anchor tag to point to
a folder.

folder

anim Enables the Microsoft
DirectAnimation viewer.

image: an image to display
sound: a sound to play
statics: the DAStatics class library
addDABehavior(oBehavior, iID)
removeDABehavior(iID)

clientCaps Provides information about the
user’s environment.

availHeight
availWidth
bufferDepth
colorDepth
connectionType
cpuClass
height
javaEnabled
platform
systemLanguage
userLanguage
width
addComponentRequest(sID, sIDType
[, sMinVer])
clearComponentRequest()
compareVersions(sVersnNum1,
sVersnNum2)
doComponentRequest()
getComponentVersion(sID, sIDType)
isComponentInstalled(sID, sIDType
[, sMinVersion])

download Provides the ability to download
an object and have a callback
function called on completion.

download.startDownload(sUrl,
fpCallback)

homePage Provides limited information about
a user’s homepage. Note that
isHomePage() is only available
for the current domain.

isHomePage(sPageURL);
navigateHomePage();
setHomePage(sPageURL)

httpFolder Scripting options for navigating to
a folder.

navigate(sHTTP);
navigateFrame(sHTTP, sTarget)

mediaBar As of IE 6 on Microsoft Windows
XP Service Pack 2 (SP2) or IE
7, the mediaBar feature is
obsolete and no longer available.

TABLE 6-7 Summary of Internet Explorer Default Behaviors

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 647
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 647

Name Description Properties and Methods

saveFavorite Allows data to persist across
sessions if the page is saved in
Favorites.

XMLDocument
getAttribute(sAttrName)
removeAttribute(sAttrName)
setAttribute(sAttrName,
 vAttrValue)

saveHistory Allows data to persist in history
as long as the page is returned to
via Back/Forward.

XMLDocument
getAttribute(sAttrName)
removeAttribute(sAttrName)
setAttribute(sAttrName,
 vAttrValue)

saveSnapshot Allows data to persist when the
page is saved.

userData Allows data to persist in user
data.

expires
XMLDocument
getAttribute(sAttrName)
load (sStoreName)
removeAttribute(sAttrName)
save(sStoreName)
setAttribute(sAttrName,
 vAttrValue)

TABLE 6-7 Summary of Internet Explorer Default Behaviors (continued)

Examples
<style type="text/css">
 @media all { IE\:homepage {behavior:url(#default#homepage)}
</style>
</head>
<body>
<IE:homepage id="homepageEl">

<!-- inline behavior -->
<h1 style="behavior: url(colorchange.htc);">What a dynamic header!</h1>

The following full example shows that it is possible to use older Microsoft behavior
syntax with newer binding style syntax to add interactivity to elements via CSS:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>behavior and binding Example</title>
<style type="text/css">
 #clickable {behavior: url(hello.htc);-moz-binding: url(hello.xml);
 binding: url(hello.xml);}
</style>
</head>

 648 P a r t I I : C o r e S t y l e 648 P a r t I I : C o r e S t y l e

<body>
<p>Just a regular paragraph.</p>
<p id="clickable">I'm special click me.</p>
<p>Just a regular paragraph.</p>
</body>
</html>

The specified hello.htc file looks like this:

<PUBLIC:COMPONENT URN="urn:msdn-microsoft-com:workshop" lightWeight="true">
 <PUBLIC:ATTACH EVENT="onclick" FOR="element" ONEVENT="sayHi()" />
 <SCRIPT LANGUAGE="JScript">
 function sayHi() { alert("Hello World from a bound HTC."); }
 </SCRIPT>
</PUBLIC:COMPONENT>

ONLINE http://htmlref.com/ch6/behaviorbinding.html

Compatibility

No specification IE 5+

Notes
• Starting with IE 8 this property is properly written as –ms-behavior because it is

an extension.

• Mozilla-based browsers such as Firefox support a similar concept using the
–moz-binding property.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 649
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 649

• A more complete discussion of behaviors, and built-in Internet Explorer behaviors
in particular, can be found at the MSDN site online (http://msdn.microsoft.com),
but you should note that, for security concerns, some behaviors have been removed
or modified over time.

• Behaviors are often bound to made-up elements when used, but this is not required.

binding
This property defines a relationship between bound elements(s) and some code or content.
Generally, it is used to associate some scripting to various elements in a document.

Syntax
binding: none | url(bindingfile)

where bindingfile is some technology such as XBL to add content or associate markup with
script code.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>behavior and binding Example</title>
<style type="text/css">
 #clickable {behavior: url(hello.htc); -moz-binding: url(hello.xml);
 binding: url(hello.xml);}
</style>
</head>
<body>
<p>Just a regular paragraph.</p>
<p id="clickable">I'm special click me.</p>
<p>Just a regular paragraph.</p>
</body>
</html>

The bound XBL file (hello.xml) looks like this:

<?xml version="1.0" encoding="utf-8"?>
<bindings xmlns="http://www.mozilla.org/xbl"
 xmlns:html="http://www.w3.org/1999/xhtml">
 <binding id="hello">
 <handlers>
 <handler event="click" action=
"alert('Hello world from the bound XBL')" />
 </handlers>
 </binding>
</bindings>

 650 P a r t I I : C o r e S t y l e 650 P a r t I I : C o r e S t y l e

ONLINE http://htmlref.com/ch6/behaviorbinding.html

Compatibility

CSS3 Firefox 1+

Notes

• This property is supported as –moz-binding in Firefox browsers.

• The property is similar to Internet Explorer’s behavior property.

border-bottom-left-radius
This property is used to round the bottom-left border corner specifically.

Syntax
border-bottom-left-radius: horizontal-radius vertical-radius

Example
<div style="border: 1px solid red;-moz-border-radius-bottomleft: 15px;
-webkit-border-bottom-left-radius: 15px; border-bottom-left-radius: 15px;">
 Bottom left corner
</div>

Compatibility

CSS3 Chrome 2+, Firefox 3+, Safari 3+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 651
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 651

Notes

• Mozilla browsers define this property as –moz-border-radius-bottomleft
while WebKit-based browsers define it more traditionally as –webkit-border-
bottom-left-radius. Given the differences, you should test it carefully as the
syntax may change.

border-bottom-right-radius
This property is used to round the bottom-right border corner specifically.

Syntax
border-bottom-right-radius: horizontal-radius vertical-radius

Example
<div style="border: 1px solid red;-moz-border-radius-bottomright: 25px;
-webkit-border-bottom-right-radius: 25px; border-bottom-right-radius: 25px;">
 Bottom right corner
</div>

Compatibility

CSS3 Chrome 2+, Firefox 3+, Safari 3+

Notes
• Mozilla-based browsers like Firefox define this property as –moz-border-radius-

bottomright while WebKit-based browsers like Chrome and Safari define it more
traditionally as –webkit-border-bottom-right-radius. Given the differences,
you should test it carefully as syntax may change.

border-image
This property defines an image to be used for the border of the element.

Syntax
border-image: none | url(image) imagesection [/imagewidth] imagehandling

where imagesection defines the portions of the image that are used for various parts of the
border. The imagesection value can be composed of up to four slice lines on the image, each
measured in pixels or percentages, as shown in this diagram:

Slice 2

S
lice 1

S
lice 3

Slice 4

 652 P a r t I I : C o r e S t y l e 652 P a r t I I : C o r e S t y l e

The first cutline is across the top and defines the height of the top-left and top-right
corners; the second cutline defines the width of the top-right and bottom-right corners; the
third cutline defines the height of the bottom corners; and the fourth cutline defines the
width of the left corners, top and bottom. For example, given

url(background-image) 50px 20px 100px 30px

you would set cuts like this:

100px

50px

30px 20px

A / allows for the specification of image widths for each of the borders from top, right,
bottom, and left. Widths are generally in length units, such as pixels. Finally, three
keywords as defined above as imagehandling can be placed to control whether the middle
zones of the cutlines are to be stretched (stretch), repeated (repeat), or shown to the
nearest whole image (round). For example, given this image

the differences between a repeatable as opposed to a stretched border image should be clear:

Example
<div style="-moz-border-image: url(starborder.png) 50px 50px 50px 50px
stretch stretch;
 -webkit-border-image: url(starborder.png) 50px 50px 50px 50px
stretch stretch;

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 653
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 653

 border-image: url(starborder.png) 50px 50px 50px 50px stretch
stretch;
 color: red; background-color: red; height: 150px; width: 30%;
 padding: 10px; border: 50px dashed black;">
 <h1>4th of July</h1>
</div>

ONLINE http://htmlref.com/ch6/borderimage.html

Compatibility

CSS3 Firefox 3.5+ Safari 3+

Notes
• In Mozilla-based browsers like Firefox this property is –moz-border-image and in

WebKit-based browsers like Chrome or Safari it is –webkit-border-image.

• The border image will tile over the center of the image as well, but if you make it
transparent, you can have a background image or color show as well.

• The border image will cover a defined standard border, so it is useful to have a
fallback in case browsers do not support this emerging property.

border-radius
This property is used to round border corners.

Syntax
border-radius: horizontal-radius vertical-radius

where the radius values are set as lengths. A single length value defines the radius of all
corners, or each can be specified one by one from top-left, top-right, bottom-right, and
finally bottom-left.

Examples
<div style="border: 1px solid red;-moz-border-radius: 15px;-webkit-border-
radius: 15px;border-radius: 15px;">
 All corners
</div>
<div style="border: 1px solid red;-moz-border-radius: 15px 30px 5px 70px;
-webkit-border-radius: 15px 30px 5px 70px; border-radius: 15px 30px 5px
70px;">
 Vary Each
</div>
<div style="border: 1px solid red;-moz-border-radius-topleft: 15px;-webkit-
border-top-left-radius: 15px;border-top-left-radius: 15px;">
 Left corner
</div>

 654 P a r t I I : C o r e S t y l e 654 P a r t I I : C o r e S t y l e

ONLINE http://htmlref.com/ch6/borderradius.html

Compatibility

CSS3 Chrome 2+, Firefox 3+, Opera 9.5+, Safari 3+

Notes
• Mozilla-based browsers like Firefox define this property as –moz-border-radius

while WebKit-based browsers like Chrome and Safari define it as –webkit-
border-radius.

• There is a definition in the CSS3 specification on a second set of radius values being
applied to set vertical radius pair wise with horizontal radius. Currently, the
browsers do not support this well or, in most cases, at all, and actually provide
documentation that contradicts the specification. Clearly, this is a work in progress.

• The individual corners can be specified individually using their own properties, as
shown in subsequent listings. While the CSS3 specification defines properties like
border-top-right-radius, there are syntax differences in early supporting
browsers, with Mozilla-based browsers supporting a syntax like -moz-border-
radius-topright and WebKit-based browsers supporting -webkit-border-
top-right-radius.

• When background images are employed, we should expect clipping to the curved
corner as shown next, but this is not consistently implemented in browsers yet:

border-top-left-radius
This property is used to round the top-left border corner specifically.

Syntax
border-top-left-radius: horizontal-radius vertical-radius

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 655
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 655

Example
<div style="border: 1px solid red;-moz-border-radius-topleft: 10px;-webkit-
border-top-left-radius: 10px;border-top-left-radius: 10px;">
 Top left corner
</div>

Compatibility

CSS3 Firefox 3+, Safari 3+

Note
• Mozilla-based browsers like Firefox define this property as –moz-border-radius-

topleft while WebKit-based browsers like Chrome and Safari define it more
traditionally as –webkit-border-top-left-radius. Given the differences, you
should test it carefully as syntax may change.

border-top-right-radius
This property is used to round the top-right border corner specifically.

Syntax
border-top-right-radius: horizontal-radius vertical-radius

Example
<div style="border: 1px solid red;-moz-border-radius-topright: 5px;-webkit-
border-top-right-radius: 5px;border-top-right-radius: 5px;">
 Top right corner
</div>

Compatibility

CSS3 No IE support, Firefox 3+, Safari 3+

Note
• Mozilla browsers define this property as –moz-border-radius-topright while

WebKit-based browsers define it more traditionally as –webkit-border-top-right-
radius. Given the differences, you should test it carefully as syntax may change.

box-reflect
This property specifies the size of the mask.

Syntax
-webkit-box-reflect: direction offset mask-box-image

where direction can be above, right, below, or left and indicates where the reflection
should appear. offset specifies the distance from the original image to the reflection and
can be a length or percentage. mask-box-image is a mask following the form of the mask-
box-image property that overlays the reflection.

 656 P a r t I I : C o r e S t y l e 656 P a r t I I : C o r e S t y l e

Example
<img id="logo" src="logo.gif" style="-webkit-box-reflect:below 5px
-webkit-gradient(linear, left top, left bottom, from(rgba(0,0,0,0)),
to(rgba(0,0,0,1)));">

ONLINE http://htmlref.com/ch6/boxreflect.html

Compatibility

No specification Chrome 2+, Safari 4+

Notes
• In WebKit-based browsers this property is –webkit-box-reflect.

• The reflection updates automatically as the original image changes. This includes
tooltips.

• The reflection should have no effect on layout.

box-shadow
This property sets the shadow for a box element.

Syntax
box-shadow: shadow1 [,...shadowN] | none | inherit

where each shadow is defined as

color x-offset y-offset blur-radius spread-radius

where color is the color of the shadow. When unspecified, color may be set by the user agent or
inherited from the current color. The x-offset and y-offset define the shadow position relative
to the element, where positive numbers are to the right and down and negative numbers are
to the left and up, respectively. Setting these values to 0 puts the shadow directly behind the
element. The blur-radius defines the degree of blur, with larger numbers making the shadow
more blurry. The spread-radius defines the size of the shadow. A positive value makes the
shadow bigger than the object and a negative value makes it smaller than the element.
When unspecified, the spread-radius is 0, making the shadow the same size as the element.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 657
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 657

Examples
div {height: 100px; width: 100px; margin: 100px;
 border: 1px solid black; float: left;}

#box1 {-moz-box-shadow: red 10px 10px;
 -webkit-box-shadow: red 10px 10px;
 box-shadow: red 10px 10px;}

#box2 {-moz-box-shadow: green -10px -10px;
 -webkit-box-shadow: green -10px -10px;
 box-shadow: green -10px -10px;}

#box3 {-moz-box-shadow: orange 10px 10px 20px;
 -webkit-box-shadow: orange 10px 10px 20px;
 box-shadow: orange 10px 10px 20px;}

#box4 {-moz-box-shadow: orange 10px 10px 80px;
 -webkit-box-shadow: orange 10px 10px 80px;
 box-shadow: orange 10px 10px 80px;}

#box5 {-moz-box-shadow: orange 10px 10px 50px 40px;
 -webkit-box-shadow: orange 10px 10px 50px 40px;
 box-shadow: orange 10px 10px 50px 40px;}

#box6 {-moz-box-shadow: orange 10px 10px 20px, green -10px -10px 20px;
 -webkit-box-shadow: orange 10px 10px 20px, green -10px -10px 20px;
 box-shadow: orange 10px 10px 20px, green -10px -10px 20px;}

ONLINE http://htmlref.com/ch6/boxshadow.html

 658 P a r t I I : C o r e S t y l e 658 P a r t I I : C o r e S t y l e

Compatibility

CSS3 Chrome 3+, Firefox 3.5+, Safari 3+

Note
• Currently, this property is supported in Mozilla-based browsers like Firefox as

–moz-box-shadow and in WebKit-based browsers like Chrome and Safari as
–webkit-box-shadow.

box-sizing
This property changes the calculation for measuring the width of elements.

Syntax
box-sizing: border-box | content-box | inherit

The default content-box specifies that element size is defined by adding the border,
padding, and height/width together to define the size of the box, which is what is typically
seen in browsers. When set to border-box, a supporting browser will render the box by the
defined height and width properties, pulling the border and padding size from within the
box, similar to much older box model thinking.

Examples
#ex1 {-moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 box-sizing: border-box;
 height: 100px; width: 200px;
 background-color: orange;
 border: 10px solid red;
 padding: 10px;}

#ex2 {-moz-box-sizing: content-box;
 -webkit-box-sizing: content-box;
 box-sizing: content-box;
 height: 100px; width: 200px;
 background-color: orange;
 border: 10px solid red;
 padding: 10px;}

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 659
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 659

Compatibility

CSS3 IE 8+ Firefox 1+ Opera 8.5+, Safari 3+

Notes
• Firefox browsers support this property as –moz-box-sizing and WebKit-based

browsers support it as –webkit-box-sizing.

• IE 8 also supports –ms-box-sizing as well as box-sizing and it should be
written with the –ms prefix to properly indicate it as an extension.

column-break-after
This property is used to control column element breaks after an associated element when
flowing multicolumn text.

Syntax
column-break-after: always | auto | avoid

A value of always should force a column break after the associated element. A value of
avoid attempts to avoid a column break after the element. The default value of auto
neither forces nor forbids a column break, allowing the user agent to decide how to break
the content during flow.

Examples
.breakitdown {-webkit-column-break-after: always; column-break-after: always;}
.nobreaks {-webkit-column-break-after: avoid; column-break-after: avoid;}

Compatibility

CSS3 Chrome 2+, Safari 3+

Notes
• WebKit-based browsers support this property as –webkit-column-break-after.

• WebKit also defines left and right values, though their meaning is somewhat
unclear in this context.

• WebKit also defines –webkit-column-break-inside, though this is not currently
in the CSS3 specification.

column-break-before
This property is used to control column element breaks before the associated element when
flowing multicolumn text.

Syntax
column-break-before: always | auto | avoid

A value of always should force a column break before the associated element. A value of
avoid attempts to avoid a column break before the element. The default value of auto

 660 P a r t I I : C o r e S t y l e 660 P a r t I I : C o r e S t y l e

neither forces nor forbids a column break, allowing the user agent to decide how to break
the content during flow.

Examples
.breakitdown {-webkit-column-break-before: always;
 column-break-before: always;}
.nobreaks {-webkit-column-break-before: avoid; column-break-before: avoid;}

Compatibility

CSS3 Chrome 2+, Safari 3+

Notes
• WebKit-based browsers support this property as –webkit-column-break-before.

• WebKit also defines left and right values, though their meaning is somewhat
unclear in this context.

• WebKit also defines column-break-inside, though this is not currently in the
CSS3 specification.

column-count
This property defines the number of columns in a multicolumn text flow.

Syntax
column-count: integer | auto

where integer is a positive value for the number of columns to flow the text into.

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;}
.three-column {-moz-column-count: 3; -webkit-column-count: 3;
 column-count: 3;}

ONLINE http://htmlref.com/ch6/columncount.html

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 661
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 661

Compatibility

CSS3 Chrome 2+, Firefox 1.5+, Safari 3+

Note
• Firefox browsers support this property as –moz-column-count and WebKit-based

browsers like Chrome and Safari support it as –webkit-column-count.

column-gap
This property defines the gap between columns in a multicolumn text flow.

Syntax
column-gap: length | normal

where length is any positive CSS measurement value.

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;
 -moz-column-gap: 100px; -webkit-column-gap: 100px;
 column-gap: 100px;}

.three-column {-moz-column-count: 3; -webkit-column-count: 3; column-count: 3;
 -moz-column-gap: 10em; -webkit-column-gap: 10em;
 column-gap: 10em;}

Compatibility

CSS3 Chrome 2+, Firefox 1.5+, Safari 3+

Note
• Firefox browsers support this property as –moz-column-gap and WebKit-based

browsers like Chrome and Safari support it as –webkit-column-gap.

column-rule
This shorthand property defines the style, width, and color of the rule divider between
columns in a multicolumn text flow.

Syntax
column-rule: rule-width rule-style color

where rule-width is a valid measurement or keyword as defined by column-rule-width,
rule-style is a valid style as defined by column-rule-style, and color is a CSS color value
also settable with column-rule-color.

 662 P a r t I I : C o r e S t y l e 662 P a r t I I : C o r e S t y l e

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;
 -moz-column-gap: 100px; -webkit-column-gap: 100px;
 column-gap: 100px;
 -moz-column-rule: 5px solid red;
 -webkit-column-rule: 5px solid red;
 column-rule: 5px solid red;}

.three-column {-moz-column-count: 3; -webkit-column-count: 3;
 column-count: 3;
 -moz-column-gap: 2em; -webkit-column-gap: 2em;
 column-gap: 2em;
 -moz-column-rule: .5em dashed green;
 -webkit-column-rule: .5em dashed green;
 column-rule: .5em dashed green;}

ONLINE http://htmlref.com/ch6/columnrule.html

Compatibility

CSS3 Chrome 3+, Firefox 3.5+, Safari 4+

Note
• Firefox browsers support this property as –moz-column-rule and WebKit-based

browsers like Chrome and Safari support it as –webkit-column-rule.

column-rule-color
This property defines the color of any rules between columns in a multicolumn text flow.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 663
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 663

Syntax
column-rule-color: color

where color is any valid CSS color value.

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;
 -moz-column-gap: 100px; -webkit-column-gap: 100px;
 column-gap: 100px;
 -moz-column-rule-style: solid;
 -webkit-column-rule-style: solid;
 column-rule-style: solid;
 -moz-column-rule-color: red;
 -webkit-column-rule-color: red;
 column-rule-color: red;}

.three-column {-moz-column-count: 3; -webkit-column-count: 3;
 column-count: 3;
 -moz-column-gap: 2em; -webkit-column-gap: 2em;
 column-gap: 2em;
 -moz-column-rule-style: dashed;
 -webkit-column-rule-style: dashed;
 column-rule-style: dashed;
 -moz-column-rule-color: green;
 -webkit-column-rule-color: green;
 column-rule-color: green;}

Compatibility

CSS3 Chrome 2+, Firefox 3.5+, Safari 3+

Notes
• Firefox browsers support this property as –moz-column-rule-color and WebKit-

based browsers like Chrome and Safari support it as –webkit-column-rule-
color.

• A column rule style must at least be set to see the effect of this property.

column-rule-style
This property defines the style of the divider rule between columns in a multicolumn
text flow.

Syntax
column-rule-style: dashed | dotted | double | groove | hidden | inset |
 inherit | none | outset | ridge | solid

where the initial value is none.

 664 P a r t I I : C o r e S t y l e 664 P a r t I I : C o r e S t y l e

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;
 -moz-column-gap: 100px; -webkit-column-gap: 100px;
 column-gap: 100px;
 -moz-column-rule-style: solid;
 -webkit-column-rule-style: solid;
 column-rule-style: solid;}

.three-column {-moz-column-count: 3; -webkit-column-count: 3; column-count: 3;
 -moz-column-gap: 2em; -webkit-column-gap: 2em; column-gap: 2em;
 -moz-column-rule-style: dashed;
 -webkit-column-rule-style: dashed;
 column-rule-style: dashed;}

Compatibility

CSS3 Chrome 2+, Firefox 3.5+, Safari 3+

Note
• Firefox browsers support this property as –moz-column-rule-style and WebKit-

based browsers like Chrome and Safari support it as –webkit-column-rule-style.

column-rule-width
This property defines the width of a rule between columns in a multicolumn text flow.

Syntax
column-rule-width: non-negative length | medium | thick | thin | inherit

where the width values here match standard border values, with the default being medium.

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;
 -moz-column-gap: 100px; -webkit-column-gap: 100px;
 column-gap: 100px;
 -moz-column-rule-style: solid;
 -webkit-column-rule-style: solid;
 column-rule-style: solid;
 -moz-column-rule-width: 25px;
 -webkit-column-rule-width: 25px;
 column-rule-width: 25px;}

.three-column {-moz-column-count: 3; -webkit-column-count: 3; column-count: 3;
 -moz-column-gap: 2em; -webkit-column-gap: 2em; column-gap: 2em;
 -moz-column-rule-style: dashed;
 -webkit-column-rule-style: dashed;
 column-rule-style: dashed;
 -moz-column-rule-width: thin;
 -webkit-column-rule-width: thin;
 column-rule-width: thin;}

Compatibility

CSS3 Chrome 2+, Firefox 3.5+, Safari 3+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 665
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 665

Note
• Firefox browsers support this property as –moz-column-rule-width and WebKit-

based browsers like Chrome and Safari support it as –webkit-column-rule-width.

column-width
This property defines the width of each column in a multicolumn text flow.

Syntax
column-width: length | auto

where length is a positive value for width between columns in any valid CSS measurement.

Examples
.two-column {-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;
 -moz-column-width: 350px;
 -webkit-column-width: 350px;
 column-width: 350px;}

.three-column {-moz-column-count: 3; -webkit-column-count: 3; column-count: 3;
 -moz-column-width: 6em;
 -webkit-column-width: 6em;
 column-width: 6em;}

Compatibility

CSS3 Chrome 2+, Firefox 1.5+, Safari 3+

Notes
• Firefox browsers support this property as –moz-column-width and WebKit-based

browsers like Chrome and Safari support it as –webkit-column-width.

• If column widths are set too small or large for the number of columns and text
provided, the browser collapses to what makes sense to flow the text.

columns
This property is a shorthand definition of the number of columns and their widths in a
multicolumn text flow.

Syntax
columns: column-count width

where column-count is a positive integer for the number of columns to flow the text into, and
width is a positive CSS length defining the width of each column.

Examples
.two-column {-webkit-columns: 2 100px ; columns: 2 100px ;}

.three-column {-webkit-columns: 3 10em; columns: 3 10em;}

 666 P a r t I I : C o r e S t y l e 666 P a r t I I : C o r e S t y l e

Compatibility

CSS3 Safari 3+

Notes
• WebKit-based browsers support this property as –webkit-columns.

• Safari documentation currently reverses the values from the CSS3 specification, but
in either case it does not consistently support width values regardless of the
position of values.

filter
This Microsoft-proprietary property is used to apply visual effects to associated elements.

Syntax
filter: filtername(filtervalues) ... filtername(filtervalues)

where filternames is one of the numerous filters shown in Table 6-8 or transitions shown in
Table 6-9. It is possible to have multiple filters. They need to be separated by a space. The
filters are processed in order. Always place transitions last.

Transitions are different from filters in that they toggle between two display blocks and
the transition needs to be activated. This is done through JavaScript by calling the Apply()
function on the filter, updating the object’s visibility, and then calling play() on the
filter. In this example, transition is the id of a div with image1 and image2 as children:

transition.filters[0].Apply();
image1.style.visibility = "hidden";
image2.style.visibility = "visible";
transition.filters[0].play();

Note that all transitions have the attributes duration, which is a number in seconds, and
enabled, which is true or false.

TABLE 6-8 Microsoft Filter Summary

Filter Type Example

Alpha filter: progid:DXImageTransform.Microsoft.Alpha(style=2,
opacity=0,finishOpacity=100);

AlphaImageLoader filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
(src=tiger.jpg, sizingmethod=scale);

/* sizingmethod : crop | image | scale */

BasicImage filter: progid:DXImageTransform.Microsoft.BasicImage(grays
cale=0,xray=1,mirror=1,invert=1,opacity=0.55,rotation=1);

Blur filter: progid:DXImageTransform.Microsoft.Blur(PixelRadiu
s=4,MakeShadow=false);

Chroma filter: progid:DXImageTransform.Microsoft.Chroma(
Color=#FFFFFF);

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 667
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 667

Filter Type Example

Compositor filter: progid:DXImageTransform.Microsoft.
Compositor(function=1);

where function is the function number defined at http://msdn.microsoft.com/
en-us/library/ms532885(VS.85).aspx. The functions describe various ways of
compositing two regions. In order for the compositing to occur, you must take
the following steps:

1. Define the region for the filter and set the style appropriately.

2. Fill the region with inputA.

3. Call compositor.filters[0].Apply();.

4. Update the innerHTML of the region with inputB.

5. Call compositor.filters[0].Play();.

DropShadow filter: progid:DXImageTransform.Microsoft.DropShadow(Color
=999999,offX=3,offY=2,
positive=true);

Emboss filter: progid:DXImageTransform.Microsoft.Emboss();

Engrave filter: progid:DXImageTransform.Microsoft.Engrave();

Flip Horizontal
(Basic Image)

filter: progid:DXImageTransform.Microsoft.
BasicImage(rotation=2, mirror=1);

Flip Vertical (Basic
Image)

filter: progid:DXImageTransform.Microsoft.
BasicImage(mirror=1)

Glow filter: progid:DXImageTransform.Microsoft.Glow(
color=#ff4500,strength=5);

Gradient filter: progid:DXImageTransform.Microsoft.Gradient(gradien
tType=0,startColorStr=#0000ff,endColorStr=#ff8c00);

Grayscale (Basic
Image)

filter: progid:DXImageTransform.Microsoft.
BasicImage(grayscale=1);

ICMFilter filter: progid:DXImageTransform.Microsoft.ICMFilter(intent=
'Picture');

where intent can be Picture | Proof | Graphic | Match

Invert (Basic
Image)

filter: progid:DXImageTransform.Microsoft.
BasicImage(invert=1);

Light filter: progid:DXImageTransform.Microsoft.Light(enabled=1);

where the light source and color are defined by a function such as
addCone(iX1, iY1, iZ1, iX2, iY2, iRed, iGreen, iBlue,
iStrength, iSpread)

MaskFilter filter: progid:DXImageTransform.Microsoft.MaskFilter(color
=colorname)

where colorname is the color value (name or hex) to use as the mask.

TABLE 6-8 Microsoft Filter Summary (continued)

 668 P a r t I I : C o r e S t y l e 668 P a r t I I : C o r e S t y l e

TABLE 6-8 Microsoft Filter Summary (continued)

Transition Name Example

Barn filter:progid:DXImageTransform.Microsoft.Barn(
orientation=horizontal, motion=out);

where

orientation: horizontal | vertical
motion: in | out

BlendTrans Requires JavaScript to initialize:
transition.style.filter="BlendTrans(duration=12)";

TABLE 6-9 Microsoft Transitions Summary

Filter Type Example

Matrix filter: progid:DXImageTransform.Microsoft.Matrix(M11=first
row/first column, M12=first row/second column, M21=second
row/first column, M22=second row/second column,
sizingmethod="clip to original" | "auto expand"')

The matrix values are a bit complicated and care should be taken in their
calculation. As an example of complexity, here is a simple example that does
a 30 degree rotation.

filter: progid:DXImageTransform.Microsoft.Matrix(M
11='0.7071067811865476', M12='0.7071067811865475',
M21='-0.7071067811865475', M22='0.7071067811865476',
sizingmethod='auto expand');

Mirror (Basic
Image)

filter: progid:DXImageTransform.Microsoft.
BasicImage(mirror=1);

MotionBlur filter: progid:DXImageTransform.Microsoft.MotionBlur(
direction=45,strength=20);

Pixelate filter: progid:DXImageTransform.Microsoft.Pixelate(
maxsquare=pixelwidth);

where pixelwidth ranges from 2 to 50 with a default value of 50.

Rotation (Basic
Image)

filter: progid:DXImageTransform.Microsoft.BasicImage(rotat
ion=rotatevalue)

where rotatevalue = 1 for 90 degrees, 2 for 180 degrees, 3 for 270 degrees,
and 0 for no rotation.

Shadow filter: progid:DXImageTransform.Microsoft.Shadow(
direction=135,color=#ff8c00,strength=12);

Wave filter: progid:DXImageTransform.Microsoft.Wave(freq=1,
LightStrength=30,Phase=50,Strength=12);

Xray filter: progid:DXImageTransform.Microsoft.
BasicImage(xray=1);

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 669
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 669

Transition Name Example

Blinds filter:progid:DXImageTransform.Microsoft.Blinds(bands=6,
direction='DOWN');

where

bands: number indicating number of blinds
direction: up | down | right | left

CheckerBoard filter:progid:DXImageTransform.Microsoft.CheckerBoard(square
sX=4,squaresY=8, direction='right', duration=2);

where

squaresX: number indicating squares on the X-axis
squaresY: number indicating squares on the Y-axis
direction: up | down | right | left

Fade filter:progid:DXImageTransform.Microsoft.Fade(duration=2,
overlap=0.5);

where

overlap: number between 0 and 1 indicating fraction of time that both objects
are visible

GradientWipe filter:progid:DXImageTransform.Microsoft.
Wipe(GradientSize=0.7, wipeStyle=0, motion='forward');
GradientSize: number between 0 and 1 indicating fraction covered by the
gradient band
wipeStyle: 0 for left to right | 1 for top to bottom
motion: forward | reverse

Inset filter:progid:DXImageTransform.Microsoft.Inset();

Iris filter:progid:DXImageTransform.Microsoft.
Iris(irisStyle='star', motion='out');

where

irisStyle: circle | cross | plus | square | star
motion: in | out

Pixelate filter:progid:DXImageTransform.Microsoft.Pixelate(
MaxSquare=10,Duration=2);

where

MaxSquare: number indicating the max width of a pixel in the square

RadialWipe filter:progid:DXImageTransform.Microsoft.RadialWipe(
wipeStyle='clock');

where

wipeStyle: clock | wedge | radial

RandomBars filter:progid:DXImageTransform.Microsoft.RandomBars(
orientation='vertical');

where

orientation: horizontal | vertical

TABLE 6-9 Microsoft Transitions Summary (continued)

 670 P a r t I I : C o r e S t y l e 670 P a r t I I : C o r e S t y l e

Transition Name Example

RandomDissolve filter:progid:DXImageTransform.Microsoft.RandomDissolve(
duration=4);

RevealTrans filter: progid:DXImageTransform.Microsoft.RevealTrans(
duration=5,transition=2);

where

transition is set to a number that indicates the fade-in/fade-out effect desired
(http://msdn.microsoft.com/en-us/library/ms532942(VS.85).aspx)

Slide filter:progid:DXImageTransform.Microsoft.
Slide(slideStyle='hide', bands=3, duration=2);

where

bands: number of bands
slideStyle: hide | push | swap

Spiral filter:progid:DXImageTransform.Microsoft.
Spiral(GridSizeX=32, GridSizeY=16, duration=3);

where

GridSizeX: number
GridSizeY: number

Stretch filter:progid:DXImageTransform.Microsoft.Stretch(
stretchStyle='spin', duration=4);

where

stretchStyle: hide | spin | push

Strips filter:progid:DXImageTransform.Microsoft.Strips(Duration=5,
Motion='rightdown');

where

Motion: leftdown | rightdown | leftup | rightup

Wheel filter:progid:DXImageTransform.Microsoft.Wheel(spokes=10,
duration=3);

where

spokes: number

Zigzag filter:progid:DXImageTransform.Microsoft.Zigzag
(GridSizeX=16, GridSizeY=16, Duration=2);

where

GridSizeX: number
GridSizeY: number

TABLE 6-9 Microsoft Transitions Summary (continued)

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 671
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 671

Examples
<h2 style="filter: progid:DXImageTransform.Microsoft.Blur(Add = 1,
Direction = 90, Strength = 20);width: 100%;">This header is all blurry.</h2>

<p style="filter:progid:DXImageTransform.Microsoft.MotionBlur(strength=50)
 progid:DXImageTransform.Microsoft.BasicImage(rotation=2,
mirror=1);">IT WAS THE BEST of times, it was the worst of times.</p>

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>filter - transitions Example</title>
<meta http-equiv="X-UA-Compatible" content="IE=7">
<style type="text/css" media="screen">
div {padding: 30px;}
#rd{filter:progid:DXImageTransform.Microsoft.RandomDissolve(duration=4);}
</style>
<script type="text/javascript">

window.onload = function () {
 document.getElementById("rd").filters[0].Apply();
 document.getElementById("rdimage1").style.visibility = "hidden";
 document.getElementById("rdimage2").style.visibility = "visible";
 document.getElementById("rd").filters[0].play();
};
</script>
<body>
<h2>Random Dissolve</h2>
<div id="rd" style="position:absolute; top: 50px; left: 10px; height:
250px; width: 175px;">

<img src="tucker.jpg" id="rdimage1" width="200" height="133"
style="position:absolute;top:0px;left:0px;">
<img src="angus.jpg" id="rdimage2" width="200" height="133"
style="visibility:hidden;position:absolute;top:0px;left:0px;">
</div>
</body>
</html>

Compatibility

No standard IE 4+

 672 P a r t I I : C o r e S t y l e 672 P a r t I I : C o r e S t y l e

Notes
• Under IE 8 this property should be written as –ms-filter to show it is an

extension. You may have to use compatibility mode manually or via a header to
make filters and transitions work otherwise.

• When using the filter property for Internet Explorer, make sure that the object
has layout in the page which is usually accomplished by setting its size or position.

• A common use of filters that seems to be an acceptable hack to many Web developers
is the use of the alpha() filter to emulate the opacity property in Internet Explorer:

.opacity {opacity: 0.7; filter: alpha(opacity=70); zoom: 1;}

gradient
This function creates a CSS gradient image that can be used anywhere an image URL is
required, including background-image, border-image, and list-style properties.

Syntax
Linear Syntax:
gradient: linear, start_point, end_point, stop1 [...stopN]

Radial Syntax:
gradient: radial, inner_center, inner_radius, outer_center, outer_radius,
stop1 [...stopN]

The syntax shows the type can be linear or radial and will take slightly different values
in each case. When start_point, end_point, inner_center, and outer_center are
used, they will be a pair of values that can be a number, percentage, or the keywords top,
bottom, left, and right. The values inner_radius and outer_radius are numbers that
can be specified only if the type is radial. The values stop1 (to N) are placeholders for the
color-stop() function that indicates what the color should be at a given point in the
gradient. The function color-stop() takes two arguments, the first of which is a number
between 0 and 1.0 or a percentage indicating the location of the stop. The second argument
is the color at that stop as a standard CSS color value. The functions from(color-value)
and to(color-value) are shorthand for color-stop(0, color-value) and color-
stop(1, color-value), respectively, and can be used instead.

