
Ketabton.com

Python
Object Oriented

Programming Exercises Become a
Pro Developer

(c) ketabton.com: The Digital Library

Python

Object Oriented
Programming Exercises
Become a Pro Developer

Edcorner Learning

Table of Contents

Introduction

1 Overview of Python OOPS
2 What in Python is OOPS?
3 Some of the Major Advantages of OOPS are:
4 Difference between procedural and object-oriented programming
5 Python's Class and Objects
6 What is a Class Definition in Python?

7 An __init__ method: What is it?
8 Creating a Class Object
9 What is Instance Methods with Example
10 The four core ideas of object-oriented programming are:
11 Inheritance
12 Super()

13 Polymorphism
14 Class Methods and polymorphism
15 Inheritance and Polymorphism
16 Encapsulation
17 A getter and a setter

(c) ketabton.com: The Digital Library

18 Modifiers of Access
19 Abstraction
20 Important aspects of abstract classes

21 Certain noteworthy aspects of Abstract classes are:
22 OOPS's benefits in Python
Lets starts Python OOPS Programming Exercises
Module 1 Class Method - Decorator
Module 2 Static Method - Decorator
Module 3 Special Methods

Module 4 Inheritance
Module 5 Abstract Classes
Module 6 Miscelleanuoes Exercises

(c) ketabton.com: The Digital Library

Introduction

Python is a general-purpose interpreted, interactive, object- oriented, and a
powerful programming language with dynamic semantics. It is an easy
language to learn and become expert. Python is one among those rare
languages that would claim to be both easy and powerful. Python's elegant
syntax and dynamic typing alongside its interpreted nature makes it an ideal
language for scripting and robust application development in many areas on
giant platforms.

Python helps with the modules and packages, which inspires program
modularity and code reuse. The Python interpreter and thus the extensive
standard library are all available in source or binary form for free of charge
for all critical platforms and can be freely distributed. Learning Python
doesn't require any pre- requisites. However, one should have the elemental
understanding of programming languages.

This Book consist of Indepth Python OOPS Concepts and 73 python
Object Oriented Programming coding exercises to practice different
topics.

In each exercise we have given the exercise coding statement you need to
complete and verify your answers. We also attached our own input output
screen of each exercise and their solutions.

Learners can use their own python compiler in their system or can use any
online compilers available.

We have covered all level of exercises in this book to give all the learners a
good and efficient Learning method to do hands on python different
scenarios.

(c) ketabton.com: The Digital Library

1 Overview of Python OOPS

Python's OOPS ideas are extremely similar to how we solve
problems in the real world by writing programs. The most common
method in programming is to solve any problem by creating
objects.

The term "object-oriented programming" refers to this method. It is
simpler to write and understand code thanks to object-oriented
programming, which correlates our instructions with difficulties
encountered in the actual world. They represent actual people,
businesses, and employees as "software objects" containing "data"
and "functions" that can be performed on them.

(c) ketabton.com: The Digital Library

2 What in Python is OOPS?

Object Oriented Programming System is referred to as OOPS in
programming. To create a programme using classes and objects is a
paradigm for or methodology for programming. Every entity is
treated as an object by OOPS.

Python's object-oriented programming is focused on objects. Any
OOPS-based programming that is developed solves our problem
but takes the shape of objects. For a particular class, we are free to
produce as many objects as we choose.

What then are things? Anything with characteristics and certain
behaviours is an object. The terms "variables of the object" and
"functions of the object" are frequently used to describe an object's
properties and behaviours, respectively. Objects might be
conceptual or actual objects.

Let's say that a pen exists in the real world. A pen's characteristics
are its colour and type (gel pen or ball pen). Additionally, the pen's
behaviour may include the ability to write, draw, etc.

A logical object might be any file on your computer. Files can
retain data, be downloaded, shared, and have other behaviours.
They have properties like file name, file location, and file size.

(c) ketabton.com: The Digital Library

3 Some of the Major Advantages of OOPS are:

Writing readable and reuseable codes helps them reduce the
amount of redundant code (using inheritance).
Because they are so closely related to real-world
circumstances, they are simpler to visualise. For instance, the
ideas of objects, inheritance, and abstractions have a
connection to real-world situations.
Each object in oops represents a different section of the code
and has its own logic and data for inter-object communication.
Therefore, there are no difficulties with the code.

(c) ketabton.com: The Digital Library

4 Difference between procedural and object-
oriented programming

Python adheres to four different programming paradigms, did you
know that?

Imperative, functional, procedural, and object-oriented
programming are some of them.

Procedural Oriented Programming (POP) and Object-Oriented
Programming are two of the most significant programming
paradigms in Python (OOP). Let's start.

1. What Are They, First?
Let's examine the methodology each paradigm employs:

Suppose you want to prepare Maggie for dinner! Then you follow a
series of stages, including —

Warm up some water in a pan.

Include Maggie in it

add masala

Prepare and serve.

(c) ketabton.com: The Digital Library

Similar to this, POP needs to follow a specific set of steps in order
to function. POP is made up of functions. There are different parts
of a POP programme called functions, each of which is responsible
for a different job. The functions are set up in a particular order,
and the programme control happens one step at a time.

OOP: Object-oriented programming. The programme is divided
into items. These objects are the entities that blend the traits and
workings of things found in the real world.

2. Which Locations Do They Prefer?

POP is only appropriate for little jobs. Because the code becomes
more difficult as the program's duration increases and becomes
bloated with functions, Debugging gets even more challenging.

OOP works well for bigger issues. Recursion can be used to make
the code reusable, which makes it simpler and cleaner.

(c) ketabton.com: The Digital Library

3. Which Offers Greater Security?

POP offers the functions along with all the data, which makes it
less secure. Thus, our data are not secret. If you wish to protect
your login passwords or any other secret information, POP is not a
recommended solution!

OOP offers security by data hiding, making it more secure.
Encapsulation is a unique idea in OOP that grants it the ability to
hide data (we will read about this further).

4. Programming approach

POP adheres to programming from the top down. The top-down
method of programming focuses on dissecting a complex issue into
manageable units of code. The minor portions of the problems are
then resolved.

OOPS principles adhere to the Bottom-up method of programming.
The Bottom-Up method prioritises resolving the smaller issues at
their most fundamental level before incorporating them into a
comprehensive and entire solution.

5. Utilization of Access Modifiers:

(c) ketabton.com: The Digital Library

When applying the ideas of inheritance, access specifiers or access
modifiers are used in Python to restrict the access of class variables
and class methods outside of the class. The keywords Public,
Private, and Protected can be used to do this.

No access modifiers like "public," "private," or "protected" are
used in POP. To employ the aforementioned modifiers, POP lacks
the concepts of classes and inheritance. Modifiers for access are
supported by OOP. They understand inheritance, so they can use
terms like "public," "private," or "protected."

Note:

The access modifiers in Python come in quite handy when working
with inheritance ideas. Class methods can make use of this idea as
well.

(c) ketabton.com: The Digital Library

5 Python's Class and Objects

Let's say you want to keep track of how many books you own. You
can easily do that by utilising a variable. Also possible is to
compute the sum of five numbers and save the result in a variable.

Simple values are intended to be stored in a variable using
primitive data structures like numbers, characters, and lists.
Consider your name, the square root of a number, or the quantity of
marbles (say).

But what if you need to keep a record of every employee in your
business? For instance, if you try to put all of your employees in a
list, you can later become confused about which index of the list
corresponds to which individual details (e.g. which is the name
field, or the empID or age etc.)

(c) ketabton.com: The Digital Library

Even if you try to keep them in a dictionary, the entire codebase
will eventually become too complicated to manage. Therefore, we
employ Python Classes in these situations.

To create user-defined data structures in Python, use a class.
Classes set up functions, called "methods," that describe how an
object made from a class can behave and what actions it can take.
Classes and objects are the main topics covered by Python's OOPS
ideas.

(c) ketabton.com: The Digital Library

Classes simplify the code by avoiding complicated codebases. It
accomplishes this by developing a model or design for how
everything ought to be defined. Any object that derives from the
class should have the characteristics or capabilities specified by this
clause.

Note:

Simple structural definition is all that a class does. It makes no
specific reference to anything or anyone. For instance, the class
HUMAN has attributes like name, age, gender, and city. It does not
identify any particular HUMAN, but it does describe the qualities
and capabilities that a HUMAN or an object of the HUMAN class
ought to have.

The term "object" refers to a class instance. It is the class's actual
implementation and is real.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

A collection of data (variables) and methods (functions) that access
the data is referred to as an object. It is the actual class
implementation.

Take this example where Human is a class. This class only serves
as a template for what Human should be, not an actual
implementation. You could argue that the "Human" class only
makes logical sense.

(c) ketabton.com: The Digital Library

However, "Edcorner" is a Human class object (please refer the
image given above for understanding). It follows that Edcorner was
built using the blueprint for the Human class, which holds the
actual data. Unlike "Human," "Edcorner" is a real person (which
just exists logically). He is a genuine person who embodies all the
characteristics of the class Human, including having a name, being
male, being 32 years old, and residing in Newyork. Additionally,
Edcorner uses all of the methods included in the Human class; for
example, Edcorner can walk, speak, eat, and sleep.

And many humans can be produced utilising the class Human
blueprint. For instance, by leveraging objects and the blueprint for
the class Human, we could generate many more persons.

Short Tip:

class = draught (suppose an architectural drawing). The Object is a
real item that was created using the "blueprint" (suppose a house).
An instance is a representation of the item that is virtual but not a
true copy.

(c) ketabton.com: The Digital Library

No memory is allotted to a class when it is defined; just the object's
blueprint is produced. Memory allocation only takes place during
object or instance creation. The actual data or information is
contained in the object or instance.

(c) ketabton.com: The Digital Library

6 What is a Class Definition in Python?

Python classes are defined using the word class, which is then
followed by the class name and a colon.

Syntax:

(c) ketabton.com: The Digital Library

Below the class definition, indented code is regarded as a
component of the class body.

'pass' is frequently used as a stand-in for code whose
implementation we can forego for the moment. We may execute
the Python code without throwing an error by using the "pass"
keyword.

(c) ketabton.com: The Digital Library

7 An __init__ method: What is it?

In a method named init, the qualities that all Human objects must
possess are specified (). When a new Human object is formed,
__init__() assigns the values we supply inside the object's
properties to set the object's initial state. In other words, each new
instance of the class is initialised via __init__(). Any number of
parameters can be passed to __init__(), but self is always the first
parameter.

The self parameter contains a reference to the active class instance.
This means that we can access the data of an object's variables by
using the self argument, which corresponds to the address of the
current object of a class.

Since this self points to the address of each individual object and
returns its corresponding value, even if there are 1000 instances
(objects) of a class, we can always access each of their unique data.

Let's look at how the Human class defines __init__():

(c) ketabton.com: The Digital Library

We use the self variable three times in the body of. init__() for the
following purposes:

self.name = 'name' creates the name attribute and sets the name
parameter's value as its value.

