
Laravel

Ketabton.com

Laravel

i

About the Tutorial

Laravel is a powerful MVC PHP framework, designed for developers who need a simple and

elegant toolkit to create full-featured web applications. Laravel was created by Taylor

Otwell. This is a brief tutorial that explains the basics of Laravel framework.

Audience

This tutorial will guide the developers and students who want to learn how to develop a

website using Laravel. This tutorial is particularly meant for all those developers who have

no prior experience of using Laravel.

Prerequisites

Before you start proceeding with this tutorial, we make an assumption that you are familiar

with HTML, Core PHP, and Advance PHP. We have used Laravel version 5.1 in all the

examples.

Copyright & Disclaimer

Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

(c) ketabton.com: The Digital Library

Laravel

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. LARAVEL – OVERVIEW ... 1

Introduction .. 1

Laravel – Features ... 1

2. LARAVEL – INSTALLATION .. 2

3. LARAVEL – APPLICATION STRUCTURE .. 4

Root Directory ... 4

App Directory .. 5

4. LARAVEL – CONFIGURATION ... 6

Basic Configuration ... 6

Environmental Configuration .. 6

Database Configuration... 7

Naming the Application... 8

Maintenance Mode ... 8

5. LARAVEL – ROUTING ... 10

Basic Routing ... 10

Routing Parameters .. 13

6. LARAVEL — MIDDLEWARE .. 16

Define Middleware ... 16

Register Middleware ... 17

(c) ketabton.com: The Digital Library

Laravel

iii

Middleware Parameters .. 19

Terminable Middleware .. 22

7. LARAVEL – CONTROLLERS .. 27

Basic Controllers ... 27

Controller Middleware .. 28

Restful Resource Controllers ... 33

Implicit Controllers .. 35

Constructor Injection .. 38

Method Injection .. 39

8. LARAVEL — REQUEST .. 41

Retrieving the Request URI ... 41

Retrieving Input .. 43

9. LARAVEL – COOKIE .. 47

Creating Cookie ... 47

Retrieving Cookie .. 47

10. LARAVEL — RESPONSE .. 51

Basic Response .. 51

Attaching Headers ... 51

Attaching Cookies ... 52

JSON Response .. 53

11. LARAVEL — VIEWS .. 54

Understanding Views .. 54

Passing Data to Views ... 55

Sharing Data with all Views ... 55

Blade Templates .. 57

(c) ketabton.com: The Digital Library

Laravel

iv

12. LARAVEL — REDIRECTIONS .. 61

Redirecting to Named Routes .. 61

Redirecting to Controller Actions .. 62

13. LARAVEL — WORKING WITH DATABASE.. 64

Connecting to Database .. 64

Insert Records ... 64

Retrieve Records ... 67

Update Records ... 70

Delete Records .. 74

14. LARAVEL — ERRORS AND LOGGING .. 78

Errors .. 78

Logging .. 78

15. LARAVEL – FORMS ... 79

16. LARAVEL – LOCALIZATION ... 85

17. LARAVEL — SESSION ... 89

Accessing Session Data .. 89

Storing Session Data .. 89

Deleting Session Data .. 89

18. LARAVEL – VALIDATION ... 93

19. LARAVEL – FILE UPLOADING .. 98

20. LARAVEL – SENDING EMAIL ... 102

21. LARAVEL – AJAX ... 108

22. LARAVEL – ERROR HANDLING .. 111

HTTP Exceptions .. 111

(c) ketabton.com: The Digital Library

Laravel

v

Custom Error pages ... 111

23. LARAVEL – EVENT HANDLING .. 114

24. LARAVEL – FACADES .. 122

25. LARAVEL – SECURITY ... 128

(c) ketabton.com: The Digital Library

Laravel

1

Introduction

Laravel is an MVC framework with bundles, migrations, and Artisan CLI. Laravel offers a

robust set of tools and an application architecture that incorporates many of the best

features of frameworks like CodeIgniter, Yii, ASP.NET MVC, Ruby on Rails, Sinatra, and

others.

Laravel is an Open Source framework. It has a very rich set of features which will boost

the speed of Web Development. If you familiar with Core PHP and Advanced PHP, Laravel

will make your task easier. It will save a lot time if you are planning to develop a website

from scratch. Not only that, the website built in Laravel is also secure. It prevents the

various attacks that can take place on websites.

Laravel – Features

Laravel offers the following key features:

 Modularity

 Testability

 Routing

 Configuration management

 Query builder and ORM (Object Relational Mapper)

 Schema builder, migrations, and seeding

 Template engine

 E-mailing

 Authentication

 Redis

 Queues

 Event and command bus

1. Laravel – Overview

(c) ketabton.com: The Digital Library

Laravel

2

For managing dependencies, Laravel uses composer. Make sure you have a Composer

installed on your system before you install Laravel.

Step 1: Visit the following URL and download composer to install it on your system.

https://getcomposer.org/download/

Step 2: After the Composer is installed, check the installation by typing the Composer

command in the command prompt as shown in the following screenshot.

Step 3: Create a new directory anywhere in your system for your new Laravel project.

After that, move to path where you have created the new directory and type the following

command there to install Laravel.

composer create-project laravel/laravel –prefer-dist

Step 4: The above command will install Laravel in the current directory. Start the Laravel

service by executing the following command.

php artisan serve

2. Laravel – Installation

(c) ketabton.com: The Digital Library

Laravel

3

Step 5: After executing the above command, you will see a screen as shown below:

Step 6: Copy the URL underlined in gray in the above screenshot and open that URL in

the browser. If you see the following screen, it implies Laravel has been installed

successfully.

(c) ketabton.com: The Digital Library

Laravel

4

Root Directory

The root directory of Laravel contains various folders and files as shown in the following

figure.

 app: This directory contains the core code of the application.

 bootstrap: This directory contains the application bootstrapping script.

 config: This directory contains configuration files of application.

 database: This folder contains your database migration and seeds.

 public: This is the application’s document root. It starts the Laravel application.

It also contains the assets of the application like JavaScript, CSS, Images, etc.

 resources: This directory contains raw assets such as the LESS & Sass files,

localization and language files, and Templates that are rendered as HTML.

3. Laravel – Application Structure

(c) ketabton.com: The Digital Library

Laravel

5

 storage: This directory contains App storage, like file uploads etc. Framework

storage (cache), and application-generated logs.

 test: This directory contains various test cases.

 vendor: This directory contains composer dependencies.

App Directory

This is the application directory. It contains a variety of additional directories, which are

described below:

 Console: All the artisan commands are stored in this directory.

 Events: This directory stores events that your application can raise. Events

may be used to alert other parts of your application that a given action has

occurred, providing a great deal of flexibility and decoupling.

 Exceptions: This directory contains your application's exception handler

and is also a good place to stick any exceptions thrown by your application.

 Http: This directory contains your controllers, filters, and requests.

 Jobs: This directory contains the queueable jobs for your application.

 Listeners: This directory contains the handler classes for your events.

Handlers receive an event and perform logic in response to the event being

fired. For example, a UserRegistered event might be handled by a

SendWelcomeEmail listener.

 Policies: This directory contains various policies of the application.

 Providers: This directory contains various service providers.

(c) ketabton.com: The Digital Library

Laravel

6

The config directory, as the name implies, contains all of your application's configuration

files. In this directory, you will find various files needed to configure database, session,

mail, application, services etc.

Basic Configuration

 After installing Laravel, the first thing we need to do is to set the write permission for

the directory storage and bootstrap/cache.

 Generate Application key to secure session and other encrypted data. If the root

directory doesn’t contain the .env file then rename the .env.example to .env file and

execute the following command where you have installed Laravel. The newly generated

key can be seen in the .env file.

 You can also configure the locale, time zone, etc. of the application in the

config/app.php file.

Environmental Configuration

Laravel provides facility to run your application in different environment like testing,

production etc. You can configure the environment of your application in the .env file of

the root directory of your application. If you have installed Laravel using composer, this

file will automatically be created.

In case you haven’t installed Laravel, you can simply rename the .env.example file to

.env file. A sample of Laravel.env file is shown below.

4. Laravel – Configuration

(c) ketabton.com: The Digital Library

Laravel

7

Notice the text underlined gray in the above image. Local environment variable has been

set. It can further be changed to production or testing as per your requirement.

Database Configuration

The database of your application can be configured from config/database.php file. You

can set configuration parameters that can be used by different databases and you can also

set the default one to use.

(c) ketabton.com: The Digital Library

Laravel

8

Naming the Application

The App Directory, by default, is namespaced under App. To rename it, you can execute

the following command and rename the namespace.

php artisan app:name <name-of-your-application>

Replace the <name-of-your-application> with the new name of your application that you

want to give.

Maintenance Mode

We need to modify our website on a regular basis. The website needs to be put on

maintenance mode for this. Laravel has made this job easier. There are two artisan

commands which are used to start and stop the maintenance mode which are described

below.

Start Maintenance Mode

To start the maintenance mode, simply execute the following command.

php artisan down

After successful execution, you will receive the following output:

It will activate the Maintenance mode and all the request to server will be

redirected to a single maintenance page as shown in the following screenshot.

(c) ketabton.com: The Digital Library

Laravel

9

Stop Maintenance Mode

 After making changes to your website and to start it again, execute the following

command.

php artisan up

 After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

10

Basic Routing

Basic routing is meant to route your request to an appropriate controller. The routes of

the application can be defined in app/Http/routes.php file. Here is the general route

syntax for each of the possible request.

Route::get('/', function () {

 return 'Hello World';

});

Route::post('foo/bar', function () {

 return 'Hello World';

});

Route::put('foo/bar', function () {

 //

});

Route::delete('foo/bar', function () {

 //

});

Let us now understand how to see the Laravel homepage with the help of routing.

Example

app/Http/routes.php

<?php

Route::get('/', function () {

 return view('welcome');

});

5. Laravel – Routing

(c) ketabton.com: The Digital Library

Laravel

11

resources/view/welcome.blade.php

<!DOCTYPE html>

<html>

 <head>

 <title>Laravel</title>

 <link href="https://fonts.googleapis.com/css?family=Lato:100"

rel="stylesheet" type="text/css">

 <style>

 html, body {

 height: 100%;

 }

 body {

 margin: 0;

 padding: 0;

 width: 100%;

 display: table;

 font-weight: 100;

 font-family: 'Lato';

 }

 .container {

 text-align: center;

 display: table-cell;

 vertical-align: middle;

 }

 .content {

 text-align: center;

 display: inline-block;

 }

 .title {

 font-size: 96px;

 }

(c) ketabton.com: The Digital Library

Laravel

12

 </style>

 </head>

 <body>

 <div class="container">

 <div class="content">

 <div class="title">Laravel 5</div>

 </div>

 </div>

 </body>

</html>

The routing mechanism is depicted in the following image:

Let us now understand the steps in detail:

 Step 1: First, we need to execute the root URL of the application.

 Step 2: The executed URL will match with the appropriate method in the route.php

file. In our case, it will match to get the method and the root (‘/’) URL. This will

execute the related function.

 Step 3: The function calls the template file

resources/views/welcome.blade.php. The function later calls the view()

function with argument ‘welcome’ without using the blade.php. It will produce

the following HTML output.

