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Preface

Today, a firm understanding of mathematics is essential for any serious student of economics.
Students of economics need nowadays several important mathematical tools. These include
calculus for functions of one or several variables as well as a basic understanding of
optimization with and without constraints, e.g. linear programming plays an important
role in optimizing production programs. Linear algebra is used in economic theory and
econometrics. Students in other areas of economics can benefit for instance from some
knowledge about differential and difference equations or mathematical problems arising in
finance. The more complex economics becomes, the more deep mathematics is required and
used. Today economists consider mathematics as the most important tool of economics and
business. This book is not a book on mathematical economics, but a book on higher-level
mathematics for economists.

Experience shows that students who enter a university and specialize in economics vary
enormously in the range of their mathematical skills and aptitudes. Since mathematics is
often a requirement for specialist studies in economics, we felt a need to provide as much
elementary material as possible in order to give those students with weaker mathematical
backgrounds the chance to get started. Using this book may depend on the skills of readers and
their purposes. The book starts with very basic mathematical principles. Therefore, we have
included some material that covers several topics of mathematics in school (e.g. fractions,
powers, roots and logarithms in Chapter 1 or functions of a real variable in Chapter 3). So
the reader can judge whether or not he (she) is sufficiently familiar with mathematics to be
able to skip some of the sections or chapters.

Studying mathematics is very difficult for most students of economics and business.
However, nowadays it is indeed necessary to know a lot of results of higher mathematics
to understand the current economic literature and to use modern economic tools in practical
economics and business. With this in mind, we wrote the book as simply as possible. On the
other hand, we have presented the mathematical results strongly correct and complete, as is
necessary in mathematics. The material is appropriately ordered according to mathematical
requirements (while courses, e.g. in macroeconomics, often start with advanced topics such
as constrained optimization for functions of several variables). On the one hand, previous
results are used by later results in the text. On the other hand, current results in a chapter
make it clear why previous results were included in the book.

The book is written for non-mathematicians (or rather, for those people who only want
to use mathematical tools in their practice). It intends to support students in learning the
basic mathematical methods that have become indispensable for a proper understanding
of the current economic literature. Therefore, the book contains a lot of worked examples
and economic applications. It also contains many illustrations and figures to simplify the
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mathematical techniques used and show how mathematical results may be used in economics
and business. Some of these examples have been taken from former examinations (at the
Otto-von-Guericke University of Magdeburg), and many of the exercises given at the end of
each chapter have been used in the tutorials for a long time. In this book, we do not show how
the mathematical results have been obtained and proved, but we show how they may be used
in real-life economics and business. Therefore, proofs of theorems have been skipped (with
a few exceptions) so that the volume of the book does not substantially exceed 500 pages,
but in spite of the relatively short length the book includes the main mathematical subjects
useful for practical economics and an efficient business.

The book should serve not only as a textbook for a course on mathematical methods for
students, but also as a reference book for business people who need to use higher-level
mathematics to increase profits. (Of course, one will not increase profit by solving e.g.
a differential equation, but one can understand why somebody has increased profits after
modelling a real process and finding a solution for it.) One of the purposes of this book is to
introduce the reader to the most important mathematical methods used in current economic
literature. We also provide an introduction to the close relationship between mathematical
methods and problems arising in the economy. However, we have included only such
economic applications as do not require an advanced knowledge of economic disciplines,
since mathematics is usually taught in the first year of studies at university.

The reader needs only knowledge of elementary mathematics from secondary school to
understand and use the results of the book, i.e. the content is self-sufficient for understanding.
For a deeper understanding of higher mathematics used in economics, we also suggest a small
selection of German and English textbooks and lecture materials listed in the literature section
at the end of the book. Some of these books have been written at a comparable mathematical
level (e.g. Opitz, Mathematik; Simon and Blume, Mathematics for Economists; Sydsaeter
and Hammond, Mathematics for Economic Analysis) while others are more elementary in
style (e.g. Misrahi and Sullivan, Mathematics and Finite Mathematics; Ohse, Mathematik
fiir Wirtschaftswissenschaftler; Rosser, Basic Mathematics for Economists). The booklets
(Schulz, Mathematik fiir wirtschaftswissenchaftliche Studiengdnge; Werner, Mathematics
for Students of Economics and Management) contain most important definitions, theorems
of a one-year lecture course in mathematics for economists in a compact form and
they sketch some basic algorithms taught in the mathematics classes for economists at
the Otto-von-Guericke University of Magdeburg during recent decades. Bronstein and
Semandjajew, Taschenbuch der Mathematik, and Eichholz and Vilkner, Taschenbuch der
Wirtschaftsmathematik, are well-known handbooks of mathematics for students. Varian,
Intermediate Microeconomics, is a standard textbook of intermediate microeconomics, where
various economic applications of mathematics can be found.

The book is based on a two-semester course with four hours of lectures per week which
the first author has given at the Otto-von-Guericke University of Magdeburg within the last
ten years. The authors are indebted to many people in the writing of the book. First of
all, the authors would like to thank Dr Iris Paasche, who was responsible for the tutorials
from the beginning of this course in Magdeburg. She contributed many suggestions for
including exercises and for improvements of the contents and, last but not least, she prepared
the answers to the exercises. Moreover, the authors are grateful to Dr Giinther Schulz for
his support and valuable suggestions which were based on his wealth of experience in
teaching students of economics and management at the Otto-von-Guericke University of
Magdeburg for more than twenty years. The authors are grateful to both colleagues for their
contributions.
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The authors also thank Ms Natalja Leshchenko of the United Institute of Informatics
Problems of the National Academy of Sciences of Belarus for reading the whole manuscript
(and carefully checking the examples) and Mr Georgij Andreev of the same institute for
preparing a substantial number of the figures. Moreover, many students of the International
Study Programme of Economics and Management at the Otto-von-Guericke University of
Magdeburg have read single chapters and contributed useful suggestions, particularly the
students from the course starting in October 2002. In addition, the authors would like to
express their gratitude to the former Ph.D. students Dr Nadezhda Sotskova and Dr Volker
Lauff, who carefully prepared in the early stages a part of the book formerly used as printed
manuscript in IXTEX and who made a lot of constructive suggestions for improvements.

Although both authors have taught in English at universities for many years and during
that time have published more than 100 research papers in English, we are nevertheless
not native speakers. So we apologize for all the linguistic weaknesses (and hope there are
not too many). Of course, for all remaining mathematical and stylistic mistakes we take
full responsibility, and we will be grateful for any further comments and suggestions for
improvements by readers for inclusion in future editions (e-mail address for correspondence:
frank.werner@mathematik.uni-magdeburg.de). Furthermore, we are grateful to Routledge
for their pleasant cooperation during the preparation of the book. The authors wish all readers
success in studying mathematics.

We dedicate the book to our parents Hannelore Werner, Willi Werner, Maja N. Sotskova
and Nazar F. Sotskov.

F.W.
Y.N.S.
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Abbreviations

p.a.  per annum

NPV  net present value

resp. respectively

rad  radian

1 litre

m metre

cm centimetre

km  kilometre

s second

EUR euro

LPP linear programming problem
s.t. subject to

bv basic variables of a system of linear equations

nbv

non-basic variables of a system of linear equations
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negation of proposition 4
conjunction of propositions 4 and B
disjunction of propositions 4 and B
implication (if 4 then B)
equivalence of propositions 4 and B
universal proposition

existential proposition

a is an element of set 4

b is not an element of set 4

empty set

cardinality of a set 4 (if 4 is a finite set, then |4| is equal to the
number of elements in set 4), the same notation is used for the
determinant of a square matrix 4

power set of set 4

set A is a subset of set B

union of sets 4 and B

intersection of sets 4 and B

difference of sets 4 and B

Cartesian product of sets 4 and B

Cartesian product of sets 41,42, ...,4,

n

Cartesian product X 4;, where 4 =4, =... =4, =4
i=1

nfactorial: n!=1-2-...-(n—1)-n

binomial coefficient:

(n)_ n!
k] kl-(n—k)

equalitiesn =1,n=2,...,n=k

set of all natural numbers: N = {1,2,3,...}

union of set N with number zero: Ng = N U {0}
union of set Ny with the set of all negative integers
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xvi List of notations
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andg e N
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[a, b] closed interval between a and b
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and the second one with sign —

F denotes two cases of a mathematical term: the first one with sign —

and the second one with sign +
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i=1

I1 product sign:
n
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lim limit sign
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which assigns to a € 4 exactly one b € B
b=f(a) b is the image of a assigned by mapping f
f! inverse mapping or function of f’
gof composite mapping or function of f and g
Dy domain of a function f of n > 1 real variables
Ry range of a function f of n > 1 real variables
y=f() y € Ris the function value of x € R, i.e. the value of

function /" at point x
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1 Introduction

In this chapter, an overview on some basic topics in mathematics is given. We summarize
elements of logic and basic properties of sets and operations with sets. Some comments on
basic combinatorial problems are given. We also include the main important facts concerning
number systems and summarize rules for operations with numbers.

1.1 LOGIC AND PROPOSITIONAL CALCULUS

This section deals with basic elements of mathematical logic. In addition to propositions and
logical operations, we discuss types of mathematical proofs.

1.1.1 Propositions and their composition
Let us consider the following four statements 4, B, C and D.

A Number 126 is divisible by number 3.

B Equality 5- 11 = 65 holds.

C Number 11 is a prime number.

D On1 July 1000 it was raining in Magdeburg.

Obviously, the statements 4 and C are true. Statement B is false since 5- 11 = 55. Statement
D is either true or false but today probably nobody knows. For each of the above statements
we have only two possibilities concerning their truth values (to be true or to be false). This
leads to the notion of a proposition introduced in the following definition.

Definition 1.1 A statement which is either true or false is called a proposition.

Remark For a proposition, there are no other truth values than ‘true’ (T) or ‘false’ (F)
allowed. Furthermore, a proposition cannot have both truth values ‘true’ and ‘false’ (principle
of excluded contradiction).

Next, we consider logical operations. We introduce the negation of a proposition and con-
nect different propositions. Furthermore, the truth value of such compound propositions is
investigated.
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Definition 1.2 A proposition 4 (read: not A) ) is called the negation of proposition 4.
Proposition 4 is true if 4 is false. Proposition 4 is false if 4 is true.

One can illustrate Definition 1.2 by a so-called truth table. According to Definition 1.2, the
truth table of the negation of proposition 4 is as follows:

A|T[|F
A|F|T

Considering the negations of the propositions 4, B and C, we obtain:

g Number 126 is not divisible by the number 3.
B Equality 5 - 11 = 65 does not hold.
C The number 11 is not a prime number.

Propositions 4 and C are false and B is true.

Definition 1.3 The proposition 4 A B (read: 4 and B) is called a conjunction.
Proposition 4 A B is true only if propositions 4 and B are both true. Otherwise, 4 A B
is false.

According to Definition 1.3, the truth table of the conjunction A A B is as follows:

A T|T|F|F
B T|\F|T|F
ANB|T |F|F |F

Definition 1.4 The proposition 4V B (read: 4 or B) is called a disjunction. Proposition
A V B is false only if propositions 4 and B are both false. Otherwise, 4 V B is true.

According to Definition 1.4, the truth table of the disjunction A v B is as follows:

A T
B T
AVvB | T

NN
NN

F
F
F

The symbol V stands for the ‘inclusive or’ which allows that both propositions are true (in
contrast to the ‘exclusive or’, where the latter is not possible).
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Example 1.1 Consider the propositions M and P.

M In 2003 Magdeburg was the largest city in Germany.
P In 2003 Paris was the capital of France.

Although proposition P is true, the conjunction M A P is false, since Magdeburg was not
the largest city in Germany in 2003 (i.e. proposition M is false). However, the disjunction
M Vv P is true, since (at least) one of the two propositions is true (namely proposition P).

Definition 1.5 The proposition 4 = B (read: if 4 then B) is called an implication.
Only if 4 is true and B is false, is the proposition 4 = B defined to be false. In all
remaining cases, the proposition 4 = B is true.

According to Definition 1.5, the truth table of the implication A = B is as follows:

A T|T|F|F
B T|\F|T|F
A=—B|T|F|T|T

For the implication A =—> B, proposition 4 is called the hypothesis and proposition B is
called the conclusion. An implication is also known as a conditional statement. Next, we
give an illustration of the implication. A student says: If the price of the book is at most
20 EUR, I will buy it. This is an implication 4 = B with

A The price of the book is at most 20 EUR.
B The student will buy the book.

In the first case of the four possibilities in the above truth table (second column), the student
confirms the validity of the implication 4 =—> B (due to the low price of no more than
20 EUR, the student will buy the book). In the second case (third column), the implication is
false since the price of the book is low but the student will not buy the book. The truth value
of an implication is also true if 4 is false but B is true (fourth column). In our example, this
means that it is possible that the student will also buy the book in the case of an unexpectedly
high price of more than 20 EUR. (This does not contradict the fact that the student certainly
will buy the book for a price lower than or equal to 20 EUR.) In the fourth case (fifth column
of the truth table), the high price is the reason that the student will not buy the book. So in
all four cases, the definition of the truth value corresponds with our intuition.

Example 1.2 Consider the propositions 4 and B defined as follows:

A The natural number # is divisible by 6.
B The natural number # is divisible by 3.

We investigate the implication 4 = B. Since each of the propositions 4 and B can be true
and false, we have to consider four possibilities.
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If n is a multiple of 6 (i.e. n € {6,12,18,...}), then both 4 and B are true. According
to Definition 1.5, the implication A = B is true. If n is a multiple of 3 but not of 6
(ie.n € {3,9,15,...}), then 4 is false but B is true. Therefore, implication A = B is true.
If n is not a multiple of 3 (i.e. n € {1,2,4,5,7,8,10,...}), then both 4 and B are false, and
by Definition 1.5, implication 4 = B is true. It is worth noting that the case where 4 is true
but B is false cannot occur, since no natural number which is divisible by 6 is not divisible
by 3.

Remark For an implication 4 = B, one can also say:

(1) A implies B;

(2) from A it follows B,

(3) A is sufficient for B;

(4) B is necessary for 4;

(5) A is true only if B is true;
(6) if A is true, then B is true.

The latter four formulations are used in connection with the presentation of mathematical
theorems and their proof.

Example 1.3 Consider the propositions

H Claudia is happy today.
E  Claudia does not have an examination today.

Then the implication H = E means: If Claudia is happy today, she does not have an
examination today. Therefore, a necessary condition for Claudia to be happy today is that
she does not have an examination today.

In the case of the opposite implication £ =—> H, a sufficient condition for Claudia to be
happy today is that she does not have an examination today.

If both implications H = E and £ —> H are true, it means that Claudia is happy today if
and only if she does not have an examination today.

Definition 1.6 The proposition 4 <= B (read: 4 is equivalent to B) is called
equivalence. Proposition 4 <> B is true if both propositions 4 and B are true or
propositions 4 and B are both false. Otherwise, proposition 4 <> B is false.

According to Definition 1.6, the truth table of the equivalence A <= B is as follows:

T|T F
B T|F|T|F
T|F T
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Remark For an equivalence 4 <= B, one can also say

(1) 4 holds if and only if B holds;
(2) Ais necessary and sufficient for B.

For a compound proposition consisting of more than two propositions, there is a hierarchy

of the logical operations as follows. The negation of a proposition has the highest priority,

then both the conjunction and the disjunction have the second highest priority and finally the

implication and the equivalence have the lowest priority. Thus, the proposition
AANB<C

may also be written as

[@) AB] = C.

By means of a truth table we can investigate the truth value of arbitrary compound
propositions.

Example 1.4 We investigate the truth value of the compound proposition

AVB=>(B=4)

One has to consider four possible combinations of the truth values of 4 and B (each of the
propositions 4 and B can be either true or false):

A T|TIF|F
B T|\F|T|F
AV B T|T|T|F
AV B F|F|F|T
A F|F|T|T
B F|T|F|T
B=—4 T|F|T|T
AVB= B=4) |T|T|T|T

In Example 1.4, the implication is always true, independently of the truth values of the
individual propositions. This leads to the following definition.

Definition 1.7 A compound proposition which is true independently of the truth
values of the individual propositions is called a fautology. A compound proposition
being always false is called a contradiction.
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Example 1.5 We investigate whether the implication
(A= B)= (4= B) (1.1)

is a tautology. As in the previous example, we have to consider four combinations of truth
values of propositions 4 and B. This yields the following truth table:

A4

B
A= B
A=B

A

B
A= B

Ad=B) = 4d=DB)

- N N
== NN N

=N T NN

=T NN N

Independently of the truth values of 4 and B, the truth value of the implication considered is
true. Therefore, implication (1.1) is a tautology.

Some further tautologies are presented in the following theorem.

THEOREM 1.1 The following propositions are tautologies:

(1) ANB<= BAA, AVB <= BV A
(commutative laws of conjunction and disjunction);

2) AABYAC <= AN BACO), AVB)VC<&= AV (BvVCO)
(associative laws of conjunction and disjunction);

B) AAB)VC <= AVC)ABVO), AVB)AC = ANC)V(BAC)
(distributive laws).

Remark The negation of a disjunction of two propositions is a conjunction and, analo-
gously, the negation of a conjunction of two propositions is a disjunction. We get

AVB<= AAB and AANB<=AVB (de Morgan's laws).

PROOF De Morgan’s laws can be proved by using truth tables. Let us prove the first equiv-
alence. Since each of the propositions 4 and B has two possible truth values T and F, we have
to consider four combinations of the truth values of 4 and B:

N
<| %
&

M
=
T NN N
N T NN
TN T NN T
- NN - Y

> Wl <

EN|
S
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If we compare the fourth and last rows, we get identical truth values for each of the four
possibilities and therefore the first law of de Morgan has been proved. |

The next theorem presents some tautologies which are useful for different types of
mathematical proofs.

THEOREM 1.2 The following propositions are tautologies:

(@) (A‘:’B)@[(A=>B)/\(B:>A)];
2 A=BAB=C) = d=0);
(3) 4=>B) < (B=4) < AAB.

PROOF We prove only part (1) and have to consider four possible combinations of the truth
values of propositions 4 and B. This yields the following truth table:

4 T|T|F|F

B T|F|T|F
A=— B T|F|T|T
B=4 T|T|F|T
A=BAB=A)|T|F|F|T
A< B T|F|F|T

The latter two rows give identical truth values for all four possibilities and thus it has been
proved that the equivalence of part (1) is a tautology. |

Part (1) of Theorem 1.2 can be used to prove the logical equivalence of two propositions,
i.e. we can prove both implications 4 = B and B = A separately. Part (2) of Theorem 1.2
is known as the transitivity property. The equivalences of part (3) of Theorem 1.2 are used
later to present different types of mathematical proof.

1.1.2 Universal and existential propositions

In this section, we consider propositions that depend on the value(s) of one or several
variables.

Definition 1.8 A proposition depending on one or more variables is called an open
proposition or a propositional function.

We denote by A(x) a proposition 4 that depends on variable x. Let 4(x) be the following open
proposition: x> + x — 6 = 0. For x = 2, the proposition 4(2) is true since 22 +2 — 6 = 0.
On the other hand, for x = 0, the proposition 4(0) is false since 024+0—6 #0.
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Next, we introduce the notions of a universal and an existential proposition.

Definition 1.9 A conjunction
JAVLS))
X

of propositions 4(x), where x can take given values, is called a universal proposition.
The universal proposition is true if the propositions 4(x) are true for all x. If at least
one of these propositions is false, the universal proposition is false.

Proposition
JAVL6))
X

may be written in an equivalent form:

Vx: Ax).

Definition 1.10 A disjunction
\/ 4
X

of propositions A(x) is called an existential proposition. If at least one x exists such
that 4(x) is true, the existential proposition is true. If such an x does not exist, the
existential proposition is false.

Proposition
\/ 4@)
X
may be written in an equivalent form:
dx:  Ax).

If variable x can take infinitely many values, the universal and existential propositions are
compounded by infinitely many propositions.
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Remark The negation of an existential proposition is always a universal proposition and
vice versa. In particular, we get as a generalization of de Morgan’s laws that

VAx &= \4@  and  N\4d@ < \/4x)

are tautologies.

Example 1.6 Let x be a real number and
AGx): x> +3x—4=0.

Then the existential proposition
\/ 4@
X

is true since there exists a real x for which x> + 3x — 4 = 0, namely for the numbers x = 1
and x = —4 the equality x2 4+ 3x — 4 = 0 is satisfied, i.c. propositions A(1) and 4(—4)
are true.

Example 1.7 Let x be a real number and consider
Ax): x*>0.

Then the universal proposition
N\A4x)
X

is true since the square of any real number is non-negative.

1.1.3 Types of mathematical proof

A mathematical theorem can be formulated as an implication 4 = B (or as several impli-
cations) where 4 represents a proposition or a set of propositions called the Aypothesis or
the premises (‘what we know’) and B represents a proposition or a set of propositions that
are called the conclusions (‘what we want to know”). One can prove such an implication in
different ways.
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Direct proof

We show a series of implications C; = Cj4+1 fori = 0,1,...,n — 1 with Cy = 4 and
C, = B. By the repeated use of the transitivity property given in part (2) of Theorem 1.2, this
means that 4 = B is true. As a consequence, if the premises 4 and the implication4 =—> B
are true, then conclusion B must be true, too. Often several cases have to be considered in
order to prove an implication. For instance, if a proposition 4 is equivalent to a disjunction
of propositions, i.e.

A<= A1 VA V...V A,,
one can prove the implication 4 = B by showing the implications

Ay =—B, A,=—B, ..., A4,— B.

Indirect proof

According to part (3) of Theorem 1.2, instead of proving an implication 4 = B directly,
one can prove an implication in two other variants indirectly.

(1) Proof of contrapositive. For A = B, it is equivalent (see part (3) of Theorem 1.2)
to show B == 4. As a consequence, if the conclusion B does not hold (B is true) and
B = A, then the premises 4 cannot hold (4 is true). We also say that B = A4 is a
contrapositive of implication 4 — B.

(2) Proof by contradiction. This is another variant of an indirect proof. We know (see
part (3) of Theorem 1.2) that

(4= B) <= A AB.

Thus, we investigate 4 A B which must lead to a contradiction, i.e. in the latter case we

have shown that proposition 4 A B is true.

Next, we illustrate the three variants of a proof mentioned above by a few examples.

Example 1.8 Given are the following propositions 4 and B:
A:x#1.
1
B: X +4x+—— —3+£2.
x—1

We prove implication 4 = B by a direct proof.
To this end, we consider two cases, namely propositions 4; and 4»:

Ay x< 1.

Ay x> 1.

It is clear that A <= A Vv A43. Let us prove both implications 41 = B and 4, —> B.
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Ay = B. Since inequalities x> < 1,4x < 4 and 1/(x — 1) < 0 hold for x < 1, we obtain
(using the rules for adding inequalities, see also rule (5) for inequalities in Chapter 1.4.1) the
implication

1
x<1l = xs—&—4x—i-71 < 5.
x—

Moreover,
3 1 3 1
X +4x+——<5 = x +d+—-3#2,
x—1 x—1
ie. 4] =— B.

Ay = B. Since inequalities x> 1,4x > 4 and 1/(x — 1) > 0 hold for x > 1, we obtain
(using the rules for adding inequalities) the implication

1
x>1 = x3—4—4x—i——1 > 5.
x —
Moreover,

1 1
Bt ——>5 = P4t ——-3#2,
x—1 x—1

ie. Ay = B.
Due to A <= A4; Vv A;, we have proved the implication 4 = B.

Example 1.9 We prove the implication 4 =—> B, where
A : x is a positive real number.

16
B:x+—2>8
x
Applying the proof by contradiction, we assume that proposition 4 A B is true, i.e.
= . . 16
A AB: xisapositive real number and x + — < 8.
x
Then we get the following series of implications:

16
<x+—<8>/\(x>0):>x2+16<8x
x

X +16 <8x =" —8x+16 <0
P —8x+16<0= (x—4)% <0.
Now we have obtained the contradiction (x — 4)> < 0 since the square of any real number

is non-negative. Hence, proposition A4 A B is false and therefore the implication 4 = B is
true. Notice that the first of the three implications above holds due to the assumption x > 0.
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Example 1.10 We prove 4 <= B, where

A : x is an even natural number.

B : x? is an even natural number.
According to Theorem 1.2, part (1), 4 <= B is equivalent to proving both implications
A=—Band B =— 4.

(a) A = B. Let x be an even natural number, i.e. x can be written as x = 2n with n being
some natural number. Then

x? = (2n)? = 4n* =2(2n%),
i.e. x% has the form 2k and is therefore an even natural number too.
(b) B = A. We use the indirect proof by showing 4 = B. Assume that x is an odd natural
number, i.e. x = 2n + 1 with n being some natural number. Then

Z=Cn+ 12 =4 +4n+1=202n*+2n) + 1.

Therefore, x* has the form 2k + 1 and is therefore an odd natural number too, and we have
proved implication 4 =—> B which is equivalent to implication B =— 4.

Example 1.11 Consider the propositions
A: —x*+3x>0 and B: x>0

We prove the implication 4 =—> B by all three types of mathematical proofs discussed
before.

(1) To give a direct proof, we suppose that —x> 4 3x > 0. The latter equation can be rewritten
as 3x > x2. Since x? > 0, we obtain 3x > x2 > 0. From 3x > 0, we get x > 0, i.e. we have
proved 4 = B.

(2) To prove the contrapositive, we have to show that B = 4. We therefore suppose that
x < 0. Then 3x < 0 and —x? 4 3x < 0 since the term —x? is always non-positive.

(3) For a proof by contradiction, we suppose that 4 A B is true, which corresponds to the
following proposition. There exists an x such that

—x2+3x20 and x < 0.
However, if x < 0, we obtain
—x? +3x < —x? <0.

The inequality —x? 4 3x < 0 is a contradiction of the above assumption. Therefore, we have

proved that proposition 4 A B is true.
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We finish this section with a type of proof that can be used for universal propositions of a
special type.

Proof by induction

This type of proof can be used for propositions
N\ A,
n

where n = k,k + 1,..., and k is a natural number. The proof consists of two steps, namely
the initial and the inductive steps:

(1) Initial step. We prove that the proposition is true for an initial natural number n = £,
i.e. A(k) is true.

(2) Inductive step. To show a sequence of (infinitely many) implications A4(k) =
A(k+1),A(k+1) = A(k+2), and so on, it is sufficient to prove once the implication

An) = An+1)

for an arbitrary n € {k,k + 1,...}. The hypothesis that A(n) is true for some # is also
denoted as inductive hypothesis, and we prove in the inductive step that then also A(n+1)
must be true. In this way, we can conclude that, since A(k) is true by the initial step,
A(k + 1) must be true by the inductive step. Now, since A(k + 1) is true, it follows again
by the inductive step that 4(k + 2) must be true and so on.

The proof by induction is illustrated by the following two examples.

Example 1.12 We want to prove by induction that

n

1 n
AW D T

is true for any natural number ».
In the initial step, we consider 4(1) and obtain

1
1 1
AN Y=

i=1

which is obviously true. In the inductive step, we have to prove that, if A(n) is true for some
natural number n = k, then also

n+1
1 n+1
A 1 . —_—
(D Zi(i+1) nt2

i=1
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has to be true for the next natural number n 4+ 1. We consider the inductive hypothesis 4 ()
and add 1/[(n + 1)(n + 2)] on both sides. This yields

n

1 1 n 1
2L0+n+m+nm+nzn+1+m+nm+n

i=1

n+1

Z 1 nn+2)+1

ii+1)  (n+1Dn+2)

n+1 1

i=1
Z _ n2+2n+1
ii+1)  (n+D@n+2)

i=1

n+1 1 (n + 1)2

E:KHJ):(n+D@+Q)

i=1

g 1 n+tl
G+ n+2

i=1

Thus, we have shown that 4(1) holds and that implication A(n) = A(n + 1) holds for an
arbitrary natural number. Therefore, the proposition 4 (#n) is true for all natural numbers 7.

A proof by induction can also be used when proving the validity of certain inequalities.

Example 1.13 We prove by induction that
An) : 2" >n
is true. In the initial step, we obviously get forn = 1
A(1) : 2l=2>1,
i.e. A(1) is true. In the inductive step, we have to prove implication 4(n) = A(n + 1) with
Amn+1) : 2l S py,
i.e. we show that
>n = 2lsp41.

Multiplying both sides of the inductive hypothesis A(n) (which is assumed to be true) by 2
yields

2.2" > 2n.
Fromn > 1, we get

2n>n+1.
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Combining both inequalities gives
2" s g,

and thus we can conclude that 4(n) is true for all natural numbers 7.

1.2 SETS AND OPERATIONS ON SETS

In this section, we introduce the basic notion of a set and discuss operations on sets.

1.2.1 Basic definitions

A set is a fundamental notion of mathematics, and so there is no definition of a set by other
basic mathematical notions. A set may be considered as a collection of distinct objects which
are called the elements of the set. For each object, it can be uniquely decided whether it is
an element of the set or not. We write:

a € A: a is an element of set 4;
b ¢ A: b is not an element of set 4.

A set can be given by

(1) enumeration, i.e. A = {ay,ay,...,a,} which means that set 4 consists of the elements
ai,az,...,a, or

(2) description, i.e. A = {a | property P} which means that set 4 contains all elements with
property P.

Example 1.14 Let4 = {3,5,7,9, 11}. Here set 4 is given by enumeration and it contains
as elements the five numbers 3, 5, 7, 9 and 11. Set 4 can also be given by description as
follows:

A={x] (B3 <x <11) A (xis an odd integer)}.

Definition 1.11 A set with a finite number of elements is called a finite set. The
number of elements of a finite set 4 is called the cardinality of a set 4 and is denoted
by |A].

A set with an infinite number of elements is called an infinite set.

Finite sets are always denumerable (or countable), i.e. their elements can be counted one by
one in the sequence 1,2,3,.... Infinite sets are either denumerable (e.g. the set of all even
positive integers or the set of all rational numbers) or not denumerable (e.g. the set of all real
numbers).
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Definition 1.12 A set B is called a subset of a set A (in symbols: B C A) if every
element of B is also an element of 4.

Two sets 4 and B are said to be equal (in symbols: A = B) if both inclusions 4 € B
and B C 4 hold.

A set A4 is called an empty set (in symbols: 4 = () if A contains no element.

If B is a subset of 4, one can alternatively say that set B is contained in set 4 or that set
A includes set B. In order to prove that two sets 4 and B are equal, we either prove both
inclusions 4 € B and B C 4, or alternatively we can prove that some element x is contained
in set A if and only if it is contained in set B. The latter can be done by a series of logical
equivalences.

Example 1.15 Let 4 = {1, 3, 5}. We calculate the number of subsets of set A.

We get the three one-element sets A1 = {1}, 42 = {3}, 43 = {5}, the three two-element sets
As = {1,3}, 45 = {1,5}, 4¢ = {3,5} and the two limiting cases ¥} and 4. Thus we have
found eight subsets of set 4.

Definition 1.13 The set of all subsets of a set 4 is called the power set of set 4 and
is denoted by P(4). The limiting cases ¢} and 4 itself belong to set P(4).

The number of elements of the power set of a finite set is given by the following theorem.
THEOREM 1.3  The cardinality of set P(4) is given by |P(4)| = 21!

For the set 4 given in Example 1.15, we have |4| = 3. According to Theorem 1.3, |[P(4)| =
23 = 8 is obtained what we have already found by a direct enumeration.

1.2.2 Operations on sets

In this section, we discuss some operations on sets.

Definition 1.14 The set of all elements which belong either only to a set 4 or only to
a set B or to both sets 4 and B is called the union of the two sets A and B (in symbols
A U B, read: 4 union B):

AUB={x|x€AVvxeB}.

Set 4 U B contains all elements that belong at least to one of the sets 4 and B.
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Definition 1.15 The set of all elements belonging to both sets 4 and B is called the
intersection of the two sets 4 and B (in symbols 4 N B, read: 4 intersection B):

ANB={x|xe€eAAxe€B}.

Two sets 4 and B are called disjoint if AN B = .

Definition 1.16 The set of all elements belonging to a set A but not to a set B is called
the difference set of A and B (in symbols 4 \ B, read: A minus B):

A\B={x|xe€AAx¢&Bj}.

If B C 4, then the set 4\ B is called the complement of B with respect to 4 (in
symbols B).

Definitions 1.14, 1.15 and 1.16 are illustrated by so-called Venn diagrams in Figure 1.1,
where sets are represented by areas in the plane. The union, intersection and difference of the
two sets as well as the complement of a set are given by the dashed areas. For the difference
set 4 \ B, we have the following property:

AUB

Figure 1.1 Venn diagrams for the union, intersection and difference of sets 4 and B.
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THEOREM 1.4 Let 4 and B be arbitrary sets. Then:

A\B=A\(ANB) = (4UB)\B.

In Theorem 1.4 sets A and B do not need to be finite sets. Theorem 1.4 can be illustrated by
the two Venn diagrams given in Figure 1.2.

ANB

A\ (AN B) (AUB)\ B

Figure 1.2 Tllustration of Theorem 1.4.

Example 1.16 Let
A={3,5,7} and B =1{2,3,4,7,8}.
Then

AUB=1{2,3,4,5,7,8), ANB={3,7},
A\B = {5}, B\4={2,4,8}.

Example 1.17 Let 4, B, C be arbitrary sets. We prove that
(AUB)\C = (4\C)U B\C).

As mentioned before, equality of two sets can be shown by proving that an element x belongs
to the first set if and only if it belongs to the second set. By a series of logical equivalences,
we obtain
xe(AUB\C<=xcAUBAx¢C

< x€edVvxeB)Arx¢gC

< x€edAdrxgC)vxeBArx¢gC)

< xecA\CvxeB\C

e xe(4\C)UB\C).
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Thus, we have proved that x € (4 UB) \ C ifand only ifx € (4\ C) U (B \ C). In the above
way, we have simultaneously shown that

AUB\NC S (A\CO)U(B\CO)
and
A\NC)UB\C) S 4UB)\C.

The first inclusion is obtained when starting from the left-hand side and considering the
implications ‘==, whereas the other inclusion is obtained when starting from the right-hand
side of the last row and considering the implications ‘<=".

Next, we present some rules for the set operations of intersection and union.

THEOREM 1.5 Let 4, B, C, D be arbitrary sets. Then:

(1) ANB=BNA, AUB=BUA
(commutative laws of intersection and union);

2) ANB)NC=4ANnBNO), (AUB)UC=4UBUCOC)
(associative laws of intersection and union);

(B) UNBUC=AUC)NBUCOC), [AUBNC=ANCHUBNC)
(distributive laws of intersection and union).

As a consequence, we do not need to use parentheses when considering the union or the
intersection of three sets due to part (2) of Theorem 1.5.

Example 1.18 We illustrate the first equality of part (3) of Theorem 1.5. Let
A=1{3,4,5}, B=1{3,5,6,7} and C =1{2,3}.

For the left-hand side, we obtain
ANB)UC ={3,51U{2,3} ={2,3,5},

and for the right-hand side, we obtain
AulC)NBUC) =1{2,3,4,5}n{2,3,5,6,7} = {2,3,5}.

In both cases we obtain the same set,i.e. ( ANB)UC =AUC)N(BUCQC).
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Remark There exist relationships between set operations and logical operations described
in Chapter 1.1.1. Let us consider the propositions 4 and B:

A:aed;
B: beB.
Then:

(1) conjunction 4 A B corresponds to intersection 4’ N B';

(2) disjunction 4 Vv B corresponds to union 4’ U B’;

(3) implication 4 = B corresponds to the subset relation (inclusion) 4’ C B’;
(4) equivalence A < B corresponds to set equality 4’ = B'.

The following theorem gives the cardinality of the union and the difference of two sets in the
case of finite sets.

THEOREM 1.6 Let 4 and B be two finite sets. Then:

(1) |[4UB| = |4|+ |B| — 14N BJ;
(2) |A\B| = |4| —|4ANB| = |4UB| —|B|.

Example 1.19 A car dealer has sold 350 cars during the quarter of a year. Among them,
130 cars have air conditioning, 255 cars have power steering and 110 cars have a navigation
system as extras. Furthermore, 75 cars have both power steering and a navigation system,
10 cars have all of these three extras, 10 cars have only a navigation system, and 20 cars have
none of these extras. Denote by 4 the set of cars with air conditioning, by P the set of cars
with power steering and by N the set of cars with navigation system.

Then

14] = 130, |P| = 255, IN| = 110,
INNP| =75 |ANNNP| =10, [N\ (AUP) = 10.

Moreover, let C be the set of sold cars. Then

IC| = 350 and [AUN UP)c| =20
ie.

|[AUPUN| = 330.

First, the intersection N N P can be written as the union of two disjoint sets as follows:
NOP= [(N nP) \A} U [A ﬁNﬂP].
Therefore,

INONP|=|(NNP)\ 4|+ |ANNNP|
75 = |(NNP)\ 4| + 10
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from which we obtain
[(NNP)\ 4| =65,

i.e. 65 cars have a navigation system and power steering but no air conditioning. Next, we
determine the number of cars having both navigation system and air conditioning but no
power steering, i.e. the cardinality of set (N N A4) \ P. The set N is the union of disjoint sets
of cars having only a navigation system, having a navigation system plus one of the other
extras and the cars having all extras. Therefore,

IN|=IN\ (AUP)| +|ANN)\P|+|(NNP)\ 4|+ |ANN NP
110 =10+ [(ANN) \ P| + 65 + 10

from which we obtain
[(4NN)\P| =25,

i.e. 25 cars have air conditioning and navigation system but no power steering. Next, we
determine the number of cars having only air conditioning as an extra, i.e. we determine the
cardinality of set 4 \ (V U P). Using

INUP|=|N|+I|P|—INNP|
=110 + 255 — 75 = 290,

we obtain now from Theorem 1.6

[A\(NUP)|=]4U N UP)| — INUP|
=330 — 290 = 40.

Now we can determine the number of cars having both air conditioning and power steering
but no navigation system, i.e. the cardinality of set (4 N P) \ N. Since set 4 can be written
as the union of disjoint sets in an analogous way to set N above, we obtain:

4l = [A\NNVUP)|+[ANN)\P|+[ANP)\N|+|ANNNP|
130 =40 4254 [(4NP) \ N[+ 10

from which we obtain
|[4ANP)\N|=55.

It remains to determine the number of cars having only power steering as an extra, i.e. the
cardinality of set P \ (4 UN). We get

IP|=|P\ (AUN)|+|[ANP)\N|+|(NNP)\ A+ |4NN NP
255 =|P\ (AUN)|+55+65+ 10

from which we obtain

IP\ (4UN)| = 125.
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The Venn diagram for the corresponding sets is given in Figure 1.3.

C (0] = 350)

IN\ (AU P)| = 10

[AUNUP)g| =20

Figure 1.3 Venn diagram for Example 1.19.

Example 1.20 Among 30 secretaries of several institutes of a German university, each
of them speaks at least one of the foreign languages English, French or Russian. There are
11 secretaries speaking only English as a foreign language, 6 secretaries speaking only French
and 2 secretaries speaking only Russian. Moreover, it is known that 7 of these secretaries
speak exactly two of the three languages and that 21 secretaries speak English.

Denote by E the set of secretaries speaking English, by F the set of secretaries speaking
French and by R the set of secretaries speaking Russian. Then

|[EUF UR| = 30.
Moreover, we know the numbers of secretaries speaking only one of these foreign languages:
[E\(FUR)| =11, |F\(EUR)|=6, |R\(EUF)| =2. (12)
In addition we know that |E| = 21. For the cardinality of the set L; of secretaries speaking
exactly one foreign language we have |L;| = 11 + 6 + 2 = 19. For the cardinality of set L,

of secretaries speaking exactly two foreign languages, we have to calculate the cardinality
of the union of the following sets:

Ly| = ‘[(EOF)\R]U[(EQR)\F]U[(FDR)\E]‘

= |ENP\R|+|ENR\F|+|FnR\E[ =7
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Of course, in the last row we can add the cardinality of the three sets since they are pairwise
disjoint. To find the number of secretaries speaking all three foreign languages, we have
to subtract from the total number the number of secretaries speaking exactly one foreign
language and the number of secretaries speaking exactly two foreign languages. We obtain

IENFNR|=|EUFUR|—|Li|— L] =30—19—7 = 4.

Next, we determine the number of secretaries speaking both French and Russian but not
English, i.e. we want to determine the cardinality of set (F¥ N R) \ E. Using |E| = 21, we get

(ENE\R+[(ENR\F|=|E|-[(ENFNR)U[E\ (FUR)]|
— |E| - [lEﬂFﬂRI-I—IE\(FUR)l]
=21 - (@4+11) =6.
Therefore,

I(FNR)\E| = |L2| - (I(EﬂF)\RH-I(EﬂR)\FI) =7-6=1

Thus, 1 secretary speaks French and Russian but not English. This solution is illustrated by
a Venn diagram in Figure 1.4. With the given information it is not possible to determine
the cardinalities of the sets (£ N F) \ R and (E N R) \ F. In order to be able to find these
cardinalities, one must know either the number of secretaries speaking French (i.e. |F|) or the
number of secretaries speaking Russian (i.e. |R|). Without this information, we only know
that the sum of the cardinalities of these two sets is equal to six (see Figure 1.4).

&=

Figure 1.4 Venn diagram for Example 1.20.

R
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Definition 1.17 The set of all ordered pairs (a, b) with a € 4 and b € B is called the
Cartesian product A X B:

AxB={(ab)|acANbecB).

Example 1.21 LetX ={(x | (1 <x <4)A(xisarealnumber)}and ¥ ={y | 2 <y <
3) A (y is a real number)}. Then the Cartesian product X x Y is given by

XxY={xy|(1<x<4) AQ<y=<3)A(x,y are real numbers)}.

The Cartesian product can be illustrated in a coordinate system as follows (see Figure 1.5).
The set of all ordered pairs (x,y) € X x Y are in one-to-one correspondence to the points
in the xy plane whose first coordinate is equal to x and whose second coordinate is equal to y.

)

—1+

Figure 1.5 Cartesian product X x Y in Example 1.21.

Example 1.22 We prove the following equality:
(A1 UAy) x B= (41 x B)U (42 x B).
By logical equivalences we obtain

(a,b) € (A1 UAy)) x B&<= acA U4, AbeB
< (ac€A vVacA))AbeB
<> (a€AiAbeB)v(acd, ANbeB)
<= (a,b) € A1 x BV (a,b) € A x B
<= (a,b) € (41 x B) U (4 x B).

We have shown that an ordered pair (a, b) is contained in set (4; U 42) x B if and only if it
is contained in set (4; x B) U (42 x B). Therefore the corresponding sets are equal.
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Example 1.23 Let 4 = {2,3} and B = {3,4, 5}. Then
A xB={(2,3),2,4),(2,5),3,3),3,4),3,5)}
and

Bx4=1{@3,2),3,3),4,2),4,3),(5,2),(5,3)}.

Example 1.23 shows that in general we have 4 x B # B x A. However, as the following
theorem shows, the cardinalities of both Cartesian products are equal provided that 4 and B
are finite sets.

THEOREM 1.7 Let 4, B be finite sets with |4| = n and |B| = m. Then:
|[AxB|=|BxA|l=|A|-|Bl =n-m.

Now we generalize the Cartesian product to the case of more than two sets.

Definition 1.18 Let A;,A4,,...,A4, be sets. The set
n
XA;i =A1 X Ay X --- X Ay
i=1
={(a1,az,...,ay) a1 €A1 Nag €Ay A --- ANa, € Ay}
is called the Cartesian product of the sets A1, 4, . ..,A4,.

n
An element (ay, ay, . ..,a,) € X A; is called ordered n-tuple.
i=1

n
Ford; =4y = ... = A4, = A, we also write X 4; = A".
i=1

Example 1.24 Let4 = {3,4}and B = {10, 12, 14, 16} be given. Then the Cartesian product
A% x B is defined as follows:

A* x B={(x,y,2) | x,y € A,z € B}.
In generalization of Theorem 1.7, we obtain |42 x B| = |4|*> - |B] = 2% -4 = 16.
Accordingly, if4 = {1,2}, B = {b1,b2}and C = {0, 2,4}, we get |[AxBx C| = |4]-|B|-|C| =

2-2-3 =12, 1i.e. the Cartesian product 4 x B x C contains 12 elements:

A xBxC={(1,b1,0),(1,b1,2),(1,b1,4), (1,2,0), (1, b2,2), (1, b,4),
(2,61,0),2,51,2),2,b1,4),(2,52,0),(2,52,2), (2,b2,4)}.
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1.3 COMBINATORICS

In this section, we summarize some basics on combinatorics. In particular, we investigate
two questions:

(1) How many possibilities exist of sequencing the elements of a set?
(2) How many possibilities exist of selecting a certain number of elements from a set?

Let us start with the determination of the number of possible sequences formed with a set of
elements. To this end, we first introduce the notion of a permutation.

Definition 1.19 Let M = {ay,as,...,a,}. Any sequence (ap,,ap,,.--,ap,) of all
elements of set M is called a permutation.

In order to determine the number of permutations, we introduce n! (read: n factorial) which
is defined as follows: n! =1-2....-(n— 1) -nforn > 1. For n = 0, we define 0! = 1.

THEOREM 1.8 Letaset M consisting ofn > 1 elements be given. Then there exist P(n) = n!
permutations.

The latter theorem can easily be proved by induction.

Example 1.25 We enumerate all permutations of the elements of set M = {1,2,3}. We
can form P(3) = 3! = 6 sequences of the elements from the set M : (1,2,3), (1,3,2),
(2,1,3),2,3,1),3,1,2),3,2,1).

Example 1.26 Assume that 7 jobs have to be processed on a single machine and that all
job sequences are feasible. Then there exist P(7) = 7! =1-2-....7 = 5,040 feasible job
sequences.

Example 1.27 Given 6 cities, how many possibilities exist of organizing a tour starting
from one city visiting each of the remaining cities exactly once and to return to the initial
city? Assume that 1 city is the starting point, all remaining 5 cities can be visited in arbitrary
order. Therefore, there are

PGS)=5!=1-2-...-5=120

possible tours. (Here it is assumed that it is a different tour when taking the opposite sequence
of the cities.)
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If there are some non-distinguishable elements the number of permutations of such elements
reduces in comparison with P(n). The following theorem gives the number of permutations
for the latter case.

THEOREM 1.9 Let n elements consisting of groups of n,ny, ..., n, non-distinguishable
(identical) elements with n = ny + ny + - - - + n, be given. Then there exist

n!
P(n; ni,ma,...onp) = ——————
ni!-ny! -

permutations.

Example 1.28 How many distinct numbers with nine digits exist which contain three times
digit 1, two times digit 2 and four times digit 3? Due to Theorem 1.9, there are

90  5.6:7-8-9
12141 6-2

P©®; 3,2,4) =3 = 1,260

distinct numbers with these properties.

Example 1.29 In a school, a teacher wishes to put 13 textbooks of three types
(mathematics, physics, and chemistry textbooks) on a shelf. How many possibilities exist
of arranging the 13 books on a shelf when there are 4 copies of a mathematics textbook,
6 copies of a physics textbook and 3 copies of a chemistry textbook? The problem is to find
the number of possible permutations with non-distinguishable (copies of the same textbook)
elements.

For the problem under consideration, we have n = 13,n; = 4,n, = 6 and n3 = 3. Thus,
due to Theorem 1.9, there are

13 7-8.9-10-11-12-13
1.6!-31 41.3!

P(13; 4,6,3) = = 60,060

possibilities of arranging the books on the shelf.

Next, we investigate the question of how many possibilities exist of selecting a certain
number of elements from some basic set when the order in which the elements are chosen
is important. We distinguish the cases where a repeated selection of elements is allowed and
forbidden, respectively. First, we introduce binomial coefficients and present some properties
for them.
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Definition 1.20 For 0 < k£ < n with k, n being integer, the term

<n) . n!
k) k'-(m—k)!

is called a binomial coefficient (read: from n choose k). For k > n, we define
()
k

For instance, we get

= =210.
4

10\ 10! 1:2:3-4.5.6-7-8-9-10  7-8-9-10
T 4.6 (1-2-3-4)-(1-2-3-4-5-6) 1-2-3-4

In order to determine the binomial coefficient (]'é) withn > k, we have to compute the quotient
of the product of the & largest integers no greater thann,ie. n—k+1)-(n—k+2)-...-n,
divided by the product of the first £ integers (i.e. 1 -2 - ... - k). The following theorem gives
basic properties of binomial coefficients.

THEOREM 1.10 Let 0 < £ < n with k£ and » being integers. Then:
n n n n
1 = =1 = :
o @)=0)=r (=Gl
n n n+1
2 = .
@ (1) (:20)= (1)

The first property in Theorem 1.10 describes a symmetry property of the binomial coefficients

and the second can be interpreted as an addition theorem for binomial coefficients. Applying
the binomial coefficient, we get the following theorem:

THEOREM 1.11 Let a, b be real numbers and » be a natural number. Then:

@+b) =a"+ (" o+ (") 22+ ...+ " a4 b
1 2 n—1
=i<n>an7ibl
i )
i=0

Remark Usinga = b = 1in Theorem 1.11, we get the following special case:
"\ (n n n n
= . =2"
2 (1) =)+ () ()
k=0

The above comment confirms the previous result that the power set of a set having n
elements has cardinality 2”. The coefficients in Theorem 1.11 can be determined by means
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of Pascal’s triangle:

(a+b)° 1

(a+b)! 1 1
(a+b)? 1 2 1
(a+b)? 1 3 3001

(a + b)* 1 4 6 4 1

) () ()0 0
) @) - e

In Pascal’s triangle, each inner number is obtained by adding the two numbers in the row
above which are standing immediately to the left and to the right of the number considered
(see equality (2) in Theorem 1.10). For instance, number 6 in the middle of the row for
(a + b)* is obtained by adding number 3 and number 3 again in the row of (a + b)> (see
the numbers in bold face in rows four and five of Pascal’s triangle above). Moreover, the
numbers in each row are symmetric (symmetry property). In the case of » = 2, we obtain
from Theorem 1.11 and Pascal’s triangle the well-known binomial formula

(a+ b)? = a® +2ab + b

Example 1.30 We determine the fifth power of 2x + y. Applying Pascal’s triangle, we
obtain

@2x+3)° = 207 + 520% + 102%)%)? + 1020)%° + 520" +5°
= 32x° 4 80x*y + 80x3y? + 40x%y> + 10xy* + 3.

In order to get a formula for (a — b)", we have to replace b by —b in Theorem 1.11, which
leads to a minus sign in each second term (i.e. in each term with an odd power of 5). We
illustrate the computation by the following example.

Example 1.31 We determine the third power of x — 2y. From Theorem 1.11, we obtain

3
(x — 2y)3 = [x + (*2}’)}
=x° =32 2p) +3x(2p)* — 29)°
=x> — 6x%y + 1207 — 8y°.

Next, we consider selections of certain elements from a set starting with ordered selections,
where the order in which the elements are chosen from the set is important.
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THEOREM 1.12 The number of possible selections of £ elements from » elements with
consideration of the sequence (i.e. the order of the elements), each of them denoted as a
variation, is equal to

n if repeated selection is forbidden (i.e. every element may occur
(n—h)! only once in each selection);
(2) V(k,n) = n* if repeated selection is allowed (i.e. an element may occur arbitrarily
often in a selection).

D Vik,n) =

Example 1.32 A travelling salesman who should visit 15 cities exactly once may visit only
4 cities on one day. How many possibilities exist of forming a 4-city subtour (i.e. the order
in which the cities are visited is important).

This is a problem of determining the number of variations when repeated selection is
forbidden. From Theorem 1.12, we obtain

15! 15!
V(@4,15) = ——— = — = 12-13 .14 - 15 = 32,760
(15—4)! 11

different 4-city subtours.

Example 1.33 A system of switches consists of 9 elements each of which can be in position
‘on’ or ‘off’. We determine the number of distinct constellations of the system and obtain

79,2) =2° =512.

Next, we consider the special case when the order in which the elements are chosen is
unimportant, i.e. we consider selections of unordered elements.

THEOREM 1.13 The number of possible selections of £ elements from 7 elements with-
out consideration of the sequence (i.e. the order of elements), each of them denoted as a
combination, is equal to

(1) C(k,n) = (Z) if repeated selection of the same element is forbidden;

n+k—1

) C(k,n) =< i

) if repeated selection of the same element is allowed.

Example 1.34 In one of the German lottery games, 6 of 49 numbers are drawn in arbitrary
order. There exist

= 13,983,816

4 49! 44.45.....4
C(6,49) :( 9) » ?

6) 6431 1-2-...-6
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possibilities of drawing 6 numbers if repeated selection is forbidden. If we consider this game
with repeated selection (i.e. when a number that has been selected must be put back and can
be drawn again), then there are

= 25,827,165

— 54 54! 49.50....-54
C(6,49):( ) =

6) 648 1.2....-6

possibilities of selecting 6 (not necessarily different) numbers.

Example 1.35 At aFaculty of Economics, 16 professors, 22 students and 7 members of the
technical stafftake part in an election. A commission is to be elected that includes 8 professors,
4 students and 2 members of the technical staff. How many ways exist of constituting the

commission?
There are
16 16! 9.10-11-12-13-14-15-16
C(16,8) = = = = 12,870
8 8!. 8! 1.2-3.4.5.6-7-8

ways of electing 8 out of 16 professors,

22 22! 19.20-21-22
C(22,4) = = = =7,315
4) 7 a1 1.2.3.4

ways of electing 4 out of 22 students and

! .

ways of electing 2 out of 7 members of the technical staff. Since any selection of the professors
can be combined with any selection of the students and the technical staff, there are

C(18,8) - C(22,4) - C(7,2) = 12,870 - 7,315 - 21 = 1,977,025, 050

ways of constituting such a commission.

Example 1.36 From a delivery containing 28 spare parts, 5 of which are faulty, a sample
of 8 parts is taken. How many samples that contain at least one faulty part are possible? From
Theorem 1.13, the number of samples with at least one faulty part is given by

28 23
C(28,8) — C(23,8) = (8) - (8) = 3,108,105 — 490,314 = 2,617,791.

Here we have subtracted the number of samples without any faulty spare part from the total
number of possible samples.
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1.4 REAL NUMBERS AND COMPLEX NUMBERS

This section deals with number systems. In the first subsection, we summarize the most
important facts and rules concerning numbers. Then we extend the set of real numbers by
introducing so-called complex numbers.

1.4.1 Real numbers

The infinite set N={1,2,3,...} is called the set of natural numbers. If we union this set with
number zero, we obtain the set Ng = N U {0}. The natural numbers can be represented on a
straight line known as a number line (see Figure 1.6).

0 1 2 3 4 5 6 7

Figure 1.6 Natural numbers on the number line.

We can perform the operations of addition and multiplication within the set N of natural
numbers, i.e. for a,b € N, we get that a + b belongs to set N and a - b belongs to set N.
In other words, the sum and product of any two natural numbers are again a natural number.
However, the difference and quotient of two natural numbers are not necessarily a natural
number.

The first extension which we perform is to add the set of negative integers {—1, -2, -3, ...}
to set No which yields the set Z of integers, i.e.

Z=NouU{-1,-2,-3,...}.

This allows us to perform the three operations of addition, subtraction and multiplication
within the set of integers, i.e. for a, b € Z, we get that a + b belongs to set Z, a — b belongs
to set Z and a - b belongs to set Z.

To be able to perform the division of two integers, we introduce the set of all fractions p/q
with p € Z,q € N. The union of the integers and the fractions is denoted as set QQ of rational
numbers, i.e.

Q:Zu{’i|pez,qu}.
q

Now all the four basic operations of addition, subtraction, multiplication and division (except
by zero) can be performed within the set Q of rational numbers.

Consider next the equation x> = 2. This equation cannot be solved within the set of rational
numbers, i.e. there exists no rational number p/q such that (p/q)?> = 2. This leads to the
extension of the set Q of rational numbers by the irrational numbers. These are numbers
which cannot be written as the quotient of two integers. There are infinitely many irrational
numbers, e.g.

V2~ 141421, V3~ 173205, e~271828 and 7 ~ 3.14159.
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Irrational numbers are characterized by decimal expansions that never end and by the fact
that their digits have no repeating pattern, i.e. no irrational number can be presented as a
periodic decimal number.

The union of the set Q of rational numbers and the set of all irrational numbers is denoted as
set R of real numbers. We get the following property: there is a one-to-one correspondence
between real numbers and points on the number line, i.e. any real number corresponds to a
point on the number line and vice versa.

The stepwise extension of the set N of natural numbers to the set R of real numbers is
illustrated in Figure 1.7. Next, we summarize some basic rules for working with the set of
real numbers.

Properties of real numbers (a,b,c € R)

(1) a+b=b+a (commutative law of addition);
(2) there exists a number, 0 € R, such that for all a

a+0=0+a=a;
(3) for all a, b there exists a number, x € R, with
a+x=x+a=b;

@ a+b+c)=(a+b)+c (associative law of addition);
5) a-b=b-a (commutative law of multiplication);
(6) there exists a number, 1 € R, such that for all a
a-l=1-a=aqa;
(7) for all a, b with a # 0 there exists a real number, x € R, such that

a-x=x-a=>b,

®) (@-b)-c=a-(b-c) (associative law of multiplication);
©® (@+b)-c=a-c+b-c (distributive law).

For special subsets of real numbers, we also use the interval notation. In particular, we use

[a,b] ={xeR|a=<x=<b};
(a,b) ={xeR|a<x<b}
[a,b) ={x e R|a<x < b};
(a,b]={xeR|a<x<b}

The interval [a,b] is called a closed interval whereas (a,b) is called an open interval.
Accordingly, the intervals (a, b] and [a, b) are called half-open (left-open and right-open,
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Real numbers R

Rational numbers Q Irrational numbers

Integers Z Fractions

Negative integers
Natural numbers N
and number 0

Figure 1.7 Real numbers and subsets.

respectively) intervals. The set R of real numbers can also be described by the interval
(—00, 00). The set of all non-negative real numbers is denoted as Ry, i.e. Ry = [0, 00).

Example 1.37 Often a sum or difference 7' of different mathematical terms is given and
we wish to find a product representation if possible. Let for instance the equality

T = 2ax — 12ay + 6bx — 36by

be given. Factoring out 2a in the first two terms and 65 in the third and fourth terms, we get
T=2a-(x—06y)+6b-(x—6y).

Now, factoring out x — 6y, we get

T=(x—6y) (2a+ 6b)
=2-(x—6y)-(a+3b).

We now summarize some well-known rules for working with fractions.
Rules for fractions (a,c € R, b,d € R\ {0})
¢ ad+tbc

M) 245 =
b~ d~  bd ’



(c) ketabton.com: The Digital Library

Introduction 35

a ¢ ac
2) -~ =
()bd bd’
@ L.¢=9 xo
b'd be TV

For a fraction, we can also write a/b (in particular we use the latter form within the text) or
a : b. According to rule (1), fractions have to have the same denominator before adding or
subtracting them. The product of two fractions is obtained by multiplying both numerators
and both denominators (rule (2)). The quotient of two fractions is obtained by multiplying the
fraction in the numerator by the reciprocal value of the fraction in the denominator (rule (3)).
As an application of these rules, we consider the following examples.

Example 1.38 We compute

17 5 7

TR

Applying rule (2), we have to find a common denominator for all fractions. Instead of taking
the product 45-10- 15 = 6, 750, we can use the smallest common multiple of 45, 10 and 15,
which is equal to 90, and as a result we obtain

_17:2-5-947-6 34—-45+42 31
- 90 - 90 T 90°

V4

Example 1.39 Let

a—x a+x _

a+x a—x

provided that x # a and x # —a. The latter conditions are sufficient to guarantee that no
denominator in the above equation is equal to zero. Transforming the left-hand side, we get

a(a+x) —x(a—x)

(a—x)(a+x) _a2+ax—ax+x2_1
ala—x)+x(@a+x) a2 —ax+ax+x>
(a+x)(a—x)

from which we obtain x = 1 as the only solution (if a # 1 and a # —1).

Example 1.40 Assume that the fuel consumption of a car is 6.5 1 per 100 km. How many
kilometres can the car go if the tank of this car is filled up with 41 1?
One can solve this problem after establishing a proportion:

6.5:100 =41 :x,
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i.e. if 6.5 1 are consumed per 100 km, 41 1 are consumed per x km. After cross-multiplying,
we get

6.5x = 41-100
from which we obtain
x ~ 630.77 km,

i.e. the car can go (approximately) 630 km with 41 1.

In the following, we survey some rules for working with inequalities.
Rules for inequalities (a, b,c,d € R)

(1) Ifa <b,thena+c<b+canda—c <b—c;
(2) ifa<bandb < c,thena < c;
(3) ifa < bandc > 0, then

a b
ac < be, - <-—;
c ¢

(4) ifa < bandc < 0, then
b

ac > bc, a > —;

c ¢

(5) ifa<bandc <d,thena+c <b+d;
(6) if 0 < a < b, then

Q=
S

(7) ifa® < band b > 0, then
a>-vb A a<+b (or correspondingly, — v/b < a < /b).

Rule (1) indicates that we can add or subtract any number to an existing inequality without
changing the inequality sign. Rule (2) gives a transitivity property (i.e. one can ‘connect’
several inequalities with the same inequality sign). Rule (3) says that the inequality sign does
not change when multiplying (or dividing) both sides of an inequality by a positive number,
but the inequality sign changes when multiplying (or dividing) both sides by a negative
number (see rule (4)). In particular, if ¢ = —1, then it follows from a < b that —a > —b.
Rule (5) expresses that one can add inequalities with the same inequality sign. However,
we cannot state a corresponding rule for the subtraction of two inequalities with the same
inequality sign. Rule (6) states that, if we consider the reciprocal values of two positive
numbers, the inequality sign is changed. Finally, rule (7) is helpful for solving quadratic
inequalities.
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Example 1.41 We determine all real numbers satisfying the inequality
2x—4 <5x+1.

Putting all terms depending on x on the left-hand side and the remaining terms on the right-
hand side, we get

2x—5%x<1+4
which corresponds to
—3x < 5.

After dividing both sides by —3 (i.e. the inequality sign changes), we obtain

x>

[SSENV]

Thus, the set of all real numbers from the interval [5/3, co) satisfies the given inequality.

Definition 1.21 Leta € R. Then

lal a fora>0
al =
—a fora<0

is called the absolute value of a.

From Definition 1.21 it follows that the absolute value || is always a non-negative number.
(Note that, if @ < 0, then —a > 0.) The absolute value of a real number represents the
distance of this number from point zero on the number line. For instance, [3| =3, |—5| =5
and |0| = 0. The following theorem gives some properties of absolute values.