Examples
<div style="height: 300px; width: 200px; padding: 20px;
 border: 5px solid black;
 background: -webkit-gradient(linear, left top, left bottom,
from(#f00), to(rgba(0,255,0,0)), color-stop(.5, #00f));" ></div>

<div style="height: 300px; width: 200px; padding: 20px;
 border: 5px solid black;
 background: -webkit-gradient(radial, 100 100, 20, 200 200, 50,
from(#ff0), to(rgba(255,0,255,0)), color-stop(25%, #f00));" ></div>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 673
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 673

ONLINE http://htmlref.com/ch6/gradient.html

Compatibility

No specification Chrome 3+, Safari 4+

Notes
• In WebKit-based browsers this property is specified as –webkit-gradient.

• Generated gradients can be used anywhere that an image URL is specified.

image-rendering
This property defines the resampling method to use when stretching images.

Syntax
image-rendering: auto | inherit | optimizeSpeed | optimizeQuality

where the default value auto uses a bilinear resampling scheme to provide high quality
with decent speed, a value of optimizeQuality emphasizes quality over speed, and
optimizeSpeed renders quickly with some loss of quality in the resample.

Examples
<!-- zoom in browser to see effect -->

<img src="star.png" style="image-rendering: optimizeQuality; interpolation-
mode:bicubic;">

<img src="star.png" style="image-rendering: optimizeSpeed; interpolation-
mode:nearest-neighbor;">

 674 P a r t I I : C o r e S t y l e 674 P a r t I I : C o r e S t y l e

Compatibility

No specification Firefox 3.6+

Notes
• This property is adopted from an SVG property.

• This property is similar to interpolation-mode for Internet Explorer.

ime-mode
This Microsoft-proposed CSS property is used to set the state of an Input Method Editor
(IME), for use with Chinese, Japanese, and Korean character sets.

Syntax
ime-mode: auto | active | inactive | disabled

Example
<textarea style="ime-mode:active;"></textarea>

Compatibility

No specification Firefox 3+, IE 5+

Notes
• Under IE 8 this property is known as –ms-ime-mode to correctly show it is an

extension.

• Firefox 3 also supports the value of normal.

interpolation-mode
This property defines the resampling method to use when stretching images.

Syntax
interpolation-mode: bicubic | nearest-neighbor

Example
<!-- zoom in browser to see effect -->

<img src="star.png" style="interpolation-mode:bicubic; image-rendering:
optimizeQuality;">

<img src="star.png" style="interpolation-mode:nearest-neighbor;
image-rendering: optimizeSpeed;">

Compatibility

No specification IE 7+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 675
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 675

Notes
• Under IE 8 this property is known as –ms-interpolation-mode to correctly show

it is an extension.

• At standard page zoom nearest-neighbor is used; otherwise, bicubic is
employed when not specified.

• This property is similar to image-rendering for Firefox.

layout-grid
This Microsoft-proposed CSS property defines a grid to be used in laying out Japanese or
Chinese characters in a Web document. This is a shorthand property for the more specific
layout grid properties.

Syntax
layout-grid: layout-grid-mode layout-grid-type layout-grid-line
layout-grid-char

where each value corresponds to the more specific property.

Example
<p style="layout-grid: char line 12px 12px .5in;">
 A short text sample.</p>

Compatibility

No specification IE 5+

Note
• Under IE 8 this property is known as –ms-layout-grid to correctly show it is

an extension.

layout-grid-char
This Microsoft-proposed CSS property defines the size of the character grid used for laying
out Japanese or Chinese characters in a Web document.

Syntax
layout-grid-char: none | auto | length | percentage

where length is any positive length unit and percentage is a value derived from the size of the
parent element the rule is applied to.

Example
<p style="layout-grid-char: 50px">
 A very short text sample.</p>

Compatibility

No specification IE 5+

 676 P a r t I I : C o r e S t y l e 676 P a r t I I : C o r e S t y l e

Note
• Under IE this property is known as –ms-layout-grid-char to correctly show it is

an extension.

layout-grid-line
This Microsoft-proposed CSS property defines the gridline value used for laying out
Japanese or Chinese characters in a Web document.

Syntax
layout-grid-line: none | auto | length | percentage

where length is any positive length unit and percentage is a value derived from the size of the
parent element the rule is applied to.

Example
<p style="layout-grid-line: 100px;">
 A short text sample

 with line breaks so

 the meaning of this

 property will be obvious.</p>

Compatibility

No specification IE 5+

Note
• Under IE this property is known as –ms-layout-grid-line to correctly show it is

an extension.

layout-grid-mode
This Microsoft-proposed CSS property defines whether the text layout grid uses one or
two dimensions.

Syntax
layout-grid-mode: both | none | line | char

where line specifies to use a line grid, char specifies to use a character grid, and both
specifies to use both grids. A value of none turns all grids off. The default is both.

Example
<p style="layout-grid-mode: none; layout-grid-line: 100px;">
 A short text sample

 with layout-grid-mode

 set to a value of none

 to turn off the grid.</p>

Compatibility

No specification IE 5+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 677
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 677

Note
• Under IE 8+ this property is known as –ms-layout-grid-mode to correctly show it

is an extension.

layout-grid-type
This Microsoft-proposed CSS property defines the type of grid to be used for laying out
Japanese or Chinese characters in a Web document.

Syntax
layout-grid-type: fixed | loose | strict

where fixed is used for a monospace font layout, strict is used for most complex
ideographic character types, and loose is used for more alphabetic types like hiragana
in Japanese.

Example
<p style="layout-grid-type: strict; layout-grid-line: 55px;">
 A short text sample would likely be in Chinese, not English.</p>

Compatibility

No specification IE 5+

Note
• Under IE 8+ this property is known as –ms-layout-grid-type to correctly show it

is an extension.

line-break
This property defines line-breaking rules for Asian text.

Syntax
line-break: normal | strict

Example
p {line-break: normal;}

Compatibility

No specification Chrome 1+, IE 5+, Safari 2+

Notes
• Under IE 8+ this property is known as –ms-line-break to correctly show it is an

extension. Under WebKit-based browsers this is called –webkit-line-break since
Safari 3.0 and –khtml-line-break since Safari 2.0.

• This property is deprecated according to Microsoft documentation and should be
replaced by word-break per the upcoming CSS3 specification.

 678 P a r t I I : C o r e S t y l e 678 P a r t I I : C o r e S t y l e

marquee-direction
This property specifies the direction in which a marquee should move.

Syntax
marquee-direction: forward | reverse

See the notes for proprietary equivalents.

Example
<p style="overflow: auto;
 overflow-x:-webkit-marquee;
 display:-wap-marquee;
 overflow-style: marquee-line;
 width: 100px;
 -webkit-marquee-direction:right;
 -wap-marquee-dir: ltr;
 marquee-direction:reverse;">
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</p>

Compatibility

CSS3 Chrome 1+, Opera 8+, Safari 2+

Notes
• The default value is forward.

• This property can be replicated by using the HTML <marquee> tag and setting the
direction attribute to left | right | up | down.

• The property was supported under Safari 2 as –khtml-marquee-direction.

• This property is supported as -webkit-marquee-direction in Safari 3+. The
syntax is
-webkit-marquee-direction: ahead | auto | backwards | down | forwards |
left | reverse | right | up

• This property is supported as -wap-marquee-dir in Opera. The syntax is
-wap-marquee-dir: ltr | rtl

• According to the standard, the actual direction of the marquee movement will
depend on the overflow-style and direction of text flow in the document
according to Table 6-10.

overflow-style Direction Value Forward Direction Reverse Direction

marquee-line ltr Left Right

rtl Right Left

marquee-block Up Down

TABLE 6-10 Marquee Direction Logic

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 679
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 679

Of course, if the marquee-style is set to alternate, the directions will flip back
and forth.

marquee-play-count
This property defines how many times the marquee runs.

Syntax
marquee-play-count: positive number | infinite

Example
 <p style="overflow: auto;
 overflow-x:-webkit-marquee;
 display:-wap-marquee;
 overflow-style: marquee-line;
 width: 100px;
 -webkit-marquee-repetition:5;
 -wap-marquee-loop: 5;
 marquee-play-count:5;">
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</p>

Compatibility

CSS3 Chrome 1+, Opera 8+, Safari 2+

Notes
• This property is replicable in many browsers using a <marquee> tag.

• The default value is 1, meaning the element performs its effect once.

• This property can be replicated using the HTML marquee tag and setting the loop
attribute to a number or infinite.

• This property is supported as -webkit-marquee-repetition in WebKit-based
browsers like Safari. It’s also known as -khtml-marquee-repetition in Safari 2.0.
In these browsers, the default is infinite. If it is not set to infinite, the element
will disappear after it completes the loops.

• This property is supported as -wap-marquee-loop in Opera browsers.

• For some reason, you may see a browser stop the marquee effect after a certain
number of iterations regardless of setting.

marquee-speed
This property defines how fast the marquee scrolls.

Syntax
marquee-speed: fast | normal | slow

Example
<p style="overflow: auto;
 overflow-x:-webkit-marquee;
 display:-wap-marquee;

 680 P a r t I I : C o r e S t y l e 680 P a r t I I : C o r e S t y l e

 overflow-style: marquee-line;
 width: 100px;
 -webkit-marquee-speed:fast;
 -wap-marquee-speed: fast;
 marquee-speed:fast;">
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</p>

Compatibility

CSS3 Chrome 1+, Opera 8+, Safari 2+

Notes
• This property is replicable in many browsers using a <marquee> tag.

• The default value is normal.

• The property is supported as –webkit-marquee-speed in Safari 3+ and -khtml-
marquee-speed in Safari 2.0.

• In Safari, there is an additional format:
-webkit-marquee-speed: distance / time

• The property is supported as –wap-marquee-speed in Opera browsers.

marquee-style
This property defines the motion of the marquee.

Syntax
marquee-style: alternate | scroll | slide

where alternate causes the marquee to bounce back and forth, scroll causes the
marquee to scroll completely off of one end before reappearing on the other end, and slide
causes the marquee to reset as soon as all of the content is visible.

Example
<p style="overflow: auto;
 overflow-x:-webkit-marquee;
 display:-wap-marquee;
 overflow-style: marquee-line;
 width: 100px;
 -webkit-marquee-style:alternate;
 -wap-marquee-style: alternate;
 -wap-marquee-loop: infinite;
 marquee-style:alternate;">
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</p>

Compatibility

CSS3 Chrome 1+, Opera 8+, Safari 2+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 681
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 681

Notes
• This property is replicable in many browsers using a <marquee> tag.

• The default value is scroll.

• This property can be replicated using the HTML marquee tag and setting the
behavior attribute to alternate | scroll | slide.

• This property is supported as -webkit-marquee-style in Safari 3+ and –khtml-
marquee-style in Safari 2.

• This property is supported as -wap-marquee-style in Opera.

mask
This property defines a mask to be used as a box’s overlay in order to clip the box to a
complex shape. This is a shorthand property for the more specific mask properties.

Syntax
mask: mask-attachment, mask-clip, mask-image, mask-repeat, mask-composite,
mask-box-image;

where each value corresponds to the more specific property.

Example
<div style="height: 100px;
 width: 200px;
 background-color: red;
 padding: 20px;
 border: 5px dashed black;
 -webkit-mask: scroll border -webkit-gradient(linear, left top,
left bottom, from(rgba(0,0,0,1)), to(rgba(0,0,0,0))) repeat border;"></div>

ONLINE http://htmlref.com/ch6/mask.html

 682 P a r t I I : C o r e S t y l e 682 P a r t I I : C o r e S t y l e

Compatibility

No specification Safari 3.1+

Note
• In WebKit-based browsers this property is –webkit-mask.

mask-attachment
This property specifies whether the mask should scroll or stay fixed when the page is scrolled.

Syntax
mask-attachment: fixed | scroll

where the mask will scroll with the page on scroll and will not move on fixed.

Example
<img src="main.jpg" style="-webkit-mask-image: -webkit-gradient(linear,
left top, right bottom, from(rgba(0,0,0,1)), to(rgba(0,0,0,0)));
-webkit-mask-attachment: fixed;">

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is –webkit-mask-attachment.

mask-box-image
This property specifies an image to be used as a mask over the border box of an element.

Syntax
mask-box-image: [url() | function()] top right bottom left x_repeat y_repeat

where url is the location of the image, function is a function that generates an image, top,
right, bottom, and left specify the distances from the edges of the image, and x_repeat
and y_repeat can be set to repeat, stretch, or round to indicate how the image is
altered to fit the dimensions.

Example
<img src="main.jpg" style="-webkit-mask-box-image: url(mask.png) 10 50 50
10 stretch;">

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is –webkit-mask-box-image.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 683
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 683

mask-clip
This property specifies whether the mask clips to the border, padding, or content.

Syntax
mask-clip: border | padding | content

where the mask clips to the specified option.

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>mask-clip Example</title>
<style type="text/css">
div {height: 50px; width: 150px;
 float: left;
 margin: 20px; padding: 20px;
 background-color: red;
 font: bold xx-large;
 border: 15px solid black;
 -webkit-mask-image: url(starmask.png);
 -webkit-mask-repeat: repeat;
 -webkit-mask-size: 20px 20px;}
</style>
</head>
<body>
<div style="-webkit-mask-clip: content;">content</div>
<div style="-webkit-mask-clip: border;">border</div>
<div style="-webkit-mask-clip: padding;">padding</div>
</body>
</html>

ONLINE http://htmlref.com/ch6/maskclip.html

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is –webkit-mask-clip.

 684 P a r t I I : C o r e S t y l e 684 P a r t I I : C o r e S t y l e

mask-composite
This property specifies the compositing style for the mask.

Syntax
mask-composite: border | padding

where the default is border.

Example
<div style="height: 100px; width: 200px; background-color: red;
 padding: 20px; border: 5px dashed black;
 -webkit-mask-image: -webkit-gradient(linear, left top, left
bottom, from(rgba(0,0,0,1)), to(rgba(0,0,0,0)));
 -webkit-mask-composite: padding;"></div>

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is specified as –webkit-mask-composite.

mask-image
This property specifies the image to be used for the element’s mask.

Syntax
mask-image: url(image) | function

where function is a function that generates an image.

Example
<img src="tucker.jpg" width="200" height="133"
 style="-webkit-mask-image: url(ovalmask.gif);">

ONLINE http://htmlref.com/ch6/maskimage.html

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 685
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 685

Compatibility

No specification Chrome 2+, Safari 3.1+

Note

• In WebKit-based browsers this property is –webkit-mask-image.

mask-origin
This property specifies how the position of the mask should be calculated by setting the
origin relative to different locations within an element’s box.

Syntax
mask-origin: border | content | padding

where the mask will be anchored to the upper-left corner of the element’s border, content, or
padding based on the specified option.

Example
<div style="height: 100px; width: 200px;
 background-color: red;
 padding: 20px;
 border: 5px dashed black;
 -webkit-mask-image: -webkit-gradient(linear, left top, left bottom,
from(rgba(0,0,0,1)), to(rgba(0,0,0,0)));
 -webkit-mask-origin: padding;
 -webkit-mask-clip: padding;" >
</div>

Compatibility

No specification Chrome 3+, Safari 4+

Notes

• In WebKit-based browsers this property is –webkit-mask-origin.

• If mask-origin is set to padding and mask-clip is set to border, it will act as if
a mask with alpha value 0 is over the border, therefore rendering it invisible.

mask-position
This property specifies the position of the mask.

Syntax
mask-position: xpos ypos

 686 P a r t I I : C o r e S t y l e 686 P a r t I I : C o r e S t y l e

where xpos and ypos are set according to the more specific mask-position-x and mask-
position-y properties.

Examples
<img src="tucker.jpg" width="200" height="133"
 class="masked" style="-webkit-mask-position: 10px 10px;">

<img src="tucker.jpg" width="200" height="133"
 class="masked" style="-webkit-mask-position: right top;">

<img src="tucker.jpg" width="200" height="133"
 class="masked" style="-webkit-mask-position: 50% 50%;">

ONLINE http://htmlref.com/ch6/maskposition.html

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is known as –webkit-mask-position.

mask-position-x
This property specifies the x-coordinate in the position of the mask.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 687
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 687

Syntax
mask-position-x: length | percentage | left | center | right

Example
<img src="example.jpg" style="-webkit-mask-image: url(mask.png);
 -webkit-mask-repeat: no-repeat;
 -webkit-mask-position-x: 180px;">

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is known as –webkit-mask-position-x.

mask-position-y
This property specifies the y-coordinate in the position of the mask.

Syntax
mask-position-y: length | percentage | top | center | bottom

Example
<img src="example.jpg" style="-webkit-mask-image: url(mask.png);
 -webkit-mask-repeat: no-repeat;
 -webkit-mask-position-y: 160px;">

Compatibility

No specification Chrome 2+, Safari 3.1+

Note
• In WebKit-based browsers this property is known as –webkit-mask-position-y.

mask-repeat
This property specifies how the mask image will repeat.

Syntax
mask-repeat: repeat | repeat-x | repeat-y | no-repeat

where the default is repeat.

Examples
<img src="tucker.jpg" style="-webkit-mask-image: url(star.png);
 -webkit-mask-repeat: repeat-x;">

<img src="tucker.jpg" style="-webkit-mask-image: url(star.png);
 -webkit-mask-repeat: no-repeat;">

 688 P a r t I I : C o r e S t y l e 688 P a r t I I : C o r e S t y l e

ONLINE http://htmlref.com/ch6/maskrepeat.html

Compatibility

No specification Chrome 2+, Safari 3.1+

Notes
• In WebKit-based browsers this property is known as –webkit-mask-repeat.

• If the value is not set to repeat, any area that is not covered by the mask will be
treated as if there is a mask with an alpha value of 0 over it and that area will not
display.

mask-size
This property specifies the size of a mask.

Syntax
mask-size: length [length]

where one length value indicates both the width and height and two length values indicate
the width first and then the height.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 689
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 689

Example
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>mask-size Example</title>
<style type="text/css">
img.masked {-webkit-mask-image: url(starmask3.png);}
</style>
</head>
<body>
<img src="tucker.jpg" width="200" height="133"
 class="masked">
<img src="tucker.jpg" width="200" height="133"
 class="masked" style="-webkit-mask-size: 10px;">
<img src="tucker.jpg" width="200" height="133"
 class="masked" style="-webkit-mask-size: 50px 50px;">
<img src="tucker.jpg" width="200" height="133"
 class="masked" style="-webkit-mask-size: 200px 133px;">
</body>
</html>

ONLINE http://htmlref.com/ch6/masksize.html

Compatibility

No specification Chrome 3+, Safari 4+

 690 P a r t I I : C o r e S t y l e 690 P a r t I I : C o r e S t y l e

Note
• In WebKit-based browsers this property is –webkit-mask-size.

opacity
This property specifies the transparency of an element.

Syntax
opacity: alphavalue | inherit

where alphavalue is a number ranging from 0.0, fully transparent, to 1.0, fully opaque.

Examples
#tng {opacity: 0.8; background-color: blue;}
#invisible {opacity: 0;}
#blam {opacity: 1;}
#ie2 {opacity: 0.7; filter: alpha(opacity=70); zoom: 1;}

Compatibility

CSS3 Chrome 1+, Firefox 1+, IE 4+ (using filter property), Opera 9+, Safari 1.2+

Note
• When using the filter property for Internet Explorer, make sure that the opaque

object that you will apply the effect to has layout, which is usually accomplished by
setting its size or position.

outline-offset
This property defines the offset from an element’s border and its outline.

Syntax
outline-offset: length | inherit

where length is any valid CSS length value used to move the outline away from the
element’s border. Negative values are supported and will put the outline within the
element’s border.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 691
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 691

Examples
#offset1 {outline: dashed 4px green; border: solid 10px red;
outline-offset: 15px;}

#offset2 {outline: dashed 4px green; border: solid 10px red;
outline-offset: -45px;}

Compatibility

CSS3 Firefox 1.5+, Opera 9.5+, Safari 1.2+

Note
• Before Firefox 1.5, Mozilla browsers supported the equivalent –moz-outline-

offset property.

outline-radius
This property defines the rounding of the corners on an outline.

Syntax
outline-radius: lengths | inherit

where lengths is up to four valid CSS length or percentage values to round the corners of the
outline. When multiple values are used, they are applied starting with the top left and
proceeding to top right, bottom right, and finally bottom left. The values copy into the
locations opposite, similar to how margins and paddings are handled in CSS.

Examples
#radius1 {-moz-outline-radius: 20px;}

#radius2 {-moz-outline-radius: 20px 5px;}

#radius3 {-moz-outline-radius: 20px 60px 5px 45px;}

Compatibility

CSS3 speculative Firefox 3+

Notes
• This property is alluded to in CSS3 discussions, though it is not currently

documented. The discussion here is based upon the current implementation in
Mozilla-based browsers, which support it as –moz-outline-radius.

• Mozilla browsers also define –moz-outline-radius-topleft, -moz-outline-
radius-topright, -moz-outline-radius-bottomright, and –moz-outline-
radius-bottomleft to set the corners individually.

overflow-style
This property allows a marquee to be used in the case of a text overflow.

Syntax
overflow-style: auto | marquee-block | marquee-line

 692 P a r t I I : C o r e S t y l e 692 P a r t I I : C o r e S t y l e

The initial value is auto, which allows the user agent to determine the scrolling effect. A
value of marquee-line employs horizontal scrolling, and a value of marquee-block
employs vertical scrolling. The particular directions left to right or up and down will
depend on the text direction in the document.

Example
<p style="overflow: auto;
 overflow-x:-webkit-marquee;
 display:-wap-marquee;
 overflow-style: marquee-line;
 width: 100px;">
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</p>

Compatibility

CSS3 Chrome 1+, Opera 8+, Safari 2+

Notes
• In Safari, it is necessary to set an element’s overflow-x or overflow-y to

-webkit-marquee to activate marquee-style functionality.

• In Opera, it is necessary to set an element’s display to -wap-marquee to activate
marquee effects.

overflow-x
This property defines how content should behave when it exceeds the width of its enclosing
element.

Syntax
overflow-x: auto | hidden | scroll | visible

Example
<p style="overflow-x: scroll; width: 100px;">
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</p>

Compatibility

CSS3 Chrome 2+, Firefox 1+, IE 4+, Opera 9.5+, Safari 3+

Notes
• This property is correctly written as –ms-overflow-x under IE 8 to show that it is

an extension.

• This is currently in the CSS3 specification and also supports values of no-display
and no-content.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 693
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 693

overflow-y
This property defines how content should behave when it exceeds the height of its
enclosing element.

Syntax
overflow-y: auto | hidden | scroll | visible

Example
<p style="overflow-y: scroll; height: 25px; width: 50px;
 background-color: #00f;">
ABC

DEF

GHI

JKL

MNO

PQR

STU

VWXYZ </p>

Compatibility

CSS3 Chrome 2+, Firefox 1+, IE 4+, Opera 9.5+

Notes
• This property is correctly written as –ms-overflow-y under IE 8 to indicate it as an

extension.

• This is currently in the CSS3 specification and also supports values of no-display
and no-content.

• Some Firefox versions put the scroll bar the wrong direction with this property.

perspective
This property is used to give a 3-D sense of depth to an element. Only the children of the
element are given the noted perspective, not the actual element itself.

Syntax
perspective: none | number

where number is set to the distance of the z=0 plane from the viewer. The default is none.

Examples
<div style="height:100px;width:180px;background-color:red;
-webkit-perspective:200;">Perspective set.

 <div style="height:50px;width:100px;background-color:blue;-webkit-
transform:rotateY(55deg);">
 Child gains perspective.
 </div>
</div>

 694 P a r t I I : C o r e S t y l e 694 P a r t I I : C o r e S t y l e

<div style="height:100px;width:180px;background-color:red;" >No perspective
set.
 <div style="height:50px;width:100px;background-color:blue;-webkit-
transform:rotateY(55deg);">
 No perspective used.
 </div>
</div>

Compatibility

CSS3 Safari 4+

Notes
• WebKit supports this property as –webkit-perspective, though it is currently

only available in the iPhone and the development builds of Safari 4+ on Macs.

• This property only works in conjunction with another transform because it alters
the way the other transform acts.

perspective-origin
This property is used to set the x and y origins for the –webkit-perspective property.

Syntax
perspective-origin: percentage | length | left | center | right [percentage |
 length | top | center | bottom]

where the default value is 50% 50%.

Example
<div style="height:200px;width:200px;background-color:red;
-webkit-perspective:200;-webkit-perspective-origin:right bottom;">
 Perspective set.
 <div style="position: relative;left: 50px;top: 50px;height:50px;

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 695
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 695

width:120px;background-color:blue;-webkit-transform:rotateY(55deg);">
 Child gains perspective.
 </div>
</div>

Compatibility

CSS3 Safari 4+

Notes
• WebKit supports this property as –webkit-perspective-origin, though it is

currently only available in the iPhone and the development builds of Safari 4+ on
Macs.

• This property only works in conjunction with the –webkit-perspective property.

resize
This CSS3 property is used to define whether an element should be resized and, if so, upon
what axis.

Syntax
resize: both | horizontal | none | vertical

Examples
<div style="height: 100px;width: 100px;margin: 100px;border: 1px solid
black;overflow: auto;resize: both;">Resize both ways</div>

<form action="#" method="get">
 <div><label>Username:
 <input type="text" name="username" style="resize: horizontal;">
 </label></div>
 <div><label>Comments:
 <textarea name="comments" style="resize: vertical;"> </textarea>
 </label>
</div>
</form>

 696 P a r t I I : C o r e S t y l e 696 P a r t I I : C o r e S t y l e

The visual presentation of how elements should be resized is not set, but so far it appears
that supporting browsers present a bottom-right resize corner indication.

Compatibility

CSS3 Chrome 3+, Safari 3+

Notes
• The property applies only to elements that do not have an overflow value of

visible. In general, this means that often you may set overflow: auto on
elements you wish to resize, as visible is the common value. Form fields, of
course, do not have that value and require no extra property.

• This property is commonly used on <textarea> tags.

ruby-align
This property defines the alignment of Ruby text as defined by a <rt> tag, in relation to
base text defined by a <ruby> tag.

Syntax
ruby-align: auto | center | distribute-letter | distribute-space | left |
 line-edge | right

The default value of auto leaves it to the browser to align the Ruby text. A value of center
centers the Ruby text in the center of the text below if smaller or centers the reading guide
text above if larger. The distribute-letter and distribute-space values distribute the
reading guide text evenly across the text below, adding space in the case of distribute-
space. Values of left and right align the reading guide text above to the left or right when
it is smaller than the base text. A value of line-edge normally centers the reading guide text
unless the text is at the end of line where in that case it lines it up to the edge instead.

Examples
<p>123<ruby style="ruby-align: left;">日本語
<rp>(</rp><rt>にほんご</rt><rp>)</rp></ruby>456</p>

<p>123<ruby style="ruby-align: right;">日本語<rp>(</rp><rt>にほんご</
rt><rp>)</rp></ruby>456</p>

<p>123<ruby style="ruby-align: center;">日本語 <rp>(</rp><rt>にほんご</
rt><rp>)</rp></ruby>456</p>

<p>123<ruby style="ruby-align: distribute;">日本語<rp>(</rp><rt>にほんご</
rt><rp>)</rp></ruby>456</p>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 697
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 697

Compatibility

CSS3 IE 5+

Note
• This property would be correctly written as –ms-ruby-align under IE 8 to

indicate it is an extension, but for some reason it is not indicated as such in the
documentation.

ruby-overhang
This property defines the overhang of Ruby text as defined by a <rt> tag, in relation to base
text defined by a <ruby> tag in regard to adjacent characters.

Syntax
ruby-overhang: auto | none | whitespace

Examples
<p>123<ruby style="ruby-overhang: whitespace;">
 日本語 <rp>(</rp><rt>にほんご</rt><rp>)</rp>
</ruby>456</p>

<p>123<ruby style="ruby-overhang: auto;">
 日本語 <rp>(</rp><rt>にほんご</rt><rp>)</rp>
</ruby>456</p>

<p>123<ruby style="ruby-overhang: none;">
 日本語 <rp>(</rp><rt>にほんご</rt><rp>)</rp>
</ruby>456</p>

Compatibility

CSS3 IE 5+

Notes
• This property would be correctly written as –ms-ruby-overhang under IE 8, but

for some reason the documentation does not indicate this.

• The positioning can be quite subtle.

 698 P a r t I I : C o r e S t y l e 698 P a r t I I : C o r e S t y l e

ruby-position
This property defines the position of ruby text as defined by a <rt> tag, in relation to base
text defined by a <ruby> tag.

Syntax
ruby-position: above | inline

where the common value is above and a value of inline runs the guide text after the item.

Examples
<p>ruby-position:above <ruby style="ruby-position: above;">日本語
<rp>(</rp><rt>にほんご</rt><rp>)</rp></ruby></p>

<p>ruby-position: inline <ruby style="ruby-position: inline;">日本語
<rp>(</rp><rt>にほんご</rt><rp>)</rp></ruby></p>

Compatibility

CSS3 IE 5+

Note
• This property would be correctly written as –ms-ruby-position under IE 8, but

for some reason the documentation does not indicate this.

scrollbar-3dlight-color
This property is used to define a color for the top and left edges of the scroll box in
a scroll bar.

Syntax
scrollbar-3dlight-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<!-- space intentional for scroll bars -->
<form>
<div>
<textarea rows="1" cols="20" style="scrollbar-3dlight-color: red;">

</textarea>
</div>
</form>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 699
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 699

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-3dlight-color under IE 8

to show that it is an extension.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

scrollbar-arrow-color
This property is used to set the color of the arrow icon within a scroll bar.

Syntax
scrollbar-arrow-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<!-- space intentional for scroll bars -->
<form action ="#" method="get">
<div>
<textarea rows="1" cols="20" style="scrollbar-arrow-color: red;">

</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-arrow-color under IE 8 to

show that it is an extension.

• The arrows will not color until the scroll region is active and scrolling may be
needed.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

scrollbar-base-color
This property sets the base color for a scroll bar, which will include the scroll box, track, and
scroll arrows.

 700 P a r t I I : C o r e S t y l e 700 P a r t I I : C o r e S t y l e

Syntax
scrollbar-base-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<!-- space intentional for scroll bars -->
<form action="#" method="get">
<div>
<textarea rows="1" cols="20" style="scrollbar-base-color: red;">

</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-base-color under IE 8 to

show that it is an extension.

• Setting this property to define a base color and then overriding individual scroll
pieces may be useful.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

scrollbar-darkshadow-color
This property defines a shadow color for the right and bottom edges of a scroll bar.

Syntax
scrollbar-darkshadow-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<form action="#" method="get">
<div>
<textarea rows="10" cols="20" style="scrollbar-darkshadow-color: red;">

</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 701
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 701

Notes
• This property is correctly written as –ms-scrollbar-darkshadow-color under

IE 8 to show that it is an extension.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

scrollbar-face-color
This property defines a color for the face of a scroll bar, including arrow regions and the
scroll box.

Syntax
scrollbar-face-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<form action="#" method="get">
<div>
<textarea rows="10" cols="20" style="scrollbar-face-color: red;">

</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-face-color under IE 8 to

show that it is an extension.

• There is some variation in browser and version as to what parts of the scroll bar
may be colored by the property.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

scrollbar-highlight-color
This property defines a highlight color for a scroll bar and scroll arrows.

Syntax
scrollbar-highlight-color: color

where color is a standard CSS color value like #f00, red, and so on.

 702 P a r t I I : C o r e S t y l e 702 P a r t I I : C o r e S t y l e

Example
<form action="#" method="get">
<div>
<textarea rows="10" cols="20" style="scrollbar-highlight-color: red;">

</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-highlight-color under

IE 8 to show that it is an extension.

• Under modern versions of Internet Explorer, this property affects the scroll track
color that applies to the bottom of the top arrow, and to the right of the bottom
arrow. In this sense, it is acting as the highlight color.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

scrollbar-shadow-color
This property defines a color for the right and bottom edges of a scroll bar.

Syntax
scrollbar-shadow-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<form action="#" method="get">
<div>
<textarea rows="10" cols="20" style="scrollbar-shadow-color: red;">
</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-shadow-color under IE 8 to

show that it is an extension.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 703
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 703

scrollbar-track-color
This property defines the color of the scroll bar area upon which the scrolling box travels.

Syntax
scrollbar-track-color: color

where color is a standard CSS color value like #f00, red, and so on.

Example
<form action="#" method="get">
<div>
<textarea rows="10" cols="20" style="scrollbar-track-color: red;">
</textarea>
</div>
</form>

Compatibility

No specification IE 5.5+, Opera 9.5+

Notes
• This property is correctly written as –ms-scrollbar-track-color under IE 8 to

show that it is an extension.

• A mention in the CSS3 UI specification says that this type of feature may be
considered later.

size
This property used within @page rules specifies the size and orientation of a page box for
printing.

Syntax
size: length length | auto | portrait | landscape | inherit

where the absolute length units are generally defined as two values for height and width.
Relative values include landscape and portrait. The default value is auto.

Examples
@page {size: landscape;}
@page {size: 8.5in 11in;} /* standard US paper size */
@page {size: 6in 10in;} /* funny width and height */

Compatibility

CSS2 only, 3 No browser support save buggy Opera implementation.

 704 P a r t I I : C o r e S t y l e 704 P a r t I I : C o r e S t y l e

Notes
• CSS 2.1 does not support this property, though it is reintroduced in CSS3.

• Even if a browser supports this property to some degree, the print driver interaction
may cause trouble. For example, in Opera 10, landscape mode did not force the
print driver to actually change page orientation, so content was clipped.

text-align-last
This property defines the text alignment rules on the alignment of the last line of an element.

Syntax
text-align-last: auto | center | justify | left | right | inherit

Example
p {text-align: justify; text-align-last: left;}
.allRighty {text-align: justify; text-align-last: right;}

Compatibility

CSS3 IE 5+

Notes
• Under IE 8 this property is defined as –ms-text-align-last as it is currently an

extension.

• This property would apply to an element that has only a single line in the same
manner as text-align.

text-autospace
This property defines spacing values for ideographic text (for example, Kanji characters)
when combining it with different types of characters, such as Western-language text,
numbers, and parentheses.

Syntax
text-autospace: ideograph-alpa | ideograph-numeric | ideograph-parenthesis |
 ideograph-space | none

where ideograph-alpha indicates that extra spacing should be placed between ideographic
and non-ideographic text, ideograph-numeric adds spaces between ideographic text and
numbers, ideographic-parenthesis adds spaces when parentheses are used, and
ideograph-space adds extra space when the space is found after an ideographic character.

Examples
<p style="text-autospace: ideograph-alpha;">Japanese is 日本語 in Kanji.</p>

<p style="text-autospace: ideograph-numeric;">12345日本語678910</p>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 705
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 705

Compatibility

CSS3 speculative IE 5+

Notes
• As an extension this property is correctly written as -ms-text-autospace in IE 8

and beyond.

• The current CSS3 specification indicates this property is under consideration, but it
is not currently fully documented.

• The effect of this property can be a bit subtle, so you may have to increase font size
to notice it in places and closely compare it to the same text without the property.

text-fill-color
This property defines the color for filling in a text block.

Syntax
text-fill-color: colorvalue

where colorvalue is a typical color value like #f00 or red. By default, the fill color will be
whatever the current color is.

Example
<h1 style="font-size: 70px; -webkit-text-fill-color: red;">
Merry Christmas</h1>

Compatibility

No specification Chrome 2+, Safari 3+

Notes
• Under WebKit-based browsers this property is defined as -webkit-text-fill-

color.

• This is often used in conjunction with text-stroke.

text-justify
This property provides greater control over how justified text should be aligned and spaced.

Syntax
text-justify: auto | distribute | distribute-all-lines | inter-cluster |
 inter-ideograph | inter-word | kashida | newspaper

The default value of auto lets the browser define the justification algorithm to use. The
newspaper value changes the spacing between letters and words to justify. If you set
inter-word, it sets spacing solely between words. The value of distribute is similar to
newspaper but optimized for Asian languages. The value distribute-all-lines is the

 706 P a r t I I : C o r e S t y l e 706 P a r t I I : C o r e S t y l e

same as distribute though it also justifies the last line. A value of inter-cluster is used
to justify text that contains no interword spacing such as found in some Asian languages.
A value of inter-ideograph can justify lines of ideographic text dealing with spaces
between both ideograms and words.

Example
<p style="text-align: justify; text-justify: distribute-all-lines;
 width: 250px;">
This paragraph is not only justified, but the text-justify property
is set to a value that makes the last line justify as well.
</p>

Compatibility

CSS3 IE 5+

Notes
• Under IE 8 this property is known as –ms-text-justify to correctly show it is

an extension.

• MSDN documentation presents a value of distribute-center-last as being
defined, though it indicates it is not implemented and does not say what it does.
However, it could be inferred from its name that it does the same thing as
distribute but centers the final line.

• The CSS3 Text module does support this property with a value of Tibetan as well.
There is considerable detail in the justification algorithms. Hopefully, this can be
correctly implemented in user agents, so justified text will become desirable because
of its’ improved readability and be more commonly used in Web documents.

text-kashida-space
This Microsoft-proposed CSS property defines the ratio between Kashida expansion and
whitespace expansion in justified text. Kashida is a typographic effect used with Arabic
writing systems to elongate characters during the justification process.

Syntax
text-kashida-space: percentage | inherit

Example
.whiteOnly {text-align: justify;
 text-kashida-space: 0%;}
.stretchSome {text-align: justify; text-kashida-space: 50%;}
.stretchAll {text-kashida-space: 100%;}

Compatibility

No specification IE 5.5+

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 707
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 707

Notes
• Under IE 8 this property is known as –ms-text-kashida-space to correctly show

it is an extension.

