The
Complete HWis

Reterence

HTML

& CSS

Fifth Edition

Design standards-based Web pages
Learn markup and CSS best practices

- Deliver optimum client-side experiences

Thomas A.
Powell

G

HTML & CSS:
The Complete Reference,
Fifth Edition

About the Author

Thomas A. Powell (tpowell@pint.com) is a long-time
industry veteran. After an early stint at CERFnet in the
early ‘90s, he founded Powell Internet Consulting (later
renamed PINT) in 1994, a Web design and consulting services
firm. Today, PINT (pint.com) provides Web development,
design, and consulting services to large and small corporations
all over the United States in a variety of industries.

Beyond his involvement at PINT, Thomas is heavily
involved in the academic community. He developed the
University of California, San Diego Extension Web Publishing
program in the late 1990s and continues to teach classes there
in Web development and design. He is also an instructor for
the UCSD Computer Science Department, where he teaches
classes in Web development and the theory of programming
languages.

Mr. Powell is well published, and his work has appeared
in numerous trade publications. He continues to publish
regularly in Network World. He also has published numerous
books on Web technology and design, including Ajax: The
Complete Reference, JavaScript: The Complete Reference, and
many others. His books have been translated into over
12 languages and are used around the world both in industry
and college settings.

About the Technical Editor

James H. (Jim) Pence is a full-time writer, editor, speaker,
singer, and performance chalk artist. Jim broke into book
publishing in 2001 with How to Do Everything with HTML,

a how-to book on Web authoring, written “by a nontechie for
nontechies,” and published by McGraw-Hill Professional. He
followed this book the same year with another book for
McGraw-Hill: Cascading Style Sheets: A Beginner’s Guide.
McGraw-Hill published a second edition of Jim’s HTML
book, re-titled How to Do Everything with HTML & XHTML,
in 2003.

Jim is also a published novelist. He is the author of Blind
Sight (Tyndale, 2003), a suspense/thriller novel set in the
mind-control cults, and The Angel (Kregel, 2006), set against
the backdrop of the euthanasia and physician-assisted suicide
movements. Jim moved into “true crime” writing with his
latest book, Terror by Night (Tyndale, 2009). Terror by Night is
the true story of the brutal 2008 murders of the Caffey family
in Emory, Texas. You can learn more about Jim’s books and
other creative projects at his Web site: www.jamespence.com.

HTML & CSS:
The Complete Reference,
Fifth Edition

Thomas A. Powell

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies i

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-174170-5
MHID: 0-07-174170-4
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-149629-2, MHID: 0-07-149629-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and ~ The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of
the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Part |

Part I

4
5
6

Part I

mIN =

Contents at a Glance

Core Markup

Traditional HTML and XHTMLot iiiiiiiiiiiinnnennnnnns 3
Introducing HTML5 ...ttt ittt iiiineneeeeens 55
HTML and XHTML Element Referencecccoiiiiiennn.nn. 133
Core Style

Introduction to CSS ... i i i it it e 429
CSS Syntax and Property Referencecooiviiiiiiiiineonn. 521
CSS3 Proprietary and Emerging Features Reference 613
Appendixes

Character Entitiesiiiiiiiiniiienttneenneneenanaanaannns 727
0 751
(@0 10 ¢ PP 765
RS i iiiiitit it ittt it iieteentnsneessesasseossasassnsnsassssnsns 783
Reading a Document Type Definitiono, 801
IndeX oot e e ettt it e e e e 809

This page intentionally left blank

Part |

Contents

Acknowledgmentsl Xxi
Introduction xxiii

Core Markup

Traditional HTML and XHTMLoiiiiiiiiiiiiiiinneiinnn. 3
First Lookat HTML and XHTML 3
Hello HTML and XHTML World o oo o oL, 6
Viewing Markup Locally L. 8
Viewing Markup with a Web Server 10
HTML and XHTML: Version History 14
HTML and XHTML DTDs: The Specifications Up Close 16
Document Type Statements and Language Versions 18
(X)HTML Document Structure ouuiiinniiineinennenn. 20
The Document Head 23
The Document Body il 28
Browsers and (X)HTML i 31
Validation i i 37
The Doctype Switch and Browser Rendering Modes 39
The Rules of X)HTML oo e 41
HTML Is Not Case Sensitive, XHTMLIs 41
Attribute Values May Be Case Sensitive 42
(X)HTML Is Sensitive to a Single Whitespace Character 42
(X)HTML Follows a Content Model 43
Elements Should Have Close Tags Unless Empty 43
Unused Elements May Minimize 43
Elements Should Nest 43
Attributes Should Be Quoted 44
Entities Should Be Used for Special Characters 44
Browsers Ignore Unknown Attributes and Elements 44
Major Themes of X)HTML 45
Logical and Physical Markup, 45
Standards vs. Practice i ool 46
Myths and Misconceptions About HTML and XHTML 47
The Future of Markup—Two Paths? 49
XHTML: Web Page Markup XML Style 49
HTMLS: Back tothe Future 52
Summary ... 53
Introducing HTML5 it i iiiieae e 55
Hello HTMLS ... e 55
Loose Syntax Returns L. 58
XHTMLS o 60

Vi HTML & CSS: The Complete Reference

HTMLS5: Embracing the Reality of Web Markup 62
Presentational Markup Removed and Redefined 63
Out with the Old Elements 64
In with the New Elements 66
Sample of New Attributes for HTML5 66
HTMLS Document Structure Changes 69
Adding Semantics ... o i 75
Marking Text 75
Indicating Dates and Time 76
Inserting Figures i 76
Specifying Navigation i il 77
HTMLS5’s Open Media Effort 78
VIdEO> L 78
<audio> ... 80
Media Considerations i 82
Client-Side Graphics with <canvas> 82
Drawing and Styling Lines and Shapes 85
Drawing Arcs and Curves o ool 90
Scaling, Rotating, and Translating Drawings 93
Using Bitmaps in Drawings i, 97
Text Support forcanvaso o ool 98
<canvas> Conclusions i 101
HTMLS Form Changes i i i i, 101
New Form Field Types 101
Validating Data Entry o il 104
Autocomplete Lists oo i il 105
Miscellaneous Usability Improvements 105
Emerging Elements and Attributes to Support Web Applications 106
menu Element Repurposed o ool 106
command Element L 108
meter and progress Elements o o ool 109
details Element i 109
outputElement i i il 110
The Uncertain Future of Frames 110
The draggable Attribute and the Drag and Drop API 112
contenteditable Attribute o oL 114
spellcheck Attribute o i il 115
Internationalization Improvements o ool 116
HTMLS Metadata Changes 116
data-X Attributes 116
Microdata 117
HTMLS5: Beyond Markup i i il 120
defer Attribute 121
HTML, JavaScript, and the DOM Renewed 121
Standardizing and Extending Ad Hoc JavaScript Conventions 125
Major HTML5 Themes i i o .. 126
HTMLS Today or Tomorrow? 126
HTML5asa Catch-All i 130
HTML5: Web Politicsas Usual 131
HTMLS: Imperfect Improvement 131

Summary ... 132

Contents

3 HTML and XHTML Element Referencecciiiiiiiiienennnnn 133
Flavors of HTML and XHTML i 133
Core Attributes Reference ... 135
ClaSS o 136

I 136

style ..o 137

e 138
Language Attributes Reference o ool 138
AIr 138

lang ... 139

Other Common Attributes Reference 139
accesskey ... 139

align .. 140
contenteditable 140
datafld ... 141
dataformatas 141
datasrC . 141
disabled ... 141
height 141
hidefocus ... o 141
hspace 141
language 141
tabindex ... 142
unselectable 142
VSPACE oottt ettt e 142

width 142
Common HTMLS5 Attributes Reference 142
accesskey ... 142
contenteditable 143
CONEEXEIMEIIUL oottt e e e e 143
data-X (Custom Data Attributes) oiiii.. 143
draggable 144
hidden ... 144
itemid 144
itemprop ... 144
temref 145
itemscope 145
itemtype 146
spellcheck i 146
tabindex ... 146

Event Attributes Reference 146
HTMLS EVENts ..ottt e e e e e 146
Internet Explorer’s Extended Event Attributes 147
HTML Element Referenceo i 154
<l--> (Comment) oo 155
<l-[]..-> (Conditional Comment)c...... 155
<IDOCTYPE> (Document Type Definition) 157

<a> (ANchor) ... 158
<abbr> (Abbreviation) i 164

<acronym> (ACIONYIMN) ...ttt 166

)

X HTML & CSS: The Complete Reference

<address> (AdAress) ... 168
<applet> (JavaApplet) 169
<area> (ImageMapArea)l 171
<article> (Article) e 175
<aside> (Aside) 176
<audio> (AudiO) ..o 177
 (Bold) ..o 179
<base> (Base URL) ...t 181
<basefont> (BaseFont) 182
<bdo> (Bidirectional Override) iiiinn.... 183
<bgsound> (Background Sound) 185
<big> (BigFont) 186
<blink> (Blinking Text) 187
<blockquote> (Block Quote)l 188
<body> (DocumentBody) il 190

 (LineBreak) i 193
<button> (Form Button) 195
<canvas> (Canvas for Drawing) 198
<caption> (Table Caption), 208
<center> (Center Alignment) 210
<cite> (Citation)ci i 211
<code> (CodelListing)coiiiiiiiiiiiiii 213
<col> (TableColumn)oiiniiiiiiiiiininennnn. 214
<colgroup> (Table Column Group) 216
<command> (Command)c..iiiiiiinirninnennnn.. 219
<comment> (Comment Information) 220
<datalist> (List of Prefill Data)c.ivvun.... 220
<dd> (Definition Description in a Definition List

or Content in Details or Figure) 222
 (Deleted Text)ot 224
<details> (Additional Details)c.ccviiiiiniinn.... 227
<dfn> (Definition)oiiiiii i 228
<dir> (Directory List)l 230
<div> (DiviSion) ..o e 231
<dl> (Definition List) it 233
<dt> (Term in a Definition List or

Caption in Figure or Details) 236
 (Emphasis) 238
<embed> (Embedded Object) 240
<fieldset> (Form Field Grouping) 242
<figure> (Figure) 244
 (FontDefinition) i, 246
<footer> (Footer)c.iiiiiiiii i 248
<form> (Form for UserInput) 249
<frame> (Window Region) 252
<frameset> (Frameset Definition) 255
<hl1> through <h6> (Headings) 258
<head> (DocumentHead) i, 260
<header> (Header)ciiiiiiiiiiiiiiiiinnnnnn. 261

<hgroup> (Header Group) 263

Contents
<hr> (HorizontalRule) 265
<html> (HTMLDocument)ccuiiiiiiinnennn... 267
<i> (Italic) ... 269
<iframe> (Inline Frame) 270
<ilayer> (Inflow Layer) 274
 (Image) i 276
<input> (Input Form Control) 279
<ins> (Inserted Text)oiiniiiiiiiii i, 287
<isindex> (IndexPrompt) 289
<kbd> (Keyboard Input) 291
<keygen> (Key Pair Generation) 292
<label> (Form ControlLabel) 294
<layer> (Positioned Layer) 296
<legend> (Descriptive Legend) 298
 (ListItem)oiiiii i e 300
<link> (Link to External Files or Set Relationships) 303
<listing> (CodelListing) 311
<map> (Client-Side ImageMap) 312
<mark> (Marked Text)o, 314
<marquee> (Marquee Display) 316
<menu> (Menu List or Command Menu) 318
<meta> (Meta-Information), 320
<meter> (Scalar Gauge)l 323
<multicol> (Multiple Column Text) 325
<nav> (Navigation) il 326
<nobr> (NoLineBreaks) iiiiiiiiiin... 327
<noembed> (No Embedded Media Support) 328
<noframes> (No Frame Support Content) 329
<noscript> (No Script Support Content) 330
<object> (Embedded Object) 331
 (Ordered List)ccouiiiii i 335
<optgroup> (Option Grouping) 338
<option> (Optionin Selection List) 339
<output> (Form Output) 341
<p> (Paragraph) 343
<param> (Object Parameter) 345
<plaintext> (Plain Text) 347
<pre> (Preformatted Text), 348
<progress> (Progress Indicator) 350
<@> (Quote) .. 351
<rp> (RubyParentheses) 353
<rt> (Ruby Text)o i 355
<ruby> (Ruby Annotation) 357
<s> (Strikethrough) 359
<samp> (Sample Text) 360
<script> (Scripting) ... 362
<section> (Secton) ... 365
<select> (SelectionList)ot 366
<small> (Small Text) ... i 369

<SOUTCE> (SOUTCE) vt ti ettt ettt et eens 371

Xi

Xii

HTML & CSS: The Complete Reference

<spacer> (ExtraSpace)l
 (TextSpan)
<strike> (Strikeout Text) i
 (Strong Emphasis)l
<style> (Style Information)l
<sub> (Subscript) ...
<sup> (SUperscript) ...
<table> (Table)c.o it
<tbody> (TableBody) il
<td> (TableData)o,
<textarea> (Multiline TextInput)
<tfoot> (TableFooter)
<th> (Table Header)cc i,
<thead> (TableHeader) iiiiiiiininn....
<time> (Time) ...t e
<title> (DocumentTitle) i,
<tr> (Table ROW) ..ot e
<tt> (Teletype Text)
<u> (Underline)ccoiiiiiii i
 (Unordered List)ccoiiiiiiiiiiiiinnnnnnnn.
<var> (Variable)c. i
<video> (VIdeO) ..ottt
<wbr> (Word Break)
<xml> (XMLDatalsland),
<xmp> (Example)

Part Il Core Style

4 Introduction to CSS .. ittt it i ittt i ittt
Presentational HTML e
The Slow Rise of CSS ..ot e
First Look at CSS . ..o i
Hello CSSWorld ... e
CSS VEISIONS oottt e e e

Proprietary CSS
CSS Relationship with Markup ,
The Specification of CSS
CSSError Handling o i il
Validating CSS o
Breaking the Rules Purposefully?
Applying Style toa Documentl
LinkingtoaStyleSheet i il
Embedding Style Sheets L
Importing Style Sheets L
InlineStyles il
Media Typeso o
Printer-Specific CSS o o il
Alternative Styles i i i
User Styles

Contents

Document Structure and CSS Inheritance 468
limportant Override i 470
Selectors 470
Element Selectors i i il 471

id Selectors 471
classRules i 473
Contextual Selection i il 476
Attribute Selectors ... i il 479
Pseudo-Element Selectors o o il 484
Pseudo-Class Selectors i il 487

CSS Properties Preview i 500
Measurements and Values o o il 502
CSS and (X)HTML Elements Fundamentals 506
Physical Markup and Overriding Expected Results 506

Are <div> and the Most Popular Tags? 507
Changing Element Types with display 508
Controlling White Space il 512

Major Themes of CSS 513
Separation of Structureand Style o oo ool 514

CSS: More Appropriate and Powerful for Presentation 516
Cross-Browser CSSMadness 517
Myths and Misconceptions Related to CSS 517
Summary ... 519
CSS Syntax and Property Referenceo, 521
CSS Versions ... 521
CSS BasiCs ..ttt 521
Style Inclusion Methods i 524
Linked Styles i i 524
Embedded Styles i 526
Imported Styles—@import 526
InlineStyles 527
CSSMeasurementsoiiiiiiiiiiii 527
CSS Strings and Keywords ... 529
Counters 530
CSSColor Values 530
CSSSelectors ... 533
Miscellaneous CSS Constructs i i oL, 539
/X comments ¥/ L 539
@charset 540
@font-face ... 540
@media ... 541
@PAge .. 541
limportant 542

CSS1 and CSS 2.1 Properties ... 542
background 543
background-attachment oo 543
background-color il 544
background-image i 544

background-position oo oo 545

Xiii

Xiv

HTML & CSS: The Complete Reference

background-repeat i 546
border 547
border-bottom 547
border-bottom-color 548
border-bottom-style 548
border-bottom-width 548
border-collapse 549
border-color 549
border-left 550
border-left-color —....... 551
border-left-style 551
border-left-width 552
border-right 552
border-right-color 552
border-right-style 553
border-right-width 553
border-spacing ... 553
border-style 554
border-top ... 556
border-top-color 556
border-top-style ... 557
border-top-width 557
border-width 557
bottom ... 559
caption-side 559
clear .. 560
cip 560
color . 561
content ... 562
counter-increment 564
counter-reset ... 564
CUISOT oottt ettt e e ettt et e et 565
direction 567
display ... 568
empty-cells ... 570
float ... 571
font . 572
font-family ... 572
font-size ... 573
font-style 574
font-variant ... 575
font-weight ... 575
height ... 576
left 577
letter-spacing i 578
line-height 578
list-style 579
list-style-image i il 579
list-style-position i il 579

list-style-type 580

Contents

4= 1 4 e 581
margin-bottom ... o o 582
margin-left ... 582
margin-right 583
Margin-top ... 583
max-height 584
max-width ... 584
min-height ... o 585
min-width ... 585
orphans 586
outline 586
outline-color 588
outline-style 589
outline-width i 590
overflow ... 590
padding ... 591
padding-bottom o oo oo 593
padding-left 593
padding-right 594
padding-top ... 594
page-break-after i i il 595
page-break-before il 595
page-break-inside o o o i ool 596
POSItion ... 596
QUOLES oo 597
right .o 598
table-layout 598
text-align ... 599
text-decoration il 599
text-indent ... 600
text-transform ... 600
O 601
unicode-bidi 602
vertical-align o o i i 602
visibility ... 603
white-space ... 604
WIdows ... 604
width oo 605
WOrd-spacing i 606
z-index ..o 607
CSS2 and CSS 2.1 Aural Style Properties 607
6 CSS3 Proprietary and Emerging Features Reference 613
The State of CSS3 613
CSS3 Selectors ... o 613
CSS3-Introduced Values and Units 621
CSS3 Color Values ... i i 622
Namespaces i 624
Media QUETIES ..ottt 625
Web Fonts ... 626

Miscellaneous CSS3 Changes 629

Xvi HTML & CSS: The Complete Reference

Implemented CSS3 and Browser-Specific Features 629
@keyframesl i il 630
accelerator 631
animation 632
animation-delay o i i il 633
animation-direction o oo ool 634
animation-duration o oo o oiiiilillllllllllL 635
animation-iteration-count o ool 636
animation-name i 637
animation-timing-function o o ool 638
backface-visibility 640
background-clip ... 641
background-origin 642
background-position-x ... 643
background-position-y ... 644
background-size 644
behavior 645
binding 649
border-bottom-left-radius 650
border-bottom-right-radius 651
border-image 651
border-radius ... 653
border-top-left-radius 654
border-top-right-radius i 655
box-reflect 655
box-shadow 656
DOX-SIZING ... 658
column-break-after o i ool 659
column-break-before o o ool 659
column-count i il il 660
column-gap 661
column-rule 661
column-rule-color i i il 662
column-rule-style i il 663
column-rule-width o o i il 664
column-width 665
columns ... 665
filter ... 666
gradient ... 671
image-rendering i i il 673
ime-mode 673
interpolation-mode ool 674
layout-grid ... 674
layout-grid-char i i il 675
layout-grid-line i il 675
layout-grid-mode i il 676
layout-grid-type 676
line-break 677

marquee-direction o i i il 677

Contents
marquee-play-count o o o ool 678
marquee-speed i i 679
marquee-style ... 680
mask ... 681
mask-attachment o oo i il 682
mask-box-image i i il 682
mask-clip ... 683
mask-composite ... 684
mask-image 684
mask-origin ... 685
mask-position ... o i i 685
mask-position-x ... o o i 686
mask-position-y ... 687
mask-repeat 687
mask-size 688
OPaCItY .. 690
outline-offset i i 690
outline-radius i i il 691
overflow-style i il 691
overflow-x ... 692
overflow-y ... 693
perspective 693
perspective-origin 694
TESIZE .o 695
ruby-align ... 696
ruby-overhango il 697
ruby-position ... i 698
scrollbar-3dlight-color o i il 698
scrollbar-arrow-color il 699
scrollbar-base-color o ool 699
scrollbar-darkshadow-color o i iiiiiiiL. 700
scrollbar-face-color i il 701
scrollbar-highlight-color 701
scrollbar-shadow-color o ool 702
scrollbar-track-color i o il 703
BIZ@ 703
text-align-last il 704
text-autospace 704
text-fill-color 705
textjustify ... 705
text-kashida-space i il 706
text-overflow 707
text-rendering ... il i 708
text-shadow 708
text-stroke ... 710
text-stroke-colorl 710
text-stroke-width oo i ool 711
text-underline-position oo o ool 711

ransSformM ... 712

Xvii

Xviii HTML & CSS: The Complete Reference

transform-origin o i il il 715
transform-style i i il 716
transition ... 717
transition-delay o i il 717
transition-duration o o oo ool 718
transition-property 719
transition-timing-function o oo ool 719
user-select ... 720
word-break ... 721
WOId-WTaP . ooot ittt 722
writing-mode ... 722

77670 5 1 e 724

Part Il Appendixes

A Character Entitiesciiiiiiiiiiiiiii i 727
Encoding Quirks and Considerations 728
Traditional HTML Entities i i, 731
HTML 4.x and XHTML 1.x Character Entities 740
Latin Extended-A 741

Latin Extended-B 741
Spacing Modifier Letters 741
General Punctuation o o ool 741

Greek .o 743
Letter-like Symbols o o ool 744
ATTOWS oo 745
Mathematical Operators 746
Technical Symbols i il 747
GeometricShapes o o ool 748
Miscellaneous Symbols L 748
Embracing Unicode i il 748
B Fonts ... e e et i, 751
Specifying Fonts i 751
Fonts for Windows Platform and Browsers 752

Fonts for Macintosh System and Browsers 755

PC Mac Font Similarity oo il 757
Downloadable Fonts i i il 760
Microsoft’s Dynamic Fonts o L. 760
Standard Downloadable Fonts 761
Cross-Browser Downloadable Fonts 761

Font Replacement with Images 763
sIFR and Other Text Replacement Techniques 764
O 1) [0 - 765
(X)HTML COLOTS .« . vttt e et ettt e e e e e e e e e e 765
Nonstandard Color Names and Numerical Equivalents 765

(X)HTML Elements Supporting Color 772

Contents

CSSColor Values 773
CSS Color-Related Properties 776
Browser-Safe Colors i il 779
L8 2 X U 783
BasicConcepts 783
Server Addressl 784
Directory 786
Filename 787
Fragment Identifier i il 788
Protocol 788

Other Featuresof URLs 789

Data URIS ... 791
Other Emerging URLForms 794
Relative URLs 795
Using the <base>Tago .. 795

URL Challenges ... 796
Unclear Case Sensitivity i L. 797
Unclear Length Limits 797
Persistence Concerns —.............coiiiiiiiiiiiiiii 797

Long, Dirty URLs 797

Short, Cryptic URLs i i i 797
Location, NotMeaning i 798
Beyond URLs 798
New Addressing Schemes: URNs, URCs,and URIs 798
Reading a Document Type Definition oiiiio.. 801
Element Type Declarations 801
Occurrence Indicators i 802
Logical Connectors i 803
SGML Content Exclusion and Inclusion 804
Attribute Declarations i 804
SGML and XML Keywords i 805
Parameter Entities 806
Comments ... 806
The DTDSs ... 807

Xix

This page intentionally left blank

Acknowledgments

The HTMLS5 specification marks a return to past ideas and an explosion of future

ideas. It took a great deal of work to put this new edition together. Given the amount
of effort required, I want to make sure that all those that helped are given their due. First, I
want to acknowledge the numerous fixes and improvements that came from the feedback
from both my students at UCSD and readers around the world. I write these books for you,
and I am glad you are putting this information to good use.