(c) ketabton.com: The Digital Library

Laravel

13

Routing Parameters

Often in the application, we intend to capture the parameters passed with the URL. To do

this, we need to modify the code in routes.php file accordingly. There are two ways by

which we can capture the parameters passed with the URL.

 Required Parameters

 Optional Parameters

Required Parameters

These parameters must be present in the URL. For example, you may intend to capture

the ID from the URL to do something with that ID. Here is the sample coding for

routes.php file for that purpose.

Route::get('ID/{id}',function($id){

 echo 'ID: '.$id;

});

Whatever argument that we pass after the root URL (http://localhost:8000/ID/5), it

will be stored in $id and we can use that parameter for further processing but here we are

simply displaying it. We can pass it onto view or controller for further processing.

Optional Parameters

There are some parameters which may or may not be present in the URL and in such cases

we can use the optional parameters. The presence of these parameters is not necessary

in the URL. These parameters are indicated by “?” sign after the name of the parameters.

Here is the sample coding for routes.php file for that purpose.

Route::get('/user/{name?}',function($name = 'Virat'){

 echo "Name: ".$name;

});

(c) ketabton.com: The Digital Library

Laravel

14

Example

routes.php

<?php

// First Route method – Root URL will match this method

Route::get('/', function () {

 return view('welcome');

});

// Second Route method – Root URL with ID will match this method

Route::get('ID/{id}',function($id){

 echo 'ID: '.$id;

});

// Third Route method – Root URL with or without name will match this method

Route::get('/user/{name?}',function($name = 'Virat Gandhi'){

 echo "Name: ".$name;

});

Step 1: Here, we have defined 3 routes with get methods for different purposes. If we

execute the below URL then it will execute the first method.

http://localhost:8000

Step 2: After successful execution of the URL, you will receive the following output:

Step 3: If we execute the below URL, it will execute the 2nd method and the

argument/parameter ID will be passed to the variable $id.

http://localhost:8000/ID/5

(c) ketabton.com: The Digital Library

Laravel

15

Step 4: After successful execution of the URL, you will receive the following output:

Step 5: If we execute the below URL, it will execute the 3rd method and the optional

argument/parameter name will be passed to the variable $name. The last argument

‘Virat’ is optional. If you remove it, the default name will be used that we have passed in

the function as ‘Virat Gandhi’

http://localhost:8000/user/Virat

Step 6: After successful execution of the URL, you will receive the following output:

Note: Regular expression can also be used to match the parameters.

(c) ketabton.com: The Digital Library

Laravel

16

Define Middleware

As the name suggest, Middleware acts as a middle man between request and response. It

is a type of filtering mechanism. For example, Laravel includes a middleware that verifies

whether user of the application is authenticated or not. If the user is authenticated, he will

be redirected to the home page otherwise, he will be redirected to the login page.

Middleware can be created by executing the following command:

php artisan make:middleware <middleware-name>

Replace the <middleware-name> with the name of your middleware. The middleware that

you create can be seen at app/Http/Middleware directory.

Example

Step 1: Let us now create AgeMiddleware. To create that, we need to execute the following

command:

php artisan make:middleware AgeMiddleware

Step 2: After successful execution of the command, you will receive the following output:

6. Laravel — Middleware

(c) ketabton.com: The Digital Library

Laravel

17

Step 3: AgeMiddlware will be created at app/Http/Middleware. The newly created

file will have the following code already created for you.

<?php

namespace App\Http\Middleware;

use Closure;

class AgeMiddleware

{

 public function handle($request, Closure $next)

 {

 return $next($request);

 }

}

Register Middleware

We need to register each and every middleware before using it. There are two types of

Middleware in Laravel.

 Global Middleware

 Route Middleware

The Global Middleware will run on every HTTP request of the application, whereas the

Route Middleware will be assigned to a specific route. The middleware can be registered

at app/Http/Kernel.php. This file contains two properties $middleware and

$routeMiddleware. $middleware property is used to register Global Middleware and

$routeMiddleware property is used to register route specific middleware.

To register the global middleware, list the class at the end of $middleware property.

protected $middleware = [

 \Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,

 \App\Http\Middleware\EncryptCookies::class,

 \Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

 \Illuminate\Session\Middleware\StartSession::class,

 \Illuminate\View\Middleware\ShareErrorsFromSession::class,

 \App\Http\Middleware\VerifyCsrfToken::class,

];

(c) ketabton.com: The Digital Library

Laravel

18

To register the route specific middleware, add the key and value to $routeMiddleware

property.

protected $routeMiddleware = [

 'auth' => \App\Http\Middleware\Authenticate::class,

 'auth.basic' =>

\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

];

Example

We have created AgeMiddleware in the previous example. We can now register it in

route specific middleware property. The code for that registration is shown below.

The following is the code for app/Http/Kernel.php:

<?php

namespace App\Http;

use Illuminate\Foundation\Http\Kernel as HttpKernel;

class Kernel extends HttpKernel

{

 protected $middleware = [

 \Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,

 \App\Http\Middleware\EncryptCookies::class,

 \Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

 \Illuminate\Session\Middleware\StartSession::class,

 \Illuminate\View\Middleware\ShareErrorsFromSession::class,

 \App\Http\Middleware\VerifyCsrfToken::class,

];

 protected $routeMiddleware = [

 'auth' => \App\Http\Middleware\Authenticate::class,

 'auth.basic' => \Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

 'Age' => \App\Http\Middlware\AgeMiddleware::class,

];

}

(c) ketabton.com: The Digital Library

Laravel

19

Middleware Parameters

We can also pass parameters with the Middleware. For example, if your application has

different roles like user, admin, super admin etc. and you want to authenticate the action

based on role, this can be achieved by passing parameters with middleware. The

middleware that we create contains the following function and we can pass our custom

argument after the $next argument.

public function handle($request, Closure $next)

{

 return $next($request);

}

Example

Step 1: Create RoleMiddleware by executing the following command:

php artisan make:middleware RoleMiddleware

Step 2: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

20

Step 3: Add the following code in the handle method of the newly created RoleMiddleware

at app/Http/Middleware/RoleMiddleware.php.

<?php

namespace App\Http\Middleware;

use Closure;

class RoleMiddleware

{

 public function handle($request, Closure $next, $role)

 {

echo "Role: ".$role;

 return $next($request);

 }

}

Step 4: Register the RoleMiddleware in app\Http\Kernel.php file. Add the line

highlighted in gray color in that file to register RoleMiddleware.

Step 5: Execute the following command to create TestController:

php artisan make:controller TestController --plain

Step 6: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

21

Step 7: Copy the following code to app/Http/TestController.php file.

app/Http/TestController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class TestController extends Controller

{

 public function index(){

 echo "
Test Controller.";

 }

}

Step 8: Add the following line of code in app/Http/routes.php file.

(c) ketabton.com: The Digital Library

Laravel

22

app/Http/routes.php

Route::get('role',[

 'middleware' => 'Role:editor',

 'uses' => 'TestController@index',

]);

Step 9: Visit the following URL to test the Middleware with parameters

http://localhost:8000/role

Step 10: The output will appear as shown in the following image.

Terminable Middleware

Terminable middleware performs some task after the response has been sent to the

browser. This can be accomplished by creating a middleware with “terminate” method

in the middleware. Terminable middleware should be registered with global middleware.

The terminate method will receive two arguments $request and $response. Terminate

method can be created as shown in the following code.

Example

Step 1: Create TerminateMiddleware by executing the below command.

php artisan make:middleware TerminateMiddleware

Step 2: This will produce the following output:

(c) ketabton.com: The Digital Library

Laravel

23

Step 3: Copy the following code in the newly created TerminateMiddleware at

app/Http/Middleware/TerminateMiddleware.php.

<?php

namespace App\Http\Middleware;

use Closure;

class TerminateMiddleware

{

 public function handle($request, Closure $next)

 {

 echo "Executing statements of handle method of

TerminateMiddleware.";

 return $next($request);

 }

 public function terminate($request, $response){

 echo "
Executing statements of terminate method of

TerminateMiddleware.";

 }

}

(c) ketabton.com: The Digital Library

Laravel

24

Step 4: Register the TerminateMiddleware in app\Http\Kernel.php file. Add the line

highlighted in gray color in that file to register TerminateMiddleware.

Step 5: Execute the following command to create ABCController.

php artisan make:controller ABCController --plain

Step 6: After successful execution of the URL, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

25

Step 7: Copy the following code to app/Http/ABCController.php file.

app/Http/ABCController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class ABCController extends Controller

{

 public function index(){

 echo "
ABC Controller.";

 }

}

Step 8: Add the following line of code in app/Http/routes.php file.

app/Http/routes.php

Route::get('terminate',[

 'middleware' => 'terminate',

 'uses' => 'ABCController@index',

]);

Step 9: Visit the following URL to test the Terminable Middleware.

http://localhost:8000/terminate

(c) ketabton.com: The Digital Library

Laravel

26

Step 10: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

27

Basic Controllers

In MVC framework, the letter ‘C’ stands for Controller. It acts as a directing traffic between

Views and Models.

Creating a Controller

Open the command prompt or terminal based on the operating system you are using and

type the following command to create controller using the Artisan CLI (Command Line

Interface).

php artisan make:controller <controller-name> --plain

Replace the <controller-name> with the name of your controller. This will create a plain

constructor as we are passing the argument — plain. If you don’t want to create a plain

constructor, you can simply ignore the argument. The created constructor can be seen at

app/Http/Controllers. You will see that some basic coding has already been done for

you and you can add your custom coding. The created controller can be called from

routes.php by the following syntax.

Route::get(‘base URI’,’controller@method’);

Example

Step 1: Execute the following command to create UserController.

php artisan make:controller UserController --plain

7. Laravel – Controllers

(c) ketabton.com: The Digital Library

Laravel

28

Step 2: After successful execution, you will receive the following output.

Step 3: You can see the created controller at

app/Http/Controller/UserController.php with some basic coding already written for

you and you can add your own coding based on your need.

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class UserController extends Controller

{

 //

}

Controller Middleware

We have seen middleware before and it can be used with controller also. Middleware can

also be assigned to controller’s route or within your controller’s constructor. You can use

the middleware method to assign middleware to the controller. The registered middleware

can also be restricted to certain method of the controller.

(c) ketabton.com: The Digital Library

Laravel

29

Assigning Middleware to Route

Route::get('profile', [

 'middleware' => 'auth',

 'uses' => 'UserController@showProfile'

]);

Here we are assigning auth middleware to UserController in profile route.

Assigning Middleware within Controller’s constructor:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class UserController extends Controller

{

 public function __construct(){

 $this->middleware('auth');

 }

}

Here we are assigning auth middleware using the middleware method in the

UserController’s constructor.

Example

Step 1: Add the following lines to the app/Http/routes.php file and save it.

routes.php

<?php

Route::get('/usercontroller/path',[

 'middleware' => 'First',

 'uses' => 'UserController@showPath'

(c) ketabton.com: The Digital Library

Laravel

30

]);

Step 2: Create a middleware called FirstMiddleware by executing the following line.

php artisan make:middleware FirstMiddleware

Step 3: Add the following code in the handle method of the newly created FirstMiddleware

at app/Http/Middleware.