• There is brief allusion to this property in the CSS3 specification suggesting that it
may eventually end up in the CSS3 Text module.

text-overflow
This property defines whether or not an ellipsis should be displayed when content
overflows a region.

Syntax
text-overflow: ellipsis | clip

Examples
p {width: 200px; border: 1px solid black;
 overflow: hidden; white-space: nowrap;
 background-color: orange;}

.overflow {-ms-text-overflow: ellipsis;
 -o-text-overflow: ellipsis;
 -webkit-text-overflow: ellipsis;
 text-overflow: ellipsis;}

Compatibility

CSS3 (see notes) Chrome 2+, IE 6+, Opera 9+, Safari 3+

Notes
• For this property to work, the overflow property of the applied element should be

set to something other than visible.

• This property should be written as –ms-text-overflow under IE 8 as it is an
extension. It is supported as –o-text-overflow in Opera and –webkit-text-
overflow in WebKit-based browsers.

• Some sites on the Web indicate –moz-text-overflow as supported but, as of
Firefox 3.5, documentation and testing reveals it is not. Interestingly, scripts exist
that try to implement the idea.

• The CSS3 specification suggests that this property is shorthand for text-
overflow-ellipsis and text-overflow-mode. The current property acts as
text-overflow-mode, which sets how overflow should happen with an ellipsis.
The text-overflow-ellipsis property would be used to set the string or image
to be used as the overflow indicator. At the time of this edition’s writing, neither
property is supported and this portion of the specification is still in progress.

 708 P a r t I I : C o r e S t y l e 708 P a r t I I : C o r e S t y l e

text-rendering
This SVG inherited property provides information to the browser about how text should be
rendered. Generally, it is used to specify a trade-off between performance and quality.

Syntax
text-rendering: auto | optimizeSpeed | optimizeLegibility |
 geometricPrecision | inherit

The default value is auto. A value of optimizeSpeed tells the browser to focus on
rendering speed, a value of optimizeLegibility tells the browser to focus on text details
like kerning and ligatures to improve readability, and a value of geometricPrecision tells
the browser to focus on the geometric layout of text as opposed to speed or readability.

Examples
* {text-rendering: optimizeSpeed;}
.script {text-rendering: optimizeLegibility;}

Compatibility

No CSS specification (from SVG) Firefox 3+

Notes
• This is really an SVG property that may have applications within an HTML document.

• If used in a CSS setting, it would seem more appropriately written as –moz-text-
rendering, but that currently is not the case.

text-shadow
This property defines a shadow effect for text.

Syntax
The shadow is defined by a comma-separated list of shadow effects to be applied to the text
of the element,

text-shadow: shadow1 [, shadow2, ... shadowN]

where each shadow value is defined as

horizontal-offset vertical-offset [blur-radius] color

The shadow effects are applied in the order specified and may overlay each other, but they
will never overlay the text itself. Each shadow effect must specify a shadow offset horizontally
and vertically and may optionally specify a blur radius and a shadow color.

A shadow offset is specified with two length values, usually in absolute measurement,
that indicate the distance from the text. The horizontal offset value specifies the horizontal
distance to the right of the text. A negative horizontal length value places the shadow to

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 709
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 709

the left of the text. The second length value specifies the vertical distance below the text.
A negative vertical length value places the shadow above the text.

An optional blur radius may be specified after the shadow offset. The blur radius is a
length value that indicates the boundaries of the blur effect.

A color value may optionally be specified before or after the length values of the
shadow effect. The color value will be used as the basis for the shadow effect. If no color is
specified, the value of an inherited color property should be used.

Examples
/* simple gray shadow drop */
.dropShadow {text-shadow: 2px 2px 0 gray;}

/* red blurry shadow right and below */
.redblurry { text-shadow: 3px 3px 5px red;}

/* sets an outline effect on the text */
.solar {background: white; color: white; text-shadow: black 0px 0px 5px;}

/* multiple shadows applied */
.ugly {text-shadow: 2px 2px 0px red, 2px -2px 0px green, -4px -4px 0px blue;}

ONLINE http://htmlref.com/ch6/textshadow.html

Compatibility

CSS2, 3 Chrome 2+, Firefox 3.5+, Opera 9.5+, Safari 3+

Notes
• This property was dropped from CSS 2.1 but is included again in CSS3.

• There may be limits to the application of multiple shadows, by browser. Some initial
implementations did not allow for more than one shadow, and some capped
shadow limits at various numbers like six.

• Internet Explorer can support text shadows using its proprietary CSS filters
technology. For example,
<h1 style="filter:progid:DXImageTransform.Microsoft.DropShadow(color
= "gray", offX = 2, offY = 2);">IE DropShadow!</h1>

 710 P a r t I I : C o r e S t y l e 710 P a r t I I : C o r e S t y l e

would act similarly to the standard

<h1 style="text-shadow: 2px 2px 0 gray;">Regular DropShadow!</h1>

text-stroke
This is a shorthand property to define the width and color for the outline of a text block.

Syntax
text-stroke: text-stroke-width text-stroke-color

Examples
<h1 style="font-size: 70px;-webkit-text-fill-color: red;
-webkit-text-stroke: 2px green;">Merry Christmas</h1>

<h1 style="font-size: 70px;-webkit-text-stroke: 1px black;
color: white;">Outlined!</h1>

Compatibility

No specification Chrome 1+, Safari 3+

Notes
• Under WebKit-based browsers this property is defined as -webkit-text-stroke.

• This property is often used in conjunction with text-fill-color.

text-stroke-color
This property defines the color for the outline of a text block.

Syntax
text-stroke-color: colorvalue | currentColor

where colorvalue is a typical CSS color value like #f00, red, and so on. The default is
currentColor.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 711
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 711

Example
<h1 style="font-size: 70px;-webkit-text-stroke-color: red;
-webkit-text-stroke-width: 1px;">Merry Christmas</h1>

Compatibility

No specification Chrome 2+, Safari 3+

Notes
• Under WebKit-based browsers this property is defined as -webkit-text-stroke-

color.

• This property is used in conjunction with text-stroke-width and often with
text-fill-color.

text-stroke-width
This property defines the width for the outline of a text block.

Syntax
text-stroke-width: length | thin | medium | thick

The default length is 0, so it is necessary to set this property if using text-stroke-color,
or the outline will not display.

Example
<h1 style="font-size: 70px;-webkit-text-stroke-color: red;
-webkit-text-stroke-width: 1px;">Merry Christmas</h1>

Compatibility

No specification Chrome 2+, Safari 3+

Notes
• Under WebKit-based browsers this property is defined as -webkit-text-stroke-

width.

• This property is used in conjunction with text-stroke-color and often with
text-fill-color.

text-underline-position
This Microsoft-introduced property defines the position of underlining set by the text-
decoration property.

Syntax
text-underline-position: above | auto | below

 712 P a r t I I : C o r e S t y l e 712 P a r t I I : C o r e S t y l e

Example
<p style="text-decoration: underline;
 text-underline-position: above;">
This example uses the text-underline-position property to
place the underlining on top of the text. Why not just set
text-decoration to overline instead?</p>

Compatibility

CSS3 preliminary IE 5+

Note
• Under IE 8 this property is also known and should be set as –ms-text-underline-

position to correctly identify it as an extension in a standards-compliant mode.

• The value of auto-pos is also understood and is the same function as auto.

• This property has made some appearances in CSS3, but so far its future is far from
certain as an official standard.

transform
This property allows elements to be offset, rotated, scaled, and skewed in a variety of
different ways.

Syntax
transform: list of transform-functions | none

where transform-functions include the values in Table 6-11.

Examples
#transform1 {-moz-transform: scale(1.2,1.9);
 -webkit-transform: scale(1.2,1.9);}

#transform2 {-moz-transform: scaleX(.5);
 -webkit-transform: scaleX(.5);}

#transform3 {-moz-transform: scaleY(3.5);
 -webkit-transform: scaleY(3.5);}

#transform4 {-moz-transform: skew(120deg,45deg);
 -webkit-transform: skew(120deg,45deg);}

#transform5 {-moz-transform: skewX(45deg);
 -webkit-transform: skewX(45deg);}

#transform6 {-moz-transform: skewY(45deg);
 -webkit-transform: skewY(45deg);}

#transform7 {-moz-transform: rotate(90deg);
 -webkit-transform: rotate(90deg);}

#transform8 {-moz-transform: translate(20%,30%);
 -webkit-transform: translate(20%,30%);
 background-color: yellow;}

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 713
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 713

Transformation Function Description

matrix(n1,n2,n3,n4,n5,n6) Applies a two-dimensional transformation on the object.

matrix3d(…) In the 3-D realm. Applies a three-dimensional transformation
on the object. The parameters are the 16 values of a 4×4
matrix.

none Function that does nothing.

perspective(p) In the 3-D realm. Used to give a 3-D sense of depth to an
element. Can also be set through the perspective attribute.

rotate(angle) Rotates the object.

rotate3d(x,y,z,angle) In the 3-D realm. Rotates the object around the unit vector
specified by x, y, and z.

rotateX(angle) In the 3-D realm. Rotates the object around the X axis.

rotateY(angle) In the 3-D realm. Rotates the object around the Y axis.

rotateZ(angle) In the 3-D realm. Rotates the object around the Z axis.

scale(number, number) Scales the object by the scale values specified. Where 1 is
the same scale of the object and numbers less than one
scale the objects smaller and greater than one larger. If the
second value for Y scale is omitted, it is assumed to be the
same as the first.

scale3d(number,
number,number)

In the 3-D realm. Same as the previous function, but adds a
parameter for the Z scale.

scaleX(number) Scales the object only on the X axis, keeping Y the same.
Same as scale(X,1).

scaleY(number) Scales the object only on the Y axis, keeping X the same.
Same as scale(1,Y).

scaleZ(number) In the 3-D realm. Scales the object only on the Z axis. Same
as scale3d(1,1,Z).

skew(angle, angle) Skews the element along the X and Y axes by the specified
angle values. The second value may be missing and
assumed to be 0.

skewX(angle) Skews the element along the X axis by the specified angle.

skewY(angle) Skews the element along the Y axis by the specified angle.

translate(translation-value-
x, translation-value-y)

Specifies a translation by the vector translation-value-x,
translation-value-y. The translation-value-y is optional and will
be 0 if not specified.

translate3d(translation-
value-x, translation-value-x
y, translation-value-z)

In the 3-D realm. Same as the previous entry except it includes
the Z axis. The translation-value-z cannot be a percentage.

translateX(translation-value) Specifies a translation by translation-value in the X direction.

translateY(translation-value) Specifies a translation by translation-value in the Y direction.

translateZ(translation-value) In the 3-D realm. Specifies a translation by translation-value
in the Z direction. Cannot be a percentage.

TABLE 6-11 Transform Functions

 714 P a r t I I : C o r e S t y l e 714 P a r t I I : C o r e S t y l e

#transform9 {-moz-transform: translateX(50px);
 -webkit-transform: translateX(50px);
 background-color: green;}

#transform10 {-moz-transform: translateY(20px);
 -webkit-transform: translateY(20px);
 background-color: blue;}

Compatibility

CSS3 Chrome 2+, Firefox 3+, Safari 3.1+

Notes
• Firefox supports this property as –moz-transform and WebKit supports it as

–webkit-transform.

• At the time of this edition’s writing, Safari has added in 3-D support to the iPhone
and its development builds. Currently, the transformation functions that are
indicated to be for 3-D only work in this case.

• Many of these capabilities are supported in IE 5.5 by using the filter property and
applying a Matrix function.

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 715
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 715

transform-origin
This property is used to establish the point of origin when applying a transformation on
an element.

Syntax
transform-origin: percentage | length | left | center | right [percentage |
 length | top | center | bottom]

where the first value is either a percentage, a CSS length (which may be negative), or a keyword
specifying the horizontal position, and the second value specifies the vertical position.
If a single value is set, it is assumed to be horizontal and the vertical value is set to 50%.

Examples

<p> </p>

<img src="logo.gif" style="-moz-transform: skewX(55deg);-webkit-transform:
skewX(55deg);">
<p> </p>

<img src="logo.gif" style="-moz-transform: skewX(55deg);-moz-transform-
origin: 0% 0%;-webkit-transform: skewX(55deg);-webkit-transform-origin: 0%
0%;">

Original Changed

Original Skew

Compatibility

CSS3 Chrome 2+, Firefox 3.5+, Safari 3.1+

Notes
• Firefox supports this property as –moz-transform-origin and WebKit supports it

as –webkit-transform-origin.

• At the time of this edition’s writing, Safari has added in 3-D support to its
development builds for Macs. If the transformation is in 3-D, a third number is
expected specifying the z origin. The format is the same as x and y origins.

 716 P a r t I I : C o r e S t y l e 716 P a r t I I : C o r e S t y l e

transform-style
This property is used to define how nested items are rendered in a 3-D space, the choice
being either flattened or with their dimensions preserved. This property affects the children
of the element and not the element itself. Also, the property does not cascade, so it is
necessary to apply it at all levels.

Syntax
transform-style: flat | preserve-3d

where the default value is flat, indicating that all children elements will be flattened into
the 2-D plane. If the value is set to preserve-3d, then the children would preserve their
dimensions.

Examples
<div style="height:200px;width:200px;background-color:red;
 -webkit-perspective:200;">
 Perspective set
 <div style="height:100px;width:100px;background-color:blue;
 -webkit-transform:rotateY(55deg);-webkit-transform-style:
 preserve-3d;">
 preserve-3d
 <div style="height:60px;width:50px;background-color:green;
 -webkit-transform: rotateY(25deg);">
 preserved
 </div>
 </div>
</div>

<div style="height:200px;width:200px;background-color:red;
 -webkit-perspective:200;">
 Perspective set
 <div style="height:100px;width:100px;background-color:blue;
 -webkit-transform:rotateY(55deg);-webkit-transform-style:flat;">
 flat
 <div style="height:60px;width:50px;background-color:green;
 -webkit-transform: rotateY(25deg);">
 flat
 </div>
 </div>
</div>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 717
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 717

Compatibility

CSS3 Safari 4+

Notes
• WebKit supports this property as –webkit-transform-style, though it is currently

only available in the iPhone and the development builds of Safari 4+.

• Sometimes it is not possible to preserve 3-D, such as when an element has its
overflow property set to hidden.

transition
This shorthand property is used to describe all transition-related properties at once.

Syntax
transition: transition-property transition-duration
transition-timing-function transition-delay

where the individual transition properties are defined in their own entries. Multiple
transitions can be listed separated by commas.

Example
<div id="d1" style="
 -webkit-transition: background-color 3s ease-out,
 opacity 5s linear 3s;
 transition: background-color 3s ease-out, opacity 5s linear 3s;
 background-color:red;
 height: 100px;
 width: 100px;
 text-align: center;">Click me</div>

ONLINE http://htmlref.com/ch6/transition.html

Compatibility

CSS3 Proposed Chrome 2+, Firefox 3.7+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-transition. Firefox browsers would

use a –moz prefix.

• The similarity with animation properties suggests that CSS transitions may include
similar syntax for keyframes or that one syntax will be eliminated.

transition-delay
This property is used to define a delay before an animation starts.

 718 P a r t I I : C o r e S t y l e 718 P a r t I I : C o r e S t y l e

Syntax
transition-delay: time1 [,..timeN]

where time is a standard CSS time value like 2s or 4700ms. The default value is 0, meaning
the animation starts immediately. If the delay is a negative number, the animation starts
immediately but begins at the point it would be at if it were already running since the
negative number.

Example
<div id="d1" style="-webkit-transition-property: all;
 -webkit-transition-delay: 1s;
 transition-property: all;
 transition-delay: 1s;
 background-color: red;
 height: 100px;
 width: 100px;
 text-align: center;">Click me</div>

Compatibility

CSS3 Proposed Chrome 2+, Firefox 3.7+, Safari 3.1+

Note
• WebKit supports this property as –webkit-transition-delay. Firefox browsers

would use a –moz prefix.

• Firefox support is based upon a pre-release version currently numbered as 3.7,
though this is subject to change.

transition-duration
This property is used to define the time it takes one iteration of an animation to play.

Syntax
transition-duration: time [,time]*

where time is a valid time value like 5s or 3500ms. The default value of time is 0, meaning no
animation plays.

Example
<div id="d1" style="-webkit-transition-property: height, width;
 -webkit-transition-duration: 1s, 3s;
 transition-property: height, width;
 transition-duration: 1s, 3s;
 background-color: red;
 height: 100px;
 width: 100px;
 text-align: center;">Click me</div>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 719
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 719

Compatibility

CSS3 Proposed Chrome 2+, Firefox 3.7+, Safari 3.1+

Note
• WebKit supports this property as –webkit-transition-duration. Firefox

browsers would use a –moz prefix.

• Firefox support is based upon a pre-release version currently numbered as 3.7,
though this is subject to change.

transition-property
This property is used to define which properties a transition will be applied to.

Syntax
transition-property: all | none | property-name-1 [,...property-name-N] -

where property-name is simply a CSS property name like color. The default value is all,
which indicates that any property change will be animated. Multiple properties can be
listed in a comma-separated list. If this is the case, other transition properties can also be
listed with a comma-separated list, and the values will match up in order.

Example
<div id="d1" style="-webkit-transition-property: background-color, opacity;
 -webkit-transition-duration: 3s, 5s;
 transition-property: background-color, opacity;
 transition-duration: 3s, 5s;
 background-color: red;
 height: 100px;
 width: 100px;
 text-align: center;">Click me</div>

Compatibility

CSS3 Proposed Chrome 2+, Firefox 3.7+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-transition-property. Firefox

browsers would use a –moz prefix.

• The similarity with animation properties suggests that CSS transitions may include
similar syntax or that one syntax form may prevail.

• Firefox support is based upon a pre-release version currently numbered as 3.7,
though this is subject to change.

transition-timing-function
This property is used to describe how the animation will play.

 720 P a r t I I : C o r e S t y l e 720 P a r t I I : C o r e S t y l e

Syntax
transition-timing-function: timingfunction [,timingfunction2,
...timingfunctionN]

where timingfunction is one of the following values:

cubic-bezier(number,number,number,number) | ease | ease-in | ease-in-out |
ease-out | linear

The default value is ease.

Example
<div id="d1" style="-webkit-transition-property: height, width;
 -webkit-transition-duration: 5s;
 -webkit-transition-timing-function: ease-out, ease-in;
 transition-property: height, width;
 transition-duration: 5s;
 transition-timing-function: ease-out, ease-in;
 background-color: red;
 height: 100px;
 width: 100px;
 text-align: center;">Click me</div>

ONLINE http://htmlref.com/ch6/transitiontiming.html

Compatibility

CSS3 Proposed Chrome 2+, Firefox 3.7+, Safari 3.1+

Notes
• WebKit supports this property as –webkit-transition-timing-function.

Firefox browsers would use a –moz prefix.

• The similarity with animation properties suggests that CSS transitions may include
similar syntax or that one syntax form may prevail eventually.

• Firefox support is based upon a pre-release version currently numbered as 3.7,
though this is subject to change.

user-select
This property defines the text selection policy for various portions of a document.

Syntax
user-select: all | none | text

where the default value all allows for selection.

Examples
<p>This is regular text you should be able to select it.</p>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 721
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 721

<p style="-webkit-user-select: none;-moz-user-select: none;user-select:
none;">This text has some simple CSS properties to keep you from selecting
it.</p>

<p style="-webkit-user-select: text;-moz-user-select: text;user-select:
text;">This text selectable but not the image here
sorry!</p>

Compatibility

CSS3 Chrome 1+, Firefox 1+, Safari 3+

Notes
• CSS3 specifies numerous other values, like toggle, element, and elements, but

they are not covered here because they have yet to be implemented.

• JavaScript can be used to control selections, including to deny them.

• Firefox supports -moz-user-select and Safari 3+ supports -webkit-user-select.

• Safari 2 supported this property as -khtml-user-select.

word-break
This Microsoft-proposed CSS property now found in CSS3 can be used to allow line breaks
within words.

Syntax
word-break: break-all | keep-all | normal

Example
<div style="word-break: break-all; width:50px;">
Words can break in this code example. Like this one:
Sesquipedalianism</div>

Compatibility

CSS3 IE 5.5+

Notes
• This property is primarily used for Chinese/Japanese/Korean (CJK) text,

particularly when multiple languages like English are combined in as well.

• Under IE 8 this property is also known as –ms-word-break to correctly identify it
as an extension in standards-compliant mode.

• CSS3 supports loose (same as normal) and break-strict.

• When used within tables, the table-layout property must be set to fixed
according to Microsoft for correct operation.

 722 P a r t I I : C o r e S t y l e 722 P a r t I I : C o r e S t y l e

word-wrap
This property can be set to allow line breaks within words when content exceeds the limits
of its containing element.

Syntax
word-wrap: break-word | normal

Example
<p style="word-wrap: break-word; width: 30px;">
Words can break in this example even if they are veryveryverylong. Here is
another long one:Transcendentalism this might get split in two!</p>

Compatibility

CSS3 IE 5.5+

Note
• Under IE 8 this property is also known and should be set as –ms-word-wrap to

correctly identify it as an extension in a standards-compliant mode.

writing-mode
This Microsoft-proposed CSS property can be used to set text flow appropriate for European
alphabets or East Asian alphabets.

Syntax
writing-mode: bt-lr | bt-rl | lr-bt | lr-tb | rl-tb | rl-bt | tb-rl | tb-lr

Values are bt (bottom to top), lr (left to right), rl (right to left), and tb (top to bottom) and
are combined in a variety of ways.

Examples
<p style="writing-mode: tb-rl;">
 Top to bottom, right to left.
</p>

<p style="writing-mode: tb-lr;">
 Top to bottom, left to right.
</p>

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 723
PART II

 C h a p t e r 6 : C S S 3 P r o p r i e t a r y a n d E m e r g i n g F e a t u r e s R e f e r e n c e 723

Compatibility

CSS3 IE 5.5+

Notes
• The current CSS3 specification shows only lr-tb, rl-tb, tb-rl, and tb-lr values.

• Under IE 8 this property should be written instead as -ms-writing-mode to
specify it as an extension.

• IE 8 added tb-lr, bt-lr, lr-bt, and rl-bt.

• Under IE 8 –ms-writing-mode should be used, given the property is still emerging.

 724 P a r t I I : C o r e S t y l e

zoom
This property is used to zoom in or out on an element.

Syntax
zoom: float | percentage | normal

where a percentage value of 100% or a float value of 1.0 is the same as normal. A value of
200% or 2.0 is equivalent, while 0.5 and 50% is the same as well.

Examples
.double {zoom: 200%;}

.double2 {zoom: 2.0;}

.reallysmall {zoom: 0.10;}

.reallysmall2 {zoom: 10%;}

#zoomOff {zoom: normal;}

Compatibility

No specification IE 5.5+

Notes
• Under IE 8 this should be written as -ms-zoom to specify it as an extension.

• Some developers find setting the zoom property to 1.0 a useful way to force layout
in Internet Explorer when an element is not showing itself properly.

• Firefox and other browsers implement user-initiated zooming features at the
browser level. Because of this capability, this property or a similar feature will be
likely added to these other browsers for control by CSS or JavaScript some time in
the future.

III
Appendixes APPENDIX A

Character Entities

APPENDIX B
Fonts

APPENDIX C
Colors

APPENDIX D
URLs

APPENDIX E
Reading a Document
Type Definition

PART

This page intentionally left blank

A
Character Entities

Keyboard characters such as < and > have special meanings to (X)HTML because they
are part of HTML tags and must be encoded. Other characters, such as certain
foreign language accent characters and special symbols, can be difficult to specify,

depending on the keyboard being used. To address escaping of special-purpose characters
and inserting a wide range of characters and symbols, character entities should be
employed.

The format of character entities is in general

&code;

where code may be a

• A decimal form like Ë

• A hex form like Ë or stripped of leading zeros, simply &xCB;

• A named value if available, such as Ë

NOTE When using a hex form, either a lowercase or uppercase x may be used as well as upper-
and lowercase values for digits A–F, so Ë and Ë and Ë and so on are all
equivalent. Case sensitivity is not, however, guaranteed for named entities and may result in
errors or wrong characters. Good style would suggest lowercase for the hex symbol and uppercase
for the digits.

As an example,

<p>Numeric entity decimal: £</p>
<p>Numeric entity hex: £</p>
<p>Named entity: £</p>

727727

APPENDIX

 728 P a r t I I I : A p p e n d i x e s 728 P a r t I I I : A p p e n d i x e s

would look like this:

Encoding Quirks and Considerations
Encoding characters is quite important if you want to validate your markup. For example,
consider when you have nontrivial query strings in (X)HTML links like so:

<p>Does this link
validate?</p>

The markup will not validate.

For this line to validate, you must encode the special characters in the link like so:

<p>Does this link
validate?</p>

Do not, however, take this as advice to change ampersands in typed URLs everywhere you
encounter them, such as within e-mails or the browser’s location bar. Typically, a browser
will exchange an entity for its correct value, but this change may not take place in other
environments.

Commonly, you will also have trouble when using characters that are part of (X)HTML
itself, particularly the less than (<) and greater than (>) symbols and, of course, the
ampersand that starts entities. As an example, consider this contrived example with a
mathematical expression:

<p>A silly math statement ahead x<y>z is dangerous to validation.</p>

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 729
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 729

For the greatest safety, the markup should have had the special characters encoded like so:

<p>A silly math statement ahead x<y>z is not dangerous to
validation.</p>

We note that this example is fairly contrived and often just an extra space will allow the
validator (and browser) to tokenize the text correctly. For example,

<p>A silly math statement ahead x < y > z is dangerous to validation?</p>

will likely validate. The loose enforcement of special character handling is both a blessing
and a curse. It leads to sloppy usage and surprising bugs.

Sloppy syntax is troubling because interpretation may vary browser to browser.
Consider the point of case sensitivity of named entities in browsers. Named entities are
supposed to be case sensitive. For example, à and À are two different
characters.

Now given this fact, what should a browser do when faced with

<p>&POUND; and £</p>

Apparently it treats the first as text and the second as an entity.

But does that hold for all characters? Apparently not—some entities like © are
generally case insensitive, while others like ™ may vary by browser, and others like
¥ will always be case sensitive.

Initial drafts of HTML5 attempted to formalize what named entities should be case
insensitive; these drafts focused on the commonly used and supported entities. The current
list of what should be case-insensitive named entities is shown in Table A-1.

Best practice, however, would be not to rely on case insensitivity of named entities, it is
still inconsistent. In general, lax syntax enforcement and permissive interpretation of
entities in browsers just leads to all sorts of small quirks. Consider

<p>"E; and "e;</p>

 730 P a r t I I I : A p p e n d i x e s 730 P a r t I I I : A p p e n d i x e s

Under Internet Explorer, the rendering engine even in a strict mode will “fix” this
problem and effectively convert this into

<p>"E; and "e;</p>

while other browsers will correctly leave this mistake alone.

While it turns out that SGML (and thus traditional HTML) does allow the final
semicolon to be left off in an entity in some cases, the preceding example clearly indicates it
does not allow for that latitude in the middle of words. Just as when dealing with markup
and CSS, it is best to get syntax right rather than rely on some variable fix-up applied by a
browser’s rendering engine.

There will be instances when you may get the syntax correct but the browser may not be
able to render the characters meaningfully. The reasons for nonsupport can vary and may
be because a particular font is missing or the operating environment or browser is unable to
render the character. Generally, browsers will present these failures as boxes or diamonds,
like so:

Named
Entity HTML5 Alias

Numbered
Entity Unicode Entity

Intended
Rendering Description

& & & & & Ampersand

© © © © © Copyright

> > > > > Greater than

< < < < < Less than

" " " " “ Double quotes

® ® ® ® ® Registration mark

™ ™ ™ ™ ™ Trademark symbol

TABLE A-1 Entities Considered Case Insensitive in HTML5

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 731
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 731

Traditional HTML Entities
Table A-2 lists the standard entities found in even the oldest versions of HTML and their
intended renderings. This is the base set of characters supported by ASCII character sets,
and future extensions for full ISO-8859-1 follow. In traditional HTML pages, authors may
use this encoding, which may be specified in the HTTP header:

Content-Type: text/html; charset=ISO-8859-1

Or more commonly, it will appear in a <meta> tag like so:

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">

However, Web page authors are always encouraged to use the UTF-8 encoding set
either by header,

Content-Type: text/html; charset=utf-8

or by tag,

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

unless they have some overriding reason not to.
Recognizing the move toward Unicode, we provide those values as well in all tables.

However, given the vast range of the possible characters we only present those Unicode
entities that are explicitly named in the (X)HTML specifications circa late 2009. For more
information on Unicode, see the section entitled “Embracing Unicode” later in the
appendix.

CAUTION Entity values from 127 to 159 are not assigned. Web page authors are advised not to use
them. Interestingly, some of these renderings are common, though they may work for only certain
operating system font combinations. Table A-2 puts these values in italics to emphasize they
should be avoided.

NOTE The trademark character (™) may have concerns across browsers and operating system
combinations, particularly archaic ones. Web page authors concerned with perfect backward
compatibility might want to consider using a workaround such as <sup><small>TM
</small></sup> for this symbol.

 732 P a r t I I I : A p p e n d i x e s 732 P a r t I I I : A p p e n d i x e s

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

 Space

! ! ! Exclamation point

" " " “ Double quotes

Number symbol

$ $ $ Dollar symbol

% % % Percent symbol

& & & & Ampersand

' ' ‘ Single quote

(((Opening parenthesis

))) Closing parenthesis

* * * Asterisk

+ + + Plus sign

, , , Comma

- - - Minus sign (hyphen)

. . . Period

/ / / Slash/virgule/bar

0 0 0 Zero

1 1 1 One

2 2 2 Two

3 3 3 Three

4 4 4 Four

5 5 5 Five

6 6 6 Six

7 7 7 Seven

8 8 8 Eight

9 9 9 Nine

: : : Colon

; ; ; Semicolon

< < < < Less-than symbol

= = = Equal sign

TABLE A-2 Traditional HTML Character Entities

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 733
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 733

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

> > > > Greater-than symbol

? ? ? Question mark

@ @ @ At symbol

A A A Capital letter a

B B B Capital letter b

C C C Capital letter c

D D D Capital letter d

E E E Capital letter e

F F F Capital letter f

G G G Capital letter g

H H H Capital letter h

I I I Capital letter i

J J J Capital letter j

K K K Capital letter k

L L L Capital letter l

M M M Capital letter m

N N N Capital letter n

O O O Capital letter o

P P P Capital letter p

Q Q Q Capital letter q

R R R Capital letter r

S S S Capital letter s

T T T Capital letter t

U U U Capital letter u

V V V Capital letter v

W W W Capital letter w

X X X Capital letter x

Y Y Y Capital letter y

Z Z Z Capital letter z

[[[Opening bracket

\ \ \ Backslash

TABLE A-2 Traditional HTML Character Entities (continued)

 734 P a r t I I I : A p p e n d i x e s 734 P a r t I I I : A p p e n d i x e s

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

]]] Closing bracket

^ ^ ^ Caret

_ _ _ Underscore

` ` ` Grave accent, no letter

a a a Lowercase letter a

b b b Lowercase letter b

c c c Lowercase letter c

d d d Lowercase letter d

e e e Lowercase letter e

f f f Lowercase letter f

g g g Lowercase letter g

h h h Lowercase letter h

i i i Lowercase letter i

j j j Lowercase letter j

k k k Lowercase letter k

l l l Lowercase letter l

m m m Lowercase letter m

n n n Lowercase letter n

o o o Lowercase letter o

p p p Lowercase letter p

q q q Lowercase letter q

r r r Lowercase letter r

s s s Lowercase letter s

t t t Lowercase letter t

u u u Lowercase letter u

v v v Lowercase letter v

w w w Lowercase letter w

x x x Lowercase letter x

y y y Lowercase letter y

z z z Lowercase letter z

{ { { Opening brace

TABLE A-2 Traditional HTML Character Entities (continued)

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 735
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 735

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

| | | Vertical bar

} } } Closing brace

~ ~ ~ Equivalency symbol (tilde)

 No character

€ € € No character defined, typically
Euro. However € or
€ or € should
be used instead.

  No character defined.
Trademark symbol on some
systems (nonstandard). Use
™ or ™ instead.

‚ ‚ , Low-9 quote (nonstandard)

ƒ ƒ ƒ Small “f” with hook
(nonstandard)

„ „ „ Low-9 double quotes
(nonstandard)

… … … Ellipsis (nonstandard)

† † † Dagger (nonstandard)

‡ ‡ ‡ Double dagger (nonstandard)

ˆ ˆ ^ Circumflex accent, no letter
(nonstandard)

‰ ‰ ‰ Per mille (nonstandard)

Š Š Š Uppercase S with caron
(nonstandard)

‹ ‹ ‹ Opening single-angle quote
(nonstandard)

Œ Œ Œ Uppercase “OE” ligature
(nonstandard)

  Ÿ No character, though for
some uppercase “Y” with
umlaut (nonstandard)

Ž Ž Ž Uppercase “Z” with caron

  No character

  No character

TABLE A-2 Traditional HTML Character Entities (continued)

 736 P a r t I I I : A p p e n d i x e s 736 P a r t I I I : A p p e n d i x e s

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

‘ ‘ ` Opening “smart” single quote
(nonstandard)

’ ’ ‘ Closing “smart” single quote
(nonstandard)

“ “ “ Opening “smart” double
quote (nonstandard)

” ” ” Closing “smart” double quote
(nonstandard)

• • • Bullet (nonstandard)

– – – En dash (nonstandard)

— — — Em dash (nonstandard)

˜ ˜ ~ Tilde (nonstandard)

™ ™‡ ™ ™ Trademark symbol
(nonstandard) Use ™
or ™ instead

š š Š Lowercase S with caron
(nonstandard)

› › › Closing single-angle quote
(nonstandard)

œ œ œ Lowercase “oe” ligature
(nonstandard)

  No character

ž ž Ž Lowercase “z” with caron.
(nonstandard)

Ÿ Ÿ Ÿ Uppercase “Y” with umlaut
(nonstandard)

 Nonbreaking space

¡ ¡ ¡ ¡ Inverted exclamation point

¢ ¢ ¢ ¢ Cent symbol

£ £ £ £ Pound sterling symbol

¤ ¤ ¤ ¤ Currency symbol

¥ ¥ ¥ ¥ Japanese Yen

¦ ¦ ¦ ¦ Broken vertical bar

§ § § § Section symbol

TABLE A-2 Traditional HTML Character Entities (continued)

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 737
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 737

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

¨ ¨ ¨ ¨ Umlaut, no letter

© © © © Copyright symbol

ª ª ª a Feminine ordinal indicator

« « « « Opening double-angle quote

¬ ¬ ¬ ¬ Logical “not” symbol

­ ­ ­ - Soft hyphen

® ® ® ® Registration mark

¯ ¯ ¯ – Macron

° ° ° ° Degree symbol

± ± ± ± Plus/minus symbol

² ² ² 2 Superscript 2

³ ³ ³ 3 Superscript 3

´ ´ ´ ´ Acute accent, no letter

µ µ µ µ Micron

¶ ¶ ¶ ¶ Paragraph symbol

· · · · Middle dot

¸ ¸ ¸ ¸ Cedilla

¹ ¹ ¹ 1 Superscript 1

º º º ° Masculine ordinal indicator

» » » » Closing double-angle quotes

¼ ¼ ¼ ¼ One-quarter fraction

½ ½ ½ ½ One-half fraction

¾ ¾ ¾ ¾ Three-fourths fraction

¿ ¿ ¿ ¿ Inverted question mark

À À À À Uppercase “A” with grave
accent

Á Á Á Á Uppercase “A” with acute
accent

Â Â Â Â Uppercase “A” with
circumflex

Ã Ã Ã Ã Uppercase “A” with tilde

Ä Ä Ä Ä Uppercase “A” with umlaut

TABLE A-2 Traditional HTML Character Entities (continued)

 738 P a r t I I I : A p p e n d i x e s 738 P a r t I I I : A p p e n d i x e s

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

Å Å Å Å Uppercase “A” with ring

Æ Æ Æ Æ Uppercase “AE” ligature

Ç Ç Ç Ç Uppercase “C” with cedilla

È È È È Uppercase “E” with grave
accent

É É É É Uppercase “E” with acute
accent

Ê Ê Ê Ê Uppercase “E” with
circumflex

Ë Ë Ë Ë Uppercase “E” with umlaut

Ì Ì Ì Ì Uppercase “I” with grave
accent

Í Í Í Í Uppercase “I” with acute
accent

Î Î Î Î Uppercase “I” with circumflex

Ï Ï Ï Ï Uppercase “I” with umlaut

Ð Ð Ð Ð Capital “ETH”

Ñ Ñ Ñ Ñ Uppercase “N” with tilde

Ò Ò Ò Ò Uppercase “O” with grave
accent

Ó Ó Ó Ó Uppercase “O” with acute
accent

Ô Ô Ô Ô Uppercase “O” with
circumflex

Õ Õ Õ Õ Uppercase “O” with tilde

Ö Ö Ö Ö Uppercase “O” with umlaut

× × × × Multiplication symbol

Ø Ø Ø Ø Uppercase “O” with slash

Ù Ù Ù Ù Uppercase “U” with grave
accent

Ú Ú Ú Ú Uppercase “U” with acute
accent

Û Û Û Û Uppercase “U” with
circumflex accent

TABLE A-2 Traditional HTML Character Entities (continued)

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 739
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 739

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

Ü Ü Ü Ü Uppercase “U” with umlaut

Ý Ý Ý Ý Uppercase “Y” with acute
accent

Þ Þ Þ þ Capital “thorn”

ß ß ß ß “SZ” ligature

à à à à Lowercase “a” with grave
accent

á á á á Lowercase “a” with acute
accent

â â â â Lowercase “a” with circumflex

ã ã ã ã Lowercase “a” with tilde

ä ä ä ä Lowercase “a” with umlaut

å å å å Lowercase “a” with ring

æ æ æ æ Lowercase “ae” ligature

ç ç ç ç Lowercase “c” with cedilla

è è è è Lowercase “e” with grave
accent

é é é é Lowercase “e” with acute
accent

ê ê ê ê Lowercase “e” with circumflex

ë ë ë ë Lowercase “e” with umlaut

ì ì ì ì Lowercase “i” with grave
accent

í í í í Lowercase “i” with acute
accent

î î î î Lowercase “i” with circumflex

ï ï ï ï Lowercase “i” with umlaut

ð ð ð ð Lowercase “eth”

ñ ñ ñ ñ Lowercase “n” with tilde

ò ò ò ò Lowercase “o” with grave
accent

ó ó ó ó Lowercase “o” with acute
accent

TABLE A-2 Traditional HTML Character Entities (continued)

 740 P a r t I I I : A p p e n d i x e s 740 P a r t I I I : A p p e n d i x e s

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description

ô ô ô ô Lowercase “o” with circumflex
accent

õ õ õ õ Lowercase “o” with tilde

ö ö ö ö Lowercase “o” with umlaut

÷ ÷ ÷ ÷ Division symbol

ø ø ø ø Lowercase “o” with slash

ù ù ù ù Lowercase “u” with grave
accent

ú ú ú ú Lowercase “u” with acute
accent

û û û û Lowercase “u” with circumflex

ü ü ü ü Lowercase “u” with umlaut

ý ý ý ý Lowercase “y” with acute
accent

þ þ þ þ Lowercase “thorn”

ÿ ÿ ÿ ÿ Lowercase “y” with umlaut

TABLE A-2 Traditional HTML Character Entities (continued)

HTML 4.x and XHTML 1.x Character Entities
The HTML 4.0 specification introduced a wide array of new character entities, including
Latin characters, the Greek alphabet, special spacing characters, arrows, technical symbols,
and various shapes. XHTML supports the same entities. Some of these entities are not
supported by older browsers such as Netscape 4.x. Most modern browsers should support
all these characters. However, up until Internet Explorer 8 some of these extended entities
were not supported in the browser under the default font. As an example, see this capture
of the difference between Internet Explorer 7 and Internet Explorer 8 when rendering a few
arrow entities.