I would also like to show my appreciation to the many staff members at PINT who
helped on this book project in some direct or indirect way. I can’t specifically thank and
mention the dozens of employees we have at PINT and my other firm Port80 Software who
keep the lights on, but I'll call a few out who warrant some extra kudos.

Christie Sorenson once again helped this time with heavy lifting particularly in the CSS
effort, and I can safely say that she has learned, relearned, and even forgotten more about
Web development than probably anyone I know, besides maybe myself. Looking forward to
more project fun in the future, Christie!

Plenty of other PINTsters helped. Rob McFarlane, Andrew Simpkins, and Bryan Sleiter
helped out with imagery. The project managers, particularly Mine Okano, Robin Nobel,
Matt Plotner, and Olivia Chen, gave me moral support and occasional pity as I toiled away
upstairs. Glenn Dawson addressed my many server changes and helped debug some
annoying aspects of HTML5. Dan Whitworth assisted on a few chapters here and there and
probably had nightmares about getting a call to really dive in.

Joe Lima listened to some of my verbal nonsense and helped guide me to some deeper
insights than I could have ever arrived at on my own.

Daisy Bhonsle kept up a very long-standing proofing relationship, and I am very glad
she always helps out. The student certainly has become the master.

The folks at McGraw-Hill Professional are always a pleasure to work with. Meghan
Riley helped guide me along, and Megg Morin didn’t lose faith, at least not completely.
Thanks for being my patron the last decade, Megg!

My technical editor, James Pence, probably wondered when this project was going to
finish, and somehow he finished a nontechnical book of his own during the project.

I I The fifth edition of this book might as well be the first edition of a brand-new book.

XXi

XXii

HTML & CSS: The Complete Reference

Finally, to my friends and family who tried to give me space to write this thing, you
deserve the biggest thanks. My children, Graham, Olivia, and Desmond, had to put up
with a grouchy dad and far too many absent weekends, so we now return you to our
regularly scheduled weekends! Cecilia, you provided a lot of help as well that made
things a bit easier on all of us, so thank you for that. Finally, Sylvia, you always support
my online efforts, as hard as they may be. I know you, more than anyone, appreciate the
importance of this project, considering the role HTML has played in our lives.

Thomas A. Powell
tpowell@pint.com
October 2009

Introduction

address HTMLS5. The book is similar to the previous edition in maybe a third of the

content; otherwise, it is an all-new effort. Most obviously, as compared to the previous
editions, which focused mainly on XHTML and HTML 4, this edition focuses on HTMLS5,
which represents both a return to the markup past and the unveiling of an exciting future of
Web applications. However, we do retain some information from previous editions because
in order for this work to be truly complete, we must not focus only on the future but also
present all the elements supported in browsers today, including the archaic, proprietary, and
standard (X)HTML tags. These will still be encountered for years to come, and we want this
book to provide the reference you need in addressing their syntax.

CSS coverage has been expanded greatly to fully cover CSS 2.1 as well as every proprietary
and emerging CSS 3 property supported in one or more popular shipping browsers circa 2009.
No value judgment is made; if Internet Explorer has supported a proprietary CSS feature for
the last decade, it’s included. However, we do avoid presenting CSS features that are truly
speculative in great depth, but where appropriate, we summarize or present pointers to the
emerging syntax.

The ramification of the increased markup and CSS coverage is simply the book doesn’t
have space left to do everything it did before. Teaching nearly everything about HTML and
CSS in prose form and then presenting a complete syntax reference for the technologies
would have produced a book well over 2,000 pages. We were well on the way to that when
we adjusted our efforts to create what you have in your hands, a solid reference book that
may be used for years to come. This isn’t to say that learning material is not present at all.
There are very solid introductory chapters for the markup and CSS sections, which should
succinctly address details and standards issues. There just isn’t a step-by-step cookbook for
each element or property. Given the maturity of the Web industry, we aimed not for the
complete tutorial, but instead for the complete reference.

It should go without saying that more markup changes to HTML and CSS are inevitable.
HTMLS5, in particular, is a complete moving target, and rather than punting on it, we took
the best shot at its first release version as it settled in late 2009. Because of the inevitable
changes given HTML5’s rapid evolution, the support Web site, http://htmlref.com, should
be considered an important bookmark for readers looking for updates or the unavoidable
correction.

I I The fifth edition of this book represents a significant change in structure and content to

XXiii

This page intentionally left blank

PART

Core Markup

CHAPTER 1
Traditional HTML
and XHTML

CHAPTER 2

Introducing HTML5
CHAPTER 3

HTML and XHTML
Element Reference

This page intentionally left blank

CHAPTER
Traditional HTML and XHTML

Markup languages are ubiquitous in everyday computing. Although you may not

realize it, word processing documents are filled with markup directives indicating

the structure and often presentation of the document. In the case of traditional
word processing documents, these structural and presentational markup codes are more
often than not behind the scenes. However, in the case of Web documents, markup in the form
of traditional Hypertext Markup Language (HTML) and its Extensible Markup Language
(XML)-focused variant, XHTML, is a little more obvious. These not-so-behind-the-scenes
markup languages are used to inform Web browsers about page structure and, some might
argue, presentation as well.

First Look at HTML and XHTML

In the case of HTML, markup instructions found within a Web page relay the structure of
the document to the browser software. For example, if you want to emphasize a portion of
text, you enclose it within the tags and , as shown here:

This is important text!

4

Part I: Core Markup

When a Web browser reads a document that has HTML markup in it, it determines how
to render it onscreen by considering the HTML elements embedded within the document:

Welcome to the world of HTML! «—

Welcome to the world of HTML! v

So, an HTML document is simply a text file that contains the information you want to
publish and the appropriate markup instructions indicating how the browser should
structure or present the document.

Markup elements are made up of a start tag, such as , and typically, though not
always, an end tag, which is indicated by a slash within the tag, such as . The tag
pair should fully enclose any content to be affected by the element, including text and other
HTML markup.

NOTE There is a distinction between an element (for example, strong) and the tags (
and) that are used by the element. However, you will likely often find the word
“tag” used in place of “element” in many if not most discussions about HTML markup. This
observation even includes historically relevant documents discussing HTML' written by Tim
Berners-Lee, the founding father of the Web. Fortunately, despite any imprecision of word choice
that people may exhibit when discussing markup, meaning is usually well understood and this
should not be a tremendous concern.

Under traditional HTML (not XHTML), the close tag for some elements is optional
because their closure can be inferred. For example, a <p> tag cannot enclose another <p>
tag, and thus the closing </p> tag can be inferred when markup like this is encountered:

<p>This is a paragraph.
<p>This is also a paragraph.

Such shortened notations that depend on inference may be technically correct under the
specification, but stylistically they are not encouraged. It is always preferable to be precise,
so use markup like this instead:

<p>This is a paragraph.</p>
<p>This is also a paragraph.</p>

! Historic intro to HTML that clearly uses the term tag instead of element www.w3.org/History/19921103-
hypertext/hypertext/ WWW /MarkUp /Tags.html

Chapter 1: Traditional HTML and XHTML

There are markup elements, called empty elements, which do not enclose any content, thus
need no close tags at all, or in the case of XHTML use a self-close identification scheme. For
example, to insert a line break, use a single
 tag, which represents the empty br element,
because it doesn’t enclose any content and thus has no corresponding close tag:

However, in XML markup variants, particularly XHTML, an unclosed tag is not allowed, so
you need to close the tag

</br>
or, more commonly, use a self-identification of closure like so:

The start tag of an element might contain attributes that modify the meaning of the tag.
For example, in HTML, the simple inclusion of the noshade attribute in an <hr> tag, as
shown here:

<hr noshade>

indicates that there should be no shading applied to this horizontal rule. Under XHTML,
such style attributes are not allowed, because all attributes must have a value, so instead
you have to use syntax like this:

<hr noshade="noshade" />

As the preceding example shows, attributes may require values, which are specified with an
equal sign; these values should be enclosed within double or single quotes. For example,
using standard HTML syntax,

<img src="dog.gif" alt="Angus-Black Scottish Terrier" height="100"
width="100">

specifies four attributes for this tag that are used to provide more information about
the use of the included image. Under traditional HTML, in the case of simple alphanumeric
attribute values, the use of quotes is optional, as shown here:

<p class=fancy>

Regardless of the flexibility provided under standard HTML, you should always aim to
use quotes on all attributes. You will find that doing so makes markup more consistent,
makes upgrading to stricter markup versions far easier, and tends to help reduce errors
caused by inconsistency.

6 Partl: Core Markup

A graphical overview of the HTML markup syntax shown so far is presented here:

Tag Attribute Attribute
Name Name Value

Lo |

<hl class=‘“primary”>Example Heading</hl>

Attribute —, L J\\ J
Start Tag Affected Content End

Tag

HTML Element

Hello HTML and XHTML World

Given these basics of HTML syntax, it is best now to look at an example document to see its
application. Our first complete example written in strict HTML 4 is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML 4 World</title>

<!-- Simple hello world in HTML 4.01 strict example -->
</head>

<body>

<hl>Welcome to the World of HTML</hl>

<hr>

<p>HTML really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/htmldhelloworld.html

A simple modification of the initial <!DOCTYPE> line is really all that is necessary to
make this an HTML5 example, the comment and text is changed so you can keep the
examples straight:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML5 World</title>

<!-- Simple hello world in HTML5 example -->
</head>

<body>

<hl>Welcome to the Future World of HTMLS5</hl>
<hr>

<p>HTML5 really isn't so hard!</p>

Chapter 1: Traditional HTML and XHTML

<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/html5helloworld. html

In the case of XHTML, which is a form of HTML that is based upon the syntax rules of
XML, we really don’t see many major changes yet in our example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Hello XHTML World</title>

<!-- Simple hello world in XHTML 1.0 strict example -->
</head>

<body>

<hl>Welcome to the World of XHTML</hl>

<hr />

<p>XHTML really isn't so hard either!</p>
<p>Soon you will ♥ using XHTML too.</p>
<p>There are some differences between XHTML

and HTML but with some precise markup you'll

see such differences are easily addressed.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/xhtmlhelloworld.html

The preceding examples use some of the most common elements used in (X)HTML
documents, including;:

¢ The <!DOCTYPE> statement, which indicates the particular version of HTML
or XHTML being used in the document. The first example uses the strict 4.01
specification, the second uses a reduced form for HTML5 the meaning of which
will be explained a bit later on, and the final example uses the XHTML 1.0 strict
specification.

* The <html>, <head>, and <body> tag pairs are used to specify the general structure
of the document. The required inclusion of the xmlns attribute in the <html> tag is
a small difference required by XHTML.

¢ The <meta> tag used in the examples indicates the MIME type of the document and
the character set in use. Notice that in the XHTML example, the element has a trailing
slash to indicate that it is an empty element.

* The <title> and </title> tag pair specifies the title of the document, which
generally appears in the title bar of the Web browser.

¢ A comment is specified by <! -- --5, allowing page authors to provide notes for
future reference.

1

8 Partl: Core Markup

¢ The <hl>and </hl> header tag pair indicates a headline specifying some important
information.

* The <hr> tag, which has a self-identifying end tag (<hr />) under XHTML, inserts
a horizontal rule, or bar, across the screen.

® The <p> and </p> paragraph tag pair indicates a paragraph of text.

¢ A special character is inserted using a named entity (s¢hearts;), which in this case
inserts a heart dingbat character into the text.

* The and tag pair surrounds a small piece of text to emphasize which a
browser typically renders in italics.

There are numerous other markup elements that may be employed, all of which will be
explored throughout the book, but for now this sampling is enough to get our first example
rendered in a browser.

NoTE Examples in the book will generally be presented in HTML5. Syntax specific to particular
browsers, older HTML variants, or XHTML will always be noted when used.

Viewing Markup Locally
Using a simple text editor, type in either one of the previous examples and save it with a
filename such as helloworld.html or helloworld.htm; you can choose which file extension to
use, .htmor .html, but whichever you pick for development, aim to be consistent. This
book uses .html for all of the files.

After you save the example file on your local file system, open it in your Web browser
by opening the File menu and choosing Open, Open Page, or Open File, depending on your
browser:

=

8 Mozilla Firefox Start Page refc & Blank Page - Intemet Bxplorer

([Eile] Edit View History Bookmarks To &) - [E) sboutblonk

New Window Ctrl+N Dht JEIY st View Favorites Tools Help

Mew Tab Chrl+T MNew Tab Ctrl+T
New Wind, Chel+N

Open Location.., Ctrl+L L Sl !
Open... h Ctrl+0

Open File... l} Ctrl+0 Edit

Close Window Ctrl+Shift+W Save Ctrl+S
Save As...

Close Tab Ctrl+W
Close Tab CtrisW

e T Do R Crlet

Chapter 1: Traditional HTML and XHTML

Once your browser reads the file, it should render a page like the one shown here:

& Hello HTML World - Moxilla Firefox [£34]

LX)
File Edit View History Bookmarks Tools Help

BICIX AN | > -|I[C-s

sle O

Welcome to the World of HTMI.

HTML really isn't so hard!
Soon vou will ¥ using HTML.

Yom can prt lots of text here f yon want We conld go on and an with fake text
for you to read, but let's get back to the book.

If for some reason you didn’t save your file with the appropriate extension, the browser
shouldn’t attempt to interpret the HTML markup. For example, notice here what happens
when you try to open the content with a . txt extension:

'EvhﬂhFhwm E:]IE'!Z!
File Edit View History Bookmarks Tools Help
@ e c ﬁ I | http://htmiref.com/chl/helloworld. bt T | |'| Google Pl

<!DOCTYPE HIML PUBLIC "-//W3C//DID HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dcd">
<html:>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>

<!—— Simple hello world in HIML 4.01 strict example —-3>
</head>

<body>

<hl>Welcome to the World of HTML</hl>

<hr>

<p>HTML really isn't so hard!</p>

<p>Soon you will ghearts; using HIML.</p>

<p>You can put lots of text here if you want.

We could go on and on with fake text for you

to read, but let's get back to the book.</p>

</body>

</html>

If you want to make a change to the document, you could update the markup, save the
file, go back to the browser, and click the Reload or Refresh button. Sometimes the browser
will still reload the page from its cache; if a page does not update correctly on reload, hold
down the sHiFT key while clicking the Reload button, and the browser should refresh the page.

As you write markup, keeping the browser and editor open simultaneously is a very
good idea to avoid constantly reopening one or the other. Many Web editors will assist you
in loading your Web pages into various browsers or even preview the visualization of the

markup directly. Figure 1-1 shows this process in Adobe’s popular Dreamweaver program
(www. dreamweaver.com).

9

10 PartI: Core Markup

mﬁhidh View Inset Modify Format Commands Site Window Help | Elx @+ A | DEsiGNER v | = B x

ahimihelloworld.htmi® x Path: Clinetpubivwensrootichiwhimihellowordd himl

[[Loofcode [oT5R] sjDeson| | [#]uveview |« | 7] Title: Hebo KHIML Werld 0 & O [E B, b2 cedeage |
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" -

"http://www.w3.org/TR/xhtmll/DTD/xhtmli-strict .dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta htop-equiv="Content-Type" content="text/html; charset=ucf-g" />

<title>Hello XHTML World</title>

</head>

<body>

<hl>Welcome to the World of XHTML</hl>

<hr />

<p>XHTML really isn't sc hard either!</p>

<p>There are some differences between XHTML

and HTML but with some precise markup you'll

see such differences are easily addressed.</p>

</body> Ly

</html>

=)

WO =] N bW

Q0 Bx@ &« [sorst

[_..

Welcome to the World of XHTML

XHIML really wa't so hard either!

There me some diffevences between XHTML and HTML but with some precise makup vou'll see such differences ae casly addiessed.

) 9 [100% +] 1096 % 200~ 1] 1 sec Linkcode (UTF-B)

PROVERTRS
Fomat [tone | O o ~ B (EiSuau@ e 1 ®
£ 2 Ried ~ ~l@go Teoet --

[Pogeproverben... } | Lotien

Figure 1-1 Improved markup editing in Dreamweaver

Once you get the hang of markup production, you'll see that, at this raw level, it is
much like the edit, compile, and run cycle so familiar to programmers. However, this
manual process certainly isn’t the way that you want to develop Web pages, because it can
be tedious, error prone, and inefficient when thinking of page structure and visual design.
For our current illustrative purposes to learn the language however, it works fine.

Viewing Markup with a Web Server

Ideally, you should aim to test your Web pages as delivered off a Web server instead of just
reading them off a local file system. Not only is this more representative of how your users
will actually experience the page, but it prepares you for later construction of Web pages
that contain server-side programming technologies.

There are many options for employing a Web server. You may decide to run your own
local development Web server on your desktop system or use some hosted server instead.
In either case, you need to get the files somewhere under the Web server’s document root
folder so that they can be served out. Very often this directory has a common name like
inetpub, htdocs, site, or www, but it really could be just about anything, so make sure you
check the server you end up using.

Chapter 1: Traditional HTML and XHTML

To make your files available via the server, you might use a process of uploading a
file from your system to a remote server via an FTP (File Transfer Protocol) program, as
shown here:

fle [dit View Tools Leip

[TR - [@ a m] ol]
Connect.. | Discondect Connection Wizard NewLocsl View | Options.. Views | DipenPGP Made | Loeal Search Nwﬂackmjnbl
Address g 5 tes/himlied - UserlD tpuweell Passward " an

m R Mm@

Worhepuse. sty Mannger Add Sawr cl.m!

: " «d © B @ © @ i
Dot el Up Falders Up Folders Cancel Transfer Maode

(4] L] : = & & B & : (9] 2] E s P
Change Folder New Folder Ve fit Docutefile Rifiesh Maname Delets | Changs Folder NewFolder View Tdit Docutefie Refresh franame Delete
Hame | Size | Tupe | Modiied | Harns | Size| Type | Modfied | aniutes |
4 _notes | Fe.. ENZ20B1ZE. 8] heboora bl 675 Feel., ENZ200B1ZIPM mesne
8] oo il a5 el RAZOORESS | A | Pelevandd 1t 5 Tet RANINRIZERM mwewny
| | hesonorid b ARl Test ENZAIEITG A QMHIMM H5 Feed BA2ANE 12N P LR
8] okl Hird S5 el GAZIEIZE. A _,a
4 object(s) - 1 KB + Cannected to himbrel.com 3 objectis) - 1 KB

Information Window

Many Web editors also allow you to synchronize files between a local directory and
your remote server. For example, a snippet of the synchronization facility provided in
Dreamweaver is shown here:

file Ecit View Inset Modify Format Commands Sie Window Help | B+ v &~

<!DOCTYFE htm

JR ey e8|

v][Remuteview

hellovorld. bl 1KE Fircfos 0., 6/12/2008 12:35 MM

£=Y

<mela hllp—ey

Remote St ciza|Type [Modified Ched Pt File(2) | :
|Bemote s |_siee : I hes ! | e Strict//EN"
ahout Falder HfYfULL 12U AM - = "http:// www.w
aspret_client Folder /92006 12:00 AM - o1 t.dcd">
coi-bin Folder /92006 12:00 AM - =i 2 <html =mlns="
_b :}n Frlder AH17}20NR 17:35 BM - ..; 2 <head>
w
&

helloworld.txt 6/ 122008 12:35 P "teut / html il
md xhtmibellowosld. html B 5 o e[}He 1la °
chapters 8/9/2006 12:00 &M - G </head>
8i9/2006 12:00 &M -
8/9/2006 12:00 AM - &l 7 <body>
examples gf9fz006 12:00 AM - = 8 <hl>Welcoms €
Hash /972006 12:00 &M - g | <hr />
imanes 8/9/2006 12:00 AM - =IPEOT <p>XHTML

1

12

Part I: Core Markup

On the Web server, you most likely will use the .html or . htm file extension for your
files. When HTML files are placed in the appropriate directory, the user would issue a URL
in their browser like

http://yoursitename/sitepath/helloworld.html

and that will then return the file in question. However, note that when a marked-up
document is delivered over the network, it is not the file extension that indicates to the
browser that the content is HTML, but rather the Content -Type : header found in the
network stream:

T . g p
/& Hello XHTML World - Intemnet Explorer [=1
@‘O 7 |E, http://www.htmiref.com/chl/xhtmihelloworid.htmi i j s | A | ||G Google
T.-:? Favorites i{\ |§‘ Hello ¥HTML ‘World |_| Emulate [E7 ﬁ X ool a@ > _;} Page » :@-Toods - E

Welcome to the World of XHTML

HHTML really isn't so hard either!

There arc some differences betweon ZHTML and HTML but with seme procizc markup yvouw'll sce such differences arc casily addresacd.

4

X @n [Stop] Clear [77] View ~ £3 Summary & Find ~ Y Fiker ~ [Save ~ 20 llelp ~
Started - Time Chart Tine: Sent Recetved Method Fesult Type URL

nnonenn.omn - [TR a.m3 AR a0 G 7m trectjhtml bt jun

< (I

el

| e i e | Time Chart | Hearers | Cnnkies | Carhe |Qupry Sring | POST Data f:nnfpnfi Skream i
816 bytes sent to 209,245.121.191:80 Q Find [.gp Export 850 bytes received by 10.0.0.196:57500 Q Find I1-

|[cET sonlsvnemlnalloworld heul HITP/L.1 [ETTR I 1 zoo o

Accopt: image/gif, image/u-ibitmap, image/jpeg, |[Content-Lengsh: E4E

[Cunlenn—Type. Leal/hiwl]

|UR-CPIT: xX&6 |Content-Locaclon: KTTp: /WM. htmlret. comschl/xhtmlhelloworld. henl
|hccept-Encoding: gzip, deflate |Last-Modified: Thu, 1Z Jun Z008 19:35:Z1 GMT

|User-Agent: Mozilla/4.0 {compatible; MSIE 2.0; U| Accept-Ranges: bytes

|Host: www. htmlref.com |ETag: "d84a073c3cccBl:5d8"

Conmection: Keep-Alive |Server: Microsofo-IIS/6.0

Cookie: _ utma=14616174_ 1614078274, 1210622012, 12| ¥-Powered-By: ASP.NET
:Data: Cat, 14 Jun 2002 Z0:25:Z1 CHT

Avcepl-Luugusgs . eo-us

|
[<!DOCTYPE hiwml PUBLIC "—//W3C//DTD XHTML 1.0 3LricvL//EN" “"hiip. s fwuw
shtml XWInsS="hCTp:/ /W w3 orgs1l333/xhcnl =~

<head>

The browser then takes the header and maps it to the action of parsing the document as
HTML. In some older browsers, the mapping between MIME type or file extension and

browser action is obvious:

Preferences

LCategony:

= Appearance

=1+ Mavigator
Languages

- Applications

.. Smart Browsing

Chapter 1:

.=different file types

Dezcription

FutureSplash Player =l MHew Tupe... |
GIF Image -

Help File = Edit...