FirstMiddleware.php

<?php

namespace App\Http\Middleware;

use Closure;

class FirstMiddleware

{

 public function handle($request, Closure $next)

 {

echo '
First Middleware';

 return $next($request);

 }

}

Step 4: Create a middleware called SecondMiddleware by executing the following line.

php artisan make:middleware SecondMiddleware

(c) ketabton.com: The Digital Library

Laravel

31

Step 5: Add the following code in the handle method of the newly created

SecondMiddleware at app/Http/Middleware.

SecondMiddleware.php

<?php

namespace App\Http\Middleware;

use Closure;

class SecondMiddleware

{

 public function handle($request, Closure $next)

 {

echo '
Second Middleware';

 return $next($request);

 }

}

Step 6: Create a controller called UserController by executing the following line.

php artisan make:controller UserController --plain

Step 7: After successful execution of the URL, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

32

Step 8: Copy the following code to app/Http/UserController.php file.

app/Http/UserController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class UserController extends Controller

{

 public function __construct(){

 $this->middleware('Second');

 }

 public function showPath(Request $request){

 $uri = $request->path();

 echo '
URI: '.$uri;

 $url = $request->url();

 echo '
';

 echo 'URL: '.$url;

 $method = $request->method();

 echo '
';

 echo 'Method: '.$method;

 }

}

Step 9: Now launch the php’s internal web server by executing the following command, if

you haven’t executed it yet.

php artisan serve

Step 10: Visit the following URL.

(c) ketabton.com: The Digital Library

Laravel

33

http://localhost:8000/usercontroller/path

Step 11: The output will appear as shown in the following image.

Restful Resource Controllers
Often while making an application we need to perform CRUD (Create, Read, Update,

Delete) operations. Laravel makes this job easy for us. Just create a controller and Laravel

will automatically provide all the methods for the CRUD operations. You can also register

a single route for all the methods in routes.php file.

Example

Step 1: Create a controller called MyController by executing the following command.

php artisan make:controller MyController

Step 2: Add the following code in app/Http/Controllers/MyController.php file.

app/Http/Controllers/MyController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class MyController extends Controller

(c) ketabton.com: The Digital Library

Laravel

34

{

 public function index()

 {

 echo 'index';

 }

 public function create()

 {

 echo 'create';

 }

 public function store(Request $request)

 {

 echo 'store';

 }

 public function show($id)

 {

 echo 'show';

 }

 public function edit($id)

 {

 echo 'edit';

 }

 public function update(Request $request, $id)

 {

 echo 'update';

 }

 public function destroy($id)

 {

 echo 'destroy';

 }

}

(c) ketabton.com: The Digital Library

Laravel

35

Step 3: Add the following line of code in app/Http/routes.php file.

app/Http/routes.php

Route::resource('my','MyController');

Step 4: We are now registering all the methods of MyController by registering a controller

with resource. Below is the table of actions handled by resource controller.

Verb Path Action Route Name

GET /my index my.index

GET /my/create create my.create

POST /my store my.store

GET /my/{my} show my.show

GET /my/{my}/edit edit my.edit

PUT/PATCH /my/{my} update my.update

DELETE /my/{my} destroy my.destroy

Step 5: Try executing the URLs shown in the following table.

URL Description Output Image

http://localhost:8000/my
Executes index method of

MyController.php

http://localhost:8000/my/create
Executes create method of

MyController.php

http://localhost:8000/my/1
Executes show method of

MyController.php

http://localhost:8000/my/1/edit
Executes edit method of

MyController.php

Implicit Controllers

Implicit Controllers allow you to define a single route to handle every action in the

controller. You can define it in route.php file with Route:controller method as shown

below.

Route::controller(‘base URI’,’<class-name-of-the-controller>’);

Replace the <class-name-of-the-controller> with the class name that you have given to

your controller.

The method name of the controller should start with HTTP verb like get or post. If you

start it with get, it will handle only get request and if it starts with post then it will handle

the post request. After the HTTP verb you can, you can give any name to the method but

it should follow the title case version of the URI.

(c) ketabton.com: The Digital Library

Laravel

36

Example

Step 1: Execute the below command to create a controller. We have kept the class name

ImplicitController. You can give any name of your choice to the class.

php artisan make:controller ImplicitController --plain

Step 2: After successful execution, you will receive the following output:

Step 3: Copy the following code to app/Http/Controllers/ImplicitController.php file.

app/Http/Controllers/ImplicitController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

(c) ketabton.com: The Digital Library

Laravel

37

class ImplicitController extends Controller

{

 /**

 * Responds to requests to GET /test

 */

 public function getIndex()

 {

 echo 'index method';

 }

 /**

 * Responds to requests to GET /test/show/1

 */

 public function getShow($id)

 {

 echo 'show method';

 }

 /**

 * Responds to requests to GET /test/admin-profile

 */

 public function getAdminProfile()

 {

 echo 'admin profile method';

 }

 /**

 * Responds to requests to POST /test/profile

 */

 public function postProfile()

 {

 echo 'profile method';

 }

}

(c) ketabton.com: The Digital Library

Laravel

38

Step 4: Add the following line to app/Http/routes.php file to route the requests to

specified controller.

app/Http/routes.php

Route::controller('test','ImplicitController');

Constructor Injection

The Laravel service container is used to resolve all Laravel controllers. As a result, you are

able to type-hint any dependencies your controller may need in its constructor. The

dependencies will automatically be resolved and injected into the controller instance.

Example

Step 1: Add the following code to app/Http/routes.php file.

app/Http/routes.php

class MyClass{

 public $foo = 'bar';

}

Route::get('/myclass','ImplicitController@index');

Step2: Add the following code to app/Http/Controllers/ImplicitController.php file.

app/Http/Controllers/ImplicitController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class ImplicitController extends Controller

{

 private $myclass;

 public function __construct(\MyClass $myclass){

 $this->myclass = $myclass;

 }

 public function index(){

(c) ketabton.com: The Digital Library

Laravel

39

 dd($this->myclass);

 }

}

Step 3: Visit the following URL to test the constructor injection.

http://localhost:8000/myclass

Step 4: The output will appear as shown in the following image.

Method Injection

In addition to constructor injection, you may also type — hint dependencies on your

controller's action methods.

Example

Step 1: Add the following code to app/Http/routes.php file.

app/Http/routes.php

class MyClass{

 public $foo = 'bar';

}

Route::get('/myclass','ImplicitController@index');

Step 2: Add the following code to app/Http/Controllers/ImplicitController.php file.

app/Http/Controllers/ImplicitController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

(c) ketabton.com: The Digital Library

Laravel

40

class ImplicitController extends Controller

{

 public function index(\MyClass $myclass){

 dd($myclass);

 }

}

Step 3: Visit the following URL to test the constructor injection.

http://localhost:8000/myclass

It will produce the following output:

(c) ketabton.com: The Digital Library

Laravel

41

Retrieving the Request URI

The “path” method is used to retrieve the requested URI. The “is” method is used to

retrieve the requested URI which matches the particular pattern specified in the argument

of the method. To get the full URL, we can use the “url” method.

Example

Step 1: Execute the below command to create a new controller called UriController.

php artisan make:controller UriController –plain

Step 2: After successful execution of the URL, you will receive the following output:

Step 3: After creating a controller, add the following code in that file.

app/Http/Controllers/UriController.php

<?php

namespace App\Http\Controllers;

8. Laravel — Request

(c) ketabton.com: The Digital Library

Laravel

42

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class UriController extends Controller

{

 public function index(Request $request){

 // Usage of path method

 $path = $request->path();

 echo 'Path Method: '.$path;

 echo '
';

 // Usage of is method

 $pattern = $request->is('foo/*');

 echo 'is Method: '.$pattern;

 echo '
';

 // Usage of url method

 $url = $request->url();

 echo 'URL method: '.$url;

 }

}

Step 4: Add the following line in the app/Http/route.php file.

app/Http/route.php

Route::get('/foo/bar','UriController@index');

Step 5: Visit the following URL.

http://localhost:8000/foo/bar

(c) ketabton.com: The Digital Library

Laravel

43

Step 6: The output will appear as shown in the following image.

Retrieving Input

The input values can be easily retrieved in Laravel. No matter what method was used

“get” or “post”, the Laravel method will retrieve input values for both the methods the

same way. There are two ways we can retrieve the input values.

 Using the input() method

 Using the properties of Request instance

Using the input() method

The input() method takes one argument, the name of the field in form. For example, if the

form contains username field then we can access it by the following way.

$name = $request->input('username');

Using the properties of Request instance

Like the input() method, we can get the username property directly from the request

instance.

$request->username

Example

Step 1: Create a Registration form, where user can register himself and store the form

at resources/views/register.php

<html>

<head>

 <title>Form Example</title>

</head>

<body>

 <form action="/user/register" method="post">

 <input type="hidden" name="_token" value="<?php echo csrf_token() ?>">

 <table>

 <tr>

 <td>Name</td>

(c) ketabton.com: The Digital Library

Laravel

44

 <td><input type="text" name="name" /></td>

 </tr>

 <tr>

 <td>Username</td>

 <td><input type="text" name="username" /></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><input type="text" name="password" /></td>

 </tr>

 <tr>

 <td colspan="2" align="center"><input type="submit"

value="Register" /></td>

 </tr>

 </table>

 </form>

</body>

</html>

Step 2: Execute the below command to create a UserRegistration controller.

php artisan make:controller UserRegistration --plain

Step 3: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

45

Step 4: Copy the following code in app/Http/Controllers/UserRegistration.php

controller.

app/Http/Controllers/UserRegistration.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class UserRegistration extends Controller

{

 public function postRegister(Request $request){

 //Retrieve the name input field

 $name = $request->input('name');

 echo 'Name: '.$name;

 echo '
';

 //Retrieve the username input field

 $username = $request->username;

(c) ketabton.com: The Digital Library

Laravel

46

 echo 'Username: '.$username;

 echo '
';

 //Retrieve the password input field

 $password = $request->password;

 echo 'Password: '.$password;

 }

}

Step 5: Add the following line in app/Http/routes.php file.

app/Http/routes.php

Route::get('/register',function(){

 return view('register');

});

Route::post('/user/register',array('uses'=>'UserRegistration@postRegister'));

Step 6: Visit the following URL and you will see the registration form as shown in the

below figure. Type the registration details and click Register and you will see on the second

page that we have retrieved and displayed the user registration details.

http://localhost:8000/register

Step 7: The output will look something like as shown in below the following images.

(c) ketabton.com: The Digital Library

Laravel

47

Creating Cookie

Cookie can be created by global cookie helper of Laravel. It is an instance of

Symfony\Component\HttpFoundation\Cookie. The cookie can be attached to the

response using the withCookie() method. Create a response instance of

Illuminate\Http\Response class to call the withCookie() method. Cookie generated by

the Laravel are encrypted and signed and it can’t be modified or read by the client.

Here is a sample code with explanation.

//Create a response instance

$response = new Illuminate\Http\Response('Hello World');

//Call the withCookie() method with the response method

$response->withCookie(cookie('name', 'value', $minutes));

//return the response

return $response;

Cookie() method will take 3 arguments. First argument is the name of the cookie, second

argument is the value of the cookie and the third argument is the duration of the cookie

after which the cookie will get deleted automatically.