THEOREM 1.14 Leta,b € R and ¢ € R;. Then:

(1) |- al =al;

2) la| <c<e= —c<ac<c

@) lal=c <= (a<—c) V (a>c);
@ |lal = 1b1] < la+ ] < la] + 1b;
(5) la-bl =al - |8l

Rule (2) expresses that, for instance, we can rewrite inequality

x| <3
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in an equivalent form as follows:
-3 <x<3.

Similarly, inequality |y| > 6 can be written in an equivalent form as follows:
y<—6 or y > 6.

The inequalities of part (4) are known as triangle inequalities, referring to the geometric pro-
perties of a triangle (see also Chapter 6): the length of the third side of a triangle (i.e. |a + b|)
is always no greater than the sum of the lengths of the other two sides (i.e. |a| + |b|) and is
always no smaller than the absolute value of the difference of the lengths of the other two
sides.

Often, inequalities contain absolute values of certain mathematical terms, and the problem
is to find the solution set satisfying this inequality. In such situations, usually certain cases
have to be considered. Let us consider the following examples.

Example 1.42 Let the inequality
x—3]<5

be given. In order to find the set of all solutions satisfying the above inequality, we have to
distinguish the following two cases.

Case 1 x —3 > 0 This means that x > 3. Then |x — 3| = x — 3, and we obtain from
x — 3 < 5 the set of solutions L in case 1:

Li=xeR|x=3)Ax=8}=][38]

Case2 x —3 < 0 This means that x < 3. Then |x — 3| = —(x — 3) = —x + 3, and we
obtain from —x + 3 < 5 the set of solutions L, in case 2:

Li=xeR|(x<3)AG>-2)=[-23).

In order to get the set L of all solutions satisfying the given inequality, we have to find the
union of both sets L and L:

L=LiUL ={xeR|xe[-23)U[3,8]} = [-2,8].

Example 1.43 Let inequality

[2x — 2|
x+3

<1 (1.3)

be given. We determine the set of all real numbers satisfying this inequality. In order to solve
it for x, we have to remove the absolute values and the fractions. However, the transformation
depends on whether the term 2x — 2 is positive or negative and whether the denominator is
positive or negative. Therefore, we determine the roots of both terms. From 2x — 2 = 0,
it follows that x = 1 and from x + 3 = 0, it follows that x = —3. Therefore, we have to
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consider the following three cases (where each case leads to a different transformation of
inequality (1.3), note also that x = —3 has to be excluded while x = 1 is allowed): case 1:
x < —3;case2: —3 <x < 1l;case3:x > 1.

Case 1 Ifx < —3, inequality (1.3) turns into

2—2x
x+3

<1

since |2x — 2| = 2 — 2x due to inequality 2x — 2 < 0 and Definition 1.21. Multiplying both
sides by the negative number x + 3, we obtain

2—-2x>x+3

and therefore, 3x < —1, which corresponds to inequality x < —1/3. Hence, in case 1 we
have the following set L; of solutions:

L1:{xeRl(x<—3)A<x<—é)}:{xeR|x<—3}:(—oo,—3).

Case 2 If —3 < x < 1, inequality (1.3) reads as in case 1:

2—2x

< 1.
x+3

However, since x + 3 > 0 in case 2, multiplying both sides by the positive number x + 3
gives

2—-2x<x+3

which yields 3x > —1, and thus after dividing by 3 we get
1

X > ——.

3

Thus, in case 2 we get the following set L, of solutions:

Lzz{xeRl(—3<x<1)/\(x>—%)}=(—%,1>.

Case 3 1Ifx > 1, then |2x — 2| = 2x — 2 and we have

2x —2
x+3

< 1.

Multiplying both sides by the positive number x + 3, we get
2x—2<x+4+3
and therefore x < 5. The set L3 of solutions is as follows:

Li=xeR|x>1DAKX<S5}=IL5).
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The complete set L of solutions of inequality (1.3) is obtained as the union of the three sets
Li,Ly and L3, ie.

1
L=L1ULUL3 = {XER\XE(—OO,—3)U(—§,5)}.

Absolute values are, for instance, helpful when solving quadratic inequalities.

Example 1.44 We determine all real numbers satisfying the inequality
—3x? 4+ 18x — 15> 0.
First, we divide both sides by the negative number —3 which changes the sign in the inequality:
x*—6x+5<0. (1.4)
One way to solve this inequality is to consider the corresponding equation
X —6x+5=0
and determine its roots:
x1=3++/9-5=5 and x=3-4/9-5=1

Now we check for an arbitrary ‘trial’ value (e.g. number 0) whether the given inequality is
satisfied. We obtain

02—6-04+5%£0,

and therefore all x € (—o0, 1) do not satisfy the given inequality (for all these values, we
have x> — 6x + 5 > 0). Since we have obtained two distinct roots, the sign of the term
X2—6x+5 changes ‘at’ the roots x1 and x;, and therefore the set of solutions L is given by
L = [1,5]. (Note that for x > 5, the sign changes again so that the given inequality is not
satisfied for these values.)

An alternative way to solve inequality (1.4) is as follows. We rewrite the left-hand side using
a complete square in the form x> — 2a + a®> = (x — a)? which gives

P —bx+9-4=x-37-4<0,
or equivalently,
(x—3)% <4.
If we now take the root on both sides, we get the two inequalities

x—3>-2 and x—3<2.



(c) ketabton.com: The Digital Library

Introduction 41

Using the definition of the absolute value, we can rewrite the latter condition as
x—3<2

which corresponds to the set of solutions L = [1, 5].

Leta” = bwitha,b € Ry and n € N, i.e. b is the nth power of number a. Then a = b is
referred to as the nth root of number b. In the following, we review the most important rules
for working with powers and roots.

Rules for powers and roots
Powers (a,b,m,n € R):

(1) am . at = am+n;
(2) a"-b" = (ab)";

3 L =g (a #0);
a
a" a\n
@ =(3) (b # 0);
5) a7 = (a # 0y
a

(6) (a")" =a"" = (a"™)";

Roots (a,b e Ry,m € Z,n € N):
(1) Va-b=a-Ub;
a_lfa
2) M- = b # 0);
) \fb 7 (b # 0);
(3) Ja™ = a"/" (a #0orm/n > 0).

From the latter equality, we get for m = 1 the special case

%:al/n'

Example 1.45 We consider the root equation
VE+Vx+3=+x+38

and determine all solutions x. Taking the square on both sides, we obtain

(Wx+vVx+3)2=x+38
x+2-Vx Vx+3+(x+3)=x+8,
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which can be written as
2-Jx - Vx+3=—x+5.

Taking now again the square on both sides, we obtain
4x(x +3) =x* — 10x + 25

which is equivalent to the quadratic equation
3x% +22x—25=10

or, equivalently,

+22 25
X+ —x—-—==
3 3

A quadratic equation x> + px + g = 0 has the two real solutions

xlz——fﬂ:,l

provided that (p/2)> — g > 0. Hereafter, the sign & means + or —. Hence, the two solutions
of the equation obtained are

- =1
V *3
7/ 25 1“_ 2
3 37 37

In the case of root equations, we have to verify that the values obtained are indeed a solution

and

of the original equation. For x; = 1, the root equation is satisfied. However, forx; = —25/3,
/X2 is not defined since x; is negative. Therefore, x; = 1 is the only real solution of the

given root equation.

Example 1.46 If the denominator of a fraction contains roots, it is often desirable to trans-
form the fraction such that the denominator becomes rational. We illustrate this process of
rationalizing the denominator. Let

a

=x+ﬁ'

In this case, we multiply both the numerator and the denominator by x — ,/y, and we obtain

ax — /3) ak—J5) _ ax— )

TG ME— ) (P Ry
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Example 1.47 We compute

x = y a- \5/; (a>0)
and obtain

x=a a5 = Y15 = J1/45 _ 5720 _ Y7

Example 1.48 Let the exponential equation
2 —eF—1=0

be given. In order to determine all real solutions x of this equation, we can transform it into
a quadratic equation by using the substitution y = e™*. Taking into account that

we get the equation
232 —y—1=0

which can be rewritten as

, 11

——y—-=0.
Y mr 73

The latter equation has the two solutions

R SRR NS S I S B
N=3"Vie 273 "Vie 472"~

and

1 1 + 1 1 9 1 3 1
T4 V16 27 Ve 4 4 72
Substituting variables back, this gives

e =1 and e =——.

2
From the first equality we get the solution x; = —In 1 = 0 while the second equality does
not have a solution since e 2 is always greater than zero. Therefore, x; = 0 is the only
solution of the given exponential equation.
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Example 1.49 We consider the equation
o+ 9(a2 +x2) = —a’x?

and determine for which values of parameter a real solutions exist. We obtain
4902 + 9% + a?xr =x* + 9+ aP)x? +94% = 0.

Substituting z = x2

, we get a quadratic equation in the variable z:
22+ O +a*)z+9* =0.

This equation has the two solutions

9+a2i (9 + a?)? _
2 4

9a2

212 = —

9+a2i\/81+18a2+a4—36a2
2 4

:_9+a2i (9 — a2)?
2 Vo4

9 2 _ 2
_ +ai9 a.
2 2

From the last equation we obtain

z1=-9 and Zy) = —d2.

For the first solution in z, we get after back substitution x?
of this equation. Considering the second solution and substituting back, we get x> = —a
which does not have a real solution for a % 0. Thus, only for a = 0 do we have x2 = 0, i.e.
in this case we get the solutions x; = x = 0.

= —9, i.e. there is no real solution
2

Definition 1.22 Leta* = b witha,b > 0 and a # 1. Then
x =log, b

is defined as the logarithm of (number) b to the base a.

Thus, the logarithm of b to the base a is the power to which one must raise a to yield b. As a
consequence from Definition 1.22, we have

alogab —b.
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Rules for logarithms (a > 0, a# 1, x >0, y > 0,n € R)

(1) log,1=0; log,a=1;
(2) lOga(x y) = 10gax + IOgay;

3) log, <i> =log,x — log,y;
y

4) log, (x") =n-log,x.

It is worth noting that there is no rule for the logarithm of the sum or difference of two
numbers x and y. When using a pocket calculator, it is often only possible to use one of the
bases e or 10. In the case of bases other than e and 10, it is best to transform the base of
logarithms to one of the above bases. Therefore, we now derive a formula which presents a
relationship between logarithms to different bases. Let

x =log,t and y =log,t.
Solving both equations for ¢, we get
ad=t="V.

Taking now the logarithm to base a and applying the rules for logarithms presented above,
we obtain

log, (a¥) = x -log,a =x = log, (»") =y - log, b.
Therefore,

log, t
10gab=)£= %8’
y  logyt

Considering now the left-hand side and the right-hand side from the above equality, we get
the change-of-base formula

log, t
log,t = —*.
8 log, b

As an example, if we want to determine logs 11, we can apply the above formula with base
a = e and obtain

log, 11 2.39789527...
log, 5 1.60943791 ...

logs 11 = ~ 1.4899,

where both logarithms on the right-hand side can be determined using a pocket calculator.
The dots in the numerator and denominator of the last fraction indicate that we dropped
the remaining decimal places, and the final result on the right-hand side is rounded to four
decimal places. The same result is obtained when taking e.g. base 10, i.e.

logjo 11 _ 1.04139268...
log,oS  0.69897000...

logs 11 = ~ 1.4899.
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For the special cases of base e and 10, respectively, we use in the following the abbreviations
log, b =Inb and log;q b =1gb.

To illustrate the application of the above logarithm rules, we consider some examples.

Example 1.50 Let the logarithmic equation
m&P+m&@+n]=2
be given, and we solve it for x. Applying Definition 1.22 repeatedly, we get

3+log,(x+1)=22=4
logyx+1) =1
x+1=4'=4

x=3

i.e. x = 3 is the only solution of the given logarithmic equation.

Example 1.51 Let

ax
log, (;) -logy(y - a¥)

z= ; a>1, b>1, y>0
log a

be given. We simplify this logarithmic term as much as possible and obtain

[loga(a") — logay] . [logby + logb(a")]
log, a

z =

lo xlogy a
= (x —log,) (1 =% i)
og,a log, a
lo
= (x —log,y) - (M +x)
log, a

= (x —log,y) - (log,y +x)

=x*- (logay)z.

Example 1.52 We simplify the term

[ 1
z=10gx3%
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by applying rules for logarithms as follows:

1 o 1
z=—. _
3 gx x2y

- %(10&5 1 —2log, x — logxy)

=§-(0—2-1—logxy>

= —% . (2+logxy).

Example 1.53 We consider the exponential equation

S

and solve it for x. Such an equation is called an exponential equation since the variable x
occurs only in the exponent. Taking the logarithm to base 10 (alternatively we can also choose
any other positive base) on both sides, we obtain

4 5
(x—2)lg (g) = (2x—3)lg (§>

which can be transformed further as follows:

xlg <%> —2xlg (;) =2lg (g) —3lg (;)
B 21g (%) 312 (3)
o g (4)-21g(3)

x A 1.58963.

1.4.2 Complex numbers

The set R of real numbers is still not sufficient for all purposes. For instance, consider the
equation x2 + 1 = 0 or the equation x> = —9 obtained in Example 1.49. These equations do
not have a real solution, and so we wish to extend the set of real numbers such that all roots
can be determined within an extended set of numbers.

Let i be the symbol (‘number’) such that i = —1 and we call i the imaginary unit. Then we
can define the set of complex numbers as follows.

Definition 1.23 The complex number system C is the set of all symbols z = a + bi,
where a and b are real numbers. The number a = N (z) is called the real part and
b = J(z) is called the imaginary part of the complex number z.
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The representation z = a + bi is called the Cartesian form of the complex number z. The
number bi is also known as an imaginary number. The set of complex numbers contains the
set of all real numbers: if b = J(z) is equal to zero, we get the real number a + 0i = a.
The number z = a — bi is the complex conjugate of number z = a + bi. We are now able to
solve any quadratic equation within the set of complex numbers.

Example 1.54 Let x2 = —9. Because x> = 9 - i2 we obtain x; = 3i and x; = —3i.

Example 1.55 We consider the quadratic equation
X +4x+13=0
and obtain
X =-24+VE—13=-2++/—9=-2+3i
as well as

Xo=—2-VA_I3=-2-J"0=—2_3i

In the latter representations, we assumed that i = «/—1 by definition.

Definition 1.24 Let zy = a + bi and zy = ¢ + di. The respective operations of
addition, subtraction, multiplication and division are defined as follows:
z1+2z3 = (a+bi) + (c+di) = (a+c) + (b+ d)i,
z1—2zp = (a+bi) — (c+di) = (a—c) + (b —d)i,
z1 - z3 = (a+ bi) - (¢ + di) = (ac — bd) + (ad + bc)i,
71 _ (a+bi)-(c—di) (ac+ bd) + (bc — ad)i
zy  (c+di) - (c—di) 2+ d? ’

When computing the quotient z;/z>, the denominator is transformed into a real number
by multiplying both the numerator and the denominator by z; = ¢ — di. From the above
definitions, we see that the sum, difference, product and quotient of two complex numbers
again yield a complex number.

For the power of a complex number we obtain

"= (a+bi)" = (a+bi) - (a+bi)-... (a+ bi)

n factors

For the above computations we can apply Theorem 1.11. However, for large numbers z a
more convenient calculation of a power is discussed later.
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Example 1.56 Letz; = —2 + 2i and z; = 3 + i. Then:

21 +z22=(2+3)+Q2+Di=1+3i,

21—z =(=2-3)+Q—-Di=—-5+1i,

2122 =(—6—-2)+ (=2 +6)i = -8 + 4,

—2+2 _ (=2+2i) B-i) —4+8i 2+4

z1 s
— ——=+ =i
5 5

zn  3+i  G4+dH-G-i 10

We can graph complex numbers in the plane by the so-called Argand diagram (see Figure 1.8).
The x axis represents the real part of the complex number z, and the y axis represents the
imaginary number (i.e. the imaginary part together with the imaginary unit). Then each
point in the plane represents a complex number and vice versa. The points on the real axis
correspond to the real numbers.

From Figure 1.8, we can derive another representation of a complex number z. Instead of
giving the real part a and the imaginary part b, we can characterize a complex number by
means of the angle ¢ between the real axis and the line connecting the origin and point
z = a + bi as well as the length of this line. We get

a=rcosp and b =rsing.

4 Imaginary axis

e z=a+bi

a  Real axis

o1

z=a—bi

i + - — = — = — —

Figure 1.8 Argand diagram.

Therefore, we have
z=a+bi=r-(cosg +ising).

The right-hand side representation of number z is called the polar (or trigonometric) form
of the complex number z. The number

r=|z| = Va? + b?
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is denoted as the modulus and ¢ is denoted as the argument of the complex number z. The
argument ¢ is given as an angle either in degrees or in radians.

Relationships between polar and Cartesian coordinates

Letz =a+ bi =r- (cos¢ + isin ). Then

(1) a=rcosg, b=r sing;

b
() 7= lz| = Va2 + b2, tang = —
a

b

a
(or equivalently cos¢ = — and sing = 7>.
r r

Part (1) of the above relationship can be used for transforming a complex number given in the
polar form into the Cartesian form whereas part (2) can be used for transforming a complex
number from the Cartesian form into the polar form. We give two examples for transforming
a complex number from one form into the other.

Example 1.57 Letz = —1 + +/3i be given in Cartesian form. To get the number z in polar
form, we determine the modulus » and the argument ¢ of the complex number z. We obtain

r=lzl=y (D + (3?2 =v4=2
and

1 b 1
cosgo:g:—f; sing = — V3
r 2

ro2
. sing b
or equivalently, tan ¢ = =~ =-3).
cosp a
For 0° < ¢ < 360°, the equation cos¢ = —1/2 has the two solutions ¢; = 120° and

@2 = 240°. Analogously, equation sing = +/3/2 has the two solutions @3 = 60° and
¢4 = 120°. Since both equations must be satisfied, we have found ¢ = 120°. This result can
also be obtained without considering the sine function. The second solution ¢, = 240° of
the cosine equation cannot be the argument of number z, sincea = —1 < 0andb = /3 > 0
(i.e. number z is in the second orthant, which means that 90° < ¢ < 180°). If we operate
with the tangent function, we obtain

1 1
tang = — = —/3,
V3 o3
where two solutions exist: ¢; = 120° and ¢ = 300°. However, since we must have

@ € [90°,180°] because a < 0 and b > 0, we would also obtain ¢ = 120° in this case. We
have found number z in polar form:

z =2-(cos 120° + i sin 120°).
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Example 1.58 Letz =2 - (cos225° + isin 225°). Since
1 . 1
c0s225° = _Eﬁ and sin 225° = —5\6,

we get the number z in Cartesian form as follows:

Z=2.(_f—if>=—ﬁ—\/§i,

ie.a=b=—2.

The above transformations require some knowledge about trigonometric functions. Some
basic properties of such functions are summarized in Chapter 3.3 when dealing in detail with
functions of one real variable.

We summarize some rules for operations with complex numbers in polar form.
Rules for complex numbers in polar form

Letzy =r; - (cos1 +ising) and zp = rp - (cos 2 + isin¢y). Then

(1) z1-z2=n '7’2'[COS(<P1+§02)+i5in(¢1+§02)];
z r .

@) *1=*1'[COS(<P1—§02)+i81n(¢1—§02)]~
z

We multiply two complex numbers in polar form by multiplying their moduli and adding
their arguments. Similarly, we divide two complex numbers in polar form by dividing their
moduli and subtracting their arguments. For performing the addition or subtraction of two
complex numbers, the Cartesian form is required. Next, we derive a formula for the power
of a complex number in polar form.

If ry = r, = 1 and ¢ = ¢ = ¢, then the above formula for z; - z; reads as
. 2 .
(cos<p+ism<p) = cos2¢ + isin2¢.

By induction, we can obtain de Moivre s formula:

(cos +i sin )" = cosng + i sinng, n=12,3,...
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Using de Moivre’s formula, we can easily compute powers of complex numbers. Let z =

r - (cos ¢ + isin @) be given in polar form. Then

n

n
" = [r-(cos<p +isin(p)] =r". <cosng0+isinn<p).

Example 1.59 We determinez = (1 — i)*. We transform w = 1 — i into the polar form and
obtain

1 1 1 1
w=vV124+(-1)2=+2 and cosgp=— = -2, sing=——=—-2.
[wl @ 52 @ 7 2

Since the cosine value is positive and the sine value is negative, the argument ¢ is in the
interval [270°,360°]. From cos 45° = cos(360°—45°) = ﬂ/Z,weobtainw = 360°—45° =
315°. This gives us

4
z=[V2: (cos315° +isin3157) |
= (V2)* - (cos 1,260° + isin 1,260°).
Since

cosx = cos(x + k - 360°) = cos(x + 2km) and
sinx = sin(x + k - 360°) = sin(x + 2kmw)

for k € Z, we obtain 1,260° — 3 - 360° = 180° and therefore
z=4-(cos180° +isin180°) =4 .- (—1+4+i-0) = —4.

The same result is obtained when using the Cartesian form directly:
z=1—=-D*=1-4i+6* 47 +i*=—4.

The latter is obtained due to i> = —i and i* = 1.

Definition 1.25 Letzg € Candn € N. Every complex number satisfying the equation
z" = z is called the nth root of zg, and we write z = #/zo.

To derive a formula to determine all the roots of the above equation z” = zy, let

z=r-(cos¢g + ising) and 2o = rg - (cos go + i sin ¢g).
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Then z" = zj can be written as follows:
Z" =7" . (cosng + isinng) = ry - (cos @y + isin @g) = zo. (1.5)

In equation (1.5), we can compare the moduli and the arguments of both complex numbers,
and we obtain

n

r=ry and ng = @o + 2k, k € Z.

Notice that the right equation concerning the arguments is valid due to the periodicity of the
trigonometric functions, i.e. sinx = sin(x + 2k7w), cosx = cos(x + 2km), where k € Z.
The above equalities for finding » and ¢ can be rewritten as

@o + 2km
" .

r=y%  ad  g=

Thus, the equation z” = zyg = rg - (cos @p + i sin ¢p) has the n solutions

2% 2%
PO+ 2T | sin 2T ﬂ),k:QLL””n—L (1.6)
n

Zk+1 = JF0 - (cos " + 1 sin

For k > n, we would again get consecutively the solutions obtained for £k = 0,1,2,...,
n — 1. Therefore, we have exactly n roots of the equation z” = zy. Writing the argument of
the complex numbers in degrees instead of radians, equation (1.6) can be written as follows:

@0 +k-360° . @o+k-360°
—_— tisn——
n n

Zk+1=(’/%~<cos ) k=0,1,2,...,n—1.

Example 1.60 We determine all roots of z* = 1. Writing z = 1 = 1 4 0i in polar form
yields

z* = cos 0° + i sin 0°.

Applying the formula, we obtain

z1=1-(cos0°+isin0°) =1+0i =1,

360° . 360° .. ..
zp =1-{cos 7 isin — =¢0s90° +isin90° =0+ 1i =i,
Z3=1~<

1,080° . 1,080 0 |+ o . :
z4=1-|cos 7 + isin =¢0s270° +isin270° =0 — 1i = —i.

) =co0s180° +isin180° = —1 +0i = —
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The four solutions are illustrated in an Argand diagram in Figure 1.9. They are located on a
circle with the origin as centre and radius one.

Imaginary
axis
il *
z3 Z1
-1 1 Real axis
—1 24

Figure 1.9 Roots z1 — z4 in Example 1.59.

Example 1.61 Let the equation

SRRy
z = —
1+i 1—i

be given and we determine all solutions z. We obtain

3 (42— 1-H% 1+42i—1-1+2i+1
z7 = = = 2i.
1-—i? 2

The modulus of z3 is therefore equal to two and the argument ¢ is equal to 90° (since 2i is
on the positive section of the imaginary axis). Thus, we have

23 =2 (cos90° + i sin 90°).

Now, we obtain the three solutions

o o

90 0 1 1
zlzfﬁv(cos 3 + isin 3 )=x3/§~(cos30°+isin30°):«3ﬁ~(Ex/g—l—ii),

90° + 360° 90° + 360°
Z2=\3f2~ (cos _; + isin —:.

) = /2 - (cos 150° + i sin 150°)

=%.(—%¢3+%f>,
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90° + 720° 90° + 720°
=2 (cos % + isin %) = 2 (c0s270° 4 i sin 270°)
=2-(0—i)=—2i.

The three solutions are illustrated in an Argand diagram in Figure 1.10.

Imaginary
axis

V/2i

2o Z1i

V2 Real axis

z3

Figure 1.10 Roots z; — z3 in Example 1.61.

The following representation for an exponential term with imaginary argument is called
Eulers formula, where angle ¢ is presented in radians:

e = cosp +ising
Using Euler’s formula, we obtain the equality
z=r-e¥ =r-(cosg+ising).

From the latter equality, we can introduce the exponential form as the third representation of
a complex number:

z=r- €%,

which is immediately obtained from the polar form, since it uses the same two variables r
and ¢. (Again angle ¢ is presented in radians.)

We can summarize the following rules for the product and the quotient of two complex
numbers as well as for the power of a complex number using the exponential form.
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Rules for complex numbers in exponential form

Letzy = r; - (cosg) +isingy), zg = rp - (Cosgpy +isingy), z = r - (cos ¢ + isin ¢) and
2o = rg - (cos g + i sin ¢g). Then

(1) z1-2zp=r1 -1y - 01792,

Q) 2 — n. ei(wrwz);
(3) z" =r"-e"¥ and

n n
(4) zpy1 = Y20 = Yo - WFHD/M g —0,1,2,...,n—1.

Example 1.62 Let

z1 =" and 7 =24
ie.

rn=1, rn=2 ¢ =, and 902=%.
Then

71 -zp = 2. 2T/ — o Gin/4

Using the exponential form of a complex number, we can easily determine the logarithm of
a complex number. Let

z=r-¥ =r. W0 ez,
Taking the logarithm we obtain
Inz=1In [r . ei(‘”+2k”)]

=Inr+i(p +2kw), keZ.

From the above formula we see that the imaginary part of Inz is not uniquely determined.
For simplicity, one takes the imaginary part using £ = 0.

Example 1.63 Letz = —12,i.e.z = 12 - ¢, and we determine the logarithm:
Inz=In12+4i -7 ~ 2.4849 + mi.

Notice again that in the above representation, the argument ¢ is given in radians.

From Example 1.63 we see that we can compute the logarithm of a negative number within
the set of complex numbers.
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EXERCISES

1.1

1.2

1.3

1.4

1.5

1.6

Which of the following terms are propositions? If they are propositions, what is their
truth value?

(@ 24+1=15; (b) Please hold the line.
() [x%dx; (d 5<10;
(e) 3 is an even number.

Given are the following propositions

A Peter meets Ann.
B Peter meets Betty.
C Peter meets Cindy.

Express the following propositions by use of conjunction, disjunction and (or) negation
of the given propositions:

Peter meets all three girls.

Peter meets only Ann.

Peter meets at least one of the three girls.
Peter meets exactly one of the three girls.
Peter meets no girl.

Peter does not meet all three girls.

ST QEEmo

Verify by means of truth tables that
(@) AANB<=AVB; (b) Ad=B) < B=4)

are tautologies.

Find out in which cases 4 is sufficient for B or A4 is necessary for B or both.

(a) 4:x e Niseven; (b) 4:x/3€N;
B:x/2eN; B : x is integer;
() A:x<4; (d) 4:x*=16;
B:x? < 16; B:(x=4)V (x=—4);
) 4:x>0AQ@>0);
B:xy>0.

Check whether the following propositions are true for x € R:

(@ A2 —5x+10>0;
b A,x*—2x>0.

Find the negations of the propositions and give their truth values.

Prove indirectly
1
x+->2
x

with the premise x > 0. Use both methods, proof by contradiction and proof of
contrapositive.
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1.7

1.8

1.9

1.10

1.12
1.13

1.14

Prove by induction:

n
(@ Y Qi—1) =n?
i=1
L n(n+1)72
0 Yi=——];
i=1 [ 2 ]
(¢) Leta > 0andn = 1,2,....Prove the inequality (1 4+ a)” > 1 + na.

Which of the propositions
1es; 0es; 2¢8; -1¢8

are true and which are false in each of the following cases?

(@ §=({1,2} (b) S=i{x|x*+2x—-3=0}

() §={0,1,2}U{-1,0}; (@ §=1{0,1,2}n{-1,0}
Let4=({1,3,5,7,9,11} and B = {1,2,3,7,8,9}. Find 4 UB,A N B, |4],|B|,|[AUB|,
|[ANB|,A\ Band |4\ B|.

Given is 4 = {1,2}. Enumerate all the subsets of the set 4. What is the cardinality of
set P(P(A4))?

Illustrate by means of Venn diagrams:

(@ AUBNC)=AUBNUAUCQC);

(b) AUB)\(ANB)=(4\B)U(B\4).

Prove that (A UB)\ (AN B) = (A\B) U (B\ 4).

8 students of a group study mathematics, 13 students of the group do not live in the

student hostel, and 17 students study mathematics or do not live in the student hostel.
How many students of the group studying mathematics do live in the student hostel?

Of 1,100 students studying economics at a university, 550 students have a car and
400 students have a PC, and 260 students have neither a car nor a PC. Determine the
number of students having a car or a PC, the number of students having both a car
and a PC, the number of students having a car but no PC and the number of students
having a PC but no car.

Given are 4 = {1,2},B = {2,3}and C = {0}. Find 4 x A, A x B, B x A, A x C,
AxCxBandA4 x 4 x B.

Let the sets

Mi={xeR|1<x<4}, My={yecR|-2=<y=<3}
M3={zeR|0=<z<5}

be given. Find M| x M, x Mj3. Illustrate this Cartesian product, which corresponds
to a set of points in the three-dimensional space, in a rectangular coordinate system.
There are 12 books on a shelf. How many possibilities for arranging these books exist?
How does this number change if three books have to stand side by side?

A designer wants to arrange 3 blue and 5 red buttons in a row. How many possibilities
are there for arranging them?
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1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27
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Given the set of numbers {1, 2, 3, 4, 5}, how many three-figure numbers can you select?
How does the answer change when all the figures have to be different?

A group of n people all say ‘hello’ to each other once. How many ‘hellos’ can
somebody from the group hear?

In the vicinity of a holiday resort 15 walks are to be marked with two coloured parallel
lines. What is the minimum number of colours required to mark all footpaths if both
lines can have the same colour and the sequence of colours cannot be inverted?

A set of weights consists of weights of 1, 2, 5, 10, 50, 100 and 500 units.

(a) How many combinations of these weights are possible? (Use combinatorics and
consider the cases when first no weight is selected, then exactly one weight is
selected, and so on.)

(b) Using your knowledge about sets, explain that for a set of n weights there are
exactly 2" combinations of weights.

(c) Prove by induction:

n
2(0)=7
; .
i=0
Simplify the following fractions:

4x+35y  3x—-2% )52—15y2 .

a >
@ X +2y 47 +2xy  3xPy+ 6x)°
a b

b) 4a=b atb
®) a* + b?
1+az—b2

Solve the following inequalities:

© rsznok O 2x3_6452;
X< = x
© =5 @ T2 sat
Solve the following inequalities:
(@ Ixl <2 ®) x—3 <2 © 2x-3]<2
@ k-4l <k+4; (@ E=H=1

Simplify the following terms:

445V2  11V2 ®) 242> 8b 744
7¢3 " 2laT3b5

[ — + ;
2-3v2 7
Solve the following equations for x:

(@ VIx—9—2x—5=1; (b) 9°-1-36.3"313=0;
(c) 2/x+2+3 =15+ 3x.

(@
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1.28

1.29

1.30

1.31
1.32

1.33

1.34

1.35

1.36
1.37

1.38

Simplify the following terms:

log, N
(@) a= —logs (log; V3); b) x= logg:bN —log, b.

Solve the following equations for x:
(@ §Inx°+3Inyx—3Indx =2(n2+In3);

(b) x27(lgx)271gx2 _ % =0;

(c) logzx +log x — log% x=6.
Find the roots of the following equations and illustrate them in an Argand diagram:

(@ x*—-3x+9=0; (b) x*+13x%2+36 =0.

Illustrate the set of all complex numbers z with |z — i| < 4 in an Argand diagram.
Find the sum, difference, product and quotient of the following complex numbers:
z1 =144 zp = —2+41.
Find the Cartesian form of the following complex numbers:
@ z=1
y .\ 2

®) z=(1E)5
(c) z =re" withr =2+/3 and ¢ = —27/3.

Find the polar and exponential forms of the following complex numbers:

-\ 2
@ z=4% ® z=(1H):
— 31333, - 2-i

© z=3+3%% @ == 2ml

Given the complex numbersz; =2 —2iandz; = 1+, find z‘l‘ and z; /z; by using the
polar form. Compare the results with those you get by means of the Cartesian form of
the complex numbers.

Show that # is a real number.

Find the solutions of the following equations:
(@) z* = —8+83i; ® 2+3i=12

Find the real numbers a; and a; so that z = 4(cos 40° + i sin 40°) is a solution of the
equation

N a1(«/§+a2i) _
5i 4+ 2(1 — i)?
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2 Sequences; series; finance

This chapter deals first with sequences and series. Sequences play a role e.g. when solving
difference equations. Special types of sequences and series are closely related to problems
in finance, which we discuss at the end of this chapter.

2.1 SEQUENCES

2.1.1 Basic definitions

Definition 2.1 If to each positive integer n € N, there is assigned a real number a,,
then

{an} = a1,a2,0a3,...,an, ...

is called a sequence.

The elements a1, as, a3, . .. are called the terms of the sequence. In particular a, is denoted
as the nth term. There are two ways of defining a sequence:

(1) explicitly by giving the nth term of the sequence;
(2) recursively by giving the first term(s) of the sequence and a recursive formula for
calculating the remaining terms.

This is illustrated by the following example.

Example 2.1 (a) Consider the sequence {a,} with

n—1 N
a, = R neN.
" 2n41
We get the terms
0 1 2 3 4
a) =9, a) = —, ay = —, a4 = —, as = —,
! 2Ty BTy BTy BT

In this case, sequence {a,} is given explicitly.
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(b) Let sequence {b,} be given by

by =2 and bpy1 =2b, — 1, neN.
Then we get the terms

by=2, bp=3, b3=5 bs=9, bs=17,

The latter sequence is given recursively.
(c) Let sequence {c,} be given by

cn = (D", neN.
In this case, we get the terms
cir=-1, =1, a=-1, =1, c5=-1,

This is an alternating sequence, where any two successive terms have a different sign.

Arithmetic and geometric sequences

We continue with two special types of sequences.

Definition 2.2 A sequence {a,}, where the difference of any two successive terms is
constant, is called an arithmetic sequence, i.e.

ap+1 —ay, =d foralln € N, where d is constant.

Thus, the terms of an arithmetic sequence with the first term a; follow the pattern
a;, ar+d, ar+2d, a+3d, ..., ar+ -1,
and we obtain the following explicit formula for the nth term:

ay=a+ (n—1)d foralln € N.

Example 2.2 A car company produces 750 cars of a certain type in the first month of its
production and then in each month the production is increased by 20 cars in comparison with
the preceding month. What is the production in the twelfth month?

This number is obtained as the term a1 of an arithmetic sequence with a; = 750 and d = 20,
and we get

app =aj +11-d =750 + 11 - 20 = 970,

i.e. in the twelfth month, 970 cars of this type have been produced.
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Definition 2.3 A sequence {a,}, where the ratio of any two successive terms is the
same number g # 0, is called a geometric sequence, i.e.

an+l
an

for all » € N, where ¢ is constant.

Thus, the terms of a geometric sequence with the first term a; follow the pattern
a, ai-q a-¢, a-q¢, ..., a-q"",

and we obtain the following explicit formula for the nth term:

apn=a-q"! foralln € N.

Example 2.3 Consider sequence {a,} with
a, = (—=D"-47", neN.

The first term is

@ =Dt =L
Using
a1 = (=" 470D and g, = (D" 47,
we obtain
a 1
2:1 —(=1). 47— gl 2
Thus, {a,} is a geometric sequence with common ratio g = —1/4.

Example 2.4 A firm produced 20,000 DVD players in its first year 2001. If the production
increases every year by 10 per cent, what will be the production in 2009?
The answer is obtained by the ninth term of a sequence {a,} withg =1 + 0.1:

a9 = aj - ¢° = 20,000 - 1.1% ~ 42,872.

Next, we investigate what will be the first year so that under the above assumptions,
production will exceed 55,000 DVD players. From

a, = 55,000 = 20,000 -1.1" 1 =g, - ¢"!
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we obtain

and

_ In275 _ 10116
T Inl1l  0.0953

~ 10.61,

i.e.n & 11.61. Thus, 2012 will be the first year with a production of more than 55,000 DVD
players.

Next, we introduce some basic notions.

Definition 2.4 A sequence {a,} is called increasing (resp. strictly increasing) if
ap < apy1 (resp. ap < ap+1) forall » € N.
Sequence {a,} is called decreasing (resp. strictly decreasing) if

ap > apy1  (resp. ap > apt1) forall » € N.

A sequence {a,} which is (strictly) increasing or decreasing is also denoted as (strictly)
monotone. When checking a sequence {a,} for monotonicity, we investigate the difference
D, = ay+1 — ay of two successive terms. If D, > 0 (D, > 0) for all n € N, sequence
{a,} is increasing (strictly increasing). If D, < 0 (D, < 0) for all n € N, sequence {a,} is
decreasing (strictly decreasing).

Example 2.5 We investigate sequence {a,} with
a,=2mn—17%—n, neN,

for monotonicity, i.e. we investigate the difference of two successive terms and obtain
nil —an =212 — (n41) — [Z(n 12— n]

:2n2—n—1—(2n2—4n+2—n>

=4n — 3.

Since 4n — 3 > 0 for all n € N, we get a,+1 > a, for all n € N. Therefore, sequence {a,} is
strictly increasing.
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Definition 2.5 A sequence {a,} is called bounded if there exists a finite constant C
(denoted as bound) such that

lan]l = C forallm € N.

Example 2.6 We consider the sequence {a,} with

_ D2

n2

s neN,

Qan

and investigate whether it is bounded. We can estimate |a,| as follows:

—nm2| 2
—s— :—252 foralln € N.
n

|an| :’

Therefore, sequence {a,} is bounded. Note that sequence {a,} is not monotone, since the
signs of the terms alternate due to factor (—1)".

2.1.2 Limit of a sequence

Next, we introduce the basic notion of a limit of a sequence.

Definition 2.6 A finite number « is called the limit of a sequence {a,} if, for any
given ¢ > 0, there exists an index n(¢) such that

lay —a| <& for all n > n(e).

To indicate that number a is the limit of sequence {a,}, we write

lim a, = a.
n—0o0

The notion of the limit @ is illustrated in Figure 2.1. Sequence {a, } has the limit a, if there exists
some index n(¢) (depending on ¢) such that the absolute value of the difference between the
term a, and the limit a becomes smaller than the given value ¢ for all terms a, withn > n(e),
i.e. from some 7 on, the terms of the sequence {a,} are very close to the limit a. If ¢ becomes
smaller, the corresponding value n(¢) becomes larger. To illustrate the latter definition, we
consider the following example.
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atet — — — — — — — — —

Figure 2.1 The limit a of a sequence {a;}.

Example 2.7 Let sequence {a,} be given with
1
ap = 1+ > ne N,
n

ie. we get
5 10 Y
2’ as = 9’ as = 16’

The terms of sequence {a,} tend to number one. For example, if ¢ = 1/100, we get

1 1 1
|an—1|= 1-‘1-’1*2 —1:n7<m,
which is satisfied forn > n(e) = 11, i.e. all terms a, with n > 11 have an absolute difference
from the limit @ = 1 smaller than ¢ = 1/100.
If we choose a smaller value of ¢, say ¢ = 1/10, 000, we obtain for n > n(e) = 101 only that
1
10,000’

a=2, a=

| 1] :
ap—1l=— <
n n2

i.e. all terms a, with n > n(e) = 101 have an absolute difference smaller than ¢ = 1/10, 000
from the limit a = 1 of the sequence. Note, however, that independently of the choice of ¢,
there are infinitely many terms of the sequence in the interval (a — ¢,a + ¢).
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The definition of a limit is not appropriate for determining its value. It can be used to confirm
that some (guessed) value a is in fact the limit of a certain sequence.

Example 2.8 Consider the sequence {a,} with

n—2

a, = ——, neN.
2n+3
We get
1-2 1 2-2 3-2 1
G =——"=—7, O=-—7—-=0, a3=-—F—72=-7,
2-1+3 5 2-243 2-343 9

For larger values of n, we obtain e.g.

_ 8 ~ 0.466 -8 ~ 0.483 -8 ~ 0.498

as0 = 7oz 7 0400, @00 = 555~ 0483, ai000 = 2,003 8
and we guess that a = 1/2 is the limit of sequence {a,}. To prove it, we apply Definition 2.6
and obtain

| | n—2 1 2(n—2)—(2n+3) 2n—4—-2n-13

a, —al = —-|= =

" 2n+3 2 2-(2n+3) 4n+6
-7 7
= = <e
4n+6 4n+6

By taking the reciprocal values of the latter inequality, we get

4n+6 1
>

7 g

which can be rewritten as

7 — 6¢

n> s
4e

i.e. in dependence on ¢ we get a number n = n(e) such that all terms a, withn > n(e) deviate
from a by no more than . For ¢ = 1072 = 0.01, we get
7—-6-0.01
n>— =173.5,
4.0.01

i.e. we have n(¢) = 174 and from the 174th term on, all terms of the sequence deviate by
less than ¢ = 0.01 from the limit @ = 1/2. If ¢ becomes smaller, the number n(¢) increases,
e.g. fore = 107% = 0.0001, we get

p > 600001 17,498.5,
4.0.0001

ie.n(e) = 17,499.
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Ifasequence has a limit, then it is said to converge. Now we are able to give a first convergence
criterion for an arbitrary sequence.

THEOREM 2.1 A bounded and monotone (i.e. increasing or decreasing) sequence {a,}
converges.

We illustrate the use of Theorem 2.1 by the following example.

Example 2.9 Consider the recursively defined sequence {a,} with
a; =1 and an+1 = /3 ay, neN.

First, we prove that this sequence is bounded. All terms are certainly positive, and it is
sufficient to prove by induction that @, < 3 for all n € N. In the initial step, we find that
a1 = 1 < 3. Assuming a, < 3 in the inductive step, we obtain

an+1 =3 -a, <~3-3=3
for all n € N. Therefore, implication
a, <3 == apy1 <3

is true. Hence, sequence {a,} is bounded by three.

To show that sequence {a,} is increasing, we may investigate the quotient of two successive
terms (notice that a, > 0 for n € N) and find

an+1_v3‘an_ i>1
an an an '

The latter inequality is obtained due to a,, < 3. Therefore, a,+1/a, > 1 and thus a,+1 > a,,
i.e. sequence {a,} is strictly increasing. Since sequence {a,} is bounded by three, we have
found by Theorem 2.1 that sequence {a,} converges.

Now, we give a few rules for working with limits of sequences.

THEOREM 2.2 Assume that the limits

lim a, =a and lim b, =b
n—oQ n— 00

exist. Then the following limits exist, and we obtain:

(1) lim (a,£c¢) = lim (ay) £c=axc forconstantc € R;
h— 00 h— 00

2) lim(c-ay)=c-a for constant ¢ € R;
n—0oQ

(3) lim (an £b,) =a+b;
n—0o0
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(4) lim (a, - by) =a-b;
n—00
. ap a
(5) nlggc b, b (b #0).

We illustrate the use of the above rules by the following example.

Example 2.10 Let the sequences {a,} and {b,} with

_2n*+4n—1 31

ay = ————, = —_— neN,
" 5n2 4+ 10 " w34 2n

be given. Then

2 4 1
. 2n? +4n — 1 oon <2+Z_,72)
lim ¢, = lm ——— = lim ————~
n—00 n—00 5n2+10 n—00 9 <5+¥)
n
li li 4 li !
im 2+ 1m7_n£20y7 240-0 2

n—00 n—>o0o g

- 10 - T 5
lim 5+ lim — S+0 5
n—00 n—oo g
Similarly, we get
2 1
. . 3?1 on ( _,Tz)
lim b, = lim 2 = lim 5
n—00 n—oop n n—oo 2
lim 3— i !
ninolo - n—1>nolo }'T2 _ 3 - 0 _
= = =
lim n+ lim = Am? 10
n—00 n—oo n

Consider now sequence {c,} with
cn=an+bn, neN.

Applying the given rules for limits, we get
. . . 2

lim ¢, = lim a, + lim b, =-+0=—.

n—oo n—o00 n—o00 5 5
As an alternative to the above calculation, we can also first determine the nth term of
sequence {cy}:
2n% +4n — 1 N 3n? — 1

5(n? +2) n(n? 4 2)
%~(2n3+4n2—n)+3n2—1 %n3—l—%n2—%n—l

- n3 4+ 2n - n3 +2n

chn=ay+b,=
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Determining now

lim ¢,
n—oQ

we can get the same result as before.

In generalization of the above example, we can get the following result for p,q € N:

| 0 forp <gq
P - a
im apnf + ap_nP +...+a1n+a0= ap forp =g
n—>00 bynd + by_1nd~1 + ...+ bin+ by by

00 forp > g.

This means that, in order to find the above limit, we have to check only the terms with the
largest exponent in the numerator and in the denominator.

Example 2.11 We consider sequence {a,} with

3n+2)?
an=<7n_3> + 2, neN.

Then

3n+2\2 3n+2\2
lim [( et ) +2i|=(1im nt ) + lim 2
n—o0 Tn—3 n—ooTn—3 n—o0

We finish this section with some frequently used limits.

Some limits

1
(1) lim - =0;
n—oon
2) lim ad"=0 for |a| < 1;
n— 00

3) lim Ve=1 for constant ¢ € R, ¢ > 0;
n— 00

4 lim Vn=1,
n—0oQ

) 1im & —o;
n—oo p!
k

6) lim = —o;
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From limits (5) up to (7), one can conclude that the corresponding term in the denominator
grows faster than the term in the numerator as » tends to infinity.

2.2 SERIES

2.2.1 Partial sums

We start this section with the introduction of the partial sum of some terms of a sequence.

Definition 2.7 Let {a,} be a sequence. Then the sum of the first » terms
n
sn=a1+a2+...+an=2ak
k=1

is called the nth partial sum s,.

Example 2.12 Consider the sequence {a,} with
2
a, =3+ (=" —, neN,
n
ie.
7
ar=3-1-2=1, a=3+1=4, a3=3- =3 as=3+-=

Then we get the following partial sums:

7 22
S1=a1=1,S2=a1+a2=1+4=5,S3=a1+a2+aa=1+4+§=?,
7 7 65
S4=a1+az+a3+a4=1+4+§+5=?,....

For special types of sequences (namely, arithmetic and geometric sequences), we can easily
give the corresponding partial sums as follows.
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THEOREM 2.3  The nth partial sum of an arithmetic sequence {a,} witha, =a; + (n—1)-d
is given by

n n
Sn=5'(“1+an)=§'[2al+(n—1)d]~

The nth partial sum of a geometric sequence {a,} with a, = a1 - ¢"~! and ¢ # 1 is given by

Example 2.2 (continued) We determine the total car production within the first twelve
months of production. To this end, we have to determine the twelfth partial sum s;» of an
arithmetic sequence with ¢; = 750 and d = 20. We obtain

S1p = g~(2a1 +11-d) = 6- (1,500 + 11 - 20) = 10,320,

i.e. the total car production within the first year is equal to 10,320.

Example 2.13 Consider a geometric sequence with a; = 2 and ¢ = —4/3, i.e. the next
four terms of the sequence are

8 32 128 512
a=—-, a3 = —, ay = ———, as = —.
2773 T 4 27 ST 81

According to Theorem 2.3, we obtain the fifth partial sum as follows:

1024

B .1—q5_ .1_(_§)5_ .1_(_243>_ (1267 3 362

s5 = aj =2 i =2 7 =2 h '
1—¢ -5 3 243 7 81

Example 2.4 (continued) We wish to know what will be the total production of DVD
players from the beginning of 2001 until the end of 2012. We apply the formula for the
partial sum of a geometric sequence given in Theorem 2.3 and obtain

—q" 1-1.12 20,000
T _ 20,000 - =20
1—¢ 1-1.1 —0.1

§12 =4ay -

(1 - 14112) ~ 427, 686.

The firm will produce about 427,686 DVD players in the years from 2001 until 2012.

Example 2.14 Two computer experts, Mr Bit and Mrs Byte, started their jobs on 1 January
2002. During the first year, Mr Bit got a fixed salary of 2,500 EUR every month and his
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salary rises by 4 per cent every year. Mrs Byte started with an annual salary of 33,000 EUR,
and her salary rises by 2.5 per cent every year.

First, we determine the annual salary of Mr Bit and Mrs Byte in 2010. Mr Bit got
30,000 EUR in 2002, and in order to determine his salary in 2010, we have to find the
term ag of a geometric sequence with a; = 30,000 and ¢ = 1.04:

ag = 30,000 - 1.04% = 41,057.07.

To find the salary of Mrs Byte, we have to find the term b9 of a sequence with 5; = 33,000
and ¢ = 1.025:

bo = 33,000 - 1.025% = 40, 207.30.

In 2010, the annual salary of Mr Bit will be 41,057.07 EUR and the annual salary of Mrs
Byte will be 40,207.30 EUR. Next, we wish to know which of them will earn more money
over the years from 2002 until the end of 2010. To this end, we have to determine the partial
sums of the first nine terms of both sequences. For sequence {a,}, we obtain

1-4° 1—1.04°

—=30,000- ——— ~ 317,483.86.
1—¢ 1—1.04

59 =aj -

For sequence {b,}, we obtain

i 1 ocd
120 _ 33000 L2102 306 499,12,
1—¢ 1-1.025

s9 = by -

Hence, Mrs Byte will earn about 11,000 EUR more than Mr Bit over the nine years.

2.2.2 Series and convergence of series

Definition 2.8 The sequence {s,} of partial sums of a sequence {a,} is called an
(infinite) series.
A series {s,} is said to converge if the sequence {s,} has a limit s. This value

n oo
s = lim s, = lim Zak = Zak
n—00 n— 00
k=1 k=1

is called the sum of the (infinite) series {s,}.
If {s,} does not have a limit, the series is said to diverge.

Example 2.15 We investigate whether the series {s,} with

n
2
snzzk—y neN,

k=1
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converges. To this end, we apply Theorem 2.1 to the sequence of partial sums {s,}. First, we
note that this sequence {s,} is strictly increasing, since every term a; = 2/k? is positive for
all £ € N and therefore, s,+1 = s, + a, > s,. It remains to prove that sequence {s,} of the
partial sums is also bounded. For £ > 2, we obtain the following estimate of term ay:

_ 2 - 2 _ 2 _> 1 1
T2 ="k k-1 \k=1 k)
Then we obtain the following estimate for the nth partial sum s,:
) ) - 1 1
sFZP:“Zsz“Z(f—f%)
k=1 k=2 k=2
22| (i )+ (e S ) (e - )+
- 2—-1 2 3-1 3 4—1 4
1
:2+2~(1—7>§4.
n

The last equality holds since all terms within the brackets are mutually cancelled except the
first and last terms. Thus, the strictly increasing sequence {s,} of partial sums is also bounded.
From Theorem 2.1, series {s,} with

+<nil_%)]

n
2
SFZ,;

k=1

converges.

THEOREM 2.4 (Necessary convergence criterion) Let the series {s,} with

n
Sp = Zak, neN,
k=1

be convergent. Then

lim a, = 0.
n—0oQ

The condition of Theorem 2.4 is not sufficient. For instance, let us consider the so-called
harmonic series {s,} with

Next, we show that this series does not converge although

lim a, = lim — =0.
n—00 n—oon
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Using the fact that forn > 4, n € N, there exists a number £ € N such that 2kl < < 2k+2,
we obtain the following estimate for the nth partial sum s,:

sn—1+;+;+ +2k+1+--+%
2 *3 2% 41 2k+1 n
STy 1+4 +- +2-L=1+1+1+--~+l
2 4 8 2%+ 22 2

k + 1 summands
Consequently, we get

2 k+1 k43
Sp> -4+ —=—.
2 2 2

Since for any (arbitrarily large) £ € N, there exists a number n € N such that s, can become

arbitrarily large, the partial sum s, is not bounded. Thus, the sequence of the partial sums
{s,} does not converge.

Definition 2.9 Let {a,} be a geometric sequence. The series {s,} with

n n
s,,:Zak:Zm 'qk !
k=1 k=1

is called a geometric series.

For a geometric series, we can easily decide whether it converges or not by means of the
following theorem.

THEOREM 2.5 A geometric series {s,} with a; # 0 converges for |¢| < 1, and we obtain

. T P . ) _
nll{gcsn_ngn‘olo];al 9 nll?goal 1—g¢q l—q‘

For |q| > 1, series {s,} diverges.

Example 2.16 Consider the series {s,} with

n

1 k—1
sn:Z2~<—5) R neN.

k=1
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This is a geometric series with a; = 2 and ¢ = —1/2. Applying Theorem 2.5 we find that
this series converges, since |g| = 1/2 < 1, and we obtain

ay 2

lim s, = ==

R

A first general criterion for checking convergence of a series has already been discussed
in connection with sequences (see Theorem 2.1). If the sequence of the partial sums is
bounded and monotone, the series {s,} certainly converges. We consider a similar example
to Example 2.15, which however uses Theorem 2.5 for estimating the terms s,,.

Example 2.17 We consider the series {s,} with

n
2
Snzzm, neN.

k=1

Determining the first partial sums, we obtain

2 2 2
sl=j=2,S2=S1+F=2+2=4,S3=SZ+*=4+1=5’

0! 2!
+2 5_+_2 16
S4 =53+ — = —=—,....
PTRTy 6 3
Since
2
ay >0 forallk e N,

T k-1

sequence {s,} of the partial sums is strictly increasing. To check whether sequence {s,} is
bounded, we first obtain for £ > 3:

2 2 - 2 1
”"_(k—l)!_1-273-....(k—1)—1-2.2-..-2_2k73'
D —
k—2 factors

Denoting aj =1 /2F73 k > 3, the following estimate holds for n > 3:

sp<ar+ay+adi+...+a,

n
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i.e. each partial sum s, with » > 3 is no greater than six (notice that s; = 2 and s, = 4). In
the above estimate of s,, we have used the sum of a geometric series given in Theorem 2.5.
Thus, sequence {s,} is strictly increasing and bounded. From Theorem 2.1, the series {s,}
with
n
2
Sp = —_—
" Z (k— 1!

k=1

converges.

Definition 2.10 A series {s,} with
n
Sp = Z ax
k=1

is called alternating if the signs of the terms ay alternate.

We can give the following convergence criterion for an alternating series.
THEOREM 2.6 (Leibniz’s criterion) Let {s,} with
n
T
k=1
be an alternating series. If the sequence {|a|} of the absolute values is decreasing and
lim ay = 0,
k—o00

series {s,} converges.

Example 2.18 We consider the series {s,} with

K —ia —Xn:(_l)kﬂh", neN
' k=1 ’ k=1 k ’
This is an alternating series with
3 5
s1:a1=3,S2=s1+a2:3—5:5,S3=S2+a3=5+1:5,
5 7
S4=S3+a4=5—1=27
First, due to
3 3 3%k—-3(k+1 3

_ = _ = = - 0
|ak+1| |ak| k+1 k k(k+1) k(k+1) <Y
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sequence {|ag|} is strictly decreasing. Furthermore,

— 1)kt
fim T3
k—o00 k

and thus by Theorem 2.6, series {s,} converges.

We now present two convergence criteria which can be applied to arbitrary series.

THEOREM 2.7 (quotient criterion) Let {s,} be a series with

n
=Y a.
k=1
Then:

(1) If

ak+1
ai

0= lim

k—o00

series {s,} converges.
(2) If Q > 1, series {s,} diverges.
(3) For Q =1, a decision is not possible by means of the quotient criterion.

Example 2.19 We investigate whether the series {s,} with

"k
sn=Z4—k, neN,
k=1

converges. Applying the quotient criterion, we get with a; = k/4*

are1|  (k+1) -4 k+1
ap | 4 T 4k
Therefore,
k+1 1
0= tim % = m Py
k—oo | ag k—oo 4k 4

Thus, the given series converges.

Example 2.20 Consider the series {s,} with

n
3k
sn:Z neN.

2k’
k=1
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Using the quotient criterion, we get

aper|  3k+1DP-2F 1 KB 43k +3k+1
ap | 2k1.3E3 T2 k3
and
1
0= lim | %+ = 2
k—oo | ag 2

Thus, the series considered converges.

THEOREM 2.8 (root criterion) Let {s,} be a series with
n
=
k=1
Then:
(1) If
R= lim ¥|a| <1,
k—o00
series {s,} converges.

(2) IfR > 1, series {s,} diverges.
(3) For R =1, a decision is not possible by means of the root criterion.

Example 2.21 Let the series {s,} with
n
k
Sp = Z > neN,
k=1

be given. In order to investigate it for convergence or divergence, we apply the root criterion

and obtain
k 1
v =k = y — = = '\k/I;
Vil = Jar =/ 55 = 5
Further,
R= lim Vfag = lim (- &) =2 tim Yk=2.1=1
e e ) T2 k2 T2
The latter result is obtained using the given limit (see limit (4) at the end of Chapter 2.1.2)
lim vk = 1.
k—o00

Hence, the series considered converges due to R < 1.
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Example 2.22 Consider the series {s,} with
n 2
k+1 -
Sn:Z(T) '2k, neN.
k=1
To check {s,} for convergence, we apply the root criterion and obtain

E+1\*F
R= lim ¥ax| = lim "<7+ ) Lok
k—o0 k—o00 k

li "1+1k2 1y _1 li 1+1k ! 1
= — . — = — - — = — - > 1.
Pres k 2 2 e k 2°¢

The latter equality holds due to limit (8) given at the end of Chapter 2.1.2. Hence, since
R > 1, series {s,} diverges.

2.3 FINANCE

In this section, we discuss some problems arising in finance which are an application of
sequences and series in economics. Mainly we use geometric and arithmetic sequences and
partial sums of such sequences. In the first two subsections, we investigate how one payment
develops over time and then how several periodic payments develop over time. Then we
consider some applications of these considerations such as loan repayments, evaluation of
investment projects and depreciation of machinery.

2.3.1 Simple interest and compound interest

We start with some notions. Let P denote the principal, i.e. it is the total amount of money
borrowed (e.g. by an individual from a bank in the form of a loan) or invested (e.g. by an
individual at a bank in the form of a savings account). Interest can be interpreted as money
paid for the use of money. The rate of interest is the amount charged for the use of the
principal for a given length of time, usually on a yearly (or per annum, abbreviated p.a.)
basis, given either as a percentage (p per cent) or as a decimal 7, i.e.

i=—=p%

If we use the notation i for the rate of interest, then we always consider a decimal value in
the rest of this chapter, and we assume that i > 0.

In the following, we consider two variants of interest payments. Simple interest is interest
computed on the principal for the entire period it is borrowed (or invested). In the case of
simple interest, it is assumed that this interest is not reinvested together with the original
capital. If a principal P is invested at a simple interest rate of i per annum (where 7 is a
decimal) for a period of n years, the interest charge I, is given by

I,=P-i-n
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The amount A owed at the end of » years is the sum of the principal borrowed and the interest
charge:

A=P+1,=P+P-i-n=P-(1+4+i-n).

Simple interest is usually applied when interest is paid over a period of less than one year.

If a lender deducts the interest from the amount of the loan at the time the loan is made, the
loan is said to be discounted. In this case, the borrower receives the amount P (also denoted
as proceeds) given by

P=A—A-i-n=4-(1—i-n),

where 4 - i - n is the discount and A4 is the amount to be repaid at the end of the period of
time (also known as the maturity value). We emphasize that in the case of a discounted loan,
interest has to be paid on the total amount 4 (not on the proceeds P) at the beginning of the
period.

Next, we assume that at the end of each year, the interest which is due at this time is added
to the principal so that the interest computed for the next year is based on this new amount
(of old principal plus interest). This is known as compound interest. Let A be the amount
accrued on the principal at the end of year k. Then we obtain the following:

A1 =P+P-i=P-(1+1),
Ay=Ai+A1-i=A1- A+ =P -(1+i)?
Ay=Adp+Ar-i=Ar-(1+i)=P-(1+i),

and so on. The amount 4, accrued on a principal P after n years at a rate of interest i per
annum is given by

A, =P -(14+i)"=P.q". @.1)

The term g = 1 + i is also called the accumulation factor. Note that the amounts 4,k =
1,2,..., are the terms of a geometric sequence with the common ratio ¢ = 1 + i. It is worth
noting that in the case of setting 49 = P, it is a geometric sequence starting with & = 0
in contrast to our considerations in Chapter 2.1, where sequences began always with the
first term a;. (However, when beginning with 4y, one has to take into account that 4, is
already the (n 4 1)th term of the sequence.) The above formula (2.1) can be used to solve
the following four basic types of problems:

(1) Given the values P,i and n, we can immediately determine the final amount 4,, after n
years using formula (2.1).

(2) Given the final amount 4,,, the interest rate i and the number of years n, we determine
the principal P required now such that it turns after » years into the amount 4, when the
rate of interest is i. From formula (2.1) we obtain

P= An
T
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(3) Given the values n, P and 4,, we determine the accumulation factor ¢ and the rate of
interest i, respectively, which turns principal P after n years into the final amount 4,,.
From formula (2.1) we obtain

% =(1+N)" (2.2)

Solving for i, we get

nA}'l
L | i
Pt
4
== 1
P

(4) Given the values 4,, P and i, we determine the time » necessary to turn principal P at a
given rate of interest i into a final amount 4,. Solving formula (2.2) for n, we obtain
An
In—=n-In(1+1i
2 1+

_ In4, — InP
T (149

We give a few examples to illustrate the above basic problems.

Example 2.23 What principal is required now so that after 6 years at a rate of interest of 5
per cent p.a. the final amount is 20,000 EUR?
This is a problem of type (2) with n = 6,i = 0.05 and 4¢ = 20, 000. We obtain:

As 20,000
P = =
(1498  (14+0.05°

= 14,924.31 EUR

i.e. the principal required now is equal to 14,924.31 EUR.

Example 2.24 How long will it take to double a principal 020,000 EUR when the interest
rate is 6 per cent p.a.?
This is a problem of type (4). Using P = 20,000, 4, = 40,000 and i = 0.06, we obtain

In 40,000 — In 20, 000
n= ~ 11.9
In1.06

i.e. it takes about 11.9 years to double the principal.