HTHML application

g

Traditional HTML and XHTML

E- Mail & Newsgroups HyperT erminal File Remove
B Roaming Access ‘Hypertest Markup Language
[Compager HyperTest Style Sheet
- Offline iCalendar File
- Advanced Image Composer Documnent H
— File type datail
@ Extension: HTML HTHM SHTHML STH

MIME Type: testhiml

Handled By: Metscape [intemall

e

Cancel | Help |

This Preferences dialog box shows that the extension or header is what triggers the action
by the browser. The goal here is simply to illustrate that there is something different going
on between reading locally and remotely.

Before wrapping up this brief introductory example, it should be noted that in some
cases when you have configured the wrong file extension or MIME type, some browsers may
“sniff out” the content type and parse any HTML found within. For example, in Figure 1-2
you can see that many versions of Internet Explorer® render a file with a . txt extension as
HTML while Firefox does not. We have to pay attention to details even in the simplest
examples if we want to avoid headaches from questionable browser practices and plain old
bugs. HTML5 will aim to remove such problems in the distant future, but for now let’s get

down to the most important details, starting first by enumerating all of the versions of
(X)HTML that we might need to know about.

2 Internet Explorer 8 introduces some changes to avoid sniffing; you can set X-Content - Type-Options:

nosniff as a response header to disable Internet Explorer’s permissive behavior, though this only works
in IE8 and beyond.

14 Part1: Core Markup

Internet Explorer reads the txt file, interprets the
code in the page, and renders as if it were an html file.

" & Hello HTML World - Intemet Explorer = ch!
@O - |E http://www.htmiref.com/chl/helloworld.tet - | “}I X ”[Gl Google

Ly Favorites 5 | 2 Hello HTML World | EEmulatele7 &p v B + [deh ~ [+ Page v G Tools ¥

Welcome to the World of HTML

HTML really isn't so hard!

You can put lots of text here if you want. We could go on and on with fake text for you to read, but let's get back to
the book

Firefox recognizes the file type and renders the
text rather than interpret the code as html.

" @ Mozilla Firefox =@

File Edit View History Bookmarks Tools Help

E-2-& {2 | nttpy//wann htmiref.com/chUhelloworld.bt [~ [] [Q=] 50091e

<!DOCTYPE HTHML PUBLIC "-//W3C//DTD HTML 4.01//EN" "hrcp://wuw.w3.org/TR/html4/strict.dcd"”
<html>

<head>

<meta hrtp-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Hello HTML World</title>

</head>

<body>

<hi>Velcome to the World of HTHL</hi>

<hr>

Ficure 1-2 Irregularities with browsers handling MIME types and file extensions

HTML and XHTML: Version History

Since its initial introduction in late 1991, HTML (and later its XML-based cousin, XHTML)
has undergone many changes. Interestingly, the first versions of HTML used to build the
earliest Web pages lacked a rigorous definition. Fortunately, by 1993 the Internet Engineering
Task Force (IETF) began to standardize the language and later, in 1995, released the first real
HTML standard in the form of HTML 2.0. You will likely encounter more than just the latest
style of markup for many years to come, so Table 1-1 presents a brief summary of the version
history of HTML and XHTML.

Chapter 1: Traditional HTML and XHTML

HTML or XHTML Version

Description

HTML 2.0

Classic HTML dialect supported by browsers such as Mosaic. This
form of HTML supports core HTML elements and features such as
tables and forms, but does not consider any of the browser innovations
of advanced features such as style sheets, scripting, or frames.

HTML 3.0

The proposed replacement for HTML 2.0 that was never widely
adopted, most likely due to the heavy use of browser-specific markup.

HTML 3.2

An HTML finalized by the W3C in early 1997 that standardized most of
the HTML features introduced in browsers such as Netscape 3. This
version of HTML supports many presentation-focused elements such
as font, as well as early support for some scripting features.

HTML 4.0 Transitional

The 4.0 transitional form finalized by the W3C in December of 1997
preserves most of the presentational elements of HTML 3.2. It
provides a basis of transition to Cascading Style Sheets (CSS) as
well as a base set of elements and attributes for multiple-language
support, accessibility, and scripting.

HTML 4.0 Strict

The strict version of HTML 4.0 removes most of the presentation
elements from the HTML specification, such as font, in favor of using
CSS for page formatting.

4.0 Frameset

The frameset specification provides a rigorous syntax for framed
documents that was lacking in previous versions of HTML.

HTML 4.01 Transitional/
Strict/Frameset

A minor update to the 4.0 standard that corrects some of the errors in
the original specification.

HTML5

Addressing the lack of acceptance of the XML reformulation of HTML
by the mass of Web page authors, the emerging HTML5 standard
originally started by the WHATWGS group and later rolled into a W3C
effort aimed to rekindle the acceptance of traditional HTML and
extend it to address Web application development, multimedia, and
the ambiguities found in browser parsers. Since 2005, features now
part of this HTML specification have begun to appear in Web browsers,
muddying the future of XHTML in Web browsers.

XHTML 1.0 Transitional

A reformulation of HTML as an XML application. The transitional
form preserves many of the basic presentation features of HTML 4.0
transitional but applies the strict syntax rules of XML to HTML.

XHTML 1.0 Strict

A reformulation of HTML 4.0 Strict using XML. This language is rule
enforcing and leaves all presentation duties to technologies like CSS.

XHTML 1.1

A restructuring of XHTML 1.0 that modularizes the language for easy
extension and reduction. It is not commonly used at the time of this
writing and offers minor gains over strict XHTML 1.0.

> Web Hypertext Application Technology Working Group (www.whatwg.org).

TaBLe 1-1 Description of Common HTML Versions

15

16

Part I: Core Markup

HTML or XHTML Version Description

XHTML 2.0 A new implementation of XHTML that will not provide backward

compatibility with XHTML 1.0 and traditional HTML. XHTML 2 will
remove all presentational tags and will introduce a variety of new
tags and ideas to the language.

XHTML Basic 1.0 A variation of XHTML based upon the modularization of XHTML (1.1)
designed to work with less-powerful Web clients such as mobile
phones.

XHTML Basic 1.1 An improvement to the XHTML Basic specification that adds more

features, some fairly specific to the constrained interfaces found in
mobile devices.

TaBLe 1-1 Description of Common HTML Versions (continued)

Beyond the standard forms of markup described in Table 1-1, there are of course various
nonstandard forms in play. For example, the browser vendors introduced various extensions
to HTML and, interestingly, continue to do so. We also have to contend with the ad hoc use
of markup that doesn’t really conform fully to any particular standard other than to what
usually renders in common Web browsers. Such a “tag soup” is certainly not the best way
to approach building Web pages, regardless of whether browsers accept it. Standards for all
forms of markup exist and should be adhered to whenever possible.

HTML and XHTML DTDs: The Specifications Up Close

Contrary to the markup some Web developers seem to produce, both HTML and XHTML
have very well-defined syntax. All (X)HTML documents should follow a formal structure
defined by the World Wide Web Consortium (W3C; www.w3.o0rg), which is the primary
organization that defines Web standards. Traditionally, the W3C defined HTML as an
application of the Standard Generalized Markup Language (SGML). SGML is a technology
used to define markup languages by specifying the allowed document structure in the form
of a document type definition (DTD). A DTD indicates the syntax that can be used for the
various elements of a language such as HTML.

A snippet of the HTML 4.01 DTD defining the P element, which indicates a paragraph,
is shown here:

<l--=================== Paragraphs =====================================-->
<!ELEMENT P - O (%inline;)* -- paragraph -->
<!ATTLIST P

%$attrs; -- %$coreattrs, %118n, %events --

>

The first line is a comment indicating what is below it. The second line defines the p
element, indicating that it has a start tag (<P>), as shown by the dash, and an optional close
tag (</P>), as indicated by the 0. The type of content that is allowed to be placed within a
P element is defined by the entity $inline, which acts here as a shorthand for various other
elements and content. This idea of only allowing some types of elements within other

Chapter 1: Traditional HTML and XHTML

elements is called the content model. If you further explore the specification to see what that
%$inline entity maps out to, you will see that it contains numerous other elements, such as
EM, STRONG, and so on, as well as regular typed text. The final line defines the attributes for
a <P> tag as indicated by the entity $attrs which then expands to a number of entities like
$core, $118n, and $coreevents which finally expand into a variety of attributes like ig,
class, style, title, lang, dir, onclick, ondbleclick, and many more. The full syntax
of the P element can be found in the reference in Chapter 3; the aim here is for you to
understand the syntax of SGML in a basic sense to support your understanding of how Web
browsers treat markup.

As another example, look at the HTML 4.01 DTD'’s definition of the HR element:

<l--=================== Horizontal Rule ================================-->
<!ELEMENT HR - O EMPTY -- horizontal rule -->
<!ATTLIST HR

%$attrs; -- %$coreattrs, %118n, %events --

>

From this syntax fragment, note that the HR element has a start tag but does not require a
close tag. More interestingly, the element does not enclose any content, as indicated by the
EMPTY designation. It turns out to have the same set of attributes as the P element, as
defined by the %attrs entity.

As mentioned in the previous section on the history of HTML, in 1999 the W3C rewrote
HTML as an application of XML and called it XHTML. XML, in this situation, serves the
same purpose as SGML: a language in which to write the rules of a language. In fact, XML is
in some sense just a limited form of SGML. XML and SGML can be used to write arbitrary
markup languages, not just HTML and XHTML. These would be called applications or, maybe
more appropriately, application languages. Numerous markup languages have been defined
with SGML and XML, and you could even define your own if you like. The relationship
between the various markup technologies is shown here:

Languages
Defined by

Example
Application
Languages

DocBook

TEI
HTML

The DTD defined in XML for the XHTML language is actually quite similar to the DTD
for traditional HTML. For example, consider the XHTML DTD entries for the two elements
previously presented:

<!ELEMENT p %Inline;>
<!ATTLIST p

%attrs;

>

17

18

Part I: Core Markup

<!ELEMENT hr EMPTY>
<!ATTLIST hr
%attrs;
>

As you can see, there is some case changing (lowercase elements), a lack of optional close
tags, and a general cleanup of syntax, but otherwise things are pretty much the same.

Properly constructed (X)HTML documents should reference a DTD of some sort and it
is important to know what this means as browsers and Web quality assurance tools actually
consult the doctype directives. Hopefully, this brief introduction has given you a sense of
the underlying specification of (X)YHTML and its degree of detail. Appendix E presents
complete coverage of how to read the (XYHTML DTDs.

NotE Interestingly, HTML5 does not use SGML or XML definitions, but instead relies on an
English prose specification combined with some formalism. Chapter 3 discusses this change and
some other aspects of the HTML5 language and specification that is different from the older
markup languages.

Document Type Statements and Language Versions

(X)HTML documents should begin with a <! DOCTYPE> declaration. This statement
identifies the type of markup that is supposedly used in a document. For example,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

indicates that we are using the transitional variation of HTML 4.01 that starts with a root
element html. In other words, an <html> tag will serve as the ultimate parent of all the
content and elements within this document.

A <1DOCTYPE> declaration might get a bit more specific and specify the URI (Uniform
Resource Identifier) of the DTD being used as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

In the case of an XHTML document, the situation really isn’t much different:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

However, do note that the root html element here is lowercase, which hints at the case
sensitivity found in XHTML.

There are numerous doctype declarations that are found in HTML and XHTML
documents, as shown in Table 1-2.

NOTE On occasion you might see other HTML document type indicators, notably one for the 3.0
standard that was never really adopted in the Web community.

Chapter 1: Traditional HTML and XHTML

HTML or XHTML Version

'DOCTYPE Declaration

HTML 2.0

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

HTML 3.2

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

HTML 4.0 Transitional

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4 /loose.dtd">

HTML 4.0 Frameset

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"
"http://www.w3.0rg/TR/html4 /frameset.dtd">

HTML 4.0 Strict

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.0rg/TR/html4 /strict.dtd" >

HTML 4.01 Transitional

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4 /loose.dtd">

HTML 4.01 Frameset

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.0rg/TR/html4 /frameset.dtd">

HTML 4.01 Strict

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4 /strict.dtd" >

HTML5

<IDOCTYPE html>

XHTML 1.0 Transitional

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Strict

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmI1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Frameset

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd" >

XHTML 1.1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmI11/DTD/xhtml11.dtd">
XHTML 2.0 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"

"http://www.w3.org/MarkUp/DTD/xhtm|2.dtd">

XHTML Basic 1.0

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

XHTML Basic 1.1

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

TaBLeE 1-2 Common HTML Doctype Declarations

While there are many different versions of (X)HTML, the good news is that the rough
document structure defined for each is pretty similar; of course, the bad news is that
little details will be different from version to version, so you need to be precise with your

syntax.

19

20 Partl: Core Markup

(X)HTML Document Structure

The DTDs define the allowed syntax for documents written in that version of (X)HTML.
The core structure of these documents is fairly similar. Given the HTML 4.01 DTD, a basic
document template can be derived from the specification, as shown here:

Doctype statement indicates type of document

|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<head>
<meta http-equip="Content-Type"
content="text/html; charset=utf-8"> Head contains
<title>Page Title</title> info about page
</head> Root HTML
element
encloses
entire doc
Body

Filename: template.html

In this graphical representation, the <! DOCTYPE> indicator, which, as previously
mentioned, shows the particular version of HTML being used, in this case 4.01 Transitional.
Within a root html element, the basic structure of a document reveals two elements: the head
and the body. The head element contains information and tags describing the document, such
as its title, while the body element houses the document itself, with associated markup
required to specify its structure. HTMLS5 follows the same core structure but introduces
differences, which is covered in depth in Chapter 2.

Chapter 1: Traditional HTML and XHTML

The structure of an XHTML document is pretty much the same with the exception of a
different < ! DOCTYPE> indicator and an xmlns (XML name space) attribute added to the
html tag so that it is possible to intermix XML more easily into the XHTML document:

Doctype statement indicates type of document

|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtmll/DTD/
txhtmll-strict.dtd">

<head>
<meta http-equip="Content-Type"
content="text/html; charset=utf-8" /> Head contains
<title>Page Title</title> info about page

</head>

Root HTML
element
encloses
entire doc

Body

Filename: template.html

Alternatively, in either HTML or XHTML (but not in HTML5), we can replace the
<body> tag with a <frameset> tag, which encloses potentially numerous <£rame> tags
corresponding to individual portions of the browser window, termed frames. Each frame in
turn would reference another HTML/XHTML document containing either a standard
document, complete with <html>, <head>, and <body> tags, or perhaps yet another
framed document. The <frameset> tag also should include a noframes element that
provides a version of the page for browsers that do not support frames. Within this element,

il

22 Partl: Core Markup

a <body> tag should be found for browsers that do not support frames. A visual
representation of this idea is shown here:

Doctype statement indicates type of document

|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Frameset//EN" "http://www.w3.org/TR/html4
frameset.dtd">

<head>
<meta http-equip="Content-Type"
content="text/html; charset=utf-8"> Head contains
<title>Page Title</title> info about page
</head> Root HTML
element
encloses
<frameset> entire doc
<frame />
<frame /> Frameset
</frameset>
<noframes>
<body>
Body

</body>
</noframes>

Filename: template.html

HTML5 does not support standard frames, though it does preserve inline frames.
Chapter 2 addresses that HTML5-specific change; for now, we’ll concentrate on a typical
document structure and drill into each element until we reach the very characters displayed.

Roughly speaking, the structure of a non-framed (X)HTML document breaks out like so:

Some <!DOCTYPE> statement

Chapter 1: Traditional HTML and XHTML 23

The following sections drill into each of the document structuring markup elements and
explore what’s contained inside.

The Document Head

The information in the head element of an (X)HTML document is very important because it
is used to describe or augment the content of the document. The element acts like the front
matter or cover page of a document. In many cases, the information contained within the
head element is information about the page that is useful for visual styling, defining
interactivity, setting the page title, and providing other useful information that describes or
controls the document.

The title Element

Asingle title element is required in the head element and is used to set the text that most
browsers display in their title bar. The value within a title is also used in a browser’s
history system, recorded when the page is bookmarked, and consulted by search engine
robots to help determine page meaning. In short, it is pretty important to have a
syntactically correct, descriptive, and appropriate page title. Thus, given

<title>Simple HTML Title Example</title>

you will see something like this:

(@ Simple HTML Title Exampl®> Mozilla Fircfox

File Edit View History Bookmarks Tools He

-

When a title is not specified, most browsers display the URL path or filename instead:

[badtitle.html (=) @ |
[& file://localhost/C:finetpub/wwwroot/chl/badtitlehtml - Opera [S=]EE]
[@& Mozilla Firefox E=EE]]
[/€ Chinetpub\wwwioot\chl\badtitle.htm - Internet Explorer r=lE]] 1

Only one title element should appear in every document, and most user agents will
ignore subsequent tag instances. You should be quite careful about making sure a title
element is well formed because omitting the close tag can cause many browsers to not load
the document. A recent version of Opera reveals what is likely happening in this situation:

&S Danger unclosed title here!@ <style tyle="text/css" media="screen"> boi
File Edit View Bookmarks Widgets Tools Help

Here it appears that the markup and rest of the document are used as the contents of the
unclosed title element, and thus nothing is rendered in the browser. It should be noted that
this particular rendering may vary because some browsers fix an unclosed title.

A

Part I: Core Markup

A document title may contain standard text, but markup isn’t interpreted ina <title>
tag, as shown here:

@) This Simple HTML Title Example is&atrang>great</strang> SMa

File Edit View History Bookmarks Tools Help

However, character entities such as © (or, alternatively, ©), which specifies a
copyright symbol, are allowed in a title:

<title>Simple HTML Title Example, © 2010 WebMonopoly, Inc.</title>

@ Simple HTML Title Example, @ 2008 WebMenopoly, Inc
Eile Edit Miew History Bookmarks Tools Help

For an entity to be displayed properly, you need to make sure the appropriate character
set is defined and that the browser supports such characters; otherwise, you may see boxes
or other odd symbols in your title:

@@Waming Character Plthems@— Mozilla Firefox
File Edit View History Bookmarks Tools Hel

To set the appropriate character set, you should include a <meta> tag before the page
title even though traditionally title is considered the first element.

NOTE Beyond character set concerns, think twice before using a special character such as a colon
(:), slash (/), or backslash (\) in a document title. An operating system might have a problem
with such a title if the document is saved to the local system. For example, the colon isn’t allowed
within Macintosh filenames, and slashes generally aren’t allowed within filenames, because they
indicate directories. Most modern browsers remove such special characters and reduce them to
spaces during the Save process. To be on the safe side, use dashes to delimit items in a page title.

<meta>: Specifying Content Type, Character Set, and More

A <meta> tag has a number of uses. For example, it can be used to specify values that are
equivalent to HTTP response headers. For example, if you want to make sure that your
MIME type and character set for an English-based HTML document is set, you could use

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">
Because meta is an empty element, you would use the trailing-slash syntax shown here:

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

Chapter 1: Traditional HTML and XHTML

Most people would agree that using the UTF-8 character set is probably a good idea for
Western-language page authors because it gives them access to international character
glyphs when needed without causing them any trouble:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >

Deciding which MIME type to use isn’t as straightforward. For standard HTML, the
MIME type is always text/html. However, when XHTML is in play, confusion and
browser problems ensue. Numerous pundits bemoan the fact that most XHTML is served as
text /html, particularly because it doesn’t give you the strict parsing that XML tends to
afford. In the use of XHTML, you may choose from text/html, text/xml, application/
xml, and application/xhtml+xml as potential MIME types. Given the potential for
compatibility and even rendering problems, for better or worse, the MIME type text/html
will be used for nearly all (X)HTML examples in this book so that browser rendering is
ensured. This hedge will be explored a bit more later in the chapter when addressing the
implications of XHTML. In summary at the point of writing this edition, it is recommend
specifying a Content-Type of text/html and the UTF-8 character set, and doing so as
your first element within the head, like so:

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >
<title>Page title here</title>

</head>

NOTE The meta element also has many other uses beyond defining character set and MIME type.
It is also used to set arbitrary name-content pairs to provide meta-information about a document
for purposes like search engine optimization (for example, <meta name="keywords"
content="Keywordl,...Keyword N" >). Other uses of <metas tags will be covered in
the reference section of Chapter 3.

Other Elements in the head

In addition to the title and meta elements, under the HTML 4.01 and XHTML 1.0 strict
DTDs, the elements allowed within the head element include base, 1ink, object, script,
and style. Comments are also allowed. A brief discussion of the other head elements and
comments follows. Complete information is available in the element reference found in

Chapter 3.

<base> A <base> tag specifies an absolute URL address that is used to provide server
and directory information for partially specified URL addresses, called relative links, used
within the document:

<base href="http://htmlref.com/basexeample" >

Because of its global nature, a <base> tag is often found right after a <title> tag as it
may affect subsequent <scripts, <link>, <style>, and <object> tag referenced URIs.

25

26

Part I: Core Markup

<link> A <link> tag specifies a special relationship between the current document and
another document. Most commonly, it is used to specify a style sheet used by the document
(as discussed in Chapter 4):

<link rel="stylesheet" media="screen" href="global.css" type="text/css" >

However, the <1ink> tag has a number of other interesting possible uses, such as to set
up navigation relationships and to hint to browsers about pre-cacheable content. See the
element reference in Chapter 3 for more information on this.

<object> An <object> tag allows programs and other binary objects to be directly
embedded in a Web page. Here, for example, a nonvisible Flash object is being referenced
for some use:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="0" height="0" id="HiddenFlash" >
<param name="movie" value="flashlib.swf" />
</object>

Using an <object> tag involves more than a bit of complexity, and there are numerous
choices of technology, including Java applets, plug-ins, and ActiveX controls.