Cookie can be set forever by using the forever method as shown in the below code.

$response->withCookie(cookie()->forever('name', 'value'));

Retrieving Cookie

Once we set the cookie, we can retrieve the cookie by cookie() method. This cookie()

method will take only one argument which will be the name of the cookie. The cookie

method can be called by using the instance of Illuminate\Http\Request.

Here is a sample code.

//’name’ is the name of the cookie to retrieve the value of

$value = $request->cookie('name');

9. Laravel – Cookie

(c) ketabton.com: The Digital Library

Laravel

48

Example

Step 1: Execute the below command to create a controller in which we will manipulate

the cookie.

php artisan make:controller CookieController --plain

Step 2: After successful execution, you will receive the following output:

Step 3: Copy the following code in app/Http/Controllers/CookieController.php file.

app/Http/Controllers/CookieController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Http\Response;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class CookieController extends Controller

{

 public function setCookie(Request $request){

(c) ketabton.com: The Digital Library

Laravel

49

 $minutes = 1;

 $response = new Response('Hello World');

 $response->withCookie(cookie('name', 'virat', $minutes));

 return $response;

 }

 public function getCookie(Request $request){

 $value = $request->cookie('name');

 echo $value;

 }

}

Step 4: Add the following line in app/Http/routes.php file.

app/Http/routes.php

Route::get('/cookie/set','CookieController@setCookie');

Route::get('/cookie/get','CookieController@getCookie');

Step 5: Visit the following URL to set the cookie.

http://localhost:8000/cookie/set

Step 6: The output will appear as shown below. The window appearing in the screenshot

is taken from firefox but depending on your browser, cookie can also be checked from the

cookie option.

(c) ketabton.com: The Digital Library

Laravel

50

Step 7: Visit the following URL to get the cookie from the above URL.

http://localhost:8000/cookie/get

Step 8: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

51

Basic Response

Each request has a response. Laravel provides several different ways to return response.

Response can be sent either from route or from controller. The basic response that can be

sent is simple string as shown in the below sample code. This string will be automatically

converted to appropriate HTTP response.

Example

Step 1: Add the following code to app/Http/routes.php file.

app/Http/routes.php

Route::get('/basic_response', function () {

 return 'Hello World';

});

Step 2: Visit the following URL to test the basic response.

http://localhost:8000/basic_response

Step 3: The output will appear as shown in the following image.

Attaching Headers

The response can be attached to headers using the header() method. We can also attach

the series of headers as shown in the below sample code.

return response($content,$status)

 ->header('Content-Type', $type)

 ->header('X-Header-One', 'Header Value')

 ->header('X-Header-Two', 'Header Value');

10. Laravel — Response

(c) ketabton.com: The Digital Library

Laravel

52

Example

Step 1: Add the following code to app/Http/routes.php file.

app/Http/routes.php

Route::get('/header',function(){

 return response("Hello", 200)->header('Content-Type', 'text/html');

});

Step 2: Visit the following URL to test the basic response.

http://localhost:8000/header

Step 3: The output will appear as shown in the following image.

Attaching Cookies

The withcookie() helper method is used to attach cookies. The cookie generated with this

method can be attached by calling withcookie() method with response instance. By default,

all cookies generated by Laravel are encrypted and signed so that they can't be modified

or read by the client.

Example

Step 1: Add the following code to app/Http/routes.php file.

app/Http/routes.php

Route::get('/cookie',function(){

 return response("Hello", 200)->header('Content-Type', 'text/html')-

>withcookie('name','Virat Gandhi');

});

Step 2: Visit the following URL to test the basic response.

http://localhost:8000/cookie

Step 3: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

53

JSON Response

JSON response can be sent using the json method. This method will automatically set the

Content-Type header to application/json. The json method will automatically convert the

array into appropriate json response.

Example

Step 1: Add the following line in app/Http/routes.php file.

app/Http/routes.php

Route::get('json',function(){

 return response()->json(['name' => 'Virat Gandhi', 'state' => 'Gujarat']);

});

Step 2: Visit the following URL to test the json response.

http://localhost:8000/json

Step 3: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

54

Understanding Views

In MVC framework, the letter “V” stands for Views. It separates the application logic and

the presentation logic. Views are stored in resources/views directory. Generally, the

view contains the HTML which will be served by the application.

Example

Step 1: Copy the following code and save it at resources/views/test.php

<html>

 <body>

 <h1>Hello, World</h1>

 </body>

</html>

Step 2: Add the following line in app/Http/routes.php file to set the route for the above

view.

app/Http/routes.php

Route::get('/test', function(){

 return view('test');

});

Step 3: Visit the following URL to see the output of the view.

http://localhost:8000/test

Step 4: The output will appear as shown in the following image.

11. Laravel — Views

(c) ketabton.com: The Digital Library

Laravel

55

Passing Data to Views

While building application it may be required to pass data to the views. Pass an array to

view helper function. After passing an array, we can use the key to get the value of that

key in the HTML file.

Example

Step 1: Copy the following code and save it at resources/views/test.php

<html>

 <body>

 <h1><?php echo $name; ?></h1>

 </body>

</html>

Step 2: Add the following line in app/Http/routes.php file to set the route for the above

view.

app/Http/routes.php

Route::get('/test', function(){

 return view('test',[‘name’=>’Virat Gandhi’]);

});

Step 3: The value of the key name will be passed to test.php file and $name will be

replaced by that value.

Step 4: Visit the following URL to see the output of the view.

http://localhost:8000/test

Step 5: The output will appear as shown in the following image.

Sharing Data with all Views

We have seen how we can pass data to views but at times, there is a need to pass data

to all the views. Laravel makes this simpler. There is a method called “share()” which

can be used for this purpose. The share() method will take two arguments, key and value.

Typically share() method can be called from boot method of service provider. We can use

any service provider, AppServiceProvider or our own service provider.

(c) ketabton.com: The Digital Library

Laravel

56

Example

Step 1: Add the following line in app/Http/routes.php file.

app/Http/routes.php

Route::get('/test', function(){

 return view('test');

});

Route::get('/test2', function(){

 return view('test2');

});

Step 2: Create two view files — test.php and test2.php with the same code. These are

the two files which will share data. Copy the following code in both the files.

resources/views/test.php & resources/views/test2.php

<html>

 <body>

 <h1><?php echo $name; ?></h1>

 </body>

</html>

Step 3: Change the code of boot method in the file

app/Providers/AppServiceProvider.php as shown below. (Here, we have used share

method and the data that we have passed will be shared with all the views.)

app/Providers/AppServiceProvider.php

<?php

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

 /**

 * Bootstrap any application services.

 *

 * @return void

 */

(c) ketabton.com: The Digital Library

Laravel

57

 public function boot()

 {

 view()->share('name', 'Virat Gandhi');

 }

 /**

 * Register any application services.

 *

 * @return void

 */

 public function register()

 {

 //

 }

}

Step 4: Visit the following URLs.

http://localhost:8000/test

http://localhost:8000/test2

Step 5: The output will appear as shown in the following image.

Blade Templates

Blade is a simple, yet powerful templating engine provided with Laravel. Blade is Laravel's

lightweight template language and its syntax is very easy to learn. A blade template

contains extension — blade.php and is stored at resources/views.

Blade also supports all of PHP's major constructs to create loops and conditions — @for,

@foreach, @while, @if, and @elseif, allowing you to avoid opening and closing the <?php

tags everywhere in your templates. The main advantage of using Blade templates is that

we can set up the master template and this master template can be extended by other

individual pages.

(c) ketabton.com: The Digital Library

Laravel

58

Example

Step 1: Create a master template and save it at

resources/views/layouts/master.blade.php.

<html>

 <head>

 <title>@yield('title')</title>

 </head>

 <body>

 @section('sidebar')

 This is the master sidebar.

 @show

 <div class="container">

 @yield('content')

 </div>

 </body>

</html>

Step 2: Here, in the master template,

 @yield('title') is used to display the value of the title

 @section('sidebar') is used to define a section named sidebar

 @show is used to display the contents of a section

 @yield('content') is used to display the contents of content

Step 3: Now, create another page and extend the master template and save it at

resources/views/page.blade.php

@extends('layouts.master')

@section('title', 'Page Title')

@section('sidebar')

 @parent

 <p>This is appended to the master sidebar.</p>

(c) ketabton.com: The Digital Library

Laravel

59

@endsection

@section('content')

 <h2>{{$name}}</h2>

 <p>This is my body content.</p>

@endsection

Step 4: Here is the description of each element.

@extends('layouts.master') is used to extend the master layout. “layouts.master” —

Here, layouts is the name of the directory, where we have stored the master template and

“.master” of the master template “master.blade.php” refers to its name but here only

name is used without extension blade.php

 @section('title', 'Page Title') sets the value of the title section.

 @section('sidebar') defines a sidebar section in the child page of master

layout.

 @parent displays the content of the sidebar section, defined in the master

layout.

 <p> This is appended to the master sidebar.</p> adds paragraph content to

the sidebar section

 @endsection ends the sidebar section.

 @section('content') defines the content section.

 @section('content') adds paragraph content to the content section.

 @endsection ends the content section.

Step 5: Now, set up the route to view this template. Add the following line at

app/Http/routes.php

Route::get('blade', function () {

 return view('page',array('name' => 'Virat Gandhi'));

});

Step 5: Visit the following URL to view the blade template example.

(c) ketabton.com: The Digital Library

Laravel

60

http://localhost:8000/blade

(c) ketabton.com: The Digital Library

Laravel

61

Redirecting to Named Routes

Named route is used to give specific name to a route. The name can be assigned using

the “as” array key.

Route::get('user/profile', ['as' => 'profile', function () {

 //

}]);

Note: Here, we have given the name “profile” to a route “user/profile”.

Example

Step 1: Create a view called test.php and save it at resources/views/test.php.

<html>

 <body>

 <h1>Example of Redirecting to Named Routes</h1>

 </body>

</html>

Step 2: In routes.php, we have set up the route for test.php file. We have renamed it to

“testing”. We have also set up another route “redirect” which will redirect the request

to the named route “testing”.

app/Http/routes.php

Route::get('/test', ['as'=>'testing',function(){

 return view('test2');

}]);

Route::get('redirect',function(){

 return redirect()->route('testing');

});

Step 3: Visit the following URL to test the named route example.

http://localhost:8000/redirect

Step 4: After execution of the above URL, you will be redirected to

http://localhost:8000/test as we are redirecting to the named route “testing”.