Often, we do not have an annual period for interest payments, i.e. compounding takes place
several times per year, e.g.

(1) semi-annually — there are 2 interest payments per year, namely after every six months;
(2) quarterly — there are 4 payments per year, namely one after every three months;
(3) monthly — there are 12 payments, namely one per month;



(c) ketabton.com: The Digital Library

Sequences; series; finance 83

(4) daily — compounding takes place 360 times per year (in this section, we always count
12 months with 30 days each).

Note that in all cases, it is assumed that interest payment is made after equal length periods.
In the case of m interest payments per year, the rate of interest per payment period is equal
to i/m, where i is as before the per annum rate of interest as a decimal, and the number of
interest payments within a period of n years is equal to # - m. Denoting by 4, ,, the amount
at the end of n years with m interest payments per year, formula (2.1) changes into

i n-m
Ay =P- (1 + —) . 2.3)
m

Example 2.25 Mrs Rich wishes to invest 15,000 EUR. The bank offers a rate of interest of
6 per cent p.a.

We compute the resulting amount of money at the end of four years when compounding takes
place annually, quarterly and monthly. We use formulas (2.1) and (2.3) with P = 15,000
EUR and i = 0.06.

In the case of annual compounding, we get

Ay =P (1+i)* =15,000- (1 + 0.06)* = 18,937.15 EUR.

Hereafter, we use the equality sign although all amounts are rounded to two decimal places.
When compounding takes place four times per year, we compute 44 4 and obtain

4.4
Agq=P- (1 + %) = 15,000 - 1.015'6 = 19,034.78 EUR.

Finally, when compounding takes place monthly, we compute 44 1> and obtain

4.12
As1p=P- (1 + E) = 15,000 - 1.005*® = 19,057.34 EUR.

If the compounding takes place several times per year or if the interest rate is not constant
over time, one is often looking for the effective rate of interest i.gr. This is the rate of interest
necessary to turn the principal into the final amount when compounding takes place annually.
In the case of m interest payments per year at a per annum rate i of interest, there is an interest
payment of i/m per interest payment period, and we obtain from formula (2.3)

(1 +iegr) = (1 + i)
m

i\™
ieff=(1+f> 1.
m
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Similarly, if there are different per annum rates of interest iy, ,...,i, with an annual
compounding, we obtain from formula (2.1)

A 4ieg)" = A +i) - (L+i) - ... (1 +1in)
it = V(A +i) - (L4ia) ... (L +iy) — 1.

Example 2.26 A bank offers a rate of interest of 6 per cent p.a. compounded quarterly.
What is the corresponding effective rate of interest iesr?
Since m = 4, the rate of interest per period is

L= 0015,
4
and we obtain

iofr = (1.015)* — 1 = 0.06136355

i.e. the offer from the bank corresponds to an effective rate of interest of 6.14 per cent p.a.

Finally we briefly discuss a mixture of simple and compound interest. This is used when
interest is paid not only for complete interest periods. We illustrate this by the following
example.

Example 2.27 Assume that Mr Happy gives 10,000 EUR to a bank on 15 November 2001
and that he would like to have money back on 20 February 2005. The bank offers a constant
rate of interest of 4 per cent p.a. compounded annually.

We can apply the formula for compound interest for the years 2002, 2003 and 2004, but
for the parts of 2001 and 2005, we apply the formula for simple interest. Remembering our
assumption that every month consists of 30 days, the bank pays interest for 45 days in 2001
and for 50 days in 2005.

Therefore, the amount at the end is given by

A4=10,000-(1+0.04 45 (140.04)>.(1+0.04 50
- 7360 ’ 360

= 11,367.69 EUR .

In the above calculations, simple interest is computed for the 45 days from 16 November
to 31 December 2001 (i.e. the principal is multiplied by 1 + 0.04 - 45/360) and for the
50 days from 1 January to 20 February 2005 (i.e. the amount at the end of 2004 is multiplied
by 1 + 0.04 - 50/360). For the three intermediate years from 2002 to 2004, we apply the
compound interest formula, which leads to the factor (1 + 0.04)3.
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2.3.2 Periodic payments

In the previous subsection, we considered the computation of the future value of one
investment when a fixed amount of money is deposited in an account that pays interest
compounded periodically. In many situations, there are periodic payments (i.e. deposits or
withdrawals) and the question is which amount is accrued (or left over) after a number of
payment periods. Such situations occur, for example, in connection with annual life insurance
premiums, monthly deposits at a bank, loan repayments, sinking funds and so on.

The notion annuity is used in the following for a sequence of (usually equal) periodic pay-
ments. Here we consider only the case when payment periods and the periods for interest
payments coincide. Moreover, the interest is always credited at the end of a payment period.

First, we consider a so-called ordinary annuity, where the payments (deposits) are made at
the same time the interest is credited, namely at the end of the period. We mark all values by
the superscript ‘E’ which stands for ‘end of the period’.

Annual payments

Again, we first consider the case of annual payments r. The amount of an annuity is the sum
of all payments (deposits) made plus all interest accumulated. Next, we compute the amount
of an annuity AE, i.e. the total amount after »n annual payment periods. Denoting by Dy, the
amount resulting from the kth deposit at the end of n years, we get

A=Di+Dy4.. 4Dy =r- A +)" 1 4r - A+)" 4. . +r -0+ +r

:r.[1+(1+i)+...+<1+i)”’1]-

The term in brackets on the right-hand side represents the partial sum s, of a geometric
sequence with a; = 1 and ¢ = 1 + i. Note that the £th deposit accumulates the value Dy,
where the payments are compounded over n — k years. We use the formula for the partial
sum of the first n terms of a geometric sequence and obtain

L= (4" 1=+ _ A+ -1

1+A+)+--+1A+)" = =
+A+D+---4+A+D) =+ — ;

Thus, we have shown the correctness of the following theorem.

THEOREM 2.9 (amount of an annuity) Ifan amount r is deposited at the end of each year
at a per annum rate of interest i, the amount AE of the annuity after » annual payments is

AF =

n

(14" -1
re——.

1

24

The present value of an annuity is the amount of an annuity discounted over the whole time
period, i.e. it is the amount of money needed now so that after depositing this amount for a
period of n years at a per annum rate of interest of 7, the amount of an annuity AE results. We
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get
1 1 1+ —1
S
1+ (14" i
A+ - [A4+)"—-1] 1—(14+H™"
—7r. - =7r- - .

1 1

In connection with periodic withdrawals the present value P,];: has an important meaning. It
is the amount of money needed now so that, if it is invested at a per annum rate of interest 7,
n equal money amounts 7 can be withdrawn at the end of each year without any money left
over at the end.

To illustrate this, let us argue that the sum of the present values of the individual withdrawals
is indeed equal to PE. Assume that the withdrawals are made at the end of each year and let
PV} be the present value of the kth withdrawal. Then

PVy=r —.
T

Summing up, we get

PV =PVi +PVy+---+ PV,
1 1 1

ST T O T
! Qe+
(1 40y
oy 1= +D" (14+H7" -1
—r-(1 n, =7
r-(1+1) ) r —
1—(1+i)™
_rng%iifzpi

1

i.e. the sum of the present values of all the n withdrawals corresponds to P,]::. Therefore, we
have proved the following theorem.

THEOREM 2.10 (present value of an annuity) Ifr represents the withdrawal at the end of
each of n years, the present value Pf of an annuity at a per annum rate of interest i is

PE=»

n

I— (14"
- )

2.5)

As a consequence, we do not need to distinguish between periodic deposits and withdrawals
in the sense that formulas follow the same pattern. When considering periodic deposits,
we are usually interested in the amount of an annuity 4E, and when considering periodic
withdrawals we are interested in the present value of an annuity PE.

Next, we discuss the case when the payments are made at the beginning of the period while
interest is still credited at the end. We mark the corresponding values by the superscript ‘B’
which stands for ‘beginning of the period’. Notice that this is not an ordinary annuity.
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First, we discuss the modification of the formula for the amount of the annuity AB.
The difference from the previous case is that for each deposit, interest is credited for one
more period, i.e. the kth deposit accumulates interest over n — k + 1 years. Let Dy be the
amount at the end of n years which results from the kth deposit. Then Dy = r- (1 +i)"**1.
Therefore, we get

AB=D, | +D,2+.. D1 =r-(I+)+r-A+)*+...+r- (14"
=ro 4D [THA+D+ Q402+ + A+ 2+ A+
1+ —1
—rpy. LE 2L
1

By the above computations we have found that 45 = (1 + i) - AF which reflects the fact that
for each deposit, interest is credited for one more year in comparison with deposits at the end
of each year.

Correspondingly, the present value P,]? is obtained by discounting the amount of an annuity
for a period of n years, i.e.

B: 1 .
T Ay

1= (14"
AE:;«(I—H)-#.

We now discuss some basic types of problems connected with periodic payments (deposits
or withdrawals). Here we consider only the case when payments are made at the end of each
year and interest is credited at the same time. In the above formulas we have used the values
P,]::,AE, r,i and n. Among these values, at least two (or even three) must be given for each
problem type, and we are looking for one of the remaining values.

(1) Given the per annum rate of interest i and the number of years n, we are looking for
the amount of the annuity AEA This problem arises when annual deposits are made in
an account, rate of interest as well as the time period are known in advance, and we
wish to determine the amount in the account at the end of n years. In this case, we can
immediately apply formula (2.4).

(2) Given the values 7, i and n, we are looking for the present value of the annuity PE. This
type of problem arises when periodic withdrawals are made, and we wish to know the
current amount required to guarantee the n withdrawals such that no money is left over
at the end when the time period and rate of interest are known. In this case, we can
immediately apply formula (2.5).

(3) Given the values AE,i and n, we are looking for the annual payment » to get the final
amount AF provided that the time period of the periodic payments and the rate of interest
are known. From formula (2.4), we obtain

i

| S —
a4+ —-1

(4) Given the values AE, 7 and i, we are looking for the time period 7 which is required to
accumulate the final amount AE by periodic payments of an amount  at a given constant
rate of interest i. In this case, we obtain

E I .

An~;:(1+z)”—1
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which can also be written as

A+ =1+4E. 1

r.

Taking the natural logarithm on both sides, we obtain
Y] E i
In(l+)"=mn{1+4,--).
r
Solving the latter equation for » and using the equality In(1 +i)" = n - In(1 4 i), we get

r

(1447 1)
T Im(+0)

(2.6)

(5) Given the values AF, n and 7, we wish to determine the accumulation factor g resp. the
per annum rate of interest i = g — 1. This is, from a mathematical point of view, a more
complicated problem. First, from formula (2.4), we obtain

Ay -i=r-[A+)"—1],
This yields
A+ -A=r - q+i)"—r
re(L4D)"—Ay - (14D + My —r) =0

E E
(1+i)”—ﬁ-(1+i)+(ﬂ—l) =0.

r r
Now, the problem corresponds to finding the zeroes of a polynomial of degree » in the
variable ¢ = 1 + i and in general, we cannot solve this equation for g. Therefore, we
have to apply approximation methods for finding a root of this equation greater than one
(remember that only values ¢ = 1 +i > 1 are of interest). In Chapter 4, we discuss
some procedures for finding a zero of a function numerically. However, there is another
difficulty for big values of n: possibly there is no uniquely determined solution ¢ > 1.

Similarly to problems of type (3), (4) and (5), we can formulate the corresponding problems,
where the amount of an annuity AE has been replaced by the present value of an annuity P,]::.
As an example, for the problem of type (3), this gives the equality

i
B L — 2.7
T Ut @7)
Analogously, one can formulate the corresponding problems for the case when the payments
are made at the beginning of the years. This is left as an exercise for the reader. We illustrate

the solution of the basic problems mentioned above by some examples.

Example 2.28 What is the principal required now in order to be able to withdraw 3,000
EUR at the end of each of ten years (beginning at the end of the first year) so that no money
is left over after these ten years provided that a rate of interest of 5 per cent p.a. is offered?
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This question is the same as asking for the present value of an annuity PFO with » = 3,000
and i = 0.05. We obtain

1—Q+n10 1— (14005710
: & = 3,000 1-d+005977 23,165.20 EUR,

PE =
=7 i 0.05

i.e. the principal required now to ensure an annual payment of 3,000 EUR at the end of each
year over a period of ten years is 23,165.20 EUR.

Example 2.29 Mrs Thrifty intends to accumulate an amount of 25,000 EUR until the end
of a period of 12 years. If she wants to make annual payments at the end of each year
and the bank offers a rate of interest of 6.25 per cent p.a., what is the required annual

payment r?
This is a problem of type (3) with n = 12, A]f:z = 25,000 and i = 0.0625, and so we
obtain
] 0.0625
r=Ab . 25000 ——————_ —1,460.43 EUR,
(1+d12-1 (1+0.0625)12 — 1

i.e. the annual amount that Mrs Thrifty has to put into an account at the end of each of 12
years to reach her goal is 1,460.43 EUR.

Example 2.30 Assume that Kevin has 2,000 EUR left over at the end of each year and that
he puts this amount into a savings account. How long does Kevin need in order to accumulate
20,000 EUR in his account provided that the rate of interest is 5.5 per cent p.a.?

This is a problem of type (4), and so we apply formula (2.6) with » = 2,000 EUR, 4F =
20,000 EUR and i = 0.055. This yields

Cn(lAE D) In (1+ 20,000 $253

7

In(14+i) In(1 + 0.055)

) ~ 8.185,

i.e. after approximately 8.2 years Kevin has accumulated 20,000 EUR in his account.

Several payments per year

Next, we briefly discuss the modifications if there are several payment and interest periods
per year. Remember that we assume that payment periods are identical to interest periods.
As before, denote by m the number of payment periods per year, and 4, ,, and Py, (either
with superscript ‘E”’ or ‘B’) denote the amount of the annuity resp. the present value of the
annuity provided that the payments go over n years with m payment periods per year. In this
case, the amount of the annuity is given by

)n~m _ 1
i
m

(1+

S|~

E _
An’m_r~
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Furthermore, the present value P,]::’m of the annuity is given by

1— (14 L)™""
P,}im:iﬂi( + ) .

I~

The corresponding values for the case when payments are made at the beginning of each
period are obtained as

i\ (1+£)"" -1
’ m
and

n,m

i\ 1= (14 4™
pB =r-(1+i>~7(+.m) .
m

Example 2.31 Claudia wants to put aside 100 EUR at the end of each month for a period
of seven years. The bank offers a rate of interest of 3.5 per cent p.a. compounded monthly.
What is the amount in Claudia’s account after seven years?

This is a problem of type (1), and Claudia needs to determine the amount of an annuity A]73,12,
where payments are made at the end of each period. Using » = 100 EUR and i = 0.035,
she obtains

84
(1+i T2y <1+o.{)235) _1
Ap=r 12— —100- o5 —9,502.83 EUR,
2 V)

i.e. after seven years, there are 9,502.83 EUR in Claudia’s account.

2.3.3 Loan repayments, redemption tables

One application of periodic payments is loan repayments. First, we again consider annual
payments and later we briefly discuss the modifications in the case of several payments
per year. We use the following notations for year k:

Dy current amount of the loan (i.e. the debt) at the end of year k,k = 1,2,...,n (more
precisely, after the payment at the end of year k), moreover let Dy be the initial amount
of the loan;

I interest payment on the loan at the end of the kth year, k = 1,2,...,n;
R, amortization instalment at the end of the kth year (i.e. the repayment on the loan),

k=12,...,m
Ay annuity of the kth year, i.e. the amount that is paid at the end of year k, 4y = Ry + I,
k=1,2,...,n.

A loan with a fixed rate of interest is said to be amortized if both principal (i.e. the amount
of the loan) and interest are paid by a sequence of payments made over equal time periods.
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We consider the following two variants of loan repayments:

(1) repayment by equal annuities (i.e. in each period a constant amount of amortization
instalment and interest is paid);

(2) repaymentby equal amortization instalments (i.e. the repayments on the loan are identical
in all years, but different payments are made over the years, since interest payments vary
and therefore annuities are different).

Equal annuities

In this case, we assume that the annuity is the same in each year, i.e.
Ay =Ir + R = A4, where 4 is constant.

First, we mention that the present value of all payments for paying off a loan corresponds
to the present value P,]:: of periodic payments at the end of each year. Therefore, finding the
annuity 4 corresponds to the problem of finding the annual payment if a rate of interest i,
the duration n of paying off the loan and the present value of an annuity are known, and
payments are made at the end of each year. Thus, it corresponds to a problem of type (3) in
the previous subsection, and we can apply formula (2.7) with Pf =Dgandr = 4:

i

A=Dy ——
1—(14n

(2.8)
The current amount Dy of the loan at the end of year k£ can be obtained as follows. First,
if no payments would be made, the amount of the loan at the end of k£ years would be equal
to DI’; =Dy - (1+i)* according to formula (2.1). Second, the annual payments at the end
of each year result after £ years in the amount A]];: of an annuity with payment A4 at a rate of
interest i for k£ years according to formula (2.4). Then the remaining amount of the loan at the
end of year k (i.e. after the payment in year k) is given by the difference of the two amounts
D} and 4, i.e.

CA+F -1

Dy =D —AF =Dy- (1 +i)f —4 l

(2.9)

In formula (2.9), we can replace the initial amount of the loan Dy using formula (2.5) with

r = A and obtain
1—(1+i)™" (1+ikF -1
i i

Dr=A- C(1+dF -4

:';.[(1+i)k—(1+i)_”+k—(1+i)k+1]

which gives

1— (140t
—

Dy=4 (2.10)

For k = 0, formula (2.10) has the same structure as formula (2.5) for finding the present value
of an annuity P,]::. However, the following comment has to be added. When computing the
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annuity 4 according to formula (2.8), in practice this value is rounded to two decimal places.
This leads to the situation that the annuity of the last year is usually a bit larger or smaller
than the rounded value. Therefore, usually formula (2.9) is applied to the rounded value 4,
and formula (2.10) is only exact when the same annuity is paid in all years. (Alternatively,
one can use a slightly different annuity in the last period so that D, = 0 is obtained.)

The interest payment I; at the end of year k can be obtained as follows by taking
into account that interest has to be paid on the current amount Dy_; of the loan at the
end of year k — 1:

14+ k11
Iksz_1~i=[D(y(l—i-i)k_l—A-Hl),:|~i

1
=Dg-i- I+ —4- Q4+ +4=4—A-Do-i)- (14"

Because I = A — Ry, we immediately get the repayment R; on the loan in year k from the
last formula:

Ry =(4—Dg-i) (1+i)F 1L

From the formula before last we again see that /1 = Dy - i. As a conclusion, the amortization
instalments {R;} form a geometric sequence with the first term

Ri=A—Dg-i
and the quotient ¢ = 1 + 7, i.e. we have
Ry =Ry - (1 +)F 1.

It is worth noting that in the case of paying in each year exactly the same annuity, the formulas
for determining /; and Ry, can be simplified as follows:

I =Dg1-i=A-(1—- 1+,

Rp=A—-L =4 -1+
It should be mentioned again that, since all values are rounded to two decimal places, there
may be slight rounding differences depending on the formula used.

In the case of m payments per year and m interest payments, we have to replace the per annum
rate of interest i again by the rate of interest i/m per period and the exponent » (which is
equal to the number of compoundings) by - m. This yields an annuity 4), to be paid in each
of the m payment periods per year

= ()

Similarly, the two replacements concerning the interest per period and the number of payment
periods have to be made in the other formulas.
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Equal amortization instalments

In this case, we assume that the repayment on the loan is the same in each year, i.e.

R; =R, where R is constant.

This means that in each year the repayment on the loan is

=

R

Therefore, the remaining amount of the loan at the end of year £ is given by

D k
Dk=D0—k~—0=D0~(1—7).
n n

The amounts {Dy} form an arithmetic sequence with difference —Dyg/n. In period k, interest
has to be paid on the current amount of the loan at the end of period £, i.e.

. k—1Y .
Iy =Dy _1-i=Dg-|1-— - 1.

n
Thus, the annuity 4, of year & is given by
Dy .
Ak=Rk+Ik=7+Dk,1~l
D k—1 D
:—0+D0-<1——)-i:—o-[l—i-(n—k—i-l)-i].
n n n

In the case of m payment and interest periods per year, we have to replace i by i/m and n
by n - m. A summary of the payments and the present values of the loan can be given in a
redemption or amortization table. It contains for each period k:

(1) the current amount of the loan at the beginning (D _1) and at the end (Dy) of the period;
(2) the interest payment Ii;

(3) the amortization instalment Ry;

(4) the annuity (sum of interest payment plus amortization instalment), i.e. Ay = Iy + Ry.

We illustrate the two types of loan repayments by the following examples.

Example 2.32 Tom intends to amortize a loan of 10,000 EUR at a rate of interest of
7 per cent p.a. in six years. He decides to make annual equal payments at the end of each
year. Using Do = 10,000 EUR, i = 0.07 and » = 6, the annual annuity is obtained as

i 0.07

A=Dy- —————— =10,000 ———
I— (140" 1—(1+0.07)°°

=2,097.96 EUR.
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For the first year (i.e. k = 1), we get

I = Do - i = 10,000 - 0.07 = 700.00 EUR,
Ry =A— I =2,097.96 — 700.00 = 1,397.96 EUR,
Dy = Do — Ry = 10,000 — 1,397.96 = 8, 602.04 EUR.

For the second year (i.e. k = 2), we get

L =D -i=8,602.04.0.07 = 602.14 EUR,
Ry =A— 1L =2,097.96 — 602.14 = 1,495.82 EUR,
Dy =Dy — Ry = 8,602.04 — 1,495.82 = 7,106.22 EUR.

Notice that the amount D, can also be directly determined by using formula (2.9)
(without computing D first). A complete redemption table is given as Table 2.1. It is worth
noting that in the last year, the annual annuity is one cent lower than in the other years which
is caused by rounding the value of 4 to two decimal places. Applying the given formulas,
we obtain Rg = 1,960.71 EUR but Ds = 1,960.70 EUR. Therefore, one cent less is paid in
year six.

Table 2.1 Redemption table for Example 2.32 (equal annuities, annual payments)

Period Current amount  Interest ~ Amortization — Annuity Amount

(vear) of the loan at instalment of the loan
the beginning at the end

k Dy I Ry A Dy

1 10,000.00 700.00 1,397.96 2,097.96  8,602.04

2 8,602.04 602.14 1,495.82 2,097.96  7,106.22

3 7,106.22 497.44 1,600.52 2,097.96  5,505.70

4 5,505.70 385.40 1,712.56 2,097.96  3,793.14

5 3,793.14 265.52 1,832.44 2,097.96 1,960.70

6 1,960.70 137.25 1,960.70 2,097.95 0.00

Example 2.33 The Happy family have raised a mortgage on their house. They can repay
the loan of 120,000 EUR at a rate of interest of 8 per cent p.a. over a period of 10 years. They
decide to pay quarterly rates. This means that there are n- m = 10 - 4 = 40 payment periods.
The quarterly annuity is obtained as

z
Ay=Dy- ——
4 1— (1 T i) n-m
0.08
- 0.02
=120,000- — 4% = 120,000 - ———— = 4,386.69 EUR.
0.08 —10-4 1 —1.02-40

Table 2.2 is a redemption table that includes the corresponding values after each year (i.e. the
corresponding amounts for periods 4, 8, . . . 40) to give an overview on the payments. As an
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Table 2.2 Redemption table for Example 2.33 (equal annuities, quarterly payments)

Period Amount of Interest Amortization — Annuity Amount
(quarter) the loan at instalment of the loan
the beginning at the end

4k Dy 3 Tra Ry 4 4, Dy 4

4 113,919.93 2,278.40  2,108.29 4,386.69 111,811.64

8 105,230.38 2,104.61 2,282.08 4,386.69 102,948.30
12 95,824.54 1,916.49  2,470.20 4,386.69 93,354.34
16 85,643.34 1,712.87  2,673.82 4,386.69 82,989,52
20 74,622.89 1,492.46  2,894.23 4,386.69 71,728.66
24 62,694.00 1,253.88  3,132.81 4,386.69 59,561.19
28 49,781.78 995.64  3,391.05 4,386.69 46,390.73
32 35,805.19 716.10  3,670.59 4,386.69 32,134.60
36 20,676.47 413.53 3,973.16 4,386.69 16,703.31
40 4,300.66 86.01 4,300.66 4,386.67 0.00

illustration, we compute some of the values given in Table 2.2. It is worth emphasizing that
we have to adapt the formulas given for the annual payments. At the end of the second year,
8 payments have been made. Denoting by the index pair (k, m) the mth period in the kth year,
we get for period 8:

i\ 241 ; i\ 241
Roa=Ri - [1+2% (4 D). (14
24 =811 <+4) (“ 0 4) (*4)

= (4,386.69 — 120,000 - 0.02) - 1.027 = 1,986.69 - 1.027 = 2,282.08 EUR,
L4 =A)—Rys=4,386.69 — 2,282.08 = 2,104.61 EUR,

.\ 24 i\24
1+ 57—
D24=D0-<1+i> _Ait'%
5 4 :T

1.028 — 1
= 120,000 - 1.02% — 4,386.69 - o0 = 102, 948.30 EUR.

Similarly, at the end of the fifth year, 20 payments have been made. We get for period 20:

54-1
Rs4 =Ry, - (1 + i) =1,986.69 - 1.02!° = 2, 894.23 EUR,
Isq = Ay — Rs4 = 4,386.69 — 2,894.23 = 1,492.46 EUR,

.\ 54 i34
1+3) —1
Dsg4 =D0~(1 +1> —AQ~7( 42
4 7

20 _

1.0220 — 1
= 120,000 - 1.02%2° — 4,386.69 - o0 = 71,728.66 EUR.

Notice that for the computation of Rs4, amount Rq; has been taken from the previous
computation of amount R 4. Again, the annuity of the last period is a bit smaller than the
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annuities in the previous periods since the amount of the loan at the end of period 39 is

-\ 39 i
i 1+
D10,3=D0~(1+Z> —AQ~(47

39 _

023 —1
= 120,000 - 1.02%° — 4,386.69 - o0 = 4,300.66 EUR,

and the interest payment in period 40 on the remaining loan is Ijo4 = Dio3 - i/4 =
86.01 EUR.

Example 2.34 The Young family intend to repay a loan of 9,000 EUR over a period of
six years by equal amortization instalments at the end of each year. The rate of interest on
the loan is 7.5 per cent p.a. The complete redemption table is given as Table 2.3. We again
compute only some of the values given in Table 2.3. For the second year, we get

Dy 9,000
Ry=R=—2~— o~ = 1,500 EUR,

1 1
I, =Dy - (1 — 7) -i=19,000 - (1 — E) -0.075 = 562.50 EUR,
n
2 2
D, =Dy (1 — 7> =9,000 - (1 - g) = 6,000 EUR.
n
Reminding ourselves that R4 = R, we get for the fourth year
3\ . 3
It4=Dy-[1——)-i=9,000-(1— 3 -0.075 = 337.50 EUR,
n

4 4
D4y =Dy - (1 - 7> = 9,000 - (1 - g) = 3,000 EUR.
n

Table 2.3 Redemption table for Example 2.34 (equal amortization instalments)

Period ~ Amount of Interest  Amortization Annuity Amount

(vear) the loan at instalment of the loan
the beginning at the end

1 9,000.00 675.00 1,500.00 2,175.00  7,500.00

2 7,500.00 562.50 1,500.00 2,062.50  6,000.00

3 6,000.00 450.00 1,500.00 1,950.00  4,500.00

4 4,500.00 337.50 1,500.00 1,837.50  3,000.00

5 3,000.00 225.00 1,500.00 1,725.00 1,500.00

6 1,500.00 112.50 1,500.00 1,612.50 0.00
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2.3.4 Investment projects

The considerations about periodic payments are also useful for evaluating a planned invest-
ment project or for comparing several alternatives. In this subsection, we discuss the following
two methods:

(1) method of net present value;
(2) method of internal rate of return.

In both methods, the expected costs and returns are considered for a couple of years. For
further considerations, we introduce the following notations:

n considered time period (duration) of the project in years;

Cy (expected) costs connected with the project in year k (k =0, 1,...,n);

Ry (expected) returns in year k (k =0, 1,...,n), usually Ry = 0;

By =Ry — Cr  (expected) balance inyear k (k =0,1,...,n);

i per annum rate of interest (at which the company can invest money
otherwise).

In the following, we always assume that the balances By for year & are taken into account at
the end of the corresponding year. Moreover, we assume that the rate of interest i is constant
over the years. However, using the comments with variable rates of interest (see part about
compound interest), one can immediately adapt the given formulas to this case.

Method of net present value

The idea of this method is to compare the present values of the expected balances over the
years. The net present value NPV is defined as

n
NPV = ZBk SA+n7F
k=0

=By+B1-(1+) " +B -1+ 2+...4+B,- 1+ (2.11)

In the above formula, By, - (1 + i)~ gives the present value of the balance By, (i.e. arising at
the end of year k and discounted to the time of the beginning of the project). Factor (1 4 )%
is the reduction factor applied in year k for finding the present value of the kth balance.
Finally, the net present value is the sum of the present values of all the expected balances
within the considered time period of n years.

If the net present value NPV is positive, the project is advantageous. In the case of a negative
net present value, the project is not recommendable. If several investment possibilities are
compared, the variant with the highest net present value has to be chosen, provided that this
value is greater than zero.

Example 2.35 A company can open a project which is going over a period of six years.
The expected costs and returns are given in the second and third columns of Table 2.4.
Moreover, the rate of interest at which the company can invest money otherwise is equal
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Table 2.4 Net present value for the investment project in Example 2.35

Year Costs Returns  Balance Reduction factor ~ Present value
k Cy Ry By A+i* of balance By,
0 160,000 0 —160,000 1.000000000 —160,000.00
1 10,000 45,000 35,000 0.914731192 32,110.09
2 12,000 60,000 48,000 0.841679993 40,400.64
3 15,000 67,000 52,000 0.772183480 40,153.54
4 16,000 74,000 58,000 0.708425211 41,088.66
5 25,000 55,000 30,000 0.649931386 17,888.02

NPV: 11,490.02

to 8 per cent p.a. We apply the method of net present value to evaluate whether the
intended project is recommendable. In order to determine NPV according to formula (2.11),
we compute first the balance for each year (column 4) and then the discounted present
value of each balance (column 6). Moreover, the reduction factor (1 + i)~ which has to
be applied for the corresponding year is given (column 5). The sum of the present values
(NPV = 11,490.02, see last row) is positive. Therefore, the company decides to implement
the project.

Method of internal rate of return

This method assumes that the sum of the present values of the costs over the years is equal
to the sum of the present values of the returns. In other words, it is assumed that the net
present value is equal to zero. From this condition the rate of interest i (i.e. the internal rate
of return) is determined and compared with the expected minimum rentability ». If i > r,
then the project is advantageous, since it has a higher internal rate of return. In the case of
i < r, the project is rejected. If several possible investment projects have to be compared,
the project with the highest internal rate of return is chosen, provided that i > r.

Example 2.36 A project which is going over two years has the (expected) costs C; and
returns Ry at the end of year & given in Table 2.5. Moreover, the company expects a minimum
rentability of 7.5 per cent p.a.
We apply the method of internal rate of return. From NPV = 0, we obtain

—35,000 + 17,500 - (1 +4)~' 422,000 (1 +)2 =0
which yields after multiplying by —(1 + i)? the equation

35,000 - (1 4 i)% — 17,500 - (1 + i) — 22,000 = 0

or equivalently

1 22
1+ —= - (1+i)—==0.
149 2(—!—1) 35
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Table 2.5 Data for the investment
project in Example 2.36

Year Costs  Returns Balance

k Cy Ry By

0 35,000 0 —35,000
1 6,000 23,500 17,500
2 9,000 31,000 22,000

This is a quadratic equation in the variable ¢ = 1 + i, and we obtain the following two
solutions for ¢:

1 1 2
— -+ — 4+ 22 ~ 025+ 0.83130706 ~ 1.08131
N=37TV161 35 + ’

g2 ~ 0.25 —0.83130706 ~ —0.58131.

From ¢g; &~ 1.08131 we obtain approximately the rate of interest p = 100 - (q; — 1) ~ 8.131
per cent p.a. The second solution g; is negative and therefore not of interest, since it leads
to a negative rate of interest. Because i ~ 0.0813 > r = 0.075, the project appears to be
worthwhile.

Finally, we consider an example comparing both methods.

Example 2.37 An enterprise has the possibility to realize two projects 4 and B.
Both projects are going over two years and the expected costs and returns are given in
columns 2 and 3 of Table 2.6. Alternatively the firm can invest money at a rate of interest of
8 per cent p.a.

We apply both methods to decide whether one of the projects can be chosen and if so which
of the projects is better. Based on the balance Bj for the corresponding year k£ (column 4),
in column 5 the reduction factors for computing the present values of the balances for each
of both projects are given (column 6). Summing up the present values of the balances, we
get a net present value of 1,242.80 EUR for project A and a net present value of —754.46
EUR for project B. According to the method of net present value, project A is chosen, since
only project A has a positive net present value. When applying the method of internal rate
of return, we get for project A from NPV = 0:

—36,000 - (14 7)% + 18,000 - (1 + i) + 24,000 = 0
which can be written as

1

A+i—2=0
2 KT

(1+i)? -

This quadratic solution has two solutions in the variable ¢ = 1 + i, namely

1 [3+32 1
q=g+ ,/% ~ - +0.853912563 ~ 1.103912563

|
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Table 2.6 Data for projects 4 and B given in Example 2.37

Year Costs  Returns Balance Reduction factor Present value

k Ck Ry By A+i* of balance By,
Project A
0 36,000 0 —36,000 1.000000000 —36,000.00
1 4,000 22,000 18,000 0.925925925 16,666.67
2 7,000 31,000 24,000 0.857338820 20,576.13
NPV 1,242.80
Project B
0 75,000 0  —75,000 1.000000000 —75,000.00
1 12,000 32,000 20,000 0.925925925 18,518.52
2 16,000 81,000 65,000 0.857338820 55,727.02
NPV —754.46

and
1
g~ i 0.853912563 < 0.

Since the second solution leads to a negative rate of interest, we obtain from the first solution
the internal rate of return i &~ 0.1039, or equivalently p &~ 10.39 per cent. Correspondingly,
for project B we get from NPV = 0

—75,000 - (1 4 #)2 + 20,000 - (1 + i) + 65,000 = 0

which yields the quadratic equation

4 13
1+)2——-(14i)——==0.
(1+19) 15(—i—z) 1

We obtain the two solutions in the variable g = 1 + i

_2 +‘/4+195 ~ 2 4 0.940449065 ~ 1073782398
=15 25 15 -

and

%

9 12—5 — 0.940449065 ~ —0.807115731 < 0.

The first solution yields the internal rate of return of i &~ 0.0738, or correspondingly
7.38 per cent.

Using the method of internal rate of return, we use 7 = 0.08 as minimum rentability. We have
found that project A leads to an internal rate of return of 10.39 per cent while project B yields
an internal rate of return of only 7.38 per cent. By the method of internal rate of return,
project A is also preferred, since only project A has an internal rate higher than the minimum
rentability of 8 per cent. So both methods yield the same recommendation concerning the
possible realization of one of the projects.
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2.3.5 Depreciation

The book value of a machine or an industrial facility decreases over the years. Next, we
discuss two variants of depreciation on machinery, namely linear depreciation and degressive
depreciation.

Linear depreciation

In the case of linear depreciation, the depreciation rate D per year is constant. Denoting by
By the initial book value (i.e. the cost of the machine or facility) and by B, the final value
after the useful life of the machinery, then the depreciation rate D per year is obtained as

D= BO_Bn’
n

and we obtain the book value By after k years as follows:
By=By_1—D=B;—(k—1)-D.

The book values {By} form an arithmetic sequence with difference —D.

Example 2.38 A facility has been bought for 50,000 EUR. The useful life is six years, and
the final book value is 8,000 EUR. Therefore, the annual depreciation rate is

_ B,—By _ 50,000 — 8,000

D = = 7,000 EUR.
n 6

We obtain the depreciation table given as Table 2.7.

Table 2.7 Depreciation table for Example 2.38 (linear
depreciation)

Year  Book value at  Depreciation  Book value

the beginning amount at the end

k By—1 Dy, By

1 50,000 7,000 43,000
2 43,000 7,000 36,000
3 36,000 7,000 29,000
4 29,000 7,000 22,000
5 22,000 7,000 15,000
6 15,000 7,000 8,000

Degressive depreciation

We discuss two types of degressive depreciation, namely arithmetic-degressive depreciation
and geometric-degressive depreciation. We begin with the arithmetic-degressive depre-
ciation. This type of depreciation is characterized by a linearly decreasing depreciation
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amount, i.e.
Dy =Dy —d.
Here we consider only the special case of D, = d, i.e. the last depreciation amount is equal

to the annual reduction in the depreciation amount (digital depreciation). The depreciation
amounts {Dy} form an arithmetic sequence with the first term

Di=n-d
and the difference —d. The kth depreciation amount in dependence on D; and d is given by
Dy=D1—(k—1)-d.
The book value By, at the end of year £ is given by
. k
By :Bofl;:Di =Bo— 5 - D1+Dp)

k k
=Bo— 5 [nd+m—k+1-dl=By— > -Qn—k+1)d

Next, we deal with geometric-degressive depreciation. This type of depreciation is character-
ized by a constant depreciation percentage p with i = p/100 in comparison with the current
book value, i.e. the depreciation amount in year & is given by

Dy=By_1-i, k=12,...,n
In this case, we get the book value

By =By (1—iF (2.12)

at the end of year k. Thus, the book values {B;} form a geometric sequence, and the
depreciation rate in terms of By and i for the kth year is given by

Dy =Bj_1-i=By-(1—-f 1.0
Typically, the initial book value By (i.e. the cost of the machine or a facility) and the book

value at the end of the useful life B, are given. Then the depreciation percentage p resp. i are
obtained from formula (2.12) for £ = n as follows:

/B
p=100-i with i=1- 722,
By

Notice that in the case of geometric-degressive depreciation, a final book value of B, = 0 is
not possible.
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Example 2.39

The final book value Bg is 6,000 EUR. Value i is obtained as

. o Bs 4 6,000
i=1- = =1- ~ 0.211119161.
Bo 40,000

We present a depreciation table for the case of geometric-degressive depreciation as Table 2.8.
For instance, the values for the third year are obtained as follows:

By = By - (1 — i)? ~ 40,000 - 0.788880838% = 24, 893.32 EUR,
D3 =By (1 —i)?-i=5,25546 EUR,

B3 =By - (1 —i)® =19,637.86 EUR.

Table 2.8 Depreciation table for Example 2.39
(geometric-degressive depreciation)

Year Book value at Depreciation Book value
the beginning amount at the end
k By_y Dy By
1 40,000.00 8,444.77 31,555.23
2 31,555.23 6,661.91 24,893.32
3 24,893.32 5,255.46 19,637.86
4 19,637.86 4,145.93 15,491.93
5 15,491.93 3,270.64 12,221.29
6 12,221.29 2,580.15 9,641.14
7 9,641.14 2,035.43 7,605.71
8 7,605.71 1,605.71 6,000.00

A company buys a machine for 40,000 EUR and intends to use it for 8 years.

EXERCISES

2.1 (a) An arithmetic sequence {a,} has a first term a; = 15 and difference d = 8. Find

the term aqo;.

(b) For an arithmetic sequence, the terms ag = 21 and ajo = 25 are known. Find

difference d and the terms a; and a,,.

2.2 The sequence {a,} has

(@
(b)
(©
23 (a)

n
a,,:3+§, neN.

Is sequence {a,} decreasing or increasing?
Is {a,} a bounded sequence?

Find a recursive formula for this sequence.

Let {a,} be a geometric sequence with the ratio of successive terms ¢ = —2/3
and the term a7 = 64/243. Find the first term a;. Which of the terms is the first

with an absolute value less than 0.01?
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24

2.5

2.6

2.7

2.8

2.9

2.10

(b) A geometric sequence has the terms a; = 6 and a7 = 2/81. Find the first term
a; and the ratio of successive terms g.

Given are the sequences

{an}={%—5}, {bn}={7‘22”} and {cn}:{%}, nenN.

n

Are these sequences monotone and bounded? Find the limits of the sequences if they
exist.

Find the limits of the following sequences if they exist (n € N).

2n" an* + n’
(@ {an} {(n+1)"}’ () {ba} {3n3+4n
(¢) {cu} withe, = c4—1/2. Check it forc; = 1 and ¢ = 4.

}, aeR;

A textile company starts in its first year with an output of 2,000 shirts and 1,000
trousers. The production of shirts increases by 500 shirts every year, and the number
of trousers rises by 20 per cent every year.

(a) How many shirts and trousers are produced in the second, third and tenth years?
(b) What is the total output of shirts and trousers after 15 years? (Use given formulas.)

Find the limit s = lim s, for the following series {s,}:
n—0o0

n n

(_2)k+1 . 1
(@) Sn=257k, () S"sz

k=1 k=1
(Hint: find a formula for s,.)
Check with respect to the real numbers x whether the following series {s,} converge:

no_k nor2

@ =Y ® =Y

k=1 k=1

Consider the following series {s,} with:

n nog2
@ s =k§(—1>k-4("k—’§2); ) s=> K,

k=1
a k K a ko1

) k) d o= [DF+¢].

(C) s kgl (k 1> ( ) s kgl k]

Find the first four terms of the series and calculate the partial sums s1, 52, 53 and s4.
Check whether the series converge.

Which is the best investment for a family wishing to invest 10,000 EUR for 10 years:

(a) an interest rate of 6 per cent annually for 10 years;

(b) aninterest rate of 7 per cent for the first 5 years and 5 per cent for the next 5 years;

(c) an interest rate of 7.5 per cent for the first 2 years, then 6 per cent for the next
4 years and 5.5 per cent for the last 4 years?
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A grandfather wants to give his grandson 100,000 EUR at his thirtieth birthday. How
much does he need to invest on the grandson’s eighteenth birthday if the bank offers
a rate of interest of 6 per cent p.a.?

What interest rate will turn 2,000 EUR into 3,582 EUR after ten years?
Tom invests 10,000 EUR. The bank offers a rate of interest of 5 per cent p.a.

(a) Whatis the amount after 10 years when interest is compounded annually, quarterly
and monthly, respectively?
(b) Find the effective rate of interest i.gr for quarterly and monthly compounding.

Ann has given 5,000 EUR to a bank on 20 October 2003, and she wants to get the
money back on 20 April 2006. What is the amount at the end if the bank has credited
interest of 3 per cent p.a. compounded annually?

You decide to put away 200 EUR every month. Bank A offers simple interest of 6 per
cent per annum, and bank B offers 0.48 per cent per month compounded monthly.
After making 12 deposits, how much money would you have at the end of one year
in banks A and B, respectively?

(a) The deposits are made at the same time the interest is credited (i.e. at the end of
each month).

(b) The deposits are made at the beginning of each month and the interest is credited
at the end.

A man wants to buy a car for 24,000 EUR. He decides to pay a first instalment of
25 per cent and the remainder with a bank loan under the following conditions. The
borrowed sum will be paid back in one payment at the end of three years. During
these 36 months interest is to be paid monthly at a per annum rate of 4.8 per cent. At
the same time a sinking fund has to be set up in order to repay the loan. The man has
to make monthly deposits into his sinking fund, which earns 3 per cent interest per
annum compounded monthly.

(a) Find the sinking fund deposit.
(b) How much money does the man need each month to pay the sum of deposit and
interest?

What is the annual deposit required to pay out 10,000 EUR after five years? Interest
of 5 per cent per annum is compounded annually.

(a) Findthe present value of an annuity atarate of 5 per cent p.a. and with a withdrawal
0f 6,000 EUR at the end of each of 15 years.

(b) How does the present value change if the withdrawal at the end of each month is
500 EUR, assuming an ordinary annuity at 5 per cent p.a.?

On 1 January 2015, Peter will retire. He has paid an instalment of 20,000 EUR on

1 January 2000 and after that, he makes annual payments of 2,000 EUR every year

up to 2014 on 1 January. The bank offers 5 per cent p.a. over the whole period.

(a) What is the amount on 1 January 2015?

(b) Beginning with 31 January 2015, Peter wants to make a monthly withdrawal of
500 EUR. What is the present value of the annuity after ten years? Interest is
compounded monthly at a rate of 5 per cent p.a.
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2.20

221

2.22

A family has raised a mortgage of 150,000 EUR on its house. It can amortize the
balance at 8.5 per cent p.a. for ten years.

(a) What are the annual payments? What is the total payment? Give a complete
redemption table with the current amount of the loan at the beginning and at the
end of each year, interest payment and amortization instalment for all the 10 years.

(b) Find the total payment if the family repays 15,000 EUR plus the interest on the
current amount of the loan every year (equal amortization instalments).

(¢) How many years does the family repay when the annual annuity is 4 = 18,000
EUR?

A project which is going over two years has the expected costs and returns at the end
of year £ (in EUR) given in the following table:

Year Costs  Returns
k Cr Ry

0 40,000 0
1 5,000 18,000
2 6,000 35,000

(a) Let the rate of interest be i = 5 per cent p.a. Check by means of the method of
net present value and by the method of internal rate of return whether the project
should go ahead.

(b) What are the percentage rates of interest (use only integers) for the project being
advantageous?

(c) In the third year, the costs for the project will be C3 = 6,000 EUR and the
returns R3 = 36,000 EUR. Is it now profitable to implement the project with
i = 5 per cent p.a.?

A transport company has bought a bus for 100,000 EUR. After eight years, the bus is
sold to another company for 44,000 EUR. Compare depreciation amounts and book
values at the end of each of the eight years when the company uses

(a) linear depreciation,
(b) arithmetic-degressive depreciation,
(c) geometric-degressive depreciation.



(c) ketabton.com: The Digital Library

3 Relations; mappings; functions of a
real variable

In this chapter, we deal with relations and a specification, namely mappings. Furthermore we
introduce special mappings that are functions of one real variable, and we survey the most
important types of functions of a real variable.

3.1 RELATIONS

A relation indicates a relationship between certain objects. A binary relation R from a set 4
to a set B assigns to each pair (a,b) € 4 x B one of the two propositions:

(1) aisrelated to b by R, in symbols: aRb;
(2) aisnot related to b by R, in symbols: aRb.

Definition 3.1 A (binary) relation R from a set 4 to a set B is a subset of the Cartesian
product 4 x B,i.e. R C 4 x B.

We describe a relation R in one of the two following forms: (a,b) € R <= aRbor R =
{(a,b) € A x B | aRb}. If R is a relation from set 4 to set 4, we also say that R is a relation
on 4.

Example 3.1 Let us consider a relation R € Z x Z on Z as follows. An integer i € Z
is related to integer j € Z by R if and only if they have the same remainder when divided
by 5. This means that e.g. 7 is related to 17 by R (i.e. 7R17) since both numbers give the
remainder 2 when dividing by 5. Similarly, 9 is related to 4 by R (for both numbers, we get the
remainder 4 when dividing them by 5), while 6 is not related to 13 (since 6 gives remainder 1,
but 13 gives remainder 3) and 0 is not related to 23 (since 0 gives remainder 0, but 23 gives
remainder 3). Moreover, relation R has the following two properties. First, every integer a
is related to itself (i.e. aRa, such a relation is called reflexive), and relation R is symmetric,
i.e. it always follows from aRb that bRa.
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Next, we give the notions of an inverse and a composite relation.

Definition 3.2 Let R C 4 X B be a binary relation. Then the relation
R ={(b,a)eBxA|(a,b)cR}CBxA

(read: R inverse) is the inverse relation of R.

The following definition treats the case when it is possible to ‘concatenate’ two relations.

Definition 3.3 Let 4,B,C besetsand R € 4 x B, S € B x C be binary relations.
Then

S oR ={(a,c) € A x C|there exists some b € B such that (a,b) € R A (b,c) € S}

is called the composite relation or composition of R and S.

The composition of two relations is illustrated in Figure 3.1. The element a € 4 is related to
the element ¢ € C by the composite relation S o R, if there exists (at least) one b € B such that
simultaneously a is related to b by R and b is related to ¢ by S. We emphasize that the sequence
of the relations in the composition is important, since the relations are described by ordered
pairs. Therefore, in general S o R # R o S may hold, and one can interpret Definition 3.3 in
such a way that first relation R and then relation S are used.

Figure 3.1 The composition S o R.
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The following theorem gives a relationship between inverse and composite relations.

THEOREM 3.1 Let4,B,Cbesetsand R € 4 x Band S C B x C be binary relations. Then
SoR '=RTos™

Theorem 3.1 is illustrated by the following example.

Example 3.2 Consider the relations
R={(xy)eR*|y=¢} and S={(xy) eR?|x—y<2}
We apply Definition 3.3 and obtain for the possible compositions of both relations
SoR={(x,y) eR? | ZzeRwithz=¢"Az—y <2}
= (& eR | —y=<2)
={(x,y) eR? |y >e" —2}
and
RoS={(xy) eR?*|ZzeRwithx—z<2Ay=¢)
={(x,y)) eR?|y>0Az=InyAx—Iny <2}
={xy) eR?|y>0Alny>x—2}
={(x,») eR? |y > &2}
The graph of both composite relations is given in Figure 3.2. Moreover, we get
SoR ' ={@x) eR|y>e —2),
(RoS) ! ={(,x) eR? |y > e}
We now illustrate the validity of Theorem 3.1. Using
R ={(0 ek |y=¢),
S'={pn eR? |x—y=<2),
we obtain
R l'oS 1 ={(,x)eR?|FZzeRwithz—y <2Az=2¢")
={ox eR & —y=<2)
={px) eR?|y>e —2)
and
STloR ' ={@,x) e R? |3z e Rwithy = Ax—z <2}
={,x)eR?|y>0Ax—Iny <2}
={»x)eR?|y>0Alny>x—2)
={0 eR |y=e?).
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(b) Ro S

Figure 3.2 The compositions S o R and R o S in Example 3.2.

3.2 MAPPINGS

Next, we introduce one of the central concepts in mathematics.

Definition 3.4 Let 4, B be sets. A relation f € 4 x B, which assigns to every a € 4
exactly one b € B, is called a mapping (or a function) from set 4 into set B. We write

f:4— B
or, if the mapping is considered elementwise:
a€Ar f(a) =beB.

The set 4 is called the domain of the mapping, and the set B is called the target.
For each a € 4, f(a) = b is called the image of a. The set of images of all elements of
the domain is called the range f (4) € B of the mapping.

A mapping associates with each element of 4 a unique element of B; the range f'(4) may be
a subset of B (see Figure 3.3). It follows from the above definition that a mapping is always
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Domain A Target B

Range
f(A)

|
T
- _

Figure 3.3 Mappingf : A — B.

a relation, namely a particular relation R such that, for each a € 4, there is exactly one pair
(a,b) € A x B with (a,b) € R. On the other hand, not every relation constitutes a mapping,
e.g. the relation

R={(x.y) e Ry xR |x=y%

is not a mapping. Indeed, for each x € R, \{0}, there exist two values y; = —./x and
y2 = 4/x such that (x,y;) € R and (x,y7) € R (see Figure 3.4).

Y

Figure 3.4 Relation R = {(x,y) € Ry x R | x = y?).
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Example 3.3 The German Automobile Association ADAC annually registers the
breakdowns of most types of cars in Germany. For the year 2002, the following values
(number of breakdowns per 10,000 cars of this type) for 10 types of medium-size cars with
an age between four and six years have been obtained (see ADAC journal, May 2003):
Toyota Avensis/Carina (TOY): 7.6, Mercedes SLK (MSLK): 9.1, BMW Z3 (BMWZ): 9.9,
Mazda 626 (MAZ): 10.2, Mitsubishi Carisma (MIT): 12.0, Nissan Primera (NIS): 13.8, Audi
A4/S4 (AUDI): 14.0, VW Passat (VW): 16.1, Mercedes C-class (MC): 17.5, BMW Series
3 (BMW3): 17.8. We should emphasize that we have presented the results only for the ten
most reliable cars in this report among the medium-size cars.

Assigning to each car type the rank (i.e. the most reliable car gets rank one, the car
in second place gets rank two and so on), we get a mapping f : Dy — N with
Dy = {TOY,MSLK, BMWZ,MAZ,MIT, NIS,AUDI, VW, MC, BMW 3}. Mapping f is given
byf : {(TOY,1),(MSLK,2),(BMWZ,3),(MAZ,4), (MIT,5), (NIS, 6), (AUDI, 7), (VW ,8),
(MC,9), (BMW3,10)}.

We continue with some properties of mappings.

Definition 3.5 A mapping f from 4 into B is called surjective if f(4) = B, i.e. for
each b € B, there exists (at least) an a € 4 such that f'(a) = b.

A surjective mapping is also called an onto-mapping. This means that every element in set
B is the image of some element(s) in set 4.

Definition 3.6 A mapping f from 4 into B is called injective if for all a1, a; € A the
following implication holds:

a # ay = f(a1) #f(a2)

(or equivalently, f(a1) = f(a2) = a1 = a2).

This means that no two elements of set 4 are assigned to the same element of set B.

Definition 3.7 A mapping f from 4 into B is called bijective if f is surjective and
injective.

A bijective mapping is also called a one-to-one mapping. The notions of a surjective, an
injective and a bijective mapping are illustrated in Figure 3.5.
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A B

Leon)

| r® b2

| »¢® b3

e by

A

(a) Relation f is (b) An injective but not
not a mapping surjective mapping g

(c) A surjective but not (d) A bijective mapping k
injective mapping h

Figure 3.5 Relations and different types of mappings.

Example 3.4 Consider the following mappings:
f:R— R with f(x) =x2
g:N—> N with g(x) =x2
h:R — Ry with A(x) = x?
k:Ry - Ry with k(x) = x?

Although we have the same rule for assigning the image f(x) to some element x for all
four mappings, we get different properties of the mappings f, g, # and k. Mapping f is not
injective since e.g. for x; = —1 and xo = 1, we get f(x1) = f(x2) = 1. Mapping f is also
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not surjective since not every y € R is the image of some x € Dy = R. For instance, for
y = —1, there does not exist an x € R such that x> = y.

Considering mapping g, we see that g is injective. For any two different integers x; and x»,
obviously the squares xf and x% are different, i.e. no two different natural numbers have the
same image. However, mapping ¢ is still not surjective since only squares of natural numbers
occur as image f (x). For instance, for y = 2, there does not exist a natural number x such
that x2 = y.

Mapping # is surjective since for each y € R, there exists (at least) one x € R such that
f ) =y, namely for x; = ,/y (and for x; = —,/, respectively), we get

fa ==y (@) =(y»?=y).
Mapping 4 is not injective for the same reason that mapping f was not injective. Considering
now mapping k, it is injective since any two different non-negative real numbers x; and x;

have different squares: x% # x%. Mapping k is also surjective since for any y € R, there
exists an x = ,/y > 0, such that

f&) =1 = (D =y.

Therefore, mapping £ is bijective.

Next, we define an inverse mapping and a composite mapping.

Definition 3.8 Letf : 4 — B be a bijective mapping. Then the mapping
f1:B—>4

(read: f inverse) which assigns to any b € B that a € 4 with b = f(a), is called the
inverse mapping of mapping f .

Definition 3.9 Letf : 4 — Bandg : C — D be mappings with f(4) € C. Then
the mapping

gof:4— D,

which assigns to any a € 4 a unique image (g o f)(a) = g(f(a)) € D, is called the
composite mapping or composition of f and g.

The above definition reinforces the concept of a composite relation for the case of mappings.
This means that for some a € Dy, mapping f is applied first, to give the image f(a). This
image is assumed to be an element of the domain of mapping g, and we apply mapping g to
f(a), yielding the image g (f'(a)). It is worth emphasizing that, analogously to compositions
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of relations, the order of the sequence of the mappings in the notation g o f is important, i.e.
‘g is applied after /.

Example 3.5 Consider the mappings f : 4 — 4 given by
{(1,3),(2,5),(3,3),(4,1),(5,2)}

and g : A — A given by
{(1,4),(2,1),(3,1),(4,2),(5,3)}.

For the ranges of the mappings we get
f) ={1,2,3,5} and gd) ={1,2,3,4}.

We consider the composite mappings f o g and g o f and obtain

Fop)=fg)=f@ =1, (fom@ =f1D)=3, (fog)B) =f1) =3,

(fog)® =fQ2) =5, (Fog)5) =fB3) =3,
(go M) =9(f(1)=9gB) =1, (gof)2)=9g()=3, (gof)B)=903) =1,
(gofN)4) =91) =4, (goNB)=92) =1

The composition g o f is illustrated in Figure 3.6.

5

Figure 3.6 The composite mapping g o f in Example 3.5.

For composite mappings g o f, we have the following properties.
THEOREM 3.2 Letf : 4 — Bandg : B — C be mappings. Then:
(1) If mappings f and g are surjective, mapping g o f is surjective.

(2) If mappings f and g are injective, mapping g o f is injective.
(3) If mappings f and g are bijective, mapping g o f is bijective.
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Example 3.6 Consider the following mappings:

f:R—> R with f(x) =3x+5;
g:R— R with g(x) =" + 1.

First, we show that both mappings f and g are injective. Indeed, for mapping £, it follows
from x1 # x; that 3x; + 5 # 3x2 + 5. Analogously, for mapping g, it follows from x; 7# x»
that e*! 4+ 1 # €2 + 1. Then mapping g o f* with

(GoNX) =g(f®) =gBx+5 =¥ 41

is injective as well due to part (2) of Theorem 3.2.

We can formulate a similar property for mappings as given in Theorem 3.1 for relations.

THEOREM 3.3 Letf : A — Bandg : B — C be bijective mappings. Then the inverse
mapping (f o g)~! exists, and we get

(fog)y =g lof

Finally, we introduce an identical mapping as follows.

Definition 3.10 A mapping [ : 4 — A with I(a) = a is called an identical mapping.

If for a mapping f : A — B the inverse mapping f~! : B — A exists, then
foft=fTtof=1,
where / is the identical mapping. This means that for each a € 4, we get

@) =" (f@) =a

3.3 FUNCTIONS OF A REAL VARIABLE

In this section, we consider mappings or functions f : 4 — B with special sets 4 and B,
namely both sets are either equal to the whole set R of real numbers or equal to a subset
of R.
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3.3.1 Basic notions

Definition 3.11 A mapping f* that assigns to any real number x € Dy C R a unique
real number y is called a function of a real variable. The set Dy is called the domain
of function f, and the set

Ry =fDy) = {y |y =fx), x € Dy}

is called the range of function f.

We write y = f(x),x € Dy. Variable x is called the independent variable or argument, and y
is called the dependent variable. The real number y is the image or the function value of x,
i.e. the value of function /" at point x. The domain and range of a function are illustrated in
Figure 3.7.

Y

a Dy = [a, b] b z
Figure 3.7 Domain and range of a functionf : Dy — Ry.
We also write
f:Df - R or f:Dr — Ry.
Alternatively we can also use the notation
[ A&y 1y =fG), x € Dy}.
Hereafter, the symbol ' denotes the function, and £ (x) denotes the function value of a certain

real number x belonging to the domain Dy of function /. To indicate that function f depends
on one variable x, one can also write f = f(x) without causing confusion.

A function ' : Dy — Ry can be represented analytically, graphically or in special cases by
a table presenting for each point x € Dy the corresponding function value y = f'(x) € Ry.
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We can use the following analytical representations:
(1) explicit representation: y = f (x);

(2) implicit representation: F(x,y) = 0;
(3) parametric representation: x = g(t), y = h(t); t € Dy = Dy.

In the latter representation, ¢ is called a parameter which may take certain real values. For
each value t € Dy = Dy, we get a point (x,y) withy = f(x).

Example 3.7 Let function f : R — R be given in explicit form by
Y= =x>+3x+2.
The corresponding implicit representation is as follows:

F(x,y)=x3+3x+2—y=0.

We emphasize that, from a given implicit or parametric representation, it is not immediately
clear whether it is indeed a function (or only a relation).

Example 3.8 Consider the parametric representation

x =rsint, y =rcost; t€[0,27]. 3.1
Taking the square of both equations and summing up, we get

x? -I—y2 =72 . (sin®t + cos?t) = r*
which describes a circle with radius 7 and point (0,0) as centre. Each point x € (—r,7)

is related to two values y; = ~/r2 —x% and y, = —+/r?2 — x2. Therefore equation (3.1)
characterizes only a relation.

The concept of bijective mappings can be immediately applied to a function of a real variable
and we obtain: if a function /' : Dy — Ry, Dy C R, is bijective, then there exists a function
f~1 which assigns to each real number y € Ry aunique real value x € Dy with

x=f"1).

Here it should be mentioned that, if Rr C R but Ry # R (in this case we say that Ry is a
proper subset of R), the inverse function of /' : Dy — R would not exist, since / would
not be surjective in that case. Nevertheless, such a formulation is often used and, in order
to determine f~!, one must find the range Ry (in order to have a surjective mapping) or,
equivalently, the domain D, of the inverse function of /.
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We write £~ ! Ry — Ror Ry — Dy. Alternatively, we can use the notation

T ={0x) |y =fx),x € Dy}

Since x usually denotes the independent variable, we can exchange variables x and y and
write

y=1"'

for the inverse function of function f with y = f (x). The graph of the inverse function f !
is given by the mirror image of the graph of function f with respect to the line y = x. The
graphs of both functions are illustrated in Figure 3.8. (In this case, function f is a linear
function and the inverse function £ ~! is linear as well.)

Figure 3.8 Graphs of functions f° andf_l.

Example 3.9 Let functionf : Ry — [4, 00) with
y=f@®=x"+4

be given. To determine the inverse function f ~!, we solve the above equation for x and obtain
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which yields

Interchanging both variables, we obtain the inverse function
y=f"w=vx-4

The domain of the inverse function f~! is the range of function f, and the range of
function f ! is the domain of function f, i.e.

fol = [4,00) and Rf—l =Ry.

Analogously to our previous considerations in this chapter, we define composite functions
of a real variable

gof:Df — R

with y = g(f(x)),x € Dy. Function f is called the inside function and function g is called
the outside function. If there exists the inverse function f ! for a function f, we have

flof=fof =1,
i.e.
y=fr@)) =) =x,

where / is the identity function. We illustrate the concept of a composite function by the
following examples.

Example 3.10 Let functions f : R — Rand g : R — R with
f)=3x—2 and gx) =x>+x—1

be given. We determine both composite functions f o g and g o f and obtain
Fog@=fg@) =, +x+1) =30 +x—1)—2=32" +3x -5

and
Gof)X) =g(f () =gBx—2) =(Bx—2)* + B3x—2) — 1 =9%? —9x + 1.