(c) ketabton.com: The Digital Library

self.age = The age attribute is created and given the value of the
age parameter that was supplied.

self.gender = The gender parameter value is produced and assigned
to the gender attribute.

In Python, there are two categories of attributes:

Class attribute number 1:

These variables apply to all instances of the class equally. For each
new instance that is created, they do not have new values. Just after
the class definition, they are defined.

(c) ketabton.com: The Digital Library

In this case, whatever object we create will have a fixed value for
the species.

(c) ketabton.com: The Digital Library

2. Instance Information:

The variables that are defined inside of any class function are
known as instance attributes. Every instance of the class has a
unique value for the instance attribute. These values rely on the
value that was supplied when the instance was created.

The instance attributes in this case are name, age, and gender.
When a new instance of the class is created, they will have
different values.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

8 Creating a Class Object

It is referred to as instantiating an object when a new instance of a
class is created. The class name and parantheses can be used to
create an object. The object of a class can be assigned to any
variable.

(c) ketabton.com: The Digital Library

Memory is allocated to an object as soon as it is created. Therefore,
employing the operator == to compare two instances of the same
class will result in false (because both will have different memory
assigned).

The values for name, age, and gender must also be supplied when
creating objects of the Human class.

(c) ketabton.com: The Digital Library

Here, we have created two Human class instances by passing in all
the necessary inputs.

A TypeError will be raised if the necessary parameters are not
given. TypeError: The three necessary positional arguments for
init(), "name," "age," and "gender," are missing.

Now let's look at how to use class objects to retrieve those values.
The dot notation allows us to access the instance values.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

As a result, we discover that the dot operator is all we need to
access the instance and class attributes.

(c) ketabton.com: The Digital Library

The class attributes in the example above have the identical values
of "Homo Sapiens," but the instance attributes have various values
depending on the parameter we gave when constructing our object.

However, we can alter the value of a class attribute by setting a
new value to classname.classAttribute.

(c) ketabton.com: The Digital Library

9 What is Instance Methods with Example

A function inside a class that can only be called from instances of
that class is termed an instance method. An instance method's first
parameter is always self, much as init().

Let's take an example and implement some functions

(c) ketabton.com: The Digital Library

Two instance methods exist for the Human class:

speak() produces a string containing the Human's name.

(c) ketabton.com: The Digital Library

eat() returns a string with the Human's favourite food and accepts
the single input "favouriteDish".

Now that we have a solid understanding of what Python classes,
objects, and methods are, it is time to turn our attention to the
foundational ideas of OOP.

(c) ketabton.com: The Digital Library

10 The four core ideas of object-oriented
programming are:

Inheritance

Encapsulation

Polymorphism

Abstraction of data.

Let's take a closer look at each of the Python OOPS ideas.

(c) ketabton.com: The Digital Library

11 Inheritance

People frequently tell newborns that they have face features that
resemble those of their parents or that they have inherited particular
traits from their parents. It's possible that you've also observed that
you share a few characteristics with your parents.

The real-world situation is fairly similar to inheritance as well.
However, in this case, the "parent classes"' features are passed
down to the "child classes." They are referred to as "properties" and
"methods" here, along with the qualities they inherit.

A class can derive its methods and attributes from another class's
by using the process known as inheritance. Inheritance is the
process of a child class receiving the properties of a parent class.

(c) ketabton.com: The Digital Library

The Parent class is the class from which the properties are
inherited, and the Child class is the class from which the properties
are inherited.

As we did in our previous examples, we define a typical class.
After that, we may declare the child class and provide the name of
the parent class it is descended from in parenthesis.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

The parent class Human is inherited by the child class Boy in the
example above. Because Boy is inheriting from Human, we can
access all of its methods and properties when we create an instance
of the Boy class.

In the Boy class, a method called schoolName has also been
defined. The parent class object is unable to access the method
schoolName. The schoolName method can, however, be called by
making a child class object (Boy).

(c) ketabton.com: The Digital Library

Let's look at the problem we run into if we try to use the object
from the parent class to invoke the methods of a child class.

(c) ketabton.com: The Digital Library

Therefore, the AttributeError: 'Human' object has no
attribute'schoolName' is returned in this case. because it is not
possible for child classes to access parent class data and properties.

(c) ketabton.com: The Digital Library

12 Super()
The parent class is referred to in the inheritance-related method
super(). It can be used to locate a certain method in a superclass of
an object. It serves a very important purpose. Let's examine its
operation —

(c) ketabton.com: The Digital Library

The super function's syntax is as follows. After the super()
keyword, we write the name of the parent class function we want to
refer to.

(c) ketabton.com: The Digital Library

Here, the classes Human and Girl have definitions for the Code()
method. But as you can see, each method has a separate
implementation. The Code technique in Human class reads "I can
Code," whereas the Code method in Girl class reads "I can teach."
So let's call the Code technique from the child class to the parent
class.

(c) ketabton.com: The Digital Library

As you can see, we are using super to call the Code method at line
19. ().

Code(). This will invoke the Human class' Code method. Thus, "I
can Code" is printed. Nevertheless, Code() was already
implemented in Girl (at line 15).

If a method with the same name already exists in the subclass,
super() will still call the method in the superclass.

(c) ketabton.com: The Digital Library

13 Polymorphism

Let's say you are using your phone to browse the Instagram feeds.
You opened Spotify and began playing your favourite song because
you suddenly had the urge to listen to some music as well. After a
while, you received a call, so you paused whatever you were doing
in the background to answer it. Your friend called and requested
that you text them a certain person's phone number. So you sent
him the phone number through SMS and carried on with your
tasks.

Have you picked up on anything? With just one device—your
mobile phone—you could surf through feeds, listen to music, take
and make phone calls, and message.

Therefore, polymorphism is comparable to that. Poly means
numerous, and morph denotes different forms. Therefore,
polymorphism as a whole refers to something with various forms.
Or "something" that, depending on the circumstance, can exhibit a
variety of behaviours.

In OOPS, polymorphism describes functions with the same names
but different behaviours. Alternatively, a different function
signature with the same function name (parameters passed to the
function).

(c) ketabton.com: The Digital Library

All of a child class's properties are inherited from the parent class's
methods. But occasionally, it tries to change the techniques by
adding its own implementation. In Python, there are many different
ways to use polymorphism.

An illustration of an inbuilt polymorphic function

An example of an inbuilt polymorphism function is len(). It will
just compute the value and return because we can use it to calculate
the length of various kinds like strings, lists, tuples, and
dictionaries.

(c) ketabton.com: The Digital Library

Here, the len function was given a string, list, and dictionary, and it
computed the answer. It serves as an illustration of an inbuilt
polymorphic function.

With the addition operator "+," polymorphism is also a possibility.
It can be used to "add" integers, floats, or any other arithmetic
operation. On the other side, it conducts the "concatenation"
process with String.

(c) ketabton.com: The Digital Library

As a result, we can observe that different operations have been
performed for various data types using the same operator, "+."

(c) ketabton.com: The Digital Library

14 Class Methods and polymorphism

With the class methods, polymorphism is possible. Observe how:

(c) ketabton.com: The Digital Library

Using the variable animal, we may loop over the objects of the
Lion and Deer, calling their respective instance methods. As a
result, the behaviour (colour() & eats()) of both the Lion and the
Deer are represented here by a single variable called animal.
Therefore, it is according to the polymorphism rules!

(c) ketabton.com: The Digital Library

15 Inheritance and Polymorphism

Polymorphism and inheritance are both possible. A method that a
child class has inherited from a parent class may be changed to
include the child class's own implementation. Method overriding is
the practise of re-implementing a method in the child class. Here is
a case where polymorphism with inheritance is demonstrated.

(c) ketabton.com: The Digital Library

Here, the method of the shape class has been replaced by the
Rectangle and Polygon class. As a result, there are many
implementations of the method no of sides here depending on the
form. Therefore, it is consistent with polymorphism.

(c) ketabton.com: The Digital Library

16 Encapsulation

You must have encountered pill forms for medications where the
entire contents are kept sealed inside the capsule’s lid. In essence, a
capsule contains many drug combinations.

In programming, the variables and the methods are similarly kept
in a container known as a “class”! Yes, we have learned a lot about
classes in Python, and we are already aware that every variable and
function we create in OOP stays inside the class.

Encapsulation is the term used in Python to describe the act of
combining data with the matching methods (behaviour) into a
single entity.

(c) ketabton.com: The Digital Library

Encapsulation, then, is a programming approach that ties the class’s
variables and methods together and makes it impossible for other
classes to access them. It is an example of an OOPS concept in
Python.

(c) ketabton.com: The Digital Library

Security is possible via encalpsulation. It protects the data from
outside access. By encapsulating an object or piece of information,
a company can prevent clients or other unauthorised individuals
from accessing it without permission.

(c) ketabton.com: The Digital Library

17 A getter and a setter

Encapsulation is mostly used for Data Hiding. To do this, we give
our classes getter and setter methods. Anyone who needs some data
must call the getter method in order to obtain it. Additionally, users
must utilise the setter method if they wish to add a value to the
data; otherwise, they won't be able to. However, the internal
operation of these getter and setter methods is hidden from the
outside world.

(c) ketabton.com: The Digital Library

For getting and setting the book names, respectively, we defined
the getter getBookName() and setter setBookName() in the
example above. As a result, we can no longer directly access or edit
any data; instead, we can only get and set the book names when
using the methods. As a result, our data is kept in a highly secure
manner because other people are not fully aware of how the
following methods are used (if their access are restricted).

(c) ketabton.com: The Digital Library

Using access modifiers, we can additionally encourage the security
of our data. Check out what access modifiers are.

(c) ketabton.com: The Digital Library

18 Modifiers of Access

Access modifiers control who can access a class's variables and
methods. Private, public, and protected are the three types of access
modifiers offered by Python.

Direct access modifiers like public, private, and protected don't
exist in Python. Utilizing single and double underscores will help
us do this.

Accessible from anyplace outside of the class as a public
member.
Private Member: Only available to members of the class
Accessible within the class and its subclasses; protected
member

Protected class is represented by a single underscore (). Private
class is denoted by a double underscore, .

(c) ketabton.com: The Digital Library

Let's say we try to create a class for employees.

(c) ketabton.com: The Digital Library

In this case, the employee's name is made public, their ID is
preserved, and their compensation is kept confidential. Let's say we
attempt to print every value. We may now access the employee's
name or ID, but not his or her salary (because it is private).

However, we may call the getter method getSalary() we established
in our Employee class to retrieve the employee's pay.

(c) ketabton.com: The Digital Library

By this point, you may have realised how important getters and
setters are, as well as how access modifiers limit who may access
your data.

(c) ketabton.com: The Digital Library

By establishing a public method to access private members, we can
access a class's private members from outside of it (just like we did
above). Another way to gain access is through name mangling.