Internet Explorer 7 Internet Explorer 8

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 741
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 741

To address this issue, some of the tables that follow include special notes indicating the
lack of support before the introduction of IE8.

For ease of consumption, the entities are grouped much in the way they are found in the
HTML 4 specification.

Latin Extended-A

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description

&Oelig; Œ Œ Œ Uppercase ligature “OE”

œ œ œ œ Lowercase ligature “oe”

Š Š Š Š Uppercase “S” with caron

š š š š Lowercase “s” with caron

Ÿ Ÿ Ÿ Ÿ Uppercase “Y” with
umlaut

Latin Extended-B

Named Entity Numbered Entity Unicode Entity Intended Rendering Description

ƒ ƒ ƒ ƒ Latin small “f” with
hook

Spacing Modifier Letters

Named Entity Numbered Entity Unicode Entity Intended Rendering Description

ˆ ˆ ˆ ˆ Circumflex accent

˜ ˜ ˜ ˜ Small tilde

General Punctuation

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

      En space

      Em space

      Thin space

‌ ‌ ‌ | Zero-width
nonjoiner

Visual support is
spotty

‍ ‍ ‍ ×| Zero-width joiner Visual support is
spotty

 742 P a r t I I I : A p p e n d i x e s 742 P a r t I I I : A p p e n d i x e s

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

‎ ‎ ‎ Left-to-right mark Non-visible

‏ ‏ ‏ Right-to-left mark Non-visible

– – – – En dash

— — — — Em dash

‘ ‘ ‘ ‘ Left single
quotation mark

’ ’ ’ ’ Right single
quotation mark

‚ ‚ ‚ , Single low-9
quotation mark

“ “ “ “ Left double
quotation mark

” ” ” ” Right double
quotation mark

„ „ „ “ Double low-9
quotation mark

† † † † Dagger

‡ ‡ ‡ ‡ Double dagger

• • • • Bullet

… … … … Horizontal
ellipsis

‰ ‰ ‰ ‰ Per mille sign

′ ′ ′ ' Prime, minutes,
or feet

″ ″ ″ " Double prime,
seconds, or
inches

‹ ‹ ‹ < Single left-
pointing angle
quotation mark

› › › > Single right-
pointing angle
quotation mark

‾ ‾ ‾ ¯ Overline

⁄ ⁄ ⁄ / Fraction slash

€ € € € Euro symbol

General Punctuation (continued)

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 743
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 743

Greek

Named Entity Numbered Entity
Unicode
Entity

Intended
Rendering Description

Α Α Α Α Greek capital letter alpha

Β Β Β Β Greek capital letter beta

Γ Γ Γ Γ Greek capital letter gamma

Δ Δ Δ ∆ Greek capital letter delta

Ε Ε Ε Ε Greek capital letter epsilon

Ζ Ζ Ζ Ζ Greek capital letter zeta

Η Η Η Η Greek capital letter eta

Θ Θ Θ Θ Greek capital letter theta

Ι Ι Ι Ι Greek capital letter iota

Κ Κ Κ Κ Greek capital letter kappa

Λ Λ Λ Λ Greek capital letter lambda

Μ Μ Μ Μ Greek capital letter mu

Ν Ν Ν Ν Greek capital letter nu

Ξ Ξ Ξ Ξ Greek capital letter xi

Ο Ο Ο Ο Greek capital letter omicron

Π Π Π Π Greek capital letter pi

Ρ Ρ Ρ Ρ Greek capital letter rho

Σ Σ Σ Σ Greek capital letter sigma

Τ Τ Τ Τ Greek capital letter tau

Υ Υ Υ Υ Greek capital letter upsilon

Φ Φ Φ Φ Greek capital letter phi

Χ Χ Χ Χ Greek capital letter chi

Ψ Ψ Ψ Ψ Greek capital letter psi

Ω Ω Ω Ω Greek capital letter omega

α α α α Greek small letter alpha

β β β β Greek small letter beta

γ γ γ γ Greek small letter gamma

δ δ δ δ Greek small letter delta

ε ε ε ε Greek small letter epsilon

ζ ζ ζ ζ Greek small letter zeta

 744 P a r t I I I : A p p e n d i x e s 744 P a r t I I I : A p p e n d i x e s

Named Entity Numbered Entity
Unicode
Entity

Intended
Rendering Description

η η η η Greek small letter eta

θ θ θ θ Greek small letter theta

ι ι ι ι Greek small letter iota

κ κ κ κ Greek small letter kappa

λ λ λ λ Greek small letter lambda

μ μ μ µ Greek small letter mu

ν ν ν ν Greek small letter nu

ξ ξ ξ ξ Greek small letter xi

ο ο ο ο Greek small letter omicron

π π π π Greek small letter pi

ρ ρ ρ ρ Greek small letter rho

ς ς ς ς Greek small letter final sigma

σ σ σ σ Greek small letter sigma

τ τ τ τ Greek small letter tau

υ υ υ υ Greek small letter upsilon

φ φ φ φ Greek small letter phi

χ χ χ χ Greek small letter chi

ψ ψ ψ ψ Greek small letter psi

ω ω ω ω Greek small letter omega

ϑ ϑ ϑ ϑ Greek small letter theta symbol

ϒ ϒ ϒ ϒ Greek upsilon with hook symbol

ϖ ϖ ϖ ϖ Greek pi symbol

Letter-like Symbols

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

℘ ℘ ℘ ℘ Script capital P,
power set

No support pre-IE8

ℑ ℑ ℑ ℑ Blackletter
capital I, or
imaginary part
symbol

No support pre-IE8

Greek (continued)

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 745
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 745

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

ℜ ℜ ℜ ℜ Blackletter
capital R,
or real part
symbol

No support pre-IE8

™ ™ ™ ™ Trademark
symbol

ℵ ℵ ℵ ℵ Alef symbol, or
first transfinite
cardinal

No support pre-IE8

Arrows

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

← ← ← ← Leftward arrow

↑ ↑ ↑ ↑ Upward arrow

→ → → → Rightward arrow

↓ ↓ ↓ ↓ Downward arrow

↔ ↔ ↔ ↔ Left-right arrow

↵ ↵ ↵ ↵ Downward arrow
with corner leftward

No support
pre-IE8

⇐ ⇐ ⇐ ⇐ Leftward double
arrow

No support
pre-IE8

⇑ ⇑ ⇑ ⇑ Upward double
arrow

No support
pre-IE8

⇒ ⇒ ⇒ ⇒ Rightward double
arrow

No support
pre-IE8

⇓ ⇓ ⇓ ⇓ Downward double
arrow

No support
pre-IE8

⇔ ⇔ ⇔ ⇔ Left-right double
arrow

No support
pre-IE8

Letter-like Symbols (continued)

 746 P a r t I I I : A p p e n d i x e s 746 P a r t I I I : A p p e n d i x e s

Mathematical Operators

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

∀ ∀ ∀ ∀ For all No support pre-IE8

∂ ∂ ∂ ∂ Partial differential

∃ ∃ ∃ ∃ There exists No support pre-IE8

∅ ∅ ∅ ∅ Empty set, null
set, diameter

No support pre-IE8

∇ ∇ ∇ ∇ Nabla, or
backward
difference

No support pre-IE8

∈ ∈ ∈ ∈ Element of No support pre-IE8

∉ ∉ ∉ ∉ Not an element of No support pre-IE8

∋ ∋ ∋ ∋ Contains as
member

No support pre-IE8

∏ ∏ ∏ ∏ N-ary product, or
product sign

∑ ∑ ∑ ∑ N-ary summation

− − − – Minus sign

∗ ∗ ∗ ∗ Asterisk operator No support pre-IE8

√ √ √ √ Square root,
radical sign

∝ ∝ ∝ ∝ Proportional to No support pre-IE8

∞ ∞ ∞ ∞ Infinity

∠ ∠ ∠ ∠ Angle No support pre-IE8

∧ ∧ ∧ ∧ Logical and No support pre-IE8

∨ ∨ ∨ ∨ Logical or No support pre-IE8

∩ ∩ ∩ ∩ Intersection, cap

∪ ∪ ∪ ∪ Union, cup No support pre-IE8

∫ ∫ ∫ ∫ Integral

∴ ∴ ∴ ∴ Therefore No support pre-IE8

∼ ∼ ∼ ∼ Tilde operator No support pre-IE8

≅ ≅ ≅ ≅ Approximately
equal to

No support pre-IE8

≈ ≈ ≈ ≈ Almost equal to,
asymptotic to

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 747
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 747

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

≠ ≠ ≠ ≠ Not equal to

≡ ≡ ≡ ≡ Identical to

≤ ≤ ≤ ≤ Less than or
equal to

≥ ≥ ≥ ≥ Greater than or
equal to

⊂ ⊂ ⊂ ⊂ Subset of No support pre-IE8

⊃ ⊃ ⊃ ⊃ Superset of No support pre-IE8

⊄ ⊄ ⊄ ⊄ Not a subset of No support pre-IE8

⊆ ⊆ ⊆ ⊆ Subset of or
equal to

No support pre-IE8

⊇ ⊇ ⊇ ⊇ Superset of or
equal to

No support pre-IE8

⊕ ⊕ ⊕ ⊕ Circled plus,
direct sum

No support pre-IE8

⊗ ⊗ ⊗ ⊗ Circled times,
vector product

No support pre-IE8

⊥ ⊥ ⊥ ⊥ Perpendicular No support pre-IE8

⋅ ⋅ ⋅ · Dot operator No support pre-IE8

Technical Symbols

Named
Entity

Numbered
Entity Unicode Entity

Intended
Rendering Description Notes

⌈ ⌈ ⌈  Left ceiling

⌉ ⌉ ⌉  Right ceiling

⌊ ⌊ ⌊  Left floor

⌋ ⌋ ⌋  Right floor

⟨ 〈 〈 (also
⟨)

< Left-pointing
angle bracket

No support pre-IE8

⟩ 〉 〉 (also
⟩)

> Right-pointing
angle bracket

No support pre-IE8

Mathematical Operators (continued)

 748 P a r t I I I : A p p e n d i x e s 748 P a r t I I I : A p p e n d i x e s

Geometric Shapes

Named Entity Numbered Entity Unicode Entity
Intended
Rendering Description Notes

◊ ◊ ◊ ◊ Lozenge

Miscellaneous Symbols

Named Entity
Numbered
Entity

Unicode
Entity

Intended
Rendering Description Notes

♠ ♠ ♠ ♠ Spade suit

♣ ♣ ♣ ♣ Club suit

♥ ♥ ♥ ♥ Heart suit

♦ ♦ ♦ ♦ Diamond suit

Embracing Unicode
There are more special characters besides what is defined in the (X)HTML specifications.
When looking at the HTML 4 entities, you can see a mapping between Unicode characters
(such as the diamond suit character represented by Unicode U+02666 and a named entity
like ♦), which hints at the larger character set available.

To properly support Unicode characters, (X)HTML should be delivered with the
appropriate HTTP response header:

Content-Type: text/html; charset=utf-8

or with a <meta> tag in the head element of similar value:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

In a few cases when a markup element supports a charset attribute, you can set the
character encoding value there as well.

Sushi Menu

However, the header or <meta> tag solution is favored over this according to the
specification.

Unicode characters beyond what is defined under HTML 4 and XHTML 1 could be
named. To this end, the W3C has started to define entity names for XML (www.w3.org/TR/
xml-entity-names/), but these named entities are not currently supported, as illustrated by
this small example:

<p>☎ ☎</p>

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 749
PART III

 A p p e n d i x A : C h a r a c t e r E n t i t i e s 749

where browsers will understand the numeric code, but not the named entity.

You could pull in an XML entity declaration in an XSL style sheet to bind the items of
interest, but that is not reasonable and would get quite large, so most Web developers will
wait until such named entities are native.

NOTE HTML5 does document many Unicode entities, for example, ▾ but
the situation is no different for HTML5 than in previous efforts; little or no support is found at
the time of this edition’s writing.

At this time and likely for some time in the future, it is preferable to use numeric entities
to insert any Unicode character into any supporting browser. For example, here

<p>日本語</p>

the entities produce the Kanji for “nihongo” or “Japanese language” shown next:

It should be noted that the appearance of Unicode characters may change dramatically
across browsers and systems, depending on the font supported. For example, notice the
obvious variation in the rendering of the previous example across the four most popular
browsers.

Depending on the font in place, in some cases the Unicode characters may not be
supported at all and most browsers will present the unsupported character icon, but notice
how some may indicate within it the Unicode value that is missing, which is slightly more
informative.

This page intentionally left blank

B
Fonts

This appendix contains a quick reference for commonly available fonts and brief
discussions of downloadable fonts and various text replacement techniques to
improve online typography.

Specifying Fonts
Under HTML 4.01 and transitional XHTML 1.0, you can use the tag to set a font in
a page by setting the face attribute:

<p>This is standard text.This is text in
Britannic Bold?More standard text.</p>

A Web browser that reads this HTML fragment should render the text in the font named in
the face attribute, but only for users who have the font installed on their systems. To
address the possibility of missing fonts, multiple font names can be listed using the face
attribute:

<p>This is standard text.
This should be in one of the Sans Serif fonts listed or default to the
standard sans-serif font installed This is more standard text.</p>

Here, the browser reads the comma-delimited list of fonts until it finds a font it supports. If
no match is found, the browser will default to the font currently in use.

Strict variants of (X)HTML as well as the upcoming HTML5 specification remove the
role of markup in setting fonts. Of course CSS supports the same basic approach to setting

751

APPENDIX

 752 P a r t I I I : A p p e n d i x e s 752 P a r t I I I : A p p e n d i x e s

fonts using font-family and font properties. For example, to set the font more or less as
we did in previous HTML examples, you would use a rule like the following:

<p>This is standard text.This is
text in Britannic Bold?More standard text.</p>

Of course, the same restriction of fonts available on the local system applies, so a
comma-delimited list of fonts should be specified like so:

<p>This is standard text.<span style="font-family: Arial, Helvetica, sans-
serif;">This should be in one of the Sans Serif fonts listed or default to
the standard sans-serif font installed This is more standard text.</
p>

Clearly these examples are more illustrative than appropriate, as we should use external
style sheets and the like. Our main aim in this appendix is to show that regardless of the
approach taken to effectively use fonts in this manner, we must provide an equivalent list of
fonts, or at least roughly so, across Macintosh, Windows, and Linux systems if we aim to
provide a similar text rendering. The following sections present the fonts of these various
systems so that we can determine what fonts may be used; later we’ll review ways to
specify fonts that are downloaded to remove this search for cross-platform similarity.

Fonts for Windows Platform and Browsers
Table B-1 lists the fonts that are available for Microsoft browsers and systems; they are
displayed in Figures B-1 and B-2.

FIGURE B-1
Font families
available for
Microsoft browsers
and systems

 A p p e n d i x B : F o n t s 753
PART III

 A p p e n d i x B : F o n t s 753

Font Systems

Andale Mono Internet Explorer 4.5 and 5

Arial Windows Vista, Windows Vista, Windows XP, Windows 2000, Windows ME,
Windows 98, Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x,
Internet Explorer 4.5, 5, and 6

Arial Bold Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Arial Italic Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Arial Bold Italic Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Arial Black Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, 5, and 6

Cambria Windows Vista

Calibri Windows Vista

Candara Windows Vista

Consolas Windows Vista

Constantia Windows Vista

Corbel Windows Vista

Comic Sans MS Windows Vista, Windows XP, Windows 2000, Windows ME, Internet Explorer
3, 4, 5, and 6

Comic Sans MS
Bold

Windows Vista, Windows XP, Windows 2000, Windows ME, Internet Explorer
3, 4, 5, and 6

Courier New Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Courier New Bold Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Courier New Italic Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Courier New Bold
Italic

Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Georgia Windows Vista, Windows XP, Windows 2000, IE4, IE5, and IE6 (add-on)

Georgia Bold Windows Vista, Windows XP, Windows 2000, IE4, IE5, and IE6 (add-on)

Georgia Italic Windows Vista, Windows XP, Windows 2000, IE4, IE5, and IE6 (add-on)

Georgia Bold Italic Windows Vista, Windows XP, Windows 2000, IE4, IE5 & IE6 (add-on)

Impact Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, 5, and 6

TABLE B-1 Common Windows Fonts (continued)

 754 P a r t I I I : A p p e n d i x e s 754 P a r t I I I : A p p e n d i x e s

Font Systems

Lucida Console Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows NT 3.x (except NT 3.0), Windows NT 4.x

Lucida Sans
Unicode

Windows Vista, Windows XP, Windows 2000, Windows 98, Windows NT 3.x
(except NT 3.0), Windows NT 4.x

Marlett Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows NT 4.x

Minion Web
(Adobe)

Microsoft lists this as one of its “core fonts,” but it seems to be available
(for sale) only from Adobe (www.adobe.com)

Monotype.com Old version of Andale Mono, still available for Windows 3.1 and 3.11 (add-on)

Symbol Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Times New Roman Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Times New Roman
Bold

Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Times New Roman
Italic

Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Times New Roman
Bold Italic

Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

Tahoma Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98

Trebuchet MS Windows Vista, Windows XP, Windows 2000, IE4, IE5, and IE6 (add-on)

Trebuchet MS Bold Windows Vista, Windows XP, Windows 2000, Windows 2000, IE4, IE5, and
IE6 (add-on)

Trebuchet MS Italic Windows Vista, Windows XP, Windows 2000, IE4, IE5, and IE6 (add-on)

Trebuchet MS Bold
Italic

Windows Vista, Windows XP, Windows 2000, IE4, IE5, and IE6 (add-on)

Verdana Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, 5, and 6

Verdana Bold Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, 5, and 6

Verdana Italic Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, 5, and 6

Verdana Bold Italic Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 3, 4, 5, and 6

Webdings Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Internet Explorer 4, 5, and 6

Wingdings Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98,
Windows 95, Windows 3.1x, Windows NT 3.x, Windows NT 4.x

TABLE B-1 Common Windows Fonts (continued)

 A p p e n d i x B : F o n t s 755
PART III

 A p p e n d i x B : F o n t s 755

As listed in Table B-1, Windows Vista introduced six new system fonts, shown in
Figure B-2.

NOTE For more information on Microsoft-related fonts, please see www.microsoft.com/typography/
fonts.

Fonts for Macintosh System and Browsers
The Apple Macintosh system has a number of fonts available as well. Starting with System 7
and moving to OS X, the number of fonts has increased dramatically. The fonts in Table B-2
are commonly available on Macintosh systems and thus can be displayed in Mac browsers,
a visual rendering demonstrating most of them is shown in Figure B-3.

FIGURE B-2
New font families
available for
Microsoft
Windows Vista

Font Systems

American Typewriter OS X

Andale Mono OS X

Apple Chancery System 8+

Arial OS X

Arial Black OS X

Baskerville OS X

Big Caslon OS X

TABLE B-2 Common Macintosh Fonts (continued)

 756 P a r t I I I : A p p e n d i x e s 756 P a r t I I I : A p p e n d i x e s

Font Systems

Brush Script OS X

Capitals System 8.5+

Chalkboard OS X

Charcoal System 8.5+

Chicago System 7+

Comics Sans MS OS X

Copperplate OS X

Courier System 7+

Courier New OS X

Didot OS X

Gadget System 8.5+

Geneva System 7+

Georgia OS X

Gill Sans OS X

Futura OS X

Helvetica System 7+

Herculanum OS X

Hoefler Text System 8+

Hoefler Text Ornaments System 8+

Impact OS X

Lucida Grande OS X

Marker Felt OS X

Monaco System 7+

New York System 7+

Optima OS X

Palatino System 7+

Papyrus OS X

Sand System 8.5+

Skia System 8+

Symbol System 7+

Techno System 8.5+

TABLE B-2 Common Macintosh Fonts (continued)

 A p p e n d i x B : F o n t s 757
PART III

 A p p e n d i x B : F o n t s 757

Font Systems

Textile System 8.5+

Times System 7+

Times New Roman OS X

Trebuchet MS OS X

Verdana OS X

Webdings OS X

Zapf Dingbats OS X

Zapfino OS X

TABLE B-2 Common Macintosh Fonts (continued)

FIGURE B-3
Font families
available for
Macintosh
Systems

 758 P a r t I I I : A p p e n d i x e s 758 P a r t I I I : A p p e n d i x e s

PC Mac Font Similarity
Inspecting the fonts in the previous sections, it should be obvious that the operating
systems do share a number of fonts that are identical or close enough for most viewers.
If a comma-delimited list of similar fonts is used in HTML or CSS, we then can likely
render text in a desired font with some assurance it might look as intended. Many Web
editors assist in choosing such fonts.

A detailed list of the common font combinations is shown in Table B-3.
While the font list in Table B-3 is commonly used, the reality of renderings across systems

is a bit variable. Obvious font differences are clear when we see some secondary fonts
chosen. For example, the difference between Comic Sans MS and Cursive is pretty obvious.

Windows Macintosh

In other cases, we run into a more troubling situation where the font is supported on an
operating system but only in some browsers. For example, Webdings and Symbol will vary
dramatically in their browser support, as shown here:

 A p p e n d i x B : F o n t s 759
PART III

 A p p e n d i x B : F o n t s 759

TABLE B-3 Common Font Combinations

Font Listing Likely Rendering

Arial, Helvetica, sans-serif

Arial Black, Gadget, sans-serif

Comic Sans MS, cursive

Courier New, Courier,
monospace

Georgia, serif

Impact, Charcoal, sans-serif

Lucida Console, Monaco,
monospace

Lucida Sans Unicode, Lucida
Grande, sans-serif

MS Sans Serif, Geneva,
sans-serif

MS Serif, New York, serif

Palatino Linotype, Palatino, Book
Antiqua, serif

Symbol

Tahoma, Geneva, sans-serif

Times New Roman, Times, serif

Trebuchet MS, Helvetica,
sans-serif

Verdana, Geneva, sans-serif

Webdings

Documenting these variations is a bit troubling, so a simple test example can be built as
shown in Figure B-4 with sample renderings to compare against.

ONLINE http://htmlref.com/AppB/fontfamily.html

Obviously, leaving font rendering up to chance is not desirable, so we examine some
other solutions to bring fonts to Web pages.

 760 P a r t I I I : A p p e n d i x e s 760 P a r t I I I : A p p e n d i x e s

Downloadable Fonts
The best solution for fonts on the Web is to come up with a cross-platform font that could be
downloaded to the browser on the fly. Both of the major browser vendors have developed
their own versions of downloadable fonts. Microsoft’s solution was called Dynamic Fonts
and Netscape’s solution was called TrueDoc, but this technology was discontinued with
version 6.0 of the Netscape browser and should be avoided. Later, similar technology based
upon TrueType and OpenType fonts was added in browsers like Safari 3.1+, Opera 10+, and
Firefox 3.5+ browsers. The next section briefly discusses the viable downloadable font
technology in use at the time of this edition’s writing.

Microsoft’s Dynamic Fonts
Microsoft Internet Explorer for Windows provides a fairly robust way to embed fonts in a
Web page. To include a font, you must first build the page using the tag or style
sheet properties like font-family or font that set fonts. When creating your page, don’t
worry about whether or not the end user has the font installed; it will be downloaded. Next,
use Microsoft’s Web Embedding Fonts Tool1 or a similar facility to analyze the font usage on
the page. The program should create an .eot file that contains the embedded fonts. Then,
add the font usage information to the page in the form of Cascading Style Sheets (CSS) style
rules, as shown here:

@font-face {font-family:"Mufferaw EOT";
 font-style:normal;
 font-weight:normal;
 src: url(mufferaw.eot);}

FIGURE B-4 Testing Font Families

1 For the Web Embedding Font Tool (WEFT), see the Microsoft Typography site (www.microsoft.com/
typography/web/embedding/weft3/), but beware: it has not been updated for modern operating
systems, so proceed with caution.

 A p p e n d i x B : F o n t s 761
PART III

 A p p e n d i x B : F o n t s 761

Now any place you want to use the font, just specify the newly embedded one as the
first font in your font list with backup fonts afterward:

p#mufferaw { font-family: "Mufferaw", serif;}

Of course as with anything, other browsers have slightly different ways of embedding
fonts.

Standard Downloadable Fonts
Other browsers like Firefox, Safari, and Opera that support downloadable fonts do not use
Microsoft’s EOT format but instead support TrueType Files. Fortunately, other than font file
format, the syntax is about the same. Here we pull in a font:

@font-face {font-family: "Mufferaw";
 src: url(MUFFERAW.ttf);}

and now we set it just as before:

p#mufferaw { font-family: "Mufferaw", serif;}

The important question remains: Can we use the two forms together?

Cross-Browser Downloadable Fonts
There are number of ways you might support downloadable fonts in a browser. Some Web
designers might suggest simply embedding the two versions of the fonts and then using the
simple comma fallback concept. For example,

@font-face {font-family: "Mufferaw";
 src: url(MUFFERAW.ttf);}

@font-face {font-family:"Mufferaw EOT";
 font-style:normal;
 font-weight:normal;
 src: url(mufferaw.eot);}

p#muff { font-family: "Mufferwa EOT", "Mufferaw", serif;}

Interestingly, Internet Explorer 8 does not like this concept. Currently, however, it is easy
enough to work around this using Explorer’s conditional comments; just use the same name
and override the downloadable font format or not, depending on whether Explorer is used.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Crossbrowser Downloadable Fonts Example</title>
<style type="text/css">
 @font-face {font-family: "Mufferaw";
 src: url(MUFFERAW.ttf);}
 p { font-family: serif; font-size: 5em;}
 p#muff { font-family: "Mufferaw", serif;}
</style>

 762 P a r t I I I : A p p e n d i x e s 762 P a r t I I I : A p p e n d i x e s

<!--[if IE]>

<style type="text/css" media="screen">
/* @font-face IE EOT rules */
@font-face{font-family:"Mufferaw";
 font-style:normal;
 font-weight:normal;
 src: url(mufferaw.eot);}
</style>
<![endif]-->
</head>
<body>
<p id="muff">This should be Mufferaw a True Type font.</p>
<p>This should be the standard serif font.</p>
</body>
</html>

ONLINE http://htmlref.com/appB/downloadablefonts.html

A possible rendering of font embedding is shown in Figure B-5.

FIGURE B-5 Embedded fonts can work across modern browsers. (This example will not appear the
same online. The font choice is to show obvious difference. The online version may opt to use a
font free of license concerns.)

 A p p e n d i x B : F o n t s 763
PART III

 A p p e n d i x B : F o n t s 763

Font Replacement with Images
Since font embedding technology is still emerging, one way to guarantee the preservation of
a desired font across systems and browsers is to use CSS to replace text with images. While
this is impractical for large amounts of text, it is well suited to important design elements
such as headers and navigation.

This simple example shows the idea in practice:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Font Image Replacement Example</title>
<style type="text/css">

h1.replace {background: #fff url(hello.gif) no-repeat; width: 88px;
 height: 24px;}
h1.replace span {display: none;}
</style>
</head>
<body>
<h1 class="replace">Hello</h1>
</body>
</html>

ONLINE http://htmlref.com/AppB/imagereplacement.html

While the technique relies on using an image to replace text, it does have the advantage
of degrading gracefully when CSS is not being used by the end user, as shown here:

Some vendors have tried to automate the production of image replacement fonts using
server-side programs, but so far such an approach is not commonplace and is generally
performed by hand and only on select text items like headings.

CSS OFF

CSS ON

 764 P a r t I I I : A p p e n d i x e s

sIFR and Other Text Replacement Techniques
One font replacement technique that has gained favor in recent years is sIFR (short for
“Scalable Inman Flash Replacement”). sIFR basically uses JavaScript, CSS, and Flash to pull in
Flash fonts, creating smoother, less pixilated graphics. Using sIFR for large blocks of content is
not advised, but this approach is ideal for creating customized font styles for headlines and
headers. Judicial use of CSS on the content rendered by sIFR will allow browsers without
Flash or JavaScript to display a very close equivalent to the sIFR font, assuming that font is
installed on the end user’s computer. sIFR does have its problems, besides relying on the use
of JavaScript and Flash. The author has had significant problems with it in various situations
and does not recommend it despite its popularity.

Not all font replacement schemes require Flash; some JavaScript-powered schemes exist
that use the <canvas> tag and VML to create similar results. Given the fluid nature of these
techniques, we present this information more as proof that other font replacement
techniques exist, but we encourage readers wanting custom fonts to use downloadable fonts
if at all possible. If not, use the image replacement technique previously discussed instead.

C
Colors

This appendix provides basic information about the use of color on the Web. The
reference not only covers the defined colors formats, names, and values from the
(X)HTML specifications and CSS but presents less obviously standardized but

commonly used color names. A brief discussion of the browser-safe color palette is also
presented.

(X)HTML Colors
Transitional versions of HTML and XHTML support color settings for text as well as the
background color of the document, frame borders, tables, or even individual table cells.
There are 16 widely known color names defined in HTML. These names and their
associated hex RGB values are shown in Table C-1.

NOTE Color names and values are case insensitive, so red and RED are equivalent, as are #FF0000
and #ff0000.

Nonstandard Color Names and Numerical Equivalents
Table C-2 lists a set of nonstandard color names commonly supported by the major browsers.
These color names were initially introduced by Netscape, and are apparently the colors
defined by the X11 windowing system for UNIX systems over two decades ago. Regardless
of their origin, these colors are documented in both the SVG specification and the emerging
CSS3 specification; they are still widely used and may someday be considered as standard as
others.

There may be some situations such as in older Opera browsers where a browser does
not support these values. Current testing shows that shipping browsers at the time of this
edition’s writing do support these values, and you can test for yourself at http://htmlref
.com/AppC/colorchart.html. If there is some concern about compatibility, Web page authors
should use hex values instead of these names.

Some color references claim that further color variations can be introduced by adding
the numbers 1 through 4 to color names. If this were correct, cadetblue1, cadetblue2,
cadetblue3, and cadetblue4 would display as different shades of the same color,

765

APPENDIX

 766 P a r t I I I : A p p e n d i x e s 766 P a r t I I I : A p p e n d i x e s

with 1 being the lightest and 4 the darkest. Some browsers such as Opera may support
this concept, but most will not.

Fuschia Vary
Lightness

Black

Some browsers, notably Opera, also support numeric variations for gray, potentially up
to 100 variations, like gray10, gray50, gray90, and so forth.

TABLE C-1 HTML 4.0
Color Names and
Equivalent Hex Values

Color Name Hex Equivalent

Black #000000

Silver #C0C0C0

Gray #808080

White #FFFFFF

Maroon #800000

Red #FF0000

Purple #800080

Fuchsia #FF00FF

Green #008000

Lime #00FF00

Olive #808000

Yellow #FFFF00

Navy #000080

Blue #0000FF

Teal #008080

Aqua #00FFFF

 A p p e n d i x C : C o l o r s 767
PART III

 A p p e n d i x C : C o l o r s 767

TABLE C-2 Color Names and Their Numerical Equivalents (continued)

Name Hexadecimal Code RGB Equivalent

aliceblue #F0F8FF 240,248,255

antiquewhite #FAEBD7 250,235,215

aqua #00FFFF 0,255,255

aquamarine #7FFFD4 127,255,212

azure #F0FFFF 240,255,255

beige #F5F5DC 245,245,220

bisque #FFE4C4 255,228,196

black #000000 0,0,0

blanchedalmond #FFEBCD 255,235,205

blue #0000FF 0,0,255

blueviolet #8A2BE2 138,43,226

brown #A52A2A 165,42,42

burlywood #DEB887 222,184,135

cadetblue #5F9EA0 95,158,160

chartreuse #7FFF00 127,255,0

chocolate #D2691E 210,105,30

coral #FF7F50 255,127,80

cornflowerblue #6495ED 100,149,237

cornsilk #FFF8DC 255,248,220

crimson #DC143C 220,20,60

cyan #00FFFF 0,255,255

darkblue #00008B 0,0,139

darkcyan #008B8B 0,139,139

darkgoldenrod #B8860B 184,134,11

darkgray #A9A9A9 169,169,169

darkgreen #006400 0,100,0

darkkhaki #BDB76B 189,183,107

darkmagenta #8B008B 139,0,139

darkolivegreen #556B2F 85,107,47

darkorange #FF8C00 255,140,0

darkorchid #9932CC 153,50,204

 768 P a r t I I I : A p p e n d i x e s 768 P a r t I I I : A p p e n d i x e s

Name Hexadecimal Code RGB Equivalent

darkred #8B0000 139,0,0

darksalmon #E9967A 233,150,122

darkseagreen #8FBC8F 143,188,143

darkslateblue #483D8B 72,61,139

darkslategray #2F4F4F 47,79,79

darkturquoise #00CED1 0,206,209

darkviolet #9400D3 148,0,211

deeppink #FF1493 255,20,147

deepskyblue #00BFFF 0,191,255

dimgray #696969 105,105,105

dodgerblue #1E90FF 30,144,255

firebrick #B22222 178,34,34

floralwhite #FFFAF0 255,250,240

forestgreen #228B22 34,139,34

fuchsia #FF00FF 255,0,255

gainsboro #DCDCDC 220,220,220

ghostwhite #F8F8FF 248,248,255

gold #FFD700 255,215,0

goldenrod #DAA520 218,165,32

gray #808080 127,127,127

green #008000 0,128,0

greenyellow #ADFF2F 173,255,47

honeydew #F0FFF0 240,255,240

hotpink #FF69B4 255,105,180

indianred #CD5C5C 205,92,92

indigo #4B0082 75,0,130

ivory #FFFFF0 255,255,240

khaki #F0E68C 240,230,140

lavender #E6E6FA 230,230,250

lavenderblush #FFF0F5 255,240,245

lawngreen #7CFC00 124,252,0

lemonchiffon #FFFACD 255,250,205

TABLE C-2 Color Names and Their Numerical Equivalents (continued)

 A p p e n d i x C : C o l o r s 769
PART III

 A p p e n d i x C : C o l o r s 769

Name Hexadecimal Code RGB Equivalent

lightblue #ADD8E6 173,216,230

lightcoral #F08080 240,128,128

lightcyan #E0FFFF 224,255,255

lightgoldenrodyellow #FAFAD2 250,250,210

lightgreen #90EE90 144,238,144

lightgrey #D3D3D3 211,211,211

lightpink #FFB6C1 255,182,193

lightsalmon #FFA07A 255,160,122

lightseagreen #20B2AA 32,178,170

lightskyblue #87CEFA 135,206,250

lightslategray #778899 119,136,153

lightsteelblue #B0C4DE 176,196,222

lightyellow #FFFFE0 255,255,224

lime #00FF00 0,255,0

limegreen #32CD32 50,205,50

linen #FAF0E6 250,240,230

magenta #FF00FF 255,0,255

maroon #800000 128,0,0

mediumaquamarine #66CDAA 102,205,170

mediumblue #0000CD 0,0,205

mediumorchid #BA55D3 186,85,211

mediumpurple #9370DB 147,112,219

mediumseagreen #3CB371 60,179,113

mediumslateblue #7B68EE 123,104,238

mediumspringgreen #00FA9A 0,250,154

mediumturquoise #48D1CC 72,209,204

mediumvioletred #C71585 199,21,133

midnightblue #191970 25,25,112

mintcream #F5FFFA 245,255,250

mistyrose #FFE4E1 255,228,225

moccasin #FFE4B5 255,228,181

navajowhite #FFDEAD 255,222,173

TABLE C-2 Color Names and Their Numerical Equivalents (continued)

 770 P a r t I I I : A p p e n d i x e s 770 P a r t I I I : A p p e n d i x e s

Name Hexadecimal Code RGB Equivalent

navy #000080 0,0,128

navyblue #9FAFDF 159,175,223

oldlace #FDF5E6 253,245,230

olive #808000 128,128,0

olivedrab #6B8E23 107,142,35

orange #FFA500 255,165,0

orangered #FF4500 255,69,0

orchid #DA70D6 218,112,214

palegoldenrod #EEE8AA 238,232,170

palegreen #98FB98 152,251,152

paleturquoise #AFEEEE 175,238,238

palevioletred #DB7093 219,112,147

papayawhip #FFEFD5 255,239,213

peachpuff #FFDAB9 255,218,185

peru #CD853F 205,133, 63

pink #FFC0CB 255,192,203

plum #DDA0DD 221,160,221

powderblue #B0E0E6 176,224,230

purple #800080 128,0,128

red #FF0000 255,0,0

rosybrown #BC8F8F 188,143,143

royalblue #4169E1 65,105,225

saddlebrown #8B4513 139,69,19

salmon #FA8072 250,128,114

sandybrown #F4A460 244,164,96

seagreen #2E8B57 46,139,87

seashell #FFF5EE 255,245,238

sienna #A0522D 160,82,45

silver #C0C0C0 192,192,192

skyblue #87CEEB 135,206,235

slateblue #6A5ACD 106,90,205

slategray #708090 112,128,144

TABLE C-2 Color Names and Their Numerical Equivalents (continued)

 A p p e n d i x C : C o l o r s 771
PART III

 A p p e n d i x C : C o l o r s 771

Unfortunately, testing reveals that this color variation scheme does not work under other
major browsers.