<script> A <script> tag allows scripting language code to be either directly embedded
within,

<script type="text/javascript">
alert ("Hi from JavaScript!");
/* more code below */
</script>

or, more appropriately, linked to from a Web page:
<script type="text/javascript" href="ajaxtcr.js"></script>

Nearly always, JavaScript is the language in use, though other languages such as VBScript
are possible.

<style> Acstyle> tagis used to enclose document-wide style specifications, typically
in Cascading Style Sheet (CSS) format, relating to fonts, colors, positioning, and other
aspects of content presentation:

<style type="text/css" media="screen">

hl {font-size: xx-large; color: red; font-style: italic;}
/* all hl elements render as big, red and italic */
</style>

The use of this tag will be discussed in Chapter 4.

Comments Finally, comments are often found in the head of a document. Following SGML
syntax, a comment starts with <! - - and ends with - -> and may encompass many lines:

<!l-- Hi I am a comment -->
<!-- Author: Thomas A. Powell

Chapter 1: Traditional HTML and XHTML

Book: HTML: The Complete Reference
Edition: 5

Comments can contain just about anything except other comments and are particularly
sensitive to — symbols. Thus

<l------ THIS ISN'T A SYNTACTICALLY CORRECT COMMENT! ---->

NOTE Correct usage of comments goes well beyond syntax, because they may inherently expose
security concerns on public-facing sites. You'll also find that comments are used not only for
development notes but also to mask some types of content from browsers.

The complete syntax of the markup allowed in the head element under strict (X)HTML
is shown here:

head

mandatory

single occurrence
and generally early

Following is an example XHTML document with a head element that contains common
usage of elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Sample Head Element</title>

<!-- Some example meta tags -->

<meta name="keywords" content="Fake, Head Example, HTML Ref" />

<meta name="description" content="A simple head example that shows a number
of the elements presented in action." />

<meta name="author" content="Thomas A. Powell" />

21

28

Part I: Core Markup

<!-- Set a global URI stem for all references -->
<base href="http://htmlref.com/baseexample" />

<!-- Linked and document specific styles -->

<link rel="stylesheet" href="screen.css" media="screen" />
<link rel="stylesheet" href="printer.css" media="print" />
<style type="text/css">
<!--

hl {font-size: xx-large; color: red; font-style: italic;}
-2

</style>

<!-- Embedded and linked scripts -->
<script type="text/javascript">
<!--
var globalDebug = true;
//-->
</script>
<script src="ajaxtcr.js" type="text/javascript"></script>
<script src="effects.js" type="text/javascript"></script>
</head>
<body>
<p>Some body content here.</p>
</body>
</html>

The various details of the tags within the document head are all presented in the
element reference in Chapter 3; the aim here was to show you the organization of the head
element and how it supports the body. Now let’s move on to see the content in the
document body itself.

The Document Body

After the head section, the body of a document is delimited by <body> and </body>. Under
the HTML 4.01 specification and many browsers, the body element is optional, but you
should always include it, particularly because it is required in stricter markup variants.
Only one body element can appear per document.

Within the body of a Web document is a variety of types of elements. For example, block-
level elements define structural content blocks such as paragraphs (p) or headings (h1-h6).
Block-level elements generally introduce line breaks visually. Special forms of blocks, such
as unordered lists (ul), can be used to create lists of information.

Within nonempty blocks, inline elements are found. There are numerous inline elements,
such as bold (b), italic (1), strong (strong), emphasis (em), and numerous others. These
types of elements do not introduce any returns.

Chapter 1: Traditional HTML and XHTML

Other miscellaneous types of elements, including those that reference other objects such
as images (img) or interactive elements (object), are also generally found within blocks,
though in some versions of HTML they can stand on their own.

Within block and inline elements, you will find textual content, unless the element is
empty. Typed text may include special characters that are difficult to insert from the
keyboard or require special encoding. To use such characters in an HTML document, they
must be “escaped” by using a special code. All character codes take the form &code;, where
code is a word or numeric code indicating the actual character that you want to put
onscreen. For example, when adding a less-than symbol (<) you could use &1t ; or <.
Character entities also are discussed in depth in Appendix A.

Finally, just as in the head, you may include comments in the body element.

A visual overview of all the items presented in the body is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/htmld/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>Hello HTML World</title>

<!-- Simple hello world in HTML 4.01 strict example --> 4— Comment
</head>
<body>
<hl>{elcome to the World of HTML</hl>

< Block Elements
<hr>
P>HTML really isn't so hard!</p> I—InlineElements

<p>Soon you will &heartf; using HTML.</p>

<p>You can put lots of text here if you want. Character Entity

We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

29

30 Partl: Core Markup

The full syntax of the elements allowed in the body element is a bit more involved than
the full syntax of the head. This diagram shows what is directly included in the body:

h1, h2, h3, h4, h5, h6

it

blockquote

-

fieldset

il

AT

Chapter 1: Traditional HTML and XHTML 3

Going deeper into the full syntax in a single diagram is unreasonable to present. Just as
an example, take the p element and continue to expand, keeping in mind that these
elements will also loop back on each other and expand out as well:

Tk

(*) when the element is ultimately a descendent of a form element

While it might be difficult to meaningfully present the entire syntax of HTML
graphically in a diagram, the diagram presented here should drive home the point that
HTML is quite structured and the details of how elements may be used are quite clear. Now
that you have some insight into the syntax of markup, the next section discusses how
browsers deal with it.

Browsers and (X)HTML

When a browser reads a marked-up document, such as the “hello world” example
repeated here,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>

<!-- Simple hello world in HTML 4.01 strict example -->

</head>

<body>

<hl>Welcome to the World of HTML</hl>

32

Part I: Core Markup

<hr>

<p>HTML really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

it builds a parse tree to interpret the structure of the document, possibly like this:

o

~— <!-- simple hello world in HTML 4.01 strict example -->

Legend

HTML ELEMENT

<!-- comment -->

Chapter 1: Traditional HTML and XHTML 33

These parse trees, often called DOM (Document Object Model) trees, are the browsers’
interpretation of the markup provided and are integral to determining how to render the
page visually using both default (X)HTML style and any CSS attached. JavaScript will also
use this parse tree when scripts attempt to manipulate the document. The parse tree serves
as the skeleton of the page, so making sure that it is correct is quite important, but sadly
we'll see very often it isn’t.

NOTE The syntax trees presented earlier look very similar to the parse trees, and they should,
because any particular parse tree should be derivable from the particular markup language’s
content model.

Browsers are actually quite permissive in what they will render. For example, consider
the following markup:

<TITLE>Hello HTML World</title>

<!-- Simple hello malformed world -- example -->
</head>

<body>

<hl>Welcome to the World of HTML</H1>

<hr />

<p>HTML really isn't so hard!

<P>Soon you will ♥ using HTML.

<p>You can put lots of text here if you want.

We could go on and on with fake text for you

to read, <foo>but</foo> let's get back to the book.
</html>

This example misses important tags, doesn’t specify encoding types, has a malformed
comment, uses inconsistent casing, doesn’t close tags, and even uses some unknown
element foo. However, this will render exactly the same visually as the correct markup
previously presented, as shown in Figure 1-3.

34

Part I: Core Markup

@& Hello HTML Warld - Mozilla Firefox =R SRS

"." Google p|

File Edit View History Bookmarks Tools Help
Well-formed

@- + @ X Ay [|http//himiref.com/chl/helloworld.html T7 -
Markup

Welcome to the World of HTML —

HTML really isn't so hard!
Soon you will ¥ using HTML.

You can put lots of text here if you want. We could go on and on with fake text for you to read, but let's
get back to the book.

& Hello HTML World - Mozilla Firefox =
File Edit View History Bookmarks Tools Help

@ " R c A ﬁ [\ |http:.-",-"www.htmlref.com_fchlfmalformedl birdi ".l' Google p|

Malformed
Welcome to the World of HTML Markup
HTML really isn't so hard!
Soon you will ¥ using HTML.

You can put lots of text here if yon want. We could go on and on with fake text for you to read, but let's
get back to the book.

Ficure 1-3 Malformed markup works!?

Chapter 1: Traditional HTML and XHTML 35

Now if you look at the parse tree formed by the browser, you will note that many of the
mistakes appear to be magically fixed by the browser:

File [dit View listory Bookmarks Tools Lielp
i gy C X o http://htmiref.com/chl/hellownrid html

% -] (iG] gt »|

Welcome to the World of HI'ML

HITML really isn't so hard!
Soon you will ¥ using HTML.

Yom can pur lors of text here if you want We could go on and on with fake text for yon to read, bur ler's get hack o the hook

#° Inspect Edit | Kl - body < html & (Al]
Consnle | HTMI r“ vrlp-l m.ll m . - = aphun:-l‘?lyr I.‘ym.n I'];']Il

5] <himi

This clement has no

style rules.
<mela cuntent="test/himl;

charsel=uLl-8" hitp-equiv="Cuntent-Type™/>
titla>Helln HTML Harld</titlay

= <bady>
<hlrWelcume to the World of HIML</hl>
<hr/>
= <pr
RTHI.
<om> really</om>
isn’t so hard!
</p>
€p» Doon you will ¥ using u'mL

<p>¥ou ean put Ints Af taxt hers 1f you WART We rould gn on And An wWith fake text for you to read,
but let's get back to tha book.</p>

</hrml>

Of course, the number of assumptions that a browser may make to fix arbitrary
syntactical mistakes is likely quite large and different browsers may assume different
“fixes.” For example, given this small fragment of markup

<p>Making malformed HTML really isn't so hard!</p>

leading browsers will form their parse trees a bit differently, as shown in Figure 1-4.

36 Partl: Core Markup

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/htmld/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>Malformed HTML<Z/title>

</head>

<body>

<p>Making malformed HTML really

isn’t so hard!</p>

</body>

</html>

&% Inspect Edit | body < html
Cnnsolc|l’|'ml.im Script DOM Net

ISl <html>

= <head>

<mata content="text/html; charsec=ucf-8" http-equiv="Content-Type"/>
<title>Malformed HIML </title>
</head>
= <body>
= <p>
Making malformed HIML
=l
=
really
B
 isn't so hard!

=/p>
</body>
T v 5] Developer Tools

[} 45 [View Outline
HTML |css | script |
=

= <HEAD/>
L. <TITLE>Malformed HTML</TITLE>
- <META content=text/html; charset=utf-8 http-equiv=Content-Type></META>
=-<BODY/>
=-<P/>
-~ Making malformed HTML
8-
-
-really
B
- isn't so hard!</P>

Ficure 1-4 Same markup, different parse, as shown in Firefox 3 (above) and Internet Explorer 8 (below)

Chapter 1: Traditional HTML and XHTML 3

Simply put, it is quite important to aim for correct markup as a solid foundation for a
Web page and to not assume the markup is correct just because it appears to render
correctly in your favorite browser.

Validation

As shown earlier, a DTD defines the actual elements, attributes, and element relationships
that are valid in documents. Now you can take a document written in (X)YHTML and then
check whether it conforms to the rules specified by the DTD used. This process of checking
whether a document conforms to the rules of the DTD is called validation.

The < 1DOCTYPE> declaration allows validation software to identify the HTML DTD
being followed in a document, and verify that the document is syntactically correct—in
other words, that all tags used are part of a particular specification and are being used
correctly. An easy way to validate a document is simply to use an online service such as the
W3C Markup Validation Service, at http:/ /validator.w3.org. If the malformed example
from the previous section is passed to this service, it clearly shows that the page has errors:

e oo e e e S —— e
Eile Edit View History Bookmarks Tools Help :
Gw_;— ¥y X N ii| tpe//validator w3 org/cheekiun=http =3 A%k Sk htmiret. com®e2rehl %k mattorm Rl | (0 A4 REEeT S 2

-

Markup Validation Service

L

m

Jump To: Potential Issues Validation Output

This page is not Valid (no Doctype found)!
Result: Failed validation, 8 Crrors

Address : http://htmlret. com/chl/maltormedhelloworld. html
Encoding : ut-8 {detoct automatically) -
Doctype : (no Doctype found) (detact automatically) -

Root Element: title

Options
D snow source [C1show Outiine @ List Messages Sequentially © Group Error Messages by type
Cvangate error pages [verpose Output [CIciean up markup with HTML Tidy

Halp an the aptinns is availshls Revalidate

Potential Issues

38

Part I: Core Markup

Pass the URL to the service yourself by using this link in the address bar:

http://validator.w3.org/check?uri=http%3A%2F%2Fhtmlref.com%2Fchl%2Fmalforme
dhelloworld.html

By reading the validator’s messages about the errors it detected, you can find and
correct the various mistakes. After all mistakes are corrected, the document should validate
cleanly:

'9—,_::‘ C X & ['._!_é_i_ﬂlrf}ﬁvnlidnlm.w'l?{y:'_hff?mi_hnp%'ln%?r com2Fchl i bl
WSC‘ Markup Validation Service
Jump To: Congratulations lcons
This Page Is Valid HTML 4.01 Strict!
Result: 1a: validation
Address : http://htmlzef.com/chl/helloworld, html
Encoding : ull-8 {dotoct automatically) -
Doctype: HIML 4.01 Stnct (detect automatically) - 4
Root Element: HIML
Options
IZlsnow Source | enow Outling @ List Messages Sequentialy © Group Error Messages by type
[Tl validate error pages ClVerbose Qutput ElClean up Markup with HTML Tidy
Lialg o the options i available Revalidate
Congratulations
The document located at <hitp:/himiref com/ch1/helloworld himl> was checked and found to be valid HTML 4.01 Strict. This means that the
resource in queshon identihied itsalf as "HIML 4 01 Stnct” and that we successtully pertormed a formal validation using an SGML or XML

Web developers should aim to start with a baseline of valid markup before trying to
address various browser quirks and bugs. Given that so many Web pages on the Web are
poorly coded, some developers opt to add a “quality” badge to a page to show or even
prove standards conformance:

HTML XHTML
%C 4.01 * %C 1.0 J

Chapter 1: Traditional HTML and XHTML 39

Whether users care about such things is debatable, but the aim for correctness is
appropriate. Contrast this to the typical effort of testing a page by viewing it in various
browsers to see what happens. The thought is, if it looks right, then it is right. However, this
does not acknowledge that the set of supported or renderable pages a browser may handle
is a superset of those which are actually conforming to a particular specification:

Conforming
Markup

Supported Malformed Markup

Unsupported Markup

It is an unfortunate reality that browsers support a multitude of incorrect things and
that developers often use a popular browser as an acceptance engine based upon some page
rendering for better or worse. Such an approach to markup testing might seem reasonable
in the short term, but it will ultimately lead to significant developer frustration, particularly
as other technologies are added, such as CSS and JavaScript, and newer browsers are
introduced. Unfortunately, given the browsers’ current method of allowing garbage yet
preferring standards, there is little reason for some developers to care until such a price is
realized.

The Doctype Switch and Browser Rendering Modes

Modern Web browsers generally have two rendering modes: quirks mode and standards
compliance mode. As their names suggest, quirks mode is more permissive and standards
compliance mode is stricter. The browser typically chooses in which mode to parse a
document by inspecting the <! DOCTYPE> statement, if there is one. This process typically is

40 Part1: Core Markup

dubbed the “doctype switch.” When a browser sees a known standards-focused doctype
indicator, it switches into a standards compliant parse:

0 Hello HTML World - Mozilla Firefox
File Edit View History Bookmarks Tools Help

E\ C 0 & (| httpy/himiref.com/chl/helloworld.html w7 | |[Gl-] Googte

Welcome to the World of HTTML

& PageInfo - http://Rtmiref.com/chl/helloword.htmi ===

o t A

General Permissions Security
<head>
Hello HTML World: teX] <meta http-eguiv="Content-Type" content
Address: http://htmiref.com/chl/helloworld.html <title>Hello HTML World</title>
Type: text/himl :‘.:];é _d"—.‘irnpie hello wvorld 1n HTML 4.01 st
a
Render Mode: Standards compliance mode <bod
Encoding: HEEE <hi>Welcome to the World of HTML</h1>
Size: 0.56 KB (575 bytes]| JEE

Strict DTD Present

However, if the <! DOCTYPE> statement is missing, references a very old version like 3.2,

or is unknown, the browser will enter into quirks mode. Browsers may provide an indication
of the rendering mode via an entry in page info:

@ Hello HTML Werld - Meuills Firefon

fit/helloworldnodtd.htm B

Welcome to the World of HTML

[— T
1 & Page Info - http com/ehl/ mml [= @8] Souree of: httpe//htr ref.co
i ile Edit
i E o e Eile Er :Iﬂr Help
e = <htmls
General Permissi Security <heady
“meta http-egquiv=" Type" cexc/html; cha £-8">
| Hello HTML Warld: <LitlesHello HTML Worlde/titles
Address httpe//htmleef.cam/chl /helloworldnadtd html F 1o Simple hello world in HTML 4.01 strict example —-3
</head>
Types tot/html ik
P M <hi>Welcome to the World of HTML</his
Encading UTF-8 e
Size 0.47 KB (483 bytes) <pYHIHL really isn't ao hard!</p>

DTD Missing

Chapter 1: Traditional HTML and XHTML iy |

In other cases, you may need to use a tool to determine the parse mode:

€ Hello HTML Warld - Tnternet Explarer provided by Dell [E=RER
@\ -;J I] hitp:/ Mimiret.com/chl hellowarldnadtd htm + [4| % | [[G] Googte P~
File Fdit View Favorites Tools Help G Soaght - 121
i Favorites 5 | Hello HTML Workd Emulate 7. £ = = [e v |- = Page = ([} Took » v o =
Debugar v502 =
oo [HiTeés) | sat | Hcneds| o Welcome to the World of HTML
Information Vahoe
i Main page UL bt fotmived.comjch 1 velcrmor dnedtd, bl
i Page tite Hisfio HTML Workd
ol Mai pege Size 483 HTML realiy isn't so hard?
U5 & e imeges (<im... O
B0 Sz e knapes (<., O Soon you will ¥ using HTMIL
{Downioad time [
(JRendenngPage Tme 0 7 3 . X 3
B o it e You can put bots of text bere if you want. We could go on and on with fake text for vou to read, but let's get back to
JMime Type Firefox Document the book.
ool HyperText Transfer Prosocsl
T o>

Web developers should aim for a solid markup foundation that is parsed in a
predictable manner. The number of rendering oddities that will still be encountered even
with such a solid footing is not inconsequential, so it’s best not to tempt fate and instead to
try to follow the “rules” of markup.

The Rules of (X)HTML

(X)HTML does have rules, of course, though in some versions the rules are somewhat loose.
Similarly, as previously discussed, these “rules” really don’t seem like rules because most
browsers pretty much let just about anything render. However, quite certainly, you should
follow these rules, because malformed documents may have significant downsides, often
exposed only after other technologies like CSS or JavaScript are intermixed with the
markup. The reality is that most (X)HTML, whether created by hand or a tool, generally lies
somewhere between strict conformance and no conformance to the specification. This
section gives you a brief tour of some of the more important aspects of (X)HTML syntax
that are necessary to understand to produce well-formed markup.

HTML Is Not Case Sensitive, XHTML Is

These markup examples are all equivalent under traditional HTML:

Go boldly
Go boldly
Go boldly
Go boldly

In the past, developers were highly opinionated about how to case elements. Some designers
pointed to the ease of typing lowercase tags as well as XHTML's requirement for lowercase
elements as reasons to go all lowercase. HTMLS5 reverts back to case-insensitive markup and
thus we may see a return to uppercase tags by standards aware developers.

2

Part I: Core Markup

Attribute Values May Be Case Sensitive

Consider and . Under traditional HTML,
these are equivalent because the tag and the src attribute are not case sensitive.
However, given XHTML, they should always be lowercase. However, just because attribute
names are not case sensitive under traditional HTML, this doesn’t mean every aspect of
attributes is case insensitive.

Regardless of the use of XHTML or HTML, the actual attribute values in some tags may
be case sensitive, particularly where URLs are concerned. So and
 do not necessarily reference the same image. When referenced
from a UNIX-based Web server, where filenames are case sensitive, test.gif and TEST.GIF
would be two different files, whereas on a Windows Web server, where filenames are not
case sensitive, they would reference the same file. This is a common problem and often
hinders the ability to easily transport a Web site from one server to another.

(X)HTML Is Sensitive to a Single Whitespace Character

Any white space between characters displays as a single space. This includes all tabs, line
breaks, and carriage returns. Consider this markup:

T e s t o £ s p a ¢ e s

T e s t o £ S p ac e s

T

e s

tofsp a ¢ e s

As shown here, all the spaces, tabs, and returns are collapsed to a single element:

Testofspaces
Testofspaces
Testofspaces

However, it is possible to force the whitespace issue. If more spaces are required, it is
possible to use the nonbreaking space entity, or . Some consider this the duct tape of
the Web—useful in a bind when a little bit of spacing is needed or an element has to be kept
from collapsing. Yet using markup such as

 Look, I'm spaced out!

would add space to the output, the question is, exactly how far? In print, using spaces to
format is dangerous given font size variability, so text rarely lines up. This is no different on
the Web.

Further note that in some situations, (X)HTML does treat whitespace characters differently.
In the case of the pre element, which defines a preformatted block of text, white space is
preserved rather than ignored because the content is considered preformatted. It is also
possible to use the CSS property white-space to change default whitespace handling.

Because browsers will ignore most white space, Web page authors often format their
documents for readability. However, the reality is that browsers really don’t care one way or
another, nor do end users. Because of this, some sites have adopted a markup optimization
idea, often called crunching or minification, to save bandwidth.

Chapter 1: Traditional HTML and XHTML

(X)HTML Follows a Content Model

All forms of markup support a content model that specifies that certain elements are
supposed to occur only within other elements. For example, markup like this

<p>What a simple way to break the content model!</p>

which often is used for simple indentation, actually doesn’t follow the content model for the
strict (XYHTML specifications. The tag is only supposed to contain <1i> tags. The <p>
tag is not really appropriate in this context. Much of the time, Web page authors are able to
get away with this, but often they can’t. For example, in some browsers, the <input> tag
found outside a <form> tag is simply not displayed, yet in other browsers it is.

Elements Should Have Close Tags Unless Empty

Under traditional HTML, some elements have optional close tags. For example, both of the
paragraphs here are allowed, although the second one is better:

<p>This isn't closed
<p>This is</p>

However, given the content model, the close of the top paragraph can be inferred since its
content model doesn’t allow for another <p> tag to occur within it. HTML5 continues to
allow this, as discussed in Chapter 2.

A few elements, like the horizontal rule (hr) and line break (br), do not have close tags
because they do not enclose any content. These are considered empty elements and can be
used as is in traditional HTML. However, under XHTML you must always close tags, so
you would have to write
</br> or, more commonly, use a self-closing tag format with
a final “/” character, like so:
.