When inheritance is utilised and you want the data members to be
accessible only to the child classes, you use a protected data
member.

(c) ketabton.com: The Digital Library

Encapsulation thus guards against unwanted access to an object. To
avoid unintentional data change, private and secured access levels
are available.

(c) ketabton.com: The Digital Library

19 Abstraction

You most likely use a laptop, phone, or tablet to read this book.
While reading it, you are also presumably taking notes, underlining
key passages, and possibly saving some information to your
personal files. All you can see when you read this is a "screen" with
the data that is being displayed to you. You just see the keyboard's
keys as you type, so you don't have to worry about internal
subtleties like how pushing a key can cause that word to appear
onscreen. Alternatively, how pressing a button on your screen may
launch a new tab!

Therefore, whatever we may see in this situation is abstract. We
can only see the outcome it is producing and not the inside details
(which actually matters to us).

Similar to this, abstraction only reveals the functions that anything
possesses while concealing any implementations or internal details.

Abstraction's major objective is to conceal background information
and any extraneous data implementation so that people only see
what they need to see. It aids in managing the codes' complexity.

(c) ketabton.com: The Digital Library

20 Important aspects of abstract classes

Abstraction is used to obscure background information or any
other extraneous data implementation so that people only see
what they need to see.
Utilizing abstract classes in Python, one can achieve
abstraction.
The term "abstract class" refers to a class that contains one or
more abstract methods.
There is no implementation for abstract methods on their own.
Any subclass may inherit from an abstract class. The
implementations for the abstract methods are provided by the
subclasses that inherit the abstract classes.
When building complicated functions, abstract classes might
serve as a prototype for other classes. Additionally, the
subclass that receives their inheritance can make use of the
abstract methods to implement the features.
Python has an abstraction module called ABC.

(c) ketabton.com: The Digital Library

Python Abstract Class Syntax

(c) ketabton.com: The Digital Library

We must import ABC class from the ABC module in order to use
abstraction.

(c) ketabton.com: The Digital Library

A vehicle-related abstract class is present here. Because it inherits
from the abstract class ABC, it is abstract. No of wheels is an
abstract method in the class Vehicle that lacks a definition since
abstract methods are not declared (or abstract methods remain
empty,

(c) ketabton.com: The Digital Library

However, other classes that derive from the Vehicle class, such as
Cycle, Car, and HeavyTruck, define the method no of wheels and
offer their own implementation. Assuming the Cycle has two
wheels, the inherited abstract method no of wheels prints "Cycle
have two wheels." The Car and HeavyTruck classes both offer their
own implementations in a similar manner.

(c) ketabton.com: The Digital Library

21 Certain noteworthy aspects of Abstract classes
are:

It is impossible to instantiate abstract classes. Simply put, we
are unable to build objects for abstract classes.
Both conventional and abstract methods can be found in an
abstract class. We do not include any definitions or
programming in the abstract methods. However, when using
standard methods, we supply the method's implementation of
the necessary code.

(c) ketabton.com: The Digital Library

22 OOPS's benefits in Python

Python's support for OOPS ideas has many benefits that make
it suitable for the development of significant software. Let's
examine a couple of them:
Effective problem-solving is possible because we create
classes that do the necessary actions for each mini-problem.
The next problem can be solved even more quickly because
we can reuse those classes.
flexibility in having different versions of the same class
thanks to polymorphism
high level of code complexity was reduced through
abstraction.
By encapsulating, high security and data privacy are achieved.
code reuse caused by a child class's inheritance of parent class
properties.
Instead than sifting through hundreds of lines of code to locate
a single problem, modularity of programming makes
debugging simple.

(c) ketabton.com: The Digital Library

Lets starts Python OOPS Programming Exercises

Module 1 Class Method - Decorator

1. Using the classmethod class (do it in the standard way) implement a class
named Person that has a class method named show_details() which displays
the following text to the console:

'Running from Person class.'

Try to pass the class name using the appropriate attribute of the Person class.
In response, call the show_details() class method.

Expected result:

Running from Person class.

 2. Using the classmethod class (do it in the standard way) implement a
class named Person that has a class method named show_details() which
displays the following text to the console:

'Running from Container class.'

(c) ketabton.com: The Digital Library

Try to pass the class name using the appropriate attribute of the Person class.
In response, call the show_details() class method.

Expected result:

'Running from Container class.'

3. The Container class is given. Create an instance of this class named
container and call the show_details() method from this instance.

Expected result:

Running from Container class.

class Container:

 @classmethod

 def show_details(cls):

(c) ketabton.com: The Digital Library

 print(f'Running from {cls.__name__} class.')

 4. Implement a class named Person which has a class attribute named
instances as an empty list. Then, each time you create an instance of the
Person class, add it to the Person.instances list (use the
init () method for this).

Also implement a class method called count_instances() that returns
the number of Person objects created (the number of items in the
Person.instances list).

Create three instances of the Person class. Then call the
count_instances() class method and print result to the console.

 Expected result:

 3

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

 5. A class named Person is given. Modify the _init() method so that you
can set two

instance attributes: firstname and lastname (bare attributes, without any
validation).

Create two instances of the Person class. Then call the
count_instances() class method and print result to the console.

Expected result:

2

 class Person:

 instances = []

 def __init__(self):

 Person.instances.append(self)

 @classmethod

 def count_instances(cls):

 return len(Person.instances)

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Module 2 Static Method - Decorator

6. Define a Container class that has a static method (use the
staticmethod class - do it in the standard way) named get_current_time(
) returning the current time in the format

‘ %H : %M : %S ' , e.g. '09:45:10' .

Tip: Use the built-in time module.

 Solution:

 import time

class Container:

 def get_current_time():

 return time.strftime('%H:%M:%S', time.localtime())

 get_current_time = staticmethod(get_current_time)

7. Define a Container class that has a static method (use the @staticmethod
decorator) named get_current_time() returning the current time in the format
'%h:%m:%s' , e.g. '09:45:10' .

(c) ketabton.com: The Digital Library

Tip: Use the built-in time module.

 Solution :

 import time

class Container:

 @staticmethod

 def get_current_time():

 return time.strftime('%H:%M:%S', time.localtime())

8. Complete the implementation of the Book class. In the _init_ ()
method, set the bare attributes of the instance with names:

• title

• author

• book_id

Set the instance book_id attribute using the uuid module. Exactly the

(c) ketabton.com: The Digital Library

uuid. uuid4() function from this module. An example of using this
function:

 import uuid

str(uuid.uuid4().fields[-1])[: 6]

Returns a 6-element string. This will be the value of the bookjd
attribute.

Using the above code, create a static method of the Book class (use the
@staticmethod decorator) called get_id() L which will generate a 6-
digit str object (the value of the bookjd field).

 Then create an instance of the class named bookl with the following
arguments:

• title=' Python Object Oriented Programming Exercises Volume 2'

• author='Edcorner Learning'

In response, print all the _dict_ attribute keys of book1 to the console.

Expected result:

 dict_keys(['book_id', 'title', 'author'])

import uuid

class Book:

 def __init__(self, title, author):

 pass

(c) ketabton.com: The Digital Library

Solution:

import uuid

class Book:

 def __init__(self, title, author):

 self.book_id = self.get_id()

 self.title = title

 self.author = author

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

book1 = Book(' Python Object Oriented Programming Exercises
Volume 2', 'Edcorner Learning')

print(book1.__dict__.keys())

(c) ketabton.com: The Digital Library

9. The Book class is implemented. Add a _repr_() method to the Book class
that represents an instance of this class (see below).

Then create an instance of the class named book 1 passing the following
arguments:

• title= ‘Python Object Oriented Programming Exercises Volume 2'

• author='Edcorner Learning'

In response, print the instance book1 to the console.

Expected result:

Book(title=' Python Object Oriented Programming Exercises Volume 2',
author='Edcorner Learning')

 import uuid

class Book:

 def __init__(self, title, author):

 self.book_id = self.get_id()

(c) ketabton.com: The Digital Library

 self.title = title

 self.author = author

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

 Solution:

import uuid

class Book:

 def __init__(self, title, author):

 self.book_id = self.get_id()

 self.title = title

 self.author = author

 def __repr__(self):

 return f"Book(title='{self.title}', author='{self.author}')"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

book1 = Book(' Python Object Oriented Programming Exercises
Volume 2', author='Edcorner Learning')

(c) ketabton.com: The Digital Library

print(book1)

(c) ketabton.com: The Digital Library

Module 3 Special Methods

10. Define a Person class that takes two bare attributes: fname (first
name) and Iname (last name).

Then implement the _repr_ () special method to display a
formal representation of the

Person object as shown below:

[IN]: person = Person('John', 'Doe')

[IN]: print(person)

[OUT]: Person(fname='John', lname=’Doe’)

Create an instance of the Person class with the given attributes:

 fname = 'Mike'

• lname = 'Smith'

and assign it to the variable person. In response, print the person
instance to the console.

Expected result:

Person(fname='Mike’, lname='Smith')

(c) ketabton.com: The Digital Library

Solution:

 11. The Person class is implemented. Add a special method _str_ () to
return an informal

representation of an instance of the Person class.

Example:

[IN]: person = Person('Mike', 'Smith')

[IN]: print(person)

(c) ketabton.com: The Digital Library

First name: Mike

 Last nane: Smith

Then create an instance named person with the following values:

• fname = 'Edcorner’

• lname = 'Learning'

In response, print the person instance to the console.

Expected result:

 First name: Edcorner

Last name: Learning

 class Person:

 def __init__(self, fname, lname):

 self.fname = fname

 self.lname = lname

 def __repr__(self):

 return f"Person(fname='{self.fname}', lname='{self.lname}')"

(c) ketabton.com: The Digital Library

 Solution:

12. Implement a class named Vector which, when creating an instance
takes any number of arguments (vector coordinates in n-dimensional
space - without any validation) and assign it to an attribute named
components.

Then implement the _repr_() special method to display a formal
representation of Vector as

shown below:

[IN]: vl = Vector(l, 2)

[IN]: print(vl)

(c) ketabton.com: The Digital Library

 [Out]: Vector(l, 2)

Create a vector from the R3 space with coordinates: (-3,4,2) and assign
it to the variable v7. In response, print the variable vl to the console.

Expected result:

Vector(-3, 4, 2)

(c) ketabton.com: The Digital Library

13. An implementation of the Vector class is given. Implement the
str()

display an informal representation of a Vector instance as shown
below:

[IN]: vl = Vector(l, 2)

[IN]: print(vl)

[Out]: (1, 2)

special method to

Create a vector from the RA3 space with coordinates: (-3,4,2) and
assign it to the variable vl.

In response, print the variable vl to the console.

Expected result:

(-3, 4, 2)

class Vector:

 def __init__(self, *components):

 self.components = components

(c) ketabton.com: The Digital Library

 def __repr__(self):

 return f'Vector{self.components}'

Solution:

class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

v1 = Vector(-3, 4, 2)

print(v1)

(c) ketabton.com: The Digital Library

14. An implementation of the Vector class is given. Implement the
len () special method to return the number of vector
coordinates.