In general, Web page authors should be careful when using nonstandard color names.
In some cases, the unknown names will be interpreted as values, and other cases, the
browser will simply set the color as black.

No color Random color

Name Hexadecimal Code RGB Equivalent

snow #FFFAFA 255,250,250

springgreen #00FF7F 0,255,127

steelblue #4682B4 70,130,180

tan #D2B48C 210,180,140

teal #008080 0,128,128

thistle #D8BFD8 216,191,216

tomato #FF6347 255,99,71

turquoise #40E0D0 64,224,208

violet #EE82EE 238,130,238

wheat #F5DEB3 245,222,179

white #FFFFFF 255,255,255

whitesmoke #F5F5F5 245,245,245

yellow #FFFF00 255,255,0

yellowgreen #9ACD32 139,205,50

TABLE C-2 Color Names and Their Numerical Equivalents (continued)

 772 P a r t I I I : A p p e n d i x e s 772 P a r t I I I : A p p e n d i x e s

Given all the possibility of error, Web page authors should think twice before employing ad
hoc color names, though those in Table C-2 are safe in practice.

(X)HTML Elements Supporting Color
Presentation directives should be moved to CSS, but in the case of older and transitional
variants of (X)HTML, a number of elements support color values using either six-digit hex
color values or names. Table C-3 summarizes these elements. For more information on these
elements and their usage, see the element reference in Chapter 3.

(X)HTML Element Example Notes

basefont <basefont color= "red " size= "+2 "> Transitional syntax

body <body bgcolor="white" text="black"
alink="red" link="blue"
vlink="purple">

Transitional syntax

col <col bgcolor="orange"> Internet Explorer
syntax

colgroup <colgroup bgcolor="yellow"> Internet Explorer
syntax

font Big Red!

Transitional syntax

frame <frame bordercolor="red"
 src="red5.html">

Internet Explorer
syntax

frameset <frameset bordercolor="red"> Internet Explorer
syntax

hr <hr color="red" size="5"> Internet Explorer
syntax

iframe <iframe src="portlet.php"
bordercolor="red" height="200"
width="200"></iframe>

Internet Explorer
syntax

ilayer <ilayer name="ilayer1" bgcolor="green">
 <p>Layered information goes here.</p>
</ilayer>

Netscape 4 syntax

layer <layer name="layer1"
bgcolor="#00FFFF">
<!-- layer content here-->
</layer>

Netscape 4 syntax

marquee <marquee bgcolor="red">Stocks surge!
</marquee>

Internet Explorer
syntax

table <table bgcolor="yellow" border="1"
bordercolor="blue" bordercolorlight=
"orange" bordercolordark="red">

Border color attributes
are Internet Explorer–
introduced syntax

TABLE C-3 (X)HTML Elements Supporting Color Values

 A p p e n d i x C : C o l o r s 773
PART III

 A p p e n d i x C : C o l o r s 773

(X)HTML Element Example Notes

tbody <table>
<tbody bgcolor="yellow">
<!-- table body here -->
</tbody>
</table>

Border color attributes
are Internet Explorer–
introduced syntax

td <table border="1">
<tr>
<td bgcolor="yellow"
bordercolor="blue" bordercolorlight=
"orange" bordercolordark="red">Cell</td>
</tr>
</table>

Border color attributes
are Internet Explorer–
introduced syntax

th <table border="1">
<tr>
<th bgcolor="yellow" bordercolor="blue"
bordercolorlight="orange"
bordercolordark="red">Heading</td>
</tr>
<tr><td>Cell</td></tr>
</table>

Border color attributes
are Internet Explorer–
introduced syntax

tr <table border="1">
<tr bgcolor="yellow" bordercolor="blue"
bordercolorlight="orange"
bordercolordark="red">
<td>Cell 1</td><td>Cell 2</td>
</tr>
</table>

Border color attributes
are Internet Explorer–
introduced syntax

TABLE C-3 (X)HTML Elements Supporting Color Values (continued)

CSS Color Values
Cascading Style Sheets (CSS) supports the color names and values listed previously, but it
also offers a number of other formats not available in (X)HTML; these are summarized in
Tables C-4 and C-5.

 774 P a r t I I I : A p p e n d i x e s 774 P a r t I I I : A p p e n d i x e s

TABLE C-4 CSS Color Values

Color Format Description Examples

Specification-defined
named colors

There are 17 defined colors under CSS
2.1. Each is listed here with its six-digit
hex form equivalent.

maroon (#800000)

red (#ff0000)
orange (#ffA500)
yellow (#ffff00)
olive (#808000)

purple (#800080)
fuchsia (#ff00ff)

white (#ffffff)
lime (#00ff00)

green #008000)
navy (#000080)

blue (#0000ff)
aqua (#00ffff)

teal (#008080)
black (#000000)

silver (#c0c0c0)
gray (#808080)

Note there is a slight difference here
between CSS colors and HTML colors,
but in reality HTML colors, including
ad hoc color names, are commonly
supported. See the previous section
“Nonstandard Color Names and
Numerical Equivalents” for more
information.

body {font-family:
Arial; font-size: 12pt;
color: red;}

Commonly
supported named
colors

Browsers support a wide range of named
colors like mintcream. See the previous
section “Nonstandard Color Names and
Numerical Equivalents” for a complete
list of these extended colors.

#gap {color: khaki;}

System Color
Names

CSS 2 introduced named colors,
a feature that allows Web colors to be
matched to an operating system’s color
use. A complete list of the allowed
values and their meanings is found in
Table C-5. While these names are
commonly supported, there is some
concern that they will not be supported
in CSS3.

.formLabels {color:
CaptionText;}

input[type="button"]
{background-color:
ButtonFace;}

 A p p e n d i x C : C o l o r s 775
PART III

 A p p e n d i x C : C o l o r s 775

Color Format Description Examples

6-Hex Color CSS’s six-digit hexadecimal format is
the same as how colors are defined in
(X)HTML. The format specifies a color
as #rrggbb, where rr is the amount of
red, gg the amount of green, and bb
the amount of blue, all specified as a
hexadecimal value ranging from 00 to FF.

div {font-family:
Courier; font-size:
10pt; color: #00CCFF;}

3-Hex Color This is an RGB hexadecimal format with
an #rgb value, where r corresponds to a
hex value (0–F) for red, g for green, and
b for blue. For example, #f00 would
specify pure red, while #fff would
specify white. Given its data limits, the
format is less expressive than 6-Hex
Color.

span {font-family:
Helvetica; font-size:
14pt; color: #0CF;}

HSL Color CSS3 introduces Hue Saturation
Lightness (HSL), where color values are
specified as hsl(hue,saturation,
lightness). Hue is set as the degree
on the color wheel, where if you wrap
around 0 or 360 is red, 120 is green,
and 240 is blue, with the various other
colors found between. Saturation is
a percentage value, with 100% the
fully saturated color. Lightness is a
percentage, with 0% being dark and
100% light, with the average 50% being
the norm.

#red {
color: hsl(0,100%,
50%);}

#green {
color:
hsl(120,100%,50%);}

#blue {
color:
hsl(240,100%,50%);}

HSLa Color This is a CSS3 Hue Saturation
Lightness (HSL) value with a fourth
value to set the alpha channel
value for the color to define the
opacity of the element. An HSLa
is specified via a function style
hsla(hue,saturation,
lightness,alpha), where hue,
saturation, and lightness are the
same as standard hsl() values and
the alpha channel value for defining
opacity is a number between 0 (fully
transparent) and 1 (fully opaque).

#bluetrans {color: hsla
(240,100%,50%,0.5);}

TABLE C-4 CSS Color Values (continued)

 776 P a r t I I I : A p p e n d i x e s 776 P a r t I I I : A p p e n d i x e s

Color Format Description Examples

RGB CSS colors can also be defined using
the keyword rgb, followed by three
numbers between 0 and 255, contained
in parentheses and separated by
commas, with no spaces between
them. RGB color values can also be
defined using percentages. The format
is the same, except that the numbers
are replaced by percentage values
between 0% and 100%.

#p1 {color:
rgb(204,0,51);}

p {color:
rgb(0%,10%,50%);}

RGBa Color Like RBG color, but this adds an alpha
channel value to specify the opacity of
the color. An RGBa is specified via a
function style rgba(r,g,b,a) value,
where colors r, g, and b are specified
as decimal values from 0 to 255 or
a percentage from 0 to 100% and
the alpha channel value for defining
opacity is a number between 0 (fully
transparent) and 1 (fully opaque). Values
outside this range will be rounded up or
down to fit the closest value.

#redtrans {color:rgba
(255,0,0,0.4);}

TABLE C-4 CSS Color Values (continued)

NOTE Testing reveals that depending on operating system color changes, some browsers may not
map these UI color names correctly and often default to black.

CSS Color-Related Properties
Numerous CSS properties allow for color values. Table C-6 lists each property, a brief
example of its use, and an indication in which CSS version the property first appeared.
Readers looking for more information about the usage of these properties should see
Chapters 5 and 6, which provide a reference for standard and emerging or nonstandard
CSS properties, respectively.

NOTE Some details about browser and version support, particularly in regard to the CSS 3+ related
properties, are omitted from Table C-6. The purpose here is to provide a simple cross-reference.
See Chapters 5 and 6 for a complete discussion of each property.

 A p p e n d i x C : C o l o r s 777
PART III

 A p p e n d i x C : C o l o r s 777

TABLE C-5 CSS2 UI Color Names

UI Color Name Description

ActiveBorder Active window border color

ActiveCaption Active window caption color

AppWorkspace Background color of workspace in a multiple document interface

Background Desktop background color

ButtonFace Face color for three-dimensional UI elements

ButtonHighlight Highlight color for three-dimensional UI elements

ButtonShadow Shadow color for three-dimensional UI elements

ButtonText Text color on buttons

CaptionText Text color in caption, size box, and scrollbar arrow box

GrayText Disabled text color, which is generally gray or #000 if display does not
support a solid gray color

Highlight Highlight color of selections

HighlightText Text color of selected items

InactiveBorder Inactive window border color

InactiveCaption Inactive window caption background color

InactiveCaptionText Color of text in an inactive caption

InfoBackground Background color for tooltips

InfoText Color for tooltip text

Menu Menu background color

MenuText Text in menu color

Scrollbar Scroll bar background color

ThreeDDarkShadow Dark shadow for three-dimensional UI elements

ThreeDFace Face color for three-dimensional UI elements

ThreeDHighlight Highlight color for three-dimensional UI elements

ThreeDLightShadow Light color for three-dimensional UI elements

ThreeDShadow Dark shadow for three-dimensional UI elements

Window Window background color

WindowFrame Window frame color

WindowText Text in window color

 778 P a r t I I I : A p p e n d i x e s 778 P a r t I I I : A p p e n d i x e s

TABLE C-6 CSS Properties Supporting Color Values

Property Example
CSS
Version

background #redFlame {background: #f00;} CSS 1+

background-color #blueFlame {background-color: #00f;} CSS 1+

border div {border: 2px double red;} CSS 1+

border-bottom #redBottom {border-bottom: thin
solid red;}

CSS 1+

border-bottom-color div {border: 1px solid red;
 border-bottom-color:
 orange;}

CSS 2+

border-color #rainbow {border-color: red green
blue orange;}

CSS 1+

border-left #leftOut {border-left: thin dashed
red;}

CSS 1+

border-left-color #blueLeft {border-left-color:
#0000FF;}

CSS 2+

border-right #rightOn {border-right: thin dashed
#f00;}

CSS 1+

border-right-color #rightRed {border-right-color:
rgb(255,0,0);}

CSS 2+

border-top #boxTop {border-top: thin solid
blue;}

CSS 1+

border-top-color #bluetop {border-top-color: #00f;} CSS 2+

box-shadow #box1 {box-shadow: #f00 10px 10px
50px 40px;}

CSS 3+

color #july4 {color: red;} CSS 1+

column-rule-color #greenRule {column-rule-color:
green;}

CSS 3+

outline #coupon {outline: green dashed
10px;}

CSS 2+

outline-color a:hover {outline-style: dashed;
 outline-color: red;
 outline-width: 1px;}

CSS 2+

scrollbar-3dlight-color #scroll2 {scrollbar-3dlight-color:
red;}

No Spec

scrollbar-arrow-color #greenArrow {scrollbar-arrow-color:
green;}

No Spec

 A p p e n d i x C : C o l o r s 779
PART III

 A p p e n d i x C : C o l o r s 779

Browser-Safe Colors
Early on in the days of 256-color reproduction across browsers and operating systems, a
special palette of only 216 colors that are “safe” was defined. This group of Web-safe colors
is often called the browser-safe palette. In theory, use of other colors beyond this safe set can
lead to color shifting, particularly under limited color conditions like VGA, which supports
8-bit colors, providing a mere 256 colors. The reality today is that the Web-safe palette is
more historical than worrisome, especially considering how few devices are limited to an
8-bit palette. However, many tools and designers continue to promote the use of this
palette, so we present it and its design for completeness.1

NOTE Because it is difficult to present the Web-safe colors visually in a black and white book, the
palette can be viewed online at www.htmlref.com/AppC/browserpalette.html.

The selection of the 216 safe colors is fairly understandable if you consider the additive
nature of RGB color. Consider a color to be made up of varying amounts of red, green, or
blue that could be set by adjusting an imaginary color dial from the extremes of no color to

Property Example
CSS
Version

scrollbar-base-color #scroll3 {scrollbar-base-color:
orange;}

No Spec

scrollbar-darkshadow-color #scroll4 {scrollbar-darkshadow-color:
#FF0000;}

No Spec

scrollbar-face-color #scroll5 {scrollbar-face-color:
green;}

No Spec

scrollbar-highlight-color #scroll6 {scrollbar-highlight-color:
blue;}

No Spec

scrollbar-shadow-color #scroll7 {scrollbar-shadow-color:
yellow;}

No Spec

scrollbar-track-color #scroll8{scrollbar-track-color:
orange;}

No Spec

text-shadow .redBlur {text-shadow: 3px 3px 5px
red;}

CSS 3+

TABLE C-6 CSS Properties Supporting Color Values (continued)

1 The irrelevance of the Web-safe palette has been discussed since late 2000; see www.morecrayons.com for
references on this topic.

 780 P a r t I I I : A p p e n d i x e s 780 P a r t I I I : A p p e n d i x e s

maximum color saturation. The safe colors use six possible intensity settings for each value
of red, green, or blue. The settings are 0%, 20%, 40%, 60%, 80%, and 100%. A value of 0%,
0%, 0% on the imaginary color dial is equivalent to black. A value of 100%, 100%, 100%
indicates pure white, while a value of 100%, 0%, 0% is pure red, and so on. The safe colors
are those that have an RGB value set only at one of the safe intensity settings. The hex
conversions for saturation are shown in Table C-7.

Setting a safe color is simply a matter of selecting a combination of safe hex values. In
this case, #9966FF is a safe hex color; #9370DB is not. Most Web editing tools like Adobe
Dreamweaver and Microsoft Expression contain safe color pickers; as do imaging tools such
as Adobe PhotoShop. However, directly mapping an “unsafe” color to its nearest safe color
is fairly easy—just round each particular red, green, or blue value up or down to the nearest
safe value. A complete conversion of hex to decimal values is shown in Table C-8; safe
values are indicated in bold.

TABLE C-7 Color
Intensity Conversion
Table

Color Intensity Hex Value Decimal Value

100% FF 255

80% CC 204

60% 99 153

40% 66 102

20% 33 51

0% 00 0

TABLE C-8 RGB to Hexadecimal Color Conversion Chart

00=00 01=01 02=02 03=03 04=04 05=05

06=06 07=07 08=08 09=09 10=0A 11=0B

12=0C 13=0D 14=0E 15=0F 16=10 17=11

18=12 19=13 20=14 21=15 22=16 23=17

24=18 25=19 26=1A 27=1B 28=1C 29=1D

30=1E 31=1F 32=20 33=21 34=22 35=23

36=24 37=25 38=26 39=27 40=28 41=29

42=2A 43=2B 44=2C 45=2D 46=2E 47=2F

48=30 49=31 50=32 51=33 52=34 53=35

54=36 55=37 56=38 57=39 58=3A 59=3B

60=3C 61=3D 62=3E 63=3F 64=40 65=41

66=42 67=43 68=44 69=45 70=46 71=47

72=48 73=49 74=4A 75=4B 76=4C 77=4D

78=4E 79=4F 80=50 81=51 82=52 83=53

 A p p e n d i x C : C o l o r s 781
PART III

 A p p e n d i x C : C o l o r s 781

84=54 85=55 86=56 87=57 88=58 89=59

90=5A 91=5B 92=5C 93=5D 94=5E 95=5F

96=60 97=61 98=62 99=63 100=64 101=65

102=66 103=67 104=68 105=69 106=6A 107=6B

108=6C 109=6D 110=6E 111=6F 112=70 113=71

114=72 115=73 116=74 117=75 118=76 119=77

120=78 121=79 122=7A 123=7B 124=7C 125=7D

126=7E 127=7F 128=80 129=81 130=82 131=83

132=84 133=85 134=86 135=87 136=88 137=89

138=8A 139=8B 140=8C 141=8D 142=8E 143=8F

144=90 145=91 146=92 147=93 148=94 149=95

150=96 151=97 152=98 153=99 154=9A 155=9B

156=9C 157=9D 158=9E 159=9F 160=A0 161=A1

162=A2 163=A3 164=A4 165=A5 166=A6 167=A7

168=A8 169=A9 170=AA 171=AB 172=AC 173=AD

174=AE 175=AF 176=B0 177=B1 178=B2 179=B3

180=B4 181=B5 182=B6 183=B7 184=B8 185=B9

186=BA 187=BB 188=BC 189=BD 190=BE 191=BF

192=C0 193=C1 194=C2 195=C3 196=C4 197=C5

198=C6 199=C7 200=C8 201=C9 202=CA 203=CB

204=CC 205=CD 206=CE 207=CF 208=D0 209=D1

210=D2 211=D3 212=D4 213=D5 214=D6 215=D7

216=D8 217=D9 218=DA 219=DB 220=DC 221=DD

222=DE 223=DF 224=E0 225=E1 226=E2 227=E3

228=E4 229=E5 230=E6 231=E7 232=E8 233=E9

234=EA 235=EB 236=EC 237=ED 238=EE 239=EF

240=F0 241=F1 242=F2 243=F3 244=F4 245=F5

246=F6 247=F7 248=F8 249=F9 250=FA 251=FB

252=FC 253=FD 254=FE 255=FF

TABLE C-8 RGB to Hexadecimal Color Conversion Chart (continued)

This page intentionally left blank

D
URLs

A URL (uniform resource locator)1 is a uniform way to refer to objects and services on
the Internet. Even novice users should be familiar with typing a URL, such as
http://www.htmlref.com, in a browser dialog box, to get to a Web site. However,

URLs can be used for far more than just retrieving a Web page and can be used to invoke
other Internet services, such as transferring files via FTP or sending e-mail. Despite its
potentially confusing collection of slashes and colons, URL syntax is designed to provide
a clear, simple notation that people can easily understand. The concepts in this section will
help you to better understand the syntax of URLs, which is key to linking documents in and
beyond a Web site.

NOTE The W3C often calls what end users term a URL a URI. The W3C is working from
a more advanced view of Web addressing discussed later in the chapter. For this discussion we
always use URL, which is more broadly understood. Interestingly the HTML5 specification
drops URI in favor of the more widely understood term URL.

Basic Concepts
To locate any arbitrary object on the Internet, you need to find out the following information:

 1. First, you need to locate and access the machine on the network on which the object
resides. Locating the site might be a matter of specifying its domain name or IP
address, whereas accessing the machine might require a username and password.

 2. After you access the machine, you need to determine the name of the desired file,
where the file is located, the position in the file as specified by a fragment identifier,
and what protocol will be used to retrieve the information or access the object.

In other words, a URL describes where something is and how it will be retrieved. The
where is specified by the machine name, the directory name, the filename, and potentially more.

1 Some people call URLs “universal resource locators.” Except for a historical reference to “universal
resource locators” in documentation from many years ago, the current standard wording is “uniform
resource locator.”

783

APPENDIX

 784 P a r t I I I : A p p e n d i x e s 784 P a r t I I I : A p p e n d i x e s

The how is specified by the protocol (for example, HTTP). Slashes and other characters are
used to separate the parts of the address into machine-readable pieces. The basic structure
of the URL is shown here:

protocol://site address/directory/filename#fragmentid

The next several sections look at the individual pieces of a URL in closer detail.

Server Address
A document exists on some serving computer somewhere on the global Internet or within a
private intranet. The first step in finding a document is to identify its server. This may be
performed by a site’s IP address,

http://10.0.0.1

though it is more likely that an alphanumeric domain name is employed,

http://www.htmlref.com

The name may be fully qualified with a machine name, a domain, an organization type,
and potentially, a country code. For example,

http://www.htmlref.com

would specify the name of a machine called “www” in the domain htmlref, which is in the
top-level COM domain. By contrast,

http://dev.htmlref.com

would reference a machine known as “dev” in the same domain.
Very often for primary Web sites within a domain the machine name is omitted, so we

simply write

http://htmlref.com

However, such configuration is up to the owner of the domain. This short-hand form
should be employed as most sites are reachable without a www prefix.

Historically, top-level domains such as those found in Table D-1 are used.

Domain Intended Type

.com Commercial entities

.net Networks

.edu Educational institutions

.org Non-Profit organizations

.gov Government entities

.mil U.S. military

TABLE D-1 Common
Top-Level Domains

 A p p e n d i x D : U R L s 785
PART III

 A p p e n d i x D : U R L s 785

However, starting around 2001, the top-level domain space expanded quite a bit. A
sample of the top-level domains that have been added beyond the commonly known ones
is shown in Table D-2. Potentially more domains may be found at the Internet Assigned
Numbers Authority (IANA) Web site (iana.org).

At the time of this edition’s writing in 2009, there is a distinct possibility that arbitrary
domains could be introduced. For example, .google might be top-level domain for all Google
properties. Even without this happening, the top-level domain space is clearly a mess, and
with generic domains on the horizon, the situation seems unlikely to get much better soon.

Geographic domains are particularly common outside the United States; such a domain
name typically contains more information than the organization type, with a fully qualified
domain name (FQDN) including a country code as well. It generally is written as follows:

machine name.domain name.domain type.country code

Zone identifiers outside the U.S. use a two-character code to indicate the country
hosting the server. These include .ca for Canada, .mx for Mexico, .jp for Japan, and so on. A
few examples are shown here.

www.unam.edu.mx
www.mcgill.ca
www.bbc.co.uk
www.ox.ac.uk
www.sony.co.jp

A complete list of country codes can be found at the IANA site (iana.org).

TABLE D-2 Some Newer Top-Level Domains

Domain Intended Type

.aero Business entities similar to .com

.asia Entities in the Asia Pacific region

.biz Business entities (similar to .com)

.cat Catalan linguistic and cultural community-related sites

.coop Cooperatives

.info Information-oriented sites

.jobs Job hosting sites

.mobi Mobile device sites

.museum Museums and similar institutions

.name Individual by names

.pro Professionals, particularly certified accountants, engineers, lawyers, and physicians

.tel Telephone and contact information

.travel Travel and tourism–related sites

 786 P a r t I I I : A p p e n d i x e s 786 P a r t I I I : A p p e n d i x e s

NOTE One special top-level domain, .int, is reserved for organizations established by international
treaties between governments, such as the European Union (eu.int).

Within each country, the local naming authorities might create domain types at their
own discretion, but these domain types can’t correspond to American extensions. For
example, we see that www.sony.co.jp specifies a Web server for Sony in the co zone of Japan.
In this case, .co, rather than .com, indicates a commercial venture. In the United Kingdom,
the educational domain space has a different name, ac. Oxford University’s Web server is
www.ox.ac.uk, whereby .ac indicates academic, compared to the U.S. .edu extension for
education.

The United States also uses the .us extension, although it has only recently caught on
outside of local government and k–12 educational environments. For example, www.sdcoe
.k12.ca.us is the current address of the County Office of Education in San Diego. However,
the school district opts to use a .net domain (sandi.net), and individual high schools have
even registered .com names. As in many organizations that have a choice of a regional
domain, the shorter top-level domain is preferred, and unfortunately, the .com space seems
to be the most desirable whether it is appropriate or not.

Directory
Once you reach a server, you may access a particular directory. The Web site directory that
contains all others is known as the root directory and is specified with a single forward slash.
So a URL like

http://htmlref.com/

would select the root directory of the book site. Very often users and developers will leave
off the final trailing slash when referencing a directory. It is syntactically correct for it to be
included, and if you don’t include it, your browsers or the receiving Web server will likely
add it in.

Directories may contain other directories

http://htmlref.com/ch1/

to arbitrary depth

http://htmlref.com/really/long/fake/directory/path/

On occasion you may see operating system–specific aspects to directory selection. For
example, conventionally on UNIX systems ~username will resolve to a user’s home directory
path, so

http://htmlref.com/~tpowell

might be a possible URL on a UNIX system using such a convention. We will also note that
the case sensitivity rules of the directory portion of a URL will depend on the host Web
server. For example, UNIX-based Web servers will treat http://htmlref.com/Ch1 and
http://htmlref.com/CH1/ as two different paths, whereas the same URLs referencing a Web
server using a case-insensitive operating system like Windows would resolve to a single path.

 A p p e n d i x D : U R L s 787
PART III

 A p p e n d i x D : U R L s 787

However, do not assume that the Web server’s operating system dictates everything; for
example, URLs do not use Windows-style backslashes.

Filename
After you specify the server and the directory path for a document, the next step toward
locating it is to specify its filename. Commonly, when a simple directory-based URL is
given like

http://htmlref.com/ch1/

a default file in that directory, often named index.html, will be returned by the Web server.
However, this file could be referenced directly like so:

http://htmlref.com/ch1/index.html

File names are arbitrary,

http://htmlref.com/ch1/reallylongfilename.html

and may be case sensitive, depending on the host operating system. Thus

http://htmlref.com/ch1/reallylongfilename.html

and

http://htmlref.com/ch1/REALLYLONGFILENAME.html

may reference the same object or not, depending on the operating system. Filenames may
include special characters like dashes and underscores,

http://htmlref.com/ch1/really_long_file_name.html
http://htmlref.com/ch1/another-really-long-file-name.html

However, depending on the special characters used, they may be encoded (see the upcoming
section “Encoding” for more information). As an example, the filename “really long file
name.html” with spaces should encode as

http://htmlref.com/ch1/another%20really%20long%20file%20name.html

A dot separates the filename and the extension, which is a code, generally composed of
three or four letters that identifies the type of information contained in the file. For example,
HTML source files generally have a .htm or .html extension, CSS files, a .css extension,
JavaScript files, a .js extension, JPEG images have a .jpg extension, and so on.

http://htmlref.com/ch1/site.css
http://htmlref.com/ch1/bigimage.jpg
http://htmlref.com/ch1/jquery.js

A file’s extension is critically important for Web applications because it is the primary
indication of the information type that a file contains. However, it is possible to remove file

 788 P a r t I I I : A p p e n d i x e s 788 P a r t I I I : A p p e n d i x e s

extensions from URLs, as it is really the underlying MIME header that tells a browser what
it is getting, so it might be quite possible to serve URLs like

http//htmlref.com/ch1/listexamples

rather than

http://htmlref.com/ch1/listexamples.php

Removing extensions will aid in portability and hide implementation details from end users.

NOTE Using a URL rewriting mechanism like Apache’s mod_rewrite is the primary weapon in
cleaning URLs.

Fragment Identifier
Besides referencing a file, it may be desirable to send a user directly to a particular point
within the file. Because you can set up named links under traditional HTML and name any
tag using the id attribute from HTML 4 onward, you can provide links directly to different
points within a file. To jump to a particular named link, the URL must include a hash
symbol (#) followed by the link name, which indicates that the value is a fragment identifier.
For example, given <p id="#middle"> found in the file fragmentids.html in the ch1
directory of the book support site, we would use the URL

http://htmlref.com/ch1/fragmentids.html#middle

Protocol
Finally, we need to specify how to retrieve information from the specified location. This is
indicated in the URL by the protocol value. A protocol is the structured discussion that
computers follow to negotiate resource-specific services. For example, the protocol that
makes the Web possible is the Hypertext Transfer Protocol (HTTP). When you click a
hyperlink in a Web document, your browser uses the HTTP protocol to contact a Web server
and retrieve the appropriate document.

NOTE Although HTTP stands for Hypertext Transfer Protocol, it doesn’t specify how a file is
transported from a server to a browser, only how the discussion between the server and browser will
take place to get the file. The actual transport of files usually is the responsibility of a lower-layer
network protocol, such as the Transmission Control Protocol (TCP). On the Internet, the
combination of TCP and IP makes raw communication possible. Although a subtle point, many
Internet professionals are unaware of lower-level protocols below application protocols such as
HTTP, which are part of URLs.

Although less frequently used than HTTP, several other protocols are important to Web
page authors because they are often invoked by hyperlinks. Table D-3 lists some examples.

NOTE Sometimes the protocol javascript: is used in a URL; for example, javascript:alert(‘hi’). This
is not a network protocol per se, but this form of pseudo-URL to invoke the execution of JavaScript
is commonly found in Web pages.

 A p p e n d i x D : U R L s 789
PART III

 A p p e n d i x D : U R L s 789

These are the common protocols, but a variety of new protocols and URL forms are
being debated all the time. We’ll present a discussion of emerging URL forms toward the
end of this appendix.

Other Features of URLs
In addition to the protocol, server address, directory, and filename, URLs often include a
username and password, a port number, and potentially more. Some URLs, such as mailto,
might even contain a different form of information altogether, such as an e-mail address
rather than a server or filename.

Username and Password
FTP and telnet are protocols for authenticated services. It is also possible to make HTTP an
authenticated service if you password-protect a directory or file. Authenticated services can
restrict access to authorized users, and the protocols can require a username and password
as parameters. A username and password precede a server name; for example, ftp syntax
looks like

ftp://username:password@server-address

The password could be optional or unspecified in the URL, making the form simply:

ftp://username@server-address

Regardless of the protocol, we should avoid putting login identifiers and especially passwords
in URLs. If it is not specified and the resource is protected, let the server issue a challenge so
that users provide it directly.

TABLE D-3 Some Commonly Used URL Protocols

Protocol Description Example

https Secure Sockets Layer (SSL) protocol
for encrypted HTTP traffic

https://yourbank.com/

file Enables a hyperlink to access a file
on the local file system

file:///C:/inetpub/wwwroot/ch1/
fakeexample.html

ftp (File Transfer
Protocol)

Enables a hyperlink to download files
from remote systems

ftp://ftp.apple.com/

mailto Invokes a mail program to enable a
hyperlink to send an addressed e-mail
message

mailto:tpowell@pint.com

telnet Enables a hyperlink to open a telnet
session on a remote host

telnet://someserver.fakeexample.com

 790 P a r t I I I : A p p e n d i x e s 790 P a r t I I I : A p p e n d i x e s

Port
Although not often used, the communication port number in a URL also can be specified.
Browsers speaking a particular protocol communicate with servers through entry points,
known as ports, which generally are identified by numeric addresses. Associated with each
protocol is a default port number. For example, an HTTP request defaults to port number 80.
You could say

http://htmlref.com:80/ch1/fakeexample.html

but there is no point, as the browser will use the default port for HTTP traffic anyway.
However, a server administrator can configure a server to handle protocol requests at ports
other than the default numbers. Usually this occurs for experimental or secure applications.
In these cases, the intended port must be explicitly addressed in a URL. For example, if we
ran another server on port 8080, we would use

http://notgoingtowork.htmlref.com:8080/ch1/fakeexample.html

Port number–based access is not terribly user friendly, and it intrinsically provides no
extra security other than obscurity.

Query String
Many URLs contain query strings indicated by the question mark (?). When a URL requests
a program to be run rather than a file to be returned, a query string might be passed in the
URL to indicate the various arguments to be given to the server-side program. Consider, for
example,

http://www.htmlref.com/fakeexample/registration.php?
Name=Matt+Folely&Age=32&Sex=male

In this situation, the program registration.php is handed a query string that has a name
value set to “Matt Folely,” an Age value set to “32,” and a Sex value set to “male.” Query
strings are generally encoded as discussed in the next section. Spaces in this case are
mapped to the plus sign (+), while all other characters are in the %hex value form. The
various name-value pairs are separated by ampersands (&). The encoding and decoding of
URLs is important for Web developers to understand, and a loose attitude toward allowed
encodings can quickly lead to security problems.

Encoding
Some characters may have special meaning within the context of a URL or the operating
system of the server on which the resource is found. If any unsafe, reserved, or nonprintable
characters occur in a URL, they must be encoded in a special form defined by the MIME type
x-www-form-urlencoded. Failure to encode special characters may lead to errors,
particularly in the presence of Web server security systems such as Web application firewalls.

The form of encoding consists of a percent sign and two hexadecimal digits corresponding
to the value of the character in the ASCII character set. Only alphanumeric values and some
special characters ($ - _ . + ! * '), including parentheses, may be used in a URL; other
characters should be encoded. In general, special characters such as accents, spaces, and some
punctuation marks have to be encoded, depending on the character set in play. Table D-4
shows the reserved and potentially dangerous characters for URLs.

 A p p e n d i x D : U R L s 791
PART III

 A p p e n d i x D : U R L s 791

NOTE Many of the characters in Table D-4 don’t have to be encoded, but encoding a character never
causes problems, so when in doubt, encode it.

Data URIs
One form of address that has been overlooked for years but is now viable to use is the
data: URI. A data URI allows data to be encoded directly into the address. The general
syntax of a data URI is

data: [MIME type][;charset="encoding"][;base64],data

Character Encoding Value

Space %20

/ %2F

? %3F

: %3A

; %3B

& %26

@ %40

= %3D

%23

% %25

< %3E

> %3C

{ %7B

} %7D

[%5B

] %5D

" %22

` %27

' %60

^^ %5E

~ %7E

\ %5C

| %7C

TABLE D-4 Common
Character Encoding
Values

 792 P a r t I I I : A p p e n d i x e s 792 P a r t I I I : A p p e n d i x e s

Given this syntax, we can include the data of this small Web page:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>data URI Encoded Page</title>
</head>
<body>
<h1>I was encoded in a data URI!</h1>
</body>
</html>

as

data:text/html;base64,PCFET0NUWVBFIGh0bWw+DQo8aHRtbD4NCjxoZWFkPg0KPG1ldGEga
HR0cC1lcXVpdj0iQ29udGVudC1UeXBlIiBjb250ZW50PSJ0ZXh0L2h0bWw7IGNoYXJzZXQ9dXRm
LTgiPg0KPHRpdGxlPmRhdGEgVVJJIEVuY29kZWQgUGFnZTwvdGl0bGU+DQo8L2hlYWQ+DQo8Ym9
keT4NCjxoMT5JIHdhcyBlbmNvZGVkIGluIGEgZGF0YSBVUkkhPC9oMT4NCjwvYm9keT4NCjwvaH
RtbD4NCg==

We can then load the address into a data URI–supporting browser, and it renders the
HTML page.