Unused Elements May Minimize

Sometimes tags may not appear to have any effect in a document. Consider, for example,
the <p> tag, which specifies a paragraph. As a block tag, it induces a return by default, but
when used repeatedly, like so,

<p></p><p></p><p></p>

does this produce numerous blank lines? No, since the browser minimizes the empty p
elements. Some HTML editors output nonsense markup such as

<p> </p><p> </p><p> </p>

to deal with this. If this looks like misused markup to you, you're right!

Elements Should Nest

A simple rule states that tags should nest, not cross; thus

<i>is in error as tags cross</i>

43

44

Part I: Core Markup

whereas
<i>is not since tags nest</i>

and thus is syntactically correct. All forms of markup, traditional HTML, XHTML, and
HTMLS, follow this rule, and while crossing tags may seem harmless, it does introduce
some ambiguity in parse trees. To be a well-formed markup, proper nesting is mandatory.

Attributes Should Be Quoted

Under traditional HTML as well as under HTMLS5, simple attribute values do not need to be
quoted. If the attribute contains only alphanumeric content, dashes, and periods, then the
quotes can safely be removed; so,

would work fine in most browsers and would validate. However, the lack of quotes can
lead to trouble, especially when scripting is involved. Quotes should be used under
transitional markup forms and are required under strict forms like XHTML; so,

would be the correct form of the tag. Generally, it doesn’t matter whether you use single or
double quotes, unless other quotes are found within the quotes, which is common with
JavaScript or even with CSS when it is found in an attribute value. Stylistically, double
quotes tend to be favored, but either way you should be consistent.

Entities Should Be Used for Special Characters
Markup parsers are sensitive to special characters used for the markup itself, like < and >.
Instead of writing these potentially parse-dangerous characters in the document, they should
be escaped out using a character entity. For example, instead of <, use &1t ; or the numeric
equivalent < . Instead of >, use > ; or >. Given that the ampersand character has
special meaning in an entity, it would need to be escaped as well using & or &.
Beyond escaping characters, it is necessary to insert special characters for special quote
characters, legal symbols like copyright and trademark, currency, math, dingbats, and a
variety of other difficult-to-type symbols. Such characters are also inserted with entities. For
example, to insert the Yen symbol (¥), you would use ¥ or ¥. With Unicode in
play, there is a vast range of characters to choose from, but unfortunately there are
difficulties in terms of compatibility, all of which is discussed in Appendix A.

Browsers Ignore Unknown Attributes and Elements

For better or worse, keep in mind that browsers will ignore unknown elements and
attributes; so,

<bogus>this text will display on screen</bogus>
and markup such as

<p id="myPara" obviouslybadattribute="TRUE">will also render fine.</p>

Chapter 1: Traditional HTML and XHTML

Browsers make best guesses at structuring malformed content and tend to ignore code
that is obviously wrong. The permissive nature of browsers has resulted in a massive number
of malformed HTML documents on the Web. Oddly, from many people’s perspective, this
isn’t an issue, because the browsers do make sense out of the “tag soup” they find. However,
such a cavalier use of the language creates documents with shaky foundations at best. Once
other technologies such as CSS and JavaScript are thrown into the mix, brazen flaunting of the
rules can have repercussions and may result in broken pages. Furthermore, to automate the
exchange of information on the Web, collectively we need to enforce stricter structure of our
documents. The focus on standards-based Web development and future development of
XHTML and HTMLS brings some hope for stability and structure of Web documents.

Major Themes of (X)HTML

The major themes addressed in this section are deep issues that you will encounter over and
over again throughout the book.

Logical and Physical Markup

No introduction to (X)YHTML would be complete without a discussion of the logical
versus physical markup battle. Physical markup refers to using a markup language such
as (X)HTML to make pages look a particular way; logical markup refers to using (X)HTML
to specify the structure or meaning of content while using another technology, such as CSS,
to designate the look of the page. We begin a deeper exploration of CSS in Chapter 4.

Physical markup is obvious; if you want to highlight something that is important to the
reader, you might embolden it by enclosing it within a tag;:

This is important!

This simple approach fits with the WYSIWYG (what you see is what you get) world of programs
such as Microsoft Word.

Logical markup is a little less obvious; to indicate the importance of the phrase, it should
be enclosed in the logical strong element:

This is important.

Interestingly, the default rendering of this would be to embolden the text. Given the
difference, it seems the simpler, more obvious approach of using a tag is the way to go.
However, actually the semantic meaning of strong provides a bit more flexibility and is
preferred. Remember, the tag is used to say that something is important content,
not to indicate how it looks. If a CSS rule were defined to say that important items should
be big, red, and italic

<style="text/css">
strong {font-size: xx-large; color: red; font-style: italic;}
</style>

confusion would not necessarily ensue, because we shouldn’t have a predisposed view of
what strong means visually. However, if we presented a CSS rule to make tags act
as such, it makes less sense because we assume that the meaning of the tag is simply to
embolden some text.

45

46

Part I: Core Markup

HTML unfortunately mixes logical and physical markup thinking. Even worse, common
renderings are so familiar to developers that tags that are logical are assumed physical. What
does an <h1> tag do? Most Web developers would say it defines a big heading. However,
that is assuming a physical view; it is simply saying that the enclosed content is a level one
heading. How such a heading looks is completely arbitrary. While many of HTML's logical
elements are relatively underutilized, others, such as headings and paragraphs (<p>), are
used regularly though they are generally thought of as physical tags by most HTML users.
Consider that people generally consider <h1> a large heading, <h2> a smaller heading, and
predict that <p> tags cause returns and you can see that, logical or not, the language is physical
to most of its users. However, does that have to be the case? No, these are logical elements and
the renderings, while common, are not required and CSS easily can change them.

The benefits of logical elements might not be obvious to those comfortable with physical
markup. To understand the benefits, it’s important to realize that on the Web, many browsers
render things differently. In addition, predicting what the viewing environment will be is
difficult. What browser does the user have? What is his or her monitor’s screen resolution?
Does the user even have a screen? Considering the extreme of the user having no screen at
all, how would a speaking browser render a tag? What about a tag? Text
tagged with might be read in a firm voice, but boldfaced text might not have an
easily translated meaning outside the visual realm.

Many realistic examples exist of the power of logical elements. Consider the
international aspects of the Web. In some countries, the date is written with the day first,
followed by the month and year. In the United States, the date generally is written with
the month first, and then the day and year. A <date> or a <time> tag, the latter of which
is actually now part of HTML5, could tag the information and enable the browser to
localize it for the appropriate viewing environment. In short, separation of the logical
structure from the physical presentation allows multiple physical displays to be applied
to the same content. This is a powerful idea which, unfortunately, even today is rarely
taken advantage of.

Whether you subscribe to the physical (specific) or logical (general) viewpoint,
traditional HTML is neither purely physical nor purely logical, at least not yet. In other
words, currently used HTML elements come in both flavors, physical and logical, though
users nearly always think of them as physical. This is likely not going to get settled soon;
the battle between logical and physical markup predates HTML by literally decades.
HTML5 will certainly surprise any readers who are already logical markup fans, because
it fully preserves traditional presentational tags like and <i>, given their common
use, though jumps through some interesting mental hoops to claim meaning is changed.
Further, the new specification promotes media- and visual-focused markup like
<canvas> and <video> and introduces tremendously powerful navigational and
sectioning logical-focused tags. If recent history is any guide, then HTMLS5 is likely going
to pick up many fans.

Standards vs. Practice

Just because a standard is defined doesn’t necessarily mean that it will be embraced. Many
Web developers simply do not know or care about standards. As long as their page looks
right in their favorite browser, they are happy and will continue to go on abusing HTML
tags like <table> and using various tricks and proprietary elements. CSS has really done

Chapter 1: Traditional HTML and XHTML

little to change this thinking, with the latest browser hacks and filters as popular as the pixel
tricks and table hacks of the generation before. Developers tend to favor that which is easy
and seems to work, so why bother to put more time in, particularly if browsers render the
almost right markup with little complaint and notice?

Obviously, this “good enough” approach simply isn’t good enough. Without standards,
the modern world wouldn’t work well. For example, imagine a world of construction in
which every nut and bolt might be a slightly different size. Standards provide needed
consistency. The Web needs standards, but standards have to acknowledge what people
actually do. Declaring that Web developers really need to validate, use logical markup, and
separate the look from the structure of the document is great but it doesn’t get them to do
so. Standards are especially pointless if they are never widely implemented.

Web technologies today are like English—widely understood but poorly spoken. However,
at the same time they are the Latin of the Web, providing a strong foundation for development
and intersecting with numerous technologies. Web standards and development practices
provide an interesting study of the difference between what theorists say and what people
want and do. HTMLS5 seems a step in the right direction. The specification acknowledges that,
for better or worse, traditional HTML practices are here for now, and thus attempts to make
them solid while continuing to move technology forward and encourage correct usage.

Myths and Misconceptions About HTML and XHTML

The amount of hearsay, myths, and complete misunderstandings about HTML and XHTML
is enormous. Much of this can be attributed to the fact that many people simply view the
page source of sites or read quick tutorials to learn HTML. This section covers a few of the
more common misconceptions about HTML and tries to expose the truth behind them.

Misconception: WYSIWYG Works on the Web

(X)HTML isn’t a specific, screen- or printer-precise formatting language like PostScript.
Many people struggle with HTML on a daily basis, trying to create perfect layouts using
(X)HTML elements inappropriately or using images to make up for HTML's lack of screen
and font-handling features. Interestingly, even the concept of a visual WYSIWG editor
propagates this myth of HTML as a page layout language. Other technologies, such as CSS,
are far better than HTML for handling presentation issues and their use returns HTML to its
structural roots. However, the battle to make the end user see exactly what you see on your
screen is likely to be a futile one.

Misconception: HTML Is a Programming Language

Many people think that making HTML pages is similar to programming. However, HTML
is unlike programming in that it does not specify logic. It specifies the structure of a
document. The introduction of scripting languages such as JavaScript into Web documents
and the confusing terms Dynamic HTML (DHTML) and Ajax (Asynchronous JavaScript
and XML) tacked on may lead many to overestimate or underestimate the role of markup in
the mix. However, markup is an important foundation for scripting and should be treated
with the same syntactical precision that script is given.

Misconception: XHTML Is the Only Future
Approaching its tenth birthday, XHTML still has yet to make much inroads in the widespread
building of Web pages. Sorry to say, most documents are not authored in XHTML, and many

Y|

48

Part I: Core Markup

of those that are, are done incorrectly. Poor developer education, the more stringent syntax
requirements, and ultimately the lack of obvious tangible benefit may have kept many from
adopting the XML variant of HTML.

Misconception: XHTML Is Dead

Although XHTML hasn’t taken Web development by storm, the potential rise of HTML5
does not spell the end of XHTML. In fact, you can write XML-style markup in HTML,
which most developers dub XHTML 5. For precision, XHTML is the way to go, particularly
when used in an environment that includes other forms of XML documents. XHTML's
future is bright for those who build well-formed, valid markup documents.

Myth: Traditional HTML Is Going Away

HTML is the foundation of the Web; with literally billions of pages in existence, not every
document is going to be upgraded anytime soon. The “legacy” Web will continue for years,
and traditional nonstandardized HTML will always be lurking around underneath even the
most advanced Web page years from now. Beating the standards drum might speed things
up a bit, but the fact is, there’s a long way to go before we are rid of messed-up markup.
HTMLS5 clearly acknowledges this point by documenting how browsers should act in light
of malformed markup.

Having taught HTML for years and having seen how both HTML editors and people
build Web pages, I think it is very unlikely that strictly conforming markup will be the norm
anytime soon. Although (X)HTML has had rules for years, people have not really bothered to
follow them; from their perspective, there has been little penalty for failing to follow the
rules, and there is no obvious benefit to actually studying the language rigorously. Quite
often, people learn markup simply through imitation by viewing the source of existing
pages, which are not necessarily written correctly, and going from there. Like learning a
spoken language, (X)HTML's loosely enforced rules have allowed many document authors
to get going quickly. Its biggest flaw is in some sense its biggest asset and has allowed
millions of people to get involved with Web page authoring. Rigor and structure is coming,
but it will take time, tools, and education.

Myth: Someday Standards Will Alleviate All Our Problems

Standards are important. Standards should help. Standards likely won't fix everything.
From varying interpretations of standards, proprietary additions, and plain old bugs, there
is likely never going to be a day where Web development, even at the level of (X)HTML
markup, doesn’t have its quirks and oddities. The forces of the market so far have proven
this sentiment to be, at the very least, wishful thinking. Over a decade after first being
considered during the writing of this book’s first edition, the wait for some standards
nirvana continues.

Myth: Hand-Coding of HTML Will Continue Indefinitely

Although some people will continue to craft pages in a manner similar to mechanical
typesetting, as Web editors improve and produce standard markup perfectly, the need to
hand-tweak HTML documents will diminish. Hopefully, designers will realize that knowledge
of the “invisible pixel” trick or the CSS Box Model Hack is not a bankable resume item and
instead focus on development of their talents along with a firm standards-based understanding
of markup, CSS, and JavaScript.

Chapter 1: Traditional HTML and XHTML 19

Myth: (X)HTML Is the Most Important Technology Needed to Create Web Pages

Whereas (X)HTML is the basis for Web pages, you need to know a lot more than markup to
build useful Web pages (unless the page is very simple). However, don’t underestimate
markup, because it can become a bit of a challenge itself. Based on the simple examples
presented in this chapter, you might surmise that mastering Web page creation is merely a
matter of learning the multitude of markup tags, such as <h1>, <p>, , and so on, that
specify the structure of Web documents to browsers. While this certainly is an important
first step, it would be similar to believing you could master the art of writing by simply
understanding the various commands available in Microsoft Word. There is a tremendous
amount to know in the field of Web design and development, including information
architecture, visual design, client- and server-side programming, marketing and search
engines, Web servers and delivery, and much, much more.

The Future of Markup—Two Paths?

Having followed markup for well over a decade in writing editions of this book and
beyond, it is still quite difficult to predict what will happen with it in the future, other than
to say the move towards strict markup will likely be a bit slower than people think and
probably not ideal. The sloppy syntax from the late 1990s is still with us and is likely to be
so for some time. The desire to change this is strong, but so far the battle for strict markup is
far from won. We explore here two competing, or potentially complementary, paths for the
future of markup.

XHTML: Web Page Markup XML Style

A new version of HTML called XHTML became a W3C recommendation in January 2000.
XHTML, as discussed earlier in the chapter, is a reformulation of HTML using XML that
attempts to change the direction and use of HTML to the way it ought to be. So what does
that mean? In short, rules now matter. As you know, you can feed a browser just about
anything and it will render. XHTML would aim to end that. Now if you make a mistake, it
should matter.

Theoretically, a strictly XHTML-conforming browser shouldn’t render a page at all if it
doesn’t conform to the standard, though this is highly unlikely to happen because browsers
resort to a backward-compatibility quirks mode to display such documents. The question is,
could you enforce the strict sense of XML using XHTML? The short answer is, maybe not
ideally.

To demonstrate, let’s reformulate the xhtmlhelloworld. html example slightly by adding
an XML directive and forcing the MIME type to be XML. We’ll then try to change the file
extension to . xml to ensure that the server gets the browser to really treat the file as XML data.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/xml; charset=utf-8" />
<title>Hello XHTML World</title>

<!-- Simple hello world in XHTML 1.0 strict example -->

</head>

Part I: Core Markup

<body>

<hl>Welcome to the World of XHTML</hl>

<hr />

<p>XHTML really isn't so hard either!</p>
<p>Soon you will ♥ using XHTML too.</p>
<p>There are some differences between XHTML

and HTML but with some precise markup you'll

see such differences are easily addressed.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/xhtmlasxml.html
http://htmlref.com/chl/xhtmlasxml.xml

Interestingly, most browsers, save Internet Explorer, will not have a problem with this.
Internet Explorer will treat the apparent XML acting as HTML as normal HTML markup,
but if we force the issue, it will parse it as XML and then render an XML tree rather than a
default rendering:

— : ——— L R e
TR oy Bos (e i rerr— Talx G e
[ie b Yew Higory Bookmars ook Help Giouh 5
@T c ¥ 'ﬁ b e et & :G_ Gosele p o Fovetes 3 e bt ok Dimint G- B -0 @~
o0 TePa e (i S o Al
pracibistionlibrhatetpalihes ('
J i | o-::::' TTP-EQUD =Y Wpe" CONTENT = i
Welcome to the World of XHTML ek
<head>
) ﬁ:;ﬁ*_hlhwﬂmlc.n:>
NHTML rely st o b e .
oo emally <l
F .HI'IWMM
Sm}m‘i'mmm gii;ﬂnm'.-mmklnﬂ.b'})
€m}wﬂmmu|::mlnu ot weith sune precise markup ool
There are some difirences betwween NHTML 2nd HTML bt with some precise markap jou'l see sach ferences e o
e edyadised '
Core e - :
L Correct Render L Parse Tree

To get the benefit of using XML, we need to explore if syntax checking is really enforced.
Turns out that works if the browser believes markup to be XML, but not if the browser gets
the slightest idea that we mean for content to be HTML. See for yourself when you try the
examples that follow. You should note it properly fails when it assumes XML and not when
it suspects HTML.

Chapter 1: Traditional HTML and XHTML

ONLINE http://htmlref.com/chl/xhtmlasxmlmalformed.html
http://htmlref.com/chl/xhtmlasxmlmalformed.xml

GG B e e e 5 ooy | o {I g D+
S
iy € X & pimdondlimheminifometimt (7) Grlasgs P g e S At 050 i o v
The XML page cannot be displayed
XML Parsing Error: mismatched tag, Expecled: <lem>. e e
Location: http:ftmiref.comichifxhtmiasxmimalformed.xmi oy ooy .
Line Number 12, Column 46: e
Ol et Gy

!
N b ML s

I e e

ERROR! YL parsing faked |
m’*w.mmm'mm AR pariny tabel ayier e Line 10 Chaecie #4) I
errer o2 line 12 at eelems 146: Opesing a=d esdiag tag missateh: em lise 0 and Pegers dovered m ML
Below is a rendering of the page up to the first error. S, i ree'e) /WP s
Welcome to the World of XHTML
XHTML really
L

4 S R

Four Examples of Errors Caught

NOTE The example presented is quite simple and meant to show the possibility of XHTML if it
were fully realized. Note that as soon as you start adding markup with internal CSS and
JavaScript, the amount of work to get rendering working in browsers increases substantially.

In summary, if a browser really believes it is getting XML, it will enforce parsing rules
and force well-formedness. Regardless of whether rules are enforced or not, without
Internet Explorer rendering markup visually, it would appear that we have to deliver

XHTML as standard HTML, as mentioned earlier in the chapter, which pretty much makes
the move to an XML world pointless.

NOTE As this edition of the book was wrapped up, the future of XHTML 2 became murky because
the W3C announced that it was letting the XHTML2 Working Group’s charter expire. This,

however, should not be taken to indicate that XML applied to HTML is dead; it does indeed live
on under HTML5.

a1

32

Part I: Core Markup

HTML5: Back to the Future

Starting in 2004, a group of well-known organizations and individuals got together to form a
standards body called the Web Hypertext Application Technology Working Group, or
WHATWG (www.whatwg.org), whose goal was to produce a new version of HTML. The exact
reasons and motivations for this effort seem to vary depending on who you talk to—slow
uptake of XHTML, frustration with the lack of movement by the Web standards body, need for
innovation, or any one of many other reasons—but, whatever the case, the aim was to create a
new, rich future for Web applications that include HTML as a foundation element. Aspects of
the emerging specification such as the canvas element have already shown up in browsers
like Safari and Firefox, so by 2008, the efforts of this group were rolled into the W3C and drafts
began to emerge. Whether this makes HTML5 become official or likely to be fully adopted is
obviously somewhat at the mercy of the browser vendors and the market, but clearly another
very likely path for the future of markup goes through HTMLS5. Already we see Google
adopting it in various places, so its future looks bright.

NOTE While HTMLDS5 stabilized somewhat around October 2009, with a W3C final candidate
recommendation goal of 2012, you are duly warned that the status of HTML5 may change.
Because of the early nature of the specification, specific documentation of HTMLS5 focuses more on
what works now than on what may make it into the specification later.

HTMLS5 is meant to represent a new version of HTML along the HTML 4 path. The
emerging specification also suggests that it will be a replacement for XHTML, yet it ends up
supporting most of the syntax that end users actually use, particularly self-identifying
empty elements (for example,
). It also reverses some of the trends, such as case
sensitivity, that have entered into markup circles, so it would seem that the HTML styles of
the past will be fine in the future. In most ways, HTML5 doesn’t present much of a
difference, as you saw earlier in the chapter’s introductory example, shown again here:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>

<!-- Simple hello world in HTML5 example -->
</head>

<body>

<hl>Welcome to the Future World of HTML5</hl>
<hr>

<p>HTML5 really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

ONLINE http://htmlref.com/ch/helloworldhtml5.html

Chapter 1: Traditional HTML and XHTML

All that is different in this example is that the < 1 DOCTYPE> statement is much simpler. In
fact, the specific idea of using SGML and performing validation does not apply to HTMLS5.
However, the syntax checking benefits of validation lives on and is now being called
conformance checking and for all intents and purposes is the same. Interestingly, because
of the statement in its shortened form, browsers will correctly enter into a standards
compliance mode when they encounter an HTML5 document:

- (& Page Info - hitp://htmiref.com/chl/helloworldhtmiS.html [[=-|[E|[=

o ti &

General Permissions Security

Hello HTML World:

Address: ttp://htmiref.com/chl/helloworldhtmi5.html
Type: tedt/html

Render Mode: (Gtandards compliance mode

Encoding: UTF-8

Size: 0.49 KB (501 hytes)

In the next chapter, we'll see that HTMLS5 is quite a bit different than HTML 4 despite what
our “hello world” example suggests. There are many new tags and there is a tremendous
emphasis on interactivity and Web application development. However, probably the most
interesting aspect of HTMLS5 is the focus on defining what browsers—or, more widely, user
agents in general—are supposed to do when they encounter ill-formed markup. HTML5, by
defining known outcomes, makes it much more likely that today’s “tag soup” will be parsed
predictably by tomorrow’s browsers. Unfortunately, read another way; it provides yet more
reasons for those who create such a mess of markup not to change their bad habits.

Likely, the future of markup has more than one possible outcome. My opinion is that
those who produce professional-grade markup or who write tools to do so will continue to
embrace standards, XML or not, while those who dabble with code and have fun will
continue to work with little understanding of the rules they break and will have no worries
about doing so. The forgiveness that HTML allows is both the key to its popularity and,
ultimately, the curse of the unpredictability often associated with it.