12. Laravel — Redirections

(c) ketabton.com: The Digital Library

Laravel

62

Step 5: After successful execution of the URL, you will receive the following output:

Redirecting to Controller Actions

Not only named route but we can also redirect to controller actions. We need to simply

pass the controller and name of the action to the action method as shown in the following

example. If you want to pass a parameter, you can pass it as second argument of action

method.

return redirect()->action(‘NameOfController@methodName’,[parameters]);

Example

Step 1: Execute the below command to create a controller called RedirectController.

php artisan make:controller RedirectController --plain

Step 2: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

63

Step 3: Copy the following code to file app/Http/Controllers/RedirectController.php

app/Http/Controllers/RedirectController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class RedirectController extends Controller

{

 public function index(){

 echo "Redirecting to controller's action.";

 }

}

Step 4: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('rr','RedirectController@index');

Route::get('/redirectcontroller',function(){

 return redirect()->action('RedirectController@index');

});

Step 5: Visit the following URL to test the example.

http://localhost:8000/redirectcontroller

Step 6: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

64

Connecting to Database

Laravel has made processing with database very easy. Laravel currently supports following

4 databases:

 MySQL

 Postgres

 SQLite

 SQL Server

The query to the database can be fired using raw SQL, the fluent query builder, and the

Eloquent ORM. To understand the all CRUD (Create, Read, Update, Delete) operations with

Laravel, we will use simple student management system.

Configure the database in config/database.php file and create the college database with

structure in MySQL as shown in the following table.

Database: College

Table: student

Column Name Column Datatype Extra

Id int(11) Primary key | Auto increment

Name varchar(25)

We will see how to add, delete, update and retrieve records from database using Laravel

in student table.

Insert Records

We can insert the record using the DB facade with insert method. The syntax of insert

method is as shown in the following table.

Syntax bool insert(string $query, array $bindings = array())

Parameters
 $query(string) – query to execute in database

 $bindings(array) – values to bind with queries

Returns bool

Description Run an insert statement against the database.

13. Laravel — Working with Database

(c) ketabton.com: The Digital Library

Laravel

65

Example

Step 1: Execute the below command to create a controller called StudInsertController

php artisan make:controller StudInsertController --plain

Step 2: After successful execution, you will receive the following output:

Step 3: Copy the following code to file

app/Http/Controllers/StudInsertController.php

app/Http/Controllers/StudInsertController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use DB;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class StudInsertController extends Controller

{

 public function insertform(){

 return view('stud_create');

(c) ketabton.com: The Digital Library

Laravel

66

 }

 public function insert(Request $request){

 $name = $request->input('stud_name');

 DB::insert('insert into student (name) values(?)',[$name]);

 echo "Record inserted successfully.
";

 echo 'Click Here to go back.';

 }

}

Step 4: Create a view file called resources/views/stud_create.php and copy the

following code in that file.

resources/views/stud_create.php

<html>

<head><title>Student Management | Add</title></head>

<body>

<form action="/create" method="post">

<input type="hidden" name="_token" value="<?php echo csrf_token(); ?>">

<table>

 <tr>

 <td>Name</td>

 <td><input type='text' name='stud_name' /></td>

 </tr>

 <tr>

 <td colspan='2'><input type='submit' value="Add student" /></td>

 </tr>

</table>

</form>

</body>

</html>

Step 5: Add the following lines in app/Http/routes.php.

(c) ketabton.com: The Digital Library

Laravel

67

app/Http/routes.php

Route::get('insert','StudInsertController@insertform');

Route::post('create','StudInsertController@insert');

Step 6: Visit the following URL to insert record in database.

http://localhost:8000/insert

Step 7: The output will appear as shown in the following image.

Retrieve Records

After configuring the database, we can retrieve the records using the DB facade with

select method. The syntax of select method is as shown in the following table.

Syntax array select(string $query, array $bindings = array())

Parameters
 $query(string) – query to execute in database

 $bindings(array) – values to bind with queries

Returns array
Description Run a select statement against the database.

Example

Step 1: Execute the below command to create a controller called StudViewController.

php artisan make:controller StudViewController --plain

Step 2: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

68

Step 3: Copy the following code to file

app/Http/Controllers/StudViewController.php

app/Http/Controllers/StudViewController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use DB;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class StudViewController extends Controller

{

 public function index(){

 $users = DB::select('select * from student');

 return view('stud_view',['users'=>$users]);

 }

}

Step 4: Create a view file called resources/views/stud_view.blade.php and copy the

following code in that file.

(c) ketabton.com: The Digital Library

Laravel

69

resources/views/ stud_view.blade.php

<html>

<head><title>View Student Records</title></head>

<body>

<table border=1>

<tr>

 <td>ID</td>

 <td>Name</td>

</tr>

@foreach ($users as $user)

 <tr>

 <td>{{ $user->id }}</td>

 <td>{{ $user->name }}</td>

 </tr>

@endforeach

</table>

</body>

</html>

Step 5: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('view-records','StudViewController@index');

Step 6: Visit the following URL to see records from database.

http://localhost:8000/view-records

Step 7: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

70

Update Records

We can update the records using the DB facade with update method. The syntax of update

method is as shown in the following table.

Syntax int update(string $query, array $bindings = array())

Parameters
 $query(string) – query to execute in database

 $bindings(array) – values to bind with queries

Returns int

Description Run an update statement against the database.

Example

Step 1: Execute the below command to create a controller called StudViewController.

php artisan make:controller StudUpdateController --plain

Step 2: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

71

Step 3: Copy the following code to file app/Http/Controllers/

StudUpdateController.php

app/Http/Controllers/StudUpdateController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use DB;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class StudUpdateController extends Controller

{

 public function index(){

 $users = DB::select('select * from student');

 return view('stud_edit_view',['users'=>$users]);

 }

 public function show($id)

 {

 $users = DB::select('select * from student where id = ?',[$id]);

 return view('stud_update',['users'=>$users]);

 }

 public function edit(Request $request,$id)

 {

 $name = $request->input('stud_name');

 DB::update('update student set name = ? where id = ?',[$name,$id]);

 echo "Record updated successfully.
";

 echo 'Click Here to go back.';

 }

}

(c) ketabton.com: The Digital Library

Laravel

72

Step 4: Create a view file called resources/views/stud_edit_view.blade.php and

copy the following code in that file.

resources/views/ stud_edit_view.blade.php

<html>

<head><title>View Student Records</title></head>

<body>

<table border="1">

<tr>

 <td>ID</td>

 <td>Name</td>

 <td>Edit</td>

</tr>

@foreach ($users as $user)

 <tr>

 <td>{{ $user->id }}</td>

 <td>{{ $user->name }}</td>

 <td>id }}'>Edit</td>

 </tr>

@endforeach

</table>

</body>

</html>

Step 5: Create another view file called resources/views/stud_update.php and copy

the following code in that file.

resources/views/stud_update.php

<html>

<head><title>Student Management | Edit</title></head>

<body>

<form action="/edit/<?php echo $users[0]->id; ?>" method="post">

<input type="hidden" name="_token" value="<?php echo csrf_token(); ?>">

<table>

 <tr>

 <td>Name</td>

 <td><input type='text' name='stud_name' value='<?php echo

$users[0]->name; ?>' /></td>

(c) ketabton.com: The Digital Library

Laravel

73

 </tr>

 <tr>

 <td colspan='2'><input type='submit' value="Update student" /></td>

 </tr>

</table>

</form>

</body>

</html>

Step 6: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('edit-records','StudUpdateController@index');

Route::get('edit/{id}','StudUpdateController@show');

Route::post('edit/{id}','StudUpdateController@edit');

Step 7: Visit the following URL to update records in database.

http://localhost:8000/edit-records

Step 8: The output will appear as shown in the following image.

Step 9: Click the edit link on any record and you will be redirected to a page where you

can edit that particular record.

Step 10: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

74

Step 11: After editing that record, you will see a prompt as shown in the following image.

Delete Records

We can delete the record using the DB facade with the delete method. The syntax of

delete method is shown in the following table.

Syntax int delete(string $query, array $bindings = array())

Parameters
 $query(string) – query to execute in database

 $bindings(array) – values to bind with queries

Returns int

Description Run a delete statement against the database.

Example

Step 1: Execute the below command to create a controller called StudDeleteController.

php artisan make:controller StudDeleteController --plain

Step 2: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

75

Step 3: Copy the following code to file

app/Http/Controllers/StudDeleteController.php

app/Http/Controllers/StudDeleteController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use DB;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class StudDeleteController extends Controller

{

 public function index(){

 $users = DB::select('select * from student');

 return view('stud_delete_view',['users'=>$users]);

 }

 public function destroy($id)

 {

 DB::delete('delete from student where id = ?',[$id]);

 echo "Record deleted successfully.
";

 echo 'Click Here to go back.';

 }

}

Step 4: Create a view file called resources/views/stud_delete_view.blade.php and

copy the following code in that file.

resources/views/stud_delete_view.blade.php

<html>

<head><title>View Student Records</title></head>

<body>

<table border="1">

<tr>

(c) ketabton.com: The Digital Library

Laravel

76

 <td>ID</td>

 <td>Name</td>

 <td>Edit</td>

</tr>

@foreach ($users as $user)

 <tr>

 <td>{{ $user->id }}</td>

 <td>{{ $user->name }}</td>

 <td>id }}'>Delete</td>

 </tr>

@endforeach

</table>

</body>

</html>

Step 5: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('delete-records','StudDeleteController@index');

Route::get('delete/{id}','StudDeleteController@destroy');

Step 6: The output will appear as shown in the following image.

Step 7: Click on delete link to delete that record from database. You will be redirected to

a page where you will see a message as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

77

Step 8: Click on “Click Here” link and you will be redirected to a page where you will see

all the records except the deleted one.

(c) ketabton.com: The Digital Library

Laravel

78

Errors

A project while underway, is borne to have a few errors. Errors and exception handling is

already configured for you when you start a new Laravel project. Normally, in a local

environment we need to see errors for debugging purposes. We need to hide these errors

from users in production environment. This can be achieved with the variable

APP_DEBUG set in the environment file .env stored at the root of the application.

For local environment the value of APP_DEBUG should be true but for production it needs

to be set to false to hide errors.

Note: After changing the APP_DEBUG variable, restart the Laravel server.

Logging

Logging is an important mechanism by which system can log errors that are generated. It

is useful to improve the reliability of the system. Laravel supports different logging modes

like single, daily, syslog, and errorlog modes. You can set these modes in config/app.php

file.

'log' => 'daily'

You can see the generated log entries in storage/logs/laravel.log file.

14. Laravel — Errors and Logging

(c) ketabton.com: The Digital Library

Laravel

79

Laravel provides various in built tags to handle HTML forms easily and securely. All the

major elements of HTML are generated using Laravel. To support this, we need to add

HTML package to Laravel using composer.

Example 1

Step 1: Execute the following command to proceed with the same.

composer require illuminate/html

Step 2: This will add HTML package to Laravel as shown in the following image.

15. Laravel – Forms

(c) ketabton.com: The Digital Library

Laravel

80

Step 3: Now, we need to add this package to Laravel configuration file which is stored at

config/app.php. Open this file and you will see a list of Laravel service providers as

shown in the following image. Add HTML service provider as indicated in the outlined box

in the following image.

(c) ketabton.com: The Digital Library

Laravel

81

Step 4: Add aliases in the same file for HTML and Form. Notice the two lines indicated in

the outlined box in the following image and add those two lines.

(c) ketabton.com: The Digital Library

Laravel

82

Step 5: Now everything is setup. Let’s see how we can use various HTML elements using

Laravel tags.