Example:

[IN]: vl = Vector(3, 4, 5)

[IN]: print(len(vl))

[Out]: 3

 Create a vector from the RA3 space with coordinates: (-3,4,2) and
assign it to the variable v7. In response, print the number of coordinates
of this vector using the built-in len() function.

Expected result:

3

 class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

(c) ketabton.com: The Digital Library

15. An implementation of the Vector class is given. Implement the
bool() special method to return the logical value of vector:

• False in case the first coordinate is zero

• on the contrary True

(c) ketabton.com: The Digital Library

If the user doesn't pass any argument, return the logical value False.

Example

[IN]: vl = Vector(0, 4, 5)

[IN]: print(bool(vl))

[Out]: False

Then create the following instances:

• vl = Vector()

• v2 = Vector(3, 2)

v3 = Vector(0, -3, 2)

v4 = Vector(5, 0, -1)

In response, print the logical value of the given instances to the console.

Expected result:

False

True

False

True

class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

(c) ketabton.com: The Digital Library

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

(c) ketabton.com: The Digital Library

16. An implementation of the Vector class is given. Create the following
instances of this class:

• vl = Vector(4, 2)

• v2 = Vector(-l, 3)

Then try to add these instances, i.e. perform the operation v1 + v2 . If there is
an error, print the error message to the console. Use a try ... except ... clause
in your solution.

(c) ketabton.com: The Digital Library

Expected result:

unsupported operand type(s) for +: 'Vector' and 'Vector'

class Vector:

 def __init__(self, *args):

 self.components = args

 def __repr__(self):

 return f"Vector{self.components}"

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

(c) ketabton.com: The Digital Library

17. An implementation of the Vector class is given. Implement the _add_() special method to
add Vector instances (by coordinates). For simplicity, assume that the user adds vectors of the same
length. Then create two instances of the Vector class:
vl = Vector(4, 2)
v2 = Vector(-l, 3)
and perform the addition of these vectors. Print the result to the console.
Expected result:
(3,5)
class Vector:

(c) ketabton.com: The Digital Library

 def __init__(self, *components):
 self.components = components

 def __repr__(self):
 return f'Vector{self.components}'

 def __str__(self):
 return f'{self.components}'

 def __len__(self):
 return len(self.components)

(c) ketabton.com: The Digital Library

18. An implementation of the Vector class is given. Create the following
instances of this class:

• vl = Vector(4, 2)

• v2 = Vector(-l, 3)

Then try to subtract these instances (perform the v1 - v2 operation). If there is
an error, print the error message to the console. Use a try ... except ... clause
in your solution.

Expected result:

(c) ketabton.com: The Digital Library

unsupported operand type(s) for 'Vector' and 'Vector'

class Vector:

 def __init__(self, *args):

 self.components = args

 def __repr__(self):

 return f"Vector{self.components}"

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

(c) ketabton.com: The Digital Library

 Solution:

19. An implementation of the Vector class is given. Implement the
sub () special method that

subtracts Vector instances (by coordinates). For simplicity, assume that the
user subtracts vectors of the same length. Then create two instances of this
class:

• vl = Vector(4, 2)

• v2 = Vector(-l, 3)

(c) ketabton.com: The Digital Library

and perform the subtraction of these vectors. Print the result to the console.

Expected result:

(5, -1)

class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 Soluton:

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

20. An implementation of the Vector class is given. Implement the
_mui () special method that allows you to multiply Vector
instances (by coordinates). For simplicity, assume that the user
multiplies vectors of the same length. Then create two instances of this
class:

• vl = Vector(4, 2)

• v2 = Vector(-l, 3)

and perform the multiplication of these vectors. Print the result to the
console.

(c) ketabton.com: The Digital Library

Expected result:

 (-4,6)

 class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __sub__(self, other):

 components = tuple(x - y for x, y in zip(self.components,
other.components))

 return Vector(*components)

(c) ketabton.com: The Digital Library

 Solution:

(c) ketabton.com: The Digital Library

21. An implementation of the Vector class is given. Implement the _truediv()
special method

which allows you to divide Vector instances (division by coordinates). For
simplicity, assume that the user divides vectors of the same length and the
coordinates of the second vector are not zeros. Then create two instances of
this class:

• vl = Vector(4, 2)

• v2 = Vector(-l, 4)

and perform the division of these vectors. Print the result to the console.

(c) ketabton.com: The Digital Library

Expected result:

(-4.0, 0.5)

class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __sub__(self, other):

 components = tuple(x - y for x, y in zip(self.components,
other.components))

 return Vector(*components)

(c) ketabton.com: The Digital Library

 def __mul__(self, other):

 components = tuple(x * y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 Soluton:

 class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __sub__(self, other):

(c) ketabton.com: The Digital Library

 components = tuple(x - y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __mul__(self, other):

 components = tuple(x * y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __truediv__(self, other):

 components = tuple(x / y for x, y in zip(self.components,
other.components))

 return Vector(*components)

v1 = Vector(4, 2)

v2 = Vector(-1, 4)

(c) ketabton.com: The Digital Library

print(v1 / v2)

22. An implementation of the Vector class is given. Implement the _f
loordiv_ () special method

to do the integer division of Vector instances (division by coordinates). For
simplicity, assume that the user divides vectors of the same length and the
coordinates of the second vector are not zeros. Then create two instances of
this class:

• vl = Vector(4, 2)

• v2 = Vector(-1, 4)

and perform an integer division for these vectors. Print the result to the

(c) ketabton.com: The Digital Library

console.

Expected result:

(-4, 0)

 class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __sub__(self, other):

 components = tuple(x - y for x, y in zip(self.components,
other.components))

 return Vector(*components)

(c) ketabton.com: The Digital Library

 def __mul__(self, other):

 components = tuple(x * y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __truediv__(self, other):

 components = tuple(x / y for x, y in zip(self.components,
other.components))

 return Vector(*components)

Solution:

class Vector:

 def __init__(self, *components):

 self.components = components

 def __repr__(self):

 return f'Vector{self.components}'

 def __str__(self):

 return f'{self.components}'

(c) ketabton.com: The Digital Library

 def __len__(self):

 return len(self.components)

 def __add__(self, other):

 components = tuple(x + y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __sub__(self, other):

 components = tuple(x - y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __mul__(self, other):

 components = tuple(x * y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __truediv__(self, other):

 components = tuple(x / y for x, y in zip(self.components,
other.components))

 return Vector(*components)

 def __floordiv__(self, other):

 components = tuple(x // y for x, y in zip(self.components,
other.components))

(c) ketabton.com: The Digital Library

 return Vector(*components)

v1 = Vector(4, 2)

v2 = Vector(-1, 4)

print(v1 // v2)

(c) ketabton.com: The Digital Library

23. The following Doc class is implemented for storing text documents.
Implement the _add_ () special method to add Doc instances with a
space character.

Example:

[IN]: docl = Doc('Object')

(c) ketabton.com: The Digital Library

[IN]: doc2 = Doc('Oriented')

[IN]: print(docl + doc2)

[OUT]: Object Oriented

Then create two instances of the Doc class for the following
documents:

• 'Python'

• '3.8'

In response, print the result of adding these instances to the console.

Expected result:

 Python 3.8

 class Doc:

 def __init__(self, string):

 self.string = string

 def __repr__(self):

 return f"Doc(string='{self.string}')"

 def __str__(self):

 return f'{self.string}'

(c) ketabton.com: The Digital Library

24. The following Hashtag class is implemented for storing text
documents - hashtags. Implement the _add_ () special method
to add (concatenate) Hashtag instances using a space character as
shown below (take into account the appropriate number of ■ # ■
characters at the beginning of the new object).

Example:

[IN]: hashtagl = Hashtag('sport')

 [IN]: hashtag2 = Hashtag('travel1) [IN]: print(hashtagl + hashtag2)

[OUT]: »sport »travel

Then create three Hashtag instances for the following text documents:

• python

(c) ketabton.com: The Digital Library

• developer

• oop

 In response, print the result of adding these instances.

Expected result:

#python #developer #oop

 class Hashtag:

 def __init__(self, string):

 self.string = '#' + string

 def __repr__(self):

 return f"Hashtag(string='{self.string}')"

 def __str__(self):

 return f'{self.string}'

(c) ketabton.com: The Digital Library

Solution:

25. The following Doc class is implemented for storing text documents.
Implement the _eq_()special method to compare Doc instances. Class
instances are equal when they have identical string attribute values.

Example:

[IN]: docl = Doc('Finance')

[IN]: doc2 = Doc('Finance')

[IN]: print(docl == doc2)

 [OUT]: True

Then create two instances of the Doc class for the following
documents:

(c) ketabton.com: The Digital Library

• 'Python'

• '3.8'

In response, print the result of comparing these instances.

Expected result:

 False

 class Doc:

 def __init__(self, string):

 self.string = string

 def __repr__(self):

 return f"Doc(string='{self.string}')"

 def __str__(self):

 return f'{self.string}'

 def __add__(self, other):

 return Doc(self.string + ' ' + other.string)

(c) ketabton.com: The Digital Library

Solution:

 26. The following Doc class is implemented for storing text documents.
Implement the _it_()

special method to compare Doc instances. A class instance is 'smaller1
than another instance when the string attribute is shorter.

Example:

[IN]: docl = Doc('Finance')

[IN]: doc2 = Doc('Education')

(c) ketabton.com: The Digital Library

[IN]: print(docl < doc2)

 [OUT]: True

Then create two instances of the Doc class for the following
documents:

• 'sport'

• 'activity'

and assign to the variables:

doc1

doc2

 In response, print the result of comparing these instances (perform
doc1 < doc2).

Expected result:

True

class Doc:

 def __init__(self, string):

 self.string = string

 def __repr__(self):

 return f"Doc(string='{self.string}')"

(c) ketabton.com: The Digital Library

 def __str__(self):

 return f'{self.string}'

 def __add__(self, other):

 return Doc(self.string + ' ' + other.string)

 Solution:

(c) ketabton.com: The Digital Library

27. The following Doc class is implemented for storing text documents.
Implement the _iadd_() special method to perform extended
assignments. Concatenate two instances with the string ‘ & ‘

Example:

[IN]:

[IN]:

[IN]:

docl = Doc(1 Finance')

doc2 = Doc('Accounting1)

(c) ketabton.com: The Digital Library

docl += doc2

 [IN]: print(docl)

[OUT]: Finance & Accounting

Then create two instances of the Doc class for the following
documents:

• 'sport'

• 'activity'

and assign according to the variables:

• docl

 doc2

Perform extended assignment

• docl + = doc2

 Print docl instance to the console.