Since it is a valid address, we can even use this value in a link like so:

<p>
<a href="data:text/html;base64,PCFET0NUWVBFIGh0bWw+DQo8aHRtbD4NCjxoZWFkPg
0KPG1ldGEgaHR0cC1lcXVpdj0iQ29udGVudC1UeXBlIiBjb250ZW50PSJ0ZXh0L2h0bWw7IGN
oYXJzZXQ9dXRmLTgiPg0KPHRpdGxlPmRhdGEgVVJJIEVuY29kZWQgUGFnZTwvdGl0bGU+DQo8
L2hlYWQ+DQo8Ym9keT4NCjxoMT5kYXRhIFVSSXMhPC9oMT4NCjwvYm9keT4NCjwvaHRtbD4NCg=
=">What does this load?
</p>

Commonly, this address form is used to include small images and icons. Here a red icon
image is placed via a data URI:

<p> <img src="
9AQP+Pj//MzP8QECH5BAAHAP8ALAAAAAAKAAoAAAMeGLrMIm0R0kwZAIxilDlZdnReCJCL2QjE0
zIAHEUJADs=" width="10" height="10" alt="*"></p>

 A p p e n d i x D : U R L s 793
PART III

 A p p e n d i x D : U R L s 793

Anywhere a URL can be used, so can a data URI. For example, here we define some CSS
rules for unordered list icons:

<style type="text/css" media="all">
ul li.pro {list-style-image: url(
7+/gAAAAEBAf39/QAAAAAAAAAAACH5BAEKAAcALAAAAAANABEAAAM8eHoAASsyIIaTijoBsdZSA1j
fsgkclWbDMz6V+MlqqtJ0atMB5+IiFLBB0A1vOWEDVWEOUIEJk/nLABcJADs=);}

 ul li.con {list-style-image: url(
7+/gAAAAEBAQAAAAAAAAAAAAAAACH5BAEKAAQALAAAAAANABEAAANBSAQMEUwpJ4a4ojXM63BWAwF
WBpimpl2qFgwjE2/M1zbWPKcre8oo3snnkzhOkExAIgmglsyJUgCNMi6QqPEYTQAAOw==);}
</style>

Then we might use them to indicate the pros and cons of data URIs:

<h2>Data URI Points</h2>

 <li class="pro">Compact and self-contained
 <li class="pro">No extra fetches

 <li class="con">IE 8+ Required
 <li class="con">Size Limits

Some caution should be employed with data URIs, as they are not supported in
all browsers. The most notable problems are with pre–Internet Explorer 8 browsers.
Furthermore, even when data URIs are supported, there may be a limit to their size,
depending on context.

A few demonstrations of data URIs are shown in Figure D-1.

ONLINE http://htmlref.com/AppD/datauris.html

 794 P a r t I I I : A p p e n d i x e s 794 P a r t I I I : A p p e n d i x e s

Other Emerging URL Forms
New protocols are emerging as the Web starts to converge with television and mobile
devices. For example, a telephone number might look like tel:number, where number may
include any special dialing prefixes. For example, here we have a link that would call a
directory assistance number:

New York City Directory Assistance

This syntax is already supported by browsers integrated with mobile devices like Apple’s
iPhone.

A television channel URL form might look like tv://channel, whereby channel is either
an alphanumeric name (such as nbc or nbc7-39) or a numeric channel number. A variety of
esoteric schemes are out there already. If you are interested in new URL schemes, take a
look at the W3C area on addressing (www.w3.org/Addressing) for more information.

FIGURE D-1
Data URIs in action

 A p p e n d i x D : U R L s 795
PART III

 A p p e n d i x D : U R L s 795

Relative URLs
Up to this point, the discussion has focused on a specific form of URL, typically termed an
absolute URL. Absolute URLs completely spell out the protocol, host, directory, and
filename. Providing such detail throughout a Web site can be tedious and unnecessary,
which is where a shortened form of URL, termed a relative URL, comes into use. With
relative URLs, the various parts of the address—the site, directory, and protocol—can be
inferred from the URL of the current document, or through the <base> tag. The best way to
illustrate the idea of relative URLs is by example.

If a Web site has an address of www.democompany.com, a user can access the home
page with a URL such as http://www.democompany.com/. A link to this page from an
outside system also would contain the address http://www.democompany.com/. Once at
the site, however, there is no reason to continue spelling out the full address of the site. A
fully qualified link from the home page to a staff page in the root directory called staff.html
would be http://www.democompany.com/staff.html. The protocol, address, and directory
name can be inferred, so all that is needed is the address staff.html. This relative scheme
works because http://www.democompany.com/ is inferred as the base of all future links
that omit protocol and domain, thus allowing for the shorthand relative notation. The
relative notation can be used with filenames and directories, as shown by the examples in
Table D-5.

When relative URLs are used within a Web site, the site becomes transportable. By not
spelling out the server name in every link, you can develop a Web site on one server and
move it to another. If you use absolute URLs, however, all links have to be changed if a server
changes names or the files are moved to another site.

Using the <base> Tag
Of course, using relative URLs also has a potential downside: They can become confusing
in a large site, particularly if centralized directories are used for things such as images.
Imagine having URLs such as ../../../images/logo.gif in files deep in a site structure. Some
users might be tempted to simply copy files around a site to avoid such problems, but then
updating and caching issues arise. One solution is to use a <base> tag. Another solution is

TABLE D-5 Relative URL Formation Examples

Current Page Address Destination Address Relative URL

http://www.democompany.com/
index.html

http://www.democompany.com/
staff.html

staff.html

http://www.democompany.com/
index.html

http://www.democompany.com/
products/gadget1.html

products/
gadget1.html

http://www.democompany.com/
products/jetpackes/modelT.html

http://www.democompany.com/
index.html

/index.html

http://www.democompany.com/
products/gadget1.html

http://www.democompany.com/
index.html

../../index.html

 796 P a r t I I I : A p p e n d i x e s 796 P a r t I I I : A p p e n d i x e s

to use symbolic links on the Web server to reference one copy of the file from multiple
locations. However, because HTML is the subject here, we focus on the former solution
using the base element.

The base element defines the base for all relative URLs within a document. Setting the
href attribute of this element to a fully qualified URL enables all other relative references to
use the defined base. For example, if <base> is set as <base href="http://www.htmlref
.com/">, then all the anchors in the document that aren’t fully qualified will prefix http://
www.htmlref.com/ to the destination URL. Because base is an empty element, it would have
to be written as <base href="http://www.htmlref.com/" /> to be XHTML-compliant.
A simple example is presented here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Base URL Example</title>
<base href="http://htmlref.com/">
</head>
<body>

 Basic linking example
 Base example
 Book Site Home Page
 Book Site Home Page Alternate
 Google

</body>
</html>

ONLINE http://htmlref.com/AppD/base.html

It is most interesting to run this example from another server or locally off your disk, as you
will note that the relative URLs will resolve to the book support site per the address in the
<base> tag.

Since a <base> tag can occur only once in an HTML document—within the head
element—creating sections of a document with different base URL values is impossible.
Such a feature might someday be added to a sectioning element, but until then, HTML
authors have to deal with the fact that shorthand notation is useful only in some places. See
the entry in Chapter 3 for more information on the <base> tag.

URL Challenges
While we all know and use URLs, we don’t necessarily understand all their little quirks. We
enumerate a few of the more common challenges faced when working with URLs here.

 A p p e n d i x D : U R L s 797
PART III

 A p p e n d i x D : U R L s 797

Unclear Case Sensitivity
Are URLs case sensitive? The answer is, it depends. Domains are not case sensitive.
Addresses can be written as www.Democompany.com or www.DEMOCOMPANY.com. A
browser should handle both properly. Case typically is changed for marketing or branding
purposes. However, directory names and filenames following the domain name might be
case sensitive, depending on the operating system that the Web server is running on. For
example, UNIX systems are case sensitive, whereas Windows machines are not. Then the
question arises of query string names and values. Serious trouble can ensue when you are
sloppy with case. Assume URLs are case sensitive to avoid headaches.

Unclear Length Limits
How long can a URL be? The answer is unclear. Some documentation suggests low limits,
around 255 or 1,024 characters. Other documents indicate there are no limits—the answer is
dependent upon many factors. For example, user agents will vary with some supporting
user agents and web servers, whatever a system’s maximum string length is. While others
are more restrictive or have bugs that restrict URLs to a bit over 1,000 characters. Add in
Web servers and security systems, which may have their own limits on allowed URL
lengths, and you get the simple answer—nobody knows what the limit may be. Web page
authors should assume the worst and use short URLs, 255 chars or lower if at all possible.

Persistence Concerns
Documents move around, servers change names, and documents might eventually be
deleted. This is the nature of the Web, and the reason why the 404 Not Found message is so
common. When users hit a broken link, they might be at a loss to determine what happened
to the document and how to locate its new home. Wouldn’t it be nice if, no matter what
happened, a unique identifier indicated where to get a copy of the information? Links can
be maintained and errors carefully tracked, but how many developers are really that careful
with their URLs?

Long, Dirty URLs
People often have to transcribe addresses. For example, the following is quite a lot to type,
read to someone, or avoid not breaking across lines in an e-mail:

http://www.democompany.com/about/press/pressdetail.php?id=7&view=screen

Firms are already scrambling for short domain names and paths to improve the type-
ability of URLs, and most folks tend to omit the protocol when discussing things. Despite
these minor clean-ups, many URLs are very long and “dirty,” filled with all sorts of special
characters, encouraging fiddling by the mischievous.

Short, Cryptic URLs
Admittedly, URLs can get too long to reasonably type or remember. Worse yet, they may
simply be too long for a 140-character Twitter message. Web developers may employ a
shortened URL. For example, http://tinyurl.com/c3l7cq takes you to the archaic server-side
image map example at http://htmlref.com/ch7/serverimagemap.html. The shorter URL

 798 P a r t I I I : A p p e n d i x e s 798 P a r t I I I : A p p e n d i x e s

doesn’t tell us much about where we are going. We could be visiting an HTML example,
a 1980s pop-video of Rick Astley, or some horrid drive-by malware download. Short URLs
may save space, but they are not only cryptic but potentially dangerous. Further, we must
hope that the service that powers our shortened URL lives on and that the usage data they
glean from watching users traverse the link is not used for troubling ends.

Location, Not Meaning
The primary problem with URLs is that they define location rather than meaning. In other
words, URLs specify where something is located on the Web, not what it is or what it’s
about. This might not seem to be a big deal, but it is. For example, the text of the HTML5
specification is a useful document and certainly has an address at the W3C Web site. But
does it live in other places on the Internet? For certain, it can be found at its original parent,
WhatWG, and is likely mirrored in a variety of locations. However, if we focus solely on the
W3C server and it is unreachable, or DNS services fail to resolve the host, we are stuck if we
focus on location. Rather than trying to find a particular document, wherever it might be on
the Internet, Web users try to go to a particular location. Rather than talking about where
something is, Web users should try to talk about what that something is.

Beyond URLs
Talking about what a document is rather than where it is makes sense when you consider
how information is organized outside the Internet. In general, few people talk about which
library carries a particular book, or what shelf it is on. The relevant information is the title of
the book, its author, and perhaps some other information. But what happens if two or more
books have the same title, or two authors have the same name? This actually is quite common.
Generally, a book should have a unique identifier such as an ISBN number that, when
combined with other descriptive information, such as the author, publisher, and publication
date, uniquely describes the book. This naming scheme enables people to specify a particular
book and then hunt it down.

The Web, however, isn’t as orderly as a library. On the Web, people name their documents
whatever they like, and search robots organize their indexes however they like. Categorizing
things is difficult. The only unique item for documents is the URL, which simply says where
the document lives. But how many URLs does the HTML5 specification have? A document
might exist in many places. Even worse than a document with multiple locations, what
happens when the content at the location changes? Perhaps a particular URL address points
to information about dogs one day and cats the next. This is how the Web really is. While
search engines like Google do a great deal to sort this mess out, there is still a great deal to fix,
and thus there is a great deal of research being performed to address some of the shortcomings
of Web addressing and data meaning.

New Addressing Schemes: URNs, URCs, and URIs
Consider the idea of the information describing this book. It may have a unique identifier
for it, such as an ISBN number. It has many characteristics that describe it, such as its cost,

 A p p e n d i x D : U R L s 799
PART III

 A p p e n d i x D : U R L s 799

author, copyright, publisher, and so on. Finally, the book can be found in numerous places
online. It may have a canonical location, but there are likely many others.

Information Resource

Unique ID
ISBN: 0-07-222942-X

Locations
Examples

Characteristics
Examples

Cost: 39.99
Author: Thomas A. Powell
Copyright: 2009

http://htmlref.com/
http://http://www.amazon.com/HTML-XHTML…

A new set of addressing ideas addresses these generic concepts. First, a uniform resource
name (URN) can locate a resource by giving it a unique symbolic name rather than a unique
address. Second, uniform resource characteristics (URC), describes a set of attribute/value
pairs that defines some aspect of an information resource. For example, in the case of a
book, a URC might describe a publication date, number of pages, author, and so on. The
form of a URC is still under discussion; however, logically what they would provide is
already being used often in the form of simple <meta> tags. Finally, the resource may have
location(s) on the Web where it lives. Taken all together, a particular information resource
has been identified. The collection of information, which is used to identify this document
specifically, is termed a uniform resource identifier (URI).

NOTE Occasionally, URI is used interchangeably with URL. Although this is acceptable, research
into the theories behind the names suggests that the term URI is more generic than URL and
encompasses the ideal of an information resource. Currently, a URL is the only common way to
identify an information resource on the Internet. Although technically a URL could be considered
a URI, this confuses the issue and obscures the ultimate goal of trying to talk about information
more generally than in terms of a network location.

Although many of the ideas covered here are still being discussed, some existing
systems already implement many of the features of URNs and URCs. Furthermore, many
browser vendors and large Web sites are implementing special keyword navigation
schemes that mimic many of the ideas of URNs and URCs. Unfortunately, as of the writing
of this book, none of these approaches are widely implemented or accepted. URLs are likely
to remain the most common way to describe information on the Web for the foreseeable
future.

This page intentionally left blank

E
Reading a Document

Type Definition

This appendix presents the Document Type Definitions (DTDs) for HTML 4.01 and
XHTML 1.0. Traditional HTML “dialects” are defined using SGML (Standard
Generalized Markup Language), a complex language with many nuances. XHTML

dialects are developed in XML (Extensible Markup Language), which is a subset of SGML
and slightly easier to work with. This appendix presents the small amount of SGML or
XML knowledge needed to read the various DTDs found online directly.

Element Type Declarations
Two common types of declarations should be familiar to Web developers: element type
declarations and attribute list declarations. An element type declaration defines three
characteristics:

 1. The element type’s name, also known as its generic identifier.

 2. Whether start and end tags are required, are forbidden (end tags on empty elements),
or may be omitted.

 3. The element type’s content model, or what content it can enclose.

All element type declarations begin with the keyword ELEMENT and have the
following form:

<!ELEMENT name content_model >

The declaration for the XHTML br element gives a simple example:

<!ELEMENT br EMPTY>

This case says we have a br element that contains no content at all—it is empty, as shown
by the keyword EMPTY.

801

APPENDIX

 802 P a r t I I I : A p p e n d i x e s 802 P a r t I I I : A p p e n d i x e s

In the case of traditional HTML, which is defined using SGML, we see a different syntax
that defines

<!ELEMENT name minimization content_model >

In the traditional DTD, we see

<!ELEMENT BR - O EMPTY>

Here, tag minimization is declared by two parameters that indicate the start and end
tags. These parameters may take one of two values. A hyphen indicates the tag is required.
An uppercase O indicates it may be omitted. The combination of O for the end tag and the
content model EMPTY means the end tag is forbidden. Thus, under traditional HTML a

tag requires a start tag but not an end tag. Because a
 tag does not contain content, its
content model is defined by the keyword EMPTY, just as it did in the XHTML specification.

NOTE Under standard HTML, the elements in the DTD are actually uppercase. While older HTML
was almost always in uppercase, newer HTML efforts are nearly always in lowercase, given the
influence of XHTML; thus we will use the common lowercase forms when discussing tags in this
appendix, though the related syntax will show uppercase.

Most HTML and XHTML elements enclose content. If a content model is declared, it is
enclosed within parentheses and known as a model group. The HTML 4.0 declaration for a
selection list option gives an example:

<!ELEMENT OPTION - O (#PCDATA)*>

The XHTML equivalent is almost identical, save the casing of the element itself and the
lack of the minimization information.

<!ELEMENT option (#PCDATA)>

Note in both cases the content model group contains the keyword #PCDATA. This stands for
parsed character data—character content that contains no element markup but that may
contain entity symbols for special characters. Keywords such as #PCDATA and CDATA are
discussed in the section “SGML and XML Keywords.”

Occurrence Indicators
In a previous example, note the asterisk appended to the model group. This is an occurrence
indicator—a special symbol that qualifies the element type or model group to which it is
appended, indicating how many times it may occur. There are three occurrence indicators:

• ? Means optional and at most one occurrence (zero or one occurrence)

• * Means optional and any number of occurrences (zero or more occurrences)

• + Means at least one occurrence required (one or more occurrences)

 A p p e n d i x E : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 803
PART III

 A p p e n d i x E : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 803

Content models can also define an element type as containing element content,
illustrated by the SGML declaration for a definition list (<dl>) under HTML 4.01:

<!ELEMENT DL - - (DT | DD)+>

The XML declaration for dl under XHTML is again only slightly different, as it omits the
minimization information and cases the elements differently:

<!ELEMENT dl (dt | dd)+>

Logical Connectors
A model group contains the names of the elements that a tag may enclose; for example, dt
and dd are found within <dl> tags. In this example we note the vertical bar separating dt
and dd. This is a logical connector—a special symbol indicating how the content units it
connects relate to each other. There are three logical connectors and one grouping
connector:

• | Means “or” (one and only one of the connected content units must occur)

• & Means “and” (all of the connected content units must occur)

• , Means “sequence” (the connected content units must occur in the specified
order)

• () Used to group content units together.

Thus, the content model for a definition list says that the <dl> tag must contain either a
<dt> or a <dl> tag and can contain any additional number of <dt> or <dd> tags.

 Model groups can be nested inside other model groups. Very flexible content models
can be declared by combining this with the capability to qualify content units with
occurrence indicators and logical operators. The XHTML declaration for the <table> tag
illustrates this point:

<!ELEMENT table (caption?, (col*|colgroup*), thead?, tfoot?, (tbody+|tr+))>

The content model for the table element type reads as follows:

• Table content begins with zero or one <caption> tags.

• This must be followed by a content group.

• The content group must contain zero or more <col> tags or zero or more
<colgroup> tags.

• This must be followed by zero or one <thead> tags.

• This must be followed by zero or one <tfoot> tags.

• This must be followed by one or more <tbody> or <tr> tags.

 804 P a r t I I I : A p p e n d i x e s 804 P a r t I I I : A p p e n d i x e s

SGML Content Exclusion and Inclusion
Occasionally, the need arises to declare that an element type cannot contain certain other
element types. This is known as a content exclusion. The excluded tags follow the model
group, enclosed by parentheses and preceded by the minus sign under an SGML doctype:

(model group) - (excluded tags)

A related special need is the capability to declare that an element type can occur anywhere
inside a content model. This is known as a content inclusion. The included tags follow the
model group and are enclosed by parentheses and preceded by the plus sign:

(model group) +(included tags)

As an example, the HTML 4.01 declaration for the body element illustrates both
excluded and included elements:

<!ELEMENT BODY O O (%block;) -(BODY) +(INS|DEL)>

Why are insertions and deletions used in this declaration? The content inclusion says
that <ins> and tags can occur anywhere in the content enclosed by <body> and
</body> tags. While the content exclusion says that a body element cannot contain another
body element, in this case it’s necessary because of the curious “%block” declaration used
in the model group. The leading % character identifies this as a parameter entity, essentially
a macro symbol that refers to a longer character string declared elsewhere in the DTD.
Parameter entities, which commonly occur in DTDs, are discussed shortly (see the section
“Parameter Entities”). The “%block” entity reference is a shorthand way of referring to all
block element types that happen to include <body>. It is easier to exclude <body> from the
list of block elements than to define a special-purpose declaration. Interestingly, XML
eliminates the use of content inclusion and exclusion from the XHTML DTD, and thus it is
both more verbose and in some ways simpler to read.

Attribute Declarations
Once an element’s syntax has been defined, we have to address its attributes. All attribute
declarations begin with the keyword ATTLIST, followed by the element name, attribute
name, attribute type, and default data information, as you can see in the following:

<!ATTLIST element-name attribute-name attribute-type default-data>

The HTML 4.01 <bdo> tag type illustrates a small attribute declaration:

<!ATTLIST BDO
 %coreattrs;
 lang NAME #IMPLIED
 dir (ltr|rtl) #REQUIRED
>

 A p p e n d i x E : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 805
PART III

 A p p e n d i x E : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 805

The XML syntax that defines the <bdo> tag under XHTML is similar, though you should
notice that many more attributes are now available for this tag:

<!ATTLIST bdo
 %coreattrs;
 %events;
 lang %LanguageCode; #IMPLIED
 xml:lang %LanguageCode; #IMPLIED
 dir (ltr|rtl) #REQUIRED
>

We note that commonly repeated attributes and values under both HTML and XHTML tend
to be minimized with parameter entities like %coreattrs, which will expand to id, class,
style, and title attributes.

SGML and XML Keywords
The previous SGML example declares the lang attribute as having values of type NAME,
an alphabetic string. NAME is one of several SGML/XML keywords occurring in HTML
and XHTML’s declarations of an attribute’s type:

• CDATA Unparsed character data

• ID A document-wide unique identifier

• IDREF A reference to a document-wide identifier

• NAME An alphabetic character string plus a hyphen and a period

• NMTOKEN An alphanumeric character string plus a hyphen and a period

• NUMBER A character string containing decimal numbers

Notice that in the previous DTD fragment example for <bdo> that the dir attribute did
not declare its type using a keyword. Instead, the type is specified using an enumerated list
containing two possible values, ltr and rtl.

In the previous example for either SGML or XML, the dir attribute’s default behavior is
specified with a keyword like one of these:

• #REQUIRED A value must be supplied for the attribute.

• #IMPLIED The attribute is optional.

• #FIXED The attribute has a fixed value that is declared in quotes using an additional
parameter. Because the attribute/value pair is assumed to be constant, it does not
need to be used in the document instance.

A default value may also be specified using a quoted string; for example, the enctype
attribute on a form element has the MIME type shown in the string that follows by default:

enctype %ContentType; "application/x-www-form-urlencoded"

 806 P a r t I I I : A p p e n d i x e s 806 P a r t I I I : A p p e n d i x e s

Parameter Entities
An entity is essentially a macro that allows a short name to be associated with replacement
text. Parameter entities define replacement text used in DTD declarations. Syntactically, a
parameter entity is distinguished by using the percent (%) symbol. Its general form is
shown here:

<!ENTITY % name "replacement text">

It is used in DTDs as follows:

%name;

Parameter entities are a convenient way to define commonly occurring pieces of a DTD
so that changes only need to be made in one place. We see in XHTML a parameter entity to
define the core attributes common to most elements.

<!ENTITY % coreattrs
 "id ID #IMPLIED
 class CDATA #IMPLIED
 style %StyleSheet; #IMPLIED
 title %Text; #IMPLIED"
>

Notice that entity %coreattrs further references entities (%StyleSheet; and %Text;)
to define values for the style and title attributes. Once defined, the core attributes could be
added to an attribute list declaration for an element as follows:

<!ATTLIST some-element %coreattrs;>

Oftentimes, you will see entities that in turn contain further entities. For example, under
HTML 4.0, the coreattrs parameter entity is used with the i18n and events parameter
entities to define the expansion text for an aggregate entity called attrs.

<!ENTITY % attrs "%coreattrs %i18n %events">

Comments
DTDs in both SGML and XML contain comments familiar to Web page authors:

<!-- this is a comment -->

Generally these comments are used to segment the specification

<!--================ Forms ===-->

but in some cases, they may be used to provide explanations of particular elements or their use.

<!-- INS/DEL are handled by inclusion on BODY -->

 A p p e n d i x E : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 807
PART III

 A p p e n d i x E : R e a d i n g a D o c u m e n t T y p e D e f i n i t i o n 807

Comments can also be embedded inside SGML declarations for explanatory purposes.
Embedded comments are delimited by two dashes, and a single declaration may contain
many embedded comments:

<!ATTLIST PARAM
 name CDATA #REQUIRED -- property name --
 value CDATA #IMPLIED -- property value --
 valuetype (DATA|REF|OBJECT) DATA -- How to interpret value --
 type CDATA #IMPLIED -- Internet media type --
 >

NOTE XML does not use this “--” comment style, so you will not see it in the XHTML
specification.

The DTDs
Now that you understand the fundamentals of reading a DTD, you should consult one to
see the precise syntax of (X)HTML directly for yourself. The latest versions of these DTDs
can be retrieved from the W3C:

• HTML 4.01 Transitional www.w3.org/TR/html4/sgml/loosedtd.html

• HTML 4.01 Strict www.w3.org/TR/REC-html40/sgml/dtd.html

• HTML 4.01 Frameset www.w3.org/TR/html4/sgml/framesetdtd.html

• XHTML 1 Transitional www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

• XHTML 1 Strict www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

• XHTML 1 Frameset www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

• XHTML 1.1 www.w3.org/TR/xhtml11/

Older DTDs can also be found online, including

• HTML 2 www.w3.org/MarkUp/html-spec/html.dtd

• HTML 3 www.w3.org/TR/REC-html32#dtd

NOTE As previously mentioned, HTML5 does not support a DTD syntax definition approach.
Although when authoring in this language, you may include a simple doctype like <!DOCTYPE
html>, as of 2009 the definition of this variation of HTML is not actually specified in SGML or
XML syntax.

NOTE XHTML 2 does have a DTD currently found at www.w3.org/MarkUp/DTD/xhtml2.dtd.
However, the specification is far from complete, and there is indication that the language may
eventually be defined as an XML schema rather than a DTD. Furthermore, circa late 2009 there
is a strong indication that the XHTML 2 specification is unlikely to ever be completed.

This page intentionally left blank

Symbols and Numbers
& (and) logical connector, 803
% character, for parameter entities, 804
() (group) logical connector, 803
* (zero or more occurrences) occurrence indicator, 802
, (sequence) logical connector, 803
"..." (double quotes), in string syntax, 529
'...' (single quotes), in string syntax, 529
? (zero or one occurrence) occurrence indicator, 802
| (or) logical connector, 803
~ (general sibling selectors), CSS, 479
+ (adjacent sibling selector), CSS, 478
+ (one or more occurrences) occurrence indicator, 802
> (child selector), CSS, 478
2D Transforms, CSS3 modules, 614
3D Transforms, CSS3 modules, 614

A
<a> (anchor) element, 158–164

compatibility and examples, 164
element-specific attributes, 159–163
event attributes, 159
IE and HTML5 and, 158–159
syntax of, 158

<abbr> (abbreviation) element, 164–166
abbr attribute

<td> (table data) element, 394
<tfoot> (table footer) element, 403

above attribute, <layer> (positioned layer) element
and, 296

accelerator property, CSS3 browser-specific
features, 630–631

accept attribute, <input> (input form control)
element, 282

accesskey attribute
common element attributes reference, 139–140
common HTML5 element attributes reference,

142–143
<legend> (descriptive legend) element, 299

Acid2, 430–432
<acronym> (acronym) element, 166–167
action attribute

<form> (form for user input) element, 251
<isindex> (index prompt) attributes, 290

activity-related pseudo-classes, CSS, 490–491
<address> (address) element, 168–169
addressing schemes, 798–799. See also URLs (uniform

resource locators)
adjacent sibling selector (+), CSS, 478
Adobe Dreamweaver

color pickers in, 780
loading/previewing markup with, 9–10

Adobe Photoshop, 780
:after pseudo-element selectors, CSS, 485–486
::after selector, CSS3, 617
align attribute

<caption> (table caption) element, 209
<colgroup> (table column group) element, 218
common element attributes reference, 140
<embed> (embedded object) element, 241
<ilayer> (inflow layer) element, 277
<input> (input form control) element, 282
<legend> (descriptive legend) element, 299–300
<object> (embedded object) element, 333
<p> (paragraph) element, 344
in presentational HTML, 429
<select> (selection list) element, 368
<spacer> (extra space) element, 373
<table> (table) element, 386
<tbody> (table body) element, 391
<td> (table data) element, 394
<tfoot> (table footer) element, 401, 404
<thead> (table header) element, 407
<tr> (table row) element, 413

alignment, <center> (center alignment) element,
210–211

alink attribute, <body> (document body) element, 191
allow-same-origin, iframe element, 111
allowtransparency attribute

<frame> (window region) element, 253
<iframe> (inline frame) element, 272

alt attribute
<applet> (Java applet) element, 170
<area> (Image Map Area) element, 173
<embed> (embedded object) element, 241
<ilayer> (inflow layer) element, 277
<input> (input form control) element, 282

alternative styles, CSS, 464–465
anchor element. See <a> (anchor) element

Index

809

 810 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 810 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

animation-delay property, CSS3 browser-specific
features, 633–634

animation-direction property, CSS3 browser-specific
features, 634–635

animation-duration property, CSS3 browser-specific
features, 635–636

animation-iteration property, CSS3 browser-specific
features, 636–637

animation-name property, CSS3 browser-specific
features, 637–638

animation property, CSS3 browser-specific features,
632–633

animation-timing-function property, CSS3 browser-
specific features, 638–640

animations, CSS3 modules, 614
APIs (application programming interfaces), HTML5

API for drawing on canvas, 85
<applet> (Java applet) element, 169–171
application attribute

<frame> (window region) element, 253–254
<iframe> (inline frame) element, 272

application languages, 17
application programming interfaces (APIs), HTML5

API for drawing on canvas, 85
archive attribute

<applet> (Java applet) element, 170
<object> (embedded object) element, 333

arcs, drawing in HTML5, 90–93
<area> (Image Map Area) element, 171–174
arrows, character entities for, 745
<article> (article) element, 73–74, 175–176
<aside> (aside) element, 74–75, 176–177
aspect-ratio, CSS3 media query values, 627
async attribute, <script> (scripting) element, 363
ATTLIST keyword, for attribute declarations, 804
attribute selectors

CSS, 479–481
CSS3, 481–482
list of, 483
multiple, 482

attributes
browsers ignoring unknown, 44–45
case sensitivity of, 42
declarations, 804–805
new in HTML5, 66
quotes used with, 44, 59
removed from HTML5, 65
in traditional HTML/XHTML syntax, 5–6

<audio> (audio) element, 80–81, 177–179
aural style properties, CSS2x, 607–612
authenticated services, HTTP and FTP as, 789
autobuffer

audio, 81
video, 80

autobuffer attribute
<area> (Image Map Area) element, 178
<video> (video) element, 422

autocomplete attribute
<form> (form for user input) element, 251
<input> (input form control) element, 282

autocomplete lists, 105
autofocus attribute

<button> (button) element, 196
HTML5 form fields, 106
<input> (input form control) element, 282
<select> (selection list) element, 368
<textarea> (multiline text input) element,

397–398
autoplay

audio, 81
video, 80

autoplay attribute, <video> (video) element, 422
axis attribute

<td> (table data) element, 394
<tfoot> (table footer) element, 404

B
 (bold) element, 28, 179–181
backface-visibility property, CSS3 browser-specific

features, 640
background-attachment property, CSS, 543–544
background attribute

<body> (document body) element, 191
<layer> (positioned layer) element, 296
<table> (table) element, 387
<td> (table data) element, 394
<tfoot> (table footer) element, 404

background-clip property, CSS3 browser-specific
features, 641–642

background-color property, CSS, 544
background-image property, CSS, 544–545
background-origin property, CSS3 browser-specific

features, 642–643
background-position property, CSS, 545–546
background-position-x property, CSS3 browser-

specific features, 643–644
background-position-y property, CSS3 browser-

specific features, 644
background property, CSS, 543
background-repeat property, CSS, 546
background-size property, CSS3 browser-specific

features, 644–645
backgrounds module, CSS3, 614
balance attribute, <bgsound> (background sound)

element, 185
<base> (base URL) element

elements allowed within head element, 25–26
overview of, 181–182
relative URLs and, 795–796

<basefont> (base font) element, 182–183
<bdo> (bidirectional override) element, 183–185
:before pseudo-element selectors, CSS, 485–486
::before selector, CSS3, 617
behavior attribute, <marquee> (marquee display)

element, 316–317
behavior property, CSS3 browser-specific features,

645–649
behavioral extensions module, CSS3, 614

 I n d e x 811 I n d e x 811

bgcolor attribute
<body> (document body) element, 191
<col> (table column) element, 215
<colgroup> (table column group) element, 218
<marquee> (marquee display) element, 317
<table> (table) element, 387
<tbody> (table body) element, 391
<td> (table data) element, 394
<tfoot> (table footer) element, 404
<tr> (table row) element, 413

bgproperties attribute, <body> (document body)
element, 191

<bgsound> (background sound) element, 185–186
<big> (big font) element, 186–187
binding property, CSS3 browser-specific features,

649–650
bitmap images, on canvas element, 97–98
<blink> (blinking text) element, 187–188
block-level elements, in body element, 28
<blockquote> (block quote) element, 188–189
<body> (document body) element

diagram of elements in, 30–31
in HTML and XHTML documents, 7
overview of, 190–193
in traditional HTML/XHTML, 28–31

bold () element, 28, 179–181
border attribute

<embed> (embedded object) element, 241
<frameset> (frameset definition) element, 256
<iframe> (inline frame) element, 272
<ilayer> (inflow layer) element, 277
<object> (embedded object) element, 333
<table> (table) element, 387

border-bottom-color property, CSS, 548
border-bottom-left-radius property, CSS3 browser-

specific features, 650–651
border-bottom property, CSS, 547
border-bottom-right-radius property, CSS3 browser-

specific features, 651–653
border-bottom-style property, CSS, 548
border-bottom-width property, CSS, 548
border-collapse property, CSS, 549
border-color property, CSS, 549–550
border-left-color property, CSS, 551
border-left property, CSS, 550–551
border-left-style property, CSS, 551–552
border-left-width property, CSS, 552
border property, CSS, 547
border-radius property, CSS3 browser-specific

features, 653–654
border-right-color property, CSS, 552–553
border-right property, CSS, 552
border-right-style property, CSS, 553
border-right-width property, CSS, 553
border-spacing property, CSS, 553–554
border-style property, CSS, 554–555
border-top-color property, CSS, 556
border-top-left-radius property, CSS3 browser-

specific features, 654–655

border-top property, CSS, 556
border-top-right-radius property, CSS3 browser-

specific features, 655
border-top-style property, CSS, 557
border-top-width property, CSS, 557
border-width property, CSS, 557–558
bordercolor attribute

<frame> (window region) element, 254
<frameset> (frameset definition) element, 256
<iframe> (inline frame) element, 272
<table> (table) element, 387
<td> (table data) element, 394
<tfoot> (table footer) element, 404
<tr> (table row) element, 413

bordercolordark attribute
<table> (table) element, 387
<td> (table data) element, 394
<tfoot> (table footer) element, 404
<tr> (table row) element, 413

bordercolorlight attribute
<table> (table) element, 387
<td> (table data) element, 394
<tfoot> (table footer) element, 404
<tr> (table row) element, 413

borders module, CSS3, 614
borders styles keyword, 529
bottom property, CSS, 559
bottommargin attribute, <body> (document body)

element, 192
box model hack, 450–452
box model module, CSS3, 614
box-reflect property, CSS3 browser-specific features,

655–656
box-shadow property, CSS3 browser-specific

features, 656–658
box-sizing property, CSS3 browser-specific features,

658–659

 (line break) element, 193–195
browser-safe colors, 779–781
browsers

color support and, 766, 771, 779–781
content editing (contenteditable attribute) in,

114–115
CSS and, 430, 517
doctype switch and browser rendering

modes, 39–41
drag and drop functionality (draggable

attribute), 112–114
Firefox. See Firefox
handling file extensions and MIME types, 13–14
IE (Internet Explorer). See IE (Internet Explorer)
ignoring unknown elements and

attributes, 44–45
Netscape. See Netscape
parsing (X)HTML documents, 31–36
rendering modes, 39
spell checking (spellcheck attribute) in, 115–116
standards compliance and, 518
video support in, 79