Opening a Form

{{ Form::open(array('url' => 'foo/bar')) }}

 //

{{ Form::close() }}

Generating a Label Element

echo Form::label('email', 'E-Mail Address');

Generating a Text Input

echo Form::text('username');

Specifying a Default Value

echo Form::text('email', 'example@gmail.com');

Generating a Password Input

echo Form::password('password');

Generating a File Input

echo Form::file('image');

Generating a Checkbox Or Radio Input

echo Form::checkbox('name', 'value');

echo Form::radio('name', 'value');

Generating a Checkbox Or Radio Input That Is Checked

echo Form::checkbox('name', 'value', true);

echo Form::radio('name', 'value', true);

(c) ketabton.com: The Digital Library

Laravel

83

Generating a Drop-Down List

echo Form::select('size', array('L' => 'Large', 'S' => 'Small'));

Generating A Submit Button

echo Form::submit('Click Me!');

Example 2

Step 1: Copy the following code to create a view called resources/views/form.php.

resources/views/form.php

<html>

 <body>

 <?php

 echo Form::open(array('url' => 'foo/bar'));

 echo Form::text('username','Username');

 echo '
';

 echo Form::text('email', 'example@gmail.com');

 echo '
';

 echo Form::password('password');

 echo '
';

 echo Form::checkbox('name', 'value');

 echo '
';

 echo Form::radio('name', 'value');

 echo '
';

 echo Form::file('image');

 echo '
';

 echo Form::select('size', array('L' => 'Large', 'S' =>

'Small'));

 echo '
';

 echo Form::submit('Click Me!');

 echo Form::close();

 ?>

 </body>

(c) ketabton.com: The Digital Library

Laravel

84

</html>

Step 2: Add the following line in app/Http/routes.php to add a route for view form.php

app/Http/routes.php

Route::get('/form',function(){

 return view('form');

});

Step 3: Visit the following URL to see the form.

http://localhost:8000/form

Step 4: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

85

Localization feature of Laravel supports different language to be used in application. You

need to store all the strings of different language in a file and these files are stored at

resources/views directory. You should create a separate directory for each supported

language. All the language files should return an array of keyed strings as shown below.

<?php

return [

 'welcome' => 'Welcome to the application'

];

Example

Step 1: Create 3 files for languages — English, French, and German. Save English file

at resources/lang/en/lang.php

<?php

 return [

 'msg' => 'Laravel Internationalization example.'

];

?>

Step 2: Save French file at resources/lang/fr/lang.php.

<?php

 return [

 'msg' => 'Exemple Laravel internationalisation.'

];

?>

Step 3: Save German file at resources/lang/de/lang.php.

<?php

 return [

 'msg' => 'Laravel Internationalisierung Beispiel.'

];

?>

16. Laravel – Localization

(c) ketabton.com: The Digital Library

Laravel

86

Step 4: Create a controller called LocalizationController by executing the following

command.

php artisan make:controller LocalizationController --plain

Step 5: After successful execution, you will receive the following output:

Step 6: Copy the following code to file

app/Http/Controllers/LocalizationController.php

app/Http/Controllers/LocalizationController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class LocalizationController extends Controller

{

 public function index(Request $request,$locale){

(c) ketabton.com: The Digital Library

Laravel

87

 //set’s application’s locale

 app()->setLocale($locale);

 //Gets the translated message and displays it

 echo trans('lang.msg');

 }

}

Step 7: Add a route for LocalizationController in app/Http/routes.php file. Notice that

we are passing {locale} argument after localization/ which we will use to see output in

different language.

app/Http/routes.php

Route::get('localization/{locale}','LocalizationController@index');

Step 8: Now, let us visit the different URLs to see all different languages. Execute the

below URL to see output in English language.

http://localhost:8000/localization/en

Step 9: The output will appear as shown in the following image.

Step 10: Execute the below URL to see output in French language.

http://localhost:8000/localization/fr

Step 11: The output will appear as shown in the following image.

Step 12: Execute the below URL to see output in German language.

(c) ketabton.com: The Digital Library

Laravel

88

http://localhost:8000/localization/de

Step 13: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

89

Sessions are used to store information about the user across the requests. Laravel

provides various drivers like file, cookie, apc, array, Memcached, Redis, and

database to handle session data. By default, file driver is used because it is lightweight.

Session can be configured in the file stored at config/session.php.

Accessing Session Data

To access the session data, we need an instance of session which can be accessed via

HTTP request. After getting the instance, we can use the get() method, which will take

one argument, “key”, to get the session data.

$value = $request->session()->get('key');

You can use all() method to get all session data instead of get() method.

Storing Session Data

Data can be stored in session using the put() method. The put() method will take two

arguments, the “key” and the “value”.

$request->session()->put('key', 'value');

Deleting Session Data

The forget() method is used to delete an item from the session. This method will take

“key” as the argument.

$request->session()->forget('key');

Use flush() method instead of forget() method to delete all session data. Use the pull()

method to retrieve data from session and delete it afterwards. The pull() method will also

take “key” as the argument. The difference between the forget() and the pull() method

is that forget() method will not return the value of the session and pull() method will

return it and delete that value from session.

Example

Step 1: Create a controller called SessionController by executing the following

command.

php artisan make:controller SessionController --plain

17. Laravel — Session

(c) ketabton.com: The Digital Library

Laravel

90

Step 2: After successful execution, you will receive the following output:

Step 3: Copy the following code in a file at

app/Http/Controllers/SessionController.php.

app/Http/Controllers/SessionController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class SessionController extends Controller

{

 public function accessSessionData(Request $request){

 if($request->session()->has('my_name'))

 echo $request->session()->get('my_name');

 else

 echo 'No data in the session';

 }

(c) ketabton.com: The Digital Library

Laravel

91

 public function storeSessionData(Request $request){

 $request->session()->put('my_name','Virat Gandhi');

 echo "Data has been added to session";

 }

 public function deleteSessionData(Request $request){

 $request->session()->forget('my_name');

 echo "Data has been removed from session.";

 }

}

Step 4: Add the following lines at app/Http/routes.php file.

app/Http/routes.php

Route::get('session/get','SessionController@accessSessionData');

Route::get('session/set','SessionController@storeSessionData');

Route::get('session/remove','SessionController@deleteSessionData');

Step 5: Visit the following URL to set data in session.

http://localhost:8000/session/set

Step 6: The output will appear as shown in the following image.

Step 7: Visit the following URL to get data from session.

http://localhost:8000/session/get

Step 8: The output will appear as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

92

Step 9: Visit the following URL to remove session data.

http://localhost:8000/session/remove

Step 8: You will see a message as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

93

Validation is the most important aspect while designing an application. It validates the

incoming data. By default, base controller class uses a ValidatesRequests trait which

provides a convenient method to validate incoming HTTP requests with a variety of

powerful validation rules.

Available Validation Rules in Laravel

Available Validation Rules in Laravel

Accepted Active URL After (Date)

Alpha Alpha Dash Alpha Numeric

Array Before (Date) Between

Boolean Confirmed Date

Date Format Different Digits

Digits Between E-Mail Exists (Database)

Image (File) In Integer

IP Address JSON Max

MIME Types(File) Min Not In

Numeric Regular Expression Required

Required If Required Unless Required With

Required With All Required Without Required Without All

Same Size String

Timezone Unique (Database) URL

Laravel will always check for errors in the session data, and automatically bind them to

the view if they are available. So, it is important to note that a $errors variable will always

be available in all of your views on every request, allowing you to conveniently assume

the $errors variable is always defined and can be safely used. The $errors variable will

be an instance of Illuminate\Support\MessageBag. Error message can be displayed

in view file by adding the code as shown below.

@if (count($errors) > 0)

 <div class="alert alert-danger">

 @foreach ($errors->all() as $error)

 {{ $error }}

 @endforeach

 </div>

@endif

18. Laravel – Validation

(c) ketabton.com: The Digital Library

Laravel

94

Example

Step 1: Create a controller called ValidationController by executing the following

command.

php artisan make:controller ValidationController --plain

Step 2: After successful execution, you will receive the following output:

Step 3: Copy the following code in app/Http/Controllers/ValidationController.php

file.

app/Http/Controllers/ValidationController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class ValidationController extends Controller

{

(c) ketabton.com: The Digital Library

Laravel

95

 public function showform(){

 return view('login');

 }

 public function validateform(Request $request){

 print_r($request->all());

 $this->validate($request,[

 'username'=>'required|max:8',

 'password'=>'required'

]);

 }

}

Step 4: Create a view file called resources/views/login.blade.php and copy the

following code in that file.

resources/views/login.blade.php

<html>

<head>

 <title>Login Form</title>

</head>

<body>

 @if (count($errors) > 0)

 <div class="alert alert-danger">

 @foreach ($errors->all() as $error)

 {{ $error }}

 @endforeach

 </div>

 @endif

 <?php

 echo Form::open(array('url'=>'/validation'));

 ?>

 <table border='1'>

 <tr>

(c) ketabton.com: The Digital Library

Laravel

96

 <td align='center' colspan='2'>Login</td>

 </tr>

 <tr>

 <td>Username</td>

 <td><?php echo Form::text('username'); ?></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><?php echo Form::password('password'); ?></td>

 </tr>

 <tr>

 <td align='center' colspan='2'><?php echo

Form::submit('Login'); ?></td>

 </tr>

 </table>

 <?php

 echo Form::close();

 ?>

</body>

</html>

Step 5: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('/validation','ValidationController@showform');

Route::post('/validation','ValidationController@validateform');

Step 6: Visit the following URL to test the validation.

http://localhost:8000/validation

(c) ketabton.com: The Digital Library

Laravel

97

Step 7: Click the “Login” button without entering anything in the text field. The output

will be as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

98

Uploading Files in Laravel is very easy. All we need to do is to create a view file where a

user can select a file to be uploaded and a controller where uploaded files will be processed.

In a view file, we need to generate a file input by adding the following line of code.

Form::file('file_name');

In Form::open(), we need to add ‘files’=>’true’ as shown below. This facilitates the form

to be uploaded in multiple parts.

Form::open(array('url' => '/uploadfile','files'=>'true'));

Example

Step 1: Create a view file called resources/views/uploadfile.php and copy the

following code in that file.

resources/views/uploadfile.php

<html>

 <body>

 <?php

 echo Form::open(array('url' =>

'/uploadfile','files'=>'true'));

 echo 'Select the file to upload.';

 echo Form::file('image');

 echo Form::submit('Upload File');

 echo Form::close();

 ?>

 </body>

</html>

Step 2: Create a controller called UploadFileController by executing the following

command.

php artisan make:controller UploadFileController --plain

19. Laravel – File Uploading

(c) ketabton.com: The Digital Library

Laravel

99

Step 3: After successful execution, you will receive the following output:

Step 4: Copy the following code in app/Http/Controllers/UploadFileController.php

file.

app/Http/Controllers/UploadFileController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class UploadFileController extends Controller

{

 public function index(){

 return view('uploadfile');

 }

 public function showUploadFile(Request $request){

 $file = $request->file('image');

 //Display File Name

 echo 'File Name: '.$file->getClientOriginalName();

(c) ketabton.com: The Digital Library

Laravel

100

 echo '
';

 //Display File Extension

 echo 'File Extension: '.$file->getClientOriginalExtension();

 echo '
';

 //Display File Real Path

 echo 'File Real Path: '.$file->getRealPath();

 echo '
';

 //Display File Size

 echo 'File Size: '.$file->getSize();

 echo '
';

 //Display File Mime Type

 echo 'File Mime Type: '.$file->getMimeType();

 //Move Uploaded File

 $destinationPath = 'uploads';

 $file->move($destinationPath,$file->getClientOriginalName());

 }

}

Step 5: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('/uploadfile','UploadFileController@index');

Route::post('/uploadfile','UploadFileController@showUploadFile');

Step 6: Visit the following URL to test the upload file functionality.

http://localhost:8000/uploadfile

(c) ketabton.com: The Digital Library

Laravel

101

Step 7: You will receive a prompt as shown in the following image.