Expected result:

sport & activity

 class Doc:

 def __init__(self, string):

 self.string = string

 def __repr__(self):

 return f"Doc(string='{self.string}')"

(c) ketabton.com: The Digital Library

 def __str__(self):

 return f'{self.string}'

Solution:

(c) ketabton.com: The Digital Library

 28. The Book class is given. Implement the _str _() method to display
an informal

representation of a Book instance (see below).

Example:

[IN]: bookl = Book('Python OOPS Vol2', 'Edcorner Learning’)

[IN]: print(bookl)

 [OUT]: Book ID: 214522 | Title: Python OOPS Vol2 | Author:
Edcorner Learning

 Then create an instance named book with arguments:

• title= ‘Python OOPS Vol2’

• author='Edcorner Learning’

In response, print the instance to the console.

Expected result:

Book ID: 1234 | Title: Python OOPS Vol2 | Author: Edcorner
Learning

Note: The Book ID value may vary.

 import uuid

class Book:

 def __init__(self, title, author):

(c) ketabton.com: The Digital Library

 self.book_id = self.get_id()

 self.title = title

 self.author = author

 def __repr__(self):

 return f"Book(title='{self.title}', author='{self.author}')"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

(c) ketabton.com: The Digital Library

Solution:

(c) ketabton.com: The Digital Library

Module 4 Inheritance

29. The Container class was implemented. Implement two simple classes
inheriting from the class Container with names respectively:

• PlasticContainer

• MetalContainer

class Container:

 pass

Solution:

class Container:

 pass

class PlasticContainer(Container):

 pass

class MetalContainer(Container):

 pass

 30. The following classes are implemented:

 • Container

(c) ketabton.com: The Digital Library

 • PlasticContainer

 • MetalContainer

 • CustomContainer

Using the issubciassQ built-in function, check if the classes:

PlasticContainer

MetalContainer

 • CustomContainer

are subclasses of Container class. Print the result to the console as
shown below:

True

True

False

class Container:

 pass

class PlasticContainer(Container):

 pass

class MetalContainer(Container):

 pass

class CustomContainer:

 pass

Solution:

class Container:

(c) ketabton.com: The Digital Library

 pass

class PlasticContainer(Container):

 pass

class MetalContainer(Container):

 pass

class CustomContainer:

 pass

print(issubclass(PlasticContainer, Container))

print(issubclass(MetalContainer, Container))

print(issubclass(CustomContainer, Container))

 31. The following classes are implemented:

• Vehicle

• LandVehicle

• AirVehicle

Define a _repr _() special method in the Vehicle class that returns a
formal representation of

the objects of the classes Vehicle, LandVehicle, and AirVehicle.

Example: The code below:

 instances = [Vehicle(), LandVehicle(), AirVehicle()]

(c) ketabton.com: The Digital Library

for instance in instances: print(instance)

returns:

Vehicle(category='land vehicle')

LandVehicle(category='land vehicle1)

AirVehicle(category='air vehicle1)

 Run the code below in response:

instances = [VehicleQ, LandVehicleQ, AirVehicleQ]

for instance in instances: print(instance)

Expected result:

Vehicle(category='land vehicle')

LandVehicle(category='land vehicle1)

AirVehicle(category='air vehicle1)

class Vehicle:

 def __init__(self, category=None):

 self.category = category if category else 'land vehicle'

class LandVehicle(Vehicle):

 pass

class AirVehicle(Vehicle):

 def __init__(self, category=None):

 self.category = category if category else 'air vehicle'

(c) ketabton.com: The Digital Library

instances = [Vehicle(), LandVehicle(), AirVehicle()]

for instance in instances:

 print(instance)

(c) ketabton.com: The Digital Library

32. The following classes are implemented:

• Vehicle

• LandVehicle

• AirVehicle

Define a dispiay_info() method in the Vehicle class to display the class name
along with the value of the category attribute. The method is supposed to
work for all classes.

For example, the following code:

instances = [Vehicle(), LandVehtcle(), AirVehtcle()]

for instance in instances: print(instance)

returns:

Vehicle -> land vehicle

LandVehicle

land vehicle

AirVehicle -> air vehicle

Run the code below in response:

instances = [Vehicle(), LandVehicle(), AirVehicle()]

for instance in instances: print(instance)

 Expected result:

Vehicle -> land vehicle

(c) ketabton.com: The Digital Library

LandVehlcle -> land vehicle

AlrVehlcle -> air vehicle

 class Vehicle:

 def __init__(self, category=None):

 self.category = category if category else 'land vehicle'

class LandVehicle(Vehicle):

 pass

class AirVehicle(Vehicle):

 def __init__(self, category=None):

 self.category = category if category else 'air vehicle'

vehicles = [Vehicle(), LandVehicle(), AirVehicle()]

for vehicle in vehicles:

 vehicle.display_info()

(c) ketabton.com: The Digital Library

Solution:

33. A Vehicle class is given that has three instance attributes:

• brand

• color

• year

(c) ketabton.com: The Digital Library

Create a Car class that inherits from Vehicle class. Next, override the
_init () method so

that the Car class in the constructor takes four arguments:

• brand

• color

 • year

• horsepower

and set them appropriately as instance attributes. Don't use super () in
this case. Then create following instances:

• with the name vehicle and the attribute values: 'BMW', 'red', 2020

• with the name car and the attribute values: 'BMW', 'red', 2020,
300

In response, print the value of the _dict_ attribute of the vehicle and car
instances.

Expected result:

{'brand': ' BMW’, 'color': 'red', 'year': : 2020}

{1 brand' : ' BMW’, 'color': 'red', 'year': : 2020,
'horsepower': 300}

class Vehicle:

 def __init__(self, brand, color, year):

 self.brand = brand

 self.color = color

(c) ketabton.com: The Digital Library

 self.year = year

(c) ketabton.com: The Digital Library

Solution:

34. The Vehicle and Car classes are listed below. Implement a method named
dispiay_attrs() in the base class Vehicle, which displays the instance
attributes and their values. For example, for the Vehicle class:

vehicle = Vehlcle('BMW', 'red', 2020) vehicle.dlsplay_attrs()

brand -> BMW

color -> red

year -> 2020

(c) ketabton.com: The Digital Library

And for the Car class:

car = Car(‘BMW’, 'red', 2020, 190) car.dlsplay_attrs()

brand -> BMW color -> red

year -> 2020

horsepower -> 190

Then create an instance of the Car class named car with the attribute values: 1
Opel ', 'black', 2018, 160

In response, call dispiay_attrs() on the car instance.

Expected result:

brand -> Opel

color -> black

year -> 2018

horsepower -> 160

 class Vehicle:

 def __init__(self, brand, color, year):

 self.brand = brand

 self.color = color

 self.year = year

class Car(Vehicle):

(c) ketabton.com: The Digital Library

 def __init__(self, brand, color, year, horsepower):

 super().__init__(brand, color, year)

 self.horsepower = horsepower

(c) ketabton.com: The Digital Library

Solution:

35. The Vehicle and Car classes are listed below. Extend the
dispiay_attrs() method in the Car class so that the following
information is displayed before displaying the attributes: ' calling from
class: Car' and then the rest of the attributes with their values. Use super
() for this. For example, for the Car class:

car = Car('BMW', 'red', 2020, 190) car.dlsplay_attrs()

returns:

(c) ketabton.com: The Digital Library

 Calling from class: Car brand -> BMW

color -> red

year -> 2020

horsepower ->

190

Then create an instance of the class Car named car with the attribute
values: ' BMW’

'black', 2018, 260

In response, call display_attrs() on the car instance.

 Expected result:

Calling from class: Car

brand -> BMW

color -> black

year -> 2018

horsepower -> 260

class Vehicle:

 def __init__(self, brand, color, year):

 self.brand = brand

 self.color = color

 self.year = year

 def display_attrs(self):

(c) ketabton.com: The Digital Library

 for attr, value in self.__dict__.items():

 print(f'{attr} -> {value}')

class Car(Vehicle):

 def __init__(self, brand, color, year, horsepower):

 super().__init__(brand, color, year)

 self.horsepower = horsepower

 Solution:

(c) ketabton.com: The Digital Library

36. Implement simple classes with the following structure:

• Container

• TemperatureControlledContainer • RefrigeratedContainer

The TemperatureControlledContainer class inherits from the Container class
and the RefrigeratedContainer class inherits from
TemperatureControlledContainer.

(c) ketabton.com: The Digital Library

Solution:

class Container:

 pass

class TemperatureControlledContainer(Container):

 pass

class RefrigeratedContainer(TemperatureControlledContainer):

 pass

 37. Simple classes with the following structure are implemented:

• Container

• TemperatureControlledContainer • RefrigeratedContainer Using the built-in
issubclass() function, check if:

• TemperatureControlledContainer is a class derived from Container

• RefrigeratedContainer is a class derived from
TemperatureControlledContainer

• RefrigeratedContainer is a class derived from Container

(c) ketabton.com: The Digital Library

and print the obtained logical values to the console.

Expected result:

True

True

True

 class Container:

 pass

class TemperatureControlledContainer(Container):

 pass

class RefrigeratedContainer(TemperatureControlledContainer):

 pass

(c) ketabton.com: The Digital Library

Solution:

 38. Simple classes with the following structure are implemented:

• Container

• TemperatureControlledContainer • RefrigeratedContainer

The TemperatureControlledContainer class inherits from the Container
class and the RefrigeratedContainer class inherits from

(c) ketabton.com: The Digital Library

TemperatureControlledContainer.

Add a class attribute called temp_range to the
TemperatureControlledContainer class that stores the tuple (-25.0, 25.0)
, and to the RefrigeratedContainer class add a class attribute with the

same name and value (-25.0, 5.0) .

Then, using the getattr() function, read the value of the tempjange
attribute of the RefrigeratedContainer class and print to the console.

Expected result:

(-25.0, 5.0)

 class Container:

 category = 'general purpose'

class TemperatureControlledContainer(Container):

 pass

class RefrigeratedContainer(TemperatureControlledContainer):

 pass

(c) ketabton.com: The Digital Library

Solution:

 39. Implement two simple classes named Person and Department.
Then create a Worker class that inherits from the Person and
Department classes in the given order (multiple inheritance).

 Solution:

 class Person:

(c) ketabton.com: The Digital Library

 pass

class Department:

 pass

class Worker(Person, Department):

 pass

40. The following classes are defined. Add the _init_() method to the Person
class, which sets three attributes:

• firstname

• lastname

• age

Then create an instance of the Worker class passing the following arguments:

• 'John'

'Doe'

• 35

(c) ketabton.com: The Digital Library

In response, print the value of the _dict_ attribute of this instance.

Expected result:

{‘first_name’ : 'John', 'last_name': 'Doe', 'age': 35}

class Person:

 pass

class Department:

 pass

class Worker(Person, Department):

 pass

Solution:

(c) ketabton.com: The Digital Library

41. The following classes are defined. Add a init () method to the
Department class that sets

the following attributes:

• deptname (department name)

• short_dept_name (department short name)

Then create an instance of the Department class with arguments:

• 'Information Technology'

• 'IT'

In response, print the value of the _dict_ attribute of this instance.