Summary

HTML is the markup language for building Web pages and traditionally has combined
physical and logical structuring ideas. Elements—in the form of tags such as and
—are embedded within text documents to indicate to browsers how to render pages.
The rules for HTML are fairly simple and compliance can be checked with a process called
validation. Unfortunately, these rules have not been enforced by browsers in the past.
Because of this looseness, there has been a great deal of misunderstanding about the
purpose of HTML, and a good portion of the documents on the Web do not conform to any
particular official specification of HTML. Stricter forms of HTML, and especially the
introduction of XHTML, attempt to impose a more rigid syntax, encourage logical markup,
and leave presentational duties to other technologies such as Cascading Style Sheets. While
very widespread, use of strict markup has yet to occur on the Web. Web developers should
aim to meet standards to future-proof their documents and more easily address all the
various issues that will certainly arise in getting browsers to render them properly.

This page intentionally left blank

CHAPTER
Introducing HTMLS

he HTMLS5 specification not only embraces the past, by supporting traditional
I HTML- and XHTML-style syntax, but also adds a wide range of new features.

Although HTML5 moves forward from HTML 4, it also is somewhat of a retreat and
an admission that trying to get every Web developer on the Internet to write their markup
properly is a futile effort, particularly because few Web developers are actually formally
trained in the technology. HTMLS5 tries to bring order to chaos by codifying common
practices, embracing what is already implemented in browsers, and documenting how
these user agents (browsers or other programs that consume Web pages) should deal with
our imperfect markup.

HTMLS5'’s goals are grand. The specification is sprawling and often misunderstood.
Given the confusion, the goals of this chapter are not only to summarize what is new about
HTMLS5 and provide a roadmap to the element reference that follows, but to also expose
some of the myths and misconceptions about this exciting new approach to markup.

NOTE Perhaps just to be new, HTML5 omits the space found commonly between (X)HTML and its
version number, as in HTML 4 or XHTML 1. We follow this style generally in the book, but note
even the specification has not been stringent on this point.

Hello HTML5

The syntax of HTML5 should be mostly familiar. As shown in the previous chapter, a simple
HTML5 document looks like this:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML5 World</title>
</head>

<body>

<hl>Hello HTML5</hl>

<p>Welcome to the future of markup!</p>
</body>

</html>

95

Part I: Core Markup

ONLINE http://htmlref.com/ch2/helloworld.html

For all practical purposes, all that is different from standard HTML in this example is
the < 1DOCTYPE> statement. Given such minimal changes, of course, basic HTML5 will
immediately render correctly in browsers, as demonstrated in Figure 2-1.

As indicated by its atypical < !DOCTYPE> statement, HTMLD5 is not defined as an SGML
or XML application. Because of the non-SGML /XML basis for HTML, there is no concept of
validation in HTMLS5; instead, an HTML5 document is checked for conformance to the
specification, which provides the same practical value as validation. So the lack of a formal
DTD is somewhat moot. As an example, consider the following flawed markup:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello Malformed HTML5 World</title>

</head>

<body>

<!-- note bad close tag below -->

<hl>Hello Malformed HTML5<hl>

<!-- unknown tag found here -->

<p>Welcome to the <danger>future</danger> of markup!</p>

<!-- missing </body> -->

</html>

r-iﬂellu HTMLY World - Mezitls Firefeo 35 Beta1 8 Hello HTMLS World - Internet Explorer provided by Dell (= | ==
e frbt. e T @()v) hitp/htenirel.comych2hellowerid tmi v [55] 49 | X | |2 Googie P -
g_’—v c oo | ittpe/itmiref.comich/helloworld html 17 - Edit) — S
| Hello HTMLS World [ik Faverites | @ Hello HTMLS Waorld v B - 0 #m v Page~ Sefety+

Hello HTMLS

Welcome to the fistare of markup!

Hello HTMLS

Welcome to the fiture of markup!

& Hella HTMLS Warld - Opera
Fike Edit View Bookmarks Widgets Tools

Y Hello HTMLS World
Helg -

Hello HTMLS World x « C || %% hitpy//htmiref.com/ch2/hellowarld htm » O~ F-
NIRE IR N IRE- JNE. T H hng:‘.fl-';kmlld.:nm_':hzhc » 2(IC] o
Lt St “55 Hello HTMLS
Hello Hr]:‘h‘-[l-l5 Welcome to the fomre of markup!

Welcome to the future of markup!

Ficure 2-1 HTMLS5 is alive.

Chapter 2: Introducing HTML5S

ONLINE http://htmlref.com/ch2/conformancecheck.html

When checked with an HTML5 conformance checker, such as the W3C Markup
Validation Service used in this chapter (available at http:/ /validator.w3.org), you see the
expected result:

€ 9| C | ¢ httpy/validatorw3.org/check?uri=http://htmiref.com/ch2/conformancecheck htmi&charset=(d| » [~ S~

&

Markup Validation Service

Jump To: Notes and Potential Issues Validation Output

Errors found while checking this document as HTMLS5!

Result: 3 Errors, 3 warning(s) 3

Address : |http://htmlref. com/ch2/cont heck. html
Encoding: uti-8 (detact automatically) =l
Doctype: HTMLS (detect automatically) [=]

Root Element: himl

Later, with errors corrected, a clean check is possible:

[[Valid] Markup Validation...

€ 9 C #| % hittp//validatorw3.org/check?uri=http://htmiref.com/ch2/conformancecheckfixed html&charst| » [+ S~

»

Markup Validation Service
Jump To: MNotes and Potential Issues Congratulations - lcons
=
This document was successfully checked as HTML5!
Result: Passed 1 warning(s)
Address : http://htmlref.com/ch2/cont heckfixed.html
Encoding: uf-8 | (detect automatically) B
Doctype: HTMLS -_(-detect amom.aima}_l.:,l;_ E

RootElement: himi

o1

38

Part I: Core Markup

NOTE Given the currently fluid nature of HTML5, developers are warned that, at least for now,
HTMLS5 conformance may be a bit of a moving target.

If you are wondering what mode the browser enters into because of the divergent
<1DOCTYPE> used by HTMLS5, apparently it is the more standards-oriented mode:

@ Page Info - hitp://htmlref.com/ch2/conformancecheck.html [-= |- =)

= ' f)
E i) -1":‘-- B2

General Permissions Security

Hello Malformed HTML 5 World:
Address: http://htmiref.com/ch2/conformancecheck.html
Type: te}_rt.a’html
I Render Mode: Standards compliance model I
Encoding: UTF-8
Size: 0.35 KB (354 bytes)
Modified: Saturday, July 11, 2009 12:40:02 PM

Employing the more standards-oriented parsing mode might seem appropriate, but it is
somewhat odd given the point of the next section.

Loose Syntax Returns

An interesting aspect of HTMLS5 is the degree of syntax variability that it allows. Unlike its
stricter markup cousin, XHTML, the traditional looseness of HTML is allowed. To demonstrate,
in the following example, quotes are not always employed, major elements like html, head,
and body are simply not included, the inference of close of tags like </p> and </1i>is
allowed, case is used variably, and even XML-style self-identifying close syntax is used at will:

<!DOCTYPE html>
<!-- I have no html, head, or body as they are actually optional -->
<meta http-equiv=Content-Type content="text/html; charset=utf-8">
<title>HTML5 Tag Soup Test</title>
<hl title="more sloppy markup ahead!">HTML5</H1>
<p id=pl>Back to the future of loose markup!?
<p>Yes it looks that way

optional elements
case is no problem
<li id=noquotes>quotes optional in many cases
<lis>inferred close tags

<p>0Oh my

<p>Intermixing markup styles!
<!-- ok that's enough let's stop now -->

ONLINE http://htmlref.com/ch2/loosesyntax.html

Chapter 2: Introducing HTML5 §9

This example, at least currently, conforms to the HTMLS5 specification:

I [vahid] Markup Validahon... %

* - c “ v hrtpefvalidatorw3.arg/checkTuri=hrtp://himiref.com/ch?/loosesyntax. himl&charser=(detect+: | » O~ k-~

wsc* Markup Validation Service

Web documents

Jump To: Notes and Polenlial lssues Comgratulalions - lcons

This document was successfully checked as HTMLS5!

Result: | Passed, 1 warning(s)

Address : |htrp://htmlref. com/ch?/ 1onaeayntax. html
Encoding: utf-8 [{detect automatically) =]
Doctype: HIMLS _-{deteck automatically) B =

Root Element: html

Do not interpret the previous example to mean that HTMLS5 allows a markup free-for-all.
Understand that these “mistakes” are actually allowed under traditional HTML and thus
are allowed under HTML5. To ensure that you conform to the HTMLS5 specification, you
should be concerned primarily about the following:

e Make sure to nest elements, not cross them; so
<i>is in error as tags cross</i>
whereas
<i>is not since tags nest</i>.
* Quote attribute values when they are not ordinal values, particularly if they contain
special characters, particularly spaces; so
<p id=pl>Fine with no quotes</p>
because it is a simple attribute value, whereas
<p title=trouble here with no quotes>Not ok without quotes</p>
is clearly messed up.

¢ Understand and follow the content model. Just because one browser may let you
use a list item anywhere you like,

<1i>I should be in a list!</1li>

it isn’t correct. Elements must respect their content model, so the example should
read instead as

All is well I am in a list!

because it follows HTML5’s content model.

60

Part I: Core Markup

¢ Do not use invented tags unless they are included via some other markup language:

<p>I <danger>shouldn't</danger> conform unless I am defined in
another specification and use a name space</p>

¢ Encode special characters, particularly those used in tags (< >), either as an entity
of a named form, such as &1t ;, or as a numeric value, such as < ;. Appendix A
covers this topic in some depth.

This brief list of what you should do might seem familiar; it is pretty much the list of
recommendations for correct markup from the previous chapter returned to the traditional
markup styles of HTML. What this means is that if you have been writing markup correctly
in the past, HTML5 isn’t going to present much of a change. In fact, in many cases, just by
changing a valid document’s doctype to the new simple HTML5 < !DOCTYPE html>, the
result should be an HTML5—conforming document.

XHTMLS

For those with a heavy investment in a strict XHTML syntax worldview, HTML5 might
seem like a slap in the face. However, such a reaction is a bit premature; HTML5 neither
makes the clean markup you write non-conforming nor suggests that you shouldn’t author
markup this way. If you want to pursue an “XMLish” approach to your document, HTML5
allows it. Consider, for example, a strict XHTML example that is now HTMLS5:

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Hello XHTML5 World</title>

<!-- Simple hello world in XHTML5 -->

</head>

<body>

<hl>Welcome to the World of XHTMLS5</hl>

<hr />

<p>XHTML5 really isn't so hard either!</p>
<p>HTML5 likes XML syntax too.</p>

<p>Make sure to serve it with the correct MIME type!</p>

<!-- IE users you will get a render error.
Please read on to learn why. -->

</body>

</html>

ONLINE http://htmlref.com/ch2/xhtml5helloworld.xhtml

NoOTE When using XML syntax with HTMLS according to HTMLS5 specification, this should be
termed XHTMLS.

Chapter 2:

Introducing HTMLS

61

Notice that the previous example uses an .xhtml file extension. XHTML5 usage clearly
indicates that an HTML5 document written to XML syntax must be served with the MIME
type application/xhtml+xml or application/xml. The previous example was served
with the former MIME type. You can find the same example served with latter XML MIME
type at http:/ /htmlref.com/ch2/xhtml5helloworld.xml.

Unfortunately, although HTML5 supports XML, the real value of XHTML—the true
strictness of XML—has not been realized, at least so far, because of a lack of browser
support. As of this edition’s writing, Internet Explorer browsers (up to version 8) will not
render XHTML served with the appropriate application/xhtml+xml MIME type and
will take the raw XML form and render it as a parse tree. Other browsers, fortunately, don’t
do this (see Figure 2-2), which is little solace given Internet Explorer’s widespread usage.

You can write XMLish markup and serve it as text /html but it won't provide the
benefit of strict syntax conformance. In short, HTMLS5 certainly allows you to try to
continue applying the intent of XHTML in the hopes that someday it becomes viable.

@ Hielio XHTMLS World - Mozitia Firefox 36 Beta 1 I

Pt T

| Hello XHTMLS World |+

| hatp/ihmiref.com/ch2 tmiShelloworld: 17 - [&= Google

Welcome to the World of XHTMLS

XHTMLS really isn't so hard either!
HTMLS kes XML symtax foo

Make sure to serve it with the comect MIME type!

-

= T
¥ D Hella XHTMLS Worid

<titfe >Hallo XHTML 5 World </btla >
ot il o e s g

<emsreally < ems
t so hard elther!

€ C & | hips/htmivelcomych2/xhimiShelioworidxhtm

b O k-
Welcome to the World of XHTMLS

NHTMLS really isn't so berd either!
HIMLS likes XML syntax too
Make sure to serve it with the correct MIME type!

& Hello XHTMLS Warkd - Opers P =

File Edit View Bookmaeks Widgets Tooks Help
B oo GTMLS Word X

Mellal =+ 0 A § B i it comchish 2 LG Googie z

Welcome to the World of XHTMLS

NHTMLS really sn't so hard either!
HTMLS Bees XML syniaz too
Malce sure to serve it with the comect MIME typel

) =R

g

<.D' HTML 5 likes XML syntax too. </ps

</body>
</html=

Done o' Trusted sites | Protected Mode: OF

B8 Mg el bry Dl | =
G'-ﬁ_) w [B nipmirel.comch/ntmiShelloword, » | 53 | 43| % | |80 Google P
W Favorites | 8 hepd himdeed comy/chi. fif * B - = 8 ~ Pagev falety~
<taml version="1,0" encoding="UTF-§" 7>
chtml xmins="http:/ /www.wl.org/ 1999 /xhtmi®>
<head:

po¥et now you have to serve it with the correct MIME type! </

Gav 0w -

P

#8 Diank Page - Internet Explorer prowded by Dell

8 Blenk Poge

K3 (/= &) Htpmamirer comichantmisheliawardshtml = & | % || &9 Googie

SiEiE
5 vl

71 Ay mac bedorm opesring this typa of fis

Intemel i
the s, da nol

|9-

" rguter 1y
tirr i Fi, Wt L

i Favarites B+ B =00 o+ Dager Sefetyw
Do you want to open or save this file?
" Mama' shtwiShelioworid shimi
| Topw: Firefox Detument, 433 bytes
From. himbel.com
(== -

Dane & Iternet | Protected Mede: O

v Wox -

Ficure 2-2 XHTML5 works, but Internet Explorer support lags.

62 Partl: Core Markup

HTML5: Embracing the Reality of Web Markup

Given the looseness HTML5 supports and its de-emphasis of the XML approach to markup,
you might assume that HTMLS5 is a retreat from doing things in the right way and an
acceptance of “tag soup” as legitimate markup. The harsh reality is that, indeed, valid
markup is more the exception than the rule online. Numerous surveys have shown that in
the grand scheme of things, few Web sites validate. For example, in a study of the Alexa
Global Top 500 in January 2008, only 6.57 percent of the sites surveyed validated.! When
sample sizes are increased and we begin to look at sites that are not as professional, things
actually get worse. Some validation results from Opera’s larger MAMA (Metadata Analysis
and Mining Application) study are shown here*:

Study Date Passed validation Total validated Percentage
Parnas Dec. 2001 14,563 2,034,788 0.71%
Saarsoo Jun. 2006 25,890 1,002,350 2.58%
MAMA Jan. 2008 145,009 3,509,180 4.13%

Fig 5-1: Validation pass rate studies

Interestingly, Google has even larger studies, and while they don’t focus specifically on
validation, what they indicate on tag usage indicates clearly that no matter the sample size,
clean markup is more the exception than the rule.

Yet despite the markup madness, the Web continues to work. In fact, some might say the
permissive nature of browsers that parse junk HTML actually helps the Web grow because it
lowers the barrier to entry for new Web page authors. Certainly a shaky foundation to build
upon, but the stark reality is that we must deal with malformed markup. To this end, HTML5
makes one very major contribution: it defines what to do in the presence of markup syntax
problems.

The permissive nature of browsers is required for browsers to fix markup mistakes. HTML5
directly acknowledges this situation and aims to define how browsers should parse both well-
formed and malformed markup, as indicated by this brief excerpt from the specification:

This specification defines the parsing rules for HTML documents, whether they
are syntactically correct or not. Certain points in the parsing algorithm are said
to be parse errors. The error handling for parse errors is well-defined: user agents
must either act as described below when encountering such problems, or must
abort processing at the first error that they encounter for which they do not wish
to apply the rules described below.

While a complete discussion of the implementation of an HTML5-compliant browser
parser is of little interest to Web document authors, browser implementers now have a
common specification to consult to determine what to do when tags are not nested, simply
left open, or mangled in a variety of ways. This is the part of the HTML5 specification that

! Brian Wilson, “MAMA W3C Validator Research,” subsection “Interesting Views of Validation Rates, part 2:
Alexa Global Top 500,” Dev.Opera, October 15, 2008, http://dev.opera.com/articles/view /mama-w3c-
validator-research-2 /?page=2#alexalist.

2Ibid., subsection “How Many Pages Validated?” http:/ /dev.opera.com/articles/view /mama-w3c-
validator-research-2 /#validated.

Chapter 2: Introducing HTML5S

will likely produce the most good, because obtaining consensus among browser vendors to
handle markup problems in a consistent manner is a more likely path to an improved Web

than defining some strict syntax and then attempting to educate document authors around
the world en masse to write good markup.

HTMLY5’s aim to bring order to the chaos of sloppy markup is but one of the grand
aims of the specification. It also aims to replace traditional HTML, XHTML, and DOM
specifications, and to do so in a backward-compatible fashion. In its attempt to do this, the
specification is sprawling, addressing not just what elements exist but how they are used
and scripted. HTML5 embraces the fact that the Web not only is composed of documents
but also supports applications, thus markup must acknowledge and facilitate the building
of such applications. More of the philosophy of HTMLS5 will be discussed later in the
chapter when addressing some strong opinions, myths, and misconceptions surrounding
the specification; for now, take a look at what markup features HTML5 actually changes.

Presentational Markup Removed and Redefined
HTMLS5 removes a number of elements and attributes. Many of the elements are removed
because they are more presentational than semantic. Table 2-1 presents the elements
currently scheduled for removal from HTML5.

NotEe Although these elements are removed from the specification and should be avoided in favor of
CSS, they likely will continue to be supported by browsers for some time to come. The specification
even acknowledges this fact.

Looking at Table 2-1, you might notice that some elements that apparently should be
eliminated somehow live on. For example, <small> continues to be allowed, but <big> is
obsolete. The idea here is to preserve elements but shift meaning. For example, <small> is
no longer intended to correspond to text that is just reduced in size, similar to 0r , butinstead is intended to
represent the use of small text, such as appears in fine print or legal information. If you
think this decision seems a bit preposterous, join the crowd. Some of the other changes to
element meaning seem even a bit more preposterous, such as the claim that a tag now
represents inline text that is stylistically offset from standard text, typically using a different

Removed HTML Element | CSS Equivalent

<basefont> body {font-family: family; font-size: size;}
<big> font-size: larger

<center> text-align: center ormargin: auto depending on context
 font-family, font-size, or font

<s>, <strike> text-decoration: strike

<tt> font-family: monospace

<u> text-decoration: underline

TaBLe 2-1 HTML 4 Elements Removed from HTML5

63

64

Part I: Core Markup

type treatment. So apparently tags are not necessarily bold, but rather convey some
sense that the text is “different” (which likely means bold). Unlikely to be thought of in such
a manner by mere markup mortals, we simply say tags live on, as do a number of other
presentational elements. Table 2-2 presents the meaning-changed elements that stay put in
HTMLS5 and their new meaning.

The meaning of some of these items might not be immediately clear, but don’t worry
about that now, because each will be demonstrated later in the chapter and a full reference
presented in Chapter 3.

Like the strict variants of (X)HTML, HTMLS5 also removes numerous presentation-
focused attributes. Table 2-3 summarizes these values and presents CSS alternatives.

Out with the Old Elements

A few elements are removed from the HTMLS5 specification simply because they are archaic,
misunderstood, have usability concerns, or have a function that is equivalent to the function
of other elements. Table 2-4 summarizes some of the elements that have been removed from
the HTMLS specification.

NoOTE While frames are mostly removed from HTMLS5, inline frames live on. See the section “The
Uncertain Future of Frames,” later in the chapter, for more information.

Table 2-4 is not a complete list of non-conforming elements, just the ones that are supported
by recent HTML 4 and XHTML 1.x specifications. Discussing the fact that ancient tags like
<listing>and <plaintext> continue not to be supported or that all the presentational tags

HTML Element | New Meaning in HTML5

 Represents an inline run of text that is different stylistically from normal
text, typically by being bold, but conveys no other meaning of importance.

<dd> Used with HTML5’s new details and figure elements to define the
contained text. Was also used with a dialog element which was later
removed from the HTML5 specification.

<dt> Used with HTML5’s new details and £igure element to summarize the
details. Was also used with a dialog element which was later removed
from the HTML5 specification.

<hr> Represents a thematic break rather than a horizontal rule, though that is
the likely representation.

<i> Represents an inline run of text in an alternative voice or tone that is
supposed to be different from standard text but that is generally presented
in italic type.

<menu> Redefined to represent user interface menus, including context menus.

<smalls> Represents small print, as in comments or legal fine print.

 Represents importance rather than strong emphasis.

TaBLE 2-2 HTML 4 Elements Redefined in HTML5

Chapter 2: Introducing HTML5S

Attribute Removed | Elements Effected CSS Equivalent
align caption, col, colgroup, div, | text-align or in some block element
iframe, hl, h2, h3, h4, h5, cases float
h6, hr, img, input, legend,
object, p, table, tbody, td,
tfoot, th, thead, tr
alink body body a:active {color: color-
value; }
background body background-image or background
bgcolor body, table, td, th, tr background-color
border img, object, table border-width and/or border
cellpadding table padding
cellspacing table margin
char col, colgroup, table, tbody, | N/A
td, tfoot, th, thead, tr
charoff col, colgroup, table, tbody, | N/A
td, tfoot, th, thead, tr
clear br clear
compact dl, menu, ol, ul margin properties
frame table border properties
frameborder iframe border properties
height td, th height
hspace img, object margin properties
link body body a:link {color: color-
value; }
marginheight iframe margin properties
marginwidth iframe margin properties
noshade hr border-style or border
nowrap td, th overflow
rules table border properties
scrolling iframe overflow
size hr width
text body body {color: color-value;}
type 1i, o1, ul list-style-type and list-style
valign col, colgroup, tbody, td, vertical-align
tfoot, th, thead
vlink body body a:visited {color: color-
value; }
width col, colgroup, hr, pre, width
table, td, th

TaBLE 2-3

HTML 4 Attributes Removed in HTML5

65

66 Part1: Core Markup

Removed Element | Reasoning Alternatives

acronym Misunderstood by many Web Use the abbr element.
developers.

applet Obsolete syntax for Java applets. | Use the object element.

dir Rarely used, and provides similar | Use the ul element.

functionality to unordered lists.

frame Usability concerns. Use fixed-position elements with
CSS and/or object elements with
sourced documents.

frameset Usability concerns. Use fixed-position elements with
CSS and/or object elements with
sourced documents.

isindex Archaic and can be simulated Use the input element to create
with typical form elements. text field and button and back up with
appropriate server-side script.

noframes Since frames are no longer N/A
supported, this contingency
element is no longer required.