(c) ketabton.com: The Digital Library

Laravel

102

Laravel uses free feature-rich library “SwiftMailer” to send emails. Using the library

function, we can easily send emails without too many hassles. The e-mail templates are

loaded in the same way as views, which means you can use the Blade syntax and inject

data into your templates. The following is the syntax of the send function.

Syntax void send(string|array $view, array $data, Closure|string $callback)

Parameters

 $view(string|array) – name of the view that contains email

message

 $data(array) – array of data to pass to view

 $callback – a Closure callback which receives a message

instance, allowing you to customize the recipients, subject, and

other aspects of the mail message

Returns nothing

Description Sends email.

In the third argument, the $callback closure received message instance and with that

instance we can also call the following functions and alter the message as shown below.

 $message->subject('Welcome to the Tutorials Point');

 $message->from('email@example.com', 'Mr. Example');

 $message->to('email@example.com', 'Mr. Example');

Some of the less common methods include:

 $message->sender('email@example.com', 'Mr. Example');

 $message->returnPath('email@example.com');

 $message->cc('email@example.com', 'Mr. Example');
 $message->bcc('email@example.com', 'Mr. Example');

 $message->replyTo('email@example.com', 'Mr. Example');

 $message->priority(2);

To attach or embed files, you can use the following methods:

 $message->attach('path/to/attachment.txt');

 $message->embed('path/to/attachment.jpg');

Mail can be sent as HTML or text. You can indicate the type of mail that you want to send

in the first argument by passing an array as shown below. The default type is HTML. If

you want to send plain text mail then use the following syntax.

Mail::send([‘text’=>’text.view’], $data, $callback);

20. Laravel – Sending Email

(c) ketabton.com: The Digital Library

Laravel

103

In this syntax, the first argument takes an array. Use “text” as the key “name of the view”

as value of the key.

Example

Step 1: We will now send an email from Gmail account and for that you need to configure

your Gmail account in Laravel environment file — .env file. Enable 2-step verification in

your Gmail account and create an application specific password followed by changing the

.env parameters as shown below.

.env

MAIL_DRIVER=smtp

MAIL_HOST=smtp.gmail.com

MAIL_PORT=587

MAIL_USERNAME=your-gmail-username

MAIL_PASSWORD=your-application-specific-password

MAIL_ENCRYPTION=tls

Step 2: After changing the .env file execute the below two commands to clear the cache

and restart the Laravel server.

php artisan config:cache

Step 3: Create a controller called MailController by executing the following command.

php artisan make:controller MailController --plain

(c) ketabton.com: The Digital Library

Laravel

104

Step 4: After successful execution, you will receive the following output:

Step 5: Copy the following code in app/Http/Controllers/MailController.php file.

app/Http/Controllers/MailController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Mail;

use App\Http\Requests;

use App\Http\Controllers\Controller;

class MailController extends Controller

{

 public function basic_email(){

 $data = array('name'=>"Virat Gandhi");

 Mail::send(['text'=>'mail'], $data, function($message) {

 $message->to('abc@gmail.com', 'Tutorials Point')-

>subject('Laravel Basic Testing Mail');

 $message->from('xyz@gmail.com','Virat Gandhi');

 });

(c) ketabton.com: The Digital Library

Laravel

105

 echo "Basic Email Sent. Check your inbox.";

 }

 public function html_email(){

 $data = array('name'=>"Virat Gandhi");

 Mail::send('mail', $data, function($message) {

 $message->to('abc@gmail.com', 'Tutorials Point')-

>subject('Laravel HTML Testing Mail');

 $message->from('xyz@gmail.com','Virat Gandhi');

 });

 echo "HTML Email Sent. Check your inbox.";

 }

 public function attachment_email(){

 $data = array('name'=>"Virat Gandhi");

 Mail::send('mail', $data, function($message) {

 $message->to('abc@gmail.com', 'Tutorials Point')-

>subject('Laravel Testing Mail with Attachment');

 $message->attach('C:\laravel-

master\laravel\public\uploads\image.png');

 $message->attach('C:\laravel-

master\laravel\public\uploads\test.txt');

 $message->from('xyz@gmail.com','Virat Gandhi');

 });

 echo "Email Sent with attachment. Check your inbox.";

 }

}

Step 6: Copy the following code in resources/views/mail.blade.php file.

resources/views/mail.blade.php

<h1>Hi, {{ $name }}</h1>

l<p>Sending Mail from Laravel.</p>

(c) ketabton.com: The Digital Library

Laravel

106

Step 7: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('sendbasicemail','MailController@basic_email');

Route::get('sendhtmlemail','MailController@html_email');

Route::get('sendattachmentemail','MailController@attachment_email');

Step 8: Visit the following URL to test basic email.

http://localhost:8000/sendbasicemail

Step 9: The output screen will look something like this. Check your inbox to see the basic

email output.

Step 10: Visit the following URL to test the HTML email.

http://localhost:8000/sendhtmlemail

Step 11: The output screen will look something like this. Check your inbox to see the html

email output.

Step 12: Visit the following URL to test the HTML email with attachment.

http://localhost:8000/sendattachmentemail

(c) ketabton.com: The Digital Library

Laravel

107

Step 13: The output screen will look something like this. Check your inbox to see the html

email output with attachment.

Note: In the MailController.php file the email address in the from method should be the

email address from which you can send email address. Generally, it should be the email

address configured on your server.

(c) ketabton.com: The Digital Library

Laravel

108

Ajax (Asynchronous JavaScript and XML) is a set of web development techniques

utilizing many web technologies used on the client-side to create asynchronous Web

applications. Import jquery library in your view file to use ajax functions of jquery which

will be used to send and receive data using ajax from the server. On the server side you

can use the response() function to send response to client and to send response in JSON

format you can chain the response function with json() function.

json() function syntax

json(string|array $data = array(), int $status = 200, array $headers = array(),

int $options)

Example

Step 1: Create a view file called resources/views/message.php and copy the following

code in that file.

<html>

<head>

<title>Ajax Example</title>

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script

>

<script>

function getMessage(){

 $.ajax({

 type:'POST',

 url:'/getmsg',

 data:'_token=<?php echo csrf_token() ?>',

 success:function(data){

 $("#msg").html(data.msg);

 }

 });

}

</script>

<body>

<div id='msg'>This message will be replaced using Ajax. Click the button to

replace the message.</div>

21. Laravel – Ajax

(c) ketabton.com: The Digital Library

Laravel

109

<?php

 echo Form::button('Replace Message',['onClick'=>'getMessage()']);

?>

</body>

</html>

Step 2: Create a controller called AjaxController by executing the following command.

php artisan make:controller AjaxController --plain

Step 3: After successful execution, you will receive the following output:

Step 4: Copy the following code in app/Http/Controllers/AjaxController.php file.

app/Http/Controllers/AjaxController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

(c) ketabton.com: The Digital Library

Laravel

110

class AjaxController extends Controller

{

 public function index(){

 $msg = "This is a simple message.";

 return response()->json(array('msg'=> $msg), 200);

 }

}

Step 5: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('ajax',function(){

 return view('message');

});

Route::post('/getmsg','AjaxController@index');

Step 6: Visit the following URL to test the Ajax functionality.

http://localhost:8000/ajax

Step 7: You will be redirected to a page where you will see a message as shown in the

following image.

Step 8: The output will appear as shown in the following image after clicking the button.

(c) ketabton.com: The Digital Library

Laravel

111

In Laravel all the exceptions are handled by app\Exceptions\Handler class. This class

contains two methods — report and render.

report() method

report() method is used to report or log exception. It is also used to send log exceptions

to external services like Sentry, Bugsnag etc.

render() method

render() method is used to render an exception into an HTTP response which will be sent

back to browser.

Beside these two methods, the app\Exceptions\Handler class contains an important

property called “$dontReport”. This property takes an array of exception types that will

not be logged.

HTTP Exceptions

Some exceptions describe HTTP error codes like 404, 500 etc. To generate such response

anywhere in an application, you can use abort() method as follows.

abort(404)

Custom Error pages

Laravel makes it very easy for us to use the custom error pages for each separate error

codes. For example, if you want to design custom page for error code 404, you can create

a view at resources/views/errors/404.blade.php. Same way, if you want to design

error page for error code 500, it should be stored at

resources/views/errors/500.blade.php.

Example

Step 1: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('/error',function(){

 abort(404);

});

22. Laravel – Error Handling

(c) ketabton.com: The Digital Library

Laravel

112

Step 2: Create a view file called resources/views/errors/404.blade.php and copy the

following code in that file.

resources/views/errors/404.blade.php

<!DOCTYPE html>

<html>

 <head>

 <title>404</title>

 <link href="https://fonts.googleapis.com/css?family=Lato:100"

rel="stylesheet" type="text/css">

 <style>

 html, body {

 height: 100%;

 }

 body {

 margin: 0;

 padding: 0;

 width: 100%;

 color: #B0BEC5;

 display: table;

 font-weight: 100;

 font-family: 'Lato';

 }

 .container {

 text-align: center;

 display: table-cell;

 vertical-align: middle;

 }

 .content {

 text-align: center;

 display: inline-block;

 }

(c) ketabton.com: The Digital Library

Laravel

113

 .title {

 font-size: 72px;

 margin-bottom: 40px;

 }

 </style>

 </head>

 <body>

 <div class="container">

 <div class="content">

 <div class="title">404 Error</div>

 </div>

 </div>

 </body>

</html>

Step 3: Visit the following URL to test the event.

http://localhost:8000/error

Step 4: After visiting the URL, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

114

An event is an action or occurrence recognized by a program that may be handled by the

program. Laravel events simply provide an observer implementation. Event can be

handled by the following steps:

Step 1: Create an Event class.

Event class can be created by executing the following command.

php artisan make:event <event-class>

Here the <event-class> should be replaced with the name of the event class. The created

class will be stored at app\Events directory.

Step 2: Create a handler class to handle the created event.

Event handler class can be created by executing the following command.

php artisan handler:event <handler-class> --event=<event-class>

Here the <event-class> should be replaced with the name of the event class that we have

created in step-1 and the <handler-class> should be replaced with the name of the handler

class. The newly created handler class will be stored at app\Handlers\Events directory.

Step 3: Register the Event class and its handler in EventServiceProvider class.

We now need to register the event and its handler class in

app\Providers\EventServiceProvier.php file. This file contains an array called $listen.

In this array we need to add event class as key and event handler class as its value.

Step 4: Fire the event.