Both compositions are defined, since the range of the inside function is either set R

(function f) or a subset (function g) while in both cases the outside function is defined
for all real numbers.
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Example 3.11 Given are the functions ' : Dy — Rand g : Dy — R with
f®) =vx+1, Dy=[-1,00
and
g(x) = sin 3x, D, =R.
For the composite functions we obtain
(f 09)x) =/ (g(x)) =f(sin 3x) = V/sin 3x + 1
and
(G0N0 =g(f (@) = g(Wa+1) =sinGvx + 1),

Composition f o g is defined since the range R; = [—1, 1] is a subset of the domain Dy, and
composition g o f is defined since the range Ry = [0, 00) is a subset of the domain D,.

3.3.2 Properties of functions

Next, we discuss some properties of functions. We start with an increasing and a decreasing
function.

Definition 3.12 A function /' : Dy — R is increasing (resp. strictly increasing) on
an interval I C Dy if, for any choice of x; and x; in 7 with x; < x;, inequality

fx1) < f(x2) (resp. f(x1) < f(x2))
holds.

Obviously, a strictly increasing function is a special case of an increasing function. The latter
is also called a non-decreasing function in order to emphasize that there may be one or several
subinterval(s) of 7, where function f is constant.

Definition 3.13 A functionf : Dy — R is decreasing (resp. strictly decreasing) on
an interval I C Dy if, for any choice of x; and x; in I with x; < x;, inequality

fx1) = f(x2) (resp. f(x1) > f(x2))
holds.

A decreasing function is also called a non-increasing function. An illustration is given in
Figure 3.9, where function f is strictly increasing on the interval [, but strictly decreasing
on the interval .
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[ strictly f strictly
increasing on Iy decreasing on I,

Figure 3.9 Monotonicity of function f*: Dy — R.

We note that a function f : Dy — Wy, which is strictly monotone on the domain (i.e. either
strictly increasing on Dy or strictly decreasing on Dy, is bijective and therefore, the inverse
function f~! : W; — Dy exists in this case and is strictly monotone, too.

Example 3.12  We consider function f : Dy — R with

2

f(x):x—i—l'

This function is defined for all x # —1, i.e. Dy = R\ {—1}. First, we consider the interval
I = (—1,00). Let x1,x2 € I withx; < x. We get 0 < x; + 1 < xp + 1 and thus
2

f(xl):xH-l " 5Tl

=f(x2).
Therefore, function f is strictly decreasing on the interval /.

Consider now the interval I = (—oo, —1) and let x; < x» < —1. In this case, we first get
x1+1 <xp+1 < 0and then

fx) =

< — = .
x1+1 xy+1 f@x)

Therefore, function f is strictly increasing on the interval (—oo,—1). The graph of
function f is given in Figure 3.10.
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Figure 3.10 Graph of function /" in Example 3.12.

Definition 3.14 A function /' : Dy — R is said to be bounded from below (from
above) if there exists a constant C such that

fx)=C (resp. f(x) < O)

for all x € Dy. Function f is said to be bounded if f (x) is bounded from below and
from above, i.e.

f@l=C

forallx € Dy.

Example 3.13 We consider function f : R — R with
y=fx)=¢ -2

Function f is bounded from below since f(x) > —2 for all x € R. However, function f
is not bounded from above since f'(x) can become arbitrarily large when x becomes large.
Therefore, function f is not bounded.
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Example 3.14 We consider function f : R — R with
y=f(x) =3+ sin2x.

First, the function values of sin 2x are in the interval [— 1, 1]. Therefore, the values of function
f are in the interval [2, 4]. Consequently, for C = 4 we get |f (x)| < C forall x € R and thus,
function f* is bounded.

Definition 3.15 A function f/ : Dy — R is called even (or symmetric) if
f(=x) =f().

Function f is called odd (or antisymmetric) if
f(=x) =—f().

In both cases, the domain Dy has to be symmetric with respect to the origin of the
coordinate system.

An even function is symmetric to the y-axis. An odd function is symmetric with respect to
the origin of the coordinate system as a point. It is worth noting that a function f is not
necessarily either even or odd.

Example 3.15 We consider function f : R \ {0} — R with
3 1
fx)=4x" —2x+ —.
x
We determine f'(—x) and obtain
3 1 3 1
f(=x) =4(—x)" = 2(—x) + — = —4x” +2x — —
—x X
3 1
=—(4x" —2x+ - ) = —f(x).
x

Thus, function f is an odd function.

Example 3.16 Let function f : R — R with

fx) = 3x0 4+ x2
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be given. Then we obtain
[0 =30+ (=0 =%+ = ().

Hence, function f is an even function.

Definition 3.16 A function f : Dy — R is called periodic if there exists a number 7'
such that for allx € Dy withx+ T € Dy, equality f (x + T) = f'(x) holds. The smallest
real number 7 with the above property is called the period of function 1.

Definition 3.17 A function f : Dy — R is called convex (concave) on an interval
I C Dy if, for any choice of x; and x5 in / and 0 < A < 1, inequality

SOx1 4+ (1 —X)x2) < Af (1) + (1 —1)f (x2) (3.2
(resp. FOx1+ (1= M)x2) = A Gen) + (1 — A)f(x2)> (3.3)
holds.

If for 0 < A < 1 and x; # xp, the sign < holds in inequality (3.2) (resp. the sign > in
inequality (3.3)), function f is called strictly convex (strictly concave).

FAz + (1= Na)

Azy+ (1= Nae
Ae0,1]

Figure 3.11 llustration of a convex function f : Dy — R.

The definition of a convex function is illustrated in Figure 3.11. Function f is convex on an
interval / if for any choice of two points x; and x; from the interval and for any intermediate
point x from the interval [x1,x2], which can be written as x = Ax; + (1 — X)x2, the function
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value of this point (i.e. f(Ax; + (1 — A)x2)) is not greater than the function value of the
straight line through the points (x1,f(x1)) and (x2,f (x2)) at the intermediate point x. The
latter function value can be written as Af (x1) + (1 — A)f (x2).

Checking whether a function is convex or concave by application of Definition 3.17 can be
rather difficult. In Chapter 4, we discuss criteria for applying differential calculus, which are
easier to use. Here we consider, for illustration only, the following simple example.

Example 3.17 Let function f : R — R with
fx)=ax+b

be given. Using formula (3.2) of the definition of a convex function, we obtain the following
equivalences:

SOxy + (1 = A)x2)
= a-[Ax+A—=-1x2]+b
— aix; +a(l —AM)xy + b
< 0

M) + (1= A)f (x2)

A« (axy +b) + (1 —24) - (axz + b)
laxy +Ab+ (1 — Maxy +b—Ab
0.

=
=
=
=

Since the latter inequality is obviously true, the first of the above inequalities is satisfied too
and hence, function f is convex. We mention that function f is also concave (all inequality
signs above can be replaced by the sign >). So a linear function is obviously both convex
and concave, but it is neither strictly convex nor strictly concave.

3.3.3 Elementary types of functions

Next, we briefly discuss some types of functions and summarize their main important
properties. We start with polynomials and some of their special cases.

Polynomials and rational functions

Definition 3.18 The function P, : R — R with
Yy =Py(x) = apx" + ay_1x" '+ ...+ aox? + aix + ag

with a, # 0 is called a polynomial function (or polynomial) of degree n. The numbers
ap,ai, - - . ,an are called the coefficients of the polynomial.

Depending on the value of » which specifies the highest occurring power of x, we mention
the following subclasses of polynomial functions:

n=0: y=Pylx)=ap constant function
n=1: y=Pi(x) =aix+ap linear function
n=2: y=Py(x)= ax? + aix + ag quadratic function

n=3: y=P3;(x) = asx® + ayx® + ajx +ap  cubic function

We illustrate the special cases of n = 1 and n = 2.
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Casen =1 In this case, the graph is a (straight) /ine which is uniquely defined by any two
distinct points P; and P, on this line. Assume that P; has the coordinates (x,y;) and P, has
the coordinates (x7,)2), then the above parameter a; is given by

2 — )1
a =——
X2 — X1

and is called the slope of the line. The parameter ag gives the y-coordinate of the intersection
of the line with the y-axis. These considerations are illustrated in Figure 3.12 for ag > 0 and
a1 > 0. The point-slope formula of a line passing through point P; with coordinates (x1,y1)
and having a slope a; is given by

y—y1=ai-(x—xp).

Figure 3.12 A line with positive slope aj.

Example 3.18 Assume that for some product, the quantity of demand D depends on the
price p as follows:

D=f(p) =1,600— % -p.
The above equation describes the relationship between the price p of a product and the
resulting demand D, i.e. it describes the amount of the product that customers are willing
to purchase at different prices. The price p is the independent variable and demand D is the
dependent variable. We say that f is the demand function. Since both price and demand can
be assumed to be non-negative, we get the domain and range as follows:

Df={pecR|0<p<3200 and R ={DeR|0<D <1600}

If we want to give the price in dependence on the demand, we have to find the inverse
function f ! by solving the above equation for p. We obtain

1
—.p=1,600—D
5P
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which corresponds to
p=f"YD)=2-(1,600— D) = 3,200 — 2D.

Here we did not interchange the variables since ‘D’ stands for demand and ‘p’ stands for
price. Obviously, we get Dy-1 = Ry and Ry-1 = Dy.

Case n = 2 The graph of a quadratic function is called a parabola. If a; > 0, then the
parabola is open from above (upward parabola) while, if a; < 0, then the parabola is open
from below (downward parabola). A quadratic function with ap > 0 is a strictly convex
function while a quadratic function with a; < 0 is a strictly concave function. The case of a
downward parabola is illustrated in Figure 3.13. Point P is called the vertex (or apex), and
its coordinates can be determined by rewriting the quadratic function in the following form:

y—yo=az-(x—x0)?, (34)

where (xg, o) are the coordinates of point P. We get

2
ai a
X0 =—— and yo:—fl-i—ao.
2ap 4a;

/ o \ x

ay <0

Figure 3.13 A downward parabolay =aj - (x — x0)2 + yo.

Points x with y = f(x) = apx? + a1x 4 ag = 0 are called the zeroes or roots of the quadratic
function. In the case of a% > 4ajya, a quadratic function has the two real zeroes

—a; = 1/a2 — 4azay
! . 3.5)

2ay

X12 =

In the case of a% = 4ajap, we get a zero x; = x occurring twice. In the case of a? < 4apay,
there exist two zeroes which are both complex numbers. If a quadratic function is given in
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normal form y = x? + px + ¢, formula (3.5) for finding the zeroes simplifies to
P2

4
=+ /5 —q
X12 5 7 q

Example 3.19 Consider the quadratic function P, : R — R with
y =Py(x) =2x* —dx +4.

First, we write the right-hand side as a complete square and obtain
y=2-F—2x+2)=2-(x—1>+2,

which can be rewritten as
y—2=2-(x—1)>%

From the latter representation we see that the graph of function f is an upward parabola with
the apex P = (1,2) (see equation (3.4)). We investigate whether the inverse function f~!
exists. We try to eliminate variable x and obtain

y=-2 2
— =x-D"
2 x—=D
If we now take the square root on both sides, we obtain two values on the right-hand
side, i.e.

)
yTzzlz(x—l)

which yields the following two terms:

-2 -2
x1:1+ yT and x2:17 )}T

Therefore, the inverse function f ~! does not exist since the given function f is not injective.

If we restrict the domain of function f° to the interval Dy = [1, 00), then the inverse function
would exist since in this case, only solution x; is obtained when eliminating variable x. Thus,
we can now interchange both variables and obtain the inverse function f ~! with

x—2
y=/T@=14+\/=—=  Dri=[200.

The graph of function f and the graph of the inverse function f~! for the case when the
domain of function f" is restricted to Dy = [1, 00) are given in Figure 3.14.
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Figure 3.14 Graphs of functions f and f ~lin Example 3.19.

Next, we consider the general polynomial P, of degree n with
P,(x) = apx" + ap_1x" "' + -+ + a1x + ao, an, # 0.

Inthe following, we give two properties of general polynomials and start with the fundamental
theorem of algebra.

THEOREM 3.4 (fundamental theorem of algebra) Any polynomial P, of degree n can be
written as a product of polynomials of first or second degree.

Another important property of polynomials is given in the following remainder theorem. Let
deg P denote the degree of polynomial P.

THEOREM 3.5 (remainder theorem) Let P : R — R and O : R — R be polynomials
withdeg P > deg Q. Then there always exist unique polynomials S : R —- RandR: R — R
such that

P=S-Q+R, (3.6)

where polynomial R is called the remainder and deg R < deg Q.
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If R(x) = 0, then we say either that polynomial Q is a factor of polynomial P or that
polynomial P is divisible by polynomial Q.

Consider the special case Q(x) = x — xo, i.e. polynomial Q is a linear function and we have
deg Q(x) = 1. Then it follows from Theorem 3.5 that deg R = 0, i.e. R(x) = r is constant.
This means that we can write polynomial P in the form

Px)=8Sx) - (x—x9) +r.

Consequently, for x = xo we get the function value P(xo) = r. Furthermore, we have the
following equivalence:

Px) =8x) - (x —x9) <= P(xp) =0. 3.7

We can summarize the above considerations as follows. If x¢ is a zero of a polynomial P,
with deg P, = n (i.e. a root of the equation P,(x) = 0), then, according to the comments
above, this polynomial can be written as

Py(x) = (x —xo) - Sp—1(x),

where S,_1 is a polynomial with deg S,—1 = n — 1. On the one hand, it follows from
equivalence (3.7) that polynomial P, can have at most n different zeroes. On the other hand,
it follows from Theorem 3.4 that polynomial P, has exactly n (real or complex) zeroes.
If the polynomial P, has the complex zero x = a + bi, then the complex conjugate x = a — bi
is a zero of polynomial P,, too. Therefore, polynomial P, has the factors

x—(@+bi)|-|x—(@a—bi)|=x*—2ax + @+ b?),
[ I ]

which is a polynomial of degree two. So we can confirm Theorem 3.4. A real zero xo leads
to a polynomial x — x¢ of first degree and complex zeroes a + bi and a — bi to a polynomial
x% — 2ax + (a2 + b?) of second degree in the product representation of polynomial P,. As a
consequence of the above considerations, we can conclude for example that a polynomial P3
of degree three has either three real zeroes or only one real zero (and two complex zeroes).

It may happen that certain factors x — x; occur repeatedly in the above representation. This
leads to the definition of the multiplicity of a zero.

Definition 3.19 Letf = P, : R — R be a polynomial of degree n with
Py(x) = (x —x0)F - Sp_4 (x) and Sp—k (x0) # 0.

Then x is called a zero (or root) of multiplicity k of polynomial P,,.

If xo is a zero of odd multiplicity, then the sign of function f changes ‘at’ point xo,
i.e. there exists an interval about xy such that function f has positive values to the left of xg and
negative values to the right of xo or vice versa. In contrast, if xq is a zero of even multiplicity,
there is an interval about x¢ such that the sign of function f is the same on both sides of
point xg.

Next, we investigate the question of how to compute the function value of a polynomial
easily. To this end, we introduce Horner s scheme.
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Calculation of function values of polynomials using Horner s scheme

Pu(x0) = anxg + a,,,lxg*l + -+ azx% + aixo + aop

={--- [(anxo + an—1) X0 + an—2lx0 + -+ + a1} xo + ao
— ——

4

The above computations can be easily performed using the following scheme and starting
from the left.

Horner s scheme

an an_1 an_o .. ap aj ag
+ + + + +
X = X0 anxo Ayp_1xo ... Asxg Arxg A1xo
/! /! /! /' e /
ap An-1 An—2 e Az A; Ao = Pn(x0)

The advantage of Horner’s scheme is that, in order to compute the function value of a
polynomial, only additions and multiplications have to be performed, but it is not necessary
to compute powers.

Example 3.20 We consider the polynomial Ps : R — R with
Ps(x) = 2x° + 4x* + 8x® — 4x* — 10x.

Since ap = 0, we get the zero xo = 0 and dividing P4(x) by x —xo = x yields the polynomial
P4 with

Pa(x) = 2x* + 4x° + 8x% — 4x — 10.

Checking now the function values for x, = 1 and x3 = —1 successively by Horner’s scheme,
we obtain
2 4 8 —4 -10
x=x=1 2 6 14 10
2 6 14 10 0
x=x3=-—1 -2 -4 -10
2 4 10 0

In the above scheme, we have dropped the arrows and the plus signs for simplicity. We have
found that both values x, = 1 and x3 = —1 are zeroes of the polynomial P4(x). From the last
row we see that the quadratic equation 2x% 4 4x + 10 = 0 has to be considered to determine
the remaining zeroes of polynomial P4. We obtain

xa5=—1+v/1-5
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which yields the complex zeroes
x4 =—142i and xs = —1—2i.

So we have found all five (real and complex) zeroes of polynomial Ps(x), and we get the
factorized polynomial

Ps(x) = 2x(x — D(x + D% + 2x + 5).

Example 3.21 We consider the polynomial Ps : R — R with
Ps(x) = x> — 5x* + 40x* — 80x + 48

and determine the multiplicity of the (guessed) zero x = 2. We obtain:

1 -5 0 40 —80 48
x=2 2 -6 —12 56 —48

1 -3 —6 28 —24 0
x=2 2 -2 —-16 24

I -1 -8 12 0
x=2 2 2 -12

1 1 -6 0
x=2 2 6

1 3 0

Thus, x = 2 is a zero of multiplicity four, and the polynomial Ps can be written as a product
as follows:

Ps(x) = (x —2)*- (x + 3).

The last factor is obtained from the remaining polynomial S; with S; (x) = x + 3 which has
the zero x = —3.

In general, it is difficult to find all zeroes of a polynomial of a higher degree. In Chapter 4, we
discuss numerical procedures for finding the zeroes approximately. The following theorem
gives some relationships between the coefficients of a polynomial and the zeroes.

THEOREM 3.6 (Vieta’s theorem) Let polynomial P, : R — R with

Pox)=1-x"4ap1x" '+ 4+ ax® + a1x + ao
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be given and let x1, x2, - - - ,x, be the zeroes of polynomial P,. Then:
X1+x2+-+xp =  —ap_1
X1X2 +X1X3 + -+ Xp—1Xn = an—2
X1X2X3 + X1X2X4 + - - - + Xp_2Xp—_1Xp = —ap-3
X1X0X3 -+ Xp = (=D"ag

In the special case of a quadratic function P(x) = x? + px + g, Vieta’s theorem yields the
two equations

X1 +x2=—-p and X1x2 = q.

Example 3.22 Let the polynomial P3 : R — R with
P3(x) =x—2x>—5x+6

be given. When looking for integer zeroes, it follows from the last equality of Theorem 3.6
that these zeroes must be a divisor of a9 = 6. Therefore, only x = £1, x = £2 and x = £3
are candidates for an integer zero. Checking the function values of P3 at these points e.g. by
Horner’s scheme, we obtain the zeroes

x1 =1, Xy =—2 and x3 =23
and thus the factorized polynomial

Pi=(x—1)-(x+2)-(x—3).

Finally, we consider the quotient of two polynomials, P and Q.

Definition 3.20 A function 7 : Dy — R with T(x) = P(x)/Q() = (P/Q)(x) is
called a rational function. The rational function 7 is called proper if deg P < deg QO
and improper if deg P > deg Q.

The domain D7 of function T is given by all real numbers for which the polynomial in the
denominator is different from zero, i.e. Dr = {x € R | Q(x) # 0}.

Example 3.23 Let the cost C of producing x units of a product be equal to
C(x)=ax2+bx+c, x>0.

Here ¢ > 0 describes the fixed cost of production, and @ and b are real parameters such that
C is a non-negative and strictly increasing function. Then the average cost C,(x), measuring
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the cost per unit produced, given by

ax’ +bx+c
x

Ca(x) =
is an improper rational function which can be rewritten as

Cox) =ax+b+ <.
X

By means of polynomial division, any improper rational function can be written as the sum
of a polynomial and a proper rational function. If deg P > deg Q, then equation (3.6) can be

written as
P(x) R(x)
=S
o0 "W 0w

provided that x is not a zero of polynomial Q. To get the latter representation, we consider
both polynomials P and Q in decreasing order of their powers and divide in each step the first
term of P by the first term of Q. The result is multiplied by Q and the product is then subtracted
from P. This yields a new polynomial P; having a smaller degree than polynomial P,. Now
the first term (with the largest exponent) of polynomial P; is divided by the first term of
polynomial Q, the resulting term is multiplied by polynomial Q and subtracted from Pj,
yielding polynomial P, and so on. The procedure stops if some resulting polynomial P; has
a smaller degree than polynomial Q. This procedure is illustrated by the following example.

Example 3.24 Let polynomials P : R — Rand Q : R — R with
Px)=2x* -3 +2x2 —x+4 and Ox)=x*>—x+3

be given. The function T : Dr — R with T'(x) = (P/Q)(x) is improper, and by polynomial
division we obtain:

24— 334+ 2%r— x4+ 4) .2 N2 —3x+19
_§2x4— 253+ 6x2) ) Y=o 5+x23x+3
- 42— x4+ 4
—(—x3+ x2—3x)
—5x2 4 2x+ 4
— (=5x% + 5x—15)
— 3x+ 19

In this case, we have written function 7" as the sum of the polynomial S of degree two with
S(x) = 2x? — x — 5 and the proper rational function R/Q with

(R/Q)x) = (—3x+19)/(x> —x +3).
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Power functions

Definition 3.21 The functionf : Dy — R with
fl) =+, reR,

is called a power function. In dependence on the value of 7, the domain Dy and the
range Ry are given as follows:

(1) re{l,3,5,...} SN:Df = (—00,00),Rr = (—00,00);
@) re{2,4,6,...} CN:Dr = (—00,00),Rs = [0,00);
(3) r e R\N: D¢ = (0,00),Rr = (0,00).

In case (1), functionf is strictly increasing, unbounded and odd. Functionf' is strictly concave
on the interval (—oo, 0] and strictly convex on the interval [0, c0). In case (2), function f is
strictly decreasing on the interval (—oo, 0], strictly increasing on the interval [0, co), bounded
from below, even and strictly convex. Since function /" is not injective in this case (note that
f(—=x) = —f(x)), the inverse function does not exist in this case (if one restricts the domain
to the interval [0, o), then function f is bijective and the inverse function exists). In case (3)
with » > 0, function f is strictly increasing and bounded from below. Moreover, if r > 1,
function f is strictly convex and, if 0 < » < 1, function f is strictly concave. Case (3)
with positive value 7 includes as a special case so-called root functions, where r = 1/n with
neN,ie.

f@) =x""=Yx

In the case of a root function, number zero belongs to the domain and range of f, i.e.
Dy = Ry = [0,00). In case (3) with » < 0, function f is strictly decreasing, bounded from
below and strictly convex.

Obviously, the inverse function f~! of a power function f with f(x) = x” exists and is
equal to y = x!/7. The graph of some power functions for special values of r are given in
Figure 3.15. If r € Q, we say that power function f is an algebraic function.

Example 3.25 Let function f : (0,00) — (0, c0) with
f@) =2

be given. It is a power function with the rational exponent » = 2.5. This function is bijective,
and so the inverse function exists. Solving for variable x, we obtain

x = yl/25 = 04

Exchanging both variables x and y, we get the inverse function /~! with

y=x", Dy =Ry =(0,00).
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Figure 3.15 Graphs of some power functions.

Exponential and logarithmic functions

Exponential and logarithmic functions play an important role in many economic applications,
e.g. growth and decline processes.
Definition 3.22 The function f : R — (0, c0) with
f&) =da, a>0 a#l,

is called an exponential function.
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For all positive values of a, the graph of function f* goes through point (0, 1). The graph of
the exponential function for three values of a is given in Figure 3.16. For all values of a,
the exponential function is only bounded from below (and therefore unbounded). If a > 1,
the exponential function is strictly increasing, while for 0 < a < 1 the exponential function
is strictly decreasing. All exponential functions are strictly convex. We note that for an
exponential function with base e, the notation y = ¢* is sometimes also written as y = exp(x).

Since an exponential function f is bijective for all values a > 0 with a # 1 on the domain
Dy, for each of these values of a the inverse function exists. The inverse function of the
exponential function is the logarithmic function defined as follows.

Figure 3.16 Graphs of some exponential functions.

Definition 3.23 The function f : (0,00) — R with
f () = log, x, a>0,a#1,

is called a logarithmic function.
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Y

24+

Figure 3.17 Graphs of some logarithmic functions.

The graphs of the logarithmic functions with the two frequently used bases a = eand a = 10
are given in Figure 3.17. Since the logarithmic functions are the inverse functions of the
corresponding exponential functions, all logarithmic functions go through the point (1,0).
Logarithmic functions with a base a > 1 are strictly increasing, and logarithmic functions
with a base a, where 0 < a < 1, are strictly decreasing. All logarithmic functions are
unbounded. Logarithmic functions with a base a > 1 are strictly concave while logarithmic
functions with a base a, where 0 < a < 1, are strictly convex. It is worth emphasizing that
both logarithmic and exponential functions are only defined for positive values of the base,
where a base equal to one is excluded.

Example 3.26 We consider function f : Dy — R with
y=f(x) =1In(Gx +4).

Since the logarithmic function is defined only for positive arguments, the inequality 3x+4 > 0
yields the domain

4
Df:{xeR|x>—§}.

The logarithmic function has the range Ry = R, and therefore function f* also has the range
Ry = R. Since the logarithmic function is bijective, function /" is bijective as well, and thus
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the inverse function f ! exists. We obtain

y=1InBx+4)
¢ =3x+4
1

Exchanging now variables x and y, we have found the inverse function f ~! given by

1
y=§‘(ex—4)

with the domain fol =R =R

Trigonometric functions

Trigonometric (or circular) functions are defined by means of a circle with the origin as centre
and radius 7 (see Figure 3.18). Let P be the point on the circle with the coordinates (r, 0) and
assume that this point moves now counterclockwise round the circle. For a certain angle x,
we get a point P on the circle with the coordinates (4, v). Then the sine and cosine functions
are defined as follows.

Y
cot av

tana

cos o z

Figure 3.18 The definition of the trigonometric functions.
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Definition 3.24 The function f : R — [1, 1] with

f(x) =sinx = v
o

is called the sine function. The function f : R — [1, 1] with
h
f(x) =cosx = —
7

is called the cosine function.

The graphs of the sine and cosine functions are given in Figure 3.19 (a). The sine and cosine
functions are bounded and periodic functions with a period of 27, i.e. we have for k € Z:

sin(x + 2km) = sinx and cos(x + 2km) = cosx.

The sine function is odd, while the cosine function is even. These functions are often used
to model economic cycles.

Remark Usually, angles are measured in degrees. Particularly in calculus, they are often
measured in so-called radians (abbreviated rad). An angle of 360° corresponds to 27 rad,
i.e. we get for instance

sin 360° = sin 27 rad.

It is worth noting that, using radians, the trigonometric functions have set R or a subset of R
as domain and due to this, the abbreviation rad is often skipped.

When using powers of trigonometric functions, we also write e.g. sin” x instead of (sin x) or
cos? (2x) instead of (cos 2x)3. By means of the sine and the cosine functions, we can introduce
two further trigonometric functions as follows.

Definition 3.25 The function f : Dy — R with

f(x):tanx:Z:;ng and Df:{xeRlxaé%-i-kn,keZ}
X

is called the tangent function. The function f : Dy — R with

h
@) =cotx =X =2 and Dy={xeR|x#kn, keZ)
S

1nx v

is called the cotangent function.
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(b) Functions y = tan z and y = cot z

Figure 3.19 Graphs of the trigonometric functions.

The graphs of the tangent and cotangent functions are given in Figure 3.19 (b). The tangent
and cotangent functions are periodic functions with a period of 7, i.e. we have for k € Z:

tan(x + k) = tanx and cot(x + k) = cotx.

Both functions are unbounded and odd.

In the following, we review some basic properties of trigonometric functions.
Some properties of trigonometric functions

(1) sin(x +y) = sinxcosy = cosx siny;

(2) cos(x £y) = cosxcosy F sinxsiny;

tanx :tany

3) t ty)=——";
() tan(x£) 1 Ftanxtany
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t t 1
(4) cot(x +y) = XOVF 1

coty +cotx ’
x =+ x
(5) sinx £siny =2 -sin Y cos qziy;
X+ X —
(6) cosx+cosy =2-cos y-cos zy;
. X+y . x—y
cosx —cosy = —2-sin 5 sin—=;

(7) sin (x + %) = tcosx, cos (x + %) = Fsinx;

(8) sin®x + cos?x = 1;

(9) 1+tan’x =

cos?x’
Properties (1) up to (4) are known as addition theorems of the trigonometric functions. For
the special case of x = y, properties (1) and (2) turn into

sin2x = 2 - sinx - cosx and cos 2x = cos® x — sin’ x. (3.8)

Property (8) is also denoted as a Pythagorean theorem for trigonometric functions. As an
illustration, we prove the identity given in Property (9) and obtain

sin®x  cos®x +sinx 1

1+tan’x =1+ — = ; =—.
COs“ Xx COS“ Xx COS“ Xx

The last equality follows from property (8) above.

Since all four trigonometric functions are not bijective mappings, we have to restrict their
domain in order to be able to define inverse functions. If we solve equality y = sin x for x, we
write x = arcsin y. The term arcsin y gives the angle x whose sine value is y. Similarly, we
use the symbol ‘arc’ in front of the other trigonometric functions when solving for x. Now
we can define the arc functions as follows.

Definition 3.26 The function
f:[-1,1]1 — [—%, %] with  f(x) = arcsinx
is called the arcsine function. The function
f:[-1,1] - [0,7] with f(x) = arccosx
is called the arccosine function. The function
f i (—00,00) = (—%, %) with  f(x) = arctanx
is called the arctangent function. The function
f:(—00,00) — (0,7) with f(x)= arccotx

is called the arccotangent function.
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In Definition 3.26, the ranges of the arc functions give the domains of the original trigono-
metric functions such that they represent bijective mappings and an inverse function can
be defined. The graphs of the arc functions are given in Figure 3.20. All the arc functions
are bounded. The arcsine and arctangent functions are strictly increasing and odd while the
arccosine and arccotangent functions are strictly decreasing. Moreover, the arcsine and arc-
cotangent functions are strictly concave for x < 0 and they are strictly convex for x > 0.
The arccosine and arctangent functions are strictly convex for x < 0 and strictly concave for
x > 0 (where in all cases, x has to belong to the domain of the corresponding function).

.l
Y
y = arcsin x
Tl y I Y = arccos x
2 2
1+ 1
~. -
. i i : ey , :

N s ™ ™ m 4
C 5l 12 T - 15\1 Sz
= Sin x -ir -7 !

Y= = =z y=cos x
2T 2T

(a) Function y = arcsin « (b) Function y = arccos z

1 y =tan x

AT

| |

| |

| T | |

I 2 I

| |

| 1T 7y = arctan x
| |

I P

7r; ' ' ; ™

g -1 1 ) T

| |

! -ly |

| _r |

| 27T |
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| |

(c) Function y = arctan x (d) Function y = arccot «

Figure 3.20 Graphs of the inverse functions of the trigonometric functions.
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Overview on elementary functions

In Table 3.1, we summarize the domains and ranges of the elementary functions.

Table 3.1 Domains and ranges of elementary functions

Function f with y = f(x) Dy Ry
y=c cisconstant —0o0 <x < 00 y=c
y=x" n=23... —00<X<00 —00<y<O00
y=x* aelR 0<x<o0 0<y<oo
y=Ux n=2,3,... 0<x<o00 0<y<oo
y=a" a>0 —00 <X < 00 0<y<oo
y =log,x a>0,a#1 0O<x<oo —0cO<y<o0
y =sinx —00 <X < 00 -1<y<l1
y =cosx —00 <X < 00 -1<y<l
bd
y =tanx xX#—+knr —oco<y<oo
y =cotx x#km —00 <y < 00
bid
y = arcsinx -1<x=<1 5 Sx¥=3
y = arccosx —-1<x<1 0<x<m
b g
y = arctanx —00 <X <00 75<x<5
y = arccot x —00 <X < 00 O<x<m

EXERCISES

3.1 Letd ={1,2,3,4,5}. Consider the relations
R=1{(1,2),(1,4),(,1),(3,4),(3,5),5,1),5, 9} c4x 4
and

S ={(a1,a2) €4 x 4] a1 + az = 6}.

(a) Illustrate R and S by graphs and as points in a rectangular coordinate system.
(b) Which of the following propositions are true of relation R:

1R2, 2Rl, 3Rl, {2,3,4,5)={acA|1Ra)?

(c) Find the inverse relations for R and S.
(d) Check whether the relations R and S are mappings.
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3.2 Consider the following relations and find out whether they are mappings. Which of
the mappings are surjective, injective, bijective?

(@) () (© (d)

Q@ QU o >«

\

33 Letd =B ={1,2,3} and C = {2, 3}. Consider the following mappings f : 4 — B
andg: C — Awithf(1) =3,f2) =2,f(3) = land g(2) = 1,9(3) = 2.

(a) Illustrate f,g,f o g and g o f by graphs if possible.

(b) Find the domains and the ranges of the given mappings and of the composite
mappings.

(c) What can you say about the properties of these mappings?

3.4 Given is the relation
F={(x1,x) € R | |xa| = x1 +2}.

Check whether F or F~! is a mapping. In the case when there is a mapping, find the
domain and the range. Graph F and F~!.

3.5 Given are the relations
F={(1,x) |x=x3} withx € {-3,-2,-1,0,1,2,3}
and
G ={(x,y) € R? | 9% +2” = 18}.

Are these relations functions? If so, does the inverse function exist?
3.6 Given are the functions /' : Dy — Rand g : Dy — R with

fx)=2x+1 and gx) =x* —2.

Find and graph the composite functions g o f and f o g.
3.7 Given are the functions f : R— R, and g : R— R with

fx)=¢€" and g(x) = —x.

(a) Check whether the functions f and g are surjective, injective or bijective. Graph
these functions.

(b) Findf~! and g~! and graph them.

(¢) Findf og and g of and graph them.
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Find a € R such thatf : Dy = [a,00) — R with

y=f(x)=x+2x—3

being a bijective function. Find and graph function 1~ !.

Find domain, range and the inverse function for function /' : Dy — R with y = f(x):

@ =Lt ) y-e-2

Given are the polynomials Ps : R — R and P, : R — R with

Ps(x) = 2x° — 6x* — 6x® 4+ 22x% — 12x and  Py(x) = (x — )2

(a) Calculate the quotient Ps/P; by polynomial division.
(b) Find all the zeroes of polynomial Ps and factorize Ps.
(c) Verify Vieta’s formulae given in Theorem 3.6.

(d) Draw the graph of the function Ps.

Check by means of Horner’s scheme whether x; = 1,xp = —1,x3 = 2,x4 = —2 are
zeroes of the polynomial Ps : R — R with

4

P (x) =x0 42 —x* - 42 —x—2.

Factorize polynomial Pg.
Find the domain, range and the inverse function for each of the following functions
Ji : D, — Rwith y; = fi(x):
(a) yp =sinx, yp=2sinx, y3=sin2x, y4=-sinx+2 and
ys = sin(x + 2);
(b) yi=e*, ;=2 y3=e¥, y=e"+2 and ys=e"t%
Graph the functions given in (a) and (b) and check whether they are odd or even or
whether they have none of these properties.

Given are the following functions f : Dy — R withy = f(x):

(@ y=Inx% (b) y=1Inx3; () y=32+5
d) y=+v4-x% ) y=14e"% ) y=VIx|—x.

Find the domain and range for each of the above functions and graph these functions.
Check where the functions are increasing and whether they are bounded. Which of
the functions are odd or even?
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In economics, there are many problems which require us to take into account how a function
value changes with respect to small changes of the independent variable (e.g. input, time, etc.).
For example, assume that the price of some product changes slightly. The question is how does
this affect the amount of product customers will buy? A useful tool for such investigations
is differential calculus, which we treat in this chapter. It is an important field of mathematics
with many applications, e.g. graphing functions, determination of extreme points of functions
with or without additional constraints. Differential calculus allows us to investigate specific
properties of functions such as monotonicity or convexity. For instance in economics, cost,
revenue, profit, demand, production or utility functions have to be investigated with respect
to their properties. In this chapter, we consider functions f : Dy — R depending on one real
variable, i.e. Dy C R.

4.1 LIMIT AND CONTINUITY

4.1.1 Limit of a function

One of the basic concepts in mathematics is that of a limit (see Definition 2.6 for a sequence).
In this section, the limit of a function is introduced. This notion deals with the question of
which value does the dependent variable y of a function f with y = f(x) approach as the
independent variable x approaches some specific value xp?

Definition 4.1 The real number L is called the /imit of function ' : Dy — R as x
tends to x if for any sequence {x,} with x, # xo, x, € Dy, n = 1,2,..., which
converges to xo, the sequence of the function values {f'(x,)} converges to L.

Thus, we say that function f tends to number L as x tends to (but is not equal to) xp. As an
abbreviation we write

lim f(x) = L.
X—>X(

Note that limit L must be a (finite) number, otherwise we say that the limit of function f as x
tends to xo does not exist. If this limit does not exist, we distinguish two cases. If L = 400,
we also say that function f is definitely divergent as x tends to xo, otherwise function f is
said to be indefinitely divergent as x tends to xo.
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In the above definition, the elements of sequence {x,} can be both greater and smaller than xy.
In certain situations, only the limit from one side has to be considered. In the following, we
consider such one-sided approaches, where the terms of the sequences are either all greater
or all smaller than xg.

Definition 4.2 The real number L, (real number L) is called the right-side (left-side)
limit of function f' : Dy — R as x tends to xo from the right side (left side) if for any
sequence {x,} with x, > xo (x, < x0), X, € Dy, n = 1,2,..., the sequence of the
function values {f (x,)} converges to L, (converges to L;).

We also write

lim f(x) =L, and lim . fx) =1L

x—>x0+0 X—>x0—

for the right-side and left-side limits, respectively. A relationship between one-sided limits
and the limit as introduced in Definition 4.1 is given by the following theorem.

THEOREM 4.1 The limit of a function /' : D — R as x tends to xo exists if and only if
both the right-side and left-side limits exist and coincide, i.e.

lim f(x)= lim f(x) = lim f(x).
x—>x0+0 x—>x9—0 X—>X0

We note that it is not necessary for the existence of a limit of function f* as x tends to xg that
the function value f (xo) at point xo be defined.

Example 4.1 Let function f : R\ {0} — R with

o) =—

X

be given. We want to compute
L = lim f(x).
x—0
However, since
lim f(r)= lim > =1 d lim f@)= lim — =—1
im f(x)= lim -= an im f(x)= lim — =-1,
x—0+0 x—>0+4+0 x x—>0-0 x—>0-0 Xx

the limit of function f as x tends to zero does not exist.

Example 4.2 Let function f : R\ {0} — R with

fx)= sinl
X
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be given. If we want to compute
L = lim f(x),
x—>0
we find that even both one-sided limits

L= lim f(x) and L= lim f(x)
x—0+0 x—>0—0

do not exist since, as x tends to zero either from the left or from the right, the function values

of the sine function oscillate in the interval [—1, 1], i.e. the function values change very

quickly between the numbers —1 and 1 (even with increasing frequency as x tends to zero).

Thus, the limit of function f as x tends to zero does not exist and function f is indefinitely

divergent as x tends to zero.

Next, we give some useful properties of limits.
THEOREM 4.2  Assume that the limits
lim f1(x) = Ly and lim fr(x) = Ly
X—>X0 xX—>X0
exist. Then the following limits exist, and we obtain:

(1) lim [ +/£®] = lim i)+ lim () =Ly + Lo
@) Jim [/i) /0] = lim fiGo) - lim /o) = Ly - La;

lim f; (x)

. @ _ X=X _ 1;1 . .
“ xlin;o = )Tn;o 7~ L provided that Ly # 0;

(5 lim /fix) = /[lim fi(x) = /L1 provided that L1 > 0;
X—>Xx0 X—>X(
n
6) lim (i) = [1imﬁ(x)] =
X—>X( X—>X0

7 lim [@i®] = o] _

X—>X0

Example 4.3  Given the function f : Dy — R with

2 —
foy = o
X

we compute the limit

L= lim f(x).
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Applying Theorem 4.2, we obtain

I limx2+3x_1: limxﬁlxz.—i—3limx%1x—1: 1+3—1:\[3.
x—>1 x limy_1x 1

Example 4.4 Given the function f : Dy — R with

)

x—4

fx) =

we compute the limit
L = lim f(x).
x—4

If we apply Theorem 4.2, part (4), and separately determine the limit of the numerator and the
denominator, we find that both terms tend to zero, and we cannot find the limit in this way.
Therefore, we rationalize the numerator by multiplying the numerator and the denominator
by +/x + 2 and obtain:

L WE-DEEED) x—4

1 1 1
sk B (Sr12) b B (Srt2) sohxt2 Jair2 4

4.1.2 Continuity of a function

Definition 4.3 A functionf : Dy — R is said to be continuous at xo € Dy if the limit
of function /" as x tends to xo exists and if this limit coincides with the function value

[ (x0), i.e.
Jim 70 = o)

Alternatively, we can give the following equivalent definition of a continuous function at xo
using the (§ — &) notation.

Definition 4.3* A functionf : Dy — Ris said to be continuous atxo € Dy if, for any
real number ¢ > 0, there exists a real number (&) such that inequality |x — xo| < 8(¢)
implies inequality |f'(x) — f (xo)| < e.

We illustrate the latter definition in Figure 4.1. Part (a) represents a continuous function
at xo. This means that for any ¢ > 0 (in particular, for any arbitrarily small positive ¢), we
can state a number § depending on ¢ such that for all x from the open interval (xo — 8, x9 + §)
the function values f'(x) are within the open interval (f (x) — ¢,f(x) + ¢€) (i.e. in the dashed
area). In other words, continuity of a function at some point xo € Dy means that small
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To—0 To xzo+0 T

(a) Function f is continuous at

(9P y = f(z)

To—0 Zo x9+0 T

(b) Function f is discontinuous at xg

Figure 4.1 Continuous and discontinuous functions.

changes in the independent variable x lead to small changes in the dependent variable y.
Figure 4.1(b) represents a function which is not continuous at xo. For some (small) ¢ > 0,
we cannot give a value § such that for all x € (xo — 8,x0 + 8) the function values are in the
dashed area.

If the one-sided limits of a function f* as x tends to xq are different (or one or both limits do
not exist), or if they are identical but the function value f (xo) is not defined or value f (xp) is
defined but not equal to both one-sided limits, then function f is discontinuous at xq. Next,
we classify some types of discontinuities.

If the limit of function f as x tends to xo exists but the function value f'(x¢) is different or
function f is even not defined at point xo, we have a removable discontinuity. In the case
when function f is not defined at point xp, we also say that function /" has a gap at xo.

A function f has a finite jump at xg if both one-sided limits of function f as x tends to xg — 0
and x tends to xo + 0 exist and they are different. The following discontinuities characterize
situations when at least one of the one-sided limits of function f* as x tends to xo £ 0 does
not exist. If one of the one-sided limits of function f as x tends to xo & 0 exists, but from the
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other side function f tends to co or —oo, then we say that function /" has an infinite jump at
point xo. A rational function f = P/Q has a pole at point xo if Q(xg) = 0 but P(x9) # 0.
(As a consequence, the function values of /" as x tends to xo — 0 or to xp + O tend either
to 0o or —o0, i.e. function £ is definitely divergent as x tends to xo.) The multiplicity of the
zero xgo of polynomial Q defines the order of the pole. In the case of a pole of even order,
the sign of function f does not change ‘at’ point xo while in the case of a pole of odd order
the sign of function f* changes ‘at’ point x¢. Finally, function /" has an oscillation point ‘at’
xo if function /" is indefinitely divergent as x tends to xg (i.e. neither the limit of function f°
as x tends to xgo exist nor function f tends to 00 as x tends to xg). In the above cases of a
(finite or infinite) jump, a pole and an oscillation point, we also say that function f* has an
irremovable discontinuity at point xo.

For illustration, we consider the following examples.

Example 4.5 Let function f : Dr — R with

be given. In this case, we have xo = 1 ¢ Dy, but
lim f(x) =3
X—>X0

(see Figure 4.2). Thus, function f has a gap at point xo = 1. This is a removable discontinuity,
since we can define a function /™ : R — R with

£ = { é(x) forx # 1

forx =1

which is continuous at point xo = 1.

Figure 4.2 Function f with f(x) = (x2 +x — 2)/(x — 1).
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Example 4.6 We consider function f : Dy — R with

fx)= sinl.
x

For xo = 0, we get xo ¢ Dy, and we have already shown in Example 4.2 that function f is
indefinitely divergent as x tends to zero. Therefore, point xo = 0 is an oscillation point.

Analogously to Definition 4.3, we can introduce one-sided continuity. Ifthe limit of function f
as x tends to xo + O exists and is equal to f'(xp), then function f is called right-continuous
at point xo. In the same way, we can define the left-continuity of a function at a point xo.
Functionf is called continuous on the open interval (@, b) € Dy ifitis continuous at all points
of (a, b). Analogously, function /" is called continuous on the closed interval [a, b] C Dy if
it is continuous on the open interval (a, b), right-continuous at point a and left-continuous at
point b. If function f is continuous at all points x of the domain Dy, then we also say that /'
is continuous.

Properties of continuous functions

First, we give some properties of functions that are continuous at particular points.

THEOREM 4.3  Let functions f : Dy — Rand g : D; — R be continuous at point
xo € Dy N Dy. Then functions /' + g,f — g.,f - g and, for g(xo) # 0, also function f/g are
continuous at xg.

THEOREM 4.4 Let function f : Dy — R be continuous at xo € Dy and function g : Dy —
R be continuous at point x; = f(xg) € Dy. Then the composite function g o f is continuous
at point xo, and we get

xlgrgo gfx) =g (xlggof(x)> = g(f (x0)).

The latter theorem implies that we can ‘interchange’ the determination of the limit of function
f as x tends to xo and the calculation of the value of function g. We continue with three
properties of functions that are continuous on the closed interval [a, b].

THEOREM 4.5 Let function f : Dy — R be continuous on the closed interval [a, b] C Dy.
Then function f is bounded on [a, b] and takes its minimal value fi,i, and its maximal value
fmax at points xpmin and xmax, respectively, belonging to the interval [a, b], i.e.

Jmin =J Fmin) <f*) <f(max) = fmax forall x € [a,b].

Theorem 4.5 does not necessarily hold for an open or half-open interval, e.g. function ' with
f(x) = 1/x is not bounded on the left-open interval (0, 1].

THEOREM 4.6 (Bolzano’s theorem) Let functionf : Dy — R be continuous on the closed
interval [a, b] € Dy withf'(a)-f(b) < 0. Then there exists anx* € (a, b) such that f (x*) = 0.
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Theorem 4.6 has some importance for finding zeroes of a function numerically (see later in
Chapter 4.8). In order to apply a numerical procedure, one needs an interval [a, b] (preferably
as small as possible) so that a zero of the function is certainly contained in this interval.

THEOREM 4.7 (intermediate-value theorem) Let function f : Dy — R be continuous on
the closed interval [a, b] C Dy. Moreover, let fyi be the smallest and fmax the largest value
of function /" for x € [a, b]. Then for each y* € [fuin,/max], there exists an x* € [a, b] such
that £ (x*) = y*.

The geometrical meaning of Theorem 4.7 is illustrated in Figure 4.3. The graph of any line

y = ¥* € [fmin,/fmax] intersects at least once the graph of function 1. For the particular value
»* chosen in Figure 4.3, there are two such values x] and x3 with f (x]) = f(x3) = y*.

/@)

fmax b
ok
¥ ‘
fmizr .
a ] 5 b T

Figure 4.3 Tllustration of Theorem 4.7.

4.2 DIFFERENCE QUOTIENT AND THE DERIVATIVE

We now consider changes in the function value y = f(x) in relation to changes in the
independent variable x. If we change the value x of the independent variable by some value
Ax, the function value may also change by some difference Ay, i.e. we have

Ay =f@x+ Ax) — f(x).

We now consider the ratio of the changes Ay and Ax and give the following definition.

Definition 4.4 Letf : Dr — R and xo,xo + Ax € (a,b) C Dy. The ratio

Ay _ f(xo + Ax) —f(xo)
Ax Ax

is called the difference quotient of function f* with respect to points xo + Ax and xg.
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The quotient Ay/Ax depends on the difference Ax and describes the average change of the
value of function f* between the points xo and xo + Ax. Let us now consider what happens
when Ax — 0, i.e. the difference in the x values of the two points xo + Ax and x¢ becomes
arbitrarily small.

Definition 4.5 Let /' : Dy — R. Then function f* with y = f(x) is said to be
differentiable at point xo € (a,b) C Dy if the limit

i £ @0+ AY) — £ (x0)
im —
Ax—0 Ax

exists. The above limit is denoted as

df (xo)

&

1 (x0)

and is called the differential quotient or derivative of function f at point xo.

We only mention that one can define one-sided derivatives in an analogous manner, e.g. the
left derivative of function f* at some point xo € Dy can be defined by considering only
the left-side limit in Definition 4.5. If function f is differentiable at each point x of the open
interval (@, b) C Dy, functionfis said to be differentiable on the interval (a, b). Analogously,
if function /" is differentiable at each point x € Dy, function /" is said to be differentiable.

If for any x € Dy the derivative f’(x) exists, we obtain a function f’ with y’ = f’(x) by
assigning to each x € Dy the value f”(x). We also say that function f” is the first derivative
of function /. If function f” is continuous, we say that the original function f is continuously
differentiable.

In economics, function f” is also referred to as the marginal of f or the marginal function. It
reflects the fact that the derivative characterizes the change in the function value provided that
the change in the variable x is sufficiently small, i.e. it can be considered as ‘marginal’. This
means that the marginal function can be interpreted as the approximate change in function
when variable x increases by one unit from xg to xo + 1, i.e.

(o) & f(xo + 1) — f (x0).

A geometric interpretation of the first derivative is as follows. The value f”(xo) is the slope
of the tangent to the curve y = f (x) at the point (xo, f (xo)) (see Figure 4.4). Consider the line
through the points (xp,f (xo)) and (xo + Ax,f (xo + Ax)). For the slope of this line we have
Ay
— = .
Ax an f
If Ax becomes smaller and tends to zero, the angle of the corresponding line and the x axis
tends to o, and we finally obtain

A
S0 = fim 5 =tane.
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Line through points
(o, f(z0)) and
(zo+ ALz, f(zo+Ax))

Tangent to f(z) at
(o, f(20))

Figure 4.4 Geometrical interpretation of the derivative f”(xq).

Example 4.7 Let function f : R — R with

2x for x <1
y:f(x):{3—x for 1<x<2

be given and let xo = 1. We obtain

f o+ Ax) —f(x0) _

2(xp + Ax) — 2xg — lim 2Ax

lim lim = =
Ax—0—0 Ax Ax—0—0 Ax Ax—0-0 Ax
and
. fxo+ Ax) — f(x0) . 3 —(x0+ Ax) — (3 —xp)
lim —————— = lim
Ax—0+0 Ax Ax—0+0 Ax
. —Ax
= lim =—1.
Ax—0+0 Ax

Consequently, the differential quotient of function f at point xp = 1 does not exist and
function f* is not differentiable at point xo = 1. However, since both one-sided limits of
function f* as x tends to 1 £ 0 exist and are equal to f(1) = 2, function f is continuous at
point xo = 1.

The latter example shows that a function being continuous at point xo is not necessarily
differentiable at this point. However, the converse is true.

THEOREM 4.8 Let function f/ : Dy — Rbe differentiable at pointxgp € Dy. Then function f
is continuous at xg.
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4.3 DERIVATIVES OF ELEMENTARY FUNCTIONS; DIFFERENTIATION
RULES

Before giving derivatives of elementary functions, we consider an example for applying
Definition 4.5.

Example 4.8 We consider function f : R — R with
f@ =2
and determine the derivative f” at point x:

fix+ Ax) —f(x) L (A =X
0 A T lim ————

"(x) = lim
f *) Ax Ax Ax—0 Ax

—

i x4+ 3x%Ax + 3x(Ax)2 + (Ax)3 —x3
im
Ax—0 Ax
_ Ax - [3x2 4 3xAx + (Ax)2]
lim =
Ax—0 Ax

3x2.

The above formula for the derivative of function f with f (x) = x> can be generalized to the
case of a power function f with £ (x) = x", for which we obtain f”(x) = nx"~!.

The determination of the derivative according to Definition 4.5 appears to be unpractical for
frequent use in the case of more complicated functions. Therefore, we are interested in an
overview on derivatives of elementary functions which we can use when investigating more
complicated functions later. Table 4.1 contains the derivatives of some elementary functions
of one variable.

Table 4.1 Derivatives of elementary functions

y=fx Yy =1 Dy

C 0 —00 < x <00, C isconstant
x" nx 1 —0<x<oo, neN
x¥ ax®1 0<x<o0, o eR
& e* —00 < X < 00
a* a*lna —co<x<oo, a>0
1
Inx - 0<x<o0
x
1
log, x 0<x<oo, a>0
xlna
sinx cosx —00 <X < 00
cosx —sinx —00 <Xx <00
1 b4
tanx 5 x#—+kn, kel
cos 2
1
cotx - x #km, keZ
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Sum, product and quotient rules

Next, we present formulas for the derivative of the sum, difference, product and quotient of
two functions.

THEOREM 4.9 Let functionsf : Dy — Randg : D; — R be differentiable atx € DyNDy.
Then the functions ' + g, f — g, f - g and, for g(x) # 0, also function /g are differentiable
at point x, and we have:

1D f+9)@) =)+ g x);

@ F-9'®=fx—gx;

3 (f-g/)/(X) =f1() g +f(x) - g'x);

@ (Ji) oL@ 90 —1) g/
g [g)]? ’

As a special case of part (3) we obtain: if f (x) = C, then (C - g)'(x) = C - ¢g'(x), where C is
a constant.

Example 4.9 Let functionf : Dy — R with
fx) = 4x* —2x+Inx+ /x

be given. Using /x = x'/2, we obtain

11
"x) =16x3 =24+ — + —.
S0 =168 =24 45—

Example 4.10 In macroeconomics, it is assumed that for a closed economy
Y=C+I,

where Y is the national income, C is the consumption and / is the investment. Assume that
the consumption linearly depends on the national income, i.e. equation

C=a+bY

holds, where a and b are parameters. Here C'(Y) = b is called the marginal propensity to
consume, a parameter which is typically assumed to be between zero and one. If we want to
give the national income as a function depending on the investment, we obtain from

Y=a+bY+1I

the function Y as

a+1
Y:Y(I):m.
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For the derivative Y'(I) we obtain

av 1
Y'() = —.
dal ~ 1-b

The latter result can be interpreted such that an increase in / by one unit leads to an increase
of Y by 1/(1 — b) > 0 units.

Example 4.11 Let functionsf : R — Rand g : R — R with
fx) =x* and gx) =

be given. Then
(f - 9) (x) = 2xe* +x*e" = xe*(x +2)

(Ji)'( | 2 —xPet  xef2-x)  x(2—x)
VETer T ey T e

Derivative of composite and inverse functions

Next, we consider composite and inverse functions and give a rule to determine their
derivatives.

THEOREM 4.10 Let functions /' : Dy — R and g : Dy — R be continuous. Then:

(1) If function f is differentiable at point x € Dy and function g is differentiable at point
y = f(x) € Dy, then function g o f"is also differentiable at point x and

(@o '@ =GN =g 1 (chain rule).

(2) Let function f be strictly monotone on Dy and differentiable at point x € Dy with
f'(x) # 0. Then the inverse function f~! with x = f~!(y) is differentiable at point
y=f() € Dy-1 and

1

1
Y0 =56 o)

An alternative formulation of the chain rule with 2 = g(y) and y = f (x) is given by

dh dh dy

dx  dy dx’
The rule given in part (2) of Theorem 4.10 for the derivative of the inverse function f ~! can
also be written as
1

f/offl'

(f—l)/ —
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Example 4.12  Suppose that a firm produces only one product. The production cost, denoted
by C, depends on the quantity x > 0 of this product. Let

C=f(x)=4+In@x+1)+3x+ 1.

Then we obtain

dfw _ 1, 3
& x+1 2/3x+1

Assume that the firm produces x9 = 133 units of this product. We get

C'=f)=

1 3 1 3
C'(133) = — + —— = — + — =~ 0.08246.
(133) 134 + 2400 134 * 40

So, if the current production is increased by one unit, the production cost increases
approximately by 0.08246 units.

Example 4.13  Let function g : D; — R with
g(x) = cos [In(3x + 1)]2

be given which is defined for x > —1/3,i.e. D; = (—1/3,00). Setting
g=cosv, v=*h>, h=Iy and  y=C0Cx+1),

application of the chain rule yields

, dg dv dh dy
g =222
dv dh dy dx

and thus we get

'(x) = —sin[InBx + D]* - 2InGx + 1) - ——— -3
g'(x) sin [In(3x + 1)] n(x+)3xle

6
=51 sin[InGx + D]? - InGx + 1).

By means of Theorem 4.10, we can also determine the derivatives of the inverse functions
of the trigonometric functions. Consider the function f* with

S =si 6( z ﬂ)
= f(x) = sinx, x -, =),
Y 22
and the inverse function

x :f_l(y) = arcsin y.



(c) ketabton.com: The Digital Library

162 Differentiation
Since f’(x) = cos x, we obtain from Theorem 4.10, part (2):
1 1

T (%) = cosx’

Because cosx = ++/cos?x = v/1 —sin? x = /1 —y2 forx € (—7/2,7/2), we get

¢ Ho)

—1y/ _ 1
f )@)—7\/@,

and after interchanging variables x and y

1
—1y/
™ =——=-
V1 —x2
Similarly, we can determine the derivatives of the inverse functions of the other trigono-
metric functions. We summarize the derivatives of the inverse functions of the trigonometric
functions in the following overview:

f(x) = arcsinx, f(x) = Dr={xeR|-1<x<1}

1
V1 —x2

1
f(x) =arccosx, f(x)=———=, Dr={xeR|-1<x<l}
V1 —x2
1
f(x) = arctanx, f'(x) = ——, Dr={x€eR|—00 <x < };
1+x2 4
y 1
f(x) = arccot x, f(x):—m, Dy ={x€R|—00 <x < oo}

Logarithmic differentiation

As an application of the chain rule, we consider so-called logarithmic differentiation. Let
g(x) =Inf(x) with  f(x) > 0.

We obtain

Py ;&)
g' ) =[nfx®)] = )

and thus
@) =f@-g'x) =, [Infx].

Logarithmic differentiation is particularly useful when considering functions f of type
fG) =ux)"™,

i.e. both the basis and the exponent are functions depending on variable x.
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Example 4.14 Let functionf : Dy — R with

f(x) — xsinx

be given. We set
gx) =Inf(x) =In (xSi"x) =sinx - Inx.

Applying the formula of logarithmic differentiation, we get
g’ (x) =cosx - Inx 4 sinx - %

and consequently

) =f&) g x) =x50F (cosx -lnx + sinx - l) .
x

Higher-order derivatives

In the following we deal with higher-order derivatives. If function f’ withy’ = f’(x) is again
differentiable (see Definition 4.5), function

df'(x) _ d*f(x)

yo=fx= o - @l

is called the second derivative of function f at point x. We can continue with this procedure
and obtain in general:

df''(x)  d"f(x) -

) _ ) () —
yr=rr = =@y "z

which denotes the nth derivative of function f at point x € Dy. Notice that we use
@), f"x),f"(x), and for n > 4, we use the notation /™ (x). Higher-order deriva-
tives are used for instance in the next section when investigating specific properties of
functions.

Example 4.15  Let function f : Dy — R with

f(x)=3x2+l+e2x
x
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be given. We determine all derivatives until fourth order and obtain
/ 1 2x
S =6x— — +2e
X
11 2 2x
) =64+ 5 +4e
x
6
f///(x) =-= + 862x
X

24
P = S+ 16¢%.

If the derivatives f”(xo),f” (X0), ...,/ "™ (xo) all exist, we say that function f is n times
differentiable at point xo € Dy. If ™ is continuous at point xg, then function f is said to
be n times continuously differentiable at xo. Similarly, if function £ is continuous, then
function £ is said to be n times continuously differentiable.

4.4 DIFFERENTIAL; RATE OF CHANGE AND ELASTICITY

In this section, we discuss several possibilities for characterizing the resulting change in
the dependent variable y of a function when considering small changes in the independent
variable x.

Definition 4.6 Let function f : D — R be differentiable at point xo € (a,b) C Dy.
The differential of function f at point x¢ is defined as

dy =f"(xo) - dx.

The differential is also denoted as df. Note that dy (or df) is proportional to dx, with
f'(x0) as the factor of proportionality. The differential gives the approximate change in
the function value at xo when changing the argument by (a small value) dx (i.e. from xq to
xo + dx), i.e.

Ay = dy = f(x) - dx.
The differential is illustrated in Figure 4.5.

The differential can be used for estimating the maximal absolute error in the function value
when the independent variable is only known with some error. Let |Ax| = |dx| < A, then

|Ay| & |dyl = |f (xo)| - |dx| < |f(x0)| - A.
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Ay

Figure 4.5 The differential dy.

Example 4.16 Let the length of an edge of a cube be determined as x = 7.5 + 0.01 cm,
i.e. the value xo = 7.5 cm has been measured, and the absolute error is no greater than 0.01,
i.e. |[dx] = |Ax| < A = 0.01. For the surface of the cube we obtain

So = S(x0) = 6x3 = 337.5 cm?.

We use the differential to estimate the maximal absolute error of the surface and obtain
|AS| = |dS| < |8 (x0)| - A = |12x0] - 0.01 = 0.9 cm?,

i.e. the maximal absolute error in the surface is estimated by 0.9 cm?, and we get
So A~ 337.5+£ 0.9 cm’.

Moreover, for the estimation of the maximal relative error we obtain

AS
So

a;S
So

0.9
< — ~0.00267,
3375

~
~

i.e. the maximal relative error is estimated by approximately 0.267 per cent.