TaBLE 2-4 Elements Removed by HTML5

like and proprietary tags like <spacer>, <marquee>, and <blink> should be off limits
is somewhat redundant and does not build on the specifications. However, the reference in
Chapter 3 covers compliance points completely, so when in doubt check the appropriate
element’s entry.

In with the New Elements

For most Web page authors, the inclusion of new elements is the most interesting aspect of
HTMLS5. Some of these elements are not yet supported, but already many browsers are
implementing a few of the more interesting ones, such as audio and video, and others can
easily be simulated even if they are not directly understood yet, as you will see later in the
chapter. Table 2-5 summarizes the elements added by HTMLS5 at the time of this edition’s
writing, and the sections that follow illustrate their use. Again, Chapter 3 provides

a complete element syntax discussion.

Sample of New Attributes for HTML5

One quite important aspect of HTMLS5 is the introduction of new attributes. There are quite
a few attributes that are global and thus found on all elements. Table 2-6 provides a brief
overview of these attributes. We'll take a look at many of these in upcoming sections and

a complete reference for all is found in the next chapter.

The element reference in Chapter 3 provides the full syntax for the various HTML5
attributes that may have been added to specific elements. Some of them, such as reversed
for use on ordered lists (<o1>), are a long time in coming, while others simply add polish, or
address details that few page authors may notice.

Chapter 2: Introducing HTML5S

New Element | Description

article Encloses a subset of a document that forms an independent part of a document,
such as a blog post, article, or self-continued unit of information.

aside Encloses content that is tangentially related to the other content in an enclosing
element such as section.

audio Specifies sound to be used in a Web page.

canvas Defines a region to be used for bitmap drawing using JavaScript.

command Located within a menu element, defines a command that a user may invoke.

datalist Indicates the data items that may be used as quick choices in an input element of
type="1list".

details Defines additional content that can be shown on demand.

figure Defines a group of content that should be used as a figure and may be labeled by a
legend element.

footer Represents the footer of a section or the document and likely contains
supplementary information about the related content.

header Represents the header of a section or the document and contains a label or other
heading information for the related content.

hgroup Groups heading elements (h1-h6) for sectioning or subheading purposes.

mark Indicates marked text and should be used in a similar fashion to show how a
highlighter is used on printed text.

meter Represents a scalar measurement in a known range similar to what may be
represented by a gauge.

nav Encloses a group of links to serve as document or site navigation.

output Defines a region that will be used to hold output from some calculation or form
activity.

progress Indicates the progress of a task toward completion, such as displayed in a progress
meter or loading bar.

rp Defines parentheses around ruby text defined by an rt element.

rt Defines text used as annotations or pronunciation guides. This element will be
enclosed within a ruby element.

ruby This is the primary element and may include rt and rp elements. A ruby element
serves as a reading or pronunciation guide. It is commonly used in Asian languages,
such as in Japanese to present information about Kanji characters.

section Defines a generic section of a document and may contain its own header and
footer.

source Represents media resources for use by audio and video elements.

time Encloses content that represents a date and/or time.

video Includes a video (and potentially associated controls) in a Web page.

TaBLE 2-5 Elements Added by HTML5

67

68 Part I:

Core

Markup

New Attribute

Description

accesskey

Defines the accelerator key to be used for keyboard access to an element.

contenteditable

When set to true, the browser should allow the user to edit the content of
the element. Does not specify how the changed content is saved.

contextmenu

Defines the DOM id of the menu element to serve as a context menu for
the element the attribute is defined on.

data-X

Specifies user-defined metadata that may be put on tags without concern of
collision with current or future attributes. Use of this type of attribute avoids
the common method of creating custom attributes or overloading the class
attribute.

draggable

When specified, should allow the element and its content to be dragged.

hidden

Under HTMLD5, all elements may have hidden attribute which when placed
indicates the element is not relevant and should not be rendered. This
attribute is similar to the idea of using the CSS display property set to a
value of none.

itemid

Sets a global identifier for a microdata item. This is an optional attribute, but
if it is used, it must be placed in an element that sets both the itemscope
and itemtype attributes. The value must be in the form of a URL.

itemprop

Adds a name/value pair to an item of microdata. Any child of a tag with an
itemscope attribute can have an itemprop attribute set in order to add a
property to that item.

itemref

Specifies a list of space-separated elements to traverse in order to find
additional name/value pairs for a microdata item. By default, an item

only searches the children of the element that contains the itemscope
attribute. However, sometimes it does not make sense to have a single
parent item if the data is intermingled. In this case, the itemref attribute
can be set to indicate additional elements to search. The attribute is
optional, but if it is used, it must be placed in an element that sets the
itemscope attribute.

itemscope

Sets an element as an item of microdata (see “Microdata” later in the
chapter).

itemtype

Defines a global type for a microdata item. This is an optional attribute,
but if it is used, it must be placed in an element that sets the itemscope
attribute. The value must be in the form of a URL.

spellcheck

Enables the spell checking of an element. The need for this attribute globally
may not be clear until you consider that all elements may be editable at
page view time with the contenteditable attribute.

tabindex

Defines the element-traversal order when the keyboard is used for navigation.

TaBLE 2-6 Key Attributes Added by HTML5

Chapter 2: Introducing HTMLS 69

HTML5 Document Structure Changes

As you have seen, the HTML5 document structure seems pretty much the same as in HTML
4 save a slightly different <! DOCTYPE> statement. However, if you look closer, there are a
few important differences in HTML5 that show the document structure has in fact been
expanded quite a bit.

HTML5 documents may contain a header element, which is used to set the header
section of a document and thus often contains the standard h1 to hé heading elements:

<header>

<hl>Welcome to the Future World of HTML5.</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

Similarly, a footer element is provided for document authors to define the footer
content of a document, which often contains navigation, legal, and contact information:

<footer>
<p>Content of this example is not under copyright</p>
</footer>

The actual content to be placed in a <footers> tag is, of course, up to you and may be
enclosed in div, p, or other block elements, as illustrated by this simple example:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTMLS5 header and footer example</title>
</head>

<body>

<header>

<hl>Welcome to the Future World of HTML5.</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

<p>Some body content here.</p>

<p>Some more body content here.</p>

<footer>

<p>Content of this example is not under copyright.</p>
</footer>

</body>

</html>

ONLINE http://htmlref.com/ch2/headerfooter.html

The HTMLS5 structural element with the most possible uses is the section element. A
particular <section> tag can be used to group arbitrary content together and may contain
further <section> tags to create the idea of subsections. Traditionally, we are familiar with
sections; just as this book is broken into chapters and various main and secondary sections,

10

Part I: Core Markup

so too could a Web document be structured in this way. The example here illustrates the
basic use of HTMLS5 sections:

<section>
<hl>Chapter 2</hl>
<p>New HTMLS5 elements.</p>
<section>
<h2>HTML5's section Element</h2>
<p>These elements are useful to create outlines.</p>
<section>
<h3>Nest Away!</h3>
<p>Nest your sections but as you nest you might want to indent.</p>
</section>
</section>
<p>0Ok that's enough of that.</p>
</section>

ONLINE http://htmlref.com/ch2/section.html

It may not be obvious but a section element may contain header and footer elements

of its own:

<section>
<header>
<hl>I am Section Heading</hl>
</header>
<h2>I am outside the section header I'm just a plain headline.</h2>
<p>Some more section content might go here.</p>
<footer>
<p>Hi from the footer of this section.</p>
</footer>
</section>

HTMLS5 uses headings and newly introduced elements like the section element for
outlining purposes. For example, the expanded example here shows a number of sections
with headers, footers, headlines, and content:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 expanded section example</title>
</head>

<body>

<header>

<hl>Welcome to the Future World of HTMLS5</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

Chapter 2: Introducing

<!-- assume chapter 1 before -->
<section id="chapter2">
<header>
<hl>Chapter 2</hl>
</header>

<p>Intro to chapter 2 here...</p>
<section id="newStrucreElements">
<header>

<h2>New Structural Elements</h2>
</header>

<h3>header Element</h3>

<p>Discussion of header element.</p>

<h3>footer Element</h3>
<p>Discussion of footer element.</p>

<h3>section Element</h3>
<p>Discussion of section element</p>
</section>

<section id="newFormElements">
<header>
<h2>New Form Elements</h2>
</header>
<h3>input type=date</h3>
<p>Discussion here...</p>
<footer>
<p>These ideas are from WebForms specification.</p>
</footer>
</section>
</section>

<section id="chapter3">
<header>
<h2>Chapter 3</h2>
</header>
<p>Massive element reference...</p>
</section>
<footer>
<p>Content of this example is not under copyright</p>
</footer>

</body>
</html>

HTMLS

ONLINE http://htmlref.com/ch2/sectionoutline.html

[J!

12

Part I: Core Markup

HTML5-compliant browsers should take this markup and define an outline based upon
the use of headers, like so:

1. Welcome to the Future World of HTML5
1. Chapter 2
1. New Structural Elements
1. header Element
2. footer Element
3. section Element
2. New Form Elements
1. input type=date
2. Chapter 3

In theory, user agents could take the outlining semantics and derive meaning or even
provide an alternative browser interface, although that is quite speculative at this point. It is
clear, however, that if you introduce such outlining ideas, issues may arise. For example, the
first header really was not two levels of sectioning but simply one with a subhead. To
address this outlining, you would take this markup

<header>

<hl>Welcome to the Future World of HTML5</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

and then join the subhead to the headline with an hgroup element like so:

<header>

<hgroup>

<hl>Welcome to the Future World of HTML5</hl>
<h2>Don't be scared it isn't that hard!</h2>

</hgroup>
</header>
1. Welcome to the Future World of HTML5 | 1. Welcome to the Future World of HTML 5
1. Don't be scared it isn't that hard! 1. Chapter 2
2. Chapter 2 1. New Structural Elements
1. Introduction to HTML 5 1. header Element
2. New Structural Elements 2. footer Element
1. header Element 3. section Element
2. footer Element 2. New Form Elements
3. section Element 1. input type=date
3. New Form Elements 2. Chapter 3
1. input type=date
3. Chapter 3
No hgroup hgroup

elements used elements used

Chapter 2: Introducing HTMLS 73

A complete example to explore can be found online, though you may find that a browser
does not do anything of interest and that you need an outline simulator to see the difference
between using <hgroup> tags or not.

ONLINE http://htmlref.com/ch2/hgroup.html

Given these semantics, it is clear that HTMLS5 sectioning elements are not just a
formalization of <div> tags with appropriate class values. For example, you might
consider

<div class="header">
<!-- header here -->
</div>
<div class="section">
<div class="header">
<h2>Section Heading</h2>
</div>
<p>Content of section.</p>
</div>
<div class="footer">
<!-- footer here -->
</div>

to be roughly the same as the previously introduced elements. To some degree this is true,
but clearly the names of the class values aren’t defined by a standard nor is any outlining
algorithm defined.

Beyond sectioning, HTMLS5 introduces a number of other structural elements. For
example, the article element is used to define a discrete unit of content such as a blog
post, comment, article, and so on. For example, the following defines a few individual blog
posts in a document:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTMLS5 article example</title>

</head>

<body>

<header>
<hgroup>
<hl>Welcome to the Future World of HTML5 Blog</hl>
<h2>Don't be scared it isn't that hard!</h2>
</hgroup>
</header>
<section id="articleList">
<h2>Latest Posts</h2>

<article id="article3">
<h2>HTML5 Here Today!</h2>
<p>Article content here...</p>
</article>

[

Part I: Core Markup

<article id="article2">

<h2>HTML5 Widely Misunderstood</h2>
<p>Article content here...</p>
</article>

<article id="articlel">
<h2>Discovering the article element</h2>
<p>Article content here...</p>
</article>
</section>

<footer>
<p>This fake blog example is not real.</p>
</footer>

</body>
</html>

ONLINE http://htmlref.com/ch2/article.html

The idea of defining these discrete content units specially is that you might wish to
extract them automatically, so again, having defined elements as opposed to some ad hoc
use of class names on <div> tags is preferred.

NoTE Under early HTMLS5 drafts, the article element provided for cite and pubdate
attributes, which may make the usage of the content more meaningful by outside sites; however,
these were later dropped and use of <time> tags was encouraged.

HTMLS5 also introduces an aside element, which may be used within content to
represent material that is tangential or, as the element name suggests, an aside:

<p>Here we explore the various HTML5 elements. I would write
some real content here but you are busy reading the book anyway.
</p>

<aside>
<h2>Pointless Aside</h2>
<p>0Oh by the way did you know that the author lives in San Diego?
It is completely irrelevant to the discussion but he seems
to like the weather there as opposed to rainy New Zealand.</p>
</aside>

<p>So as we continue to discuss the various HTML5 elements we must
remember to stay focused as there is much to learn.
</p>

ONLINE http://htmlref.com/ch2/aside.html

Chapter 2: Introducing HTML5S

You may have noted that an <h2> tag was used in the aside. While not required, it is
useful as a reminder to readers that aside elements serve as outline sectioning elements, as
shown here:

1. HTML 5 Examples
1. Exploring the aside Element
1. Pointless Aside
2. Exploring Other Elements

NOTE If a heading is not provided in an aside, you may see an outline mechanism add “Untitled
Section” or potentially even make up one based upon the start of the element content.

Adding Semantics

Many of the elements that HTML5 adds that can be used right away are semantic in nature.
In this sense, HTML5 continues the appropriate goal of separating structure from style. In
this section, you will see a number of repurposed elements as well as some that are all new.
At first you won't see much value in using them other than to add semantics, but toward
the end of the chapter we will explore how to make the elements understandable to most
modern browsers and how to apply some simple styling for end users.

Marking Text
The new HTML5 element mark was introduced for highlighting content similarly to how

a highlighter pen might be used on important text in a book. The following example wraps
a few important words:

<p>Here comes <mark>marked text</mark> was it obvious?</p>

Unfortunately, you won't necessarily see anything with such an example:

Here comes marked text was it obvious?

You would need to apply a style. Here, inline styles are used just to show the idea:

<p>The new HTML5 specification is in the works. While <mark
style="background-color: red;">many features are not currently
implemented or even well defined</mark> yet, <mark
style="background-color: green;">progress is being made</mark>.

Stay tuned to see more new HTML elements added to your Web documents
in the years to come.</p>

The new HTMLS specification is in the works. While [SaN SR e O EAy DI eR e GREen
yet, _ Stay tuned to see more new HTML elements added to your Web
documents in the years to come.

ONLINE http://htmlref.com/ch2/mark.html

16

Part I: Core Markup

After seeing such an example, you might wonder what the point is of this element,
because a tag or maybe even an tag could be used instead. Again, semantics is
the key to this element. It makes the meaning of HTML documents more obvious.

Indicating Dates and Time

Another semantic inline element, time, was introduced by HTML5 to indicate content that
is a date, time, or both. For example,

<p>Today it is <time>2009-07-08</time> which is an interesting date.</p>
as well as

<p>An interesting date/time for SciFi buffs is <time>1999-09-13T09:15:00
</time>!</p>

would both be valid. The element should contain a date/time value that is in the format
YYYY-MM-DDThh:mm: ssTZD, where the letters correspond to years, months, days, hours,
minutes, and seconds, T is the actual letter “T,” and zD represents a time zone designator of
either z or a value like +hh :mm to indicate a time zone offset. However, it seems reasonable
that the time element would contain values that may not be in a common format but are
recognized by humans as dates. If you try something like

<p>Right now it is <time>6:15</time>.</p>

it may be meaningful to you but it does not conform to HTMLS5. To provide both human-
and machine-friendly date/time content, the element supports a datetime attribute, which
should be set to the previously mentioned date format of YYYY-MM-DDThh : mm: ssTZD. So,
the following example is meaningful because it provides both a readable form and a
machine-understood value:

<p>My first son was born on <time datetime="2006-01-13">Friday the 13th
</time> so it is my new lucky day.</p>

ONLINE http://htmlref.com/ch2/time.html

Similar to mark, the time element has no predefined rendering, though you could
certainly define a look using CSS.

Inserting Figures

It is often necessary to include images, graphs, compound objects that contain text and
images, and so on in our Web documents, all of which usually are called figures. Long ago,
HTML 3 tried to introduce the fig element to represent such constructs; HTML5
reintroduces the idea with the more appropriately named f£igure element. A simple
example illustrates this new element’s usage:

<figure id="figl">
<dd>
<img src="figure.png" height="100" width="100"

Chapter 2: Introducing HTML5S

alt="A screen capture of the figure element in action">
<p>This mighty <figure> tag has returned from HTML 3 to haunt your
dreams.</p>
</dd>
<dt>Figure Ex-1</dt>
</figure>

ONLINE http://ntmlref.com/ch2/figure.html

Acting as a semantic element, £igure simply groups items within an enclosed <dd>
tag, though it may associate them with a caption defined by a <dt> tag as shown in the
example. You may desire to style a <€igure> tag by placing a stroke around its visual
rendering or display it in some other appropriate manner; of course, that is the duty of CSS.
You should also note that the use of id on a <figure> will likely be useful to target using
links, as figures may be positioned away from the content that references them.

NOTE In early drafts of the HTMLS5 specification, the <1egend> was used instead of <dt> and no
special tag was required for content enclosure.

Specifying Navigation

One new HTML5 element that is long overdue is the nav element. The purpose of this
element is to encapsulate a group of links that serves as a collection of offsite links,
document navigation, or site navigation:

<nav>

<h2>0ffsite Links</h2>

W3C

Book site

Author's Firm

</nav>

Conventionally, many Web developers have used and <1i> tags to encapsulate
navigation and then styled the elements appropriately as menu items. This seems to
introduce quite a bit of ambiguity in markup because it may be difficult to determine the
difference between a list that has links in it and a list that is simply navigation. The
semantics defined by HTMLS5 for a <nav> tag eliminate this confusion. Interestingly, there is
no requirement to avoid using and <1i> tags within navigation, so if you are a CSS
aficionado who is comfortable with that approach, it is fine to use markup like this:

<nav id="mainNav">

About
Services
Contact
Home</1li>

</nav>

ONLINE http://htmlref.com/ch2/nav.html

18 Part1: Core Markup

HTML5’s Open Media Effort

An interesting aspect of HTMLS5 that is reminiscent of the previous efforts of Netscape and
Microsoft is the support for tag-based multimedia in HTML documents. Traditionally,
multimedia has been inserted with the embed and object elements, particularly when
inserting Adobe Flash, Apple QuickTime, Windows Media, and other formats. However,
there was a time when tags specifically to insert media were supported; interestingly, some
of those features, such as the dynsrec attribute for tags, lived on until just recently.
HTMLS5 brings this concept of tag-based multimedia back.

<video>

To insert video, use a <video> tag and set its src attribute to a local or remote URL containing
a playable movie. You should also display playblack controls by including the controls
attribute, as well as set the dimensions of the movie to its natural size. This simple demo shows
the use of the new element:

<video src="http://htmlref.com/ch2/html 5.mp4"

width="640" height="360" controls>
HTML5 video element not supported
</video>

&) HTML 5 video example

File Edit View History Bookmarks Develop Window Help

| 4| » || + |@ http://htmiref.com/ch2/video.html ¢

[&= SunSpider..rk Results Apple Amazon eBay Yahoo! MNews(31) v

Simple Video Examples

HTML 5

<video> Demo!

4>) a

Chapter 2: Introducing HTML5 79

NortE If you are using XHTMLS5, given that controls is an occurrence style attribute, use
controls="controls" to be conforming.

You should note the included content in the tag that nonsupporting browsers fall back
to. The following shows Internet Explorer displaying the alternative content:

video example - 1 Explorer provided by Dell

L |£ http://htmlref.com/ch2/video.html v| @

File Edit View Favorites Tools Help
<o Favorites [@HTML‘;videommme [| & -8

Simple Video Examples

HTMLS video element not supported

However, even if a browser supports the video element, it might still have problems
displaying the video. For example, Firefox 3.5 won't load this particular media format directly:

v C X &y ([nttp/htmicef.com/ch2/video html =

| || HTML5 video example x | #§ iGoogle x

Simple Video Examples

HTMLS5 open video has, as it currently stands, brought back the madness of media
codec support that Flash solved, albeit in a less than stellar way. To address the media
support problem, you need to add in alternative formats to use by including a number of
<source> tags:

<video width="640" height="360" controls poster="loading.png">

<source src="html 5.mp4" type="video/mp4">
<source src="html 5.ogv" type="video/ogg">

HTML5 video element not supported
</video>

80

Part I: Core Markup

Also note in the preceding snippet the use of the poster attribute, which is set to display an
image in place of the linked object in case it takes a few moments to load. Other video element—
specific attributes like autobuf fer can be used to advise the browser to download media
content in the background to improve playback, and autoplay, which when set, will start the
media as soon as it can. A complete example of the video element in action is shown here:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 video example</title>

</head>

<body>

<hl>Simple Video Examples</hl>
<video src="http://htmlref.com/ch2/html 5.mp4"
width="640" height="360" controls>

HTML5 video element not supported
</video>

<video width="640" height="360" controls poster="loading.png">
<source src="http://htmlref.com/ch2/html 5.mp4" type="video/mp4">
<source src="http://htmlref.com/ch2/html 5.ogv" type="video/ogg">
HTML5 video element not supported

</video>

</body>
</html>

ONLINE http://htmlref.com/ch2/video.html

The reference section in Chapter 3 shows the complete list of attributes for the video
element supported as of late 2009. Be warned, though, that if the various media markup
efforts of the late 1990s repeat themselves, it is quite likely that there will be an explosion of
attributes, many of which may be specific to a particular browser or media format.

<audio>

HTMLS5’s audio element is quite similar to the video element. The element should support
common sound formats such as WAV files:

<audio src="http://htmlref.com/ch2/music.wav"></audio>

In this manner, the audio element looks pretty much the same as Internet Explorer’s
proprietary bgsound element. Having the fallback content rely on that proprietary tag
might not be a bad idea:

<audio>
<bgsound src="http://htmlref.com/ch2/music.wav">
</audio>

Chapter 2: Introducing HTML5 81

If you want to allow the user to control sound play, unless you have utilized JavaScript
to control this, you may opt to show controls with the same named attribute. Depending on
the browser, these controls may look quite different, as shown next.