 812 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 812 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

browsers, CSS3 features
@keyframes, 630–631
accelerator property, 630–631
animation-delay property, 633–634
animation-direction property, 634–635
animation-duration property, 635–636
animation-iteration property, 636–637
animation-name property, 637–638
animation property, 632–633
animation-timing-function property, 638–640
backface-visibility property, 640
background-clip property, 641–642
background-origin property, 642–643
background-position-x property, 643–644
background-position-y property, 644
background-size property, 644–645
behavior property, 645–649
binding property, 649–650
border-bottom-left-radius property, 650–651
border-bottom-right-radius property, 651–653
border-radius property, 653–654
border-top-left-radius property, 654–655
border-top-right-radius property, 655
box-reflect property, 655–656
box-shadow property, 656–658
box-sizing property, 658–659
column-break-after property, 659
column-break-before property, 659–660
column-count property, 660–661
column-gap property, 661
column-rule-color property, 662–663
column-rule property, 661–662
column-rule-style property, 663–664
column-rule-width property, 664–665
column-width property, 665
columns property, 665
filter property, 666–672
gradient property, 672–673
image-rendering property, 673–674
ime-mode property, 674
interpolation-mode property, 674–675
layout-grid-char property, 675–676
layout-grid-line property, 676
layout-grid-mode property, 676–677
layout-grid property, 675
line-break property, 677
marquee-direction property, 678–679
marquee-play-count property, 679
marquee-speed property, 679–680
marquee-style property, 680–681
mask-attachment property, 682
mask-clip property, 683
mask-composite property, 684
mask-origin property, 685
mask-position property, 685–686
mask-position-x property, 686–687
mask-position-y property, 687
mask property, 681–682
mask-repeat property, 687–688

mask-size property, 688–690
opacity property, 690
outline-offset property, 690–691
outline-radius property, 691
overflow-style property, 691–692
overflow-x property, 692
overflow-y property, 693
perspective-origin property, 694–695
perspective property, 693–694
resize property, 695–696
ruby-align property, 696–697
ruby-overhang property, 697
ruby-position property, 698
scrollbar-3dlight-color property, 698–699
scrollbar-arrow-color property, 699
scrollbar-base-color property, 699–700
scrollbar-darkshadow-color property, 700–701
scrollbar-face-color property, 701
scrollbar-highlight-color property, 701–702
scrollbar-shadow-color property, 702
scrollbar-track-color property, 703
size property, 703–704
text-align-last property, 704
text-autospace property, 704–705
text-fill-color property, 705
text-justify property, 705–706
text-kashida-space property, 706–707
text-overflow property, 707
text-rendering property, 708
text-shadow property, 708–710
text-stroke-color property, 710–711
text-stroke-width property, 711
text-underline-position property, 711–712
transform-origin property, 715
transform property, 712–714
transform-style property, 716–717
transition-delay property, 717–718
transition-duration property, 718–719
transition property, 717
transition-property property, 719
transition-timing-function property, 719–720
user-select property, 720–721
word-break property, 721
word-wrap property, 722
writing-mode property, 722–723
zoom property, 724

<button> (button) element, 195–198

C
<canvas> (canvas for drawing) element, 198–208

adding perspective, 88–90
bitmap images used on, 97–98
color and style properties and methods, 202
compositing properties and options, 201
drawing and styling lines and shapes, 85–88
drawing arcs and curves, 90–93
gradient methods, 200
HTML5 and, 198–199

 I n d e x 813 I n d e x 813

ImageData API methods and properties, 207
line properties, 203
overview of, 82–85
path API methods, 204–205
rectangle methods, 204
scaling, rotating, and translating

drawings, 93–97
shadow properties, 203
state preservation methods, 200
text API methods and properties, 206
text support in, 98–100
transformation methods, 200

caption-side property, CSS, 559–560
<caption> (table caption) element, 208–210
case sensitivity

CSS, 434
HTML/XHTML, rules, 41–42
HTML5, 730
URLs and, 797

cellpadding attribute, <table> (table) element, 387
cellspacing attribute, <table> (table) element, 387
<center> (center alignment) element, 210–211
ch units, CSSS3, 621
char attribute

<col> (table column) element, 215
<tbody> (table body) element, 391
<td> (table data) element, 394
<tfoot> (table footer) element, 401, 404
<thead> (table header) element, 407
<tr> (table row) element, 413

character entities
arrows, 745
case insensitive in HTML5, 730
encoding, 728–730
format of, 727
general punctuation, 741–742
geometric shapes, 748
Greek, 743–744
HTML 4 and XHTML 1.x, 740–741
Latin Extended-A and Latin Extended-B, 741
letter-like symbols, 744–745
mathematical operators, 746–747
miscellaneous symbols, 748
spacing modifiers, 741
technical symbols, 747
traditional HTML, 731–740
Unicode and, 748–749

charoff attribute
<col> (table column) element, 216
<colgroup> (table column group) element, 218
<tbody> (table body) element, 391
<td> (table data) element, 394
<tfoot> (table footer) element, 401, 404
<thead> (table header) element, 407
<tr> (table row) element, 414

charset attribute
<a> (anchor) element, 159
<link> (link to external files or set

relationships) element, 304

<meta> (meta-information) element, 321
<script> (scripting) element, 363

@charset rule, CSS, 540
checked attribute, <input> (input form control)

element, 282
:checked selector, CSS3, 617
child selector (>), CSS, 478
cite attribute

<blockquote> (block quote) element, 189
 (deleted text) element, 225
<ins> (inserted text) element, 288
<quote> (quote) attributes, 353

<cite> (citation) element, 211–213
class attribute, core element attributes, 136
class attribute, CSS selectors, 473–476
classid attribute, <object> (embedded object)

element, 333
clear attribute,
 (line break) element, 194
clear property, CSS, 560
client-side graphics (canvas). See <canvas> (canvas

for drawing) element
clip attribute, <layer> (positioned layer) element, 297
clip property, CSS, 560–561
closing tags, rules in HTML/XHTML, 43
code

<code> (code listing) element, 213–214
<listing> (code listing) element, 311–312

code attribute
<applet> (Java applet) element, 170
<embed> (embedded object) element, 241
<object> (embedded object) element, 333

<code> (code listing) element, 213–214
codebase attribute

<applet> (Java applet) element, 170
<embed> (embedded object) element, 241
<object> (embedded object) element, 333

codetype attribute, <object> (embedded object)
element, 333

<col> (table column) element, 214–216
<colgroup> (table column group) element, 216–218
color and style properties and methods, canvas

element, 202
color attribute

<basefont> (base font) element, 183
 (font definition) element, 247
<hr> (horizontal rule) attributes, 261

color, CSS3 media query values, 627
color-index, CSS3 media query values, 627
color module, CSS3, 614
color property, CSS, 561–562
color values, CSS, 530–532, 773–776
colors, browser-safe, 779–781
colors, CSS

color-related properties, 776, 778–779
list of color values, 773–776
UI color names, 777

colors, (X)HTML
elements supporting color, 772–773
names and hex equivalents, 766

 814 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 814 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

colors, (X)HTML (Continued)
names and numerical equivalents, 767–771
nonstandard names and numerical

equivalents, 765
overview of, 765

cols attribute
<frameset> (frameset definition) element, 256
<multicol> (multiple column text) element, 325
<table> (table) element, 387
<textarea> (multiline text input) element, 398

colspan attribute
<td> (table data) element, 395
<tfoot> (table footer) element, 404

column-break-after property, CSS3 browser-specific
features, 659

column-break-before property, CSS3 browser-
specific features, 659–660

column-count property, CSS3 browser-specific
features, 660–661

column-gap property, CSS3 browser-specific
features, 661

column-rule-color property, CSS3 browser-specific
features, 662–663

column-rule property, CSS3 browser-specific
features, 661–662

column-rule-style property, CSS3 browser-specific
features, 663–664

column-rule-width property, CSS3 browser-specific
features, 664–665

column-width property, CSS3 browser-specific
features, 665

columns property, CSS3 browser-specific
features, 665

command element, 108
<comment> (comment information) element, 220
comments

in body element, 29
CSS syntax, 434, 539–542
DTDs containing, 806–807
in head element, 26–27
HTML syntax, 26, 155–157

compact attribute
<dir> (directory list) element, 231
<dl> (definition list) element, 235
<menu> (menu list or command menu)

element, 319
 (ordered list) element, 336
 (unordered list) attributes, 418

compositing properties and options, canvas
element, 201

conditional comments (</!--.[]..-->), 155–157
conformance checkers

Acid2, 430–432
HTML5, 57

content attribute, <meta> (meta-information)
element, 321

content editing (contenteditable attribute), in
browsers, 114–115

content exclusion, SGML, 804

content models
elements, 801
HTML/XHTML following, 43
HTML5 following, 59
overview of, 17

content property, CSS, 562–563
contenteditable attribute

common element attributes reference, 140
common HTML5 element attributes

reference, 143
contextmenu attribute, in HTML5, 108, 143
contextual selection, creating CSS rules for, 476–478
controls attribute

<area> (Image Map Area) element, 178
<video> (video) element, 422

coords attribute
<a> (anchor) element, 159
<area> (Image Map Area) element, 173

counter-increment property, CSS, 564
counter-reset property, CSS, 564–565
counters, CSS, 530
country codes, domains and, 785–786
CSS (Cascading Style Sheets)

activity-related pseudo-classes, 490–491
adjacent sibling selectors, 478
alternative styles, 464–465
applying styles to documents, 452
attribute selectors, 479–483
aural style properties, 607–612
breaking CSS rules intentionally, 450–452
browsers and, 517
class rules, 473–476
color values, 530–532
color values and gradients used on canvas

element, 86–87
comments (/*comment/*), 539–542
contextual selection, 476–478
counters, 530
direct descendent selector, 478
display property for changing element types,

508–512
document structure and inheritance, 468–470
document tree pseudo-classes, 492–496
element selectors, 471
embedded styles, 456–458, 526
error handling, 445–447
general sibling selectors, 479
hello world example, 438–440
HTML elements div and span, 507–508
id selectors, 471–473
imported styles, 458–459, 526–527
inline styles, 459–461
interface state pseudo-classes, 491–492
language pseudo class, 497
link-related pseudo-classes, 489–490
linked styles, 452–456, 524–526
markup and, 442–443
measurements, 502–505, 527–528
media types, 461–463

 I n d e x 815 I n d e x 815

myths and misconceptions, 517–519
negation pseudo class, 497
page and media selectors, 538–539
physical markup and overriding expected

results, 506–507
presentational HTML and, 429–430
printer-specific styles, 463–464
properties, 500–502
properties for CSS1 and CSS2.1, 542
proprietary aspect of, 440, 442
pseudo-class selectors, 487, 498–500
pseudo-element selectors, 484–488
reference, 519
selectors, 470, 533–538
separation of structure and style in, 514–515
slow rise in popularity, 430–432
specification of, 443–445
strings and keywords, 529–530
style element and, 26
summary of, 519
syntax of, 432–438, 521, 523–524
user styles, 466–467
validating, 447–450
value of style sheets in presentation, 516–517
versions, 440–441, 522
white-space property for controlling white

space, 512–513
(X)HTML and, 506

CSS1, 522
CSS2x

aural style properties, 607–612
description of, 522

CSS3
attribute selectors, 481
browser-specific features. See browsers,

CSS3 features
color values, 622–624
description of, 522
emerging selectors, 619–620
future direction of CSS, 440
media queries, 625–628
modules, 614–616
namespaces, 624–625
overview of, 613
selectors, 613, 617–619
units of measurement, 621–622
web fonts, 626, 628–629

currentColor keyword, CSS3, 622
cursor property, CSS, 565–568
curves, drawing in HTML5, 90–93

D
data attribute

<comment> (comment information)
element, 220

<object> (embedded object) element, 334
data URIs, 791–794
data-X (Custom Data Attributes), 116–117, 143–144

datafld attribute, 141
dataformatas attribute, 141
<datalist> (list of prefill data) element, 220–221
datapagesize attribute, <table> (table) element, 387
datasrc attribute, 141
date controls, defining form fields, 102
datetime attribute

 (deleted text) element, 225
<ins> (inserted text) element, 288–289
<time> (time) element, 409

<dd> (definition description in a definition list)
element, 222–224

declare attribute, <object> (embedded object)
element, 334

:default selector, CSS3, 617, 620
defer attribute

HTML5, 121
<script> (scripting) element, 363

deg units, CSS3, 621
 (deleted text) element, 224–227
<details> (additional details) element, 109–110,

227–228
device-aspect-ratio, CSS3 media query values, 627
device-height, CSS3 media query values, 627
device-width, CSS3 media query values, 627
<dfn> (definition) element, 228–229
dir attribute, language attributes reference, 138
<dir> (directory list) element, 230–231
direct descendent selector (>), CSS, 478
direction attribute, <marquee> (marquee display)

element, 317
directories

<dir> (directory list) element, 230–231
in URLs, 786–787

disabled attribute
common element attributes reference, 141
CSS interface state pseudo-classes and, 491
<input> (input form control) element, 282
<link> (link to external files or set

relationships) element, 304
<optgroup> (option grouping) element, 339
<option> (option in selection list) element, 340
<select> (selection list) element, 368
<style> (style information) element, 380
<textarea> (multiline text input) element, 398

:disabled selector, CSS3, 617
display property, CSS, 508–512, 568–570
<div> (division) element, 231–233, 507–508
<dl> (definition list) element, 233–236
<!DOCTYPE> (Document Type Definition) statement

changes in HTML5, 69
common elements in HTML and XHTML

documents, 7
doctype switch and browser rendering

modes, 39–41
in HTML element reference, 157
list of common (X)HTML, 19
used to begin documents, 18
validation of DTD rules and, 37

 816 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 816 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

doctype switch, browser rendering modes and, 39–41
document tree pseudo-classes, CSS, 492–496
documents, HTML5

indicating time and dates (time), 76
inserting figures (fig), 76–77
marking text (mark), 75–76
overview of, 69–75
semantics added, 75
specifying navigation (nav), 77

documents, (X)HTML
applying styles to, 452
<body> (document body) element, 28–31,

190–193
example of head element and elements

contained in, 27–28
<head> (document head) element, 23, 260–261
inheritance and, 468–470
<meta> (meta-information) element, 24–25,

320–323
other elements allowed within head

element, 25–26
overview of, 20–23
<title> (document title) element, 23–24, 410–411
use of comments in, 26–27

DOM (Document Object Model)
JavaScript interface for HTML, 121–124
parse trees, 33

domains
country codes and, 785–786
Top-Level, 784–786

downloads, CSS and ease of, 518–519
dpcm, CSS3 units, 621
dpi, CSS3 units, 621
draggable attribute

adding drag and drop functionality to
browsers, 112–114

common HTML5 element attributes
reference, 144

drawImage (img, x,y), creating bitmap drawing in
HTML5, 97

drawing, on canvas
arcs and curves, 90–93
lines and shapes, 85–88

Dreamweaver
color pickers in, 780
loading/previewing markup with, 9–10

<dt> (term in a definition list or caption in figures or
details) element, 236–238

DTDs (document type definitions)
attribute declarations, 804–805
comments, 806–807
element type declarations, 801–802
logical connectors, 803
occurrence indicators, 802–803
overview of, 16–18, 801
parameter entities, 806
SGML and XML keywords, 805
SGML content exclusion and inclusion, 804
validation of DTD rules, 37–39
W3C and online references for, 807

dynsrc attribute
<ilayer> (inflow layer) element, 278
<input> (input form control) element, 282

E
E ~ F selector, CSS3, 617
E[attr^=value] selector, CSS3, 617
E[attr$=value] selector, CSS3, 617
E[attr*=value] selector, CSS3, 617
ELEMENT keyword, 801
element selectors, CSS, 471
element type declarations, DTDs, 801–802
elements

color support, 772–773
keywords for meaning of, 529
new in HTML5, 66–67
refined in HTML5, 64
removed from HTML5, 63–64, 66

elements, markup
browsers ignoring unknown, 44–45
minimizing unused, 43
nesting, 43–44
rules regarding closing tags in HTML/

XHTML, 43
start and end tags, 4

 (emphasis) element, 8, 28, 238–240
<embed> (embedded object) element, 240–242
embedded comments, in SGML declarations, 807
embedded media, 328–329
embedded objects, 331–335
embedded styles, 456–458, 526
empty-cells property, CSS, 570–571
empty elements

closing tags and, 43
overview of, 5

:empty selector, CSS3, 617
enabled attribute, CSS interface state

pseudo-classes, 491
:enabled selector, CSS3, 618
encoding

character entities, 728–730
in URLs, 790–791

enctype attribute, <form> (form for user input)
element, 251

entities
% character for parameter entity, 804
as macro, 806
special characters, 29, 44

error handling, CSS, 445–447
event attribute, <script> (scripting) element, 363

F
face attribute

<basefont> (base font) element, 183
 (font definition) element, 247

<fieldset> (form field grouping) element, 242–244
<figure> (figure) element, 76–77, 244–246

 I n d e x 817 I n d e x 817

file extensions
browser handling of, 13–14
URLs and, 787

file protocol, 789
File Transfer Protocol (FTP), 789
filenames, in URLs, 787–788
fill methods, canvas element and, 83, 85–86
filter property

CSS3 browser-specific features, 666–672
transitions and, 668–669

filters, breaking CSS rules intentionally, 450–452
Firefox. See also browsers

CSS support and, 430–432
handling file extensions and MIME

types, 13–14
video support in, 79

:first-child, CSS document tree pseudo-class,
492–493

:first-letter pseudo-element selector, CSS, 484–485
::first-letter selector, CSS3, 618
:first-line pseudo-element selector, CSS, 484–485
::first-line selector, CSS3, 618
:first-of-type selector, CSS3, 618
float property, CSS, 571–572
:focus, CSS activity-related pseudo-classes, 490–491
font-family property, CSS, 572–573
 (font definition) element, 246–247
font property, CSS, 572
font-size property, CSS, 573–574
font-style property, CSS, 574–575
font-variant property, CSS, 575
font-weight property, CSS, 575–576
@fontface rule, CSS, 540–541
fonts

<basefont> (base font) element, 182–183
<big> (big font) element, 186–187

fonts module, CSS3, 614
<footer> (footer) element

changes in HTML5, 69
overview of, 248–249
section element containing, 70–71

footers, <tfoot> (table footer) element, 399–402
for attribute

<label> (form control label) element, 295
<output> (form output) element, 341
<script> (scripting) element, 363

form attribute
<button> (button) element, 196
<input> (input form control) element, 282
<output> (form output) element, 341
<select> (selection list) element, 368
<textarea> (multiline text input) element, 398

<form> (form for user input) element, 249–252
formaction attribute

<button> (button) element, 196
<input> (input form control) element, 282

formenctype attribute
<button> (button) element, 196–197
<input> (input form control) element, 282–283

formmethod attribute
<button> (button) element, 197
<input> (input form control) element, 283

formnovalidate attribute
<button> (button) element, 197
<input> (input form control) element, 283

forms
<fieldset> (form field grouping) element,

242–244
<input> (input form control) element, 279–287
<label> (form control label) element, 294–296
<output> (form output) element, 341–343

forms, changes in HTML5
autocomplete lists, 105
new field types, 101–104
overview of, 101
usability improvements, 105–106
validating data entry on, 104–105

formtarget attribute
<button> (button) element, 197
<input> (input form control) element, 283

FQDN (fully qualified domain name), 785
fragment identifiers, in URLs, 788
frame attribute, <table> (table) element, 387–388
<frame> (window region) element, 110, 252–255
frameborder attribute

<frame> (window region) element, 254
<frameset> (frameset definition)

element, 256
<iframe> (inline frame) element, 272

frames
<frame> (window region) element,

110, 252–255
future of, 110–112
<iframe> (inline frame) element, 270–274
<noframes> (no frame support content)

element, 329–330
<frameset> (frameset definition) element, 110, 255–257
framespacing attribute

<frameset> (frameset definition) element, 256
<iframe> (inline frame) element, 272

FTP (File Transfer Protocol), 789
fully qualified domain name (FQDN), 785

G
gallerying attribute, <ilayer> (inflow layer)

element, 278
general sibling selectors (~), CSS, 479
generated and replaced content module, CSS3, 614
generated content for paged media module, CSS3, 614
generic identifiers, DTD element type declarations, 801
geometric shapes, character entities for, 748
gr units, CSS3, 621
grad units, CSS3, 621
gradient methods, canvas element, 200
gradient property, CSS3 browser-specific features,

672–673
Greek, character entities for, 743–744

 818 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 818 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

grid, CSS3 media query values, 627
grid positioning module, CSS3, 614
gutter attribute, <multicol> (multiple column text)

element, 325

H
<h1> through <h6> (headings) element, 8, 28, 258–260
hacks, breaking CSS rules intentionally, 450–452
hand-coding HTML, 48
<head> (document head) element

common elements in HTML and XHTML
documents, 7

embedding styles in, 526
example of head element and elements

contained in, 27–28
<meta> tags for specifying content type,

character set, and other information, 24–25
other elements allowed within, 25–26
overview of, 23, 260–261
<title> (document title) element and, 23–24

<header> (header) element
in HTML5, 69–72
overview of, 261–263
section element containing, 70–71

headers
<th> (table header) element, 402–405
<thead> (table header) element, 405–408

headers attribute
<td> (table data) element, 395
<tfoot> (table footer) element, 404

headings. See <h1> through <h6> (headings) element
height attribute

<canvas> element and, 83
common element attributes reference, 141
<ilayer> (inflow layer) element, 275
<input> (input form control) element, 283
<layer> (positioned layer) element, 297
<spacer> (extra space) element, 373
<table> (table) element, 388
<td> (table data) element, 395
<tfoot> (table footer) element, 404

height property, CSS, 576–577, 627
hello world example

CSS, 438–440
HTML/XHTML, 6–8

hex equivalents, (X)HTML color names and, 766
<hgroup> (header group) element, 72–73, 263–265
hidden attribute, 144
hidefocus attribute, 141
:hover, CSS activity-related pseudo-classes, 490–491
<hr> (horizontal rule) element

common elements in HTML and XHTML
documents, 8

DTD defining syntax of, 17
overview of, 265–367

href attribute
<a> (anchor) element and, 159
<area> (Image Map Area) element, 173

<base> (base URL) element, 182
<link> (link to external files or set

relationships) element, 304
hreflang attribute

<a> (anchor) element and, 159
<area> (Image Map Area) element, 173
<link> (link to external files or set

relationships) element, 304
HSL color, CSS3 color units, 622
HSLa color, CSS3 color units, 623
hspace attribute

common element attributes reference, 141
<input> (input form control) element, 283
<table> (table) element, 388

HTML, flavors of, 133–135
<html> (HTML document) element, 7, 267–269
HTML 2

<listing> (code listing) element, 311
<plaintext> (plain text) element, 347

HTML 4. See also (X)HTML
attributes removed from HTML5, 65
character entities, 740–741
elements refined in HTML5, 64
elements removed from HTML5, 63–64, 66

HTML 4 attributes reference
<a> (anchor) attributes, 159
<abbr> (abbreviation) attributes, 165
<acronym> (acronym) attributes, 167
<address> (address) attributes, 168
<area> (Image Map Area) attributes, 172
 (bold) attributes, 180
<bdo> (bidirectional override) attributes, 184
<big> (big font) attributes, 187
<blockquote> (block quote) attributes, 189
<body> (document body) attributes, 191
<button> (button) attributes, 196
<caption> (table caption) attributes, 209
<center> (center alignment) attributes, 210
<cite> (citation) attributes, 212
<code> (code listing) attributes, 213
<col> (table column) attributes, 215
<colgroup> (table column group)

attributes, 217
<dd> (definition description in a definition

list) attributes, 223
 (deleted text) attributes, 225
<dfn> (definition) attributes, 229
<dir> (directory list) attributes, 230
<div> (division) attributes, 232
<dl> (definition list) attributes, 234
<dt> (term in a definition list or caption in

figures or details) attributes, 236
 (emphasis) attributes, 239
<fieldset> (form field grouping) attributes, 243
<form> (form for user input) attributes, 250
<h1> through <h6> (headings) attributes, 258
<hr> (horizontal rule) attributes, 266
<i> (italic) attributes, 269
 (image) attributes, 277

 I n d e x 819 I n d e x 819

<ins> (inserted text) attributes, 288
<kbd> (keyboard input) attributes, 291
<label> (form control label) attributes, 294
 (list item) attributes, 301
<link> (link to external files or set

relationships) attributes, 303
<map> (client-side image map) attributes, 313
<menu> (menu list or command menu)

attributes, 318
<noframes> (no frame support content)

attributes, 329
<noscript> (no script support content)

attributes, 330
<object> (embedded object) attributes, 332
 (ordered list) attributes, 335–336
<optgroup> (option grouping) attributes, 338
<option> (option in selection list)

attributes, 340
<p> (paragraph) attributes, 343
<pre> (preformatted text) attributes, 349
<quote> (quote) attributes, 352
<s> (strikethrough) attributes, 360
<samp> (sample text) attributes, 361
<select> (selection list) attributes, 367
<strike> (strikeout text) attributes, 376
 (strong emphasis) attributes, 378
<sub> (subscript) attributes, 382
<sup> (superscript) attributes, 384
<table> (table) attributes, 386
<tbody> (table body) attributes, 390
<td> (table data) attributes, 393
<textarea> (multiline text input)

attributes, 397
<tfoot> (table footer) attributes, 400
<th> (table header) attributes, 403
<thead> (table header) attributes, 406
<tt> (teletype text) attributes, 415
<u> (underline) attributes, 416
 (unordered list) attributes, 418
<var> (variable) attributes, 420
<xmp> (example) attributes, 425–426

HTML5. See also (X)HTML
adding perspective to canvas, 88–90
autocomplete lists, 105
back to the future with, 52–53
beyond markup features in, 120–121
bitmap images used in drawings on canvas,

97–98
catch-all nature of, 130–131
client-side graphics (canvas), 82–85
command element supporting of web

applications, 108
common element attributes reference, 142–146
content editing (contenteditable attribute) in

browsers, 114–115
core events, 146–151
data-X attributes, 116–117
defer attribute, 121
details element supporting of web

applications, 109–110

document structure changes, 69–75
DOM JavaScript interface for HTML and,

121–124
drag and drop functionality (draggable

attribute) added to browsers, 112–114
drawing and styling lines and shapes on

canvas element, 85–88
drawing arcs and curves on canvas, 90–93
extended events, 151–154
form changes, 101
future of frames and, 110–112
goals of, 63
HTML 4 attributes removed from HTML5, 65
HTML 4 elements refined in HTML5, 64
HTML 4 elements removed from

HTML5, 63–64, 66
imperfections of, 131–132
indicating time and dates (time), 76
inserting audio (audio), 80–81
inserting figures (fig), 76–77
inserting video (video), 78–80
internationalization and, 116
loose syntax returns in, 58–60
marking text (mark), 75–76
menu element repurposed for better support

of web applications, 106–108
metadata changes, 116
meter and progress elements supporting of

web applications, 109
microdata added to, 117–120
new attributes in, 66, 68
new elements in, 66–67
new form field types, 101–104
new web application elements and

attributes, 106
open media features in, 78, 82
output element supporting of web

applications, 110
overview of, 55
ready for use now?, 126–130
scaling, rotating, and translating drawings on

canvas, 93–97
semantics added, 75
specifying navigation (nav), 77
spell checking (spellcheck attribute) in

browsers, 115–116
standardizing and extending ad hoc

JavaScript conventions, 125–126
summary, 132
syntax of, 55–58
text support in canvas, 98–100
usability improvements in, 105–106
using XML syntax with, 60–61
validating data entry on forms, 104–105
web markup with, 62–63
Web politics and competition and, 131

HTML5 attributes reference
<a> (anchor) attributes, 158–159
<abbr> attributes, 165
<address> (address) attributes, 168

 820 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 820 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

HTML5 attributes reference (Continued)
<area> (Image Map Area) attributes, 172
<article> (article) attributes, 175–176
<aside> (aside) attributes, 176–177
<audio> (audio) attributes, 177–178
 (bold) attributes, 179–180
<base> (base URL) attributes, 181
<bdo> (bidirectional override) attributes, 184
<blockquote> (block quote) attributes, 188–189
<body> (document body) attributes, 190–191

 (line break) attributes, 193–194
<button> (button) attributes, 195–196
<canvas> (canvas for drawing) attributes,

198–199
<caption> (table caption) attributes, 208–209
<cite> (citation) attributes, 211–212
<code> (code listing) attributes, 213
<col> (table column) attributes, 215
<colgroup> (table column group) attributes, 217
<command> (command) attributes, 219–220
<datalist> (list of prefill data) attributes, 221
<dd> (definition description in a definition

list) attributes, 222–223
 (deleted text) attributes, 225
<details> (additional details)

attributes, 227–228
<dfn> (definition) attributes, 228–229
<div> (division) attributes, 231–232
<dl> (definition list) attributes, 234–235
<dt> (term in a definition list or caption in

figures or details) attributes, 236–237
 (emphasis) attributes, 238–239
<embed> (embedded object)

attributes, 240–241
<fieldset> (form field grouping) attributes, 243
<figure> (figure) attributes, 244–245
<footer> (footer) attributes, 248–249
<form> (form for user input) attributes, 250
<h1> through <h2> (headings) attributes,

258–259
<head> (document head) attributes, 260
<header> (header) attributes, 262–263
<hgroup> (header group) attributes, 263–264
<hr> (horizontal rule) attributes, 265–266
<html> (HTML document) attributes, 267–268
<i> (italic) attributes, 269–270
<iframe> (inline frame) attributes, 271–272
 (image) attributes, 276
<input> (input form control)

attributes, 280–281
<ins> (inserted text) attributes, 287–288
<kbd> (keyboard input) attributes, 291–292
<keygen> (key pair generation) attributes,

292–293
<label> (form control label) attributes, 294–295
<legend> (descriptive legend)

attributes, 298–299
 (list item) attributes, 301
<link> (link to external files or set

relationships) attributes, 303–304

<map> (client-side image map)
attributes, 313

<mark> (marked text) attributes, 314–315
<menu> (menu list or command menu)

attributes, 318–319
<meta> (meta-information) attributes, 320–321
<meter> (scalar gauge) attributes, 323–324
<nav> (navigation) attributes, 326–327
<noscript> (no script support content)

attributes, 330
<object> (embedded object)

attributes, 332–333
 (ordered list) attributes, 335–336
<optgroup> (option grouping) attributes,

338–339
<option> (option in selection list)

attributes, 340
<output> (form output) attributes, 341–342
<p> (paragraph) attributes, 343–344
<param> (object parameter)

attributes, 345–346
<pre> (preformatted text) attributes, 348–349
<progress> (progress indicator) attributes,

350–351
<quote> (quote) attributes, 352
<rp> (Ruby parentheses) attributes, 354
<rt> (Ruby text) attributes, 355–356
<ruby> (Ruby annotation) attributes, 357–358
<samp> (sample text) attributes, 361
<script> (scripting) attributes, 362–363
<section> (section) attributes, 365
<select> (selection list) attributes, 367
<small text> (small text) attributes, 370
<source> (source) attributes, 371–372
 (text span) attributes, 374–375
 (strong emphasis)

attributes, 377–378
<style> (style information)

attributes, 379–380
<sub> (subscript) attributes, 382
<sup> (superscript) attributes, 383–384
<table> (table) attributes, 385–386
<tbody> (table body) attributes, 390–391
<td> (table data) attributes, 393
<textarea> (multiline text input) attributes,

396–397
<tfoot> (table footer) attributes, 400
<th> (table header) attributes, 402–403
<thead> (table header) attributes, 406
<time> (time) attributes, 408
<title> (document title) attributes, 410–411
<tr> (table row) attributes, 412–413
 (unordered list) attributes, 417–418
<var> (variable) attributes, 420
<video> (video) attributes, 421–422

http-equiv attribute, <meta> (meta-information)
element, 321

HTTP (Hypertext Transfer Protocol), 788–789
hyperlink presentation module, CSS3, 614
Hz units, CSS3, 621

 I n d e x 821 I n d e x 821

I
<i> (italic) element, 28, 269–270
IANA (Internet Assigned Numbers Authority), 785
id attribute

core element attributes, 136–137
CSS selectors, 471–473
element names and, 435

IE (Internet Explorer). See also browsers
CSS support and, 430–432
extended event attributes, 147–154
handling file extensions and MIME

types, 13–14
IE8 support of CSS3 properties, 616
video support in, 79

IE (Internet Explorer), element attributes
<a> (anchor) related attributes, 158–159
<abbr> element attributes, 165–166
<acronym> (acronym) element, 167
<address> (address) attributes, 168–169
<applet> (Java applet) attributes, 169–170
<area> (Image Map Area) attributes, 172–173
<base> (base URL) attributes, 181
<basefont> (base font) attributes, 183
<bdo> (bidirectional override) attributes, 185
<bgsound> (background sound)

attributes, 185
<big> (big font) attributes, 186–187
<blockquote> (block quote) attributes, 188–189
<body> (document body) attributes, 190–191

 (line break) attributes, 194
<button> (button) attributes, 196
<caption> (table caption) attributes, 208–209
<center> (center alignment) attributes, 210
<cite> (citation) attributes, 212
<code> (code listing) attributes, 213–214
<col> (table column) attributes, 215
<colgroup> (table column group)

attributes, 217
<comment> (comment information)

attributes, 220
<dd> (definition description in a definition

list) attributes, 223
 (deleted text) attributes, 225
<dfn> (definition) attributes, 229
<dir> (directory list) attributes, 230
<div> (division) attributes, 232
<dl> (definition list) attributes, 235
<dt> (term in a definition list or caption in

figures or details) attributes, 236–237
 (emphasis) attributes, 239
<embed> (embedded object) attributes, 241
<fieldset> (form field grouping) attributes,

243–244
 (font definition) attributes, 246
<form> (form for user input) attributes, 250
<frame> (window region) attributes, 253
<frameset> (frameset definition) attributes,

255–256
<h1> through <h2> (headings) attributes, 259

<head> (document head) attributes, 260–261
<hr> (horizontal rule) attributes, 265–266
<html> (HTML document) attributes, 267–268
<i> (italic) attributes, 269
<iframe> (inline frame) attributes, 271–272
 (image) attributes, 276–277
<input> (input form control)

attributes, 281–282
<ins> (inserted text) attributes, 288
<isindex> (index prompt) attributes, 290
<kbd> (keyboard input) attributes, 291–292
<label> (form control label) attributes, 294–295
<legend> (descriptive legend) attributes, 299
 (list item) attributes, 301
<link> (link to external files or set

relationships) attributes, 304
<listing> (code listing) attributes, 312
<map> (client-side image map)

attributes, 313–314
<marquee> (marquee display) attributes, 316
<menu> (menu list or command menu)

attributes, 318–319
<meta> (meta-information) attributes, 321
<nobr> (no line breaks) element, 327
<noframes> (no frame support content)

attributes, 329
<noscript> (no script support content)

attributes, 331
<object> (embedded object) attributes, 332–333
 (ordered list) attributes, 335–336
<option> (option in selection list)

attributes, 340
<p> (paragraph) attributes, 343–344
<param> (object parameter) attributes, 345
<plaintext> (plain text) attributes, 347
<pre> (preformatted text) attributes, 349
<quote> (quote) attributes, 352–353
<rt> (Ruby text) attributes, 356
<ruby> (Ruby annotation) attributes, 358
<s> (strikethrough) attributes, 359–360
<samp> (sample text) attributes, 361
<script> (scripting) attributes, 362–363
<select> (selection list) attributes, 367–368
<small text> (small text) attributes, 370–371
 (text span) attributes, 374–375
<strike> (strikeout text) attributes, 376
 (strong emphasis) attributes, 378
<style> (style information) attributes, 380
<sub> (subscript) attributes, 382–383
<sup> (superscript) attributes, 384
<table> (table) attributes, 386
<tbody> (table body) attributes, 390–391
<td> (table data) attributes, 393–394
<textarea> (multiline text input) attributes, 397
<tfoot> (table footer) attributes, 400–401
<th> (table header) attributes, 403
<thead> (table header) attributes, 406–407
<title> (document title) attributes, 411
<tr> (table row) attributes, 412–413

 822 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 822 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

IE (Internet Explorer), element attributes (Continued)
<tt> (teletype text) attributes, 415
<u> (underline) attributes, 416
 (unordered list) attributes, 417–418
<var> (variable) attributes, 420
<xml> (XML data island) attributes, 424
<xmp> (example) attributes, 425–426

IETF (Internet Engineering Task Force), 14
iframe element, in HTML5, 110–112
<iframe> (inline frame) element, 270–274
<ilayer> (inflow layer) element, 274–275
image maps, <area> (Image Map Area) element,

171–174
image-rendering property, CSS3 browser-specific

features, 673–674
ImageData API methods and properties, canvas

element, 207
ime-mode property, CSS3 browser-specific

features, 674
 (image) element, 29, 276–279
@import, importing style sheets, 458–459, 526–527
!important, indicating rule that should not be

overridden, 470, 542
:in-range selector, CSS3, 620
indexes, <isindex> (index prompt) element, 289–291
inferred elements, 4
inheritance, document structure and, 468–470
inline elements, 28
inline frames, <iframe> (inline frame)

element, 270–274
inline styles

limitations of, 433
markup in CSS and, 442–443
overview of, 459–461

input, forms for, 249–252
<input> (input form control) element

defining form fields with, 101
list attribute, 105
overview of, 279–287

<ins> (inserted text) element, 287–289
interactivity, CSS and, 519
interface state pseudo-classes, CSS, 491–492
internationalization, in HTML5, 116
Internet Assigned Numbers Authority (IANA), 785
Internet Engineering Task Force (IETF), 14
Internet Explorer. See IE (Internet Explorer)
Internet, locating objects on, 783–784
interpolation-mode property, CSS3 browser-specific

features, 674–675
:invalid selector, CSS3, 620
<isindex> (index prompt) element, 289–291
ismap attribute, <ilayer> (inflow layer) element, 278
italics. See <i> (italic) element
itemid attribute, common HTML5 element attributes

reference, 144
itemprop attribute, common HTML5 element

attributes reference, 144–145
itemref attribute, common HTML5 element

attributes reference, 145

itemscope attribute, common HTML5 element
attributes reference, 145

itemtype attribute, common HTML5 element
attributes reference, 146

J
Java applet, 169–171
JavaScript

DOM interface for HTML, 121–124
standardizing and extending ad hoc

JavaScript conventions, 125–126
using in URLs, 788

K
<kbd> (keyboard input) element, 291–294
@keyframes, CSS3 browser-specific features, 630–631
<keygen> (key pair generation) element, 292–294
keywords

CSS, 529–530
SGML and XML, 805

kHz units, CSS3, 621

L
label attribute

<menu> (menu list or command menu)
element, 319

<optgroup> (option grouping) element, 339
<option> (option in selection list) element, 341