We have already discussed that the derivative of a function characterizes the change in the
function value for a ‘very small’ change in the variable x. However, in economics often a
modified measure is used to describe the change of the value of a function . The reason for
this is that a change in the price of, e.g. bread by 1 EUR would be very big in comparison
with the current price, whereas the change in the price of a car by 1 EUR would be very small.
Therefore, economists prefer measures for characterizing the change of a function value in
relation to this value itself. This leads to the introduction of the proportional rate of change
of a function given in the following definition.
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Definition 4.7 Let function f : Dy — R be differentiable at point xo € (a,b) S Dy
and f(xg) # 0. The term

S (o)
S (xo0)

is called the proportional rate of change of function f : Dy — R at point x.

pr (xo) =

Proportional rates of change are often quoted in percentages or, when time is the independent
variable, as percentages per year. This percentage rate of change is obtained by multiplying
the value pr(xo) by 100 per cent.

Example 4.17 Let functionf : Dy — R with
Fx) = 201
be given. The first derivative of function f is given by
F(x) = 2xe%1* + 0.1x2e% 1 = xe%1¥(2 + 0.1x)
and thus, the proportional rate of change at point x € Dy is calculated as follows:

/ 0.1x
_f(x):xe (2+0.1x):E+071_
f(x) x2e0.1x x

We compare the proportional rates of change at points xo = 20 and x; = 2,000. For xy = 20,
we get

2
200 = — +0.1=02
or(20) 20+

which means that the percentage rate of change is 20 per cent. For x; = 2,000, we get

2
2,000) = —— 4+ 0.1 =0.101,
or( ) 2’000+

i.e. the percentage rate of change is 10.1 per cent. Thus, the second percentage rate of change
is much smaller than the first one.

Definition 4.8 Let function /' : Dy — R be differentiable at point xo € (a,b) € Dy
and f'(x9) # 0. The term

xo - f'(xo)
£ (xo)
is called the (point) elasticity of function f : Dy — R at xo.

ef(x0) = = x - pr(x0)
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In many economic applications, function f represents a demand function and variable x
represents price or income. The (point) elasticity of function /' corresponds to the ratio of the
relative (i.e. percentage) changes of the function values of f* and variable x:

er(xp) = lim ([xo . Af(x)) = lim (Af(x) g)
TR = oo\ fo) Ax ) Ao\ f(xo)  x0 )

An economic function f is called elastic at point xg € Dy if |g7(xg)| > 1. On the other hand,
it is called inelastic at point xg if |7 (xo)| < 1. In the case of |er(xo)| = 1, function f is of
unit elasticity at point xg.

In economics, revenue R is considered as a function of the selling price p by

R(p) =p-D(p),

where D is the demand function that is usually decreasing, i.e. if the price p rises, the quantity
D sold falls. However, the revenue (as the product of price p and quantity D) may rise or fall.
For the marginal revenue function, we obtain

R (p) =p-D'(p) + D(p).
Assume now that R'(p) > 0, i.e. from p - D'(p) + D(p) > 0 we get for D(p) > 0

p-D'(p)
D(p)

where due to D'(p) < 0, we have |ep(p)| < 1. Thus, if revenue increases when the price
increases, it must be at an inelastic interval of the demand function D = D(p), and in
the inelastic case, a small increase in the price will always lead to an increase in revenue.
Accordingly, in the elastic case, i.e. if |ep(p)| > 1, a small increase in price leads to a
decrease in revenue. So an elastic demand function is one for which the quantity demanded
is very responsive to price, which can be interpreted as follows. If the price increases by one
per cent, the quantity demanded decreases by more than one per cent.

ep(p) =

s

Example 4.18 We consider function f : (0,00) — R given by
f) =x!

and determine the elasticity of function f* at point x € Dy. First, we calculate the first
derivative f” by applying logarithmic differentiation. We set

gx) =Inf(x) = (x+ 1) Inx.
Therefore,

¢/ = /()] = % L L

Thus, we obtain for the first derivative

Fw=r-g = (s 1)
X
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For the elasticity at point x € Dy, we obtain
X'f/(x) _ x-x"+1 (lnx—i— %)

er(x) = o T =xlnx+x+1.

4.5 GRAPHING FUNCTIONS

To get a quantitative overview on a function ' : Dy — R resp. on its graph, we determine
and investigate:

(1) domain Dy (if not given)

(2) zeroes and discontinuities

(3) monotonicity of the function

(4) extreme points and values

(5) convexity and concavity of the function

(6) inflection points

(7) limits, i.e. how does the function behave when x tends to £oo.

Having the detailed information listed above, we can draw the graph of function f. In the
following, we discuss the above subproblems in detail.

In connection with functions of one variable, we have already discussed how to determine
the domain Dy and we have classified the different types of discontinuities. As far as the
determination of zeroes is concerned, we have already considered special cases such as
zeroes of a quadratic function. For more complicated functions, where finding the zeroes
is difficult or analytically impossible, we give numerical procedures for the approximate
determination of zeroes later in this chapter. We start with investigating the monotonicity of
a function.

4.5.1 Monotonicity

By means of the first derivative f’, we can determine intervals in which a function f is
(strictly) increasing or decreasing. In particular, the following theorem can be formulated.

THEOREM 4.11  Let function /' : Dy — R be differentiable on the open interval (a, b) and
let I = [a,b] C Dy. Then:

(1) Functionf is increasing on [ if and only if /' (x) > 0 for all x € (a, b).
(2) Function f is decreasing on I if and only if f/(x) < 0 for all x € (a, b).
(3) Function f is constant on [ if and only if /" (x) = 0 for all x € (a, b).

(4) Iff'(x) > 0 for all x € (a, b), then function f is strictly increasing on I.
(5) Iff’(x) < 0 for all x € (a, b), then function f is strictly decreasing on I.

We recall from Chapter 3 that, if a function is (strictly) increasing or (strictly) decreasing on
aninterval / C Dy, we say that function f is (strictly) monotone on the interval /. Checking a
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function f* for monotonicity requires us to determine the intervals on which function f is
monotone and strictly monotone, respectively.

Example 4.19 We investigate function / : R — R with
fx) = EE24+2x+1)
for monotonicity. Differentiating function f', we obtain
) =@ +2x+ 1)+ 2x +2) = (2 + 4x + 3).
To find the zeroes of function f/, we have to solve the quadratic equation
X4 +3=0
(notice that € is positive for x € R) and obtain
X1 =—24+V4-3=-1 and Xy =-2—+4-3=-3,
Since we have distinct zeroes (i.e. the sign of the first derivative changes ‘at’ each zero) and
e.g. f'(0) =3 > 0, we get that f'(x) > 0 forx € (—00,—3) U (—1,00) and f'(x) < 0 for

x € (—3,—1). By Theorem 4.11 we get that function f is strictly increasing on the intervals
(—00, —3] and [—1, co) while function f is strictly decreasing on the interval [—3, —1].

4.5.2 Extreme points

First we give the definition of a local and of a global extreme point which can be either a
minimum or a maximum.

Definition 4.9 A function f/ : Dy — R has a local maximum (minimum) at point
xo € Dy if there is an interval (a,b) C Dy containing xo such that

f&) =fxo)  (f(x) =f(x0), respectively) 4.1

for all points x € (a,b). Point xq is called a local maximum (minimum) point. If
inequality (4.1) holds for all points x € Dy, function f has at point xo a global maximum
(minimum), and xy is called a global maximum (minimum) point.

These notions are illustrated in Figure 4.6. Let Dy = [a, b]. In the domain Dy, there are two
local minimum points x; and x4 as well as two local maximum points x; and x3. The global
maximum point is x3 and the global minimum point is the left boundary point a. We now
look for necessary and sufficient conditions for the existence of a local extreme point in the
case of differentiable functions.

THEOREM 4.12 (necessary condition for local optimality) Let function /' : Dy — R be
differentiable on the open interval (a,b) C Dy. If function f has a local maximum or local
minimum at point xo € (a, b), then f”(xg) = 0.
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A pointxg € (a,b) withf”(xg) = 01is called a stationary point (or critical point). In searching
global maximum and minimum points for a function f in a closed interval I = [a, b] C Dy,
we have to search among the following types of points:

(1) points in the open interval (a, b), where f/(x) = 0 (stationary points);
(2) end points a and b of I;
(3) points in (a, b), where f”(x) does not exist.

Points in / according to (1) can be found by means of differential calculus. Points according
to (2) and (3) have to be checked separately. Returning to Figure 4.6, there are three stationary
points x7,x3 and x4. The local maximum point x; cannot be found by differential calculus
since the function drawn in Figure 4.6 is not differentiable at point x;.

a ) s 3 T b T
Figure 4.6 Local and global optima of function f on Dy = [a, ].

The following two theorems present sufficient conditions for so-called isolated local extreme
points, for which in inequality (4.1) in Definition 4.9 the strict inequality holds for all x €
(a, b) different from xo. First, we give a criterion for deciding whether a stationary point is a
local extreme point in the case of a differentiable function which uses only the first derivative
of function /.

THEOREM 4.13 (first-derivative test for local extrema) Let function /' : Dy — R be
differentiable on the open interval (a,b) € Dy and xo € (a,b) be a stationary point of
function /. Then:

(1) Iff’(x) > 0 forall x € (a*,xp) C (a,b) and f'(x) < 0 for all x € (xo,b*) C (a,b), then
xo is a local maximum point of function f.

(2) Iff'(x) < 0 forall x € (a*,xp) C (a,b) and f'(x) > 0 for all x € (xo,5*) C (a,b), then
Xp is a local minimum point of function f".

(3) Iff’(x) > 0 forall x € (a*,x0) C (a,b) and for all x € (xo, b*) C (a, b), then x¢ is not a
local extreme point of function /. The same conclusion holds if f/(x) < 0 on both sides
Ofxo.
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For instance, part (1) of Theorem 4.13 means that, if there exists an interval (a*, b*) around xg
such that function f is strictly increasing to the left of xo and strictly decreasing to the right of xg
in this interval, then xp is a local maximum point of functionf. The above criterion requires the
investigation of monotonicity properties of the marginal function of /. The following theorem
presents an alternative by using higher-order derivatives to decide whether a stationary point
is a local extreme point or not provided that the required higher-order derivatives exist.

THEOREM 4.14 (higher-order derivative test for local extrema) Letf : Dy — Rben
times continuously differentiable on the open interval (a,b) C Dy and xo € (a,b) be a
stationary point. If

o) =f"(x0) =f" (o) = =f" V) =0 and ™ (xg) #0,

where number 7 is even, then point xo is a local extreme point of function £, in particular:

(1) Iff™(xy) < 0, then function f has at point xo a local maximum.
2) Iff ™ (x0) > 0, then function £ has at point xo a local minimum.

Example 4.20 We determine all local extreme points of function f : (0, 00) — R with

1
f(x) = —-1n®3x.
x
To check the necessary condition of Theorem 4.12, we determine

1 1 1 1
fl@)=-= In*3x+ - 2mn3x- — 3=~ -In3x2 — In3x).
x x 3x X

From equality /' (x) = 0, we obtain the following two cases which we need to consider.
Casea 1In3x = 0. Then we obtain 3x = ® = 1 which yields x; = 1/3.
Caseb 2 —In3x = 0. Then we obtain In 3x = 2 which yields x, = €2/3.

To check the sufficient condition for x; and x; to be local extreme points according to
Theorem 4.14, we determine /" as follows:

2 1 1 1 1
s
f (x):(—x—3~ln3x+;-§-3>(2—ln3x)—x—2-ln3x~§-3
2 1 1
= ——3-1n3x+§ (2—1n3x)—;~ln3x
x
2 2
= -(1-3n3x+1n"3x).
x
In particular, we obtain
1 1 54 54
=)=54>0 and f(=f)==-1-3-242H)=-2<0.
3 3 b b

Hence, x; = 1/3 is alocal minimum point with f'(x;) = 0, andx; = 62/3 is alocal maximum
point with £ (xy) = 12/¢?.
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Example 4.21 A monopolist (i.e. an industry with a single firm) producing a certain
product has the demand—price function (also denoted as the inverse demand function)

p(x) = —0.04x + 200,

which describes the relationship between the (produced and sold) quantity x of the product
and the price p at which the product sells. This strictly decreasing function is defined for
0 < x < 5,000 and can be interpreted as follows. If the price tends to 200 units, the number
of customers willing to buy the product tends to zero, but if the price tends to zero, the sold
quantity of the product tends to 5,000 units. The revenue R of the firm in dependence on the
output x is given by

R(x) = p(x) - x = (—0.04x 4+ 200) - x = —0.04x% + 200x.

Moreover, let the cost function C describing the cost of the firm in dependence on the
produced quantity x be given by

C(x) = 80x + 22,400.
This yields the profit function P with
P(x) = R(x) — C(x) = —0.04x? + 200x — (80x + 22,400) = —0.04x> + 120x — 22, 400.

We determine the production output that maximizes the profit. Looking for stationary points
we obtain

P'(x) = —0.08x + 120 =0

which yields the point
xp = 1,500.
Due to

P’(xp) = —0.08 < 0,

the output xp = 1,500 maximizes the profit with P(1,500) = 67,600 units. Points with
P(x) = 0 (i.e. revenue R(x) is equal to cost C(x)) are called break-even points. In the
example, we obtain from P(x) = 0 the equation

x% — 3,000x + 560,000 = 0,
which yields the roots (break-even points)

x1 = 1,500 — /1,690,000 = 200 and x» = 1,500 + /1,690, 000 = 2, 800,

i.e. an output x € (200; 2, 800) leads to a profit for the firm. Finally, we mention that when
maximizing revenue, one gets from

R (x) = —0.08x + 200 = 0
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the stationary point

xg = 2,500,

which is, because R”(2,500) = —0.08 < 0, indeed the output that maximizes revenue.
However, in the latter case, the profit is only P(2,500) = 27, 600 units.

Example 4.22 The cost function C : Ry — R of an enterprise producing a quantity x of
a product is given by

C(x) = 0.1x2 — 30x + 25, 000.
Then, the average cost function C, measuring the cost per unit produced is given by

C 25,000
Cy(x) = % =0.1x—30+ ’x .

We determine local minimum points of the average cost function C,. We obtain

25,000

Cl(x) =0.1— e

The necessary condition for a local extreme point is C},(x) = 0. This corresponds to
0.1x* = 25,000

which has the two solutions
x1 = 500 and xy = —500.

Since x3 ¢ D¢, the only stationary point is x; = 500. Checking the sufficient condition, we

obtain
25,000
4 >
C,(x)=2- 3
and
50,000
CJ(500) = ————— >0,
125,000, 000

i.e. the produced quantity x; = 500 minimizes average cost with C,(500) = 70.

Example 4.23 A firm wins an order to design and produce a cylindrical container for
transporting a liquid commodity. This cylindrical container should have a given volume V.
The cost of producing such a cylinder is proportional to its surface. Let R denote the radius
and H denote the height of a cylinder. Among all cylinders with given volume 7, we want
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to determine that with the smallest surface S (i.e. that with lowest cost). We know that the
volume is obtained as

Vo = V(R,H) = nR’H, 4.2)
and the surface can be determined by the formula

S =S®R,H)=2nR?+27RH. 4.3)
From formula (4.2), we can eliminate variable H which yields

Vo

Substituting the latter term into formula (4.3), we obtain the surface as a function of one
variable, namely in dependence on the radius R, since Vj is a constant:

— 2 Vo 2 Vo
S =8SR) =27R +27rR-—2 —_2(7TR +—).

Now we look for the minimal value of S(R) for 0 < R < oo. For applying Theorems 4.12
and 4.14, we determine the first and second derivatives of function S = S(R):

Vo 2V
S'(R) =2 (an - ﬁ) and  S'(R) =2 (zn + F) .
Setting S'(R) = 0 yields
21R — V=0 (4.5)

and thus the stationary point is obtained as follows:

Ve
R = ,3/ i
2

Notice that the other two roots of equation (4.5) are complex and therefore not a candidate
point for a minimal surface of the cylinder. Moreover, we obtain

S"(R)) =227 +47) = 127 > 0,

i.e. the surface becomes minimal for the radius R;. One can also argue without checking the
sufficient condition that the only stationary point with a positive radius must be a minimum
point since, both as R — 0 and as R — o0, the surface of the cylinder tends to infinity so
that for Ry, the surface must be at its minimal value. Determining the corresponding value
for the height, we obtain from equality (4.4)

H = Loz _ Vo - Vo.(272)§/3 _ 2 g _,. 30 — 2R,
7R n(\s/z) x-vy T 27
2

Thus, the surface of a cylinder with given volume is minimal if the height of the cylinder is
equal to its diameter, i.e. H = 2R.
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4.5.3 Convexity and concavity

The definition of a convex and a concave function has already been given in Chapter 3. Now,
by means of differential calculus, we can give a criterion to check whether a function is
(strictly) convex or concave on a certain interval /.

THEOREM 4.15  Let function f* : Dy — R be twice differentiable on the open interval
(a,b) C Dy and let I = [a, b]. Then:

(1) Function f is convex on [ if and only if f”(x) > 0 forall x € (a,b).
(2) Functionf is concave on [ if and only if /" (x) <0 forall x € (a,b).
(3) Iff”(x) > 0 for all x € (a, b), then function f is strictly convex on I.
(4) Iff”(x) < 0 for all x € (a, b), then function f is strictly concave on I.

Example 4.24 Let function f : R — R with
f(x) = ae®, a,b e R\ {0}

be given. We obtain
f(x) = abe™ and  f/(x) = ab®e®.

For a,b > 0, we get f'(x) > 0 and f”(x) > 0 for all x € Dy, i.e. function f is strictly
increasing and strictly convex. In this case, we say that function f has a progressive growth
(since it grows faster than a linear function, which has a proportionate growth).

Consider now function g : R4 — R with

g(x) = aln(l + bx), a,b e R\ {0}.
We obtain

') ab d " ) ab?
X)) = — an X)) = ————mm=.
g 1+ bx 9 1+ bx)?

For a,b > 0, we get g'(x) > 0 and g”(x) < 0 for all x € Dy, i.e. function g is strictly
increasing and strictly concave. In this case, we say that function g has degressive growth.

Example 4.25 We investigate function / : R — R with

2x
x2+1

fx) =
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for convexity and concavity. We obtain

,()_2(x2+1)—2x-2x_ . 1 —x?
o=y ey
v =2+ D (=) 2 (P4 1) 2x
Fre=2 2+ D
(x2+1)~[—2x(x2+1)—(1—x2)-4x]
- o2+ e
_ .x3—3x
@+ 13

To find the zeroes of the second derivative f”/, we have to solve the cubic equation
¥ -3x=x-x*-3)=0

which yields the solutions
x1 =0, Xy = V3 and X3 = —/3.

Since e.g. /(1) =4 - (1 —3)/23 = —1 < 0, we have /" (x) < 0 forx € (x1,x2) = (0,+/3),
i.e. by Theorem 4.15, function f is strictly concave on the interval [0, +/3]. Moreover, since
we have distinct zeroes, the sign of the second derivative changes ‘at’ each zero, and by
Theorem 4.15 we obtain: function f is strictly convex on [—+/3,0] U [/3, o0) and strictly
concave on (—oo, —ﬁ] U [o, ﬁ].

To decide whether a function is convex or concave, the following notion of an inflection
point can be helpful.

Definition 4.10 Let functionf : Dy — R be twice differentiable on the open interval
(a,b) € Dy. Point xo € (a,b) is called an inflection point of function f when f
changes at xo from being convex to being concave or vice versa, i.e. if there is an
interval (a*, b*) C (a, b) containing xg such that either of the following two conditions
holds:

1) f"(x) >0 ifa* <x < xp and f(x) <0 ifxg <x < b* or
Q) f"(x) <0 ifa* <x <xp and f"(x) >0 ifxp < x < b*.

Consequently, if the second derivative changes the sign ‘at’ point xp, then point x( is an
inflection point of function /. The notion of an inflection point is illustrated in Figure 4.7.
Next, we give a criterion for an inflection point of function f'.
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y = f(z)

f”(w) >0

Figure 4.7 Inflection point xq of function f.

THEOREM 4.16 Let function /' : Dy — R be n times continuously differentiable on the
open interval (a,b) C Dy. Point xg € (a, b) is an inflection point of function /" if and only if

/a0 =f"x0) = =f"Px)=0 and  f™(xg) #0,

where » is odd.

Example 4.26 We consider function f : R — R with
f@=x*+2-1222+4=0

and determine inflection points. We obtain
F(x) = 4x> + 6x% — 24x and  f7(x) = 12x% + 12x — 24.

In order to solve f”(x) = 0, we have to find the roots of the quadratic equation
WP x—2= 0,

which gives x; = 1 and x, = —2 as candidates for an inflection point. Using
[ (x) =24x + 12,

we obtain f”/(1) = 36 # 0 and /" (—2) = —36 # 0, i.e. both points x; = 1 and x; = —1
are inflection points of function f.
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4.5.4 Limits

We have already discussed some rules for computing limits of sums, differences, products
or quotients of functions. However, it was necessary that each of the limits exists, i.e. each
of the limits was a finite number. The question we consider now is what happens when we
want to determine the limit of a quotient of two functions, and both limits of the function in
the numerator and the function in the denominator tend to oo as x tends to a specific value xo.
The same question arises when both functions in the numerator and in the denominator tend
to zero as x approaches some value x.

Definition 4.11 If in a quotient both the numerator and the denominator tend to zero

as x tends to xg, we call such a limit an indeterminate form of type “0/0”, and we write
. S &)

im —— =

=50 g@)

“0/0”.

The notion ‘indeterminate form’ indicates that the limit cannot be found without further
examination. There exist six further indeterminate forms as follows:

« 2

s0/00”,  “0-00”, © » w07 a0 oor,

00— 07, o0

For the two indeterminate forms “0/0” and “co/00”, the limit can be found by means of the
following rule.

THEOREM 4.17 (Bernoulli-I’Hospital’s rule) Let functionsf : Dy — Randg : D; — R
both tend to zero as x tends to xg, or f and g both tend to co as x tends to xo. Moreover, let
f and g be continuously differentiable on the open interval (a,b) € Dy N D, containing xo
and g'(x) # 0 for x € (a,b). Then

fim 7% gim L@

=z g(x)  x—x g'(x)

Here either the limit exists (i.e. value L is finite) or the limit does not exist.

It may happen that after application of Theorem 4.17, we still have an indeterminate form
of type “0/0” or “00/00”. In that case, we apply Theorem 4.17 repeatedly as long as we
have found L. Moreover, we mention that Theorem 4.17 can be applied under appropriate
assumptions also to one-sided limits (i.e. x — xp + 0 or x — xo — 0) as well as to the cases
x — —oo and x — o00. To illustrate Theorem 4.17, consider the following example.

Example 4.27 We determine the limit

) esian _ er
L = lim

x—0 sin2x —2x’
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which is an indeterminate form of type “0/0”. Applying Theorem 4.17 repeatedly three times,

we obtain
L1 2 (% cos 2x — %) . e 2% cos 2x — €2* «0 /0"
= lim = lim
x—0 2cos2x —2 x—0 cos2x — 1 /
. 2[eS"?* (cos? 2x — sin 2x) — €] o
= lim - 0/0
x—>0 —2sin 2x
y 2¢8n2% ¢og 2x(cos2 2x — sin 2x) + eS2Y(_4 cos 2x - sin 2x — 2 cos 2x) — 22
= lim
x—0 —2cos2x
=1.

In the above computations, we have to apply Theorem 4.17 three times since after the first
and second applications of Theorem 4.17, we still have an indeterminate form of type “0/0”.

We note that all other indeterminate forms can be transformed to one of the forms “0/0” or
“00/00”, and they can be treated by Theorem 4.17, too. We discuss these transformations in
some more detail.

Let
lim g(x) =0 and lim f(x) = oo,
X—>X0 X—>X0

which corresponds to an indeterminate form of type “0 - 00”. Then we can reduce the latter
case to one discussed above by considering the reciprocal expression of one function, i.e. we

use either
lim [f(x)-g()] = lim @
X—>X0 X—>X) ——
V&)
or
lim [f(x)-g(x)] = lim @
x—0 X—>X0 m

The first limit on the right-hand side is an indeterminate form of type “0/0”, and the second
one is an indeterminate form of type “co/00”.

In the case of an indeterminate form of type “co — 00”, i.e.
lim [g(x) —f(x)] with lim g(x) =oc0 and lim f(x) = oo,
xX—>X0 X—>X0 X—>X0

we can apply the following general transformation:

1 1 N S I
9@ —f@) = - =129
g fG) 9@ @)

>

where the right-hand side is an indeterminate form of type “0/0”. However, we can often
apply an easier reduction to obtain an indeterminate form that we have already discussed.
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Example 4.28 We determine

L= lim (\3/x3 a2 x) .

X—> 00

Obviously, this is an indeterminate form of type “co — 00”. We reduce this form to the type
“0/0” without the above general transformation. Instead of it, we perform for x # 0 the
following algebraic manipulation:

2\ 1173 o\ 173
\3/x3—2x2—x:|:x3<1—7)] —x:x(l—f) —x “00 — 00"

X X

Thus we obtain

X—> 00 X—>00

(1 - Z>1/3 _1
lim (G/x3 22 fx) = Jim ~———

If we have an indeterminate form of type “0°”, “c0%” or “1%°”, i.e. the limit to be determined

has the structure
L= lim gxy®
x—>X0
with g(x) > 0, we take the natural logarithm on both sides of the equation
y@) =gy
and obtain
Iy = [g@/ @] =f ) Ing (@),

If now x tends to x¢, we obtain an indeterminate form of type “0 - c0” which we can already
treat. Suppose that this limit exists and let

Li = lim [ mgw],

then we finally get
L=é.
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Notice that the latter is obtained from Theorem 4.4 since the exponential function is
continuous.

Example 4.29 We determine the limit
L= lim (1 +x)l/x

which is an indeterminate form of type “1°°”. Setting
y@) =1 +0)

and taking the natural logarithm on both sides, we obtain
Iny(x) = % -In(1 + x).

Applying Theorem 4.17, we get by Bernoulli-1’Hospital’s rule

In(1 ~ 1
fim 2AFED o T i =1
x—0 X x—0 1 x—0 1 4+x

Thus, we obtain
lim Iny(x) = 1.
x—0

Therefore,

L=1lm yx) = el =e.
x—>0

4.5.5 Further examples

In the following example, we investigate all the properties listed above when graphing
functions.

Example 4.30 Let us discuss in detail function /' : Dy — R with

_x2+5x+22

f@ =

Function f is defined for all x € R withx # 2, i.e. Dr = R\ {2}. At point xo = 2, there is a
pole of first order with

li =— d li = o0.
xa112n—0 f(X) 0 an x;IZI}H) f(X) o0
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Figure 4.8 Graph of function f with f(x) = (% 4 5x + 22)/(x —2).

From f'(x) = x% 4 5x + 22 = 0, we obtain the roots

5[5 5 [25
A e d =2 |2 _n
n=-rtg an V=TTV,
Since
25
B opo 8By,
4 4

there do not exist real zeroes of function f. We obtain for the first and second derivatives

(2x+5)(x—2)— (* +5x4+22)  x*—4x—32

S = x—2)2 T a2

and

2x—Hx -2 -2 —2)x* —4x—32) 72

o= x—2)* BTN

Setting ' (x) = 0, we obtain x> — 4x — 32 = 0 which yields the stationary points

x3=24+v4+32=8 and x4=2-4+32=—4
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From f”(x3) > 0, we get that x3 = 8 is a local minimum point with f'(x3) = 21, and from
f"(x4) < 0, we get that x4 = —4 is a local maximum point with /' (x4) = —3. Since f/(x) > 0
for all x € (—o0,—4) U (8,00), function f is strictly increasing on (—oo, —4] U [8, 00).
For x € (—4,2) U (2,8), we have f/(x) < 0, and thus function f is strictly decreasing
on [—4,2) U (2, 8]. To determine candidates for an inflection point, we set f”/(x) = 0. The
latter equation has no solution, and thus function f/ does not have an inflection point. Because
f"(x) > 0forx € (2, 00), functionf is strictly convex on the interval (2, 00). Since /' (x) < 0
for x € (—00,2), function f is strictly concave on the interval (—oo, 2). Moreover,

lim f(x) =00 and lim f(x) = —oo0.
x—00 X—>—00

The graph of function f is given in Figure 4.8.

Example 4.31 Let the relationship between the price p of a good and the resulting demand
D for this good be given by the demand function D = D(p), where

400 — 10p

s 0 <p <40. 4.6
PR =p= “6)

First, we determine the extreme points of function D = D(p) and check the function for
monotonicity as well as concavity or convexity. We obtain

—10(p +5) — (400 —10p) - 1 450

D = = — .
@ @ +572 P +57?

Thus D'(p) # 0 for all p € [0,40], and therefore function D = D(p) cannot have an
extreme point since the necessary condition for its existence is not satisfied. Moreover, since
D'(p) < 0forallp € (0,40), function D = D(p) is strictly decreasing on the closed interval
[0,40]. Checking function D = D(p) for convexity and concavity, respectively, we obtain

900

D" (p) = —4 By =—"—
(») 50(p+35)7-(=2) D15

>0

for all p € (0,40). Therefore, function D = D(p) is strictly convex on the closed interval
[0,40].

Next, we check function D = D(p) for elasticity. We obtain

p- D) 450p(p +5) 45p

D(p)  (p+52@00—10p)  (p+5@0—p)

ep(p) =

We can determine points where function D = D(p) changes between being elastic and
inelastic, i.e. we can check, where equality |¢p(p)| = 1 holds and obtain

45p _1
(p+5@0-p)

Thus,

(p+5)(40 —p) =45p
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which yields the quadratic equation
P>+ 10p —200 =0
with the two solutions
pr=-5++25+200=-5+15=10 and py=-5—15=—-20<0.

Solution p, does not belong to the domain Dp of function D = D(p). Hence, for p = 10,
function D is of unit elasticity. Since |ep(p)| < 1 for p € [0,10) and |ep(p)| > 1 for
p € (10,40], we get that function D = D(p) is inelastic for p € [0, 10) and elastic for
p € (10,40].

Finally, we look for the function p = p(D) giving the price in dependence on the demand D.
Since function D(p) is strictly decreasing on the closed interval [0, 40], the inverse demand
function p = p(D) exists. Solving equation (4.6) for p, we obtain

D(p + 5) = 400 — 10p
p(D + 10) = 400 — 5D
400 — 5D

D+ 10

Since D = D(p) is strictly monotone, the inverse function p = p(D) is strictly monotone as
well. Because D(0) = 80 and D(40) = 0 (see also the inequality in (4.6)), function p = p(D)
is defined for D € [0, 80].

4.6 MEAN-VALUE THEOREM

Before presenting the mean-value theorem of differential calculus, we start with a special
case.

THEOREM 4.18 (Rolle’s theorem) Let function f : Dy — R be continuous on the closed
interval [a, b] € Dy withf(a) = f(b) = 0 and differentiable on the open interval (a, b). Then
there exists a point x* € (a, b) with f(x*) = 0.

Geometrically, Rolle’s theorem says that in the case of f (@) = f'(b), there exists an interior
point x* of the interval (a, b), where the tangent line is parallel to the x axis. In other words,
there is at least one stationary point in the open interval (a, ). The mean-value theorem of
differential calculus generalizes Rolle’s theorem to the case f'(a) # f(b).

THEOREM 4.19 (mean-value theorem of differential calculus) Let functionf : Dy — R
be continuous on the closed interval [a, b] € Dy and differentiable on the open interval (a, b).
Then there exists at least one point x* € (a, b) such that

f®) —f@)

rey ==
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The mean-value theorem of differential calculus is illustrated in Figure 4.9. In this case, we
have two points x| € (a,b) and xj € (a, b) with the property that the derivative of function
f at each of these points is equal to the quotient of ' (b) — f(a) and b — a.

The mean-value theorem of differential calculus can be used e.g. for the approximate
calculation of function values.

flayf o

Figure 4.9 Mean-value theorem of differential calculus.

Example 4.32  Using the mean-value theorem, we compute ~/29. Let us consider function
f Ry — R with

f) =
We get
o=z -x725

Applying the mean-value theorem with @ = 27 and b = 29, we get

f)—fa J29-327 J29-3
b—a ~ 29-27 = 2

1
=f'(x") = 3" (X*)_2/3
which can be rewritten as

@—3+ ST

Using x* = 27 (notice that x* is not from the open interval (27,29), but it can be chosen
since function f is differentiable at x* = a = 27 and moreover, the value of function f” is
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easily computable at this point), we get

, 11 1 2 2
V29~ 4 — 2 =34 —— =3+ — ~ 3074
t3 0 BT

Example 4.33 A vehicle starts at time zero and s(¢) gives the distance from the starting
point (in metres) in dependence on time ¢ (in seconds). It is known that s(¢) = ¢2/2 and let
a = 0 and b = 20. Then the mean-value theorem reads as

20) —s(0) 1:202—0 200
520 5O _ 2 =D 10 =5 = £,
20-0 20 20

The left-hand side fraction gives the average velocity of the vehicle in the interval [0, 20]
which is equal to 10 m per second. The mean-value theorem implies that there is at least one
value t* € (0,20), where the current velocity of the vehicle is equal to 10 m/s. In the above
example, it happens at time #* = 10.

4.7 TAYLOR POLYNOMIALS

Often it is necessary to approximate as closely as possible a ‘complicated’ function f by a
polynomial P, of some degree n. One way to do this is to require that all n derivatives of
function /" and of the polynomial P,, as well as the function values of / and P, coincide at
some point x = xo provided that function f is sufficiently often differentiable.

Before considering the general case, we discuss this question for some small values of ».
First consider n = 1. In this case, we approximate function /" around x¢ by a linear function
(straight line)

Py (x) = f(x0) +f'(x0) - (x — x0).

Obviously, we have Pi(xg) = f(xo) and Pj(x9) = f'(x0). For n = 2, we approximate
function f by a quadratic function (parabola) P, with

f"x0)

TS —x0)*.

Py(x) =f(x0) + [ (x0) - (x —x0) +

In this case, we also have P (xo) = f (xo), P} (x0) = f’(xo) and additionally P} (xo) = 1" (xo).
Suppose now that function f is sufficiently often differentiable, and we wish to approximate
function f by a polynomial P, of degree n with the requirements listed above.

THEOREM 4.20 Let functionf : Dy — R be n+ 1 times differentiable on the open interval
(a,b) € Dy containing points xo and x. Then function f* can be written as

[ =f(x0)+f(1):0) '(xfx0)+f ;‘0).

" o)
|

n:

(x —x0)* +---

+ (x —x0)" + Ry (x),
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D (o + Ax —x0))
(n+1)!

R,(x) = (x —x0)" 1, 0<i<l,

is Lagrange’s form of the remainder.

The above form of representing function f/ by some polynomial together with some remainder
is known as Taylor s formula. We still have to explain the meaning of the remainder R, (x).
From equation

Ry(x) = f(x) = Pu(x),

the remainder gives the difference between the original function f and the approximating
polynomial P,. We are looking for an upper bound for the error when approximating function
f by polynomial P, in some interval I = (xo,x). To this end, we have to estimate the maximal
possible value of the remainder R, (x*) for x* € (xp,x). (Note that xo + A(x — xo) with
0 < A < 1in R,(x) above corresponds to some point x* € (xp,x).) If we know that the
(n 4 1)th derivative of function f in the interval (xg, x) is bounded by some constant M, i.e.

|f"VE <M forx* € (x0,%),
then we obtain from Theorem 4.20:

| Ra(x) | < < (x — x0)" . 4.7

M
(n+ 1!

Inequality (4.7) gives the maximal error when replacing function f* with its nth Taylor
polynomial

n
% x0)
Pax) = 3 - —x0)*
k=0
in the open interval (xp,x). The above considerations can also be extended to an interval
(x,x0) to the left of point xo. (Note that we have to replace (x — xp) in formula (4.7) by
[ x—xo )

Example 4.34 Let function f : R — R with
fx)=¢€

be given. We wish to approximate this function by a polynomial of smallest degree such that
for |x| < 0.5 the maximal error does not exceed 10~%. We choose xo = 0 and obtain

=" =" =" =¢"

Thus, we have £(0) = f/(0) = - - - :f(”) (0) = 1. Consequently,

2 3

x x x"
f@=T+x+o+ =+t R
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with
1 2
Ry (x) =M o XL
(n+1)! (n+1)!

where 0 < A < 1. For |x| < 0.5, we have

e < el/? ~ 16487 < 2.
Thus, we determine » such that

2. |x|n+1 2 4
R,(x) < < 107"

@+D! " D2

From the latter estimation it follows that we look for the smallest value of 7 such that
(n+D!-2" > 2. 104,

or equivalently,
(n+1!-2" > 10%

Forn € {0, 1,2, 3, 4}, the above inequality is not satisfied. However, for n = 5, we get
(n+1)!-2" = 72032 = 23,040 = 2.304 - 10* > 10*.

We have obtained:

Rs(x) = 0~ for |x| < 0.5,

5
x
e

k=0

and thus we can approximate function f with f(x) = €* for |x| < 0.5 by the polynomial Ps
with

x2 x3 x4 x5

Ps(x) =1 S IR A
5 (x) +x+2+6+ +120

and the error of this approximation does not exceed the value 10~%.

Example 4.35 Let us approximate function f : [—4, 0c0) — R with
@ =Vx+d=@x+4"
by a linear function P;(x) around xo = 0. This approximation should be used to give an

estimate of +/4.02.
We get

/ _l. —-1/2 % - _l . -3/2
fo=5-G+4 I ( 2) (x+4)77.
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Consequently, for xo = 0 we get

11 1
0)=2 d ‘O =5-5=7
S an, fO=--5=4
We obtain
11
S@ =24 x— a2 0<a<l (4.8)

In order to estimate +/4.02, we write 4.02 = 0.02 44 and use representation (4.8). Estimating
the maximum error, we get for x = 0.02 the inequalities 0 < Ax < 0.02 for 0 < A < 1, and
consequently the inequality Ax + 4 > 4. Therefore, we have

1
Ox+4)732 <4732 = %

and we get the following estimate:

R1(0.02) = | L (- 0,02 +2y732 . (2 2‘ LA
. =[-(-0. N < o< .
! 8 100 80,000 8
We conclude that
1
VA2~ 2+ - 0.02=2.005

with an error less than 107,

4.8 APPROXIMATE DETERMINATION OF ZEROES

In this section, we discuss several algorithms for finding zeroes of a function approximately.
As an application of Taylor polynomials we first consider the determination of zeroes by
Newton s method. We discuss two variants of this method.

The first possibility is to approximate function f* about x¢ by its tangent at xq:
fx) = Pi(x) = f(x0) +f(x0) - (x — x0).

Let xp be an initial (approximate) value. Then we have f(x) &~ P1(x) = 0, from which we
obtain

S (xo) +f(x0) - (x — x0) = 0.
We eliminate x and identify it with x; which yields:

S (o)
S (x0)
Now we replace value xo on the right-hand side by the new approximate value x1, and we
determine another approximate value x;. The procedure can be stopped if two successive

X1 =X —
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approximate values x, and x,4 are sufficiently close to each other. The question that we
still have to discuss is whether specific assumptions have to be made on the initial value xg
in order to ensure that sequence {x,} converges to a zero of function /. The first assumption
that we have to make is xo € [a,b] with f(a) - f(b) < 0. In the case of a continuous
function, this guarantees that the closed interval [a, b] contains at least one zero X of function
f (see Theorem 4.6). However, the latter condition is still not sufficient. It can be proved
that, if function f* is differentiable on the open interval (a*, b*) C Dy containing [a, b] and
if additionally f/(x) # 0 and f”(x) # 0 for x € [a,b] and xo € {a, b} is chosen such that
f(xo0) - f"(x0) > 0, then the above procedure converges to the (unique) zero X € [a, b].
The procedure is illustrated in Figure 4.10.

f(z)

y=f(z)

T (x2)

Figure 4.10 Tllustration of Newton’s method.

A second possibility is that we approximate function /" about xo by a parabola. This procedure
is denoted as Newton s method of second order. We get:

f"x0)

T (x — x0)*.

fx) & Py(x) = f(x0) +f(x0) - (x — x0) +

Let xo be an initial (approximate) value. Then we obtain from f'(x) ~ P>(x) = 0

S @xo)

TG x0)% = 0.

S (xo) + 1 (x0) - (x — x0) +

If we eliminate x and identify it with x; we get:

160 £ I o) — 2 xo)f " (x0)
S (x0) ’

X14,1B = X0 —
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Using now x; = x14 or x; = x15 (depending on which value is the better approximation
of the zero), instead of xp on the right-hand side of the above equation, we determine a
new approximate value x, and so on. Again some assumptions have to be made to ensure
convergence of sequence {x,} to a zero. It can be proved that, if function f is differentiable
on the open interval (a*, b*) C Dy containing [a, b] and xo € [a, b] with f (a) - f(b) < 0 and
f"(x) # 0 for x € [a, b], then the sequence {x,} determined by Newton’s method of second
order converges to a zero X € [a, b].

The above two variants of Newton’s method use derivatives. Finally, we briefly discuss two
derivative-free methods for determining zeroes numerically. The first procedure presents a
general iterative algorithm, also known as a fixed-point procedure, which transforms the
equation f(x) = 0 into the form x = ¢(x). A solution X with x = ¢(x) is denoted as
fixed-point. Starting with some point xo € [a, b], we compute iteratively the values

Xnt1 = @(xp), n=0,1,....

The procedure stops when two successive values x; and x; are ‘sufficiently close’ to each
other. A sufficient condition to ensure convergence of this approach to a fixed point is that
there exists a constant L € (0, 1) with

lo'()| <L for all x € [a, b].

The second derivative-free method is known as regula falsi. In this case, we approximate
function f between xog = a and x; = b with f'(a) - f(b) < 0 by a straight line through the
points (a,f (a)) and (b,f ()). This yields:

b
f()_f(l))_f() )

Since we look for a zero x of function f, we set y = 0 and obtain the approximate value

b—a

2=a=f @ e

for the zero. In general, we have f(x2) # 0. (In the other case, we have found the exact value
of the zero.) Now we check which of both closed intervals [a,x;] and [x2, b] contains the
zero. If f(a) - f(x2) < 0, then there exists a zero in the interval [a, x»]. We replace b by x»,
and determine a new approximate value x3. Otherwise, i.e. if f (x2) - £ (b) < 0, then interval
[x2, b] contains a zero. In that case, we replace a by x; and determine then an approximate
value x3, too. Continuing in this way, we get a sequence {x,} converging to a zero x € [a, b].
This procedure is illustrated in Figure 4.11.
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f(x)

Figure 4.11 Tlustration of regula falsi.

Example 4.36 Letf : (0,00) — R with
fx)=x—1gx—3

be given. We determine the zero contained in the closed interval [3, 4] exactly to three decimal
places. First we apply Newton’s method. We obtain

1

/ S d 1 _ )
S xmio " 0= o
Obviously we have f (3) < 0, f(4) > 0, f/(x) > Oforx € [3,4]andf” (x) > Oforx € [3,4].
Using
_ S (n) _ Xn —1gxn —3 _
Xnt+1 = Xn — 7 —xn_il, n=0,1,...,
S Gen) I - 1o

we get the results presented in Table 4.2 when starting with xo = 4. We obtain ' (x;) < 1073,
and the value given in the last row in bold face corresponds to the zero rounded to three
decimal places.

Table 4.2 Application of Newton’s method
n Xn f(xn) S Gen)

0 4 0.39794 0.89143
1 3.55359 0.00292 0.87779
2 3.55026 0.00000

3 3.550
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Next, we apply the fixed-point procedure. We can rewrite the given function as
x =lgx+3.

Starting with xo = 3 and using the fixed-point equation
Xnt1 = @(xn) = lgx, + 3, n=20,1,...,

we obtain the results given in the second column of Table 4.3. We note that the sufficient
convergence condition is satisfied in this case. From

o'(x) = and In10 > 2,

xIn 10

we obtain e.g.
, 1
|(p(x)|§g<1 for x € [3,4].

We note that, if one rewrites the given function as x = 103, the fixed-point method does not
converge to the zero X. (The reader can easily verify that the sufficient convergence condition
is not satisfied in this case.)

Finally, we apply regula falsi. Letting xo = @ = 3 and x; = b = 4, we get the results
presented in the third and fourth columns of Table 4.3.

Table 4.3 Application of derivative-free methods

n  Fixed-point method Regula falsi

Xn Xn S ()
0 3 3 —0.47712
1 347712 4 0.39794
2 3.54122 3.5452 —0.0044
3 3.54915 3.5502 —0.00005
4 3.55012 3.550
5 3.550

EXERCISES

4.1 Find the left-side limit and the right-side limit of function /' : Dy — R as x
approaches xo. Can we conclude from these answers that function f/ has a limit as
x approaches xo?

| oa for x #xo. | x for x<1 .

(@ f(x)—{a+1 for x—vy ® f(x)—{xz e o T=L
fi 1

© f@ =Rk, x=0 @ f(x)={j§+1 fr ao 1 Xo=L
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4.2 Find the following limits if they exist:

lim x3 —3x2.
x>2 X—27

(@) lim = 3x% +2x. lim = 3x?
x—2 x—2 ’

x—>2 (x —2)%

(b) (©

What type of discontinuity is at point xo = 2?

4.3 Check the continuity of function ' : Dy — R at point x = xo and define the type of
discontinuity:
@ fo)=YEET=3, X0 =2;
®) fO=Ikx-1|, xo=1;
&l for x<1
() f(x)—{ 2% for x>0 x0=1;
@ [ =e/oh, x = 1.
4.4 Are the following functions /' : Dy — R differentiable at points x = xo and x = xi,
respectively?
(a) f(x)zlx_5|+6xs X():S, x1:0;
cosx for x <0;
b)) fx)=14 1+x* for 0<x<2, x=0, x5 =2;
2x+1 for x> 2.
4.5 TFind the derivative of each of the following functions f : Dy — R with:
(@) y=2x>—5x—3sinx+sin(7/8); (b) y= (x*+ 4x)sinx;
2
_ x~ —cosx. S 4.
(©) = 2 Tsinx’ d) y=(@2x’—3x+1nx)"
(e) y=cos(x®+3x% — 8)%; ) y =cos*(x® +3x2 — 8);
(8) y=+/sin(e"); () y=InG*+1).
4.6 Find and simplify the derivative of each of the following functions f : Dy — R
with:
— _ . _ [1+sinx.
(a) f(x) = (tanx — 1) cosx; ®) fx)=In —sinx’
© fx)=1+I0%
4.7 TFind the derivatives of the following functions f : Dy — R using logarithmic
differentiation:
(@) f()=(tanx)", Dy =(0,7/2);  (b) f(x)=sinx""", Dy= (1,00
_&x+2)vx—1
© fx) x3(x — 2)2 .
4.8 Find the third derivatives of the following functions f D — R

with:
(@) f(x) =x?sinx;
2

(©) f&x) =

(b) f&x) =InG?);

m; @ f&x)=@x+1)e.
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4.13

4.14
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Given the total cost function C : R; — R with

C(x) = 4x> — 2x% + 4x + 100,

where C(x) denotes the total cost in dependence on the output x. Find the marginal cost
at xo = 2. Compute the change in total cost resulting from an increase in the output
from 2 to 2.5 units. Give an approximation of the exact value by using the differential.

Let D : Dp — R, be a demand function, where D(p) is the quantity demand in
dependence on the price p. Given D(p) = 320/p, calculate approximately the change
in quantity demand if p changes from 8 to 10 EUR.

Given the functions f : Dy — R with
f) =27

and g : Dy — Ry with
gx) =3Vx

find the proportional rates of change or(x), py (x) and the elasticities &7 (x) and &4 (x)
and specify them for xo = 1 and x; = 100. For which values x € Dy are the func-
tions f and g elastic? Give the percentage rate of change of the function value when
value x increases by one per cent.

Given the price—demand function
D = D(p) = 1,000e~ 2P’

with demand D > 0 and price p > 0, find the (point) elasticity of demand ep(p).
Check at which prices the demand is elastic.

Find all local extrema, the global maximum and the global minimum of the following
functions /' : Dy — R with Dy C [-5, 5], where:

@ f@=x*-33+x2-5 () f&x)=4—|x—3;

© fl)=e*/ @ 1= 2o
_ X
© f@=r

Assume that function f : Dy — R with
f(x) =alnx+ bx> +x

has local extrema at point x; = 1 and at point x, = 2. What can you conclude about
the values of a and b? Check whether they are relative maxima or minima.
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4.15

4.16

4.17

4.18

4.19

420

Determine the following limits by Bernoulli-1’Hospital’s rule:

2(x—1) _

li smx b li e .
@ Jim 53 ® lim
(c) lim (x®)/x; (d lim x%

xX— 00 x—0+0

: 1 11\ -1 ¢ sinx
@ )}E}) (x sinx xz)’ ® ig% x? =%

For the following functions f : Dy — R, determine and investigate domains, zeroes,
discontinuities, monotonicity, extreme points and extreme values, convexity and con-
cavity, inflection points and limits as x tends to +=cc. Graph the functions f* with f'(x)
given as follows:

+1 3x — 4x .

(@ fx)= 2)2, (®) fx)= TR
_ 4—|—x3 . _ x=1)?%/2.

(© f(x)—x3_2x2+x, d fx)=e ;

€ fx)=In% ;22; ) f&x) = V2% — 2.

Expand the following functions /' : Dy — R into Taylor polynomials with corre-
sponding remainder:

@ f@=sinTE  x=2 n=5
®) f@x)=InEx+1), x=0 nel;
() f(x) =e*sin2x, x0=0, n=4.

Calculate 1/ /e by using Taylor polynomials for functionf : Dy — Rwithf(x) =
The error should be less than 10°.

Determine the zero X of function f : Dy — R with
fx) =x"—6x+2 and 0<x<l

exactly to four decimal places. Use (a) Newton’s method and (b) regula falsi.
Find the zero ¥ of function f : Dy — R with

f@x)=x—Inx-3 and x> 1.

Determine the value with an error less than 10~ and use Newton’s method.
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In differential calculus we have determined the derivative f” of a function /. In many applica-
tions, a function f is given and we are looking for a function F' whose derivative corresponds
to function /. For instance, assume that a marginal cost function C’ is given, i.e. it is known
how cost is changing according to the produced quantity x, and we are looking for the corre-
sponding cost function C. Such a function C can be found by integration, which is the reverse
process of differentiation. Another application of integration might be to determine the area
enclosed by the graphs of specific functions. In this chapter, we discuss basic integration
methods in detail.

5.1 INDEFINITE INTEGRALS
We start with the definition of an antiderivative of a function 1.

Definition 5.1 A function F : D — R differentiable on an interval I € Dp is called
an antiderivative of the function f : Dr = D — R if

F'(x) =f(x) for all x € Df.

Obviously, the antiderivative is not uniquely determined since we can add any constant
the derivative of which is always equal to zero. In particular, we get the following
theorem.

THEOREM 5.1 If function F : D — R is any antiderivative of functionf : Dy — R, then
all the antiderivatives F* of function f are of the form

F*x)=F(x)+C,

where C € R is any constant.

By means of the antiderivative, we can now introduce the notion of the indefinite integral,
which is as follows.
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Definition 5.2 Let function F : Dr — R be an antiderivative of function /. The
indefinite integral of function f, denoted by [ f (x) dx, is defined as

/f(x)dx:F(x)-l—C,

where C € R is any constant.

Functionf is also called the integrand, and as we see from the above definition, the indefinite
integral of function /' gives the infinitely many antiderivatives of the integrand /. The notation
dx in the integral indicates that x is the variable of integration, and C denotes the integration
constant.

The relationship between differentiation and integration can be seen from the following two
formulas. We have

& [rwa= Lrw+a=ro.
and
/F’(x)dx: /f(x)dx:F(x)-i—C.

The first formula says that, if we differentiate the obtained antiderivative, we again obtain the
integrand of the indefinite integral. In this way, one can easily check whether the indefinite
integral has been found correctly. Conversely, if we differentiate function F' and find then
the corresponding indefinite integral with the integrand F’, the result differs from function
F only by some constant C.

5.2 INTEGRATION FORMULAS AND METHODS

5.2.1 Basic indefinite integrals and rules

From the considerations about differential calculus in Chapter 4, we are already able to
present some antiderivatives. Their validity can be easily checked by differentiating the right-
hand side, where we must obtain the integrand of the corresponding left-hand side integral.
Unfortunately, it is not possible to find analytically an antiderivative for any given function.
Determining an antiderivative for a given function is often much harder than differentiating
the function.

Some indefinite integrals

xn+1
/x"dx n+1+C (neZ, n#—-1)

xH—l
fx’dx +C reR, r£—1,x>0)

r+1
1
/.fdx
x

In|x|+C x#0)
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/ e dx
/ o dx
/ sin x dx
/ cosx dx
/ dx
cos x
/‘ dx
sin? x
/ dx
V1—x?

/‘ dx
14 x2

&+ C

a*
—+C
Ina
—cosx+ C
sinx + C
tanx + C
—cotx + C

arcsinx + C

arctanx + C

Integration

(a>0,a#1)

(x;é%—i-kn,keZ)

(x #km, k € 7)

Next, we give two basic rules for indefinite integrals:

1) /k-f(x)dx:k~/f(x)dx

(constant-factor rule);

2) / [f(x) £gx)] dx = f fx)dx + / g(x)dx (sum—difference rule).

199

Rule (1) says that we can write a constant factor in front of the integral, and rule (2) says that,
if the integrand is the sum (or difference) of two functions, we can determine the indefinite
integral as the sum (or difference) of the corresponding two integrals. Using the given list
of definite integrals and the two rules above, we are now able to find indefinite integrals for
some simple functions.

Example 5.1 Given is the integral

I= / <2x3 + 3% — ZSinx) dx.

Applying the rules for indefinite integrals, we can split the integral into several integrals and
solve each of them by using the list of indefinite integrals given above. We obtain:

I:2/x3dx+/3xdx—2/sinxdx

4

—2. 5
4

T3

X

1 3*
—2(—cosx)+C = —x*+ —— +2cosx + C.

2 In3

Example 5.2 We wish to find

(55
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Using power rules and the indefinite integral for a power function as integrand, we can
transform the given integral as follows:

2 172 2
1=/ VE X dx:/ X i
\3/;{ % x1/3 x1/3
7/6 6
:/(x1/6_2x5/3)dx:L7 2. o=V -
1 7

The antiderivatives and rules presented so far are sufficient only for a few specific indefinite
integrals. Hence, it is necessary to consider some more general integration methods which
allow us to find broader classes of indefinite integrals. One of these methods is integration
by substitution.

5.2.2 Integration by substitution

The aim of this method is to transform a given integral in such a way that the resulting integral
can be easily found. This is done by introducing a new variable ¢ by means of an appropriate
substitution # = g(x) or x = g~ !(¢). The integration method by substitution results from the
chain rule of differential calculus.

THEOREM 5.2 Suppose that function f' : Dy — R has an antiderivative F and function
g : Dy — R with R; C Dy is continuously differentiable on an open interval (a,b) € Dy.
Then functionz = f o g exists withz = (f og)(x) = f(g(x)) and setting t = g(x), we obtain

/f(g(x)) g’ () dx = /f(t) dt=F({t)+C=F(g(x)+C.

The symbol o stands for the composition of functions as introduced in Chapter 3. Theorem 5.2
states that, if the integrand is the product of a composite function f o g and the derivative
g’ of the inside function, then the antiderivative is given by the composite function F o g,
where function F is an antiderivative of function /. The validity of Theorem 5.2 can be easily
proved by differentiating the composite function F o g (using the chain rule).

Before considering several examples, we give some special cases of Theorem 5.2 with specific
inside functions g:

(1) Let g(x) = ax + b. In this case, we get g’'(x) = a, and Theorem 5.2 reads as
1 1 1

/f(ax—i—b)dx: f/‘f(ax—i—b) cadx = f/f(t) dt=—--Ft)+C
a a a

1
=—-F(ax+b)+C.
a

Function g describes a linear substitution.
(2) Letf (9(x)) = [g(x)]". Then Theorem 5.2 turns into

/ @] - g'(x)dx = —— g +C
n+1 '
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(3) Letf (g(x)) = 1/[g(x)]. Then Theorem 5.2 reads as

/

x

f"( ) dx = In|g()| + C.
gx)

(4) Letf (g(x)) = /™). Then Theorem 5.2 corresponds to the equality

/eg(") g’ (x)dx = 9% 4 C.

We illustrate the above method by the following examples.

Example 5.3 Let us find
/ (Bx +2)* dx.

This integral is of type (1) above, i.e. we have g(x) = 3x+2 and f (¢) = . Using g'(x) = 3,
we obtain

1 1 1 7
/(3x+2)4dx=5/(3x+2)4~3dx:§/t4dt=§4g+c

1
=_—.(3x+2°+C.
5 Gx 27+

Example 5.4 Consider the integral

/ 5x2e" dx.

Setting ¢ = g(x) = x3, we obtain

dg

o g'(x) = 3x%.

The application of Theorem 5.2 yields (see also special case (4) above with g(x) = x°)

/szexadx = ;[?axze“Y3 dx = g/etdt = get +C= ge”3 +C.

Example 5.5 We want to find the integral

/ 5x+ 8
dx
3x2 41
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The first step is to split the above integral into two integrals:

5x+8 5x 8
dx = dit | 5 dx
/3x2+1 ’ /3x2+1 +/3x2+1

We next discuss how we can find both integrals by substitution. The first integral is very
similar to case (3) of Theorem 5.2. If we had 6x in the numerator, we could immediately
apply this case. So, we multiply both the numerator and the denominator by 6 and obtain

5x 5[ 6 5
/3x2+1 dx:gfngln(sz-l—l)vLCl.

The second integral is similar to one of the basic integrals given in Chapter 5.2.1. If the
integrand is 1/(1 4 x?), then we obtain from this list of indefinite integrals the antiderivative
arctan x. Thus we transform the second integral as follows:

8 1 8 1
" =8 —— dx=— | ——ar.
/3x2+1 N /[(ﬁ.x)Z-H] * ﬂ/r2+1 !

In the latter integral, we can apply the linear substitution # = /3 - x (or equivalently, we
apply immediately the formula given for integrals of type (1) after Theorem 5.2). Now the
indefinite integral can be found immediately from the list of given integrals:

8 / Uog= 8 ot t+C 8 arct (ﬁ )+C
—_— —_— = ——= arctan = ——= arctan - X .
V3 14¢2 V3 2 V3 2

Combining both results and rationalizing all denominators, we obtain

5 8 5 8
/% dx = gln(ﬁa‘x2 +1)+ gﬁarctan (\/§x> +C.

Sometimes we do not see immediately that the integrand is of the type f(g(x)) - g’(x) (or
can be easily transformed into this form). If we try to apply some substitution = g(x) and
if, by using the differential df = g’(x) dx, it is possible to replace all terms in the original
integrand by some terms depending on the new variable ¢, then we can successfully apply
integration by substitution. We illustrate this by the following examples.

Example 5.6 We determine

er
/"71—e2x dx

and apply the substitution ¢ = ¢*. By differentiation, we get

dt
Z _F
dx
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which can be rewritten as

dx:gzg.
e* t

Using the substitution and the latter equality, we can replace all terms depending on x in the
original integral by some term depending on ¢, and we obtain

/ e2x 4 /‘ £2 dt / t dt / dt inr4C
—  _dx= ——— = | ———+— = | ——— = arcsin .
1 —ex 1—22 ¢t J1—2 t V1 —1¢2

The latter indefinite integral has been taken from the list in Chapter 5.2.1. Substituting back
again, we get

e2x
/ 1 or dx = arcsine® + C.
—e

Example 5.7 Consider the integral

/ dx
xvV/x2 — 9

We apply the substitution # = +/x2 — 9 and obtain by differentiation

dar x

dx - x2 — 9,
which yields

. dx

x  JaZ-9

Replacing dx/+/x2 — 9 in the integral, we would still have x? in the denominator. In order to
apply integration by substitution, we must be able also to replace this term by some term in
the variable ¢. Using the above substitution again, we can replace x in the denominator by
solving equation ¢ = +/x2 — 9 for x? which yields x> = > + 9. Hence we obtain

/ dx / dt 1/ dt 1 et t—i—C
= = — = — arctan —
X2 -9 2+9 9] (5241 3 3
1 29
= 3 arctan % + C.

Notice that in the last step, when determining the indefinite integral, we have again applied
a substitution, namely z = #/3 (or equivalently, type (1) of the integrals after Theorem 5.2
has been used).
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Example 5.8 Let us consider the integral
dx
sinx’
In this case, we can apply the substitution

X
tan - =¢
2

which can always be applied when the integrand is a rational function of the trigonometric
functions sinx and cos x. Solving the above substitution for x yields

x = 2arctant.

By differentiation, we obtain

dx_ 2
dt 142

Now, we still have to replace sin x by some function depending only on variable ¢. This can be
done by using the addition theorems for the sine function (see property (1) of trigonometric
functions in Chapter 3.3.3 and its special form given by formulas (3.8)). We have

b X X M X X X
sinx:2-sm§-cos§: 2sin 7 - COS 5 _ 2tan 5 _ 2t
1 sin? 34cos23 1 +tan?3  1+£2

To get the second to last fraction above, we have divided both the numerator and the
denominator by cos?(x/2). Then, we get for the given integral

d 14+ 24t dt
i :/ tr = 7=ln|z‘|—i—C:ln)tam%’—i—C.

sinx 2t 14122

5.2.3 Integration by parts

Another general integration method is integration by parts. The formula for this method is
obtained from the formula for the differentiation of a product of two functions u and v:

[u@x) - v0)] = o' (¥) - v(x) + ux) - V' ().

Integrating now both sides of the above equation leads to the following theorem which gives
us the formula for integration by parts.

THEOREM 5.3 Letu : D, — Rand v : D, — R be two functions differentiable on some
open interval I = (a,b) € D, N D,. Then:

/u(x) () dx = u(x) - v(x) — / u'(x) - v(x) dx.
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The application of integration by parts requires that we can find an antiderivative of function v’
and an antiderivative of function #’ - v. If we are looking for an antiderivative of a product of
two functions, the successful use of integration by parts depends on an appropriate choice of
functions u and v'. Integration by parts can, for instance, be applied to the following types
of integrals:

(1) /P,,(x)~lnxdx,
@) / P,(x) - sin ax dx,
3) / P,(x) - cos ax dx,
(4) / Po(x) - e dx,

where P, (x) = aux" + a,_1x"~' 4+ ... 4 a;x + ag is a polynomial of degree n.

In most cases above, polynomial P, is taken as function # which has to be differentiated within
the application of Theorem 5.3. (As a consequence, the derivative «’ is a polynomial of smaller
degree.) However, in case (1) it is usually preferable to take P, as function v” which has to
be integrated within the application of integration by parts (so that the logarithmic function
is differentiated). We illustrate integration by parts by some examples.

Example 5.9 Let us find
/(x2 + 2) sinx dx.