<audio src="http://htmlref.com/ch2/music.wav" controls></audio>

As with the video element, you also have autobuffer and autoplay attributes for the
audio element. Unfortunately, just like video, there are also audio format support issues,
so you may want to specify different formats using <sources> tags:

<audio controls autobuffer autoplay>

<source src="http://htmlref.com/ch2/music.ogg" type="audio/ogg">
<source src="http://htmlref.com/ch2/music.wav" type="audio/wav">
</audio>

A complete example is shown here:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTMLS5 audio examples</title>

</head>

<body>

<hl>Simple Audio Examples</hl>

<h2>wav Format</h2>
<audio src="http://htmlref.com/ch2/music.wav" controls></audio>

<h2>09g Format</h2>
<audio src="http://htmlref.com/ch2/music.ogg" controls></audio>

<h2>Multiple Formats and Fallback</h2>
<audio controls autobuffer autoplay>

<source src="http://htmlref.com/ch2/music.ogg" type="audio/ogg">
<source src="http://htmlref.com/ch2/music.wav" type="audio/wav">
<!--[if IE]>

<bgsound src="http://htmlref.com/ch2/music.wav">

<! [endif]-->
</audio>

</body>
</html>

ONLINE http://htmlref.com/ch2/audio.html

82

Part I: Core Markup

Media Considerations

An interesting concern about “open” media formats is whether or not they really are open.
As the HTMLS5 specification emerges, fissures are already forming in terms of how these
elements are implemented, what codecs will be supported by what browser vendors, and
whether HTML5 will require a particular codec to be supported by all HTML5—compliant
browsers. Valid concerns about so-called “submarine” patents surfacing and torpedoing the
open media effort are real and hotly debated.

Unfortunately, given this media codec chaos, at the time of this edition’s writing, getting
an example to work in all browsers can be quite a chore and Flash and/or QuickTime support
must be added to address older browsers. Simply put, for all its possibilities, so far HTML5
media is a messy solution at best. The following adds in a fallback within the previous video
example for Flash:

<video width="640" height="360" controls poster="loading.png">
<source src="http://htmlref.com/ch2/html 5.mp4" type="video/mp4">
<source src="http://htmlref.com/ch2/html 5.ogv" type="video/ogg">

<object data="html 5.swf" type="application/x-shockwave-flash"
width="640" height="360" id="player">
<param name="movie" value="html 5.swf"/>
Error: No video support at all
</object>
</video>

Given the example, I think it isn’t much of a stretch to imagine a <source> tag being set to
a Flash type eventually; making the direction this is going even more confusing.

So while the potential benefits of open media formats can be debated endlessly, there is
also the pragmatic concern of how long it will take before HTML5’s open media movement
becomes viable. Getting to the stable media playback world provided by Flash took many
years, and it seems unlikely that HTMLS5 solutions will move much faster.

NOTE The current state of the HTMLS specification before press suggests that no codec is official.
While the neutrality is welcome, the reality that implementations vary considerably still continues.

Client-Side Graphics with <canvas>

The canvas element is used to render simple graphics such as line art, graphs, and other custom
graphical elements on the client side. Initially introduced in the summer of 2004 by Apple in its
Safari browser, the canvas element is now supported in many browsers, including Firefox 1.5+,
Opera 9+, and Safari 2+, and as such is included in the HTMLS5 specification. While Internet
Explorer does not directly support the tag as of yet, there are JavaScript libraries® that emulate
<canvas> syntax using Microsoft’s Vector Markup Language (VML).

From a markup point of view, there is little that you can do with a <canvas> tag. You
simply put the element in the page, name it with an id attribute, and define its dimensions
with height and width attributes:

? Circa late 2009, the most popular IE <canvas> emulation library is explorercanvas, available at http://
code.google.com/p/explorercanvas/.

Chapter 2: Introducing HTML5 83

<canvas id="canvas" width="300" height="300">
Canvas Supporting Browser Required
</canvas>

Note the alternative content placed within the element for browsers that don’t support
the element.

After you place a <canvas> tag in a document, your next step is to use JavaScript to
access and draw on the element. For example, the following fetches the object by its id
value and creates a two-dimensional drawing context:

var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;

NortE 3D drawing is coming to <canvas> but is not currently defined outside of extensions.

Once you have the drawing context, you might employ various methods to draw on it.
For example, the strokeRect (x, y, width, height) method takes x and y coordinates and
height and width, all specified as numbers representing pixels. For example,

context.strokeRect (10,10,150,50) ;

would draw a simple rectangle of 150 pixels by 50 pixels starting at the coordinate 10,10
from the origin of the placed <canvas> tag. If you wanted to set a particular color for the
stroke, you might set it with the strokeStyle () method, like so:

context.strokeStyle = "blue";
context.strokeRect (10,10,150,50) ;

Similarly, you can use the £il1Rect (x, y, width, height) method to make a rectangle,
but this time in a solid manner:

context.fillRect (150,30,75,75) ;

By default, the fill color will be black, but you can define a different fill color by using
the fillcolor () method. As a demonstration this example sets a light red color:

context.fillStyle = "rgb(218,0,0)";

You can use standard CSS color functions, which may include opacity; for example, here
the opacity of the reddish fill is set to 40 percent:

context.fillStyle = "rgba(218,112,214,0.4)";
A full example using the first canvas element and associated JavaScript is presented here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 canvas example</title>
<script type="text/javascript">
window.onload = function()
var canvas = document.getElementById("canvas") ;

84

Part I: Core Markup

var context = canvas.getContext ("2d") ;

context.strokeStyle = "orange";
context.strokeRect (10,10,150,50) ;
context.fillStyle = "rgba(218,0,0,0.4)"

context.fillRect (150,30,75,75) ;
}
</script>
</head>
<body>
<hl>Simple Canvas Examples</hl>

<canvas id="canvas" width="300" height="300">
Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvas.html
In a supporting browser, the simple example draws some rectangles:

@ HTML 5 canvas example - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

' B c ,'n': @ ",_i http:/fwww.htmliref.com/ch2/canvas.html

_| || HTML 5 canvas example |T|

Simple Canvas Examples

Unfortunately, Internet Explorer up to version 8 will not be able to render the example
without a Compatibility library:

HTMLS canvas I Explorer Dell
F P p

@O - |@, http://htmlref.com/ch2/canvas.html v| bt |

File Edit View Favorites Tools Help

5.7 Favorites |@HTML‘S canvas example |_ & - i

Simple Canvas Examples

Canvas Supporting Browser Required

Chapter 2: Introducing HTML5S

Reworking the example to add just such a library makes things work just fine:

" & HTMLS canvas ple-Tr Explorer provided by Dell
@ Q - |§, http:-'-'htmIref.corq-'ch2-'can'-,-'asie.html - | b | 5 |
File Edit View Favorites Tools Help
7.q Favorites E@ HTMLS canvas example . i - -=

Simple Canvas Examples

ONLINE http://htmlref.com/ch2/canvasie html

Drawing and Styling Lines and Shapes

HTMLS5 defines a complete API for drawing on a canvas element, which is composed of
many individual sub-APIs for common tasks. For example, to do some more complex
shapes, the path API must be used. The path API stores a collection of subpaths formed by
various shape functions and connects the subpaths viaa £111 () or stroke () call. To begin
a path, context .beginPath () is called to reset the path collection. Then, any variety of
shape calls can occur to add a subpath to the collection. Once all subpaths are properly
added, context.closePath () can optionally be called to close the loop. Then £i11 () or
stroke () will also display the path as a newly created shape. This simple example draws
a V shape using 1ineTo ():

context .beginPath() ;
context.lineTo (20,100) ;
context.lineTo(120,300) ;
context.lineTo(220,100) ;
context.stroke () ;

Now, if you were to add context .closePath () before context.stroke (), the V
shape would turn into a triangle, because closePath () would connect the last point and
the first point.

Also, by calling £111 () instead of stroke (), the triangle will be filled in with whatever
the fill color is, or black if none is specified. Of course, you can call both £111 () and
stroke () on any drawn shape if you want to have a stroke around a filled region. Thus, to

85

86

Part I: Core Markup

style the drawing, you can specify the £i11Style and strokeStyle and maybe even
define the width of the line using 1inewidth, as shown in this example:

context.strokeStyle = "blue";
context.fillStyle = "red";

context.lineWidth = 10;
context .beginPath() ;
context.lineTo(200,10) ;
context.lineTo (200,50) ;
context.lineTo(380,10) ;
context.closePath() ;
context.stroke () ;
context.fil11() ;

[—

As you saw in a few previous examples, you can change color by setting the fillColor
property. In addition to the CSS color values, you can also set the fil1Color to a gradient
object. A gradient object can be created by using createLinearGradient () or
createRadialGradient ().

The following example creates a simple linear gradient that will be applied to a rectangle
using the createLinearGradient (x1,y1,x2,y2) method. The gradient is positioned at
10,150 and is set to go 200 pixels in both directions.

var lg = context.createlLinearGradient (10,150,200,200) ;

Next, the gradient colors are added using the addColorStop () method. This specifies
a color and the offset position in the gradient where the color should occur. The offset must
be between 0 and 1.

lg.addColorStop (0, "#B03060") ;
lg.addColorStop(0.75, "#4169E1") ;
lg.addColorStop (1, "#FFE4E1") ;

Of course, you could use the rgba CSS function to create a gradient with transparency
as well. Finally, the £illColor is set to the gradient. Here is the complete code snippet,
followed by a visual example:

var lg = context.createlLinearGradient (10,150,200,200) ;
lg.addColorStop (0, "#B03060") ;
lg.addColorStop (0.5, "#4169E1") ;

lg.addColorStop (1, "#FFE4E1") ;

context.fillStyle = 1g;

context.beginPath() ;

context.rect (10,150,200,200) ;

context.fi11 () ;

Chapter 2: Introducing HTML5 §F

Note that before you draw the shape, you reset the path to ensure that you do not apply
these changes to previously rendered parts of the drawing.

To create a radial gradient using createRadialGradient (x1,y1,rl,x2,y2,r2),you
must set the position and radius of two circles to serve as the gradient. You add color stops
in the same manner as the linear gradient, so the code looks quite similar otherwise:

var rg = context.createRadialGradient (350,300,80,360,250,80);
rg.addColorStop (0, "#A7D30C") ;

rg.addColorStop (0.9, "#019F62") ;
rg.addColorStop (1, "rgba(l,159,98,0) ");

context.fillStyle = rg;

context .beginPath() ;
context.fillRect (250,150,200,200) ;

The complete example, drawing a few different shapes with fills and styles, is presented
here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 canvas lines and shapes example</title>
<script type="text/javascript">
window.onload = function()
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;

context.strokeStyle = "blue";
context.fillStyle = "red";
context.lineWidth 10;

context .beginPath () ;
context.lineTo (200,10) ;

88

Part I: Core Markup

context.lineTo (200,50) ;
context.lineTo (380,10) ;
context.closePath() ;
context.stroke () ;
context.fill () ;

var lg = context.createlLinearGradient (10, 150, 200, 200);
lg.addColorStop (0, "#B03060") ;

lg.addColorStop (0.5, "#4169E1") ;

lg.addColorStop (1, "#FFE4El");

context.fillStyle =
context .beginPath () ;

context.rect (10, 150, 200, 200);
context.fill () ;

1g;

var rg = context.createRadialGradient (50,50,10,60,60,50) ;
rg.addColorStop (0, "#A7D30C") ;

rg.addColorStop (0.9, "#019Fe2") ;

rg.addColorStop (1, "rgba(l,159,98,0)");

context.fillStyle = rg;
context .beginPath () ;
context.fillRect (0,0,130,230) ;

context .beginPath () ;
context.lineTo(250,150) ;
context.lineTo(330,240) ;
context.lineTo(410,150) ;
context.stroke () ;

}

</script>

</head>

<body>

<hl>Simple Shapes on canvas Example</hl>

<canvas id="canvas" width="500" height="500">
Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvaslinesandshapes.html

Applying Some Perspective

As the context is specified as 24, it is no surprise that everything you have seen so far has
been two-dimensional. It is possible to add some perspective by choosing proper points and
shades. The 3D cube shown in Figure 2-3 is created using nothing more than several
moveTo () and lineTo () calls. The 1ineTo () call is used to create three sides of the cube,
but the points set are not straight horizontal and vertical lines as we see when we make 2D
squares. Shading is applied to give the illusion of dimensionality because of the application
of a light source. While the code here is pretty simple, you can see that using canvas

Chapter 2: Introducing HTML5 89

File Edit View History Bookmarks Develop Window Help
{ < | >] [+ |e http://htrlref.com/ch2/canvascube.html c] [Q.' Google] O~ £~

[T & SunSpider..rk Results Apple Amazon eBay Yahoo! News (55) v

Ficure 2-3 Faking 3D with perspective

properly is often a function more of what you may know about basic geometry and drawing
than anything else.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Canvas Cube Example</title>
<style type="text/css" media="screen">

body {background-color: #E67B34;}
</style>
<script type="text/javascript">
window.onload = function () {

var context = document.getElementById("canvas") .getContext ("2d") ;

context.fillStyle = "#fff";
context.strokeStyle = "black";
context .beginPath() ;
context.moveTo(188,38) ;
context.lineTo(59,124) ;

Part I:

context.
context.
context.
context.
L£111 () ;
context.

context

context

context
context

context

context.
context.
.closePath() ;
LE111 () ;
.stroke () ;

context
context
context

context.
context.
.beginPath () ;

.moveTo (59,289) ;

context
context

context.
.lineTo (212,197
context.
context.
context.
LE111()
context.

context

context

}

</script>
</head>
<body>

Core Markup

lineTo(212,197) ;
lineTo(341,111);
lineTo(188,38) ;
closePath () ;

stroke () ;

.fillStyle = "#ccc";
context.
.beginPath () ;
.moveTo(341,111)
context.)
.1lineTo(212,362) ;
)
)

strokeStyle = "black";

7

7

lineTo (212,197

7

lineTo (341,276
lineTo (341,111

7

fillstyle =
strokeStyle =

"#999";
"black";

lineTo(59,124) ;

)
lineTo(212,362);
lineTo (59,289) ;
closePath() ;

stroke () ;

<hl>Canvas Perspective</hl>

<canvas id="canvas" width="400" height="400">
Canvas Supporting Browser Required

</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvascube.html

Drawing Arcs and Curves
Drawing on canvas isn’t limited to simple lines; it is also possible to create curved lines
using arc (), arcTo (), quadraticCurveTo (), and bezierCurveTo (). To illustrate these
methods, this section shows how to draw a simple face.

You can use the arc (x, y, radius, startAngle, endAngle, counterclockwise)
method to draw circles and parts of circles. Its location is defined by the point of its center

Chapter 2: Introducing HTMLS 91

(x,y) as well as the circle’s radius. How much of the circle is drawn is defined by
startAngle and endAngle, in radians. The direction of the curve is set by a Boolean value,
which is the final parameter specified by counterclockwise. If it is set to true, the curve
will move counterclockwise; otherwise, it will move clockwise. If your math is a bit rusty, to
make a full circle, the start angle should be set to 0 and the end angle should be 2x. So to
start your face drawing, use arc () to draw the head as a circle:

context.arc(150,150,100,0,Math.PI*2, true) ;

Use the quadraticCurveTo (cpx, cpy, x, y) method to draw the nose and the mouth.
This function starts at the last point in the path and draws a line to (x,y). The control point
(cpx,cpy) is used to pull the line in that direction, resulting in a curved line. However, you
call moveTo () first to set the last point in the path. In the following snippet, a line was
drawn from (155,130) to (155,155). Because the x-coordinate of the control point (130,145)
is to the left, the line is pulled in that direction. Because the y-coordinate is in between the
y-coordinates, the pull is roughly in the middle.

context.moveTo (155,130) ;
context.quadraticCurveTo(130,145,155,155) ;
context.moveTo (100,175) ;
context.quadraticCurveTo (150,250,200,175) ;

You call bezierCurveTo (cplx, cply, cp2x, cp2y, x,y) to draw the eyes. This function
is similar to quadraticCurveTo () except that it has two control points and has a line that is
pulled toward both of them. Again, moveTo () is used to set the start point of the line:

context.moveTo (80,110) ;
context .bezierCurveTo (95,85,115,85,130,110) ;
context.moveTo (170,110) ;
context .bezierCurveTo (185,85,205,85,220,110) ;

Lastly, use arcTo (x1, y1,x2,y2, radius) to draw a frame around the face. Unfortunately,
foreshadowing some issues with the canvas API, we note that arcTo () is not currently
supported properly in all browsers, so it may render oddly. When it does work, it creates
two lines and then draws an arc with the radius specified and containing a point tangent to
each of the lines. The first line is drawn from the last point in the subpath to (x1,y1) and
the second line is drawn from (x1,vy1) to (x2,y2).

context .moveTo (50, 20) ;
context.arcTo(280,20,280,280,30) ;
context.arcTo(280,280,20,280,30) ;
context.arcTo(20,280,20,20,30) ;
context.arcTo(20,20,280,20,30) ;

The complete example is shown next. Note that, given layering, you draw and fill the
frame and face and then draw the features last. Also note that you reset the paths with the
beginPath () method. Commonly, people forget to do this, which can produce some
interesting drawings. A rendering of the face example is shown in Figure 2-4.

Part I: Core Markup

& Canvas Face Example [E=H EoH |
File Edit View History Bookmarks Develop Window Help

| « : > | | + & http://htmiref.com/ch2/canvasface.html G| I.Q' Google | B' *'
[0 =8 SunSpider..rk Results Apple Amazon eBay Yahoo! MNews(55) v

Smile you're on canvas

Ficure 2-4 Drawing a canvas smiley

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Canvas Face Example</title>
<script type="text/javascript">
window.onload = function () {
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;
context.strokeStyle = "black";
context.lineWidth = 5;

/* create a frame for our drawing */
context.beginPath() ;
context.fillStyle = "blue";

context .moveTo (50, 20) ;
context.arcTo(280,20,280,280,30) ;
context.arcTo(280,280,20,280,30) ;
context.arcTo(20,280,20,20,30) ;
context.arcTo(20,20,280,20,30) ;
context.stroke () ;

context.fill () ;

Chapter 2: Introducing HTMLS 93

/* draw circle for head */

context .beginPath() ;

context.fillStyle = "yellow";
context.arc(150,150,100,0,Math.PI*2, true) ;
context.f111 () ;

/* draw the eyes, nose and mouth */
context.beginPath() ;
context.moveTo (80,110) ;
context.bezierCurveTo (95,85,115,85,130,110) ;
context.moveTo(170,110) ;
context .bezierCurveTo (185,85,205,85,220,110) ;
context .moveTo (155,130) ;
context.quadraticCurveTo(130,145,155,155) ;
context.moveTo (100,175) ;
context.quadraticCurveTo (150,250,200,175) ;
context.moveTo (50,20) ;
context.stroke () ;

}

</script>

</head>

<body>

<hl>Smile you're on canvas</hl>

<canvas id="canvas" width="300" height="300">

Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvasface.html

Scaling, Rotating, and Translating Drawings

You now have looked at the basic shapes and styling, but there is much more that you can
do to customize a drawing through transformations. The canvas API provides a number of
useful methods that accomplish the common tasks you will likely want to perform. First
let’s explore the scale (x, y) function, which can be used to scale objects. The x parameter
shows how much to scale in the horizontal direction and the y parameter indicates how
much to scale vertically.

/* scale tall and thin */
context.scale(.5,1.5);
writeBoxes (context) ;

/* move short and wide */
context.scale(1.75,.2);
writeBoxes (context) ;

94 PartI: Core Markup

Simple Scale

ONLINE http://htmlref.com/ch2/canvasscale.html

Next up is the rotate (angle) method, which can be used to rotate a drawing in a
clockwise direction by an angle defined in radians:

/* rotate to the right */
context.rotate (Math.PI/8) ;
writeBoxes (context) ;

/* rotate to the left */

context.rotate (-Math.PI/8) ;
writeBoxes (context) ;

Simple Rotation

ONLINE http://htmlref.com/ch2/canvasrotate.html

Chapter 2: Introducing HTMLS 95

The translate (x, y) function is a handy function to use to change the origin from
(0,0) to another location in the drawing. The following example moves the origin to
(100,100). Then, when the start coordinates of the rectangle are specified at (0,0), it really
starts at (100,100).

context.translate(100,100) ;
context.fillRect (0,0,100,100) ;

A simple example of moving some boxes around is shown here:

Simple Translation

ONLINE http://htmlref.com/ch2/canvastranslate.html

All the methods presented so far are conveniences to help us use an underlying
transform matrix associated with paths. All paths have an identity matrix as their default
transform. As an identity, this transform matrix does nothing, but it is certainly possible to
adjust this matrix in a few ways. First, it can be directly modified by calling setTransform
(ml1l,ml2,m21,m22,dx,dy), which resets the matrix to the identity matrix and then
calls transform() with the given parameters. Or you can do this directly by using
transform(mll,ml2,m21,m22,dx,dy), which multiplies whatever the current matrix is
with the matrix defined by

mll m21 dx
ml2 m22 dy
0 0 1

The problem with the method should be obvious: unless you understand more than a
bit about matrix math, this can be a bit daunting to use. On the bright side, with the
method, you can do just about anything you want. Here a simple example skews and
moves some simple rectangles. The result is shown in Figure 2-5.

96

Part I: Core Markup

[canvas transform() EBxam... »

€ 5 C M ¥ htp//ntmiref.com/ch2/canvastransform.html P O~ &~

Simple Transforms

Ficure 2-5 Transforming a rectangle

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>canvas transform() Example</title>

<style type="text/css">

canvas {border: 1px solid black;}

</style>

<script type="text/javascript">

window.onload = function () {
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;

context.fillStyle = "rgba(255,0,0,.4)";
context.rect (0,0,100,100) ;
context.fill () ;

context.setTransform(1,1,1,0,0,0);
context.beginPath() ;

context.fillStyle = "rgba(0,255,0,.4)";
context.rect (75,75,100,100) ;
context.fill () ;

context.setTransform(0,.5,1,.8,0,0);
context .beginPath () ;

Chapter 2: Introducing HTMLS 97

context.fillStyle = "rgba(0,0,255,.4)";
context.rect (50,50,100,100) ;
context.fill () ;

}

</script>

</head>

<body>

<hl>Simple Transforms</hl>

<canvas id="canvas" width="400" height="300">

Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvastransform.html

Using Bitmaps in Drawings
A very interesting feature of canvas is the ability to insert images into the drawing There
are several ways to do this, but let’s start with the most basic, drawImage (img, x, y), which
takes an image object and the coordinates for where the image should be placed. The image
will be its natural size when called in this manner. You can use drawImage (img, x, y, w, h)
if you need to modify the image size and set