<label> (form control label) element, 294–296
lang attribute, language attributes reference, 139
:lang, CSS, 497
language attribute

common element attributes reference, 141
<script> (scripting) element, 363

language pseudo class, CSS, 497
:last-child, CSS document tree pseudo-class, 493
:last-child selector, CSS3, 618
:last-of-type selector, CSS3, 618
Latin Extended-A character entities, 741
Latin Extended-B character entities, 741
<layer> (positioned layer) element, 296–298
layout-grid-char property, CSS3 browser-specific

features, 675–676
layout-grid-line property, CSS3 browser-specific

features, 676
layout-grid-mode property, CSS3 browser-specific

features, 676–677
layout-grid property, CSS3 browser-specific

features, 675
layout keyword, 529
left attribute

<ilayer> (inflow layer) element, 275
<layer> (positioned layer) element, 297

left property, CSS, 577–578
leftmargin attribute, <body> (document body)

element, 192
<legend> (descriptive legend) element, 298–300

 I n d e x 823 I n d e x 823

length limits, for URLs, 797
length, units of measurement in CSS,

502–505, 527–528
letter-like symbols, character entities for, 744–745
letter-spacing property, CSS, 578
 (list item) element, 300–302
line breaks

 (line break) element, 193–195
line-break property, CSS3, 677
<nobr> (no line breaks) element, 327–328

line-height property, CSS, 578–579
line layout module, CSS3, 615
line properties, canvas element, 203
lines, drawing and styling in HTML5, 85–88
link attribute, <body> (document body) element, 192
<link> (link to external files or set relationships)

element
elements allowed within head element, 25–26
linking to style sheets, 452–456
overview of, 303–311

link-related pseudo-classes, CSS, 489–490
linked styles, CSS, 452–456, 524–526
list attribute, <input> (input form control) element,

105, 283
list-style-image property, CSS, 579
list-style-position property, CSS, 579–580
list-style property, CSS, 579
list-style-type property, CSS, 580–581
<listing> (code listing) element, 311–312
lists

autocomplete, 105
CSS3 modules, 615
<datalist> (list of prefill data)

element, 220–221
<dd> (definition description in a definition

list) element, 222–224
<dl> (definition list) element, 233–236
 (list item) element, 300–302
 (ordered list) element, 335–338
<select> (selection list) element, 366–369
 (unordered list) attributes, 417–419

logical and physical markup, HTML/XHTML, 45–46
logical connectors, DTDs and, 803
logical markup, vs. physical markup, 45–46
longdesc attribute

<frame> (window region) element, 254
<iframe> (inline frame) element, 272
<ilayer> (inflow layer) element, 278

loop attribute
<area> (Image Map Area) element, 178
<bgsound> (background sound) element, 185
<ilayer> (inflow layer) element, 278
<input> (input form control) element, 283
<marquee> (marquee display) element, 317
<video> (video) element, 422

low attribute, <meter> (scalar gauge) attributes, 324
lowsrc attribute

<ilayer> (inflow layer) element, 278
<input> (input form control) element, 283

M
mailto, 789
manifest attribute, <html> (HTML document)

element, 268
<map> (client-side image map) element,

312–314
margin-bottom property, CSS, 582
margin-left property, CSS, 582–583
margin property, CSS, 581–582
margin-right property, CSS, 583
margin-top property, CSS, 583–584
marginheight attribute

<body> (document body) element, 192
<frame> (window region) element, 254
<iframe> (inline frame) element, 272

marginwidth attribute
<body> (document body) element, 192
<frame> (window region) element, 254
<iframe> (inline frame) element, 272

<mark> (marked text) element, 75–76, 314–315
markup

CSS syntax, 442–443
ease of CSS layout vs., 518
HTML/XHTML syntax, 3–6
physical vs. logical, 45–46
viewing locally, 8–10
viewing with Web server, 10–14

marquee-direction property, CSS3 browser-specific
features, 678–679

<marquee> (marquee display) element, 316–317
marquee-play-count property, CSS3 browser-specific

features, 679
marquee-speed property, CSS3 browser-specific

features, 679–680
marquee-style property, CSS3 browser-specific

features, 680–681
marquees module, CSS3, 615
mask-attachment property, CSS3 browser-specific

features, 682
mask-clip property, CSS3 browser-specific

features, 683
mask-composite property, CSS3 browser-specific

features, 684
mask-origin property, CSS3 browser-specific

features, 685
mask-position property, CSS3 browser-specific

features, 685–686
mask-position-x property, CSS3 browser-specific

features, 686–687
mask-position-y property, CSS3 browser-specific

features, 687
mask property, CSS3 browser-specific

features, 681–682
mask-repeat property, CSS3 browser-specific

features, 687–688
mask-size property, CSS3 browser-specific features,

688–690
mathematical operators, character entities

for, 746–747

 824 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 824 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

max attribute
<input> (input form control) element, 283
<meter> (scalar gauge) element, 324

max-height property, CSS, 584
max-width property, CSS, 584–585
maxlength attribute, <input> (input form control)

element, 284
mayscript attribute, <applet> (Java applet)

element, 170
measurements, CSS, 502–505, 527–528
media attribute

<a> (anchor) element and, 160
<area> (Image Map Area) element, 173
<link> (link to external files or set

relationships) element, 304
<source> (source) attributes, 372
<style> (style information) element, 380

media attribute, CSS2.1, 462
media, in HTML5. See open media features, in

HTML5
media queries module, CSS3, 615
@media rule, CSS, 541
media selectors, CSS, 538–539
media types

CSS selectors for, 538
CSS2.1, 461, 525
defining for style sheets, 462–463
handling media-related errors, 447

<menu> (menu list or command menu) element,
106–108, 318–320

<meta> (meta-information) element
in HTML and XHTML documents, 7
overview of, 320–323
for specifying content type, character set, and

other information, 24–25
metadata changes, in HTML5

data-X attributes, 116–117
microdata added, 117–120
overview of, 116

meter element, HTML5, 109
<meter> (scalar gauge) element, 323–325
method attribute

<a> (anchor) element and, 160
<form> (form for user input) element, 251

microdata, added to HTML5, 117–120
Microsoft

Expression, 780
Extended Event model, 151–154
VML (Vector Markup Language), 82

MIME types
<meta> tags for specifying, 25
browser handling of, 13–14

min attribute
<input> (input form control) element, 284
<meter> (scalar gauge) element, 324

min-height property, CSS, 585
min-width property, CSS, 585–586
monochrome, CSS3 media query values, 628
ms unit, CSS3, 621

multi-column layout module, CSS3, 615
<multicol> (multiple column text) element, 325–326
multiple attribute

<input> (input form control) element, 284
<select> (selection list) element, 368

N
name attribute

<a> (anchor) element and, 160
<applet> (Java applet) element, 171
<area> (Image Map Area) element, 173
<button> (button) element, 197
<embed> (embedded object) element, 241
<form> (form for user input) element, 251
<frame> (window region) element, 254
<iframe> (inline frame) element, 272
<ilayer> (inflow layer) element, 275, 278
<input> (input form control) element, 284
<layer> (positioned layer) element, 297
<map> (client-side image map) element, 314
<meta> (meta-information) element, 321
<object> (embedded object) element, 334
<output> (form output) element, 341
<param> (object parameter) element, 346
<ruby> (Ruby annotation) element, 358
<select> (selection list) element, 368
<textarea> (multiline text input) element, 398

NAME keyword, 805
namespaces, CSS3, 624–625
namespaces module, CSS3, 615
<nav> (navigation) element, 77, 326–327
negation pseudo class, CSS, 497
nesting elements

conformance to HTML5 specification, 59
markup and, 43–44

Netscape
<applet> (Java applet) attributes, 169–170
<blink> (blinking text) element, 187–188
<body> (document body) attributes, 191
 (font definition) attributes, 246
<ilayer> (inflow layer) attributes, 274–275
<layer> (positioned layer) attributes, 296
<multicol> (multiple column text)

attributes, 325
<noembed> (no embedded media support)

element, 328
<spacer> (extra space) attributes, 373
<textarea> (multiline text input)

attributes, 397
network failures, error handling in CSS, 447
<nobr> (no line breaks) element, 327–328
<noembed> (no embedded media support) element,

328–329
<noframes> (no frame support content) element,

329–330
nohref attribute, <area> (Image Map Area)

element, 173
noresize attribute, <frame> (window region)

element, 254

 I n d e x 825 I n d e x 825

<noscript> (no script support content)
element, 330–331

noshade attribute, <hr> (horizontal rule)
attributes, 261

:not, CSS negation pseudo class, 497
:not(s) selector, CSS3, 618
novalidate attribute, <form> (form for user input)

element, 251
nowrap attribute

<body> (document body) element, 192
<dd> (definition description in a definition

list) element, 223
<div> (division) element, 232
<dt> (term in a definition list or caption in

figures or details) element, 237
<td> (table data) element, 395
<tfoot> (table footer) element, 404

:nth-child(n) selector, CSS3, 618
:nth-type(n) selector, CSS3, 619
numerical equivalents, (X)HTML color names and,

765, 767–771

O
object attribute, <applet> (Java applet) element, 171
objects

<object> (embedded object) element, 25–26,
331–335

<param> (object parameter) element, 345–347
occurrence indicators, DTDs, 802–803
 (ordered list) element, 335–338
:only-child selector, CSS3, 619
:only-of-type selector, CSS3, 619
opacity property, CSS3 browser-specific features, 690
open media features, in HTML5

considerations regarding, 82
inserting audio (audio), 80–81
inserting video (video), 78–80
parse trees, 78

Opera browser, color support in, 766. See also
browsers

<optgroup> (option grouping) element, 338–339
optimum attribute, <meter> (scalar gauge)

element, 324
<option> (option in selection list) element, 339–341
:optional selector, CSS3, 620
orientation, CSS3 media query values, 628
orphans property, CSS, 586
:out-of-range selector, CSS3, 620
outline-color property, CSS, 588–589
outline-offset property, CSS3 browser-specific

features, 690–691
outline property, CSS, 586–588
outline-radius property, CSS3 browser-specific

features, 691
outline-style property, CSS, 589–590
outline-width property, CSS, 590
output element, HTML5, 110
<output> (form output) element, 341–343

overflow attribute, <layer> (positioned layer)
element, 297

overflow property, CSS, 590–591
overflow-style property, CSS3 browser-specific

features, 691–692
overflow-x property, CSS3 browser-specific

features, 692
overflow-y property, CSS3 browser-specific

features, 693

P
<p> (paragraph) element

block-level elements, 28
diagram of elements in, 31
DTD defining syntax of, 16
in HTML and XHTML document, 8
overview of, 343–345

padding-bottom property, CSS, 593
padding-left property, CSS, 593–594
padding property, CSS, 591–593
padding-right property, CSS, 594
padding-top property, CSS, 594–595
page-break-after property, CSS, 595
page-break-before property, CSS, 595–596
page-break-inside property, CSS, 596
@page rule, CSS, 541–542
page selectors, CSS, 538–539
paged media module, CSS3, 615
pagex attribute

<ilayer> (inflow layer) element, 275
<layer> (positioned layer) element, 297

pagey attribute
<ilayer> (inflow layer) element, 275
<layer> (positioned layer) element, 297

palette attribute, <embed> (embedded object)
element, 241

paragraphs. See <p> (paragraph) element
<param> (object parameter) element, 345–347
parameter entities, 804, 806
parse errors, 62
parse trees, 32–33
passwords, in URLs, 789
path API methods, canvas element, 204–205
pattern attribute

enforcing data to conform to regular
expression, 104–105

<input> (input form control) element, 284
<textarea> (multiline text input) element, 398

persistence, of URLs, 797
perspective, for 3D effect on HTML5 canvas, 88–90
perspective-origin property, CSS3 browser-specific

features, 694–695
perspective property, CSS3 browser-specific features,

693–694
Photoshop, 780
physical markup

CSS and, 506–507
vs. logical markup, 45–46

 826 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 826 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

ping attribute
<a> (anchor) element, 160
<area> (Image Map Area) element, 173

placeholder attribute
<input> (input form control) element, 284
<textarea> (multiline text input)

element, 398
<plaintext> (plain text) element, 347–348
playback controls, for video, 78–79
pluginspage attribute, <embed> (embedded object)

element, 241
point-size attribute, (font definition)

element, 247
ports, specifying in URLs, 790
position property, CSS, 596–597
poster attribute, <video> (video) element, 422
practices, vs. standards, 46–47
<pre> (preformatted text) element, 348–350
presentation

CSS as alternative to presentational HTML,
429–430

value of CSS for, 516–517
presentation elements, removed from

HTML5, 63–64
presentation levels module, CSS3, 615
printers, printer-specific CSS styles, 463–464
profile attribute, <head> (document head)

attributes, 261
programming languages, 47
progress element, web application features

supported in HTML5, 109
<progress> (progress indicator) element, 350–351
prompt attribute, <isindex> (index prompt)

attributes, 290
properties, CSS

aural style properties, 607–612
color-related, 776
CSS1 and CSS2.1, 542
handling illegal or unknown property values,

446–447
handling unknown, 445
overview of, 500–502

protocols, for negotiating resource-specific services,
788–789

pseudo-class selectors, CSS
activity-related, 490–491
document tree, 492–496
inline styles and, 460
interface state, 491–492
language, 497
link-related, 489–490
negation, 497
overview of, 487
summary of, 498–500

pseudo-element selectors, CSS, 484–488
:before and :after, 485–486
:first-letter and :first-line, 484–485
inline styles and, 460
list of, 488

overview of, 484
::selection, 485–486

pubdate attribute, <time> (time) element, 409
punctuation, character entities for, 741–742

Q
query strings, in URLs, 790
quirks mode, browser rendering modes, 39
<quote> (quote) element, 351–353
quotes property, CSS, 597

R
rad units, CSS3, 621
:read-only selector, CSS3, 620
:read-write selector, CSS3, 620
readonly attribute

<input> (input form control) element, 284
<textarea> (multiline text input) element, 398

rectangle methods, canvas element, 204
redesign, CSS and, 519
rel attribute

<a> (anchor) element, 160
<area> (Image Map Area) element, 173
<link> (link to external files or set

relationships) element, 304–310
relative URLs

<base> tag and, 795–796
overview of, 795

required attribute
<input> (input form control) element, 284
<textarea> (multiline text input)

element, 398
validation and, 104–105

:required selector, CSS3, 620
resize property, CSS3 browser-specific

features, 695–696
resolution, CSS3 media query values, 628
rev attribute

<a> (anchor) element and, 160
<link> (link to external files or set

relationships) element, 310
reversed attribute, (ordered list) element, 337
RGB color, browser-safe color and, 779–781
RGBa color, CSS3, 623
right property, CSS, 598
rightmargin attribute, <body> (document body)

element, 192
root directory, Web sites, 786
:root selector, CSS3, 619
rotate (angle) function, rotating drawings in

HTML5, 94
rows attribute

<frameset> (frameset definition) element, 256
<textarea> (multiline text input) element, 398

rows, <tr> (table row) element, 411–414
rowspan attribute

<td> (table data) element, 395
<tfoot> (table footer) element, 404

 I n d e x 827 I n d e x 827

<rp> (Ruby parentheses) element, 353–355
<rt> (Ruby text) element, 355–357
ruby-align property, CSS3 browser-specific features,

696–697
Ruby elements

<rp> (Ruby parentheses) element, 353–355
<rt> (Ruby text) element, 355–357
<ruby> (Ruby annotation) element, 357–359

Ruby module, CSS3, 615
ruby-overhang property, CSS3 browser-specific

features, 697
ruby-position property, CSS3 browser-specific

features, 698
<ruby> (Ruby annotation) element, 357–359
rules attribute, <table> (table) element, 388
rules, CSS, 432–433

handling malformed, 445–446
overview of, 521, 523–524

S
<s> (strikethrough) element, 359–360
s units, CSS3, 621
<samp> (sample text) element, 360–362
sandbox attribute, <iframe> (inline frame) element,

111, 273
scale (x,y) function, scaling drawings in

HTML5, 93–94
scan, CSS3 media query values, 628
scheme attribute, <meta> (meta-information)

element, 321
scope attribute

<td> (table data) element, 395
<tfoot> (table footer) element, 405

scoped attribute, <style> (style information)
element, 380

<script> (scripting) element
elements allowed within head element, 25–26
overview of, 362–365

scripts, <noscript> (no script support content)
element, 330–331

scroll attribute
<body> (document body) element, 192
<html> (HTML document) element, 268

scrollamount attribute, <marquee> (marquee
display) element, 317

scrollbar-3dlight-color property, CSS3 browser-
specific features, 698–699

scrollbar-arrow-color property, CSS3 browser-
specific features, 699

scrollbar-base-color property, CSS3 browser-specific
features, 699–700

scrollbar-darkshadow-color property, CSS3 browser-
specific features, 700–701

scrollbar-face-color property, CSS3 browser-specific
features, 701

scrollbar-highlight-color property, CSS3 browser-
specific features, 701–702

scrollbar-shadow-color property, CSS3 browser-
specific features, 702

scrollbar-track-color property, CSS3 browser-specific
features, 703

scrolldelay attribute, <marquee> (marquee display)
element, 317

scrolling attribute
<frame> (window region) element, 254
<iframe> (inline frame) element, 273

seamless attribute, <iframe> (inline frame)
element, 273

<section> (section) element, 69–70, 365–366
security attribute

<frame> (window region) element, 254
<iframe> (inline frame) element, 273

<select> (selection list) element, 366–369
selected attribute, <option> (option in selection list)

element, 341
::selection, CSS pseudo-element selectors, 485–486
::selection selector, CSS3, 619
selectors, CSS, 533–538

activity-related pseudo-classes, 490–491
adjacent sibling selectors, 478
attribute selectors, 479–483
class rules, 473–476
contextual selection, 476–478
direct descendent selector, 478
document tree pseudo-classes, 492–496
element selectors, 471
general sibling selectors, 479
id selectors, 471–473
interface state pseudo-classes, 491–492
language pseudo class, 497
link-related pseudo-classes, 489–490
list of, 533–538
list of core, 480
negation pseudo class, 497
overview of, 470, 533
page and media selectors, 538–539
pseudo-class selectors, 487, 498–500
pseudo-element selectors, 484–488

selectors module, CSS3, 615
semantics, in HTML5

indicating time and dates (time), 76
inserting figures (fig), 76–77
marking text in (mark), 75–76
for separating style from structure, 75
specifying navigation (nav), 77

server addresses, in URLs, 784–786
SGML (Standard Generalized Markup Language)

content exclusion and inclusion, 804
HTML dialects defined using, 801
keywords, 805
markup languages defined with, 17
overview of, 16

shadow properties, canvas element, 203
shape attribute

<a> (anchor) element, 160
<area> (Image Map Area) element, 174

 828 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 828 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

shapes, drawing and styling in HTML5, 85–88
sibling selectors, CSS

adjacent sibling selectors, 478
general sibling selectors, 479

size attribute
<basefont> (base font) element, 183
 (font definition) element, 247
<hr> (horizontal rule) element, 261
<input> (input form control) element, 284
<select> (selection list) element, 368
<spacer> (extra space) element, 373

size property, CSS3 browser-specific features,
703–704

size relationships, CSS-HTML, 608–611
sizes attribute, <link> (link to external files or set

relationships) element, 310
sizes keyword, 529
<small text> (small text) element, 369–371
sound, <bgsound> (background sound) element,

185–186
<source> (source) element, 371–373
<spacer> (extra space) element, 373–374
spacing modifiers, character entities for, 741
span attribute

<col> (table column) element, 216
<colgroup> (table column group)

element, 218
 (text span) element

overview of, 374–376, 507–508
using with document tree pseudo classes,

494–496
special characters. See also character entities

encoding in URLs, 790–791
entities used for, 44
escape codes, 29
in filenames, 787
in HTML5, 60

speech module, CSS3, 616
spell checking (spellcheck attribute), in browsers,

115–116
spellcheck attribute, common HTML5 element

attributes reference, 146
spin boxes, 103
src attribute

<applet> (Java applet) element, 171
<area> (Image Map Area) element, 178
<bgsound> (background sound)

element, 186
<embed> (embedded object) element, 241
<frame> (window region) element, 254
<iframe> (inline frame) element, 273
<ilayer> (inflow layer) element, 275, 278
<input> (input form control) element, 284
<layer> (positioned layer) element, 297
<script> (scripting) element, 363
<source> (source) element, 372
<video> (video) element, 422
<xml> (XML data island) element, 424

Standard Generalized Markup Language. See SGML
(Standard Generalized Markup Language)

standards
HTML/XHTML, 14
vs. practices, 46–47
variability and, 518
web standards, 16–17

standards compliance mode
browser rendering modes, 39
HTML5 and, 58
limitations of, 48

standby attribute, <object> (embedded object)
element, 334

start attribute
<ilayer> (inflow layer) element, 278
 (ordered list) element, 337

state preservation methods, canvas element, 200
step attribute, <input> (input form control)

element, 284
<strike> (strikeout text) element, 376–377
strings, CSS, 529–530
stroke methods, canvas element and, 85–86
 (strong emphasis) element, 28, 377–379
structure, separating structure and style in

CSS, 514–515
style attribute, core element attributes, 137
style, separating structure and style in CSS, 514–515
style sheets

alternative, 464–465
comparing style sheet approaches, 453
defining media types for, 462–463
embedding, 456–458
importing, 458–459
linking to, 452–456
using for presentation, 516–517

<style> (style information) element
embedding style sheets, 456–458
embedding styles in document head

element, 526
importing style sheets, 458–459, 526–527
other elements allowed within head

element, 25–26
overview of, 379–381

<sub> (subscript) element, 381–383
summary attribute, <table> (table) element, 388
<sup> (superscript) element, 383–385
symbols

character entities for letter-like symbols, 744–745
character entities for miscellaneous

symbols, 748
character entities for technical symbols, 747

syntax, CSS, 432–438, 521, 523–524
syntax, HTML5

loose syntax, 58–60
overview of, 55–58

syntax, traditional HTML/XHTML, 3–6

T
tabindex attribute

common element attributes reference, 142
common HTML5 element attributes

reference, 146

 I n d e x 829 I n d e x 829

<input> (input form control) element, 284–285
<select> (selection list) element, 368–369

table-layout property, CSS, 598–599
<table> (table) element, 385–389
tables

<caption> (table caption) element, 208–210
<col> (table column) element, 214–216
<table> (table) element, 385–389
<tbody> (table body) element, 389–392
<td> (table data) element, 392–396
<tfoot> (table footer) element, 399–402
<th> (table header) element, 402–405
<thead> (table header) element, 405–408
<tr> (table row) element, 411–414

tags
not using invented, 60
rules regarding closing tags in HTML/

XHTML, 43
in tradition HTML/XHTML, 4

target attribute
<a> (anchor) element and, 163
<area> (Image Map Area) element, 174
<base> (base URL) element, 182
<form> (form for user input) element, 251–252
<link> (link to external files or set

relationships) element, 311
:target selector, CSS3, 619
<tbody> (table body) element, 389–392
<td> (table data) element, 392–396
technical symbols, character entities for, 747
television channels, URL form of, 794
telnet, 789
template layout module, CSS3, 616
text

<blink> (blinking text) element, 187–188
canvas API methods and properties, 206
CSS3 modules, 616
 (deleted text) element, 224–227
<ins> (inserted text) element, 287–289
keywords, 529
<mark> (marked text) element, 75–76, 314–315
marking in HTML5, 75–76
<multicol> (multiple column text) element,

325–326
<p> (paragraph) element, 343–345
<plaintext> (plain text) element, 347–348
<pre> (preformatted text) element, 348–350
<rt> (Ruby text) element, 355–357
<samp> (sample text) element, 360–362
<small text> (small text) element, 369–371
 (text span) element, 374–376, 494–496,

507–508
<strike> (strikeout text) element, 376–377
support in canvas element, 98–100
<textarea> (multiline text input) element,

396–399
<tt> (teletype text) element, 414–415

text-align-last property, CSS3 browser-specific
features, 704

text-align property, CSS, 599

text attribute, <body> (document body) element, 192
text-autospace property, CSS3 browser-specific

features, 704–705
text-decoration property, CSS, 599–600
text editors, for viewing markup locally, 8–10
text-fill-color property, CSS3 browser-specific

features, 705
text-indent property, CSS, 600
text-justify property, CSS3 browser-specific features,

705–706
text-kashida-space property, CSS3 browser-specific

features, 706–707
text-overflow property, CSS3 browser-specific

features, 707
text-rendering property, CSS3 browser-specific

features, 708
text-shadow property, CSS3 browser-specific

features, 708–710
text-stroke-color property, CSS3 browser-specific

features, 710–711
text-stroke-width property, CSS3 browser-specific

features, 711
text-transform property, CSS, 600–601
text-underline-position property, CSS3 browser-

specific features, 711–712
<textarea> (multiline text input) element, 396–399
<tfoot> (table footer) element, 399–402
<th> (table header) element, 402–405
<thead> (table header) element, 405–408
<time> (time) element, 76, 408–410
title attribute, core element attributes, 138
<title> (document title) element, 7, 23–24, 410–411
top attribute

<ilayer> (inflow layer) element, 275
<layer> (positioned layer) element, 297

Top-Level domains, 784–786
top property, CSS, 601–602
topmargin attribute, <body> (document body)

element, 192
<tr> (table row) element, 411–414
transform-origin property, CSS3 browser-specific

features, 715
transform property, CSS3 browser-specific features,

712–714
transform-style property, CSS3 browser-specific

features, 716–717
transformation methods, canvas element, 200
transforms, in HTML5, 95–96
transition-delay property, CSS3 browser-specific

features, 717–718
transition-duration property, CSS3 browser-specific

features, 718–719
transition property, CSS3 browser-specific

features, 717
transition-property property, CSS3 browser-specific

features, 719
transition-timing-function property, CSS3 browser-

specific features, 719–720
transitions, filter property and, 668–669
transitions module, CSS3, 616

 830 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e 830 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

translate (x,y) function, translating drawings in
HTML5, 93–97

transparent keyword, CSS3 color units, 623
truespeed attribute, <marquee> (marquee display)

element, 317
<tt> (teletype text) element, 414–415
type attribute

<a> (anchor) element and, 163
<area> (Image Map Area) element, 174
<button> (button) element, 197
<embed> (embedded object) element, 241
<input> (input form control) element, 285
 (list item) element, 302
<link> (link to external files or set

relationships) element, 311
<menu> (menu list or command menu)

element, 319
<object> (embedded object) element, 334
 (ordered list) element, 337
<param> (object parameter) element, 346
<script> (scripting) element, 364
<source> (source) element, 372
<spacer> (extra space) element, 373
<style> (style information) element, 380
 (unordered list) attributes, 418

U
<u> (underline) element, 415–417
UI (user interface), CSS, 777
 (unordered list) element, 28, 417–419
unclosed structures, handling in CSS, 446
Unicode, 748–749
unicode-bidi property, CSS, 602
uniform resource characteristics (URCs), 799
Uniform Resource Identifiers. See URIs (Uniform

Resource Identifiers)
uniform resource locators. See URLs (uniform

resource locators)
uniform resource names (URNs), 799
units attribute, <embed> (embedded object)

element, 241
units of measurement, CSS, 502–505, 527–528
unordered lists, 28, 417–419
URCs (uniform resource characteristics), 799
URIs (Uniform Resource Identifiers)

<!DOCTYPE> statement specifying, 18
data URIs, 791–794
overview of, 799

URLs (uniform resource locators), 783–799
<base> (base URL) element, 181–182
basics of locating objects on Internet, 783–784
challenges in use of, 796–798
data URIs, 791–794
directories, 786–787
emerging forms of, 794
encoding, 790–791
filenames, 787–788
fragment identifiers, 788

other addressing schemes, 798–799
overview of, 783
ports, 790
protocols, 788–789
query strings, 790
relative URLs, 795–796
server addresses, 784–786
usernames and passwords, 789

urn attribute, <a> (anchor) element, 163
URNs (uniform resource names), 799
usemap attribute

<ilayer> (inflow layer) element, 279
<input> (input form control) element, 285
<object> (embedded object) element, 334

user input, forms for, 249–252
user interface module, CSS3, 616
user interface (UI), CSS, 777
user-select property, CSS3 browser-specific features,

720–721
usernames, in URLs, 789
users, CSS styles, 466–467
UTF-8 character set, 25

V
:valid selector, CSS3, 620
validation

CSS, 447–450
of data entry on forms, 104–105
of DTD rules, 37–39
of web sites, 62

valign attribute
<caption> (table caption) element, 209
<col> (table column) element, 216
<colgroup> (table column group) element, 218
<tbody> (table body) element, 391
<td> (table data) element, 395
<tfoot> (table footer) element, 401, 405
<thead> (table header) element, 407
<tr> (table row) element, 414

value attribute
<button> (button) element, 197
HTML5 form fields, 105–106
<input> (input form control) element, 285
 (list item) element, 302
<meter> (scalar gauge) element, 324
<option> (option in selection list) element, 341
<param> (object parameter) element, 346

values and units module, CSS3, 616
values, CSS, 502–505
valuetype attribute, <param> (object parameter)

element, 346
<var> (variable) element, 419–421
Vector Markup Language (VML), 82
version attribute, <html> (HTML document)

element, 268
version history

CSS, 440–442, 522
HTML/XHTML, 14–16

 I n d e x 831 I n d e x 831

vertical-align property, CSS, 602–603
VGA display, 779
vh units, CSS3, 621
<video> (video) element, 78–80, 421–423
visibility attribute

<ilayer> (inflow layer) element, 275
<layer> (positioned layer) element, 297

visibility property, CSS, 603–604
vlink attribute, <body> (document body) element, 192
vm units, CSS3, 621
VML (Vector Markup Language), 82
volume attribute, <bgsound> (background sound)

element, 186
vspace attribute

<embed> (embedded object) element, 241
<input> (input form control) element, 285
<object> (embedded object) element, 334
<table> (table) element, 388

vw units, CSS3, 621

W
W3C Markup Validation Service, 37–38, 57
W3C (World Wide Web Consortium)

addressing area of, 794
core events, 147
CSS validator, 447
online references for DTDs, 807
web standards, 16
XHTML standard, 49

WAV files, audio support in HTML5, 80
<wbr> (word break) element, 423
web applications, support in HTML5

command element, 108
content editing (contenteditable attribute) in

browsers, 114–115
details element, 109–110
drag and drop functionality (draggable

attribute) added to browsers, 112–114
future of frames, 110–112
menu element repurposed, 106–108
meter and progress elements, 109
output element, 110
overview of, 106
spell checking (spellcheck attribute) in

browsers, 115–116
Web browsers. See browsers
web fonts module, CSS3, 616
Web Hypertext Application Technology Working

Group (WHATWG), 101
web markup

with HTML5, 62–63
madness, 62
XML style using XHTML, 49–52

Web pages
care in use of nonstandard color on, 771
CSS and ease of download, 518–519
handling page layout, 47
viewing markup locally, 8–10

viewing with Web server, 10–14
XML style using XHTML, 49–52

Web site directories, 786–787
weight attribute, (font definition) element, 247
WHATWG (Web Hypertext Application Technology

Working Group), 101
white space characters, HTML/XHTML

sensitivity to, 42
white-space property, CSS, 512–513, 604
width attribute

canvas element and, 83
<col> (table column) element, 216
<colgroup> (table column group) element, 218
<hr> (horizontal rule) element, 261
<ilayer> (inflow layer) element, 275
<input> (input form control) element, 286

width attribute
<layer> (positioned layer) element, 297
<multicol> (multiple column text) element, 325

width attribute
<pre> (preformatted text) attributes, 349
<spacer> (extra space) element, 373
<table> (table) element, 388
<td> (table data) element, 395
<tfoot> (table footer) element, 405

width, CSS3 media query values, 628
width property, CSS, 605–606
windows property, CSS, 604–605
word-break property, CSS3 browser-specific

features, 721
word-spacing property, CSS, 606
word-wrap property, CSS3 browser-specific

features, 722
work break, <wbr> (word break) element, 423
World Wide Web Consortium. See W3C (World Wide

Web Consortium)
wrap attribute

<pre> (preformatted text) element, 349
<textarea> (multiline text input) element,

398–399
writing-mode property, CSS3 browser-specific

features, 722–723
WYSIWYG, 47

X
x coordinates, canvas element and, 83
(X)HTML. See also HTML 4; HTML5

applying styles to documents, 452
<body> (document body) element, 28–31
browsers and, 28–31
browsers ignoring unknown elements and

attributes, 44–45
case sensitivity, 41–42
character entities, 731–741
common element attributes reference, 139–142
common HTML5 element attributes reference,

142–146
content models and, 43

 832 H T M L & C S S : T h e C o m p l e t e R e f e r e n c e

(X)HTML. See also HTML 4; HTML5 (Continued)
core attributes reference, 135–138
CSS and, 506
CSS as alternative to pesentational HTML,

429–430
CSS-HTML size relationships, 608–611
div and span elements, 507–508
<!DOCTYPE> statement used to begin

documents, 18–19
doctype switch and browser rendering

modes, 39–41
document structure, 20–23
DTDs (document type definitions), 16–18
embedded styles, 456–458, 526
entities used for special characters, 44
event attributes reference, 146–154
flavors of, 133–135
future of, 48
head element, 23
hello world example, 6–8
vs. HTML in future, 47–48
imported styles, 459–459, 526–527
language attributes reference, 138
linked styles, 452–456, 524–526
logical and physical markup, 45–46
markup syntax in, 3–6
<meta> tags for specifying content type,

character set, and other information, 24–25
methods for including CSS styles in, 524
minimizing unused elements, 43
myths and misconceptions, 47–49
nesting elements, 43–44
other elements allowed within head

element, 25–26
overview of, 41
presentational, 429–430

quotes used with attributes, 44
standards vs. practices, 46–47
structures moved to CSS, 443
<title> (document title) element, 23–24
use of closing tags, 43
validation of DTD rules, 37–39
version history, 14–16
white space characters and, 42
XML web page markup style with

XHTML, 49–52
xmins attribute, <html> (HTML document)

element, 268
XML

keywords, 805
markup languages defined with, 17
using with HTML5, 60–61
web page markup style, 49–52
XHTML dialects defined using, 801

<xml> (XML data island) element, 424–425
xml:space attribute

<pre> (preformatted text) element, 349
<script> (scripting) element, 364
<style> (style information) element, 380

<xmp> (example) element, 425–426

Y
y coordinates, canvas element and, 83

Z
z-index attribute

<ilayer> (inflow layer) element, 275
<layer> (positioned layer) element, 297

z-index property, CSS, 607
zoom property, CSS3 browser-specific features, 724

	0071496297
	Contents
	Acknowledgments
	Introduction
	Part I: Core Markup
	1 Traditional HTML and XHTML
	First Look at HTML and XHTML
	Hello HTML and XHTML World
	HTML and XHTML: Version History
	HTML and XHTML DTDs: The Specifications Up Close
	(X)HTML Document Structure
	Browsers and (X)HTML
	The Rules of (X)HTML
	Major Themes of (X)HTML
	The Future of Markup—Two Paths?
	Summary

	2 Introducing HTML5
	Hello HTML5
	Loose Syntax Returns
	XHTML5
	HTML5: Embracing the Reality of Web Markup
	Presentational Markup Removed and Redefined
	HTML5 Document Structure Changes
	Adding Semantics
	HTML5’s Open Media Effort
	Client-Side Graphics with <canvas>
	HTML5 Form Changes
	Emerging Elements and Attributes to Support Web Applications
	Internationalization Improvements
	HTML5 Metadata Changes
	HTML5: Beyond Markup
	Major HTML5 Themes
	Summary

	3 HTML and XHTML Element Reference
	Flavors of HTML and XHTML
	Core Attributes Reference
	Language Attributes Reference
	Other Common Attributes Reference
	Common HTML5 Attributes Reference
	Event Attributes Reference
	HTML Element Reference

	Part II: Core Style
	4 Introduction to CSS
	Presentational HTML
	The Slow Rise of CSS
	First Look at CSS
	Hello CSS World
	CSS Versions
	The Specification of CSS
	Applying Style to a Document
	Media Types
	Alternative Styles
	User Styles
	Document Structure and CSS Inheritance
	Selectors
	CSS Properties Preview
	Measurements and Values
	CSS and (X)HTML Elements Fundamentals
	Major Themes of CSS
	Summary

	5 CSS Syntax and Property Reference
	CSS Versions
	CSS Basics
	Style Inclusion Methods
	CSS Measurements
	CSS Strings and Keywords
	CSS Color Values
	CSS Selectors
	Miscellaneous CSS Constructs
	CSS1 and CSS 2.1 Properties
	CSS2 and CSS 2.1 Aural Style Properties

	6 CSS3 Proprietary and Emerging Features Reference
	The State of CSS3
	Implemented CSS3 and Browser-Specific Features

	Part III: Appendixes
	A: Character Entities
	Encoding Quirks and Considerations
	Traditional HTML Entities
	HTML 4.x and XHTML 1.x Character Entities
	Embracing Unicode

	B: Fonts
	Specifying Fonts
	Downloadable Fonts
	Font Replacement with Images
	sIFR and Other Text Replacement Techniques

	C: Colors
	(X)HTML Colors
	CSS Color Values
	Browser-Safe Colors

	D: URLs
	Basic Concepts
	Data URIs
	Other Emerging URL Forms
	Relative URLs
	URL Challenges
	Beyond URLs

	E: Reading a Document Type Definition
	Element Type Declarations
	Occurrence Indicators
	Logical Connectors
	SGML Content Exclusion and Inclusion
	Attribute Declarations
	SGML and XML Keywords
	Parameter Entities
	Comments
	The DTDs

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