This is an integral of type (2) above, and we set
ux) = x> +2 and v'(x) = sinx.
Now we obtain
u' (x) = 2x and v(x) = —cosx.

Hence,
/(xz + 2)sinx dx = —(x2 + 2)cosx — /(—Zx cosx) dx
= —(x2 +2) cosx+2/xcosx dx.

If we now apply integration by parts again to the latter integral with
u(x) =x and v (x) = cosx,
we get

W(x) =1 and v(x) = sinx.
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This yields

/(xz +2)sinx dx = —(x2 +2) cosx + 2 (x sinx — / sinx dx)

= —(x2 +2)cosx + 2xsinx + 2cosx + C

2

= 2xsinx —x“ cosx + C.

Notice that integration constant C has to be written as soon as no further integral appears on
the right-hand side.

Example 5.10 Let us determine

/ Inx dx.

Although the integrand f'(x) = Inx is here not written as a product of two functions, we can
nevertheless apply integration by parts by introducing factor one, i.e. we set

u(x) = lnx and v'(x) =1.
Then we obtain
, 1
u(x) =— and v(x) =x
x
which leads to

/lnxdxlenx—/dxzx(lnx—1)+C.

Example 5.11 We determine

/ sin® x dx.

In this case, we set

u(x) = sinx and v’ (x) = sinx,
and we obtain with

u'(x) = cosx and v(x) = —cosx

by applying integration by parts

/sin2x dx = —sinxcosx—}—/coszxdx,
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Now one could again apply integration by parts to the integral on the right-hand side. However,
doing this we only obtain the identity [ sin® x dx = S sin? x dx which does not yield a solution
to the problem. Instead we use the equality

cos?x = 1 —sin?x

(see property (8) of trigonometric functions in Chapter 3.3.3), and the above integral can be
rewritten as follows:

/sinzx dx = —sinxcosx + /(1 — sin?x) dx
= —sinxcosx +x — / sin® x dx.

Now we can add [ sin? x dx to both sides, divide the resulting equation by two, introduce
the integration constant C and obtain

1
/sinzx dx = 3 (x —sinxcosx) + C.

Often, one has to combine both discussed integration methods. Consider the following two
examples.

Example 5.12 We determine

x
/ —5— dx.
sin” x

Although the integrand does not have one of the special forms (1) to (4) given after
Theorem 5.3, the application of integration by parts is worthwhile. Setting

1
u(x) =x and v(x) = — 5>
sin® x
we get
W(x)=1 and v(x) = — cotx.

Function v is obtained from the list of indefinite integrals given in Chapter 5.2.1. This leads to

/ x2 dx:—xcotx—l—/cotx dx.

sin” x

It remains to find the integral on the right-hand side. Using
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we can apply integration by substitution. Setting g(x) = sinx the integrand takes the form
g’ (x)/g(x) (see case (3) after Theorem 5.2), and so we obtain

x
/.2 dx = —xcotx + In|sinx| + C.
sin” x

Example 5.13 We find
/ sin /x dx.

First, we apply integration by substitution and set ¢ = /x. This gives

dt 1 1

dx 2Jx 2t
which can be rewritten as
2t dt = dx.

Replacing /x and dx, we get

/sinﬁdx:Z‘/tsintdt.

The substitution has been successfully applied since in the right-hand side integral, only terms
depending on variable ¢ and df occur. This is an integral of type (2) given after Theorem 5.3,
and we apply integration by parts. This yields

u(t) =t and v'(¢) =sint
and

W) =1 and v(t) = —cost.

Thus,

2/tsintdt:2~ <—tcost+/costdt>

=2.(—tcost+sint) + C.

After substituting back, we have the final result

/sin\/}dx=2~(—«/icos\/)?%—sin\/f)—l—c.
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5.3 THE DEFINITE INTEGRAL

In this section, we start with consideration of the following problem. Given is a function f
withy = f(x) > 0 for all x € [a,b] € Dy. How can we compute the area 4 under the graph
of function f from a to b assuming that function /" is continuous on the closed interval [a, b]?
To derive a formula for answering this question, we subdivide [a, b] into # subintervals of
equal length by choosing points

Aa=x) <X] <X < ...<Xp_1 <Xp=h.

Let /; (resp. u;) be the point of the closed interval [x;_1,x;], where function f* takes the
minimum (maximum) value, i.e.

fd) =min{f(x) | x € [xi_1,x]},
f ;) = max{f(x) | x € [x;—1,%]},

and let Ax; = x; — x;—1. Note that for a continuous function, the existence of the function
values f'(/;) and f'(u;) in the interval [x;_1, x;] follows from Theorem 4.5.

Then we can give a lower bound 47 . and an upper bound 4

for the area A4 as follows (see Figure 5.1):

n
max

in dependence on number n

n
Apin = D f ) - Axi,

i=1

A = Y _f (W) - Axi.
i=1

f(z)

Figure 5.1 The definition of the definite integral.

Since for each x € [x;_1,x;], we have f(I;) < f(x) < f(w), i € {1,2,...,n}, inequalities
Arin < A < Af,, hold. We observe that, if n increases (i.e. the lengths of the intervals
become smaller), the lower and upper bounds for the area improve. Therefore, we consider
the limits of both bounds as the number of intervals tends to co (or equivalently, the lengths

of the intervals tend to zero). If both limits of the sequences {4} . } and {4}, } as n tends to
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oo exist and are equal, we say that the definite integral of function f over the interval [a, b]
exists. Formally we can summarize this in the following definition.

Definition 5.3 Let functionf : Dy — R be continuous on the closed interval [a, b] C

Dy. If the limits of the sequences {4, } and {4} ..} as n tends to oo exist and coincide,
ie.

nll)n;o Arnin = nll)rgo A;llax =1,
then [ is called the definite (Riemann) integral of function f* over the closed interval
[a,b] S Dy.

We write

b
I=/ fx) dx

for the definite integral of function f over the interval [a, b]. The numbers a and b, respectively,
are denoted as lower and upper limits of integration. The Riemann integral is named after
the German mathematician Riemann. We can state the following property.

THEOREM 5.4 Let function f : Dy — R be continuous on the closed interval [a, b] C Dy.
Then the definite integral of function f* over the interval [a, b] exists.

We only mention that there exist further classes of functions for which the definite integral
can be appropriately defined, e.g. for functions that are bounded on the closed interval [a, b]
having at most a finite number of discontinuities in [a, b].

Note that the evaluation of a definite integral according to Definition 5.3 may be rather
complicated or even impossible. There is a much easier way by means of an antiderivative
of function f which is presented in the following theorem.

THEOREM 5.5 (Newton—Leibniz’s formula) Let function f : Dy — R be continuous on
the closed interval [a,b] € Dy and function F be an antiderivative of f. Then the definite
integral of function f over [a, b] is given by the change in the antiderivative between x = a
and x = b:

b
/ fx)dx = F(x) * _ Fb) - Fla).

From Theorem 5.5 we see that also for a definite integral, the main difficulty is to find an
antiderivative of the integrand f. Therefore, we again have to apply one of the methods pre-
sented in Chapter 5.2 for finding an antiderivative. In the following, we give some properties
of the definite integral which can immediately be derived from the definition of the definite
integral.
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Properties of the definite integral
W [reoa=o
ab a
@ [ fwir=— [ rew
b b
(3)/k-f(x)dx=k~/f(x)dx (k e R);
b e ! b
C)) /f(x)dx=/f(x)dx+/f(x)dx (@a<c<by
a b a c
[ 1o

Moreover, the following property holds:

b
®) sfvwa.

t
/ﬂmﬁszﬁsz—nszm

Using the latter formulation, we obtain

i/t(ﬂ—Gm—iFU Cl=r(t
dtafx) = _dt[ )+ Cl=f®.

The first property expresses that the definite integral with a variable upper limit can be
considered as a function G depending on this limit. The latter property states that the derivative
of the definite integral with respect to the upper limit of integration is equal to the integrand
as a function evaluated at that limit.

THEOREM 5.6 Let functions /' : Dy — R and g : D; — R be continuous on the closed
interval [a, b] € Dy N Dy with f(x) < g(x) for x € [a, b]. Then

b b
/fmws/gmw.

Theorem 5.6 is also known as the monotonicity property of the definite integral. In the
derivation of the definite integral we have considered the case when function f is non-
negative in the closed interval [a,b] C Dy. We have seen that the definite integral gives
the area enclosed by the function f/ and the x axis between x = a and x = b. In the case
when function f is negative in the closed interval [a, b], it follows from Theorem 5.6 that the
definite integral has a negative value (using function g identically equal to zero, the result
follows from the monotonicity property). In this case, the definite integral gives the area
enclosed by the function /" and the x axis between x = a and x = b with negative sign. As a
consequence, if function f has zeroes in the interval [a, b], one has to split this interval into
subintervals in order to get the area enclosed by the function and the x axis between x = a
andx = b.

We continue with some examples for evaluating definite integrals. The first example
illustrates the above comment.
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Example 5.14 We wish to determine the area 4 enclosed by function f with f(x) = cosx
with the x axis between a = 0 and b = . Function f is non-negative in the closed interval
[0, 7/2] and non-positive in the closed interval [ /2, ]. Therefore, by using property (4)
and the above comment, the area A4 is obtained as follows:

g

i T
A=/ cosxdx—/ cosx dx
0 T

2

T

=sinx| —sinx

S o

g

2
=(1-0—(0-1) =2.

It is worth noting that we would get value zero when evaluating the definite integral of the
cosine function between a = 0 and b = 7 (since the area between the cosine function and the
x axis in the first subinterval is equal to the area between the x axis and the cosine function
in the second subinterval).

Example 5.15 We evaluate the definite integral

/2 dx
1 x(1+1nx)

Applying integration by substitution, we set
t=1+Inx

and obtain by differentiation

a1

dx  x

Inserting both terms into the integral, we get

/2 dc /f@) dt
1 x(1 +lnx) - (1) t
Thus we obtain

12 gy 1(2) 2
/ — =1n|t|‘ =In|l+Inx|]| =In(1+In2)—In(1+Inl)=In(1+1n2).
1y #(1) 1

In the above computations, we did not transform the limits of the definite integral into the
corresponding ¢ values but we have used the above substitution again after having found an
antiderivative. Of course, we can also transform the limits of integration (in this case, we
gett(1) =1+4+1In1 =1and#(2) = 1 + In2) and insert the obtained values directly into the
obtained antiderivative In |¢].
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Example 5.16 The marginal cost of a firm manufacturing a single product is given by

60
C'(x)=6— —p 0=x=100,
X

where x is the quantity produced, and the marginal cost is given in EUR. If the quantity

produced changes from 300 to 400, the change in cost is obtained by Newton—Leibniz’s
formula as follows:

400
C(400) — C(300) = / C'(x) dx
300

400 60 400
:/ <6— ) dx = (6x — 601In |x + 1|)
300 x+1 300

~ (2,400 — 359.64) — (1,800 — 342.43) = 582.79 EUR.

Thus, the cost increases by 582.79 EUR when production is increased from 300 units to
400 units.

Example 5.17 We want to compute the area enclosed by the graphs of the two functions
fi:R— Randf; : R — R given by

fim)=x*—4  and  fr(x) =2x—x%

We first determine the points of intercept of both functions and obtain from
x—4=2—x?

the quadratic equation
X —x—-2=0

which has the two real solutions

X1 = -1 and X2 = 2.

The graphs of both functions are parabolas which intersect only in these two points (—1, —3)
and (2,0). To compute the enclosed area 4, we therefore have to evaluate the definite
integral

2
4 =/1[f2(x) —fiw]dx
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which yields

2 2
A=/ [@x b - - 4] dx=/ (—20% + 2x + 4) dx

2

()i

Thus, the area enclosed by the graphs of the given functions is equal to nine squared units.

2 x3 x2 2
=2f (—x2+x+2)dx=2<—?+—+2x>‘ 1
-1 —

THEOREM 5.7 (mean-value theorem for integrals) Let function /' : Dy — R be contin-
uous on the closed interval [a,b] € Dy. Then there exists a real number x* € [a,b] such
that

1 b
M=fx")= m/ S (x)dx.

This theorem is graphically illustrated for the case f (x) > 0 in Figure 5.2. That is, there is at
least one value x* € [a, b] such that the dashed area

b
I:/ f(x) dx

is equal to the area of the rectangle with the lengths b — a and function value f (x*) (where
value x* must be suitably determined).

f(x)

%y:f(r)

|
|
I
a xr* b T

Figure 5.2 The mean-value theorem for integrals.
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5.4 APPROXIMATION OF DEFINITE INTEGRALS

There are several reasons why it may not be possible to evaluate a definite integral. For

some functions, there does not exist an antiderivative that can be determined analytically.

As an example, we can mention here function f* with f'(x) = e*"z, which is often applied in

probability theory and statistics, or function g with g(x) = (sinx)/x. Sometimes it may be
too time-consuming to determine an antiderivative, or function /' may be given only as a set
of points (x,y) experimentally determined.

In such cases, we want to determine the definite integral approximately by applying numerical
methods. In the following, we present a few methods and give some comments on the
precision of the approximate value obtained. Approximate methods divide the closed interval
[a,b] into n subintervals of equal length # = (b — a)/n, and so we get the subintervals
[x0,x1], [x1,%2], .., [Xn—1,%n], where a = x¢ and b = x,,. Within each interval, we now
replace function f/ by some other function which is ‘close to the original one’ and for which
the integration can easily be performed. In all the methods below, we replace function f by
a polynomial of small degree.

Approximation by rectangles

In this case, we approximate function f by a step function (in each interval a constant function
is used), i.e. we approximate the definite integral by the sum of the areas of rectangles. We
obtain

b b—
f S e T L 0) ) 4 S G )] =

The above approximation is illustrated in Figure 5.3. This formula gives a value between the
lower and upper Riemann sum for a specific value of n. When applying approximation by
rectangles, the error Alp of the approximate value of the definite integral can be estimated
as follows:

b N2
A]R:‘/‘f(x)dxfIR 5c~(bfa)- max f”(x)

a<x<b

s

where ¢ € [0, 1).

Approximation by trapeziums

An alternative approximation is obtained when in each closed interval [x;_1,x;] function
f is replaced by a line segment (i.e. a linear function) through the points (x;_1,f (x;—1))
and (x;,f (x;)). This situation is illustrated in Figure 5.4. In this way, we get the following
approximation formula for the definite integral:

b b— b
f ) dx ~ n“-[f @0 +f(x1>+f<xz>+-~~+f<xn_1>] — Iz

By the above formula, we approximate the definite integral by the sum ITr of the areas
of n trapeziums. Assuming an equal number 7 of subintervals, often the approximation by
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f(z)

Figure 5.3 Approximation by rectangles.

N
/

a=2xyp I T I3

Tp—2 Tn-1 x, = b T

a=1Ty I (%) T3

Figure 5.4 Approximation by trapeziums.

Tn-2 Tn-1 T, = b X

trapeziums gives better approximate values than the approximation by rectangles. This is
particularly true when the absolute value of the first derivative in the closed interval [a, b]
can become large and thus we may have big differences in the function values in some of the

subintervals.
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When determining the definite integral by the above approximation by trapeziums, we get

the following estimation for the maximum error AlTr of the approximate value ITR:

b—a)?
12n2

b
AlTr = / f)dx —Itr| <

max f”(x)
a<x<b

From the above formula we see that the maximum error can become large when the absolute
value of the second derivative of function f is large for some value in the closed interval
[a, b]. Moreover, the smaller the interval length 7 is, the better the approximation.

Kepler’s formula

Here we consider the special case when the closed interval [a, b] is divided only into two
subintervals [a, (@ + b)/2] and [(a + b)/2,b] of equal length. But now we approximate
function f* by a quadratic function (parabola) which is uniquely defined by three points, and
here we use the points (a,f (a)), ((a + b)/2,f ((a + b)/2)) and (b,f (b)) (see Figure 5.5).

/@)

Figure 5.5 Kepler’s formula.

This leads to Kepler’s formula:

b b—a a+b
[RCEEE=E [f(a) +4f (T) +f(b)] = k.
a
The error Alx ofthe approximate value Ik of the definite integral can be estimated as follows:

b 5
(b—a)
fa s - 1| < G

Alx = max f @ x)

a<x<b
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The formula shows that a large absolute value of the fourth derivative for some valuex € [a, b]
can lead to a large error of the approximate value. If function /" is a polynomial of degree no
greater than three, then the value Ix is even the exact value of the definite integral since for
each values x € [a, b], the fourth derivative is equal to zero in this case.

Simpson’s formula

This formula is a generalization of Kepler’s formula. The only difference is that we do not
divide the closed interval [a, b] into only two subintervals but into a larger even number
n = 2m of subintervals. Now we apply Kepler’s formula to any two successive intervals.
This leads to Simpson’s formula:

b
b—a
/ fx)dx ~ om U@ +4¢ () +f(x3) + -+ +f am—1))
a
F2(f (02) +f(x4) + -+ + [ (2m—2)) +f(B)] = Is.
We can give the following estimate for the maximum error Alg of the approximate value Is:

N5
Al = u,n,
180

max f @ (x)

a<x<b

b
/ f@dx —Is| <

Example 5.18 We illustrate approximation by rectangles, trapeziums and by Simpson’s
formula by looking at the example

6 6
/ fx)dx = [ i dx,
2 2 X

where we use n = 8 subintervals for each method. We get the function values given in
Table 5.1.

Table 5.1 Function values for
Example 5.18

i xi SO

0 2 3.6945
1 2.5 4.8730
2 3 6.6952
3 35 9.4616
4 4 13.6495
5 4.5 20.0038
6 5 29.6826
7 5.5 44.4894
8 6 67.2381
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If we use approximation by rectangles, we get

6 b—a
/2f(x)d %7'[]"(%) +f (1) + -+ f )]

4
g 132.5497 = 66.2749.

Applying approximation by trapeziums, we get

Integration 219

6 b—
/2 foyde~ 2 [f o) ;f B9 | fa) +f )+ +f(x7)]
% 164.3215 = 82.1608.
If we apply Simpson’s formula, we get
/ —dx~ —— - [f(x0) +4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + 4f (x5) + 2f (x6)
+4f (x7) + f(xg)] &~ — - 486.2984 ~ 81.0497.

5.5 IMPROPER INTEGRALS

So far, we have made the following two basic assumptions in defining the definite integral

of a function f over the interval [a, b].

(1) The limits of integration a and b are both finite.

(2) The function is continuous and therefore bounded on the closed interval [a, b ].

If either of the conditions (1) and (2) is not satisfied, the definite integral is called an improper

integral. We now consider both cases separately.

5.5.1 [Infinite limits of integration

In this case, we define the improper integral appropriately as the limit of certain definite

integrals with finite limits of integration.
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Definition 5.4 Let one or both limits of integration be infinite. Then we define the
improper integrals as follows:

() b

/ fx)dx = blim / fx)dx
b b

[ rwa= im_[roa

00 b
/ fx)dx = l}im /f(x)dx

a——00

provided that these limits exist. If a limit does not exist, the corresponding improper
integral has no value and is said to be divergent.

By using Newton—Leibniz’s formula for definite integrals, we can evaluate the improper
integrals given above as follows:

Evaluation of improper integrals:
b
a

/wf(x) dx = blim F(x)

= lim F(b) ~F(a)
b b
/ F)de = 1113)0F(x)( =F(b) - lm F(@

oo b
/ fx)dx = lim F(x)‘ = lim F(b)— lim F(a)
oo b—oco a bh—>00 a——00

a——00

Example 5.19 We evaluate the improper integral

— e “dx.
/o 3

We obtain

<1 —2x 1 : 2x 1 1 —2x
—e “dx == lim e “Fdx=—--|=- lim (—e )‘
o 3 3 boooJy 3 2 b>oo
1 1 1
==.|lim(—e?) - |==-0+1) =-.
6 [bin;o(e ) (=) =g O+ D=7

5.5.2 Unbounded integrands

Similarly to case (1), we define the improper integral again as a limit of certain definite
integrals.



(c) ketabton.com: The Digital Library

Integration 221

Definition 5.5 Let function f : Dy — R be continuous on the right-open interval
[a,b) C Dy but definitely divergent as x tends to b — 0. Then we define the improper

integral fabf(x) dx as

b t
f f(x)dx = lim / f(x)dx
a t—b—0J,

provided that this limit exists. Otherwise the improper integral has no value and is said
to be divergent.
Let function f be continuous on the left-open interval (a,b] € Dy but definitely

divergent as x tends to a + 0. Then we define the improper integral | ab f(x)dx as

b b
/ fx)dx = lim / f(x)dx
a t—a+0 J;

provided that this limit exists. Otherwise the improper integral has no value and is said
to be divergent.

Example 5.20 We evaluate the improper integral

U dx
0
Since function 1/.¥/x is definitely divergent as x tends to 0 + 0, we apply Definition 5.5 and
obtain
1y 1 2/3 1 3 1
Z—tim [ xar= tim T—| = lim <7 -x2/3> |
0 Jx t>0+0); =040 2 It 1040\ 2 t

3 3 3 3
=(z—-= lim V2| ==.
2 2t-040 2

Thus the above improper integral has the value 3/2.

Finally, we consider an example where a point xq exists in the interior of the closed interval
[a, b], where function f is definitely divergent as x tends to xo. This case can be reduced to
the consideration of two integrals according to Definition 5.5.

Example 5.21 Consider the improper integral

[&
1 x2°
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This integrand has a discontinuity (pole of second order) atx = 0. Therefore we must partition
the integral into two integrals, each of them with an unbounded integrand according to one
of the cases presented in Definition 5.5, and we obtain

/ldl n gy 1dl

> lim — + lim 5
1 X t1—0-0/_1 x —>0+0 /s, X

. 1\ 1 . 1
lim (—7) + lim (—7)
n—-0-0\ x/Il-1 n-0+0\ x

1 1
lim (ff+1>+ lim (71+f) = 00.
t1—0-0 131 tp—0+0 1%

Thus, this improper integral has no finite value. Notice that, if we did not take into considera-
tion that the integrand is definitely divergent as x tends to zero and applied Newton—Leibniz’s
formula for evaluating a definite integral, we would obtain the value —2 for the above integral
(which is obviously false since the integrand is a non-negative function in the interval so that
the area cannot be negative).

1

5]

5.6 SOME APPLICATIONS OF INTEGRATION

In this section, we discuss some economic applications of integration.

5.6.1 Present value of a continuous future income flow

Assume that in some time interval [0, 7] an income is received continuously at a rate of f'(¢)
EUR per year. Contrary to the problems considered in Chapter 2, we now assume that interest
is compounded continuously at a rate of interest i. Moreover, we denote by P(¢) the present
value of all payments made over the time interval [0, 7]. In other words, the value P(¢) gives
the amount of money one would have to deposit at time zero in order to have at time 7 the
amount which would result from depositing continuously the income flow £ (¢) over the time
interval [0, T].

In Chapter 2, we discussed the case of a discrete compounding of some amount. Let 4 be
the amount due for payment after ¢ years with a rate of interest i per year. Then the present
value of this amount 4 is equal to

P=4-(1+i)"

(see Chapter 2). In the case of m payment periods per year, the present value would be

i —mt
P:A4<1+*> .
m

If we assume continuous compounding, we have to consider the question of what happens if
m — 00. We set n = m/i. Notice that from m — oo it follows that n — 0o as well. Now the
present value P of the amount 4 is given by

reaffis )]
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Using the limit

1 n
lim (1 + 7> —e,
n—00 n

we find that, in the case of a continuous compounding, the present value P of amount 4 is
given by

P=4-e"

Now returning to our original problem, we can say that f(¢) - At is approximately equal to
the income received in the closed interval [z,# + At]. The present value of this amount at
time zero is therefore equal to £ (¢) - At - e~ Taking into account that this present value is
equal to the difference P(t + At) — P(t), we obtain

P(t+ At) — P(t)

X ~f(t) e

The left-hand side is the difference quotient of function P (considering points ¢ and ¢ + A¢).
Taking the limit of this difference quotient as At tends to zero, we obtain

P@) =f@)- e
Evaluating now the definite integral of this integrand from 0 to 7', we get
T T )
P(T)—P(0) = / P'(¢) dt = / f@)-e " dt.
0 0

Since P(0) = 0 by definition, we finally obtain

T
P(T) = / f(@) e dt.
0

Example 5.22 Let function /' : Dy — R with f(¢) = 30¢ + 100 (in EUR) describe the
annual rate of an income flow at time ¢ continuously received over the years from time ¢ = 0
to time ¢+ = 5. Moreover, assume that the rate of interest is i = 0.06 (or, which is the same,
p =i-100 per cent = 6 per cent) compounded continuously. Applying the formula derived
above, the present value at time zero is obtained by

5
P(5) = / (30 + 100) - =006 gy,
0

Applying integration by parts with
u(t) =30t + 100 and V() = e*0.06t’

we obtain

1
(8 = 30 d H=— . ,—0.06¢
u (1) an v(t) 0.06 e N
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and thus
1 5 30 3
P(S) = — o (301 +100) - ¢ 00| / 0061 4y
)=~ GO 100-e T+ 506 J ¢
1 s 30 5
__ . (30f + 100) - —006:‘ _ 006
006 0100 e = G062 ¢ o
|y 30 )\
= .06 (307 4100+ —— ‘
0.06 ¢ +109% 506 ) 1o
L 00et (30,4 600)‘5
0.06 0
=—L-e*°-3.(150+600)+ L-e°.600
0.06 0.06
750 600
=——— .¢ % 4 —— —73977EUR,
0.06 0.06

i.e. the present value at time zero is equal to 739.77 EUR.

5.6.2 Lorenz curves

These are curves that characterize the income distribution among the population. The Lorenz
curve L is defined for 0 < x < 1, where x represents the percentage of the population
(as a decimal), and L(x) gives the income share of 100x per cent of the poorest part of the
population. Therefore, for each Lorenz curve, we have L(0) = 0, L(1) = 1,0 < L(x) <=x,
and L is an increasing and convex function on the closed interval [0, 1].

Then the Gini coefficient G is defined as follows:

1
G= 2/ [x — L(x)] dx.
0

Factor two is used as a scaling factor to guarantee that the Gini coefficient is always between
zero and one. The smaller the Gini coefficient is, the fairer is the income distributed among
the population. The Lorenz curve and the Gini coefficient are illustrated in Figure 5.6. They
can also be used e.g. for measuring the concentration in certain industrial sectors.

Example 5.23 Assume that for Nowhereland the Lorenz curve describing the income
distribution among the population is given by

3 2
L(x) = gx2 +3% D= [0,11.

First we note that this is a Lorenz curve since L(0) = 0,L(1) = 1 and the difference

L) 32+2 3 3, 3 (1
x—Lx)=x—|x"+_-x|=-x—-x"=—-x(1-x
5 5 5 5 5
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is non-negative for 0 < x < 1 since all factors are non-negative in the latter product
representation. (Notice also that function L is strictly increasing and strictly convex on the
closed interval [0, 1].) We obtain

1 1 3 3
G:Z/ [x — L(x)] dx=2/ <7x—7x2)dx
0 o \5 5

3 3 o1
=2(=x*- =4 ‘ =-.
10 15 0o 5

Since the Gini coefficient is rather small, the income is ‘rather equally’ distributed among
the population (e.g. L(0.25) = 0.1375 means that 25 per cent of the poorest population still
have an income share of 13.75 per cent and L(0.5) = 0.35 means that 50 per cent of the
poorest population still have an income share of 35 per cent).

Half Gini coefficient ()

I Lorenz curve L(x)

I
I
I
I
|
|
I
1 x

Figure 5.6 Lorenz curve and Gini coefficient.

5.6.3 Consumer and producer surplus

Assume that for a certain product there is a demand function D and a supply function S,
both depending on the price p of the product. The demand function is decreasing while the
supply function is increasing. For some price p*, there is an equilibrium called the market
price, i.e. demand is equal to supply: D(p*) = S(p*). Some consumers are willing to pay
a higher price than p* until a certain maximum price pmax is reached. On the other hand,
some producers could be willing to sell the product at a lower price than p*, which means
that the supply S(p) increases from the minimum price pmin. Assuming that the price p can
be considered as a continuous variable, the customer surplus CS is obtained as

' Pmax
cs = / D(p) dp.
p*
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while the producer surplus PS is obtained as

PS = fp S(p) dp.
§2

'min

The consumer surplus CS can be interpreted as the total sum that customers save when
buying the product at the market price instead of the price they would be willing to pay.
Analogously, the producer surplus is the total sum that producers earn when all products are
sold at the market price instead of the price they would be willing to accept. The producer
surplus PS and the consumer surplus CS are illustrated in Figure 5.7.

t +
ues
pmin P pumx p

Figure 5.7 Producer and consumer surplus.

Example 5.24 Assume that the demand function D is given by
D(p) = 5p* — 190p + 1,805

and the supply function S is given by
S(p) = 20p* — 160p + 320.

First, we mention that we get the minimum price ppi, = 4 from S(p) = 0 and the maximum
price pmax = 19 from D(p) = 0. Moreover, we note that the demand function is in fact
strictly decreasing due to D'(p) = 10p — 190 < 0 for p < 19, and the supply function is
strictly increasing since S’(p) = 40p — 160 > 0 for p > 4. The market price p* is obtained
from D(p*) = S(p*):

5(*)% — 190p* + 1,805 = 20(p*)2 — 160p* + 320
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which yields
15(p*)% + 30p* — 1,485 =0,

or, after dividing by 15, equivalently,
@2 +2p* —99 = 0.

From the latter quadratic equation, we get the zeroes
pi=—1+v1+99=9 and pi=-1-V14+99=—11.

Since the second root is negative, the market price is p* = p} = 9. Hence, the consumer
surplus is obtained as

19 19
cs = / D(p) dp = / <5p2 —190p + 1, 805) dp
9 9

3 2 19 5 19
D D 3 2
=(5-%= —190-= + 1,805 ‘ =(--p"—95 1,805 )
< 3 2t p)9 (3 popt 1’)9

34,295
3

— 34,295 + 34, 295) — (1,215 — 7,695 + 16,245) = 1, 666.67.
The producer surplus is obtained as
9 9
PS = A S(p) dp = A (20p* — 160p + 320) dp
— (20 2 602 320,;) ‘9 - (@ P — 80p% + 320p) (9
3 2 4 3 4

1,280
— 4,860 — 6,480 + 2,880 — (

) = 833.33.

EXERCISES

5.1 Use the substitution rule to find the following indefinite integrals:

(@) / S cosxdy; (b) / L © / 1
xdx x° dx
@ [ 5 (e)/m, (f)/m
e —2¢ dx cos’ x
. h . .
(g)/ e 41 & ()/\/m’ (l)/ szxdx,
. dx
0 / 1 —cosx’ ® /251nx+sln2x

5
dx;
—4xx
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52

53

5.4

5.5

5.6

Use integration by parts to find the following indefinite integrals:

() / 2 dv; (b) / & cosxdr; () / T

0052 X

(d) / cos’xdx; (e) f P lnxdr; (f) / InGx? + 1) dx.

Evaluate the following definite integrals:

2 4 7
(a) / x2 dx; (b) —_— (c) / sin’ x dx;
-1 0o 14+x 0
todx 1 b )
(e) A w1 < X (f)/(; sinx cos” x dx;

4 xdx
@ | —
0 1+ 2x

© / 0 dx
& x4 242
A firm intends to pre-calculate the development of cost, sales and profit of a new

product for the first five years after launching it. The calculations are based on the
following assumptions:

® ¢ denotes the time (in years) from the introduction of the product beginning with
t=0;
C() = 1,000 - [4 — (2¢")/(e" + 1)] is the cost as a function of € R, ¢ > 0;
S(t) = 10,000 - 2 . ¢! are the sales as a function of ¢ € R,z>0.

(a) Calculate total cost, total sales and total profit for a period of four years.
(b) Find average sales per year and average cost per year for this period.
(c) Find the total profit as a function of the time ¢.

(a) Find

2
/ sin x dx
0

and compute the area enclosed by function f : R — R with f(x) = sinx and the
X axis.

(b) Compute the area enclosed by the two functions /i : R — Randf; : R - R
given by

fix) =x° — 4x and frlx) =3x+6.

The throughput ¢ = ¢(¢) (output per time unit) of a continuously working production
plant is given by a function depending on time ¢:

4 = g0 [1 - (1’0)2}

The throughput decreases for # = O up to # = 10 from gg to 0. One overhaul during the
time interval [0, 7] with T < 10 means that the throughput goes up to go. After that
it decreases as before.
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59

5.10
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(a) Graph the function ¢ with regard to the overhaul.

(b) Let 7o = 4 be the time of overhaul. Find the total output for the time interval
[0, T] with T > 4.

(c) Determine the time 7y of overhaul which maximizes the total output in the interval
[0, T].

Determine the following definite integral numerically:

/1 dx
o 1+x%

(a) Use approximation by trapeziums with n = 10.
(b) Use Kepler’s formula.
(c) Use Simpson’s formula with n = 10.

Compare the results of (a), (b) and (c) with the exact value.

Evaluate the following improper integrals:

0 [es) dx o9
(@) / & dx; (b) / - (© / re M dx;
o0 1 x*+2x+1 0
[e9) 4 d 6 2x — 1
@ / e dx; (e) / R ® | —ZF " _a
0 0 WX 0o G+ DHx—2)
Let function f* with

£(t) = 20t + 200

(in EUR) describe the annual rate of an income flow at time ¢ continuously received
over the years from time ¢ = 0 to time ¢ = 6. Interest is compounded continuously at
arate of 4 per cent p.a. Evaluate the present value at time zero.

Given are a demand function D and a supply function S depending on price p as
follows:

8 4
Dp)=12-2p and S(p):;p—;.

Find the equilibrium price p* and evaluate customer surplus CS and producer
surplus PS. Illustrate the result graphically.
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In economics, an ordered n-tuple often describes a bundle of commodities such that the ith
value represents the quantity of the ith commodity. This leads to the concept of a vector
which we will introduce next.

6.1 PRELIMINARIES

Definition 6.1 A vector a is an ordered n-tuple of real numbers aj,as,...,ay.
The numbers ay, ay, . . ., a, are called the components (or coordinates) of vector a.
We write
a
ar T
a=| | = (a1,a2,...,an)
an

for a column vector. For the so-called transposed vector aT which is a row vector obtained
by taking the column as a row, we write:
al T
T a2
a’ = (ay,az,...,an) =

an

We use letters in bold face to denote vectors. We have defined above a vector a always as a
column vector, and if we write this vector as a row vector, this is indicated by an upper-case
T which stands for ‘transpose’. The convenience of using the superscript T will become
clear when matrices are discussed in the next chapter. If vector a has n components, we say
that vector a has dimension n or that a is an n-dimensional vector or n-vector. If not noted
differently, we index components of a vector by subscripts while different vectors are indexed
by superscripts.
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Definition 6.2 The n-dimensional (Euclidean) space R" is defined as the set of all
real n-tuples:

R” = . aeR, i=12,...,n

Similarly, R’} stands for the set of all non-negative real n-tuples. We can graph a vector
as an arrow in the n-dimensional space which can be interpreted as a displacement of a
starting point P resulting in a terminal point Q. For instance, if point P has the coordinates
(p1,p2, - - ->pg) and point O has the coordinates (g1, 42, . . .,gn), then

q1 —P1
a:@: q2 —p2
4n — Pn

It is often assumed that the starting point P is the origin of the coordinate system. In this
case, the components of vector a are simply the coordinates of point Q and, therefore, a row
vector aT can be interpreted as a point (i.e. a location) in the n-dimensional Euclidean space.
In the case of n = 2, we can illustrate vectors in the plane, e.g. the vectors

(5) ()

are illustrated in Figure 6.1. Finding the terminal point of vector a means that we are going
four units to the right and three units up from the origin. Similarly, to find the terminal point
of b, we are going one unit to the left and two units up from the origin.

)

| |
-1 1 2 3 4 1

Figure 6.1 Representation of two-dimensional vectors a and b.
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Next, we introduce some relations on vectors of the same dimension.

Definition 6.3 Leta,b € R” witha = (a1,4a2,...,a,)Y and b = (b1, by, ...,b,)T.
The vectors a and b are said to be equal if all their corresponding components are
equal,i.e. a; = b; foralli =1,2,...,n.

We write a < b ifa; < b;anda > b ifa; > b; foralli = 1,2,...,n. Analogously, we
writea < bifa; < b;anda > bifa; > b; foralli =1,2,...,n.

Remark Note thatnotevery pair of n-dimensional vectors may be compared by the relations
< and >, respectively. For instance, for the vectors

3 2
a=| —1 and b=]| 0|,
2 2

we have neither a < bnora > b.

Example 6.1 Consider the vectors

2 1 0
a=| 4 |, b= -2 and c=1| 3
3 3 2

Then we have a > b, a > ¢, but vectors b and ¢ cannot be compared, i.e. we have neither
b <cnorc <bh.

Special vectors

Finally, we introduce some special vectors. By e/ we denote the ith unit vector, where the ith
component is equal to one and all other components are equal to zero, i.e.

0

=11 < ith component

(=)

0
The n-dimensional zero vector is a vector containing only zeroes as the n components:

0
0
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6.2 OPERATIONS ON VECTORS

We start with the operations of adding two vectors and multiplying a vector by a real number
(scalar).

Definition 6.4 Leta,b € R” witha = (a1,4a2,...,a,)Y and b = (b1,bo,...,5,)T.
The sum of the two vectors a and b is the n-dimensional vector a + b obtained by
adding each component of a to the corresponding component of b:

ay by a1 + by

a) by ay + by
a+b=| _ [+| T |=| .

ay by, an + b,

Definition 6.5 Leta € R” with a = (a1,4a2,...,a,)T and A € R. The product of
number (or scalar) A and vector a is the n-dimensional vector Aa whose components
are ) times the corresponding components of a:

ay Aay

ar ray
ra=A =

a, Aay,

The operation of multiplying a vector by a scalar is known as scalar multiplication.

Using Definitions 6.4 and 6.5, we can now define the difference of two vectors.

Definition 6.6 Leta,b € R” be n-dimensional vectors. Then the difference between
the vectors a and b is defined by

a—b=a+ (—1)b.

According to Definition 6.6, the difference vector is obtained by subtracting the components
of vector b from the corresponding components of vector a. Notice that the sum and the
difference of two vectors are only defined when both vectors a and b have the same dimension.

Example 6.2 Let



(c) ketabton.com: The Digital Library

234 Vectors

Then we obtain

o (1)+(

3

Applying Definition 6.5, we obtain

(1)

12
3

-

1) e (D)-()-(2)
e (1)-(32)

The sum and difference of the two vectors, as well as the scalar multiplication, are geomet-
rically illustrated in Figure 6.2. The sum of the two vectors a and b is the vector obtained
when adding vector b to the terminal point of vector a. The resulting vector from the origin
to the terminal point of vector b gives the sum a + b.

L2

3a

—2b

Figure 6.2 Vector operations.

We see that multiplication of a vector by a positive scalar A does not change the orientation
of the vector, while multiplication by a negative scalar reverses the orientation of the vector.
The difference a — b of two vectors means that we add vector b with opposite orientation to
the terminal point of vector a, i.e. we add vector —b to vector a.

Next, we summarize some rules for the vector operations introduced above. Let a, b, ¢ € R”

and A, u € R.
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Rules for vector addition and scalar multiplication

(1) a+b=b+a, la = aj;
(commutative laws)

2) (a+b)+c=a+(b+c), (wa=Air(ua);
(associative laws)

(3) A(a+Db)=2xra+ b, (A + w)a = ra 4 pa;
(distributive laws)

4 a+0=a, a+ (—a)=0;
0eRM

5) la=a.

The validity of the above rules follows immediately from Definitions 6.4 and 6.5 and
the validity of the commutative, associative and distributive laws for the set of real
numbers.

Definition 6.7 The scalar product of two n-dimensional vectors a = (ay, aa, . . ., an)T
and b = (b1, by, . ..,b,)" is defined as follows:

by

i by -

a -b=(aj,a,...,a,) | . =alb1+a2b2+-..+anbn=2aib,~.
: i=1
by

The scalar product is also known as the inner product. Note also that the scalar product of
two vectors is not a vector, but a number (i.e. a scalar) and that aT - b is defined only if a
and b are both of the same dimension. In order to guarantee consistence with operations in
later chapters, we define the scalar product in such a way that the first vector is written as a
row vector aT and the second vector is written as a column vector b. The commutative and
distributive laws are valid for the scalar product, i.e.

al . b=>b"-a and aT-(b+c)=aT~b+aT-c

for a,b, ¢ € R”. It is worth noting that the associative law does not necessarily hold for the
scalar product, i.e. in general we have

a-(bT-¢)# @ -b)-c.

Example 6.3 Assume that a firm produces three products with the quantities x; = 30,
x» = 40 and x3 = 10, where x; denotes the quantity of product i. Moreover, the cost of
production is 20 EUR per unit of product 1, 15 EUR per unit of product 2 and 40 EUR per
unit of product 3. Let ¢ = (cy, ¢2, ¢3)T be the cost vector, where the ith component describes
the cost per unit of product i and x = (x1,x2,x3)T. The total cost of production is obtained
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as the scalar product of vectors ¢ and x, i.e. with

20 30
c= 15 and x=| 40
40 10
we obtain
30
el .x=(20,15,40)- | 40 | =20-30+15-40+40-10
10

= 600 + 600 + 400 = 1, 600.
We have found that the total cost of production for the three products is 1,600 EUR.

Definition 6.8 Leta € R with a = (a,as,...,a,)" . The (Euclidean) length (or
norm) of vector a, denoted by |a|, is defined as

la| = /a2 + a3 +...+al

A vector with length one is called a unit vector (remember that we have already introduced
the specific unit vectors el e?,.. . e" which obviously have length one). Each non-zero
n-dimensional vector a can be written as the product of its length |a| and an n-dimensional
unit vector e pointing in the same direction as the vector a itself, i.e.

a=|a| e@.

Example 6.4 Let vector

-2
a= 3
6

be given. We are looking for a unit vector pointing in the same direction as vector a. Using

lal = V(=22 +32+ 62 =49 =7,

we find the corresponding unit vector

) L[ -2 —2/7
e@=—.a=-.| 3 |=| 3/7
la 7\ 6 6/7

Using Definition 6.8, we can define the (Euclidean) distance between the n-vectors a =
(a1,az,...,a,)T and b = (b1, by, . ..,b,)T as follows:

la—b| = /(a1 — b1)2 + (a2 — b2)? + ... + (an — bp)?.
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The distance between the two-dimensional vectors a and b is illustrated in Figure 6.3. It
corresponds to the length of the vector connecting the terminal points of vectors a and b.

T2
[0 R i R
-
a—b - .
\ /\, :
- ‘ag — by
— |
-
-~ a; — by 1
bQ Tt T cTTT T T T T T T oS T T T T T Ta
' 1
: :
! a '
b ‘ }
! 1
|
|
|
' |
| |
| |
bl alel

Figure 6.3 Distance between the vectors a and b.

Example 6.5 Let vectors

be given. The distance between both vectors is given by

la—bl=vB-(DP+Q2—-1)2+(-3-52=+/81=9.

Next, we present some further rules for the scalar product of two vectors and the length of a
vector. Let a,b € R” and A € R.

Further rules for the scalar product and the length

(1) laj=+aT-a>0;

2) la|=0 < a=0;

(3) |ral=[a]-|al;

(4) la+b| < |a] + bj;

(5) aT-b = |a|-|b|-cos(a,b);

(6) |aT -b| < |a| - |b| (Cauchy—Schwarz inequality).
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In rule (5), cos(a,b) denotes the cosine value of the angle between vectors a and b. We
illustrate the Cauchy—Schwarz inequality by the following example.

Example 6.6 Let
2 5
a=| —1 and b=| —4
3 -1

For the lengths of vectors a and b, we obtain

laj =v22+ (-1)24+32=+14  and  |b| =52 + (=42 + (-1)2 = V42.

The scalar product of vectors a and b is obtained as

al . b=2-54+(-D-(-H+3-(-1)=10+4-3 =11
Cauchy—Schwarz’s inequality says that the absolute value of the scalar product of two vectors
a and b is never greater than the product of the lengths of both vectors. For the example, this

inequality turns into

[aT-b| =11 < |a| - [b] = V14 - V42 ~ 24.2487.

Example 6.7 Using rule (5) above, which can also be considered as an alternative equiv-
alent definition of the scalar product, and the definition of the scalar product, according to
Definition 6.7, one can easily determine the angle between two vectors a and b of the same
dimension. Let

Then we obtain

aT.b
[a] - [b]
B 3.24(=1)-1+2-2 93
22 V2222 J1AS O V14

cos(a,b) =

~ 0.80178.

We have to find the smallest positive argument of the cosine function which gives the value
0.80178. Therefore, the angle between vectors a and b is approximately equal to 36.7°.

Next, we consider orthogonal vectors. Consider the triangle given in Figure 6.4 formed by
the three two-dimensional vectors a, b and a — b. Denote the angle between vectors a and b
by y. From the Pythagorean theorem we know that angle y is equal to 90° if and only if the
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sum of the squared lengths of vectors a and b is equal to the squared length of vector a — b.
Thus, we have:

y =90° < |a|®> + |b> = |]a— b|?
«al-a+bT-b=@-b0)T-a—b)
e al.a+bT.-b=aT-a—aT-b—bT-a+bT-b

<=al-b=0.
The latter equality has been obtained since a” - b = bT - a. For two-dimensional vectors
we have seen that the angle between them is equal to 90° if and only if the scalar product is
equal to zero. We say in this case that vectors a and b are orthogonal (or perpendicular) and

write a L b. The above considerations can be generalized to the n-dimensional case and we
define orthogonality accordingly:

albesal -b=0,

where a,b € R”.

a

Figure 6.4 Triangle formed by vectors a, b and a — b.

Example 6.8 The three-dimensional vectors

3 4
a=| -1 and b= 6
2 -3

are orthogonal since

al .- b=3.44(-1)-6+2-(=3)=0.
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6.3 LINEAR DEPENDENCE AND INDEPENDENCE

In this section, we discuss one of the most important concepts in linear algebra. Before
introducing linearly dependent and linearly independent vectors, we give the following

definition.
Definition 6.9 Let a’, i = 1,2,...,m, be n-dimensional vectors, and A;, i =
1,2,...,m, be real numbers. Then the n-vector a given by
m
a=Aral +2a%+... +21,a" = Z)\ia’ 6.1)
i=1
is called a linear combination of the vectors al, a2, ... a™. If

m
A>0,i=1,2,....m, and Zx,-=1
i=1

in representation (6.1), then a is called a convex combination of the vectors

al a? ... a™

The set of all convex combinations of the two vectors a! and a? is illustrated in Figure 6.5.
It is the set of all vectors whose terminal points are on the line connecting the terminal
points of vectors a! and aZ. Therefore, both vectors ¢! and ¢? can be written as a convex
combination of the vectors a' and a2. Notice that for M =1land Ay =1—Ai; = 0we
obtain vector a!, whereas for A} = 0 and A\, = 1 — A; = 1 we obtain vector a%. Note
that a convex combination of some vectors is also a special linear combination of these
vectors.

T

Figure 6.5 Set of convex combinations of vectors al and a?.
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Definition 6.10 The m n-dimensional vectors a',a2, ... ,a” € R” are linearly
dependent if there exist numbers A;, i = 1,2,...,m, not all equal to zero, such
that
m
> nal =nal + a2 4 A" =0, 6.2)
i=1
If equation (6.2) only holds when .1 = A = ... = A, = 0, then the vectors
al a2 ... a™ are said to be linearly independent.

Since two vectors are equal if they coincide in all components, the above equation (6.2)
represents n linear equations with the variables A1, A2, .., Ay. In Chapter 8, we deal with
the solution of such systems in detail.

Remark From Definition 6.10 we obtain the following equivalent characterization of
linearly dependent and independent vectors.

(1) A set of m vectors al,a%, ..., a" € R" is linearly dependent if and only if at least one
of the vectors can be written as a linear combination of the others.
(2) Asetofmvectorsal,a?, ... a" e R" is linearly independent if and only if none of the

vectors can be written as a linear combination of the others.

Example 6.9 Let

d(3) w ee(7Y)

In this case, we have a2 = —3a! which can be written as
3al +1a2 =0.

We can conclude that equation (6.2) holds with A; = 3 and A, = 1, and thus vectors a' and
a2 are linearly dependent (see Figure 6.6).

Example 6.10 Let

() e

In this case, equation A; al + 2,b% = 0 reduces to

3M =22 =0
A+ 21 =0.
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This is a system of two linear equations with two variables A; and A, which can easily be
solved. Multiplying the first equation by two and adding it to the second equation, we obtain
A1 = 0 and then A, = 0 as the only solution of this system. Therefore, both vectors a! and
b? are linearly independent (see Figure 6.6).

=]
S

10
9 P A
8 - B \\\
- el C \\\
- \
S N
/\2b2 N /\131, . .7
v 3 -
\ -
2 ="
2 al -
-9 -7 -5 =3 b
-0 -8 -6 —4 123456 78910 Ty
2 -1
a
-2
-3

Figure 6.6 Linearly dependent and independent vectors.

The above examples illustrate that in the case of two vectors of the two-dimensional Euclidean
space R2, we can easily decide whether they are linearly dependent or independent. Two
two-dimensional vectors are linearly dependent if and only if one vector can be written as a
multiple of the other vector, i.e.

A
a?=-"L.all a0
A2

(see Figure 6.6). On the other hand, in the two-dimensional space every three vectors are
linearly dependent. This is also illustrated in Figure 6.6. Vector ¢ can be written as a linear
combination of the linearly independent vectors a' and b, i.e.

c= Alal + kzbz,
from which we obtain
le — ral — b2 =0. (6.3)

By Definition 6.10, these vectors are linearly dependent since e.g. the scalar of vector ¢ in
representation (6.3) is different from zero.

Considering 3-vectors, three vectors are linearly dependent if one of them can be written as a
linear combination of the other two vectors which means that the third vector belongs to the
plane spanned by the other two vectors. If the three vectors do not belong to the same plane,
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these vectors are linearly independent. Four vectors in the three-dimensional Euclidean space
are always linearly dependent. In general, we can say that in the n-dimensional Euclidean
space R”, there are no more than » linearly independent vectors.

Example 6.11 Let us consider the three vectors

2 1 3
al=1| o0 s a? = 1 and ad = R
0 0 1

and investigate whether they are linearly dependent or independent. Using Definition 6.10,

we obtain
2 1 3 201 + A2 4+ 343 0
A 0 + A2 1 +Ar3] 2 = A+ 2X3 = 0
0 0 1 A3 0

Considering the third component of the above vectors, we obtain A3 = 0. Substituting
A3 = 0 into the second component, we get from Ay + 243 = 0 the only solution A = 0
and considering finally the first component, we obtain from 21; + A2 + 3A3 = 0 the only
solution A; = 0. Since vector AT = (A1, 12,13) = (0,0,0) is the only solution, the above
three vectors are linearly independent.

Example 6.12 The set {e!,e?,...,e"} of n-dimensional unit vectors in the space R”
obviously constitutes a set of linearly independent vectors, and any n-dimensional vector
al = (aj,ay,...,a,) can be immediately written as a linear combination of these unit
vectors:
1 0
1 0 n )
a=a . + a2 . +--tan . ZZaie'~
: : : P
0 0 1

In this case, the scalars of the linear combination of the unit vectors are simply the components
of vector a.
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6.4 VECTOR SPACES

We have discussed several properties of vector operations so far. In this section, we introduce
the notion of a vector space. This is a set of elements (not necessarily only vectors of real
numbers) which satisfy certain rules listed in the following definition.

As
sin

Definition 6.11 Given a set ¥ = {a,b,c,...} of vectors (or other mathematical
objects), for which an addition and a scalar multiplication are defined, suppose that the
following properties hold (A, u € R):

(1) a+b=>b+a;
2) (a+b)+c=a+(b+c);
(3) there exists a vector 0 € V such that for all a € ¥ the equation
a + 0 = a holds (0 is the zero or neutral element with respect to addition);
(4) for each a € V there exists a uniquely determined element x € ¥ such that

a + x = 0 (x = —a is the inverse element of a with respect to addition);
(5) (Awa = r(ua);
6) 1-a=a;

(7) A(a+b)=2ra+ Ab;
@) (A + p)a = Ara+ pa.

If for any a, b € ¥, inclusion a + b € ¥V and for any A € R inclusion Aa € ¥ hold,
then V is called a linear space or vector space.

mentioned before, the elements of a vector space do not necessarily need to be vectors
ce other ‘mathematical objects’ may also obey the above rules (1) to (8). Next, we give

some examples of vector spaces satisfying the rules listed in Definition 6.11, where in each
case an addition and a scalar multiplication is defined in the usual way.

Examples of vector spaces

M
@
©)
“
®)

To

the n-dimensional space R";

the set of all n-vectors a € R” that are orthogonal to some fixed n-vector b € R”;
the set of all sequences {a,};

the set C[a, b] of all continuous functions on the closed interval [a, b];

the set of all polynomials

Pu(x) = apx" + ap_1x" "'+ +aix +ao
of a degree of at most n.

prove this, one has to verify the validity of the rules (1) to (8) given in Definition 6.11 and

to show that the sum of any two elements as well as multiplication by a scalar again gives an
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element of this space. For instance, consider the set of all polynomials of degree n. The sum
of two such polynomials

Pnl(x) =ax" +ap_1x" '+ +aix+a

Pz(x) = bpx" + by x4+ byx + by
gives
PL(x) + P2(x) = (an 4 bu)x" + (an_1 + bp_1)x" ' + -+ + (a1 + b1)x + (ag + bo),

i.e. the sum of these polynomials is again a polynomial of degree n. By multiplying a
polynomial Pn1 of degree n by a real number A, we obtain again a polynomial of degree n:

AP = (Map)x" + (han_1)x" 1 4 - 4 (hap)x + Aao.

Basis of a vector space; change of basis

Next, we introduce the notion of the basis of a vector space.

Definition 6.12 AsetB = {b’, b2,.. ., b"} of linearly independent vectors of a vector
space V is called a basis of V if any vector a € V can be written as a linear combination

a=21b! +Ab% + - + A,b"

of the basis vectors b!,b?, ...,b". The number n = |B| of vectors contained in the
basis gives the dimension of vector space V.

For an n-dimensional vector space V', we also write: dim V' = n. Obviously, the set B, =
{el,e?,..., "} of unit vectors constitutes a basis of the n-dimensional Euclidean space R"
(see also Example 6.12). This basis B, is also called the canonical basis. The notion of a
basis of a vector space is a fundamental concept in linear algebra which we will need again
later when discussing various algorithms.

Remark (1) An equivalent definition of a basis is that a maximal set of linearly indepen-
dent vectors of a vector space V constitutes a basis and therefore, the dimension of a
vector space is given by the maximal number of linearly independent vectors.

(2) We say that V is spanned by the vectors b', b?, ..., b” of B since any vector of the vector
space V can be ‘generated’ by means of the basis vectors.

(3) The dimension of a vector space is not necessarily equal to the number of components of
its vectors. If a set of n-dimensional vectors is given, they can contain af most n linearly
independent vectors. However, any n linearly independent vectors of an n-dimensional
vector space constitute a basis.

Next, we establish whether an arbitrary vector of a vector space can be written as a linear
combination of the basis vectors in a unique way.
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THEOREM 6.1 Let B = {b',b?,...,b"} be a basis of an n-dimensional vector space V.
Then any vector ¢ € V' can be uniquely written as a linear combination of the basis vectors
from set B.

PROOF We prove the theorem indirectly. Assume there exist two different linear combina-
tions of the given basis vectors from B which are equal to vector ¢:

c=Ab! + 0% + -+ 4,b" (6.4)
and
¢ = uib! + puab? + - - + pub", (6.5)

i.e. there exists an index i with 1 < i < n such that A; # u;. By subtracting equation (6.5)
from equation (6.4), we get

0= (i — Db + (ko — u2)b? + - + (ky — pa)b"

Since the basis vectors b!, b2, ..., b" are linearly independent by Definition 6.12, we must
have

M=p1=0, A2—pu2=0, ..., Ay—pu,=0,
which is equivalent to
Al =1, A2=WU2, ..., Ap= Un,

i.e. we have obtained a contradiction. Thus, any vector of V' can be uniquely written as a
linear combination of the given basis vectors. |

While the dimension of a vector space is uniquely determined, the basis is not uniquely
determined. This leads to the question of whether we can replace a particular vector in the
basis by some other vector not contained in the basis such that again a basis is obtained.
The following theorem shows that there is an easy way to answer this question, and from
the proof of the following theorem we derive an algorithm for the replacement of a vector in
the basis by some other vector (provided this is possible). The resulting procedure is a basic
part of some algorithms for the solution of systems of linear equations or linear inequalities
which we discuss in Chapter 8.

THEOREM 6.2 (Steinitz’s theorem) Let set B = {b!,b%,...,b"} be a basis of an
n-dimensional vector space ¥ and let vector a* be given by

a¥ = b+ Ab% + - 4 b 4o 2,b"

with A # 0. Then the set B* = {bl,bz, ., bRl gk pktl ,b"} is also a basis of V, i.e.
vector b¥ contained in basis B can be replaced by the vector a* to obtain another basis.

PROOF Let us consider the following linear combination of the zero vector:

puib! 4 pab? 4 e b g b BT b = 0. (6.6)
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By substituting the linear combination
a¥ =4 b + A0b% + - 4 2,b"
into equation (6.6), we obtain:

(11 + per )b + (g + per2)b? + - 4 (o1 + prrg—1)b !
+ (eriOb® + (gt + ihir DD 4 (4 da)b” = 0.

Since the vectors of the set B = {b!,b?, ..., b"} constitute a basis, they are linearly indepen-
dent and all the scalars in the above linear combination must be equal to zero, i.e. we get

(mi +puxri) =0 for i=1,2,...,n, i #k and wiry = 0.

Since by assumption Ay # 0, we get first ;x = 0 and then, using the latter result, u; = 0
for all i with 1 < i < n, i # k, i.e. all the scalars in the linear combination (6.6) must be
equal to zero. Hence, the vectors of set B* = {b1 Jb2, ... bkl ak pAtl b"} are linearly
independent by Definition 6.10 and they constitute a basis. |

We know that any basis of a certain vector space consists of the same number of vectors. So, if
we want to remove one vector from the current basis, we have to add exactly one other vector
to the remaining ones such that the resulting set of vectors is again linearly independent.
We now look for a procedure for performing such an interchange of two vectors described
in the proof of Theorem 6.2. To this end, assume that B = {b!, ... ,bF=1 pk pktl )
is a basis and B* = {b!,... ,bF=1 gk phtl ,b"} is another basis, where vector b* has
been replaced by vector a¥. According to Theorem 6.2, we must have Ay 3 0 in the linear
combination of vector

a* = b+ bt b (6.7)

of the vectors of basis B since otherwise a replacement of vector b* by vector af is not
possible. Let us consider an arbitrary vector ¢ and its linear combinations of the basis vectors
of bases B and B*, respectively:

c=ab' + -+ a1 b+ apb® + ap b 4 ab” (6.8)
and
¢=pib' + -+ B b T+ frat + B b 44 b (6.9)
By substituting representation (6.7) of vector a¥ into representation (6.9), we obtain
¢=Bib! + -+ B b B! -+ bF 2,7
+ BB+ 4 Byb"

= (B1+ Brr) b+ -+ (Bt + Brri—1) BTN 4 By bF
+ (Brs1 + Bidis1) BT+ (By + Brdn) B
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Comparing now the scalars of the vectors from the basis B = {b!,b?,...,b"} in both
representations of vector ¢ (i.e in representation (6.8) and the last equality above) first for &
and then for all remaining i # k, we first obtain

Uk

Br = " (6.10)

and then from
ai =P+ Prri, i=12,...,n i#k,
it follows by means of equality (6.10)

)\A
Bi=ai— — o i=12,...,ni#k.
Ak

In order to transform the linear combination of vector ¢ of the basis vectors of B into the linear
combination of the basis vectors of B*, we can therefore use the scheme given in Table 6.1.
The last column describes the operation that has to be performed in order to get the elements
of the current row: e.g. in row n+ 2, the notation ‘row 2 — (A /Ax) row k’ means that we have
to take the corresponding element of row 2 (i.e. &z in the ¢ column), and then we have to
subtract 1, /Ay times the corresponding element of row & (i.e. o in the ¢ column) which gives
the new element S, in row n + 2 and the ¢ column. The transformation formula above for all
rows different from £ is also called the rectangle formula since exactly four elements forming
arectangle are required to determine the corresponding new element. This is illustrated in the
scheme above for the determination of element 8, where the corresponding four elements
in row 2 and row k are underlined.

Table 6.1 Tableau for Steinitz’s procedure

Row  Basis vectors aF ¢ Operation

1 b! Ao«

2w )

koot Moo

n b" An  Qpn

n+1 bl 0 ﬂlzal—%ak rowl—%rowk
n+2 b2 0 ﬂzzaz—%ak I‘OWZ—%I‘OW[(
n+k ak 1 pp=9%* L row k

Yy Ak

A A
2n b" 0 ﬁn:an—ﬁak rown—ﬁrowk
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In columns 3 and 4, we have the corresponding scalars of vectors a* and ¢ in the linear
combinations of the basis vectors of B (row 1 up to row #) and of the basis vectors of B*
(row n + 1 up to row 2n). In particular, from the first n rows we get

ak = bl - abF
and
c=ab' + - +ogbf + - +a,b”.
From the last n rows, we get the linear combinations
a* =0b! 4+ ...+ 0bF ! 4+ 1a% + ObF ! ... 4 OB”

and

A 1 ar\ An
c= - — b — - — b".
(ou " ock) + + ()tk + + | an " 073

If we have representations of several vectors with respect to basis B and we look for their
corresponding representations in the new basis B*, we simply add some more columns
(for each vector one column) in the above scheme, and by performing the same operations as
indicated in the last column, we get all the representations with respect to the new basis B*.
The above procedure of replacing a vector in the current basis is illustrated by the following
example.

Example 6.13 Let a basis B = {b!, b2, b3, b4} of the four-dimensional space R* with

1 3 -2 —1
1 _ —1 2 -5 3 _ 1 4 0
b = 1 , b = 2 , b’ = > and b" = _1
-2 —1 2 1

be given. We do not prove here that these four vectors indeed constitute a basis in R*.
According to Definition 6.10, we have to solve a system of four linear equations with four
variables which we treat later in Chapter 8 in detail. Moreover, let

a’> =4b' —2b® +2b° — 6b*
be the vector which enters the basis instead of vector b>. In addition, let vector ¢ be given as
¢ =b' +2b% +4b* + 3b*.
Notice that
—4
=7

e=| ¢ | (6.11)

7
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3 e* asbasis vectorsis

i.e. the representation of this vector by means of the unit vectors el e e
c = —4e' —7¢% — 6€> + 7e*.