Expected result:

{'dept_name': 'Information Technology', 'short_dept_name': 'IT'}

class Person:

 def __init__(self, first_name, last_name, age):

 self.first_name = first_name

 self.last_name = last_name

 self.age = age

class Department:

 pass

(c) ketabton.com: The Digital Library

class Worker(Person, Department):

 pass

 Solution:

42. The following classes are defined. Add the _init_() method to the Worker

(c) ketabton.com: The Digital Library

class to set all the attributes from the Person and Department classes.

Then create an instance of the Worker class passing the following arguments:

• 'John'
• 'Doe'
• 30
• 'Information Technology’
• 'IT'

In response, print the value of the _dict_ attribute of this instance.

•

 Expected Result:

{'first_name': 'John', 'last_name': 'Doe', 'age': 30, 'dept_name':
'Information Technology', 'short_dept_name': 'IT'}

class Person:

 def __init__(self, first_name, last_name, age):

 self.first_name = first_name

 self.last_name = last_name

 self.age = age

class Department:

 def __init__(self, dept_name, short_dept_name):

 self.dept_name = dept_name

 self.short_dept_name = short_dept_name

class Worker(Person, Department):

 pass

Solution:

(c) ketabton.com: The Digital Library

class Person:

 def __init__(self, first_name, last_name, age):

 self.first_name = first_name

 self.last_name = last_name

 self.age = age

class Department:

 def __init__(self, dept_name, short_dept_name):

 self.dept_name = dept_name

 self.short_dept_name = short_dept_name

class Worker(Person, Department):

 def __init__(self, first_name, last_name, age, dept_name,
short_dept_name):

 Person.__init__(self, first_name, last_name, age)

 Department.__init__(self, dept_name, short_dept_name)

worker = Worker('John', 'Doe', 30, 'Information Technology', 'IT')

print(worker.__dict__)

 Solution:

(c) ketabton.com: The Digital Library

43. The following classes are defined. Display the MRO - Method
Resolution Order for the Worker class.

Note: The solution that the user passes is in a file named exercise.py,
while the checking code (which is invisible to the user) is executed
from a file named evaluate.py from the level where the classes are
imported. Therefore, instead of the name of the module
main , the response will be the name of the module in which
this class is implemented, in this case exercise .

 Expected result:

[<class 'exercise.Worker’>, <class 'exercise.Person'>, <class

(c) ketabton.com: The Digital Library

'exercise.Departnent’, <class 'object’>]

 class Person:

 def __init__(self, first_name, last_name, age):

 self.first_name = first_name

 self.last_name = last_name

 self.age = age

class Department:

 def __init__(self, dept_name, short_dept_name):

 self.dept_name = dept_name

 self.short_dept_name = short_dept_name

class Worker(Person, Department):

 def __init__(self, first_name, last_name, age, dept_name):

 Person.__init__(self, first_name, last_name, age)

 Department.__init__(self, dept_name)

Solution:

 class Person:

 def __init__(self, first_name, last_name, age):

(c) ketabton.com: The Digital Library

 self.first_name = first_name

 self.last_name = last_name

 self.age = age

class Department:

 def __init__(self, dept_name, short_dept_name):

 self.dept_name = dept_name

 self.short_dept_name = short_dept_name

class Worker(Person, Department)

 def __init__(self, first_name, last_name, age, dept_name):

 Person.__init__(self, first_name, last_name, age)

 Department.__init__(self, dept_name)

print(Worker.mro())

(c) ketabton.com: The Digital Library

Module 5 Abstract Classes

44. Create an abstract class named Figure with the abstract method named
area. Then create a Square class that inherits from the Figure class, which sets
the side length of the square in the constructor. Implement the area method
that allows you to calculate the area of a square.

Then try to create an instance of the Figure class, in case of an error, print the
error message to the console.

Expected result:

Can't instantiate abstract class Figure with abstract methods area

 Solution:

45. An implementation of the Figure and Square classes is given. Add

(c) ketabton.com: The Digital Library

an abstract method called perimeterQ to the Figure class, then
implement it in the Square class. The perimeter() method should return
the perimeter of the square.

Create an instance of the Square class with side 10 and using the area()
and perimeter() methods display the area and perimeter of the created
instance to the console.

Expected result:

 100

 from abc import ABC, abstractmethod

class Figure(ABC):

 @abstractmethod

 def area(self):

 pass

class Square(Figure):

 def __init__(self, a):

 self.a = a

 def area(self):

 return self.a * self.a

Solution:

from abc import ABC, abstractmethod

(c) ketabton.com: The Digital Library

class Figure(ABC):

 @abstractmethod

 def area(self):

 pass

 @abstractmethod

 def perimeter(self):

 pass

class Square(Figure):

 def __init__(self, a):

 self.a = a

 def area(self):

 return self.a * self.a

 def perimeter(self):

 return 4 * self.a

square = Square(10)

print(square.area())

print(square.perimeter())

(c) ketabton.com: The Digital Library

46. Create an abstract class named Taxpayer. In the _init_() method set an
instance attribute

(without validation) called salary. Then add an abstract method called
calculate_tax() (use the @abstractmethod decorator).

Solution:

from abc import ABC, abstractmethod

class TaxPayer(ABC):

(c) ketabton.com: The Digital Library

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

47. An implementation of the Taxpayer abstract class is given. Create a
class derived from Taxpayer named StudentTaxPayer that implements
the caicuiate_tax() method that calculates the 15% salary tax (salary
attribute).

Then create an instance of the StudentTaxPayer class named student
and salary 40,000. In response, by calling caicuiate_tax() print the
calculated tax to the console.

Expected result:

 6000.0

 from abc import ABC, abstractmethod

class TaxPayer(ABC):

(c) ketabton.com: The Digital Library

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

Solution:

 from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

class StudentTaxPayer(TaxPayer):

(c) ketabton.com: The Digital Library

 def calculate_tax(self):

 return self.salary * 0.15

student = StudentTaxPayer(40000)

print(student.calculate_tax())

 48. An implementation of the Taxpayer abstract class is given. Create
a class derived from the TaxPayer class named DisabledTaxPayer that
implements the caicuiate_tax() method that calculates the minimum
value of the following two:

• 12% salary tax (salary attribute)

• 5000.0

Then create an instance of DisabledTaxPayer class named disabled and
salary 50,000. In response, by calling caicuiate_tax(), print the
calculated tax value to the console.

 Expected result:

5000.0

 from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

(c) ketabton.com: The Digital Library

 pass

class StudentTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.15

Solution:

from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

class StudentTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.15

class DisabledTaxPayer(TaxPayer):

 def calculate_tax(self):

 return min(self.salary * 0.12, 5000.0)

disabled = DisabledTaxPayer(50000)

print(disabled.calculate_tax())

(c) ketabton.com: The Digital Library

 49. An implementation of the Taxpayer abstract class is given.
Create a class derived from the TaxPayer class named WorkerTaxPayer
that implements the caicuiate_tax() method that calculates the tax
value according to the rule:

• up to the amount of 80,000 -> 17% tax rate

• everything above 80,000 -> 32% tax rate

Then create two instances of WorkerTaxPayer named workerl and
worker2 and salaries of 70,000 and 95,000 respectively. In response, by
calling caicuiate_tax() print the calculated tax for both instances to the
console.

 Expected result:

11900.0

18400.0

 from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

class StudentTaxPayer(TaxPayer):

(c) ketabton.com: The Digital Library

 def calculate_tax(self):

 return self.salary * 0.15

class DisabledTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.12

Solution:

from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

class StudentTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.15

class DisabledTaxPayer(TaxPayer):

(c) ketabton.com: The Digital Library

 def calculate_tax(self):

 return self.salary * 0.12

class WorkerTaxPayer(TaxPayer):

 def calculate_tax(self):

 if self.salary < 80000:

 return self.salary * 0.17

 else:

 return 80000 * 0.17 + (self.salary - 80000) * 0.32

worker1 = WorkerTaxPayer(70000)

worker2 = WorkerTaxPayer(95000)

print(worker1.calculate_tax())

print(worker2.calculate_tax())

50. The following classes are given:

• StudentTaxPayer

• DisabledTaxPayer

• WorkerTaxPayer

(c) ketabton.com: The Digital Library

Create a list named tax_payers and assign four instance to it, respectively:

• an instance of the StudentTaxPayer class with a salary of 50,000

• an instance of the DisabledTaxPayer class with a salary of 70,000

• an instance of the WorkerTaxPayer class with a salary of 68,000

• an instance of the WorkerTaxPayer class with a salary of 120,000

Then, iterating through the list, call caicuiate_tax() method on the given
instance and print the tax amount to the console.

Expected result:

7500.0

8400.0

11560.0

26400.0

from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

class StudentTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.15

class DisabledTaxPayer(TaxPayer):

(c) ketabton.com: The Digital Library

 def calculate_tax(self):

 return self.salary * 0.12

class WorkerTaxPayer(TaxPayer):

 def calculate_tax(self):

 if self.salary < 80000:

 return self.salary * 0.17

 else:

 return 80000 * 0.17 + (self.salary - 80000) * 0.32

Solution:

from abc import ABC, abstractmethod

class TaxPayer(ABC):

 def __init__(self, salary):

 self.salary = salary

 @abstractmethod

 def calculate_tax(self):

 pass

class StudentTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.15

(c) ketabton.com: The Digital Library

class DisabledTaxPayer(TaxPayer):

 def calculate_tax(self):

 return self.salary * 0.12

class WorkerTaxPayer(TaxPayer):

 def calculate_tax(self):

 if self.salary < 80000:

 return self.salary * 0.17

 else:

 return 80000 * 0.17 + (self.salary - 80000) * 0.32

tax_payers = [StudentTaxPayer(50000),
DisabledTaxPayer(70000),

 WorkerTaxPayer(68000), WorkerTaxPayer(120000)]

for tax_payer in tax_payers:

 print(tax_payer.calculate_tax())

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Module 6 Miscelleanuoes Exercises

51. The people list is given. Sort the objects in the people list ascending by
age. Then print the name and age to the console as shown below.

Expected result:

Alice-> 19

Tom ->25

Mike -27

John -> 29

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

people = [Person('Tom', 25), Person('John', 29),

 Person('Mike', 27), Person('Alice', 19)]

(c) ketabton.com: The Digital Library

 Solution:

52. The following Point class is given. Implement a reset () method that
allows you to set the values of the x and y attributes to zero. Then create an
instance of the Point class with coordinates (4, 2) and print it to the console.
Call the reset () method on this instance and print the instance to the console
again.

Expected result:

(c) ketabton.com: The Digital Library

Point(x=4, y=2)

Point(x=0, y=0)

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return f"Point(x={self.x}, y={self.y})"

(c) ketabton.com: The Digital Library

 Solution:

53. The following Point class is given. Implement the caic_distance()
method that calculates the euclidean distance of two points.