Last step is to fire the event with Event facade. fire() method hsould be called which takes

object of the event class. Event can be fired as shown below:

Event::fire(<Event Class Object>);

<Event Class Object> should be replaced with the object of the event class.

23. Laravel – Event Handling

(c) ketabton.com: The Digital Library

Laravel

115

Example

Step 1: Create a controller called CreateStudentController by executing the following

command.

php artisan make:controller CreateStudentController --plain

Step 2: After successful execution, you will receive the following output:

Step 3: Copy the following code in

app/Http/Controllers/CreateStudentController.php file.

app/Http/Controllers/CreateStudentController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use DB;

use App\Http\Requests;

use App\Http\Controllers\Controller;

use App\Events\StudentAdded;

(c) ketabton.com: The Digital Library

Laravel

116

use Event;

class CreateStudentController extends Controller

{

 public function insertform(){

 return view('stud_add');

 }

 public function insert(Request $request){

 $name = $request->input('stud_name');

 DB::insert('insert into student (name) values(?)',[$name]);

 echo "Record inserted successfully.
";

 echo 'Click Here to go back.';

 //firing an event

 Event::fire(new StudentAdded($name));

 }

}

Step 4: Create an event called StudentAdded by executing the following command.

php artisan make:event StudentAdded

Step 5: After successful execution, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

117

Step 6: The above command will create an event file at

App\Events\StudentAdded.php. Copy the following code in that file.

App\Events\StudentAdded.php

<?php

namespace App\Events;

use App\Events\Event;

use Illuminate\Queue\SerializesModels;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class StudentAdded extends Event

{

 use SerializesModels;

 public $name;

 public function __construct($name)

 {

 $this->name = $name;

 }

(c) ketabton.com: The Digital Library

Laravel

118

 public function broadcastOn()

 {

 return [];

 }

}

Step 7: Create an event handler called HandleNewStudentAdded by executing the

following command.

php artisan handler:event HandlerNewStudentAdded --event=StudentAdded

Step 8: After successful execution, you will receive the following output:

Step 9: The above command will create an event handler file at

app\Handlers\Events\HandleNewStudentAdded.php. Copy the following code in

that file.

app\Handlers\Events\HandleNewStudentAdded.php

<?php

namespace App\Handlers\Events;

use App\Events\StudentAdded;

use Illuminate\Queue\InteractsWithQueue;

use Illuminate\Contracts\Queue\ShouldQueue;

(c) ketabton.com: The Digital Library

Laravel

119

class HandleNewStudentAdded

{

 protected $name;

 public function __construct()

 {

 //

 }

 public function handle(StudentAdded $event)

 {

 $this->name = $event->name;

 echo "
New Student added in database with name: ".$this->name;

 }

}

Step 10: We now need to add the event class and its handler class in a file stored at

app\Providers\EventServiceProvider.php. Notice the line in bold font and add that

line in the file.

app\Providers\EventServiceProvider.php

<?php

namespace App\Providers;

use Illuminate\Contracts\Events\Dispatcher as DispatcherContract;

use Illuminate\Foundation\Support\Providers\EventServiceProvider as

ServiceProvider;

class EventServiceProvider extends ServiceProvider

{

 /**

 * The event listener mappings for the application.

 *

 * @var array

 */

(c) ketabton.com: The Digital Library

Laravel

120

 protected $listen = [

 'App\Events\SomeEvent' => [

 'App\Listeners\EventListener',

],

 'App\Events\StudentAdded' => [

 'App\Handlers\Events\HandleNewStudentAdded',

],

];

 /**

 * Register any other events for your application.

 *

 * @param \Illuminate\Contracts\Events\Dispatcher $events

 * @return void

 */

 public function boot(DispatcherContract $events)

 {

 parent::boot($events);

 //

 }

}

Step 11: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('event','CreateStudentController@insertform');

Route::post('addstudent','CreateStudentController@insert');

Step 12: Visit the following URL to test the event.

http://localhost:8000/event

Step 13: After visiting the above URL, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

121

Step 14: Add the name of student and click the “Add student” button which will redirect

you to the below screen. Look at the line highlighted in gray color. We have added this

line in our handle method of HandleNewStudentAdded class which indicates that

statements are executed in handle method when an event is fired.

(c) ketabton.com: The Digital Library

Laravel

122

Facades provide a "static" interface to classes that are available in the application's

service container. Laravel "facades" serve as "static proxies" to underlying classes in the

service container, providing the benefit of a terse, expressive syntax while maintaining

more testability and flexibility than traditional static methods.

How to create Facade

The following are the steps to create Facade in Laravel.

 Step 1: Create PHP Class File.

 Step 2: Bind that class to Service Provider.

 Step 3: Register that ServiceProvider to Config\app.php as providers.

 Step 4: Create Class which is this class extends to

lluminate\Support\Facades\Facade.

 Step 5: Register point 4 to Config\app.php as aliases.

Facade Class Reference

Laravel ships with many Facades. The following are the in-built Facade class references.

Facade Class Service Container

Binding

App Illuminate\Foundation\Application app

Artisan Illuminate\Contracts\Console\Kernel artisan

Auth Illuminate\Auth\AuthManager auth

Auth

(Instance)

Illuminate\Auth\Guard

Blade Illuminate\View\Compilers\BladeCompile

r

blade.compiler

Bus Illuminate\Contracts\Bus\Dispatcher

Cache Illuminate\Cache\Repository cache

Config Illuminate\Config\Repository config

Cookie Illuminate\Cookie\CookieJar cookie

Crypt Illuminate\Encryption\Encrypter encrypter

DB Illuminate\Database\DatabaseManager db

DB

(Instance)

Illuminate\Database\Connection

Event Illuminate\Events\Dispatcher events

File Illuminate\Filesystem\Filesystem files

Gate Illuminate\Contracts\Auth\Access\Gate

Hash Illuminate\Contracts\Hashing\Hasher hash

Input Illuminate\Http\Request request

Lang Illuminate\Translation\Translator translator

Log Illuminate\Log\Writer log

Mail Illuminate\Mail\Mailer mailer

24. Laravel – Facades

(c) ketabton.com: The Digital Library

Laravel

123

Password Illuminate\Auth\Passwords\PasswordBro

ker

auth.password

Queue Illuminate\Queue\QueueManager queue

Queue

(Instance)

Illuminate\Queue\QueueInterface

Queue (Base

Class)

Illuminate\Queue\Queue

Redirect Illuminate\Routing\Redirector redirect

Redis Illuminate\Redis\Database redis

Request Illuminate\Http\Request request

Response Illuminate\Contracts\Routing\ResponseF

actory

Route Illuminate\Routing\Router router

Schema Illuminate\Database\Schema\Blueprint

Session Illuminate\Session\SessionManager session

Session

(Instance)

Illuminate\Session\Store

Storage Illuminate\Contracts\Filesystem\Factory filesystem

URL Illuminate\Routing\UrlGenerator url

Validator Illuminate\Validation\Factory validator

Validator

(Instance)

Illuminate\Validation\Validator

View Illuminate\View\Factory view

View

(Instance)

Illuminate\View\View

Example

Step 1: Create a service provider called TestFacadesServiceProvider by executing the

following command.

php artisan make:provider TestFacadesServiceProvider

(c) ketabton.com: The Digital Library

Laravel

124

Step 2: After successful execution, you will receive the following output:

Step 3: Create a class called “TestFacades.php” at “App/Test”.

App/Test/TestFacades.php

<?php

namespace App\Test;

class TestFacades{

 public function testingFacades(){

 echo "Testing the Facades in Laravel.";

 }

}

?>

Step 4: Create a Facade class called “TestFacades.php” at “App/Test/Facades”.

App/Test/Facades/TestFacades.php

<?php

namespace app\Test\Facades;

(c) ketabton.com: The Digital Library

Laravel

125

use Illuminate\Support\Facades\Facade;

class TestFacades extends Facade{

 protected static function getFacadeAccessor() { return 'test'; }

}

Step 5: Create a Facade class called “TestFacadesServiceProviders.php” at

“App/Test/Facades”.

App/Providers/TestFacadesServiceProviders.php

<?php

namespace App\Providers;

use App;

use Illuminate\Support\ServiceProvider;

class TestFacadesServiceProvider extends ServiceProvider

{

 public function boot()

 {

 //

 }

 public function register()

 {

 App::bind('test',function()

 {

 return new \App\Test\TestFacades;

 });

 }

}

(c) ketabton.com: The Digital Library

Laravel

126

Step 6: Add a service provider in a file config/app.php as shown in the below figure.

config/app.php

Step 7: Add an alias in a file config/app.php as shown in the below figure.

config/app.php

Step 8: Add the following lines in app/Http/routes.php.

app/Http/routes.php

Route::get('/facadeex', function(){

 return TestFacades::testingFacades();

});

(c) ketabton.com: The Digital Library

Laravel

127

Step 9: Visit the following URL to test the Facade.

http://localhost:8000/facadeex

Step 10: After visiting the URL, you will receive the following output:

(c) ketabton.com: The Digital Library

Laravel

128

Security is important feature while designing web applications. It assures the users of the

website that their data is secured. Laravel provides various mechanisms to secure website.

Some of the features are listed below:

 Storing Passwords: Laravel provides a class called “Hash” class which provides

secure Bcrypt hashing. The password can be hashed in the following way.

$password = Hash::make('secret');

 make() function will take a value as argument and will return the hashed value. The

hashed value can be checked using the check() function in the following way.

Hash::check('secret', $hashedPassword)

The above function will return Boolean value. It will return true if password matched

or false otherwise.

 Authenticating Users: The other main security features in Laravel is authenticating

user and perform some action. Laravel has made this task easier and to do this we

can use Auth::attempt method in the following way.

if (Auth::attempt(array('email' => $email, 'password' => $password)))

{

 return Redirect::intended('home');

}

The Auth::attempt method will take credentials as argument and will verify those

credentials against the credentials stored in database and will return true if it is

matched or false otherwise.

 CSRF Protection/Cross-site request forgery (XSS): Cross-site scripting (XSS)

attacks happen when attackers are able to place client-side JavaScript code in a page

viewed by other users. To avoid this kind of attack, you should never trust any user-

submitted data or escape any dangerous characters. You should favor the double-

brace syntax ({{ $value }}) in your Blade templates, and only use the {!! $value

!!} syntax, where you're certain the data is safe to display in its raw format.

 Avoiding SQL injection: SQL injection vulnerability exists when an application

inserts arbitrary and unfiltered user input in an SQL query. By default, Laravel will

protect you against this type of attack since both the query builder and Eloquent use

25. Laravel – Security

(c) ketabton.com: The Digital Library

Laravel

129

PHP Data Objects (PDO) class behind the scenes. PDO uses prepared statements,

which allows you to safely pass any parameters without having to escape and sanitize

them.

 Cookies – Secure by default: Laravel makes it very easy to create, read, and

expire cookies with its Cookie class. In Laravel all cookies are automatically signed

and encrypted. This means that if they are tampered with, Laravel will automatically

discard them. This also means that you will not be able to read them from the client

side using JavaScript.

 Forcing HTTPS when exchanging sensitive data: HTTPS prevents attackers on

the same network to intercept private information such as session variables, and log

in as the victim.

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