Applying the tableau given in Table 6.1 to find the linear combination of vector ¢ of the new

basis vectors, we obtain the results given in Table 6.2. From row 5 to row 8 of the ¢ column,

we get the representation of vector ¢ by means of the basis B* = {b!,b?, a3, b*}:

¢ = —7b' +6b> + 2a° + 15b*.

Table 6.2 The change of the basis in Example 6.13

Row Basis vectors b> ¢ Operation

1 b! 4 1

2 b? 2 2

3 b3 2 4

4 b* -6 3

5 b! 0 -7 rowl-—2row3
6 b2 0 6 row 2+ row 3

7 2 1 2 lrow3

8 b* 0 15 row4d+43row3

We can easily check that our computations are correct:

1 3 0 -1 —4
-1 -5 8 0 -7

c=-7 1 +6 2 +2 5 + 15 a1=1 =6 I
-2 -1 -8 1 7

i.e. for vector ¢ we get the same representation with respect to the basis vectors e!, e?, e, e*

as before (see equality (6.11)).

If a basis B = {b!,b?, ..., b"} should be replaced by a basis B* = {a!,a?,..., 2_1”}, then we
can apply consecutively the above procedure by replacing in each step a vectorb’,1 < i < n,
by a vector a/,1 <j < n, provided that the assumption of Theorem 6.2 is satisfied.

EXERCISES

6.1 Given are the vectors

a= 11, b=| —4 and c=| 2
-1 -2 6
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(a) Find vectorsa +b —c¢,a+ 3b, b — 4a + 2¢,a + 3(b — 2¢).

(b) For which of the vectors a, b and ¢ do the relations > or > hold?

(c) Find the scalar products aT - b, aT - ¢, bT - ¢. Which of the vectors a, b and ¢ are
orthogonal? What is the angle between the vectors b and ¢?

(d) Compute vectors (@T-b)-canda- (bT-¢).

(e) Compare number |b + ¢| with number |b| + |¢| and number |bT - ¢| with number

[b] - le].
6.2 Find o and 8 so that vectors
2 B
a=| -1 and b= 4
o -2

are orthogonal.

6.3 (a) What is the distance between the following points: (1,2,3) and (4, —1,2) in the
three-dimensional Euclidean space R3?
(b) Illustrate the following sets of points in R%: a > b and |a| > |b|.

6.4 Given are the vectors

do(1) we eo(7h).

Find out which of the vectors

() (5) = (o)

are linear combinations of a' and a2. Is one of the above vectors a convex combination
of vectors a' and a2? Graph all these vectors.

6.5 Given are the vectors

$o(3) w1 #(2) (D)

Show that vector a* can be expressed as a convex linear combination of vectors a', a
and a®. Find the convex combinations of vectors a!, a2 and a® graphically.

6.6 Are the vectors

2

1 1 5
al = R aZ = -2 and a’ = 4
0 1 -2

linearly independent?
6.7 Do the two vectors

i=(3) m ()

span the two-dimensional space? Do they constitute a basis? Graph the vectors and
illustrate their linear combinations.
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Do the vectors

1 0 0 1
0 0 1 0
o] 1|’ 0 and 1
1 0 1 0
constitute a basis in R*?
Let vectors
1 0 1
al=1]0 |, a?=| 1 and ad =
3 0 -1

constitute a basis in R3.

(a) Express vector

3
a= 3
-3

as a linear combination of the three vectors a!, a2 and a> above.

(b) Find all other bases for the three-dimensional space which include vector a and
vectors from the set {al, a2, a3}.

(c) Express vector

5
b=2a'+2a2+3a=| 2
3

by the basis vectors a!, a> and a.
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7.1 MATRICES

We start with an introductory example.

Example 7.1 Assume that a firm uses three raw materials denoted by R, R, and R3 to
produce four intermediate products S1, 2, S3 and S4. These intermediate products are partially
also used to produce two final products F; and F,. The numbers of required units of the
intermediate products are independent of the use of intermediate products as input for the
two final products. Table 7.1 gives the number of units of each raw material which are
required for the production of one unit of each of the intermediate products. Table 7.2 gives
the number of units of each intermediate product necessary to produce one unit of each of
the final products.

The firm intends to produce 80 units of S1, 60 units of S, 100 units of S3 and 50 units of
S4 as well as 70 units of F; and 120 units of . The question is: how many units of the
raw materials are necessary to produce the required numbers of the intermediate and final
products?

Table 7.1 Raw material requirements for the intermediate products

Raw material S1 S S3 Sy
Ry 2 1 4 0
Ry 3 2 1 3
R3 1 4 0 5

Table 7.2 Intermediate product requirements for the
final products

Raw material Fp F
S1 2 3
S 4 0
S3 1 4
Sy 3 1
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To produce the required units of the intermediate products, we need
2-80+1-60+4-100+0-50 =620

units of raw material R;. Similarly, we need
3-80+2-60+1-100+3-50=610

units of raw material R, and
1-80+4-60+0-100+5-50 =570

units of raw material R3. Summarizing the above considerations, the vector y* of the required
units of raw materials for the production of the intermediate products is given by

620
=1 610 |,
570
where the kth component gives the number of units of Ry required for the production of the
intermediate products.
Next, we calculate how many units of each raw material are required for the production of
the final products. Since the intermediate products are used for the production of the final

products (see Table 7.2), we find that for the production of one unit of final product F; the
required amount of raw material R; is

2:2+1-4+4-14+0-3=12.

Similarly, to produce one unit of final product F, requires
2-341-04+4-440-1=22

units of R;. To produce one unit of final product | requires
3.24+2-4+1-14+3-3=24

units of Ry. Continuing in this way, we get Table 7.3, describing how many units of each raw
material are required for the production of each of the final products.

Table 7.3 Raw material requirements for the final

products
Raw material F Fy
Ry 12 22
R, 24 16

R; 33 8
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Therefore, for the production of the final products, there are
12-70 422 - 120 = 3,480

units of raw material Ry,
24-70 4 16 - 120 = 3,600

units of raw material R, and finally
33-70+8-120 = 3,270

units of raw material R3 required. The vector y*" containing as components the units of each
raw material required for the production of the final products is then given by

3,480
vi'=1 3,600
3,270

So the amount of the individual raw materials required for the total production of the inter-
mediate and final products is obtained as the sum of the vectors y¥ and y*. Denoting this
sum vector by y, we obtain

620 3,480 4,100
y=| 610 |+ 3,600 | = 4,210
575 3,270 3,845

The question is whether we can simplify the above computations by introducing some for-
mal apparatus. In the following, we use matrices and define operations such as addition or
multiplication in an appropriate way.

Definition 7.1 A matrix A is a rectangular array of elements (numbers or other
mathematical objects, e.g. functions) a;; of the form

arl a2 coc dln

ar axpp - axp
A= (a,]) =

Aml Am2 ' Qmn

Any element (or entry) a;; has two indices, a row index i and a column index j. The
matrix 4 is said to have the order or dimension m x n (read: m by n).
If m = n, matrix 4 is called a square matrix.

For a matrix 4 of order m x n, we also write 4 = A(mu), or A = (a@jj)(mn), or simply
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Definition 7.2 Let a matrix 4 of order m x n be given. The transpose AT of matrix 4
is obtained by interchanging the rows and columns of 4, i.e. the first column becomes
the first row, the first row becomes the first column and so on. Thus:

A= (a5) = ATz(aZ.) with a]’."i:aij forl <j<nandl <i<m.

Obviously, matrix 4T in Definition 7.2 is of order n x m.

Example 7.2 Let

Remark A vector

is a special matrix with one column (i.e. a matrix of order m x 1). Analogously, a transposed
vector aT = (a1,aa,...,am)isa special matrix consisting only of one row.

Definition 7.3 Two matrices A and B of the same order m x n are equal if
corresponding elements are equal, i.e.

a;j = by forl<i<m and 1<j<n.

So only for matrices of the same order m x n can we decide whether both matrices are
equal.

Definition 7.4 A matrix 4 of order n x n is called symmetric if A = AT, i.e. equality
a; = aj; holds for 1 < i,j < n. Matrix 4 is called antisymmetric if 4 = —AT ie.
aj = —aji for1 < i,j <n.
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As a consequence from Definition 7.4, we obtain: if 4 is antisymmetric, then we must have
ai; =0fori= 1,2,...,}1.

Special matrices

We finish this section with some matrices of special structure.

Definition 7.5 A matrix D = (dj;) of order n x n with

d 0 - 0
b 0 & --- 0 o= |di for 1<ij<nandi=j,
—lz . €4 =10 for 1 <ij<nandi#j,
0 0 --- d,

is called a diagonal matrix. A diagonal matrix I = (i;;) of order n x n with

10 -~ 0
I 0 1 0 .. |1 for 1<ij<nandi=j
s s Tl fr r<ij<nandi#;
00 --- 1

is called an identity matrix.

Definition 7.6 A matrix U = (u;;) of order n x n with

Uil U - Uy

0  up - upy ) . o
U=]. . . , leuj=0forl <i,j<nandi>;j

0 0 o Uy

is called an upper triangular matrix. A matrix L = (I;7) of order n x n with

i 0 --- 0
by b --- 0 :

L=]. . . , delj=0forl <ijj<nandi<j
lnl ln2 lnn

is called a lower triangular matrix.

Notice that the matrices given in Definitions 7.5 and 7.6 are defined only in the case of a
square matrix.
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Definition 7.7 A matrix O = (0;) of order m x n with

00 0
00 --- 0

o=|. . .|, ieo0;=0 forl<i<mandl<j<n
00 --- 0

is called a zero matrix.

7.2 MATRIX OPERATIONS

In the following, we discuss matrix operations such as addition and multiplication and their
properties.

Definition 7.8 Let4 = (a;;) and B = (b;;) be two matrices of order m x n. The sum
A + B is defined as the m x n matrix (a;; + bj)), i.e.

A+ B = (@) (mn) + i) mm) = (@ij + bij) (mn)-

Thus, the sum of two matrices of the same order is obtained when corresponding elements at
the same position in both matrices are added. The zero matrix O is the neutral element with
respect to matrix addition, i.e. we have

A+0=0+4=4,
where matrix O has the same order as matrix 4.
Definition 7.9 LetA = (a;;) be an m x n matrix and A € R. The product of the scalar
A and the matrix 4 is the m x n matrix A4 = (Aa;), i.e. any element of matrix 4 is

multiplied by the scalar A. The operation of multiplying a matrix by a scalar is called
scalar multiplication.

Using Definitions 7.8 and 7.9, we can define the difference of two matrices as follows.

Definition 7.10 Let 4 = (a;;) and B = (b;;) be matrices of order m x n. Then the
difference of matrices A and B is defined as

A—B=A+ (-1B.
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Consequently, matrix 4 — B is given by the m x n matrix (a;; — bj), i.e.

A — B = (@ij)(mn) — Bij)mm) = (@ij — bij) (m,n)-

Example 7.3 Let

3 1 2 1 2 0 1 25
A=10 -2 3], B=|3 1 -1 and C=|2 0 3
1 4 5 4 2 -2 2 =31
We compute 24 + 3B — C and obtain
2-3 2.1 2.2 3-1 3.2 3.0
24+3B—-C=|{2-0 2-(-2) 2:3]+|3-3 3:-1 3-(-1)
2-1 2-4 2.5 3-4 3.2 3.(=2)
1 25
-2 0 3
2 -3 1
6 2 4 36 0 1 25
=10 -4 6]+ 9 3 3]—-|2 0 3
2 8 10 12 6 —6 2 =31
8§ 6 -1
=17 -1 0
12 17 3

Next, we give some rules for adding two matrices 4 and B of the same order and for multi-
plying a matrix by some real number (scalar multiplication). Let 4, B, C be matrices of order
mxnand A, pu € R.

Rules for matrix addition and scalar multiplication

(1) A+B=B+4;
(commutative law)

2) A+B)+C=4+B+C);
(associative law)

() 24+ B)=x14+ AB; A+ wAd =14+ pud.
(distributive laws)

We have already introduced the notion of a vector space in Chapter 6. Using matrix addition
and scalar multiplication as introduced in Definitions 7.8 and 7.9, we can extend the rules
presented above and get the following result.

THEOREM 7.1 The set of all matrices of order m x n constitutes a vector space.



(c) ketabton.com: The Digital Library

260 Matrices and determinants

Next, we introduce the multiplication of two matrices of specific orders.

Definition 7.11 Let 4 = (a;;) be a matrix of order m x p and B = (b;;) be a matrix
of order p x n. The product AB is a matrix of order m x n which is defined by

aynby +---+apbyy  aubi+---+apby - anbiy+ -+ apbp,
1B anbi - +apbpy  anbi - +apby ... axbin 4+ aypbp,
amtbin + - -+ ampbpl  Amibiz -+ Ampbpp - Am1bin + -+ dmpbpn

Notice that the product 4B is defined only when the number of columns of matrix 4 is equal
to the number of rows of matrix B. For calculating the product 4, ) B(p,n), We can use Falk’s
scheme which is as follows:

by bz - bi
by b -+ by
AB
bptr by -+ bpa
an aip - ap | cil €2 v Cln
ayy axp - ay | €1 €2 o
Aml Am2 - Amp | Cml Cm2 - Cmn
P
with ¢ =) agby fori=12,...,m and j=12,... n
k=1

From the above scheme we again see that element c;; is obtained as the scalar product of the
ith row vector of matrix 4 and the jth column vector of matrix B.

If we have to perform more than one matrix multiplication, we can successively apply
Falk’s scheme. Assuming that the corresponding products of » matrices are defined, we
can (due to the validity of the associative law) perform the multiplications either starting
from the left or from the right. In the former case, we obtain C = 414343 - - - 4, according
to C = [(4142)43] - - - 4p, i.e. by using Falk’s scheme repeatedly we obtain

|4 | 4 |4,
Ay [ Aidy [ Aidds |- | C

or in the latter case C = Ai[A4;...(4,—14,)], i.e. we obtain by using Falk’s scheme
repeatedly:

4
An-1 An—14n

Ay | Aods .. Ay
4, C
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Next, we discuss some properties of matrix multiplication.

(1) Matrix multiplication is not commutative, i.e. in general we have 4B # BA. It may even
happen that only one of the possible products of two matrices is defined but not the other.
For instance, let A be a matrix of order 2 x 4 and B be a matrix of order 4 x 3. Then the
product AB is defined and gives a product matrix of order 2 x 3. However, the product
BA is not defined since matrix B has three columns but matrix 4 has only two rows.

(2) Formatrices 4 (mp), B(p,») and Cy n), wehave 4(BC) = (4B)C, i.e. matrix multiplication
is associative provided that the corresponding products are defined.

(3) For matrices A(mp), B(p,n) and Cp ), we have A(B+ C) = AB+ AC, i.e. the distributive
law holds provided that B and C have the same order and the product of matrices 4 and
B + C is defined.

(4) The identity matrix / of order n x n is the neutral element of matrix multiplication of
square matrices of order n x n, i.e.

Al =14 = 4.

Let A be a square matrix. Then we write 44 = A2, and in general 4" = AA...A, where
factor 4 occurs # times, is known as the nth power of matrix 4.

Example 7.4 Let matrices

3 -2 6
A= 14 1 3 and B =
5 4 0

— AN
N = W

be given. The product B4 is not defined since matrix B has two columns but matrix 4 has
three rows. The product 4B is defined according to Definition 7.11, and the resulting product
matrix C = AB is of the order 3 x 2. Applying Falk’s scheme, we obtain

2 3
AB 4 1
1 5

3 -2 6| 4 37°
4 1 3|15 28
5 4 026 19

i.e. we have obtained

4 37
C=4B=1|15 28
26 19

Example 7.5 Three firms 1, 2 and 3 share a market for a certain product. Currently, firm 1
has 25 per cent of the market, firm 2 has 55 per cent and firm 3 has 20 per cent of the market.
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We can summarize this in a so-called market share vector s, where component s; is a real
number between zero and one giving the current percentage of firm i as a decimal so that
the sum of all components is equal to one. In this example, the corresponding market share
vector s = (s1,52,53)" is given by

0.25
s=1 055
0.20

In the course of one year, the following changes occur.

(1) Firm 1 keeps 80 per cent of its customers, while losing 5 per cent to firm 2 and 15 per cent
to firm 3.

(2) Firm2 keeps 65 per cent of its customers, while losing 15 per cent to firm 1 and 20 per cent
to firm 3.

(3) Firm 3 keeps 75 per cent ofits customers, while losing 15 per cent to firm 1 and 10 per cent
to firm 2.

We compute the market share vector s* after the above changes. To do this, we introduce
a matrix T = (t;), where t; is the percentage (as a decimal) of customers of firm j who
become a customer of firm i within the next year. Matrix T is called a transition matrix.
In this example, matrix T is as follows:

0.80 0.15 0.15
0.05 0.65 0.10
0.15 020 0.75

To get the percentage of customers of firm 1 after the course of the year, we have to compute
s7 = 0.80s; + 0.15s7 + 0.15s3.

Similarly, we can compute the values 53 and s3, and we find that vector s* is obtained as the
product of matrix 7 and vector s:

0.80 0.15 0.15 0.25 0.3125
s*=Ts=10.05 0.65 0.10 055 | =1 0.3900
0.15 0.20 0.75 0.20 0.2975

Hence, after one year, firm 1 has 31.25 per cent of the customers, firm 2 has 39 per cent and
firm 3 has 29.75 per cent.

Example 7.6 Consider again the data given in Example 7.1. Introducing matrix R(S3, 4 88
the matrix giving the raw material requirements for the intermediate products as in Table 7.1
and matrix Sa,z) as the matrix of the intermediate product requirements for the final products
as in Table 7.2, we get the raw material requirements for the final products described by

matrix RI(‘; ») by matrix multiplication:

F _ pS F
R(30) = Ri3.4) - Stan)-
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Let vectors x‘(94 H and xg 1 give the number of units of each of the intermediate and final
products, respectively, where the ith component refers to the ith product. Then we obtain the
vector y of the total raw material requirements as follows:

S F
Y =Ya) + Ya,n
S S F F
=RG4) Xan T Ra2) X
S S S F F
= RG34y Xaany T RGa) - Saz)  Xan:

The indicated orders of the matrices confirm that all the products and sums are defined.

We now return to transposes of matrices and summarize the following rules, where 4 and B
are m X n matrices, C is an n x p matrix and A € R.

Rules for transposes of matrices

(1) @HT =4

2 U+BT=4T+BT, 4—B)T=4T-BT;
3) ()T =2d";

4) AC)T=CT4T,

Definition 7.12 A matrix 4 of order n x z is said to be orthogonal if ATA = I.

As a consequence of Definition 7.12, we find that in an orthogonal matrix 4, the scalar
product of the ith row vector and the jth column vector with i # j is equal to zero, i.e. these
vectors are orthogonal (cf. Chapte 6.2).

Example 7.7 Matrix

()
V33

is orthogonal since

1 1./3 L _1/
T 2 2 2 2 1 0
44 = 1 1 1 1 o 1 =1

7.3 DETERMINANTS

Determinants can be used to answer the question of whether the inverse of a matrix exists
and to find such an inverse matrix. They can be used e.g. as a tool for solving systems of
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linear equations (this topic is discussed in detail in Chapter 8) or for finding eigenvalues (see
Chapter 10).

Let
a  an2 Qaln
ar  az an
A= .
anl  Qn2 Qnn

be a square matrix and 4;; denote the submatrix obtained from 4 by deleting the ith row and
Jjth column. It is clear that 4;; is a square matrix of order (n — 1) x (n — 1).

Definition 7.13 The determinant of a matrix A of order n x n with numbers as
elements is a number, assigned to matrix 4 by the following rule:

n
detd =] =Y (1) - ay - |4yl.
j=1

For n = 1, we define |4| = ay;.

Whereas a matrix of order m x n is a rectangular array of m - n elements, determinants
are defined only for square matrices and in contrast to matrices, a determinant is a number
provided that the elements of the matrix are numbers as well. According to Definition 7.13,
a determinant of a matrix of order z x »n can be found by means of » determinants of matrices
of order (n — 1) x (n — 1). The rule given in Definition 7.13 can also be applied when the
elements of the matrices are e.g. functions or mathematical terms.

For n = 2 and matrix
a a
4= (@1 an ’
a1 a2
we get
|[4| = ar1az — annaz;.
For n = 3 and matrix

ajil app a
A=|ayn axn ax|,
az1 aszp  as;

we get
|[4] = a1 - |[A11] — a1z - |412]| + a13 - |413]

azy a2
as)  as

az2 a3
a2  ass

a2t

23
tais-
as as3

=an- — a2
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= ay1(axnas;z — anazs) — ap(azazs — azaxs) + az(az1as — as1az)

= aj1a22a33 + a12a23a31 + a13a21a32 — A11a23432 — A12421433 — A13422431.

The latter computations for n = 3 can be done as follows. We add the first two columns at
the end as fourth and fifth columns. Then we compute the products of the three diagonals
from the left top to the right bottom and add them, and from this value we subtract the sum
of the products of the three diagonals from the left bottom to the right top. This procedure is
known as Sarrus s rule (see Figure 7.1) and works only for the case n = 3.

Determinants of square submatrices are called minors. The order of a minor is determined
by its number of rows (or columns). A minor |4;;| multiplied by (— 1) is called a cofactor.
The following theorem gives, in addition to Definition 7.13, an alternative way of finding
the determinant of a matrix of order n x n.

/ / 7/
/ /
/ ’ Ve
a1 12 13 a1 12
~ N é N e Ve
N NS e Ve
N /N Y e
~ 7 Ay 4 N 7
@21 Q22 23 21 Q22
Vd Y 7 N 7’ Y
4 N / Y
s 7N N N
4 / Ay 14 N N
a31 a32 as3 a31 a32
N N N
N N N
Y N Y
+ + +

Figure 7.1 Sarrus’s rule.

THEOREM 7.2 (Laplace’s theorem, cofactor expansion of a determinant) Let 4 be a
matrix of order n x n. Then the determinant of matrix 4 is equal to the sum of the products
of the elements of one row or column with the corresponding cofactors, i.e.

n
4| = Z(—l)”j - ajj - |4yl (expansion of a determinant by row i)
=1
and
n
4| = Z(—I)H'f “ag - 14l (expansion of a determinant by column ).
i=1

Theorem 7.2 contains Definition 7.13 as a special case. While Definition 7.13 requires
cofactor expansion by the first row to evaluate the determinant of matrix 4, Theorem 7.2
indicates that we can choose one arbitrary row or column of matrix 4 to which we apply
cofactor expansion. Therefore, computations are simplified if we choose one row or column
with many zeroes in matrix 4.
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Example 7.8 We evaluate the determinant of matrix

2 35
4= 1 0 2
-1 -4 2

by applying Theorem 7.2 and performing cofactor expansion by the second column. We get

1 2 5
-1 -1 2

=(=3) 2—(-2)]+0+4-4—5)=—12+0—4=—16.

= (— 3. .
I = (—1) 3‘ L

2 4
2‘4—(—1) vo.'

‘+(—1)5-(—4)-‘2 5’

According to Theorem 7.2, the first determinant of order 2 x 2 on the right-hand side of the
first row above is the minor |412| obtained by crossing out in matrix 4 the first row and the
second column, i.e.

21 a3

a
|[412] =
a3 axn

1 2
-1 2|

Accordingly, the other minors A2, and 43, are obtained by crossing out the second column
as well as the second and third rows, respectively.

We now give some properties of determinants.
THEOREM 7.3 Let A be an n x n matrix. Then |4| = |47T|.

This is a consequence of Theorem 7.2 since we can apply cofactor expansion by the elements
of either one row or one column. Therefore, the determinant of matrix 4 and the determinant
of the transpose AT are always equal. In the case of a triangular matrix, we can easily evaluate
the determinant, as the following theorem shows.

THEOREM 7.4 Let 4 be an n x n (lower or upper) triangular matrix. Then
n
[Al=ay-axn-... apm = l_[aii~
i=1

As a corollary of Theorem 7.4, we find that the determinant of an identity matrix 7 is equal
toone, ie. [I| = 1.

If we evaluate a determinant using Theorem 7.2, it is desirable that the determinant has an
appropriate structure, e.g. computations are simplified if many elements of one row or of
one column are equal to zero. For this reason, we are looking for some rules that allow us to
evaluate a determinant in an easier form.

THEOREM 7.5 Let 4 be an n x n matrix. Then:

(1) If we interchange in A two rows (or two columns), then we get for the resulting matrix
A*: 4% = —|A|.



(c) ketabton.com: The Digital Library

Matrices and determinants 267

(2) If we multiply all elements of a row (or all elements of a column) by A € R, then we get
for the resulting matrix A*: |[4*| = A - |4].

(3) If we add to all elements of a row (or to all elements of a column) A times the corre-
sponding elements of another row (column), then we get for the resulting matrix 4™:
|4¥] = |4].

COROLLARY 7.1 For the n x n matrix B = A4, we obtain: |B| = |A4| = A" - |4].
The latter corollary is obtained by a repeated application of part (2) of Theorem 7.5.
THEOREM 7.6 Let A and B be matrices of order n x n. Then |4AB| = |4] - |B|.

It is worth noting that in general |4 + B| # |4| + |B|. Next, we consider two examples of
evaluating determinants.

Example 7.9 We evaluate the determinant of matrix

1 -2 4 3

-2 5 -6 4

A=l 3 _4 16 5
4 —11 20 10

We apply Theorem 7.5 to generate a determinant having the same value, in which all elements
are equal to zero below the diagonal:

1 -2 4 3 11 =2 4 3 1 -2 4 3
|A|—_2 5 —6 4 0 12 10 [0 1 2 10
=3 4 16 510 2 4 —47]lo 0 0 —24
4 —11 20 10/ [0 -3 4 -2/ Jo o 10 28
1 -2 4 3
0 1 2 10
==l o0 10 28 =24
0 0 0 —24

In the first transformation step, we have generated zeroes in rows 2 to 4 of the first column.
To this end, we have multiplied the first row by 2 and added it to the second row, yielding
the new second row. Analogously, we have multiplied the first row by —3 and added it to the
third row, and we have multiplied the first row by —4 and added it to the fourth row. In the
next transformation step, we have generated zeroes in rows 3 and 4 of the second column.
This means we have multiplied the second row (of the second determinant) by —2 and added
it to the third row, and we have multiplied the second row by 3 and added it to the fourth row
(application of part (3) of Theorem 7.5). Additionally, we have interchanged rows 3 and 4,
which changes the sign of the determinant. Finally, we applied Theorem 7.4.
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Example 7.10 We want to determine for which values of ¢ the determinant

3 1 2
Al=2+2t 0 4
12—t 0

is equal to zero. We first apply expansion by column 3 according to Theorem 7.2 and obtain

242t 0 3 1 3 1‘

'A':z" 12— 12— 0 2ya o

_4_‘

vy ‘
=2-[Q+2t)-2—0]—4-(6—3t—1) = —4> 4+ 16t — 12.
From |4| = 0, we obtain
—42 416t —12=0
which corresponds to
£ —4t+3=0.

This quadratic equation has the two real roots 1 = 1 and #; = 3. Thus, fort; = l and t, = 3,
we get |4| = 0. To find the value of |4|, we did not apply Theorem 7.5. Using Theorem 7.5,
we can transform the determinant such that we have many zeroes in one row or column
(which simplifies our remaining computations when applying Theorem 7.2). Multiplying
each element of row 1 in the initial determinant by —2 and adding each element to the
corresponding element of row 2, we obtain

3 1 2
Al =|—4+2t -2 0.
1 2-t 0

In this case, when expanding by column 3, we have to determine the value of only one
subdeterminant. We get

—4+42 -2

'Al:z' 12—t

which is equal to the already obtained value —4¢> + 16¢ — 12.

The following theorem presents some cases when the determinant of a matrix 4 is equal to
zero.

THEOREM 7.7 Let 4 be a matrix of order n x n. Assume that one of the following
propositions holds:

(1) Two rows (columns) are equal.
(2) All elements of a row (column) of 4 are equal to zero.
(3) A row (column) is the sum of multiples of other rows (columns).

Then |4] = 0.
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We next introduce the notions of a singular and a regular matrix.

Definition 7.14 A square matrix 4 is said to be singular if |4| = 0 and regular (or
non-singular) if |4| # 0.

We now consider a first possibility to solve special systems of linear equations. This approach
is named after the German mathematician Cramer and uses determinants to find the values
of the variables.

Cramer’s rule

Let
Amm - X@1) = be,
be a system of linear equations, i.e.

anxy +apxy + -+ apx, = by

az1x1 + anxy + -+ + axxy, = by

an1X1 + ampX2 + - - + AunXn = by,

and we assume that 4 is regular (i.e. |4| # 0). Moreover, let 4;(b) denote the matrix which
is obtained if the jth column of 4 is replaced by vector b, i.e.

ajy app ... ayj-1 b a1 ... an
a1 ax ... ayj-1 by azji1 ... a
[4;(b)| = | . . . . .
anl 4p2 ... Qpj-1 bn an,j+1 .- Qnn
Then
|4;(b)| .
xj = Al forj=1,2,...,n

is the unique solution of the system Ax = b of linear equations.

Cramer’s rule makes it possible to solve special systems of linear equations. However, this
rule is appropriate only when the determinant of matrix A4 is different from zero (and thus
a unique solution of the system of linear equations exists). It is also a disadvantage of this
method that, if we obtain |4| = 0, we must stop our computations and we have to apply some
more general method for solving systems of linear equations, as we will discuss in Chapter 8.
Moreover, from a practical point of view, Cramer’s rule is applicable only in the case of a
rather small number of n.
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Example 7.11 Consider the system of linear equations
3x1 + 4xp + 2x3 =1
X1 — xp — 3x3 =17
2x1 + x3 =4

which we solve by applying Cramer’s rule. We first evaluate the determinant of matrix

3 4 2
A=11 -1 -
2 0 1

Using expansion by row 3 according to Theorem 7.2, we obtain

34 2
i ={1 -1 -3 :2.‘_‘1‘ _§‘—0~‘? _§‘+1-ﬁ _‘1“
2 0 1

=2.(—1242)—0+1-(-3—4)=-27.

In the above computations, we have decided to expand by row 3 since there is already one
zero contained in this row and therefore we have to evaluate only two minors of order two.
For this reason, one could also choose expansion by column 2. Since |4| # 0, we know now
that the given system has a unique solution which can be found by Cramer’s rule. Continuing,

we get
1 4 2
4i(b)|=|7 —1 -3 :4.’_‘1‘ _§‘+1~’; _411’
4 0 1
=4.(-124+2)+1-(—1—-28) = —69;
31 2/ [0 =20 11
) =1 7 —3|=]1 7 -3 :_1,‘:?8 1;‘
2 4 1 [0 -10 7
= —1-(—140 4 110) = 30
and
3 4 1
1 7 3 1
43)| =[1 -1 7 :_4.’2 4‘“_1)"2 4‘
2 0 4

= —4.(4—14)—1-(12-2) = 30.

For finding |41(b)| and |43(b)|, we have used Theorem 7.2. In the former case, we have
again applied expansion by row 3, and in the latter case, we have applied expansion by
column 2. For finding |43 (b)|, we have first used Theorem 7.5, part (3). Since there are no
zero elements, we have transformed the determinant such that in one column or row (in our
case column 1) all but one elements are equal to zero so that the application of Theorem 7.2
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is reduced to finding the value of one minor of order two. By Cramer’s rule, we get

)| 69 23

4 27 9’
145(b)] 30 10
xz = = —— = ——’
4] 27 9
|45(b)| 30 10
X3 = = == ——,
4] 27 9

7.4 LINEAR MAPPINGS

Definition 7.15 A mapping 4 : R” — R” is called linear if
A +x%) =AY + 4x?) forall x', x> € R”
and

A(Ax) = AA(x) forall A € R and x € R”.

A linear mapping is therefore defined in such a way that the image of the sum of two vectors
is equal to the (vector) sum of the two images, and the image of the multiple of a vector is
equal to the multiple of the image of the vector.

A linear mapping 4 : R” — R”™ can be described by means of a matrix 4 = (a;;) of order
m X n such that

X1 N1 an a2 - QAin X1

X2 " Y2 azy axp - A X2 m
X = . eR'"+—y= . = . . . . . eR

Xn Ym Aml Am2 - QAmn Xn

Definition 7.16 The set of all n-dimensional vectors x which are mapped by 4 :

R"” — R™ into the m-dimensional zero vector 0 is called the kernel of the mapping,
abbreviated ker 4, i.e.

kerd = {x(z,1) € R” | Ay - X(n,1) = Om,1) }-

The kernel of a linear mapping is also called null space. Determining the kernel of a linear
mapping requires the solution of a system of linear equations with the components of vector
x as unknowns, which we will treat in detail in Chapter 8. The following theorem shows how
a composition of two linear mappings can be described by a matrix.
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THEOREM 7.8 LetB : R" — Rfand4 : R® — R™ be linear mappings. Then the composite
mapping 4 o B : R” — R™ is a linear mapping described by matrix

Commy = Am,s) - Bisn-

Example 7.12  Assume that a firm produces by means of g raw materials R1, Ry, . . ., R, the
m intermediate products S1, 5, . . ., Sy, and with these intermediate products and with the ¢
raw materials the » final products F1, F», . . ., F),. Denote by

r;,  the number of units of raw material R; which are necessary for the production of one
unit of intermediate product S,

Sik the number of units of intermediate product S; which are necessary for the production

of one unit of final product F,

rgc the number of units of raw material R; which are additionally necessary for the
production of one unit of final product Fy.
We introduce the matrices RS = (r;j.) of order g x m, SF = (sg ) of order m x n and

RF = (rg ) of order ¢ x n and denote by xF = (x'lv ,x‘; e ,an )T the production vector of

the final products and by x$ = (xf ,xg yenn ,x,fl) the production vector of the intermediate

products. We want to determine the required vector y of raw materials. First, raw materials
according to the matrix equation

1 _ pF F
Yg) = Rigm X1

are required for the final products. Moreover, we get for vector x5 the following matrix
equation:

S F F
Xim1) = Simmn) * Xn,1)>

and for the production of intermediate products given by vector x5, the required vector y2 of
raw materials is given by

2 _ pS S _ pS F F
Yig) = Rigm = Xtm1) = Rigm * Somm * Xin1)-

Thus, we get the following relationship between the g-vector y of required raw materials and
the n-dimensional vector x'':

1 2
Yab =Y T ¥an
= R+ RS- SF) g - xb ),

i.e. R + RS o S represents a linear mapping from the n-space R’ into the g-space R‘i. This
linear mapping can be described in the following way:

X e R — RF + RS o ST)(xF) =R -xF +RS - 87 .xF =y e R,

i.e. by this linear mapping a feasible n-dimensional production vector of the final products
is mapped into a g-dimensional vector of required raw materials.
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Next, we introduce the inverse mapping of a linear mapping.

THEOREM 7.9 Let 4 : R” — R” be a linear mapping described by a matrix 4 of order

nxmn,ie.
X1 1
X2 n Y2 n
X = eR'—Ax=y= e R”,
Xn Yn

and let matrix 4 be regular. Then there exists a unique inverse mapping 4~! such that

1 X1
»2 4 x2

y= . ER'+— A4 'y=x= . eR".
Yn Xn

Obviously, the composite mapping 4 0 A~! = 4~ o 4 is the identical mapping /.

7.5 THE INVERSE MATRIX

Definition 7.17 Given is a square matrix 4. If there exists a matrix 4~! such that
A4 =474 =1,

then we say that A~! is an inverse or inverse matrix of A.

We note that the inverse 4~! characterizes the inverse mapping of a linear mapping described
by matrix 4. The following theorem answers the question: under which condition does the
inverse of a matrix 4 exist?

THEOREM 7.10 Let 4 be a matrix of order n x n. Then:

(1) If matrix 4 is regular, then there exists a unique inverse matrix 4~!.
(2) If matrix 4 is singular, then 4 does not have an inverse.

If the inverse 4! of matrix 4 exists, we also say that matrix 4 is invertible. According to
Theorem 7.10, a square matrix 4 is invertible if and only if |4] # 0.
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Solving equations by matrix inversion

Consider the matrix equations AX = B and Y4 = C, where matrix B of order n x m and
matrix C of order m x n are given. The matrices X and Y are assumed to be unknown. From
the above equations, it follows that matrix X has the order n x m and matrix Y has the order
m x n. For |A| # 0, the inverse of matrix 4 exists and we get

AX =B < X=4'B
YA=C = Y=0C4""
The equations on the right-hand side are obtained by multiplying in the former case, equation

AX = B from the left by A~! and in the latter case, equation Y4 = C from the right by 4!
Remember that matrix multiplication is not commutative.

Example 7.13 Let the matrix equation
4X =X(2B—-A4)+ 34 +X)

be given, where 4, B and X are n x n matrices. We solve the above equation for matrix X
and obtain:
4X =2XB — XA + 34+ 3X
X —2XB+ XA =34
X —2B+4)=34
X =340 - 2B+ A4)~".

In the second to last step, we have factored out matrix X from the left and we have used
X = XI. Thus, if the inverse of matrix / — 2B + A exists, matrix X is uniquely determined.

The following theorem presents a first possibility of computing the inverse of a matrix.

THEOREM 7.11 Let 4 be a regular matrix of order n x n. Then the inverse matrix 4~ ! is
given by

+lAul =42l +--- E|4ul
1 | M2l +ld22] —--- Fldnl

A71 ! = —
4]

=i (=0 |A,»,-|)T

il Fldoal £ +1Aml

The matrix ((—1)" - |A,<j|)T is the transpose of the matrix of the cofactors, which is called
the adjoint of matrix 4 and denoted by adj(4).

To determine the inverse of a matrix 4 of order n x n, the evaluation of a determinant of
order n x n and of n* minors of order n — 1 is required. Thus, with increasing order of n, the
application of Theorem 7.11 becomes rather time-consuming.
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Example 7.14 We consider the matrix
1 2 -1

A= 2 1 0

-1 0 1

>

and we want to determine the inverse 4~! of matrix 4. In order to apply Theorem 7.2, we
first evaluate the determinant of 4:

1 2 -1 |1 2 -1 .
A= 21 o=[1 0:740J274
-1 0 1 0o 2 o

In the above computations, we have first added rows 1 and 3 and then applied cofactor
expansion by column 3. Calculating the minors, we obtain

1 0 2 0 1
Ml = |y 1‘=1, Mil=|_; =2 isl=|_ 0’=1,

2 - 1 -1 2
211 = |y 1‘=2, M2l=|_; (|=0 lsl=_ 0’=2,

2 -1 1 -1 1 2
a1l = | 0‘=1, a2l =15, o|=2  Mnl=|, 1‘=—3

With the above computations, we get the inverse matrix

[l —lda1l 431l 1 1 -2 1
A= (el Mel el = |2 0 =2
[413]  —|423]  |433] 1 -2 -3

1 1 1

4 2 4

1 1

= 20 -

2 2

1 1 3

4 2 4

Example 7.15 Consider the matrix equation
AX =X —B

with

3 a 1 0
A:(lo 6) and B:(_2 1),

where a € R. We want to determine X provided that this matrix is uniquely determined.
Replacing X by LX, where [ is the identity matrix, and solving the above matrix equation for
X, we obtain first

(I—-A)X =8B
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and then
X=I—-47"'B

with

-2 —a
[-4= (—10 —5)'

To check whether the inverse of matrix I — 4 exists, we determine

-2 —a

_10 —5 =10 —10a = 10(1 — a).

|I—A|=’

Fora # 1, we have |I — A| # 0, and thus the inverse of I — A4 exists and the given matrix X
is uniquely determined. On the contrary, for a = 1, the inverse of / — A does not exist, and
thus matrix X is not uniquely determined. We continue and obtain for a # 1

_ -1 _ 1 =5 a
-4 _10(1—a)<10 —2>'

By multiplying matrices (/ — 4)~! and B, we finally obtain

54 2a a
X — 1 —-5-2a a)\ _ 10(1 —a) 10(1 —a)
T 10(1 —a) 14 2]~ 7 1

Sl—a) 5(1—a)

We now summarize some rules for operating with the inverses of matrices, assuming that the
matrices 4 and B are of order n x n and that the inverses A~ and B~! exist.

Rules for calculations with inverses

1) @ H =4
@ @H'=uhh
() 4B =874

1
@ o != 5 ATY (veR\ {0}

5) 147 = —
=

We prove the validity of rule (5). Using |/| = 1 and Theorem 7.6, we obtain
L=11| = 447" = 4] - 147"

from which rule (5) follows. As a generalization of rule (3), we obtain
@ t=@hH"  forallneN.

We have seen that, if the order of the matrix is large, the determination of the inverse of
the matrix can be rather time-consuming. In some cases, it is possible to apply an easier
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approach. The following theorem treats such a case, which occurs (as we discuss later) in
several economic applications.

THEOREM 7.12 Let C be a triangular matrix of order n x n with¢;; = 0fori =1,2,...,n
and 4 = I — C, where I is the identity matrix of order # x 7. Then the inverse A~ ! is given by

A= -0 =1+ CH+CP 4

The advantage of the formula presented in Theorem 7.12 over the formula given in
Theorem 7.11 is that the determination of the inverse is done without using determinants. The
latter formula uses only matrix multiplication and addition, and the matrices to be considered
contain a lot of zeroes as elements.

7.6 AN ECONOMIC APPLICATION: INPUT-OUTPUT MODEL

We finish this chapter with an important application of matrices in economics. Assume that
we have a set of n firms each of them producing one good only. Production of each good
J requires an input of a;; units of good i per unit of good j produced. (The coefficients a;;
are also known as input—output coefficients.) Production takes place with fixed techniques

(i.e. the values a;; do not change). Let x = (x1,x2,... ,xn)T be the vector giving the total
amount of goods produced, let matrix 4 = (a;;) of order n x n be the so-called technology or
input—output matrix and lety = (y1,)2,..., y,,)T be the demand vector for the use of the »

goods. Considering the ith good, there are a;;x; units required as input for the production of
x; units of good j, and y; units are required as final customer demand. Therefore, the amount
x; of good i has to satisfy the equation

Xi = apX1 +apxy + -+ amxp +yi, i=12,...,n
Expressing the latter n equations in matrix notation, we get the equation
X=4x+Yy
which can be rewritten as
Ix—Ax=({I—-A)x =Yy,
where [ is the identity matrix of order # x n. The above model expresses that vector x, giving
the total output of goods produced, is equal to the sum of vector Ax describing the internal
consumption of the goods and vector y representing the customer demand. The model is
referred to as an input—output or Leontief model. The customer demand vector y is in general
different from the zero vector, and in this case we have an open Leontief model. The equation
I—-—ADx=y
represents a linear mapping R* — R” described by matrix / — 4. If the total possible output x

is known, we are interested in getting the possible amount y of goods left for the customer.
Conversely, a customer demand vector y can be given and we ask for the total output vector x
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required to satisfy the customer demand. In the latter case, we have to consider the inverse
mapping

x=( -4y

So we have to determine the inverse of matrix / — 4 to answer this question in the latter case.

Example 7.16 Consider a numerical example for an open input—output model. Let matrix
A and vector y be given as follows:

1 1
55 0
2
A= 231 and y=1|0
5 5 5 1
3 2 1
5 5 5
Then we get
4 1
5 75 0
4 -1 0
1
[—A4= ,g % 1 =-|-2 2 -1
5 5 5 5\.3 o 4
3 2 4
5 5 5
Setting
4 -1 0
B=|-2 2 -1},
-3 -2 4

we have I — A = B/5. Instead of inverting matrix / — 4, we invert matrix B, which has only
integers, and finally take into account that matrix equation (I — 4)~! = 5. B~! holds. First,
we obtain |B| = 13 and thus the inverse of matrix B exists. Applying Theorem 7.11, we get

L6 41
Bl=—111 16 4
B0 11 6
Then we get
6 4 1
—1 —1 5
U—at =B = |11 16 4
3\10 11 s

Finally, we obtain vector x as follows:

s (6 41\ (2 s (13 5
x==—|11 16 4|[o|=2]26 =] 10
BA1o 11 6/ \1 13\ 26 10
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Ry

Figure 7.2 Relationships between raw materials and products in Example 7.17.

Next, we consider a second example of this type of problem.

Example 7.17 A firm produces by means of four raw materials Ri,R2,R3 and R4 five
products P1, Py, P3, P4 and Ps, where some of these products are also used as intermediate
products. The relationships are given in the graph presented in Figure 7.2. The numbers
beside the arrows describe how many units of raw material Ry and product P;, respectively,
are necessary for one unit of P;,j = 1,2,...,5. Vector x = (x1,x2,x3,x4,x5)T describes
the produced units (total output) of product P; and y = (y1,¥2,¥3,V4,s5)" denotes the final
demand (export) for the output of the products P;.

(1) We first determine a relationship between vectors x and y. Let the technology matrix

AN

I
S O o oo
SO OO~
S O O o O
SO N~ O
S = O N =

be given. Then
X =A4x+Yy
or, correspondingly,

I—-ADx=Yy.
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In detail, we have

1 -1 0 0 -1
0 1 0 -1 -2
0 0 1 -2 0
0 00 1 -1
0O 00 0 1

y1
Y2
Y3
pZ
s

(2) We now calculate the final demand when the total output is given by
x = (220, 110, 120, 40, 20)T. We obtain

y=U—-A4A)x=

S oo o

S OO =

SO = OO

1

1
0

-1
-2

0

-1

1

220

110
120
40
20

(3) Lety = (60,30,40,10,20)" be the given final demand vector. We determine the pro-
duction vector x and the required units of raw materials for this case. To this end, we
need the inverse of matrix / — 4. Since I — 4 is an upper triangular matrix with all
diagonal elements equal to zero, we can apply Theorem 7.12 for determining (/ —A) !,

and we obtain

U-—A "'=T+4+4%>+43+4%

Using

4% =

(=N eNeN-N-)
S oo oo
S oo oo
[ e R =
S O N~ DN

we get that 4% is the zero matrix and therefore

110
010
d-H'=10 0 1
0 00
0 00
Then we get
1
0
x=J-4ly=10
0
0

S OO = =

S = N = -

S O = OO

—_ =N W N

S = N = —

—_ = N W N

(=i e =)

S O O OO

60
30
40
10
20

(=i e =)

S O O OO

S OO o=

180
100
100
30
20
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For the required vector of raw materials r = (r1, 72,73, r4)T, where r; denotes the quantity
of required units of raw material R;, we obtain from Figure 7.2:

r = 4x
rn o= 2x1 + +  3x5
r3 = 2x3 4+ x3 + 3x4
ry = 2x3
i.e.
" 4000 0 il
| [z 0003 x§
3 02130
4 00200 J’z‘s‘

For the determined vector x = (180, 100, 100, 30,20)T, we get the following vector r:

r 720
PO B2 420
s ]| 39
r4 200
EXERCISES
7.1 Given are the matrices
2 1
A= G ; _12>; B=|1 2],
-1 0
1 0 -1 310
C:(_1 1 1) and D:<4 ) 2).
(a) Find the transposes. Check whether some matrices are equal.
(b) Calculate 4 + D, A — D, AT —Band C — D.
(c) Find 4 + 3(BT —2D).
7.2 Find a symmetric and an antisymmetric matrix so that their sum is equal to
2 -1 0
A=|1 1 -1
3 0 -2
7.3 Calculate all defined products of matrices 4 and B:

4 2 305 —1
(a)A:<3 2>; 32(7 6 2);

,.\

o

N

b

I

N

N B

(V%)

S W

—_ W

—
>3]

Il
WA A=
NV BN SR )
v N W
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-3
© 4= 3 4 5 B=|
2 _3 b
2
3
2 -1 3
(d)A=(_4 ) _6>, el I

X
23 1
(e)A:<1 5 2)’ =1

7.4 Use the matrices given in Exercise 7.3 (d) and verify the equalities
ATBT = (B4)T and BT4T = (4B)".

7.5 Given are the matrices

-1
1 0
2 -2 0 1 0
A=|7 —4]|; B = 0 and C:( 03 0 6)’
5 3 7

(a) Find the dimension of a product of all three matrices if possible.
(b) Test the associative law of multiplication with the given matrices.

7.6 Calculate all powers of the following matrices:

(@ A= cos o sin (x)'

sina@  —cosa

(=R )
S o OoON

1
3
| ® B=(
0

[=RE=REN oS

7.7 A firm produces by means of two raw materials R; and R; three intermediate products
S1, 82 and S3, and with these intermediate products two final products ;| and F,. The
numbers of units of Ry and R; necessary for the production of 1 unit of S, € {1,2, 3},
and the numbers of units of S, S> and S3 necessary to produce 1 unit of | and F3,
are given in the following tables:

Solve the following problems by means of matrix operations.

(a) How many raw materials are required when 1,000 units of 1 and 2,000 units of
F have to be produced?

(b) The costs for one unit of raw material are 3 EUR for R; and 5 EUR for R;.
Calculate the costs for intermediate and final products.
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7.8 Given is the matrix

2 3
A=1-1 2
0 5

— Ao

(a) Find the submatrices A1, and Ay;.

(b) Calculate the minors |412| and |42;].

(c) Calculate the cofactors of the elements a;1, az1, @31 of matrix 4.
(d) Evaluate the determinant of matrix 4.

7.9 Evaluate the following determinants:

1 200 1 01 2
216
2120 1 2 3 4
0 0 21 21 40
2 7 41 -1 2 4 3 3033 303
3140 2 -4 -8 —6 303 33
Dis 1o of @ 7 1 5 o ®OP30 33
2 0 0 0 1 5 0 1 33 3 30
(n,n)
7.10 Find the solutions x of the following equations:
—1 x x x 1 2
@] 2 -1 2| =27 ®) 13 x —1]=2.
2 2 -1 4 x -2

7.11 Find the solution of the following system of equations by Cramer’s rule:

2x1 44xy; +3x3 = 1
3x1 —6xp; —2x3 = 2.
—5x1 +8xy +2x3 = 4

7.12 LetA:R3 — R3 be a linear mapping described by matrix
310
A=|-1 2 4
4 15

Find the kernel of this mapping.

7.13  Given are three linear mappings described by the following systems of equations:

uj v —02 +v3
uy = 2v1 —u —v3
us = —v; vy 203,
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Vi = —wp +w3
vo = wi +2wp —w3
vy = wy  —2ws,
wi = X1 —X2 —X3
wy = —x1 —2x3 +3x3
w3y = 2x1 +x3.

Find the composite mapping x € R? — u € R3.
7.14  Find the inverse of each of the following matrices:

1 0 3
@ 4=[4 1 2|;
0 1 1
2 -3 1
b B=(3 4 —2|;
5 1 —1
13 =2
© c=]o0 2 4]
00 —1
1 0 -1 2
2 -1 -2 3
@ D=1 5, 5 _4
0 1 2 -5
7.15 Let
1 2 -1 0 4
01 2 3 0
A4=10 0 1 -3 -1
00 0 1 2
00 0 0 1

Find the inverse matrix by means of equality 4 =7 — C.

7.16 Given are the matrices

-2 5 1 4
A:( 1 _3) and B:<_2 9).

Find (4B)~! and B~147 1.
7.17  Given are the following matrix equations:

(@) (XA =B; (b) X4 =B-2X; (©) AXB=C;
(d AXB)~!'=c; () CTx4+XTO)T =1-3C"x.

Find matrix X.
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7.18 Given is an open input—output model (Leontief model) with

0 02 01 03
0 0 02 05
4=1o o 0 o
0 04 0 0

Let x be the total vector of goods produced and y the final demand vector.

(a) Explain the economic meaning of the elements of 4.

(b) Find the linear mapping which maps all the vectors x into the set of all final
demand vectors y.

(c) Isavector

100
200
200
400

of goods produced possible for some final demand vector y?
(d) Find the inverse mapping of that obtained in (b) and interpret it economically.

7.19 A firm produces by means of three factors Ry, R, and R3 five products Py, Py, .. ., Ps,
where some of these products are also used as intermediate products. The relationships
are given in the graph presented in Figure 7.3. The numbers beside the arrows describe
how many units of R; respectively P; are necessary for one unit of P;. Let p; denote

Figure 7.3 Relationships between raw materials and products in Exercise 7.19.
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the produced units (output) of P; and ¢; denote the final demand for the output of
Pi,ie{l,2,...,5}.

(a) Find a linear mapping p € ]Ri —q€ Ri.
(b) Find the inverse mapping.
(¢) Let rT = (r1,72,73) be the vector which contains the required units of the

factors Ri,R2,R3. Find a linear mapping q + r. Calculate r when q =
(50,40, 30,20,10)T.
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8 Linear equations and inequalities

Many problems in economics can be modelled as a system of linear equations or a system
of linear inequalities. In this chapter, we consider some basic properties of such systems and
discuss general solution procedures.

8.1 SYSTEMS OF LINEAR EQUATIONS

8.1.1 Preliminaries

At several points in previous chapters we have been confronted with systems of linear
equations. For instance, deciding whether a set of given vectors is linearly dependent or
linearly independent can be answered via the solution of such a system. The following
example of determining feasible production programmes also leads to a system of linear
equations.

Example 8.1 Assume thata firm uses three raw materials R, Ry and R3 for the production of
four goods G1, G2, G3 and G4. There are the following amounts of raw materials available:
120 units of Ry, 150 units of Ry and 180 units of R3. Table 8.1 gives the raw material
requirements per unit of each good. Denote by x; the quantity of good G;,i € {1,2,3,4}. We
are interested in all possible production programmes which fully use the available amounts
of the raw materials.

Considering raw material R; we get the following equation:

1x1 + 2xp + 1x3 + 3x4 = 120.

Table 8.1 Raw material requirements for the goods G;, i € {1,2,3,4}

Raw material Goods

G1 G Gs3 Gy
Ry 1 2 1 3
Ry 2 0 3 1
R3 1 4 2
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Here 1x; is the amount of raw material R; necessary for the production of good G, 2x, the
amount of R; for good G, 1x3 the amount of R; for good G3 and 3x4 is the amount of R;
required for the production of good G4. Since all 120 units of raw material R; should be
used, we have an equation. Similarly we obtain an equation for the consumption of the other
two raw materials. Thus, we get the following system of three linear equations with four

variables:
X1 4+ 2x + x3 4+ 3xg = 120
2x1 =+ 3X3 =+ x4 = 150
X1 + 4x + 2x3 + 4x4 = 180

Moreover, we are interested only in solutions for which all values x;,i € {1,2,3,4}, are
non-negative. Considering e.g. the production programme x; = 40, x, = 15, x3 = 20 and
x4 = 10, we can easily check that all equations are satisfied, i.e. this production programme
is feasible, and there exists at least one solution of this system of linear equations. In order
to describe all feasible production programmes, we have to find all solutions satisfying the
above equations such that all values x;, i € {1,2,3, 4}, are non-negative.

Often, it is not desired that all raw materials should necessarily be fully used. In the
latter case it is required only that for each raw material R; the available amount is not
exceeded. Then all equality signs in the above equations have to be replaced by an inequality
sign of the form <, and we obtain a system of linear inequalities which is discussed in
Chapter 8.2.

In the following, we discuss general methods for solving systems of linear equations.
We answer the question of whether a system has a solution, whether an existing solution
is uniquely determined and how the set of all solutions can be determined in the general
case.

Definition 8.1 The system

anxi + apxy + -+ + ainxy, = by
ayx1 + apxy + -+ ayx, = by

8.1)

amX1 + amax2 + - - + appXn = by
is called a system of linear equations, where x1,x2, . . . ,x, are the unknowns or vari-
ables, ai1,a12, . . . , amy are the coefficients and by, by, . . ., by, are called the right-hand

sides.

As an abbreviation, system (8.1) can also be written in matrix representation:

Ax =D,
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where the left-hand side corresponds to the multiplication of a matrix of order m x n by a
vector (matrix of order n x 1) resulting in the m-vector b, i.e.

ajpy app - A x1 by
a1 axn -+ axny x2 by
aml Am2 - Qmn Xn bm

Analogously, we can write a system of linear equations in vector representation as follows:

n
ij a’ = b,
j=1

where
a1j
A ay;
¥ = . s J= 1723 R (N
amj

are the column vectors of matrix 4. The above left-hand side represents a linear combination
of the column vectors of matrix 4 with the values of the variables as scalars, i.e.:

ayy ap ain by

as; axn o by
X1 . + x2 . + ot X . =

am1 am2 Amn by

Next, we introduce some basic notions.

Definition 8.2 If we have b; = 0,i = 1,2,...,m, in system (8.1), then this system
is called homogeneous. If we have by # 0 for at least one k£ € {1,2,...,m}, then
system (8.1) is called non-homogeneous.

Definition 8.3 A vector X = (x1,X2,...,X,) . which satisfies Ax = b is called a
solution of system (8.1). The set

S={xeR"|Ax = b}

is called the set of solutions or the general solution of system (8.1).
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8.1.2 [Existence and uniqueness of a solution

Next, we investigate in which cases system (8.1) has a solution. To this end, we introduce
the notion of the rank of a matrix. For this purpose, the following property is useful.

THEOREM 8.1 Let 4 be a matrix of order m x n. Then the maximum number of linearly
independent column vectors of 4 coincides with the maximum number of linearly independent
row vectors of 4.

Definition 8.4 Let A be a matrix of order m x n. The rank of matrix 4, written r(4), is
the maximum number p of linearly independent column (or according to Theorem 8.1
equivalently, row) vectors in 4. If 4 is any zero matrix, we set 7(4) = 0.

As an obvious consequence of Definition 8.4, we obtain #(4) = p < min{m,n}. The

following theorem gives a first criterion to determine the rank of a matrix 4.

THEOREM 8.2 The rank r(4) of matrix 4 is equal to the order of the largest minor of 4 that
is different from zero.

We recall that a minor of a matrix 4 was defined as a determinant of a square submatrix of 4.
The above criterion can be used when transforming the determinant of a matrix 4 in such
a way that the order of the largest minor can be easily obtained. Otherwise, it can be rather
time-consuming to determine the rank of a matrix by applying Theorem 8.2. Consider the
following two examples.

Example 8.2 Let
1 20

A=1|4 6 2

3 2 4

We obtain |4| = 0 which means that matrix 4 cannot have rank three. However, e.g. for the
minor obtained from matrix 4 by deleting the last row and column, we get

1 2
|A33|='4 6 ‘=—2,

i.e. there is a minor of order two which is different from zero, and thus matrix 4 has
rank two.

Example 8.3 Let us consider the matrix

l-x -1 1
A= 1 I-x 3
1 0 1
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with x € R. We determine the rank of matrix 4 in dependence on the value of x € R.

Expanding |4| by the third row, we get

-1 1
1—-x 3

1—x -1

|A|=1" 1 1—x

1

=3 —x)+[(1 —x)(l—x)—i—l}

=(—4+x)+ &> —2x+2)
=x>—x—2.

We determine the roots of the equation x> — x — 2 = 0 and obtain x; = —1 and x; = 2.
Thus, we get |4| # O for the case x # —1 and x # 2, i.e. due to Theorem 8.2, we have
r(4) = 3 forx € R\ {—1,2}. Forx € {—1,2}, we obtain for the minor formed by rows 1
and 3 as well as columns 2 and 3

-1 1
|A21|—' 0 ’——1#0-
Thus, we obtain r(4) = 2 for the case x = —1 and for the case x = 2 because the order of

the largest minor with a value different from zero is two.

Definition 8.5 We define the m x (n + 1) augmented matrix

ajy app - ap | b

ayy ay ... ay | b
Ap = (4| b) =

aml Am2 ... Qmp | bm

as the coefficient matrix 4 expanded by an additional column containing vector b of
the right-hand side.

Obviously, we have r(4) < r(d4p) since matrix 4 contains an additional column vector in
comparison with matrix 4. Moreover, since the augmented matrix differs from the coefficient
matrix 4 by exactly one column, there are only two cases possible: either »(4p) = r(4) or
r(dp) =rd) + 1.

Definition 8.6 If system (8.1) has at least one solution, it is said to be consistent. If
this system has no solution, it is said to be inconsistent.

Next, we present a necessary and sufficient condition for the case where a system of linear
equations has at least one solution.
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THEOREM 8.3 System (8.1) is consistent if and only if the rank of the coefficient matrix 4
is equal to the rank of the augmented matrix 4, = (4 | b), i.e.

system Ax = b is consistent <= r(4) = r(d4p).

Since for ahomogeneous system of equations, the augmented matrix contains matrix 4 plus an
additional zero (column) vector, the number of linearly independent (column or row) vectors
of the augmented matrix is always equal to the number of linearly independent vectors of
matrix A. This leads to the following corollary.

COROLLARY 8.1 A homogeneous system Ax = 0 is always consistent.

Indeed, for system Ax = 0 we have r(4) = r(4). We can note that a homogeneous system
has at least the so-called trivial solution xT = (x1,x2,...,%,) = (0,0,...,0).

Next, we deal with the following question. If system (8.1) is consistent, when is the solution
uniquely determined? An answer is given by the following theorem.

THEOREM 8.4 Consider the system Ax = b of linear equations, where 4 is a matrix of
order m X n, and let this system be consistent. Then:

(1) Ifr(4) = r(dp) = n, then solution X = (x1,x2,...,x,)T is uniquely determined.
(2) Ifr(4) = r(dp) = p < n, then there exist infinitely many solutions. In this case, the set
of solutions forms an (n — p)-dimensional vector space.

In case (2) of Theorem 8.4 we say that the set of solutions has dimension n—p. Let us consider
part (2) of Theorem 8.4 in a bit more detail. In this case, we can select n — p variables that can
be chosen freely. Having their values fixed, the remaining variables are uniquely determined.
We denote the n — p arbitrarily chosen variables as free variables, and we say that the system
of linear equations has n — p degrees of freedom.

8.1.3 Elementary transformation; solution procedures

Solution procedures for systems of linear equations transform the given system into a ‘system
with easier structure’. The following theorem characterizes some transformations of a given
system of linear equations such that the set of solutions does not change.

THEOREM 8.5 The set of solutions of system (8.1) does not change if one of the following
transformations is applied:

(1) An equation is multiplied by a number A # 0 or it is divided by a number A # 0.
(2) Two equations are interchanged.
(3) A multiple of one equation is added to another equation.

Operations (1) to (3) are called elementary or equivalent transformations. By such elementary
transformations, the rank r(4) of a matrix 4 does not change either (see also rules for
evaluating determinants given in Chapter 7.3). Finally, we introduce a special form of a
system of linear equations and a solution as follows.
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Definition 8.7 A system Ax = b ofp = r(4) linear equations, where in each equation
one variable occurs only in this equation and it has the coefficient +1, is called a system
of linear equations in canonical form. These eliminated variables are called basic
variables (bv), while the remaining variables are called non-basic variables (nbv).