Create two instances of the Point class with the coordinates (0, 3) and (4, 0)
and calculate the distance of these points (use the caic_distance() method).

(c) ketabton.com: The Digital Library

Expected result:

5.0

import math

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return f"Point(x={self.x}, y={self.y})"

 def reset(self):

 self.x = 0

 self.y = 0

(c) ketabton.com: The Digital Library

 Solution:

54. Implement a class called Note that describes a simple note. When creating
Note objects, an instance attribute called content will be set with the contents
of the note. Also add instance attribute called creationjime that stores the
creation time (use the given date format: '%m-%d- %Y %H:%M:%S').

Next, create two instances of the Note class named notel and note2, and

(c) ketabton.com: The Digital Library

assign the following contents:

'My first note.'

'My second note.'

Solution:

import datetime

class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-%d-%Y
%H:%M:%S')

note1 = Note('My first note.')

note2 = Note('My second note.')

55. The Note class is given. Implement a find() method that checks if a
given word is in the note (case sensitive). The method should return
True or False, respectively.

Then create an instance named notel with the contents of the note:

'Object Oriented Programming in Python.'

On the notel instance call the find() method to check if the note
contains the following words:

(c) ketabton.com: The Digital Library

• 'python'
• 'Python'

 Print the result to the console.

Expected result:

False

True

 import datetime

class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-%d-%Y
%H:%M:%S')

Solution:

(c) ketabton.com: The Digital Library

56. The Note class is given. Implement a find() method that checks if a
given word is in the note (case insensitive). The method should return
True or False, respectively.

Then create an instance named notel with the contents of the note:

'Object Oriented Programming in Python.'

On the note7 instance call the find() method to check if the note
contains the following words:

'python'

(c) ketabton.com: The Digital Library

 'Python'

Print the result to the console.

Expected result:

True

True

 import datetime

class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-%d-%Y
%H:%M:%S')

(c) ketabton.com: The Digital Library

Solution:

57. The Note class (representation of a note) is given. Implement the
Notebook class (representation of a notebook with notes) with two
methods:

• init () for creating an instance attribute of the Notebook

(c) ketabton.com: The Digital Library

class named notes (an

empty list where the notes will be stored).

• new_note() for creating a new Note object and adding it to the
notes list

Create an instance of the Notebook class named notebook. Then, using
the new_note() method add two notes to the notebook with the
following content:

'My first note.'

 'My second note.'

In response, print the content of the notes attribute to the console.

Expected result:

[Note(content='My first note.'), Note(content='My second note.')]

 import datetime

 class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-%d-
%Y %H:%M:%S')

 def __repr__(self):

 return f"Note(content='{self.content}')"

 def find(self, word):

 return word.lower() in self.content.lower()

Solution:

(c) ketabton.com: The Digital Library

 58. Implementations of the Note and Notebook class are given.
Implement a method named dispiay_notes() in the Notebook class to
display the content of all notes of the notes instance attribute to the
console.

Create an instance of the Notebook class named notebook. Then, using
the new_note() method add two notes to the notebook with the
following content:

• 'My first note.'

• 'My second note.'

In response, call dispiay_notes() method on the notebook instance.

 Expected result:

(c) ketabton.com: The Digital Library

 My first note.

 My second note.

 import datetime

class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-%d-
%Y %H:%M:%S')

 def __repr__(self):

 return f"Note(content='{self.content}')"

 def find(self, word):

 return word.lower() in self.content.lower()

class Notebook:

 def __init__(self):

 self.notes = []

 def new_note(self, content):

 self.notes.append(Note(content))

 Solution:

(c) ketabton.com: The Digital Library

Solution:

(c) ketabton.com: The Digital Library

59. Implementations of the Note and Notebook class are given. Implement a
method called search() in the Notebook class that allows you to return a list
of notes containing a specific word (passed as an argument to the method,
case insensitive). You can use the Note.find method for this.

Create an instance of the Notebook class named notebook. Then, using the
new_note() method add notes to the notebook with the following content:

• 'Big Data'
• 'Data Science'
• 'Machine Learning'

In response, call the search() method on the notebook instance looking for
notes that contain the Word 'data' .

Expected result:

[Note(content='Big Data'), Note(content='Data Science')]

import datetime

class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-%d-%Y
%H:%M:%S')

 def __repr__(self):

(c) ketabton.com: The Digital Library

 return f"Note(content='{self.content}')"

 def find(self, word):

 return word.lower() in self.content.lower()

class Notebook:

 def __init__(self):

 self.notes = []

 def new_note(self, content):

 self.notes.append(Note(content))

 def display_notes(self):

 for note in self.notes:

 print(note.content)

 Solution:

 import datetime

class Note:

 def __init__(self, content):

 self.content = content

 self.creation_time = datetime.datetime.now().strftime('%m-
%d-%Y %H:%M:%S')

 def __repr__(self):

 return f"Note(content='{self.content}')"

 def find(self, word):

 return word.lower() in self.content.lower()

(c) ketabton.com: The Digital Library

class Notebook:

 def __init__(self):

 self.notes = []

 def new_note(self, content):

 self.notes.append(Note(content))

 def display_notes(self):

 for note in self.notes:

 print(note.content)

 def search(self, value):

 return [note for note in self.notes if note.find(value)]

notebook = Notebook()

notebook.new_note('Big Data')

notebook.new_note('Data Science')

notebook.new_note('Machine Learning')

print(notebook.search('data'))

(c) ketabton.com: The Digital Library

60. Implement a class named Client which has a class attribute named
all_clients (as a list). Then the _init_() method sets two instance
attributes (no validation):

• name

• email

Add this instance to the alLclients list (Client class attribute). Also add a
repr() method

(c) ketabton.com: The Digital Library

the Client class (see below).

Create three clients by executing the following code:

Clientl = Client(‘Tom’, ‘sample@gmail.com’)

client2 = Client(‘Donald', ‘sales@yahoo.com’)

client3 = Client('Mike’, ‘sales-contact@yahoo.com’)

In response, print the all_cients attribute of the Client class.

Expected Result:

[Client(name='Tom', email='sample@gmail.com'),
Client(name='Donald', email='sales@yahoo.com'), Client(name='Mike',
email='sales-contact@yahoo.com')]

 Solution:

 class Client:

 all_clients = []

 def __init__(self, name, email):

 self.name = name

 self.email = email

 Client.all_clients.append(self)

(c) ketabton.com: The Digital Library

 def __repr__(self):

 return f"Client(name='{self.name}', email='{self.email}')"

client1 = Client('Tom', 'sample@gmail.com')

client2 = Client('Donald', 'sales@yahoo.com')

client3 = Client('Mike', 'sales-contact@yahoo.com')

print(Client.all_clients)

61. The Client class is implemented. Note the class attribute all_clients. Try
to implement a special class extending the built-in list class called ClientList,
which in addition to the standard methods for the built-in class list will have a
search_emaii() method that allows you to return a list of Client class
instances containing the text (value argument) in the email address.

For example, the following code:

Clientl = Client(‘Tom’, ‘sample@gmail.com’)

client2 = Client(‘Donald', ‘sales@yahoo.com’)

client3 = Client('Mike’, ‘sales-contact@yahoo.com’)

client4 = Client(1 Lisa1, 'info@gmail.com')

print(Client.all_clients.search_email('sales'))

(c) ketabton.com: The Digital Library

class ClientList(list)

 def search_email(self, value):

 pass

class Client:

 all_clients = ClientList()

 def __init__(self, name, email):

 self.name = name

 self.email = email

 Client.all_clients.append(self)

 def __repr__(self):

 return f"Client(name='{self.name}', email='{self.email}')"

 Solution:

 class ClientList(list):

 def search_email(self, value):

 result = [client for client in self if value in client.email]

 return result

class Client:

 all_clients = ClientList()

(c) ketabton.com: The Digital Library

 def __init__(self, name, email):

 self.name = name

 self.email = email

 Client.all_clients.append(self)

 def __repr__(self):

 return f"Client(name='{self.name}', email='{self.email}')"

client1 = Client('Tom', 'sample@gmail.com')

client2 = Client('Donald', 'sales@gmail.com')

client3 = Client('Mike', 'sales@yahoo.com')

client4 = Client('Lisa', 'info@gmail.com')

print(Client.all_clients.search_email('sales'))

(c) ketabton.com: The Digital Library

 62. The Client class is implemented. Create the following four instances of
the Client class:

 For example, the following code:

Clientl = Client(‘Tom’, ‘sample@gmail.com’)

client2 = Client(‘Donald', ‘sales@yahoo.com’)

client3 = Client('Mike’, ‘sales-contact@yahoo.com’)

client4 = Client(1 Lisa1, 'info@gmail.com')

 Then search for all customers who have a gmail account (‘gmail
' in email address). In response, print result to the console as shown
below.

Expected result:

 Client(name='Tom', email='sample@gmail.com')

Client(name='Donald', email='sales@gmail.com')

Client(name='Lisa', email='info@gmail.com')

 class ClientList(list):

 def search_email(self, value):

(c) ketabton.com: The Digital Library

 result = [client for client in self if value in client.email]

 return result

class Client:

 all_clients = ClientList()

 def __init__(self, name, email):

 self.name = name

 self.email = email

 Client.all_clients.append(self)

 def __repr__(self):

 return f"Client(name='{self.name}', email='{self.email}')"

(c) ketabton.com: The Digital Library

 Solution:

63. The Client class is implemented. The following four instances of the
Client class:

 For example, the following code:

Clientl = Client(‘Tom’, ‘sample@gmail.com’)

(c) ketabton.com: The Digital Library

client2 = Client(‘Donald', ‘sales@yahoo.com’)

client3 = Client('Mike’, ‘sales-contact@yahoo.com’)

client4 = Client(1 Lisa1, 'info@gmail.com')

Search for all customers with the word ‘sales ' email address. In response,
print the names

of the customers as a list to the console.

Expected result:

['Donald', 'Mike']

class ClientList(list):

 def search_email(self, value):

 result = [client for client in self if value in client.email]

 return result

class Client:

 all_clients = ClientList()

 def __init__(self, name, email):

 self.name = name

 self.email = email

 Client.all_clients.append(self)

 def __repr__(self):

 return f"Client(name='{self.name}', email='{self.email}')"

(c) ketabton.com: The Digital Library

client1 = Client('Tom', 'sample@gmail.com')

client2 = Client('Donald', 'sales@gmail.com')

client3 = Client('Mike', 'sales@yahoo.com')

client4 = Client('Lisa', 'info@gmail.com')

(c) ketabton.com: The Digital Library

Solution:

64. Create a class named CustomDict that extends the built-in diet
class. Add a method named is_any_str_vaiue() that returns a boolean
value:

• True in case the created dictionary contains at least one value of
str type

(c) ketabton.com: The Digital Library

• otherwise False.