Hence the number of basic variables of a system of linear equations in canonical form is
equal to the rank of matrix 4. As a consequence of Definition 8.7, if a system of linear
equations 4x = b is given in canonical form, the coefficient matrix 4 always contains an
identity matrix. If #(4) = p = n, the identity matrix [ is of order n X n, i.e. the system has the
form

IxB = b,

where xB is the vector of the basic variables. (Note that columns might have been interchanged
in matrix 4 to get the identity matrix, which means that the order of the variables in vector
xB is different from that in vector x.) If r(4) = p < n, the order of the identity submatrix is
p X p. In the latter case, the system can be written as

IxB +ANXN =b,

where xB is the p-vector of the basic variables, xN is the (n — p)-vector of the non-basic
variables and 4y is the submatrix of 4 formed by the column vectors belonging to the non-
basic variables. (Again column interchanges in matrix 4 might have been applied.) This
canonical form, from which the general solution can easily be derived, is used in one of the
solution procedures described in this subsection.

Definition 8.8 A solution x of a system of equations A4X = b in canonical form,
where each non-basic variable has the value zero, is called a basic solution.

Thus, if matrix 4 is of order p x n with #(4) = p < n, then at least n — p variables are equal
to zero in a basic solution of the system Ax = b. The number of possible basic solutions of
a given system of linear equations is determined by the number of different possibilities of
choosing p basic variables. That is, one has to find among the column vectors of matrix 4 all
possibilities of p linearly independent vectors belonging to the p basic variables. There exist
at most (;) basic solutions (see Chapter 1.3 on Combinatorics).

One method of solving systems of linear equations has already been discussed in Chapter 7.3,
but remember that Cramer’s rule is applicable only in special cases. The usual methods of
solving systems of linear equations apply elementary transformations mentioned in Theo-
rem 8.5 to transform the given system into a form from which the solution can be easily
obtained. The methods typically used transform the original system into either

(1) a canonical form according to Definition 8.7 (pivoting procedure or Gauss—Jordan
elimination) or into
(2) a ‘triangular’ or echelon form (Gaussian elimination).
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It is worth noting that the notation for both procedures in the literature is not used in a
standard way; in particular Gaussian elimination is often also denoted as pivoting. The
reason is that both procedures are variants of the same strategy: simplify the given system of
linear equations in such a way that the solution can be easily obtained from the final form of
the system. We now discuss both methods in detail.

Pivoting

First, we discuss the pivoting procedure. The transformation of the original system into a
canonical form (possibly including less than m equations) is based on the following theorem
and the remark given below.

THEOREM 8.6 Let Ax = b be a given system of m linear equations with n variables and
r(A) = p < min{m,n}. Then the augmented matrix 4, = (4 | b) can be transformed by
applying Theorem 8.5 and column interchanges into the form

10 ... 0 a’f’p+1 c.oan, | by
1 .0 az’pH ...oay, | b3
* | by = 00 ... 1 a;’pH a;n f; (8.2)
0o 0 ... 0 ... 0 pr
00 ... 0 0 ... 0 0
00 ... 0 0 ... 0 0

with b;+1 = Oorb;;+1 #0.

It is easy to see that the matrix 4* given in (8.2) (and therefore also the original coefficient
matrix A) have rank p. In terms of Theorem 8.2, this means that matrix 4* has a minor of
order p whose value is different from zero. This can easily be seen by taking the identity
submatrix obtained in the left upper part (printed in bold face) whose determinant is equal to
one. However, there is no minor of a larger order than p whose value is different from zero.
(If we add one row and one column, the value of the determinant is equal to zero since there is
one row containing only zero entries.) Notice also that the first p rows in representation (8.2)
describe a system of linear equations in canonical form.

Remark Inthe case when r(4) = p is not smaller than min{m, n}, we can transform matrix
A into one of the three following forms (4* | 5*):

(1) If m < n, then

10 0 aj, aj, | b
o1 ... 0 & L.oak bk

vy =\ oo S (8.3)
0 0 1 o a* b*
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(2) If m > n, then

10 0| bt
01 0| b
00 1| b

CHOES " 84
00 0|8,
00 o o
00 ...0[0

with b}, =0orb; ;| #0.
(3) If m = n, then

10 ... 0fbp
01 ... 0|5

A 1pH=1. . N (8.5)
00 1] 6%

Each of the matrices in (8.2) to (8.5) contains an identity submatrix. The order of this identity
matrix is the rank of the coefficient matrix 4 originally given. In the transformed matrix
A*, each column corresponds to some variable. Since column interchanges were allowed,
we simply denote the variable belonging to the first column as the first basic variable xp,
the variable belonging to the second column as the second basic variable xz, and so on.
(If no column interchanges were applied, we have the natural numbering xi,x2,...,xp.)
Accordingly, we denote the variables belonging to the columns which do not form the identity
submatrix as the non-basic variables xy1,xn2, - .., XN n—p-

We now discuss how the solutions can be found from the system in canonical form given by
the first rows of matrices (8.2) to (8.5) (including the identity matrix).

In the cases defined by matrices (8.3) and (8.5), there always exists a solution (r(4) =
r(A4p) = m). In particular, in the case of matrix (8.5) we have the unique solution

* * *
XB1 =b1, x32=b2, ey xBannA

(Note that variables might have been interchanged.) In the case of matrix (8.3), we have
n — m degrees of freedom, i.e. n — m variables belonging to columns m + 1,m + 2,...,n
can be chosen arbitrarily.

In the case of matrix (8.4), there exists a unique solution
xp1 = b], xpy = b3, xgn = b},
provided that b} | = 0, otherwise the system has no solution. In the case of p < min{m, n}

considered in Theorem 8.6, the system is consistent if and only if b; 11 = 0, and the system
of the first p equations obtained by the transformation of matrix (4 | b) into (4* | b*) is a
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system in canonical form which can be written as

* * L%
XB1 + a}k’p+1xN1 + -+ a}kan,n—p = b}k
XB2 t @GN+t GINap = by

* * L%

xpp + a, , 1XN1 + -+ GNap = bp.

Since r(4) = r(4*) = p, there are n — p degrees of freedom, i.e. n — p variables can be
chosen arbitrarily. We can rewrite the system in canonical form in terms of the basic variables

as follows:
xpr = bj A p+1*N1 A1y XN n—p
xpp = b @, 1XN1 @3, XN n—p
xpp = by Gpp+1*N1 @pn*N.n—p

xy;j arbitrary forj = 1,2,...,n —p.

We emphasize that, if xg1,xp2, ..., xp, are the basic variables, this means that the column
vectors of matrix 4 belonging to these variables are linearly independent and form a basis of
the vector space spanned by the corresponding p column vectors of matrix 4. If we choose
xnj =0,j=1,2,...,n— p, we obtain the basic solution

xp1 = bj, xpy = b3, e, XBp = b;.

Next, we discuss how we can transform the augmented matrix 4, = (4 | b) into matrix
(4* | b*) by elementary transformations in a systematic way from which the canonical form
can be established.

These formulas correspond to those which have been presented in Chapter 6.4 when consid-
ering the replacement of one vector in a basis by another vector of a vector space. Assume
that variable x; should become the basic variable in the kth equation of the system. This can
be done only if az; # 0. The element ay; is called the pivot or pivot element. Accordingly,
row k is called the pivot row, and column / is called the pivot column. The transformation
formulas distinguish between the pivot row and all remaining rows. They are as follows.

Transformation formulas

(1) Pivot row k:

_ o ay
ayy=—, j=12,...,n
i Qagl
- b
by = —
akl

(2) Remainingrowsi=1,2,...,m, i #k:
- ail — .
@Gy =aj— — @ =aj—ag-aig, j=12,...,n
akl
bi=bi—— -bp=0bi—bg-ay
Akl
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These transformations can be performed by using the following tableaus, where rows 1 to m
in the first tableau give the initial system, and rows m + 1 up to 2m in the second tableau give
the system of equations after the transformation. The column bv indicates the basic variables
in the corresponding rows (i.e. after the pivoting transformation, x; is basic variable in the
kth equation of the system, while we do not in general have basic variables in the other
equations yet). The last column describes the operation which has to be done in order to get
the corresponding row.

Row  bv x| X s s Xp b Operation
1 - an ap - oay - a4l by
2 — ay Ay .- Ay - Ay by
k - a4 Ay A o aiy by
m — Aml Am2 am amn bm
m+1 — ayq ap - 0 s dip 51 rowl—%rowk
m+2 — ay ay - 0 --- @, b I’OWZ—%IOW/C
m+k x ap app - 1 s Gpp Ek aikl row k
2m - Gy Gm2 - 0 - Gun bp rowm—%lrowk

axl

Here all elements in the pivot column (except the pivot element) are equal to zero in the new
tableau. After the transformation, we have the basic variable x; in row m + k which occurs
with coefficient +1 now only in equation & of the system and the transformed equation can
be found now in row m + k of the second tableau. To illustrate the computations in all rows
except the pivot row, consider the determination of element @>;. We have to consider four
elements: the number a;; on the original position, the element a; of the second row standing
in the pivot column, the element a;, of the pivot row standing in the second column and
the pivot element ay;. (The corresponding elements are printed in bold face in the tableau.)
These elements form a rectangle, and therefore the rule for computing the values in all rows
except the pivot row in the new scheme is also known as the rectangle rule.

Example 8.4 Let us consider the following system of linear equations:

X1 + 3x3 — 2x4 =5
3x1 + x + 4x3 + x4 =5
4x1 + x + Tx3 4+ x4 =10
2x1 + x + x3 + 3x =

Applying the pivoting procedure, we get the following sequence of tableaus. (Hereafter, the
pivot element is always printed in bold face, and the last column is added in order to describe
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the operation that yields the corresponding row):

Row bv x1 x3 x3 x4 b Operation
1 -1 0 3 =2 5
2 - 3 1 4 1 5
3 - 4 1 7 1 10
4 - 2 1 1 3 0
5 x1 1 0 3 =2 5 rowl
6 - 0 1 =5 7 —10 row2—3rowl
7 — 0 1 -5 9 —10 row3 —4rowl
8 - 0 1 -5 7 —10 row4—2rowl
9 X1 1 0 3 -2 5 row)s
10 x 0 1 -5 7 —10 row6
11 - 0 0 0 2 0 row7— row6
12 - 0 0 0 0 0 row8 — row6
13 x 1 0 3 0 5 row9+ row 11
14 x 0 1 =5 0 —10 rowl0—Jrowll
15 x 0 0 0 1 0 Jrowil
6 — 0 0 0 0 0 rowl2

We avoid the interchange of the column of x3 with the column ofx4 to get formally the structure
given in Theorem 8.6. In the first two pivoting steps, we have always chosen element one as
the pivot element, which ensures that all above tableaus contain only integers. In the second
tableau (i.e. rows 5 up to 8), we could already delete one row since rows 6 and 8 are identical
(therefore, these row vectors are linearly dependent). From the last tableau we also see that the
rank of the coefficient matrix is equal to three (since we have a 3 x 3 identity submatrix, which
means that the largest minor with a value different from zero is of order three). Since x1, x>
and x4 are basic variables, we have found that the column vectors belonging to these variables
(i.e. the first, second and fourth columns of 4) are linearly independent and constitute a basis
ofthe space generated by the column vectors of matrix 4. From rows 13 to 16, we can rewrite
the system in terms of the basic variables:

x1 =5—3x3
xy) = —10 + 5x3
x4 =0

(x3  arbitrary).
Setting now x3 = ¢ with ¢ € IR, we get the following set of solutions of the considered system:
x1 =5-13¢ xy = —10 + 5¢; X3 =1t x4 = 0; teR.

Since we know that one variable can be chosen arbitrarily, we have selected the non-basic vari-
able x3 as the free variable. From the last tableau we see that we could not choose x4 as the free
variable since it must have value zero in any solution of the given system of linear equations.
However, we can easily see from the transformed system of linear equations, whether one or
several variables are uniquely determined so that they cannot be taken as free variables.
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In the latter example, there was (due to n — p = 1) one variable that can be chosen arbitrarily.
In this case, we also say that we have a one-parametric set of solutions.

Gaussian elimination

Next, we discuss Gaussian elimination. This procedure is based on the following theorem.

THEOREM 8.7 Let Ax = b be a given system of m linear equations with » variables and
r(A) = p < min{m,n}. Then the augmented matrix 4, = (4 | b) can be transformed by
applying Theorem 8.5 and column interchanges into the form

aj, ajf, ... a’fp a’f’pﬂ c.oay, | by
* * * * *
0 a2y ... 2y a,, ay, | b3
“* | b = 0 0 ... aj a[";,PH A (8.6)
0 0o ... 0 0 ... 0 |b*
p+1
0 o ... 0 0 ... 0 0
0 0o ... 0 0 ... 0 0
with af; - a3, - R Oandbl’j+1 =Oorb;Jrl #0.

In terms of Theorem 8.2, the transformed matrix 4* in Theorem 8.7 (and the original matrix
A too) possesses a minor of order p whose value is different from zero. This is the minor
formed by the first p rows and columns in representation (8.6). Since all diagonal elements
are different from zero, the value of the determinant is equal to the product of these diagonal
elements (see Theorem 7.4). However, matrix 4* (and matrix 4 too) does not have a minor of
order p + 1 which is different from zero (in each minor of matrix A*, there would be one row
containing only zero entries, and by Theorem 7.7 in Chapter 7.3, this determinant is equal to
Zero).

If p is not smaller than the minimum of m and n, we can transform the augmented matrix 4,
similarly to Theorem 8.7, as described in the following remark.

Remark In the case when rank »(4) = p is not smaller than min{m, n}, we can transform
the augmented matrix 4, = (4 | b) by elementary transformations and column interchanges
to get one of the following special cases:

(1) If m < n, then

* * * * * 5
aj, ajy, ... aj, aj,. ... 4, |b
0 al al a; as | b}
22 cor Am Ggpmy1 e G | Dy
A1) = . . . (8.7)
* * * *
0 0 B Gyl ay, | b

: * * *
withaj, - a3, -...-ay, #0.
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(2) If m > n, then

aj; aj, ... aj, | b}
0 aj, ... aj | b
0 0 .. af b*
* Ky nn n
@1itH=109 o ... 0 |8, 8)
0 0o ... 0 0
0 0o ... 0 0
witha}, -a3, -...-a,, #0and b}, =0orb;, , #0.
(3) If m = n, then
aj azz ... azn lgi
al, ... a
| b*) = 2 o (89)
0 0 ar | b
withaj; - a3, - ... ay, #0.

Considering the largest order of a minor different from zero, we conclude that in case (1)
above, matrix 4 has rank m, in case (2) matrix 4 has rank » and in case (3), matrix 4 has rank
m = n. The discussion of the consistency of the system of linear equations and the selection
of the free variables is the same as for the pivoting procedure.

In all matrices (8.6) to (8.9), an upper triangular submatrix with non-zero entries on the
diagonal is contained. We next describe the systematic generation of the triangular form
given in Theorem 8.7 and the above remark. Assume that a1; 7# 0 (otherwise we interchange
two rows or columns). Then we transform all equations except the first one, where the new
kth equation, £ € {2,3,...,m}, is obtained by multiplying the first equation by —ay; /a1
and adding the resulting equation to the original kth equation. Element a1 is also denoted
as the pivot or pivot element. This leads to the following system:

anxy1 + apxy + - 4+ awx, =bi
apxy; + - + adwxp, =b
amax2 + o0+ GueXp = bm;
where
_ ak1 .
akj:akj—a—-alj, k=2,3,...,m,j=2,3,...,n
11

By the above transformation we have obtained a system where variable x; occurs only in the
first equation, i.e. all elements below the pivot element are now equal to zero. Now we apply
this procedure to equations 2,3,...,m provided that ay; # 0 (otherwise we interchange
two rows or columns) and so on until a triangular form according to (8.6) to (8.9) has been
obtained.
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From the triangular system, we determine the values of the variables by ‘back substitution’
(i.e. we determine the value of one variable from the last equation, then the value of a second
variable from the second to last equation and so on). It is worth noting that only the first
equations belonging to the triangular submatrix are necessary to find the general solution,
while the remaining equations are superfluous and can be skipped. We illustrate Gaussian
elimination by the following examples.

Example 8.5 Consider the following system of linear equations:
x1 + x» + x3 =3
X1 — x2 4+ 2x3 =2
4x; + 6x — x3 =09.

Applying Gaussian elimination we obtain the following tableaus.

Row x1 x3 x3 b Operation
1 1 1 1 3
2 1 -1 2
3 4 -1 9
4 1 1 1 3 rowl
5 0 -2 1 -1 row2—rowl
6 0 2 -5 —3 row3—4rowl

—_
—
—

7 3 row4d
8 0 -2 1 —1 rowS5
9 0 0 -4 —4 row6+row5

From rows 7 to 9, we see that both the coefficient matrix 4 and the augmented matrix A, have
rank three. Therefore, the given system is consistent and has a unique solution. Moreover,
we get the following triangular system:
x1 + xy + X3 =3
- 2x2 4+ x3 =-1
— 4x3 = —4.

Applying back substitution, we get from the last equation x3 = 1. Then we obtain from the
second equation

—2xp=—1—x3=-2
which yields x, = 1, and finally from the first equation
x1=3—-x—-x3=3-1-1

which gives x; = 1.
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Example 8.6 We solve the following system of linear equations:
X1 4+ x2 4+ x3 =2
3x1 + 2x + X3 = 2
2x1 4+ 3xp + 4x3 =1.

Applying Gaussian elimination, we obtain the following tableaus.

Row x1 x3 x3 b Operation

1
2
3 2 3

w
QU

1 1 2 rowl
row 2 — 3 row 1
1 2 -3 row3—2rowl

SIS
co~
|
—_
|
&Y
|
N

—_
—
—
NS}

row 4
-1 -2 —4 row5
0 0 —7 rowb6-+rowS5

O 00
oo

From row 9 we see that the considered system has no solution since this equation
0x; + Oxy 4+ Ox3 = —7

leads to a contradiction. The rank of the coefficient matrix 4 is equal to two but the rank of
the augmented matrix 4 is equal to three.

8.1.4 General solution

We now investigate how the set of solutions of a system of linear equations can be written
in terms of vectors. The following theorem describes the general solution of a homogeneous
system of linear equations.

THEOREM 8.8 Let Ax = 0 be a homogeneous system of m linear equations with n variables
and 7(4) = p < n. Then there exist besides the zero vector n — p further linearly independent
solutions x!,x2,...,x" P € R” of the system Ax = 0, and the set of solutions Sy can be

written as

Sy = {xH R [ X = x4 20X 4 £ Ay X", A A, hap € R}.

According to Definition 7.15 the set Sy corresponds to the kernel of a linear mapping
described by matrix A. In order to present the general solution, we need n — p linearly
independent solution vectors. To illustrate how these vectors can be found, we consider the
following example of a homogeneous system of linear equations and determine the general
solution of this system.
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Example 8.7 Let Ax = 0 with

1 20 11
-1 =3 1 =2 1
4= -1 1 -1 2
1 11 03

Applying Gaussian elimination, we obtain the following tableaus:

Row x1 x3 x3 x4 x5 b Operation
1 2 0 1 1 0
2 -1 -3 1 -2 1 0
3 o -1 1 -1 2 0
4 1 1 30
5 1 2 0 1 1 0 rowl
6 0 -1 1 -1 2 0 rowl+row2
7 0 -1 1 =1 2 0 row3
8 0 -1 1 -1 2 0 -—rowl+row4

We can stop our computations here because rows 7 and 8 are identical to row 6 and thus we
can drop rows 7 and 8. (If we continue applying Gaussian elimination, we obtain two rows
containing only zeroes.) Hence we use a triangular system with the following two equations
obtained from rows 5 and 6:

X1+ 2x + x4 + x5 =0
- x3 + x3 — x4 + 2x5 =0 3.10)

Thus, we have r(4) = 2. Because n = 5, there are three linearly independent solutions x!, x?

and x>. They can be obtained for instance by setting exactly one of three variables that can
be chosen arbitrarily to be equal to one and the other two of them to be equal to zero, i.e.

Now the remaining components of each of the three vectors are uniquely determined. It is
clear that the resulting vectors are linearly independent since the matrix formed by the three
vectorsX!, X2 andX° isa3 x 3 identity matrix. Determining the remaining components from
system (8.10), we obtain

-2 1 -5
1 -1 2
x! = 1 s X = 0 and = 0
0 1 0
0 0 1



(c) ketabton.com: The Digital Library

304 Linear equations and inequalities

Thus, according to Theorem 8.8 we get the following set Sz of solutions:

|
)
—_

-5

—_

Sy={xT eR? | xH =1, + A2 + A3 DAL A2, A3 ER

O O = =
o~ o |
—oc o N

The following theorem characterizes the general solution of a non-homogeneous system of
linear equations.

THEOREM 8.9 Let Ax = b be a system of m linear equations with n variables and
r(A) = p < n. Moreover, let

Sy = {xH eR" [ xT = jux! +00x? + -+ Mg pX" P, Al A2, Ay € IR{}

denote the general solution of the homogeneous system Ax = 0 and x" be a solution of the
non-homogeneous system Ax = b. Then the set of solutions S of system 4x = b can be
written as

S={xeR"|x:xH+xN, xHeSH}

= {XGR”|x:Alxl+A2x2+--~+kn,px”7p+xN, AMyA2, s hnp GR}.

Theorem 8.9 says that the general solution of a non-homogeneous system of linear equations
is obtained as the sum of the general solution of the corresponding homogeneous system (with
vector b replaced by the zero vector 0) and a particular solution of the non-homogeneous
system.

As we see in this and the next chapters, the pivoting procedure is also the base for solving
linear systems of inequalities and linear programming problems. The Gaussian elimination
procedure is sometimes advantageous when the system contains parameters. Finally, we give
a more complicated example of a system of linear equations containing a parameter a, and
we discuss the solution in dependence on the value of this parameter.

Example 8.8 We determine all solutions of the following system of linear equations:

ax; + x + x3 =1
X1 + ax + x3 =a

X1 + x2 + ax3 =a2,
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where a € R. We interchange the first and third equations. Applying now Gaussian elimi-
nation, this gives the first pivot 1 (in the case of taking the original first equation, we would
have pivot a, and this means that we have to exclude the case a = 0 in order to guarantee
that the pivot is different from zero). We obtain the following tableaus.

Row x1 xp X3 b Operation
1 1 a 1 a
2 1 1 a a?
3 a 1 1 1
4 1 a 1 a row 1
5 0 1—a a—1 a—a row 2 — row 1
6 0 —d?+1 —a+1 —a*+1 row3—arowl
7 1 a 1 a row 4
8 0 1—a a—1 a—a row 5
9 0 —d?—a+2 0 l—a row6+ rows

In row 5, we have taken @ — 1 in the x3 column as pivot and this generates a zero below this
element. (Notice that this implies a — 1 7~ 0.) In the third tableau (rows 7 to 9), we can still
interchange the columns belonging to variables x; and x3 (to generate formally a triangular
matrix). We first consider the case when the coefficient of variable x; in row 9 of the above
scheme is equal to zero, i.e. —a®> — a + 2 = 0. For this quadratic equation we get two real
solutions a1 = 1 and ap = —2. If a = a; = 1, then the right-hand side 1 — a is also equal to
zero. Moreover, in this case also all elements of row 8 are equal to zero, but row 7 contains
non-zero elements. Hence both the coefficient matrix and the augmented coefficient matrix
have rank one: 7(4) = r(4 | b) = 1, and there exist infinitely many solutions (two variables
can be chosen arbitrarily). Choosing variables x, = s € R and x3 = ¢ € R arbitrarily, we get

x1=1—s5s—1¢

This solution can be alternatively written using Theorem 8.9. To find x| we determine x{
using xé =5 = l,xé = t = 0 which yields x% = —1 (notice that x; = —s — ¢ in the
homogeneous system) and x% using x% =s5= O,xg =t = 1 which yields x% =—1.Togeta

particular solution xV of the non-homogeneous system, we set x12V = xgv = 0 which yields
lev = 1. Therefore, we get the general solution S as follows:

S={xeR3|x:xH+xN}

-1 -1 1
={xeR|lx=xn] 1 J+x] 0 |+l 0]; rx,nreR
0 1 0
If a = ap = —2, then the right-hand side 1 — a = 3 is different from zero. In this case, we

have r(4) = 2 but r(4p) = 3. Therefore, the system of linear equations is inconsistent, and
there is not a solution of the system.

Consider now the remaining cases with a # 1 and a # —2. In all these cases we have
r(A) = r(4p) = 3, and thus there exists a uniquely determined solution. Using rows 7 to 9



(c) ketabton.com: The Digital Library

306 Linear equations and inequalities

in the above tableau, we get

1—a 1—a 1
Xy = ) = — =
—a*—a+?2 (a—1)(a+2) a+2
P—a-(1—-axy al@a—1)—1-ax
X3 = = =a-+x
a—1 a—1
1 a*+2a+1 (a+1)?
=a-+ = =
a+?2 a+?2 a+?2
(a+1)? a
Xl=a—x3—ax; =a— ———— —
a+?2 a+2
_a2+2a—a2—2a—1—a_ a—+1
- a—+?2 T oa+42

We have already discussed a method for determining the inverse of a regular matrix 4 (see
Chapter 7.5). The method presented there requires us to evaluate a lot of determinants so
that this is only efficient for matrices of order » x n with a small value of n. Of course, we
can also determine matrix 4! via the solution of systems of linear equations with different
right-hand side vectors, as in the following section.

8.1.5 Matrix inversion

The inverse X = 4~! of a matrix 4 of order n x n satisfies the matrix equation
AX =1,

assuming that |[4| # 0 (notice that this corresponds to the condition #(4) = n). Let the
column vectors of matrix X be:

X11 X12 X1n

! X21 2 X22 B X2n
X = . ) X" = . ’ > X =

Xnl Xn2 Xnn

Then the matrix equation AX = I can be written as
A . XY =T=(e'e ... "

which is equivalent to the following » systems of linear equations:
Ax! =e!, At =¢*, ..., Ax" = e".

These n systems of n linear equations differ only in the right-hand side vector and all the
transformations of the coefficient matrix 4 within the application of a solution method are
the same. Thus, applying for instance the pivoting procedure, we can use the following
scheme for solving simultaneously these systems of » linear equations, i.e. if 7(4) = n, we
obtain after n pivoting steps the inverse 4~! = X = (xi7). In the following tableaus we have
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assumed that no rows and columns have been interchanged (so the variables occur according
to their natural numbering), i.e. the elements on the diagonal have successively been chosen
as pivots. Of course, we can analogously also apply the Gaussian elimination procedure to
solve the above systems with different right-hand side vectors.

Row bv A4 1
1 — a;;1 app - ay 1 [ 0
2 — ay ay -+ ay O ) B 0
n — ap apy - am O 0o .- 1
nn—1)4+1 xp 1 0o ... 0 x11 xX12 ... Xin
nn—1)+2 xp 0 1 0 x1 X33 ... Xp
n? xp 0 0o ... 1 X1 Xp2 oo Xum
I 471

Example 8.9 We consider matrix

1 3.1
A=12 -1 1
1 11

and determine the inverse 4~ by means of the pivoting procedure. The computations are
shown in the following scheme.

Row by A I Operation
1 - 1 3 1 1 0 0
2 - 2 -1 1 0 1 0
3 - 1 1 0 0 1
4 X1 1 3 1 1 0 0 row 1
5 - 0 -7 -1 -2 1 0 row 2 — 2 row 1
6 - 0 -2 0 -1 0 1 row 3 — row 1

X1 1 0 % % % row 4 + % row 5

8 X7 1 % % —% —% row 5
9 - 0 0 % 7% 7% 1 row67%row5
10 X1 1 0 1 1 -2 row 7 — 2 row 9
11 x 0 1 0 i o -1 row 8 — 4 row 9
12 x3 0 0 1 -3 -1 T Jrowo

Since it is possible to generate an identity matrix on the left-hand side (see rows 10 to 12),
the rank of matrix 4 is equal to three and the inverse A~! exists. From rows 10 to 12,
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we obtain
1 1
1 1 0
A = 2 -
3
2

Computing the product 4~'4 gives the identity matrix and confirms the correctness of our
computations.

8.2 SYSTEMS OF LINEAR INEQUALITIES

8.2.1 Preliminaries

We start this section with the following introductory example.

Example 8.10 A drink consisting of orange juice and champagne is to be mixed for a party.
The ratio of orange juice to champagne has to be at least 1 : 2. The total quantity (volume)
of the drink must not be more than 30 1, and at least 4 1 more orange juice than champagne
are to be used.

We denote by x; the quantity of orange juice in litres and by x, the quantity of champagne
in litres. Then we get the following constraints:

X1 x > 1:2
Xy - X = 4
X1 + x < 30

X1,X3 > 0.

Hereafter, the notation x1,x, > 0 means that both variables are non-negative: x; > 0,x; > 0.
The first inequality considers the requirement that the ratio of orange juice and champagne
(i.e. x1 : x2) should be at least 1 : 2. The second constraint takes into account that at most
41 orange juice more than champagne are to be used (i.e. x; < x2+4), and the third constraint
ensures that the quantity of the drink is no more than 30 1. Of course, both quantities of orange
juice and champagne have to be non-negative.

The first inequality can be rewritten by multiplying both sides by —2x; (note that the inequality
sign changes) and putting both variables on the left-hand side so that we obtain the following

inequalities:
—2x1 + Ix, < 0
x| — x =< 4
x + x < 30
x,x = 0.

In this section, we deal with the solution of such systems of linear inequalities with non-
negative variables.
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In general, we define a system of linear inequalities as follows.

Definition 8.9 The system

ailxy + apxa + -+ amxn R1 by
ayix1 + apxy + - + awmx, Ry b

: . (8.11)
amx1 + amx2 + - + amn¥n Rm bnm

is called a system of linear inequalities with the coefficients a;;, the right-hand sides b;
and the variables x;. Here R; € {<,=,>}, i = 1,2,...,m, means that one of the three
relations <, =, or > should hold, and we assume that at least one inequality occurs in
the given system.

The inequalities

x>0, jeJc{1,2,...,n} (8.12)
are called non-negativity constraints.

The constraints (8.11) and (8.12) are called a system of linear inequalities with |J|
non-negativity constraints.

In the following, we consider a system of linear inequalities with » non-negativity constraints
(i.e.J ={1,2,...,n}) which can be formulated in matrix form as follows:

AxRb, x>0, (8.13)

where R = (R1, Ry, . .., Rn)T denotes the vector of the relation symbols with R; € {<,=, >},
i=12,...,m.

Definition 8.10 A vector X = (x1,x2,...,%,). € R” which satisfies the system
Ax R b is called a solution. If a solution x also satisfies the non-negativity constraints
x > 0, it is called a feasible solution. The set

M:{xeR”|AxRb,x20}

is called the set of feasible solutions or the feasible region of a system (8.13).

8.2.2 Properties of feasible solutions

First, we introduce the notion of a convex set.

Definition 8.11 A set M is called convex if for any two vectors x', x> € M, any

convex combination Ax! + a1 - M)x2 with 0 < A < 1 also belongs to set M.
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The definition of a convex set is illustrated in Figure 8.1. In Figure 8.1(a), set M is convex
since every point of the connecting straight line between the terminal points of vectors x!
and x? also belongs to set M (for arbitrary vectors x! and x? ending in M). However, set M*
in Figure 8.1(b) is not convex, since for the chosen vectors x! and x> not every point on the
connecting straight line between the terminal points of both vectors belongs to set M*.

) )

P Py
%}\
B/ M X P,

P P,

Ty I

(a) Convex set M (b) Non-convex set M*

Figure 8.1 A convex set and a non-convex set.

Definition 8.12 A vector (point) x € M is called the extreme point (or corner point
or vertex) of the convex set M if x cannot be written as a proper convex combination
of two other vectors of M, i.e. x cannot be written as

x=Ax' + (1 — VX2 with x!,x> € M and 0 < A < 1.

Returning to Figure 8.1, set M in part (a) has six extreme points xV,x@ ... x©® or
equivalently the terminal points Py, Py, ..., Ps of the corresponding vectors (here and in
the following chapter, we always give the corresponding points P; in the figures).

In the case of two variables, we can give the following geometric interpretation of a system
of linear inequalities. Assume that the constraints are given as inequalities. The constraints
ajix; + apxaRib;, R € {<,>},i=1,2,...,m, are half-planes which are bounded by the
lines a;1x1 + apxy = b;. The ith constraint can also be written in the form

i

Sil §i2

where s;1 = b;/a;1 and s;2 = b;/a;y are the intercepts of the line with the x| axis and the x;
axis, respectively (see Figure 8.2).

The non-negativity constraints x; > 0 and x, > 0 represent the non-negative quadrant in
the two-dimensional space. Thus, when considering a system of m inequalities with two
non-negative variables, the feasible region is described by the intersection of m half-planes
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a7 + Ty = b;

T2

Figure 8.3 The set of solutions as the intersection of half-planes.

with the non-negative quadrant. This is illustrated for the case m = 3 in Figure 8.3, where
the feasible region M is dashed. In Figure 8.3 and figures which follow we use arrows to
indicate which of the resulting half-planes of each constraint satisfies the corresponding
inequality constraint. The arrows at the coordinate axes indicate that both variables have to
be non-negative.

In general, we can formulate the following property.

THEOREM 8.10 The feasible region M of system (8.13) is either empty or a convex set
with at most a finite number of extreme points.

PROOF We only prove that, if M # (J, it is a convex set. Let x!,x2 € M, i.e. we have

Ax' R b, x! >0 and Ax* R b, x? >0,
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and we prove that Ax! + (1 — A)x?> € M. Then
A[Axl 11— A)xz] =dx! + (1= A RAb+(1—)b=b (8.14)

and due to Ax! > 0 and (11— )L)x2 >0for0 <A <1, weget
axl+ 1 —0x2>o0. (8.15)

From (8.14) and (8.15), it follows that M is convex. |

A convex set with a finite number of extreme points is also called a convex polyhedron. One
of the possible cases of Theorem 8.10 is illustrated in Figure 8.4. Here the values of both
variables can be arbitrarily large provided that the given two inequalities are satisfied, i.e.
the feasible region is unbounded. In this case, the feasible region has three extreme points
Py, Py and P3. The following theorem characterizes the feasible region of a system of linear
inequalities provided that this set is bounded.

T2

P1 I

Figure 8.4 An unbounded set of solutions M.

THEOREM 8.11 Let the feasible region M of system (8.13) be bounded. Then it can
be written as the set of all convex combinations of the extreme points x!,x2,...,x* of
set M, i.e.

M:{xe]R"|x:k1xl+k2x2+-~~+ksxs;

s
0<xi<1, i=12,...,s, Zx,:l}_
i=1

In the case of only two variables, we can graphically solve the problem. To illustrate the
determination of set M, consider the following example.



(c) ketabton.com: The Digital Library

Linear equations and inequalities 313

Example 8.11 Two goods G| and G, are produced by means of two raw materials R; and
R, with the capacities of 50 and 80 units, respectively. To produce 1 unit of Gy, 1 unit of
R; and 1 unit of R are required. To produce 1 unit of G, 1 unit of Ry and 2 units of R, are
required. The price of G is 3 EUR per unit, the price of G is 2 EUR per unit and at least 60
EUR worth of goods need to be sold.

Let x; be the number of produced units of G;,i € {1,2}. A feasible production programme
has to satisfy the following constraints:

X1 + x < 50 0)) (constraint for Ry)

x1 + 2x < 80 () (constraint for Ry)

3x1 + 2xy > 60 () (selling constraint)
x,x2 > 0 (non-negativity constraints)

This is a system of linear inequalities with only two variables, which can be easily solved
graphically. The feasible region is given in Figure 8.5. The convex set of feasible solutions
has five extreme points described by the vectors x* (or points P;), i = 1,2,...,5:

20 50 20
1 _ 2 _ 3 _
e (9) = (T) = (5)
(0
Therefore, the feasible region M is the set of all convex combinations of the above five

extreme points:
20 50 20 0
x:M(0)—{-)»2(0)-1—)»3(30)-1—)»4(40)

5
0
+)»5(30>, AoyA2,...,A5 >0, El)»iZI}.
i=

T2

2
M:{XE]R+

‘ (111) M) (i

Figure 8.5 Feasible region for Example 8.11.
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If the feasible region M is unbounded, there exist (unbounded) one-dimensional rays ema-
nating from some extreme point of M on which points are feasible. Assume that there are u
such rays and let r', r2, ..., r* denote those vectors pointing from a corresponding extreme
point in the direction of such an unbounded one-dimensional ray. Then the feasible region
M can be described as follows.

THEOREM 8.12 Let the feasible region M of system (8.13) be unbounded. Then it can be
written as follows:

s u
M:{x eR" |x= Zkixi+2ujrj;
i1 =1

N
0sisl, =125 Y hi=L wnus. . mz0),
i=1
where x!,x2, ..., x* are the extreme points of set M and r', r?, ..., r* are the vectors of the
unbounded one-dimensional rays of set M.

According to Theorem 8.12, any feasible solution of an unbounded feasible region M can
be written as a convex combination of the extreme points and a linear combination of the
vectors of the unbounded rays with non-negative scalars ;,j = 1,2, ..., u. Considering the
example given in Figure 8.4, there are two unbounded one-dimensional rays emanating from
points P, and Ps.

A relationship between extreme points and basic feasible solutions is given in the following
theorem.

THEOREM 8.13 Any extreme point of the feasible region M of system (8.13) corresponds
to at least one basic feasible solution, and conversely, any basic feasible solution corresponds
exactly to one extreme point.

The latter theorem needs to be discussed in a bit more detail. We know from our previous
considerations that in a basic solution, all non-basic variables are equal to zero. Thus, if the
coefficient matrix 4 of the system of linear equations has rank m, at most m variables have
positive values. We can distinguish the following two cases.

Definition 8.13 Let M be the feasible region of system (8.13) and let #(4) = m.
If a basic feasible solution x € M has m positive components, the solution is called
non-degenerate. If the basic feasible solution x has less than m positive components,
the solution is called degenerate.

As we discuss later in connection with linear programming problems in Chapter 9, degeneracy
of solutions may cause computational problems. In the case where all basic feasible solutions
are non-degenerate solutions, Theorem 8.13 can be strengthened.
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THEOREM 8.14 Let all basic feasible solutions of system (8.13) be non-degenerate solu-
tions. Then there is a one-to-one correspondence between basic feasible solutions and extreme
points of the set M of feasible solutions of system (8.13).

8.2.3 A solution procedure

According to Theorem 8.11 we have to generate all extreme points in order to describe the
feasible region of a system of linear inequalities. Using Theorems 8.13 and 8.14, respectively,
this can be done by generating all basic feasible solutions of the given system.

In this section, we restrict ourselves to the case when system (8.13) is given in the special form
Ax <b, x>0, with b>0, (8.16)

where 4 is an m x n matrix and we assume that »(4) = m. (The case of arbitrary constraints
is discussed in detail in the next chapter when dealing with linear programming problems.)
This particular situation often occurs in economic applications. For instance, it is necessary to
determine feasible production programmes of 7 goods by means of m raw materials, where the
coefficient matrix 4 describes the use of the particular raw materials per unit of each good and
the non-negative vector b describes the capacity constraints on the use of the raw materials.

Forasystem (8.16), inequalities are transformed into equations by introducing a slack variable
in each constraint, i.e. for the ith constraint

aj1x1 + apxy + - - + Aipxn < by,
we write
aitx1 + aipxy + - + ainxn + ui = by,

where u; > 0 is a so-called slack variable (i € {1,2,...,m}). In the following, we use the
m-dimensional vector u = (u1, ua, . .., un)T for the slack variables introduced in the given
m inequalities.

Letting

A* =4, and X= ( X )
the system turns into

A*x* =b  with x*= ( X ) > 0. (8.17)
In this case, we can choose

=(0)-(3)

as an initial basic feasible solution, i.e. the variables x1, x, . . ., x,, are the non-basic variables
and the slack variables u1, uy, . . ., uy, are the basic variables. Moreover, we assume that X is
a non-degenerate basic feasible solution (which means that b > 0).
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Starting with this basic feasible solution, we systematically have to generate all other basic
feasible solutions. To this end, we have to determine the pivot element in each step such
that the new basic solution is again feasible. (Such pivoting steps are repeated until all basic
feasible solutions have been visited.)

Hm) different basic feasi-

For an m x n matrix 4 with »(4) = m, there are at most ( "
ble solutions of system (8.17) and therefore at most (":’m) extreme points x of the set
M = {x € R’} | Ax < b}. Each pivoting step corresponds to a move from an extreme point
(represented by some basic feasible solution) to another basic feasible solution (usually corre-
sponding to another extreme point). We can use the tableau in Table 8.2 to perform a pivoting
step. Rows 1 to m represent the initial basic feasible solution, and rows m + 1 to 2m represent
the basic solution obtained after the pivoting step. (As before, we could also add an additional

column to describe the operations that have to be performed in order to get rows m+1 to 2m.)

Table 8.2 Tableau for a pivoting step

Row bv x cee X e Xp up ... ug ... um b
1 u; ay ceeoayy e aiy ) o ... 0 by
k uy agy EEEE 1% B Ap 0 ... 1 ... 0 by
m Um am1 EER T Amn 0 ... 0 A | bm
a a a a
m+1 wu all_TZakl e 00 e aln_aleakﬂ 1 ... _TZ ... 0 bl_aTI,;bk
ag1 An 1 by
m+k x m IR R a 0 ... e 0 0
: . : ' : : : f
2m  um ami —Wm,lakl e 0 e amn_aik,lakn 0 ... —a—’:]’ 1 bm_ﬁb

Assume that we choose ay; # 0 as pivot element, i.e. we replace the basic variable u; by the
original non-basic variable x;. Then we obtain the new basic solution

with

b
iT:(xl,...,xl,...,fn):(0,...,—",...,0)

=l

akl
and
—T _ _ — ai aml
u :(ula'--auk9~"’um) = (bl _7‘bk,~~.,0,--.,bm_7‘bk .
akl ay

The new basic solution

)

=| >
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is feasible if all components of vector X* are non-negative, i.e.

b
LI (8.18)
ag
and
bi— 2 py>0, i=1,2,....m i %k (8.19)

Akl

Next, we derive a condition such that both (8.18) and (8.19) are satisfied. First, since b > 0
(remember that we are considering a non-degenerate solution) and ay; # 0 by assumption,
we have the equivalence

by,

— >0 — ay > 0.

ak
This means that in the chosen pivot column, only positive elements are a candidate for the
pivot element. However, we also have to ensure that (8.19) is satisfied. We get the following

equivalence:
o b b .
bi— Y b >0 — > 7% >0 foralliwithay > 0.
ay aj Akl

This means that we have to take that row as pivot row, which yields the smallest quotient
of the current right-hand side component and the corresponding element in the chosen pivot
column among all rows with a positive element in the pivot column. Summarizing, we can
replace the basic variable u; by the non-basic variable x; if

b

ay >0 and qk:—:min{
ay

i

ag>0,i¢€ {1,2,...,m}}4

ail

If one of the above conditions is violated, i.e. if ayy < 0 or quotient g5 = by /ay is not
minimal among all quotients in the rows with a positive element in the pivot column, we do
not get a basic feasible solution, i.e. at least one component of the new right-hand side vector
would be negative. Therefore, we add a column Q in the tableau in Table 8.2 to calculate
the corresponding quotients ¢; which have to be taken into account. Notice that in the new
tableau, there is again an identity submatrix (with possibly interchanged columns) contained
in the transformed matrix belonging to the basic variables.

In the case of a degenerate basic feasible solution, all the above formulas for a pivoting step
remain valid. In such a case, we have a smallest quotient gy = 0 (which, by the way, means
that also in the case of choosing a negative pivot element a basic feasible solution results).
We will discuss the difficulties that may arise in case of degeneracy later in Chapter 9 in a
bit more detail.

The process of enumerating all basic feasible solutions of system (8.13) can be done by hand
(without using a computer) only for very small problems. Consider the following example.

Example 8.12 Consider the system of linear inequalities presented in Example 8.10. Intro-
ducing slack variables u1, u» and u3, we obtain the initial tableau in rows 1 to 3 below. Now,
the goal is to generate all basic feasible solutions of the given system of linear equations.
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Since each basic feasible solution has three basic variables, there are at most (g) = 10 basic
feasible solutions. We successively perform pivoting steps and might obtain for instance the
following sequence of basic feasible solutions:

Row bv x1 x wuy u u3 b Q

1w -2 1 1 0 0 0 -
2w 1 -1 0 1 0 4 4
3 w3 1 1 0 0 1 30 30
4 w0 -1 1 2 0 8 -
5.0x 1 -1 0 1 0 4 -
6 w3 0 2 0 -1 1 26 13

w0 I ) R ¥

o1 o 1 117 34
9 x» 0 1 0o -3 1 13z -
0 w 0 0 3 1 1 14 4
1 ox 1 0 -+ o 110 30

1 2

2 x» o0 1 1 0 % 2 30

The corresponding pivot elements are printed in bold face. In the first tableau (rows 1 to 3),
we can choose either the column belonging to x; or that belonging to x; as pivot column
(since there is at least one positive element in each of these columns). Selecting the column
belonging to x1, the quotient is uniquely determined, and we have to replace the basic variable
uy by the non-basic variable x;. In the second pivoting step, we can choose only the column
belonging to x; as pivot column (since, when choosing the column belonging to u,, we come
back to the basic feasible solution represented by rows 1 to 3).

From the last basic feasible solution, we cannot generate another extreme point. However, we
can perform another pivoting step so that u3 becomes a basic variable. Determining now the
minimum quotient in the Q column, itis not uniquely determined: we can choose x; orx; as the
variable that becomes a non-basic variable (since in both cases, we have the smallest quotient
30). If we choose x; as the variable that becomes a non-basic variable, we get the tableau:

Row bv x1 xp wuy wu wuz b Q

13 up -1 0 1 1 0 4
14 w3 30 -1 0 1 30
15 x -2 1 1 0 0 O

If we choose in the fourth tableau x; as the variable that becomes a non-basic variable, we
get the following tableau:

Row bv x1 xp uy u uz b QO
6 w o0 -1 1 1 0
17 x 1 -1 -1 1
18 w3 0 3 1 1 30
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We still have to show that we have now indeed generated all basic feasible solutions. For
the second, third and fourth tableaus we have discussed all the possibilities. We still have
to check the remaining possibilities for the first, fifth and six tableaus. If in the first tableau
we choose instead of the x; column the x, column as pivot column, we get the fifth tableau
(rows 13 to 15). Checking all possibilities for generating a new basic feasible solution in the
fifth and sixth tableaus, we see that we can generate only such basic feasible solutions as
we have already found. This means that the remaining possible combinations for selecting
basic variables which are x;, u1, u3; xp,u1,uz; x1,u1,up and x1, x3, u3 do not lead to a basic
feasible solution. (One can check this by trying to find all basic solutions.)

Therefore, in the above example, there are six basic feasible solutions and four basic infea-
sible solutions. From rows 1 to 18, we get the following basic feasible solutions. (The basic
variables are printed in bold face.)

1) x1=0, =0, uy=0, upy=4, u3 =230

2) x;=4, xx=0, uy=8, uy=0, wu3z=26;

B)x1=17, x=13, uwy =21, up=0, u3=0;

@ x1=10, x=20, u1 =0, uwu =14, u3=0;

(5) X1 = 0, Xy = 0, uy = 0, uy = 4, uz = 30;

©) x1;=0, x2=0, uy=0, uwpy=4, wu3z=30.

Deleting now the introduced slack variables u1, up, u3, we get the corresponding extreme
points P; with the coordinates (0, 0), P, with the coordinates (4, 0), P3 with the coordinates
(17,13) and P4 with the coordinates (10,20). The fifth and sixth basic feasible solutions
correspond to extreme point P; again. (In each of them, exactly one basic variable has value

zero.) Therefore, the first, fifth and sixth basic feasible solutions are degenerate solutions
corresponding to the same extreme point.

(]

N

20

10

Py

Py 20

Figure 8.6 Feasible region for Example 8.12.

The feasible region together with the extreme points is given in Figure 8.6. It can be seen that
our computations have started from point P;, then we have moved to the adjacent extreme
point P,, then to the adjacent extreme point P3 and finally to P4. Then all extreme points
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have been visited and the procedure stops. According to Theorem 8.10, the feasible region
is given by the set of all convex combinations of the four extreme points:
10
) + A-4 ( 20 ) s

we[() e ()= ()en() o 5

4
2 >0, ie(l,2,3,4), Z,\,. = 1}_

i=1

Since the columns belonging to the basic variables are always unit vectors, they can be
omitted. All required information for performing a pivoting step is contained in the columns
of the non-basic variables. Therefore, we can use a short form of the tableau, where the
columns are assigned to the non-basic variables and the rows are assigned to the basic
variables. Assume that altogether n variables denoted by x1, x2, . . ., x, occur in the system of
linear inequalities; among them there are m basic variables denoted by xp1,xp2, . . . , Xpp, and
n’ = n — m non-basic variables denoted by xy1,xn2, . . ., Xy, . In this case, the short form of
the tableau is as in Table 8.3.

Table 8.3 Short form of the tableau for a pivoting step

Row  bv XN1 xN7 XNw
* * * *
1 *B1 an . U by
* * * *
ko xak U ! B b
m XBm ar, a, ay b},
XN1 XN XNw/
* e ay * e Tk
mA 1l xp1dy — g a, Ty~ @ % D1 b
a* a* b*
¥ /3% 1 k! Pk
mtk g ay ay ay ay
* * * *
* Dy x Al x D ox w _ Aml px
m Xpm o Gy T Ay a, Do = G Yo Om = Ok

In column bv, the basic variables xg1, x5y, . . ., Xgnm are given, and the next n’ columns rep-
resent the non-basic variables xy1,xn2, . .., Xny. After the first pivoting step, the kth basic
variable is now the former /th non-basic variable: xg; = xp;. Correspondingly, the /th non-
basic variable in the new solution is the former kth basic variable: Xy; = xp. Notice that in
each transformation step we have to write the sequence of the non-basic variables since the
variables in the columns do not appear according to the numbering.
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It is worth emphasizing that, in contrast to the full form of the tableau, the new elements a;;
of the pivot column are obtained as follows:

ap = —»
A
_ a . .
ay=——, i=12,...,m, i #k,
A

i.e. the pivot element is replaced by its reciprocal value and the remaining elements of the
pivot column are divided by the negative pivot element. Notice that this column also occurs
in the full form of the tableau, though not in the pivot column (where after the pivoting step
a unit vector occurs) but it appears in the column of the new non-basic variable x; in the
full form of the tableau after the pivoting step. The following example uses the short form
of this tableau.

Example 8.13 We consider the following system of linear inequalities:

x < 25

2x1 + x3 < 30
—x1 + x = —6
X1,Xy > 0.

We multiply the third constraint by —1 and introduce in each inequality a slack variable
denoted by u1,u; and u3. This yields a system with three equations and five variables.

X3 + u =25
2x1 + xp + u =30
X1 — X +  u3 6

x1,%2,u1,uz,u3 > 0.

There are at most (g) = 10 basic feasible solutions, each of them including exactly three

basic variables. In order to describe the feasible region, we have to generate systematically
all the possible basic feasible solutions. Starting from the first basic solution with x; =
0,x2 = 0,u; = 25,up = 30, u3 = 6 and using the short form of the tableau, we obtain e.g.
the following sequence of basic feasible solutions by subsequent pivoting steps. In the first
step we have chosen the column belonging to x; as pivot column. (This is possible since at
least one element in this column is positive; analogously one can also start with the column
belonging to x; as the first pivot column.) Using the quotients in the O column, we have
found that row 3 must be the pivot row and, therefore, we have the pivot element 1. From the
tableau given by rows 4 to 6, we have to select the column belonging to variable x; as pivot
column (otherwise we come back to the basic feasible solution described by rows 1 to 3).
The quotient rule determines row 5 as pivot row. Continuing in this way (note that the pivot
column is now always uniquely determined since in the other case we would always go back
to the previous basic feasible solution), we get the results in the following tableaus.
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Row bv X1 X b o
1 uy 0 25 —
2 u 2 130 I
3 u3 1 —1 6 6

u3 X2
4 up 0 125 25
5 u -2 318 6
6 X1 1 —1 6 -
u3 up
7 u 2 -1 19 3
8 x - 1 6 -
9 x| 1 1 12 36
uj u
11 X 1 0 25 -
12 o -3 i 3 5
uj X1
13 wy =% 131
14 X 1 0 25
15 uy -1 2 5

Having generated the above five basic feasible solutions, we can stop our computations for the
following reasons. There remain five other selections of three variables out of the variables
X1,X2, U, Uy, u3 which, however, do not yield basic feasible solutions. The variables x, u1, u3
as basic variables lead to a basic infeasible solution. (When selecting x; as the variable that
becomes a basic variable in the next solution and row 2 as pivot row, this would violate the
quotient rule since g» = 30 > ¢; = 25.) Similarly, the choice of x1, u1, u3 as basic variables
does not lead to a basic feasible solution since we would violate the quotient rule when
choosing the x; column as pivot column and row 2 as pivot row. The choice of xy, uz,u3
as basic variables is not possible because when choosing the x; column as pivot column
and row 1 as pivot row in the first tableau, pivot zero would result and this is not allowed
(i.e. the corresponding column vectors of matrix 4 belonging to these variables are linearly
dependent). The choice of x1,xp,uy as basic variables leads to a basic infeasible solution
because when choosing the uy column as pivot column and row 7 as pivot row in the third
tableau, the resulting pivot element would be negative. For the same reason, the choice of
variables x», u1, u2 as basic variables does not lead to a basic feasible solution. (Selecting the
X2 column as pivot column and row 3 as pivot row in the first tableau yields the negative
pivot —1.) Therefore, in addition to the five basic feasible solutions determined from rows 1
to 15, there are four further basic infeasible solutions.

From the above five basic feasible solutions, we obtain the resulting five extreme points of
the feasible region M (by dropping the slack variables u1,u> and u3). Therefore, set M is
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given by

= {5 ) em [ () =m () #(5)+1 ()

5
5/2 0\, o -
+A4<25 )+A5<25), KiZO,l_l,Z,,_.’S’E )»,-_1},

The graphical solution of the system of linear inequalities is given in Figure 8.7. The ith basic
feasible solution corresponds to extreme point P;. In this example, there is exactly one basic
feasible solution corresponding to each extreme point since each basic feasible solution is
non-degenerate.

)

Figure 8.7 Feasible region for Example 8.13.

EXERCISES

8.1 Decide whether the following systems of linear equations are consistent and find the
solutions. Apply both methods of Gaussian elimination and pivoting (use the rank

criterion).
@ x1 + 2x + 3x3 = 5
2x1 + 3xp + X3 = 8
3x1 + x + 2x3 = 5
® 3x + x» + x3 = 3
4x; — x3 4+ 2x3 = 4
Xy — x2 -+ x3 = 1
dx; — x + 2x3 = 5
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8.2

8.3

8.4

8.5

(©) 3x;
3x1
8x1
6x1

@ x
8x1
4x
5x1

X1

+++++++++

4xy
8x7
5xp
2x7
2x7
Txy
5x7
4x)
4xy

+++++++++

X3
6x3
6x3
5x3
3x3
6x3
9x3
2x3

x3

6xg =
S5x4 =
Txqg =
3x4 =
16
74
49
43
= 22.

I+ +++
(%, B NN e ]

(a) Solve the following homogeneous systems of linear equations 4x = 0 with

@ 4

N —_ O =

W = - -

VN W=

(= N

1111
. 23 6 3

s ) A=f 5y
2350

(b) Find the solutions of the non-homogeneous system Ax = b with matrix 4 from
(i) resp. (ii) and b = (0,0, —2,2)T.

Find the general solutions of the following systems and specify two different basic
solutions for each system:

(a) 4x
—x
2x1

b  x
X1
2x1
3x1

+

+++

X2

X2

X2

2x7
4x;
2x7
2x7

+ +

3x3

X3

X3
X3
5x3
10x3
5x3

+ S5x4 = -2
- X3 = 4
— 2x4 = 1
+ 4x5 = 2
=+ X4 —+ 3X5 = 1
+ x4 — x5 = 11
+ 2x4 4+ 2x5 = 12

What restriction on the parameter a ensures the consistence of the following system?
Find the solution depending on a.

3x +

4y + 4z
3x + 2y + 3z
4 + Sy + az

2
3
4

Check the consistence of the following system as a function of the parameter A:

3x + 2 +

6x +

z
4y + Az

Do the following cases exist?

(a) There is no solution.
(b) There is a unique solution.

Find the solution if possible.

0
0
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8.6 Given is the system

8.7

8.8

8.9

8.10

8.11

1 0 0 -1 X1 2
01 -1 1 |[x]|_ |3
00 a 0 x3 | |1
0 1 0 b X4 0

(a) Decide with respect to the parameters a and b in which cases the system is
consistent or inconsistent. When does a unique solution exist?

(b) Find the general solution if possible.

(c) Calculate the solution fora = 1 and b = 0.

Decide whether the following system of linear equations is consistent and find the
solution in dependence on parameters a and b:

ax + (a+by + bz = 3a+5b
bx + aby + az = a(2b+3)+b
ax + by + bz = a+5b

Find the kernel of the linear mapping described by matrix

2 -2 2
A=1[5 -1 7
3 -1 4

Given are the two systems of linear equations

X1 + 2x + 3x3 = 5 X1 4+ 2x + 3x3 = 14
3x; + 1lxx + 2x3 = 5 and 2x; + 3x, + x3 = 13
2x1 + 3xy + 1x3 = 8 3x1 + x2 + 2x3 = 21.

Solve them in only one tableau.

Find the inverse matrices by pivoting:

1 3 2 1 46
@ A= 2 5 3|; @® B=|3 21 |;
-3 -8 -4 78 8

1 0 -1 2
2 -1 =2 3
-1 2 2 —4
0 1 2 =5

() C=

Find the solutions of the following matrix equations:

(a) X4 = B with

-1 3 2
A= 2 5 3 and B=(; _g _g);
-3 -8 —4
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8.12

8.13

8.14

(b) AXB = C with

2 1 3 2 0 1
A:(_l 2), B:<4 3) and cz(1 0),
(©) X4 = —2(X + B) with

-3 1 1

A=|-1 0 1 and B:G _‘3‘ _(2)>~
2 1 =2

Assume we have a four-industry economy. Each industry is to produce an output just
sufficient to meet its own input requirements and those of the other three industries
as well as the final demand of the open sector. That is, the output level x; must satisfy
the following equation:

Xi =xi1 +xi2 +xi3 +xia +yi, i €{1,2,3,4},

where y; is the final demand for industry i and x;; is the amount of x; needed as input
for the industry j € {1,2,3,4}. Let

5 15 15 10 5
25 25 10 30 10
X=0)=110 2 20 20 and y =4,
10 30 15 25 20

(a) Find the input-coefficient matrix 4 which satisfies the equation
X =A4x+y

with x = (x1,x2,x3,x4)T and Xij = ajX;.
(b) How does the matrix X change if the final demand changes to y =
(10, 20, 20, 15)T and the input coefficients are constant?

Given is the bounded convex set with the extreme points

2 2 -1
xl=11 ], X2 = s X=]0 and x4 =
0 1 1

Do the points

2 1
a:i 3 and b=1]0
1 2

belong to the convex set given above?

In addition to its main production a firm produces two products 4 and B with two
machines I and II. The products are manufactured on machine I and packaged on
machine II. Machine I has a free capacity of 40 hours and machine II can be used for
20 hours. To produce 1 tonne of 4 takes 4 min on machine I and 6 min on machine II.
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Producing 1 tonne of B takes 10 min on machine I and 3 min on machine II. What
output combinations are possible?

(a) Model the problem by means of a system of linear inequalities.

(b) Solve the problem graphically.

(c) Find the general solution by calculation.

Solve the following problem graphically:

—x + X2 =
—2x1 + x3 <
X1 — 2xy <
X1,X2 =

4

3
1
0

Find the general solutions of the following systems by calculation:

(@ 2x1 4+ 5x2 — 2x3
dx1 + x +  x3

X1,X2,X3

® x1 + x + X3
X1 + 5x3

X1,X2,X3

IV IATA

IV IATA

OLA)LM OU)UI
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9 Linear programming

In Chapter 8, we considered systems of linear inequalities and we discussed how to find the
feasible region of such systems. In this chapter, any feasible solution of such a system is
evaluated by the value of a linear objective function, and we are looking for a ‘best’ solution
among the feasible ones. After introducing some basic notions, we discuss the simplex
algorithm as a general method of solving such problems. Then we introduce a so-called
dual problem, which is closely related to the problem originally given, and we present a
modification of the simplex method based on the solution of this dual problem.

9.1 PRELIMINARIES

We start this section with an introductory example.

Example 9.1 A company produces a mixture consisting of three raw materials denoted as
R1, Ry and R3. Raw materials R; and Ry must be contained in the mixture with a given mini-
mum percentage, and raw material R3 must not exceed a certain given maximum percentage.
Moreover, the price of each raw material per kilogram is known. The data are summarized
in Table 9.1.

We wish to determine a feasible mixture with the lowest cost. Let x;,i € {1,2,3}, be the
percentage of raw material R;. Then we get the following constraints. First,

x1 +x2 +x3 = 100. ©.1)

Equation (9.1) states that the sum of the percentages of all raw materials equals 100 per cent.
Since the percentage of raw material R3 should not exceed 30 per cent, we obtain the constraint

x3 < 30. 9.2)

Table 9.1 Data for Example 9.1

Raw material Required (%) Price in EUR per kilogram

Ry at least 10 25
Ry at least 50 17
Ry at most 30 12
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The percentage of raw material R, must be at least 50 per cent, or to put it another way, the
sum of the percentages of R; and R3; must be no more than 50 per cent:

x1 +x3 < 50. 9.3)

Moreover, the percentage of R; must be at least 10 per cent, or equivalently, the sum of the
percentages of R, and R3 must not exceed 90 per cent, i.e.

Xy +x3 < 90. 9.4)
Moreover, all variables should be non-negative:
x1>0, x>0, x3>0. 9.5

The cost of producing the resulting mixture should be minimized, i.e. the objective function
is as follows:

z = 25x1 4+ 17x2 4+ 12x3 —> min! 9.6)

The notation z —> min! indicates that the value of function z should become minimal for
the desired so