Example I:

[IN]: cd = CustonDict(python=’mid')

 [IN]: print(cd.ls_any_str_value())

returns:

[OUT]: True

Example II:

 [IN]: cd = CustomDict(price=119.99)

 [IN]: print(cd.ls_any_str_value())

returns:

[OUT]: False

You only need to implement the CustomDict class.

Solution:

 class CustomDict(dict):

 def is_any_str_value(self):

 flag = False

 for key in self:

(c) ketabton.com: The Digital Library

 if isinstance(self[key], str):

 flag = True

 break

 return flag

 65. Create a class named StringListOnly that extends the built-in list
class. Modify the behavior of the append () method so that only objects
of str type can be added to the list. If you try to add a different type of
object raise TypeE rror with message:

'Only objects of type str can be added to the list.'

Then create an instance of the StringListOnly class and add the
following objects with the append() method:

'Data'

 'Science'

In response, print result to the console.

(c) ketabton.com: The Digital Library

Expected result:

['Data', 'Science']

 Solution:

(c) ketabton.com: The Digital Library

 66. Create a class named StringListOnly that extends the built-in list
class. Modify the behavior of the append() method so that only objects
of str type an be added to the list. Replace all uppercase letters with
lowercase before adding the object to the list. If you try to add a
different type of object raise TypeE rror with message:

'Only objects of type str can be added to the list.'

Then create an instance of the StringListOnly class and add the
following objects with the append() method:

 'Data'

• 'Science'

• 'Machine Learning'

In response, print result to the console.

Expected result:

['data', 'science', 'machine learning']

(c) ketabton.com: The Digital Library

Solution:

(c) ketabton.com: The Digital Library

67. An implementation of the Product class is given. Implement a class
named Warehouse which in the init () method sets an
instance attribute of the Warehouse class named products to

an empty list.

Then create an instance of the Warehouse class named warehouse and
display the value of the products attribute to the console.

Expected result:

 []

 import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=

(c) ketabton.com: The Digital Library

{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

 Solution:

(c) ketabton.com: The Digital Library

68. The implementation of the classes: Product and Warehouse is given. To
the Warehouse class, add a method named add_product() that allows you to
add an instance of the Product class to the products list. If the product name
is already in the products list, skip adding the product.

Next, create an instance of the Warehouse class named warehouse. Using the
add_product() method add the following products:

'Laptop', 3900.0

'Mobile Phone', 1990.0

(c) ketabton.com: The Digital Library

'Mobile Phone', 1990.0

Note that the second and third products are duplicates. The add_product()
method should avoid adding duplicates. Print the products attribute of the
warehouse instance to the console.

Expected result:

[Product(product_name='Laptop', price=3900.0),
Product(product_name='Mobile Phone', price=1990.0)]

import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

(c) ketabton.com: The Digital Library

class Warehouse:

 def __init__(self):

 self.products = []

 Solution:

 import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

(c) ketabton.com: The Digital Library

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

warehouse = Warehouse()

warehouse.add_product('Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

print(warehouse.products)

(c) ketabton.com: The Digital Library

69. The implementation of the classes: Product and Warehouse is given. To
the Warehouse class, add a method named remove_product() that allows you
to remove an instance of the Product class from the products list with a given
product name. If the product name is not in the products list, just skip.

Next, create an instance of the Warehouse class named warehouse. Using the
add_product() method add the following products:

'Laptop', 3900.0

'Mobile Phone', 1990.0

• 'Camera', 2900.0

Then, using the remove_product() method, remove the product named
'Mobile Phone' . In response, print the products attribute of the warehouse
instance to the console.

Expected result:

[Product(product_name='Laptop', price=3900.0),
Product(product_name='Camera', price=2900.0)]

import uuid

(c) ketabton.com: The Digital Library

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

(c) ketabton.com: The Digital Library

Solution:

import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

(c) ketabton.com: The Digital Library

 class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

warehouse = Warehouse()

warehouse.add_product('Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

warehouse.add_product('Camera', 2900.0)

warehouse.remove_product('Mobile Phone')

print(warehouse.products)

(c) ketabton.com: The Digital Library

70. The implementation of the classes: Product and Warehouse is given. To
the Product class, add a _str_() method that is an informal
representation of the Product class.

An example of how the _str_() method works. The code below:

returns:

product = Product(1 Laptop', 3900.0) print(product)

Then create an instance of the Product class named product with the
arguments passed:

• 'Mobile Phone', 1990.0

In response, print the product instance to the console.

Expected result:

Product Name: Mobile Phone | Price: 1990.0

import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

(c) ketabton.com: The Digital Library

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

Solution:

import uuid

class Product:

(c) ketabton.com: The Digital Library

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 def __str__(self):

 return f'Product Name: {self.product_name} | Price: {self.price}'

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

(c) ketabton.com: The Digital Library

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

product = Product('Mobile Phone', 1990.0)

print(product)

71. The implementation of the classes: Product and Warehouse is given. Add
a method to the Warehouse class named dispiay_products() that displays all
products in the products attribute of the Warehouse class.

Then create an instance of the Warehouse class named warehouse and
execute the following code:

warehouse.add_product(1 Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

warehouse.add_product('Cañera', 2900.0)

In response, call dispiay_products() method on the warehouse instance.

Expected result:

(c) ketabton.com: The Digital Library

Product Name: Laptop | Price: 3900.0

Product Name: Mobile Phone | Price: 1990.0

Product Name: Camera | Price: 2900.0

 import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 def __str__(self):

 return f'Product Name: {self.product_name} | Price: {self.price}'

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

(c) ketabton.com: The Digital Library

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

 Solution:

import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

(c) ketabton.com: The Digital Library

 def __str__(self):

 return f'Product Name: {self.product_name} | Price: {self.price}'

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

 def display_products(self):

(c) ketabton.com: The Digital Library

 for product in self.products:

 print(product)

warehouse = Warehouse()

warehouse.add_product('Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

warehouse.add_product('Camera', 2900.0)

warehouse.display_products()

(c) ketabton.com: The Digital Library

 72. The implementation of the classes: Product and Warehouse is
given. Add a method called sort_by_price() to the Warehouse class
that returns an alphabetically sorted list of products. The sort_by_price(
) method also takes an argument ascending set to True by default,
which means an ascending sort. If False is passed, reverse the sort
order.

Then create an instance of the Warehouse class named warehouse and
execute the following code:

warehouse.add_product(1 Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

 warehouse.add_product('Cañera', 2900.0)

 warehouse.add_product('USB Cable', 24.9)

 warehouse.add_product('House', 49.0)

In response, use the sort_by_price() method to print a sorted list of
products to the console as shown below.

Expected result:

 Product(product_name='USB Cable', price=24.9)

Product(product_name='Mouse', price=49.0)

Product(product_name='Mobile Phone', price=1990.0)

Product(product_name='Camera', price=2900.O)

Product(product_name='Laptop', price=3900.0)

import uuid

(c) ketabton.com: The Digital Library

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}',
price={self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

(c) ketabton.com: The Digital Library

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

 def display_products(self):

 for product in self.products:

 print(f'Product ID: {product.product_id} | Product name: '

 f'{product.product_name} | Price: {product.price}')

Solution:

import uuid

class Product:

 def __init__(self, product_name, price):

(c) ketabton.com: The Digital Library

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

(c) ketabton.com: The Digital Library

 if product_name == product.product_name:

 self.products.remove(product)

 def display_products(self):

 for product in self.products:

 print(f'Product ID: {product.product_id} | Product name: '

 f'{product.product_name} | Price: {product.price}')

 def sort_by_price(self, ascending=True):

 return sorted(self.products, key=lambda product:
product.price,

 reverse=not ascending)

warehouse = Warehouse()

warehouse.add_product('Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

warehouse.add_product('Camera', 2900.0)

warehouse.add_product('USB Cable', 24.9)

warehouse.add_product('Mouse', 49.0)

for product in warehouse.sort_by_price():

 print(product)

(c) ketabton.com: The Digital Library

 73. The implementation of the classes: Product and Warehouse
is given. Complete the implementation of the method named
search_product() of the Warehouse class that allows you to return a list
of products containing the specified name (query argument).

Then create an instance of the Warehouse class named warehouse and
execute the following code:

warehouse.add_product(1 Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

warehouse.add_product('Cañera', 2900.0)

warehouse.add_product(1 USB Cable', 24.9)

warehouse.add_product(1 Mouse1, 49.0)

In response, call search_product() method and find all products that
contain the letter 'm'.

 Expected Result:

[Product(product_name='Mobile Phone', price=1990.0),
Product(product_name='Mouse', price=49.0)]

(c) ketabton.com: The Digital Library

 import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in self.products]

(c) ketabton.com: The Digital Library

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

 def display_products(self):

 for product in self.products:

 print(f'Product ID: {product.product_id} | Product name: '

 f'{product.product_name} | Price: {product.price}')

 def sort_by_price(self, ascending=True):

 return sorted(self.products, key=lambda product: product.price,

 reverse=not ascending)

 def search_product(self, query):

 pass

(c) ketabton.com: The Digital Library

Solution:

import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price=
{self.price})"

 @staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

class Warehouse:

 def __init__(self):

 self.products = []

(c) ketabton.com: The Digital Library

 def add_product(self, product_name, price):

 product_names = [product.product_name for product in
self.products]

 if not product_name in product_names:

 self.products.append(Product(product_name, price))

 def remove_product(self, product_name):

 for product in self.products:

 if product_name == product.product_name:

 self.products.remove(product)

 def display_products(self):

 for product in self.products:

 print(f'Product ID: {product.product_id} | Product name: '

 f'{product.product_name} | Price: {product.price}')

 def sort_by_price(self, ascending=True):

 return sorted(self.products, key=lambda product:
product.price,

 reverse=not ascending)

 def search_product(self, query):

 return [prod for prod in self.products if query in
prod.product_name]

(c) ketabton.com: The Digital Library

warehouse = Warehouse()

warehouse.add_product('Laptop', 3900.0)

warehouse.add_product('Mobile Phone', 1990.0)

warehouse.add_product('Camera', 2900.0)

warehouse.add_product('USB Cable', 24.9)

warehouse.add_product('Mouse', 49.0)

print(warehouse.search_product('M'))

ABOUT THE AUTHOR

“Edcorner Learning” and have a significant number of students on Udemy

with more than 90000+ Student and Rating of 4.1 or above.

(c) ketabton.com: The Digital Library

Edcorner Learning is Part of Edcredibly.

Edcredibly is an online eLearning platform provides Courses on all trending
technologies that maximizes learning outcomes and career opportunity for
professionals and as well as students. Edcredibly have a significant number

of 100000+ students on their own platform and have a Rating of 4.9 on
Google Play Store – Edcredibly App.

Feel Free to check or join our courses on:

Edcredibly Website - https://www.edcredibly.com/

Edcredibly App –

https://play.google.com/store/apps/details?id=com.edcredibly.courses

Edcorner Learning Udemy - https://www.udemy.com/user/edcorner/

Do check our other eBooks available on Kindle Store.

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

